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Aspects of Spacecraft Charging in Sunlight
Shu T. Lai, Fellow, IEEE, and Maurice F. Tautz, Member, IEEE

Abstract—This paper is an overview of spacecraft charging in
sunlight. The daylight photoelectron flux emitted from spacecraft
surfaces normally exceeds the ambient electron flux. As a result,
charging of spacecraft surfaces to positive voltage is expected to
occur in sunlight. Indeed, spacecraft are often observed to charge
to low positive voltages in sunlight. However, spacecraft can charge
to high-level (kiloelectronvolts) negative voltages in sunlight. Why
do spacecraft charge negatively in sunlight? One chief reason
concerns differential charging between the sunlit and dark sides.
For a satellite with dielectric surfaces, an electric field builds up
on the shaded surfaces and then wraps around to the sunlit side
to form a potential barrier that suppresses the photoemission. A
monopole–dipole (for zero spin) or monopole–quadrupole model
(for fast spin) describes the differential charging potential distri-
bution due to blocked photoelectrons. It is shown that these cases
are similar to a more general multipole potential field in that
the surface node potentials satisfy an approximate linear relation.
These cases are all driven by the shade side charging so that the
onset for charging is approximately the same in sunlight or eclipse
if conduction currents through the spacecraft can be neglected. If
conduction currents are important, potential barriers can develop
on the dark side, leading to suppression of the secondary emission
currents and modification of charging onset. The results were
briefly compared with observations. Another important reason for
negative charging concerns reflectance. Highly reflective mirrors
generate substantially reduced photoemission so that current bal-
ance can be achieved without barrier formation. The onset for
charging in this case depends strongly on the reflectivity. The
critical temperature for charging of surface materials under space
substorm conditions with different ratios of photoemission current
to electron ambient current, corresponding to varying satellite sur-
face reflectivity values, was calculated. Numerical results, which
show that with substantially reduced photoemission, highly reflec-
tive surfaces charge in sunlight with the critical temperature for
onset decreasing with increasing reflectivity, are presented.

Index Terms—Monopole–dipole, monopole–quadrupole, photo-
emission, reflectance, spacecraft charging, sunlight charging.

NOMENCLATURE

A Dipole term normalized to K.
Anm, Bnm Coefficients of potential expansion.
B Potential barrier height.
dA Element of surface area.
Iph, Jph Photoelectron current, photoelectron flux.
Ie, Je Ambient electron current, ambient electron flux.
Jo Photon flux.
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K Monopole potential (normalized by distance).
P Ratio of Iph and Ie.
Pm

n Associated Legendre function with indices n
and m.

Q Quadrupole term normalized to K.
qe, qi Electron charge, ion charge.
R, Ro Surface reflectance, surface reflectance for nor-

mal photon incidence.
r Distance from the satellite center.
rs Location of barrier measured from the satellite

center.
s Ratio of Sun intensity at the spacecraft over the

1 AU value.
Te, Ti Ambient electron temperature, ambient ion

temperature.
T ∗ Critical temperature for the onset of spacecraft

potential.
V Potential.
VP, VM Average pole potential, average bellyband po-

tential.
VSun, Vshade Potential of the sunlit surface, potential of the

shade surface.
x Cosine of polar angle in the Legendre polyno-

mial.
X , Y , Z Rectangular coordinates in the space frame.
Y Photoelectron yield per absorbed photon.
Yn Photoelectron yield per absorbed photon for

normal photon incidence.
δ Secondary electron emission coefficient.
η Backscattered electron emission coefficient.
α Sun angle with respect to the surface normal.
θ Polar angle with respect to the spin axis.
χ Ratio of the potentials on the sunlit and shade

surfaces.
ω Photon frequency.

I. INTRODUCTION

SATELLITE charging in space plasmas is due to the imbal-
ance of surface currents. One has to take into account the

incident space plasma currents and the secondary and backscat-
ter currents resulting from interactions with the satellite surface
materials. If these currents are unbalanced, the spacecraft will
charge, which enhances some currents and reduces others,
until balance is restored. At the geosynchronous environment,
charging in eclipse is often toward high negative voltage be-
cause the ambient high-energy (kiloelectronvolts) electron flux
exceeds that of the positive ions by two orders of magnitude
[1], [2] and the secondary plus backscatter electron yields are
well below unity at high energies. In response, the spacecraft
goes to a negative potential, repelling some of the incoming
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electrons and attracting ions. At equilibrium, all of the currents
achieve balance [3], [4].

In sunlight, one has to add the effect of the photoemission
current. Laboratory measurements show that the photoelectron
flux emitted from typical surface materials illuminated by ar-
tificial sunlight greatly exceeds that of the ambient electrons
under normal conditions at geosynchronous altitudes [5]–[8]. If
the outgoing electron flux exceeds that of the incoming one,
charging should be toward positive voltage. Indeed, surface
charging to a few positive volts is often observed in sunlight
at geosynchronous altitudes [9]–[11]. Positive potentials up
to tens of volts have also been reported for spacecraft in the
magnetotail or nearer the Sun where far ultraviolet (UV) lines
become more intense [12].

Surprisingly, high-level negative voltage (negative kilovolts)
charging of spacecraft surfaces is sometimes observed in day-
light [13]–[15]. How can high-level negative potential charging
occur on spacecraft surfaces in spite of the dominant photoelec-
tron current? An answer is provided by differential charging
and surface reflectance.

Potential wells and barriers can form as a result of differential
charging between surfaces [16]–[23]. Since photoelectrons are
of low energy, they are easily blocked by potential barriers
and trapped in potential wells. When the escaping photoelec-
trons are suppressed, current balance can be achieved, and
charging to high negative values can occur. The simplest type
of differential charging based on blocked photoelectrons is in
the monopole–dipole form [14], [15], [24]–[26]. With a fast
spinning satellite, a monopole–quadrupole form is possible
[27]. Multipole models are discussed in Sections II–IV. Surface
reflectance will reduce the photoelectron current emitted. High-
reflectance surfaces have relatively low photoemission and can
allow current balance to be reached without barrier formation.
Surfaces with high reflectivity can, therefore, charge to negative
potentials in hot plasmas despite sunlight [28]. The effects of
reflectivity are discussed in Sections V and VI. Conclusions are
given in Section VII.

II. MULTIPOLE MODELS

The monopole–dipole potential distribution [26], [29] of a
sphere is given by

V (θ, r) = K

(
1
r
− A cos θ

r2

)
(1)

where V is the potential at a point outside the sphere with a
distance r from the sphere center, θ is the polar angle with
θ = 0◦ facing the Sun, K is the monopole strength, and A is
the dipole strength normalized byK. When high-level charging
occurs, K equals several (negative) kilovolt meters typically.
The potential barrier, which is located toward the Sun at rS, is
determined by [

dV (0◦, r)
dr

]
r=rS

= 0 (2)

which gives rS = 2A from (1). The barrier is located outside
the spacecraft (r > 1), which sets a threshold A = 1/2. The

Fig. 1. (a) Monopole–dipole configuration. (b) Monopole–quadrupole
configuration.

barrier height B is given by

B

K
=
V (0◦, rS) − V (0◦, 1)

K
=

(2A− 1)2

4A
. (3)

A barrier height of even a few volts (negative volts) is sufficient
to block photoemission because photoelectrons emitted from
geosynchronous satellites have low energies. The characteristic
temperature is 1–2 eV [5]–[7], [11]. For high-level charging,
the ratio B/K is, therefore, nearly zero, which implies that
A ≈ 1/2 in (3). As a result, (1) yields the ratio χ of the sunlit
surface potential to that of the shaded surface

χ =
V (0◦, 1)
V (180◦, 1)

=
1 −A

1 +A
≈ 1

3
. (4)

In Fig. 1(a), we show the monopole–dipole configuration in an
(X , Z) Cartesian frame. The Sun’s direction is toward +Z. The
polar angle and the angle of incidence for photoemission are
indicated. The photosheath barrier forms outside of the surface
at +Z. The surface potentials at the coordinate nodes +Z, −Z,
+X , and −X are given in terms of the model parameters K
andA. By symmetry, the potentials at +Y and −Y (not shown)
are equal to K.

The equilibrium value of A depends on current balance to
the spacecraft, where the net current depends on the incident
ambient fluxes (which can be parameterized by the density
and temperature of each particle species) integrated with the
surface material properties. In the theory of critical temperature,
the ambient electron temperature Te is an important space
plasma parameter controlling the onset of spacecraft charging.
Characterizing the ambient space plasma by Te, we have found
that, statistically, the ratio χ of the satellite potentials with
and without sunlight is about 1/3 on the Los Alamos National
Laboratory (LANL) geosynchronous satellites no matter which
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Fig. 2. (Upper branch) charging in eclipse and (lower) in sunlight. The data
are quantized because of flux channels. The centroid of the temperature at every
quantized level is shown as triangle. The ratio of the two branches is about 0.3.

satellite, year, or month [14], [15], [30]. A sample data plot is
shown in Fig. 2.

If the satellite is rotating fast with respect to the surface
capacitance charging time, a quadrupole component appears in
the potential distribution. For arbitrary sunlight direction, the
potential distribution, including any potential barriers, would
be symmetrical not about the sunlight direction but, instead,
about the spin axis. If the Sun’s angle θ with respect to the spin
axis is equal to 90◦, a dominant monopole–quadrupole potential
distribution occurs [27]. The potential then has the follow-
ing form:

V (θ, r) = K

[
1
r

+
Q

2r3
(
3 cos2 θ − 1

)]
. (5)

We can again find a potential barrier using (2). Solving for the
radius rS of the barrier gives rS = (3Q/2)1/2 and a correspond-
ing threshold of Q = 2/3. The barrier has a more complicated
form than in (3) and is given by

B

K
=
V (90◦, rS) − V (90◦, 1)

K
=

(
2
3

)3/2

Q−1/2 +
Q

2
− 1.

(6)

Like (3), this expression is zero at threshold and increases
monotonically with Q above the threshold. Here, again, we can
obtain a Sun/shade potential ratio near the threshold as

χ =
V (90◦, 1)
V (180◦, 1)

=
1 −Q/2
1 +Q

≈ 2
5
. (7)

In this case, the spin equator (bellyband) is sunlit, and the
shaded surfaces occur at the spin poles. Fig. 1(b) shows
schematically the potentials at the sphere surface for the
monopole–quadrupole configuration. The sphere is spinning
around the Z axis, and the Sun’s direction is at θ = 90◦. The

surface node potentials are given at +Z, −Z, +X , and −X as
functions of K and Q. The model potentials at +Y and −Y
(not shown) are equal to K(1 −Q/2).

If the Sun’s direction θ is situated between 0◦ and 90◦, we
find an approximate Sun/shade potential ratio χ(A, θ) that goes
between the two aforementioned cases [27]. Although there
are differences in details, the basic mechanism is the same:
The shaded side charges, and the fields wrap around to form
a potential barrier that acts to suppress the photoemission.

III. RELATION BETWEEN SATELLITE SURFACE

NODE POTENTIALS

We consider the charging in sunlight of a satellite in a low-
density plasma. By the standard method of separation of vari-
ables, Laplace’s equation can be solved in spherical coordinates
(r, θ, φ) in the following form:

V =
K

r

[
1 +

∞∑
n=1

1
rn

n∑
m=0

Pm
n (x)

× (Anm cos(mφ) +Bnm sin(mφ))

]
. (8)

Here, K/r is the monopole potential, and Pm
n (x) are the

associated Legendre functions, with x = cos θ. The sum over n
goes from 1 to ∞ and encompasses the multipole contributions.
The sum over m goes from 0 to n and allows for possible
azimuthal dependence. The constants K, Anm, and Bnm are
set by the external conditions. The potentials in (8) vanish at
r = ∞; otherwise, the solution is quite general.

We consider the surface potentials at the six coordinate
nodes, i.e., +X , −X , +Y , −Y , +Z, and −Z, in the space
frame of reference. If we take the sum of these node potentials,
we obtain

V (+X) + V (−X) + V (+Y ) + V (−Y )

+ V (+Z) + V (−Z) = 6K. (9)

The calculation of this result is given in the Appendix. It
depends only on the properties of the Legendre functions. There
are no assumptions about the coefficients K, Anm, and Bnm

or the symmetry of the potential distribution. It is valid for a
summation in (8) from n = 1 up to n = 3 only. Although the
result has been proven only for this limited range, the lower
order multipoles typically represent the bulk of the charging
distribution.

Consider the Besse–Rubin limit at zero spin [26]. Let the
sunlight be incident from Z = +∞. The bellyband potentials
are known to be equal to K, and the shade side potential
V (−Z) = K(1 +A) [see Fig. 1(a)]. Solving the linear equa-
tion (9) for the Sun/shade potential ratio, we get

V (+Z)
V (−Z)

=
2K

V (−Z)
− 1 =

1 −A

1 +A
(10)

which is in agreement with (4). Now, put the Sun’s direction
toward +X . This is a Besse–Rubin system with the Sun’s
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direction rotated from +Z to +X . The transverse rim potentials
become V (Y ) = V (−Y ) = V (Z) = V (−Z) = K, and the
potential on the dark side goes to V (−X) = K(1 +A). The
linear equation (9) again leads to (10), but with Z replaced by
X , and the same Sun/shade ratio is obtained. In this configu-
ration, there is no azimuthal symmetry around the Z-axis. This
example illustrates the generality of the approximate relation
(9). Whatever the Sun’s direction, the surface node potentials
adjust so that they sum to 6K.

Let us define the average pole potential as

VP =
1
2

(V (+Z) + V (−Z)) (11)

and the average middle (bellyband) potential as

VM =
1
4

(V (+X) + V (−X) + V (+Y ) + V (−Y )) . (12)

Then, we can write (9) as

VP = 3K − 2VM. (13)

This simple linear relation between the average pole and aver-
age bellyband potentials holds up to third order in the multipole
expansion for any satellite that satisfies Laplace’s equation in
spherical coordinates.

We now assume that the satellite is spinning fast around
the Z-axis and that the Sun’s direction lies somewhere in the
bellyband plane. The value of VM = K(1 −Q/2) [27] at the
fast spin limit [see Fig. 1(b)]. For a spinning satellite with
the bellyband sunlit, the Sun/shade ratio from (13) goes into

VM

VP
=

VM

3K − 2VM
=

1 −Q/2
1 +Q

(14)

which is in agreement with (7).
The actual coefficients K, Anm, and Bnm and the potentials

VM and VP could be complicated functions of the plasma
environment, the satellite current collection characteristics,
the surface material properties, and the photoemission sheath
structure, but the simple linear relation (9) should always be
approximately valid.

IV. ONSET OF SPACECRAFT CHARGING IN SUNLIGHT

In the Maxwellian space plasma model, the onset of space-
craft charging in eclipse occurs at a critical temperature T ∗

[31]–[35]. If the plasma electron temperature T is below T ∗,
no charging occurs. Above T ∗, the charging voltage increases
as the temperature T increases. This property has been observed
on the LANL satellites [2]. In sunlight, the abundant outgoing
photoelectrons greatly affect the current balance. Naturally, the
following question arises: Does a critical temperature T ∗ exist
in sunlight?

At the spin limits, the multipole models indicate that the
sunlit side potentials are scaled by a factor χ from the shaded
potentials, i.e.,

VSun = χVshade. (15)

Fig. 3. Schematic scenario of secondary electron suppression by potential
wells during spacecraft charging in sunlight. Patches of exposed conducting
spacecraft ground among pieces of dielectric surfaces are assumed.

If we neglect conduction currents through the spacecraft from
the sunlit to the dark side, a more general multipole expansion
is expected to be similar to the limit cases. In such cases, the
shaded surfaces charge approximately as in eclipse so that the
onset of charging would be relatively unchanged. The multipole
models, thus, predict that T ∗ would be roughly the same in
sunlight or eclipse.

In Fig. 2, data are shown of spacecraft potential versus
electron temperature [27]. The upper data branch represents
charging in eclipse, and the lower data branch is for daylight
charging. The lower line (solid) is a fit to the sunlight data, and
the upper line (dashed) goes through the eclipse data. The ratio
of the two lines is 0.3, which is in rough agreement with the
monopole–dipole model at charging threshold. Qualitatively,
the onset of charging is the same for sunlight and eclipse.

In the monopole–dipole and monopole–quadrupole models,
we have tacitly assumed that the spacecraft surface is uni-
formly covered with dielectric and the potential distribution is
azimuthally symmetric. If this is not true, there could be areas
with exposed surface patches at positive potential relative to
the dielectrics, producing potential wells and trapping emerging
electrons. For example, if the dark side surfaces are mostly
covered with dielectric but there are isolated surface elements
that are connected electrically to the sunlit side so that they are
at a relatively positive potential, escaping secondary electrons
would be trapped (Fig. 3). In this way, the secondary emission
could be substantially reduced, leading to a lower critical tem-
perature. For this more complicated scenario, there would be
differences in the charging onset in sunlight or eclipse because
the dark side is no longer isolated from the Sun. Electrical
connections between the dark and the sunlit sides by means
of grounds or surface/bulk conductivity would also tend to
lower the potentials from those in the dipole or quadrupole
models, which represent idealized cases. In a complex scenario
such as this, there could be trapped photoelectrons on the
sunlit side and suppression of secondary electrons on all sides
that have barrier formation. Treating the problem fully (with
local dielectric hot spots, potential barriers, and wells) would
lead to complicated potential distributions without azimuthal
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Fig. 4. Reflectance of aluminum at normal incidence. [28], [40].

asymmetry. This problem could be handled, in principle, by the
general multipole solution.

V. SURFACE REFLECTANCE

In the spacecraft charging problem, it is important to asso-
ciate a photoemissivity value to a surface material with regard
to the surface condition, surface reflectance, and sunlight inten-
sity. The photoelectron flux Jph(ω, α) emitted from a surface is
given by [36], [37]

Jph(ω, α) = Jo(ω)Y (ω, α)[1 −R(ω, α)] (16)

where Jo(ω) is the incident light intensity at frequency ω,
Y (ω, α) is the photoelectron yield per absorbed photon, α is
the photon incidence angle, andR is the reflectance. We remark
that the yield [37] can be expressed in terms of photoelectrons
emitted per photon absorbed, i.e., Y = Jph/[Jo(1 −R)], or
as photoelectrons per incident photon, without the (1 −R)
factor in the denominator. Reflectance is a surface property that
depends not only on the frequency but also on the material,
the smoothness, and the incidence angle [38]. For example, the
reflectance R at normal incidence of smooth pure aluminum
[39], [40] is about 0.9 at the Lyman Alpha (Lyα) frequency of
sunlight (Fig. 4), and with protective coating, aluminum mirrors
can achieve almost this level of reflectance in space [41]. Highly
reflective flat surfaces have been used for concentrating sunlight
onto solar cells on satellites such as Telesat Anik F1 and
Anik F2 as well as PanAmSat’s Galaxy 11 [http://sat-index.
com/failures/702arrays.html].

Consider a photon beam impacting the surface of a solid.
We divide the incident photon flux Jo into two fractions,
namely 1) the flux of photons that are reflected, i.e., JoR, and
2) those that penetrate the solid, i.e., Jo(1 −R). Reflected light
has almost the same energy as incident light, and little or no
energy is imparted at the surface. It is the penetrating photons
that impart energy to the material and produce photoelectrons.
The solar Lyman Alpha line is about 10 eV in energy, whereas
a typical spacecraft surface material has a work function of
about 4–5 eV. If an excited electron is created in the solid with
sufficient energy, its direction must be such that it can propagate
through the material and overcome the work function barrier
at the surface. Photoelectrons that emerge from the surface
typically have low kinetic energies in the range of 1–3 eV.

Fig. 5. Reflectance of beryllium, germanium, antimony, Bi, and silicon car-
bide at various incidence angles. A fit line for Bi is shown (plotted using data
taken from [38] and [42]).

The photoelectron yield per absorbed photon Y depends on
the interactions mentioned earlier in the setting of the interior
(band) structure of the solid. Since the attenuation lengths for
incoming photons are functions of photon frequency, the yield
can depend strongly on the energy of the incident photon. This
photoemission production behavior is described by (16).

It has been conjectured [28] that highly reflective surfaces
charge to negative potentials in hot plasmas not only in eclipse
but also in sunlight. This is because the photoemission from a
highly reflective surface is so low that it is, to some extent, in
eclipse conditions. With the large photoemission term greatly
reduced, current balance can be obtained during hot plasma
events or magnetospheric substorms in the same way as in
eclipse.

If this conjecture is confirmed, it may provide an explana-
tion of some reported satellite failures. Mirrors and ordinary
surfaces in space will charge to different voltages in sunlight,
resulting in differential charging to high voltages, which is
a space hazard because it may lead to discharges between
surfaces and/or instruments.

VI. COMPETITION WITH AMBIENT ELECTRON CURRENT

We show in Fig. 5 the reflectance as a function of photon
angle of incidence for a number of materials. Data have been
extracted from published figures [38], [42]. We can make a
rough fit to these data in the following form:

R(ω, α) = 1 + (Ro − 1) cosα (17)

whereRo = R(ω, 0) is the reflectance at normal incidence, and
R(ω, 90◦) is unity at grazing. Even if the normal reflectance
Ro = 0, the reflectance R(ω, α) at a finite angle α is finite.
Equation (17) is fairly typical for a number of materials [38]. A
fit line for bismuth (Bi) is shown in Fig. 5. This fit has not been
optimized. It gives the correct values at the angles’ end points
and shows the approximate cosα behavior, which is all that is
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needed for the estimate of the photoemission angle dependence
later in this paper.

We now consider the fluxes at a spacecraft surface with the
face normal at a given angle α with respect to the Sun’s direc-
tion. It is assumed that the surface is in a substorm environment
and that the main current contributions come from an incoming
flux of high-energy electrons along with the outgoing flux of
photoelectrons. If α = 0, the ratio of the photoelectron flux to
that of the ambient electrons at geosynchronous altitudes during
a substorm can be taken as

Jph

Je
≈ 2 nA/cm2

0.5 nA/cm2 ≈ 4. (18)

Here, Jph is an average photoemission rate for normally inci-
dent sunlight [17], and Je corresponds to a worst case plasma
given in [43]. If α �= 0, then the photoelectric current, including
reflection, at the relevant frequency, is given by

Iph =Jo · dA Y (1 −R) (19)

≈JodA cos α
Yn

cosα
(1 −Ro) cosα (20)

=JphdA(1 −Ro) cosα (21)

where Jph = JoYn. Equation (19) is the basic expression de-
scribing photoemission. We show explicitly in (20) the possible
cosα dependence for the terms in (19), and (21) gives the
resulting expression. In (19), the first term Jo · dA relates to
the area perpendicular to the solar radiation and is straight-
forward. In the third term, i.e., (1 −R), the reflectivity R is
represented by the rough fit given in (17). The second term Y is
more complex. The behavior of the yield, i.e., Y = Yn/(cosα),
where Yn is the yield for normal incidence, is an approximation
that depends on the incidence angle and the absorption lengths
for a photon Lph and excited electron Le,in the material [44].
The absorption length for production of an excited electron in
the material is on the order of 100Å but depends markedly
on the details of the material band structure. For conductors,
the inelastic mean free path of electrons with energies of
10–100 eV is perhaps 5Å–10Å but increases at both higher
and lower energies [48]. For insulators, the inelastic mean
free path can increase substantially. This approximation breaks
down when Le/(Lph cosα) > 1. The point at which this oc-
curs is a complex issue not addressed by this paper. When
the approximation is operative, the second term cancels one
other factor of cosα so that there is only a single multiplier
remaining. It is noted that the spacecraft charging simulation
program NASCAP [49] uses a photocurrent of the form Iph =
sJAUdA cosα, where JAU (user input) is the photoemission
rate for an exposed surface area at an “Earth distance” from
the Sun, and s (user input) is the ratio of Sun intensity at the
spacecraft over the 1-AU value. This formula assumes that the
photoemission rate is, on the average, independent of α.

In this paper, we make the conservative assumption that there
is one factor of cosα, as indicated in (21). Thus, if a surface is

inclined at an angle α to sunlight and reflection is included, the
photoelectron/electron current ratio would be given by

P =
Iph

Ie
=
Jph

Je
[1 −R0] cosα. (22)

With smooth pure aluminum surface material, the reflectance
Ro at normal incidence is > 0.85 at the Lyα frequency [39]. At
α = 60◦, using (18) and including reflectance, we get a ratio P
of about

P = 4(1 − 0.85) cos 60◦ ≈ 0.3. (23)

Here, we have used a conservative value of Ro for smooth alu-
minum. Modern reflectors in space are very efficient. Advances
in optical coatings and materials technology have made possi-
ble the development of instruments with substantial improved
efficiency for UV space applications. For example, magnesium-
fluoride-protected aluminum surfaces have been used on optical
components for Hubble Space Telescope instruments, and a
reflectance of 0.86 has been achieved [41]. The result for
P in (23) has a large uncertainty due to the variability of
the geosynchronous environment. However, with this example,
we see that the (outgoing) photoelectron current can be less
than the (incoming) ambient electron flux at a surface with a
combination of high reflectivity and large Sun angle. Therefore,
charging to negative voltages can occur in sunlight for such
cells, depending on the total net surface currents.

The Mott–Smith–Langmuir orbit-limited model [45], which
is often a fairly good approximation for describing current
balance at geosynchronous altitudes, is given by

Ie(0) [1 − 〈δ + η〉] exp
(
−qeV
kTe

)
− Ii(0)

(
1 − qiV

kTi

)
= Iph

(24)

where the notations are standard (see, e.g., [2]). The term
〈δ + η〉 describes the effect of secondary and backscatter in-
teractions and is a function of the electron temperature. If
we neglect the ion current Ii(V ), which is typically much
smaller than the electron current at threshold where V = 0, the
condition for charging is

〈δ + η〉 = 1 − Iph

Ie(0)
= 1 − P. (25)

If P depends on the reflectivity Ro, as in (22), then as Ro

increases from 0 to 1, P decreases to 0. When P reaches 0,
one recovers the usual condition for determining the critical
temperature in eclipse [2].

If the ratio P is greater than 0, the critical temperature
will vary. We show in Fig. 6 the value of T ∗ for three ma-
terials, which was calculated versus P . In the calculation,
the integrated form of 〈δ + η〉 as a function T [35], which
was derived from published formulas for secondary [46] and
backscatter equations [47], was used, and the numerical values
for the different materials are the same as given in [33]. The
magnitude of the photoemission current was chosen to be less
than the ambient electron current (0 < P < 1), as could be the
case when there is high reflectance. The plot shows that the
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Fig. 6. Effects of photoemission on the critical temperature T ∗ for the onset
of surface charging to negative voltages. The T ∗ values increase as the ratio
P of photoelectron current Iph to the ambient electron current Ie(V = 0)
increases. At a limiting value of the ratio P for a surface material, the value of
T ∗ is infinity asymptotically. Above this value, charging (to negative voltages)
cannot occur.

critical temperature, at which onset of charging occurs, depends
strongly on the ratio P , and it increases monotonically with this
ratio. As P goes toward 1, there is a limiting value, depending
on the material, at which T ∗ goes to infinity asymptotically.
Beyond this value, negative voltage charging cannot occur. The
behavior of T ∗ versus P comes about because increasing P
lowers the height of the horizontal line intercepting the 〈δ + η〉
curve. Since this curve is decreasing, one has to move further
out in Te to find the critical temperature. This situation is
illustrated in Fig. 7 for aluminum oxide, and a value of P = 0.3.
The behavior of the critical temperature is nonlinear due to
the nonlinearity of the 〈δ + η〉 function. As P approaches 1,
a solution may not be possible, corresponding to the limiting
value for negative sunlight charging by means of direct current
balance.

Figs. 6 and 7 describe the general effect. We have assumed
unshielded electron current collection and have neglected sur-
face roughness, angular dependence of the secondary and
backscatter yields, and ion currents. The value of the critical
temperature depends on the validity of the models, and it would
improve with increased accuracy of the photoemissivity and
surface emission properties.

VII. CONCLUSION

Since the photoemission current exceeds the ambient elec-
tron current at geosynchronous altitudes, why do spacecraft
charge negatively in sunlight? We have discussed the two
mechanisms, namely 1) differential charging and 2) surface
reflectance. Differential charging is accompanied by potential
barriers that form above photoemitting surfaces, suppressing
the escape of photoelectrons and leading to current balance. If
differential charging between the sunlit side and the shadowed
side occurs, one can model the system as a monopole–dipole.

Fig. 7. Shift of the value of critical temperature T ∗ as a result of photoemis-
sion. Without photoemission, T ∗ is given by the root of 〈δ + η〉 = 1. With
photoemission, T ∗ is given by the root of 〈δ + η〉 = 1 − P .

The monopole–dipole model results show that 1) the ratio of
the potential on the sunlit side to that on the shadowed side
is approximately 1/3 and 2) the critical temperature T ∗ is the
same as that in eclipse. One can also model the system as a
monopole–quadrupole model if the satellite spin is fast and per-
pendicular to the sunlight direction. The monopole–quadrupole
model results show that the ratio becomes approximately 2/5,
and by the same argument, the critical temperature T ∗ is
unchanged. A fairly general approximation to the Laplace
equation shows that the surface node potentials are linearly
related in the same way as for the zero and fast spin limits.
In the general multipole configuration, the Sun/shade scaling
ratio is unknown, but the behavior of the critical temperature
would be similar to the limit cases, except in possible scenarios
where there are significant electrical connections between sunlit
and dark sides. In these more general scenarios, there may be
patches of exposed conductor (relatively positively charged)
mixed among areas of dielectric surfaces, such that there is
suppression of secondary electron currents and, thus, a modi-
fication of the onset of charging. In the second mechanism, we
stress the importance of reflectance. Surfaces with higher re-
flectance generate fewer photoelectrons so that current balance
can be achieved without the formation of potential barriers.
In magnetospheric substorms, high reflectance surfaces should
charge to high negative potentials in hot plasmas, regardless
of eclipse or sunlight. We have calculated the critical temper-
ature for several materials in sunlight, using current balance,
without invoking differential charging. To show the effect of
low photoelectron currents, we vary the ratio of the photoe-
mission to ambient electron current. The exact value of the
photoelectron current would depend on the surface condition
and, in particular, on the reflectance of the surface material. The
results indicate that the value of the critical temperature T ∗ is
shifted, depending on the ratio of the outgoing photoelectron
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current to the incoming ambient electron current. Increasing the
reflectivity decreases the critical temperature until, in the limit
of total reflectance, we recover the eclipse value.

APPENDIX

RELATION BETWEEN THE SURFACE NODE POTENTIALS

The surface nodes are at radius r = 1. In rectangular co-
ordinates, the bellyband nodes are located at +X = (1, 0, 0),
−X = (−1, 0, 0), +Y = (0, 1, 0), and −Y = (0,−1, 0). Then,
we have

V (+X) =K
(
1 + P 1

1 (0)A11 + P 0
2 (0)A20

+P 2
2 (0)A22 + P 1

3 (0)A31 + P 3
3 (0)A33

)
(A.1)

V (−X) =K
(
1 − P 1

1 (0)A11 + P 0
2 (0)A20

+P 2
2 (0)A22 − P 1

3 (0)A31 − P 3
3 (0)A33

)
(A.2)

V (+Y ) =K
(
1 + P 1

1 (0)B11 + P 0
2 (0)A20

−P 2
2 (0)A22 + P 1

3 (0)B31 − P 3
3 (0)B33

)
(A.3)

V (−Y ) =K
(
1 − P 1

1 (0)B11 + P 0
2 (0)A20

−P 2
2 (0)A22 − P 1

3 (0)B31 + P 3
3 (0)B33

)
. (A.4)

Here, we have used the following property of the Legendre
functions:

Pm
n (0) = 0, if n+m = odd

to eliminate many terms. We can further write for the nodes at
+Z = (0, 0, 1) and −Z = (0, 0,−1)

V (+Z)=K
(
1 + P 0

1 (1)A10 + P 0
2 (1)A20 + P 0

3 (1)A30

)
(A.5)

V (−Z)=K
(
1 + P 0

1 (−1)A10 + P 0
2 (−1)A20 + P 0

3 (−1)A30

)
.

(A.6)

Here, we have used the following Legendre property:

Pm
n (±1) = 0, if m �= 0

to simplify. Adding (A.1)–(A.6), we find∑
V =V (+X) + V (−X) + V (+Y )

+ V (−Y ) + V (+Z) + V (−Z)

=K
{
6 +A10

[
P 0

1 (1) + P 0
1 (−1)

]
+A20

[
4P 0

2 (0) + P 0
2 (1) + P 0

2 (−1)
]

+A30

[
P 0

3 (1) + P 0
3 (−1)

]}
. (A.7)

Using the Legendre function parity relation defined by

Pm
n (−x) = (−1)n+mPm

n (x)

and the values

P 0
2 (0) = −1/2 P 0

2 (1) = 1 P 0
2 (−1) = 1

in (A.7), we find that the terms in square brackets reduce to 0.
We are now left with

∑
V = 6K

which is the desired equation. To reach this result, we have used
only the properties of the associated Legendre function (n ≤ 3)
and have made no assumption about the coefficients K, Anm,
and Bnm.
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