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Abstract

The binturong Arctictis binturong is a threatened carnivore (Mammalia) that

ranges throughout the forests of South-east Asia. This study evaluates the genetic

diversity of captive binturong populations in European zoos and attempts to

assess their geographic origin. We sequenced the hypervariable region 1 of the

mitochondrial control region of 56 binturongs, among which 20 had a known

geographic origin. We showed that at least two distinct geographic clades exist and

were able to assess the geographic clade to which captive individuals belong.

Moreover, a low genetic diversity was observed among the captive population of

European zoos. Although our results are preliminary, zoo managers should

consider the evolutionary significant units identified by this study, and which

correspond to recognized sub-species, when planning binturong reproduction

programs.

Introduction

The binturong Arctictis binturong (Raffles, 1821) is the

largest member of the family Viverridae (Pocock, 1933). Its

black fur is long and coarse and its tail is particularly

muscular at the base and prehensile at the tip. The only

other carnivore with a truly prehensile tail is the kinkajou,

which the binturong resembles in habits to some extent. The

binturong lives in dense forests and is mainly arboreal and

nocturnal. It is reported to dive, swim and catch fish. The

diet also includes birds, carrion, leaves and principally fruits

(Nowak, 1991). It was originally described by Raffles in

1821 and nine sub-species have been described on the basis

of pelage color and body size variation (Table 1; Pocock,

1933).

In spite of its large distribution throughout South-east

Asia (see Fig. 1), the binturong is uncommon on the main-

land and is rare on the Indonesian islands of Java, Sumatra,

Nias, Riau and the Bangka islands (Yossa et al., 1991). The

sub-species Arctictis binturong whitei (Palawan, Philippines)

is listed as Vulnerable on the Red List of threatened species

(IUCN, 2004). The destruction of primary rainforest repre-

sents the greatest threat for this highly arboreal species.

Moreover, binturongs are targeted by hunting, notably in

Palawan island (Quinnell & Balmford, 1988), and protection

measures are often inappropriate for this species (Choudh-

ury, 2000). Binturongs are essential for the maintenance of

forest ecosystems. They are keystone species as seed dis-

persers, with digestive enzymes capable of softening the seed

coat of the strangler fig Ficus spp. and other fruiting species

(CPT, 1997).

Binturongs are common in zoos and captive individuals

represent a source of genetic diversity essential for long-term

conservation, provided ex situ reproduction is managed

taking this variation into consideration. The IUCN/SSC

Mustelid and Viverrid Specialist Group recognizes that

captive breeding is a powerful tool in ensuring the survival

of endangered species, notably when the protection of wild

animals and their natural habitats is not successful (Schrei-

ber et al., 1989). However, in captivity the geographic

origin of animals is usually unknown for several reasons.

Typically, zoo animals have unknown geographic origin or

are the offspring of several generations of captive-bred

animals with no information on the geographic origin of the

founders.

We considered two points relevant to binturong conser-

vation: (1) What is the genetic diversity of the captive

population in Europe? (2) Can we identify geographic clades

of which the genetic identity needs to be preserved?

This study evaluated the genetic diversity of captive

binturongs, and attempted to identify their geographic

origin, using a phylogeographic approach. For this purpose,
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we sequenced a portion of mitochondrial DNA (the hyper-

variable region 1 of the D-loop). Whereas the cytochrome b

gene has been used extensively for previous intraspecific

studies in carnivores (Veron et al., 2003), the D-loop evolves

three to five times faster in mammals than the average rate

of mitochondrial DNA sequences (Vigilant et al., 1989;

Horai & Hayasaka, 1990) and has been used for intraspecific

systematics and phylogeography (Salguiero et al., 2004;

Durka et al., 2005; Iyengar et al., 2005).

This study provides a new data set of sequences of this

mitochondrial gene for 56 captive-bred binturongs, includ-

ing 20 individuals with known geographic origin and two

wild-caught binturongs.

Materials and methods

Sample collection

Fifty-six binturong samples were obtained for this study (see

Table 2), including two wild-caught individuals from Thai-

land. Twenty had a known geographic origin (information

came from the ISIS database or was provided by zoos). The

masked palm civet Paguma larvatawas used as the outgroup

according to Veron & Heard (2000).

DNA extraction and sequencing

DNAwas extracted using the CTABmethod (cetyltrimethy-

lammonium bromide) (Winnepenninckx, Backeljau & De

Wachter, 1993). Polymerase chain reactions (PCRs) were

conducted in a reaction volume of 25 mL using TAQ poly-

merase (Qbiogen, Illkirch, France). Amplifications were run

in a thermal cycler with a typical profile of 35 cycles, with

each cycle consisting of 30 s at 94 1C, 40 s at 51 1C and 40 s at

72 1C for the denaturation, annealing and extension steps,

respectively. The last cycle was followed by a further 7min

extension at 72 1C.

Table 1 Binturong Arctictis binturong sub-species described since

1821 (Pocock, 1933; Wozencraft, 1993)

Sub-species Type locality

Arctictis binturong binturong

(Raffles, 1821)

Malacca (Malaysia)

Arctictis binturong albifrons

(Cuvier, 1822)

Tonkin (north Vietnam)

Arctictis binturong whitei

(Allen, 1910)

Palawan (Philippines)

Arctictis binturong pageli

(Schwarz, 1911)

Sandakan (north Borneo)

Arctictis binturong gairdneri

(Thomas, 1916)

Siam (north Thailand)

Arctictis binturong niasensis

(Lyon, 1916)

Nias island (west Sumatra)

Arctictis binturong penicillatus

(Pocock, 1933)

Java (Indonesia)

Arctictis binturong kerkhoveni

Sody, 1936

Bangka island (east Sumatra)

Arctictis binturong menglaensis

Wang & Li, 1937

Yunnan province (China)

Figure 1 Map showing the distribution of the

sub-species of Arctictis binturong and locality

of samples.
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Table 2 Binturong Arctictis binturong samples used for this study

Genus Species DNA number Geographic origin Sample ISIS number

Arctictis binturong C-460 Malaysia (Singapore Zoological Garden) Hairs –

A. b. C-45 Vietnam (Saigon Zoo) Hairs 367

A. b. C-151 Unknown (CPT, USA) Tissue 01035

A. b. C-152 Unknown (CPT, USA) Tissue 01027

A. b. C-461 Thailand (wild caught in Chaiyaphum province) Hairs –

A. b. C-480 Thailand (wild caught in Chaiyaphum province) Hairs –

A. b. C-279 Burma (Yangon Zoo) Hairs –

A. b. C-478 Burma (Yangon Zoo) Hairs –

A. b. C-429 Unknown (Servion Zoo, Switzerland) Hairs –

A. b. C-430 Unknown (Servion Zoo, Switzerland) Hairs –

A. b. C-431 Unknown (La Barben Zoo, France) Hairs –

A. b. C-432 Unknown (SMP Zoo, France) Hairs SA 0096

A. b. C-433 Unknown (SMP Zoo, France) Hairs S 96086

A. b. C-434 Unknown (SMP Zoo, France) Hairs SA 0095

A. b. C-436 Unknown (SMP Zoo, France) Hairs S 98003

A. b. C-437 Unknown (SMP Zoo, France) Hairs S 98111

A. b. C-438 Unknown (SMP Zoo, France) Hairs SA 0025

A. b. C-439 Unknown (SMP Zoo, France) Hairs S 91149

A. b. C-462 Unknown (Taipei Zoo, Taiwan) Hairs –

A. b. C-463 Unknown (Ostrava Zoo, Czech Republic) Hairs 200145

A. b. C-464 Malaysia (Ostrava Zoo, Czech Republic) Hairs 200293

A. b. C-465 Malaysia (Ostrava Zoo, Czech Republic) Hairs 200291

A. b. C-466 Unknown (Ostrava Zoo, Czech Republic) Hairs 202038

A. b. C-468 Unknown (Conservators’ Centre, USA) Hairs 01029

A. b. C-471 Unknown (Conservators’ Centre, USA) Hairs –

A. b. C-472 Unknown (Linton Zoo, UK) Hairs 74

A. b. C-474 Malaysia (Artis Zoo, Amsterdam) Hairs 500363

A. b. C-475 Unknown (Paignton Zoo, UK) Hairs 1376

A. b. C-476 Unknown (Colchester Zoo, UK) Hairs 1728

A. b. C-488 Unknown (Lille Zoo, France) Hairs 1531

A. b. C-489 Unknown (Lille Zoo, France) Hairs 1533

A. b. C-490 Unknown (Lille Zoo, France) Hairs 1822

A. b. C-491 Unknown (Lille Zoo, France) Hairs 781

A. b. C-492 Unknown (Lille Zoo, France) Hairs 782

A. b. C-493 Unknown (Lille Zoo, France) Hairs 783

A. b. C-494 Unknown (Olomouc Zoo, Czech Republic) Hairs 4990

A. b. C-495 Unknown (Olomouc Zoo, Czech Republic) Hairs 4991

A. b. C-496 Unknown (Dierenpark Wissel, Germany) Hairs 5900

A. b. C-498 Unknown (Dierenpark Wissel, Germany) Hairs 101084

A. b. C-500 Unknown (Aqua Zoo, Friesland, NL) Hairs 500217

A. b. C-501 Unknown (Dierenpark Wissel, NL) Hairs 100036

A. b. C-502 Unknown (Zoo Parc Overloon, NL) Hairs 300039

A. b. C-503 Unknown (Zoo Parc Overloon, NL) Hairs –

A. b. C-516 Malaysia (Zoo Negara, KL) Tissue –

A. b. C-519 Malaysia (Zoo Negara, KL) Tissue –

A. b. C-520 Malaysia (Zoo Negara, KL) Tissue –

A. b. C-521 Malaysia (Zoo Negara, KL) Tissue –

A. b. C-522 Malaysia (Zoo Negara, KL) Tissue –

A. b. L-30 Malaysia (Zoo Negara, KL) Tissue –

A. b. C-505 Malaysia (Zoo Temerloh, Pahang) Hairs –

A. b. L-5 Unknown (Eberswalde Zoo, Germany) Hairs –

A. b. L-21 Vietnam (Servion Zoo, Switzerland) Hairs –

A. b. C-530 Unknown (Servion Zoo, Switzerland) Hairs –

A. b. L-22 Borneo (Artis Zoo, Amsterdam) Hairs MO 0139

A. b. L-10 Malaysia (Artis Zoo, Amsterdam) Hairs MO 4023

A. b. L-20 Malaysia (Zoo Plzen, Czech Republic) Hairs 200291

Paguma larvata C-292 Vietnam (Hanoi) Hairs –

See acknowledgements for collectors; CPT, Carnivore Preservation Trust; SMP, Saint-Martin La Plaine.

Animals with a known geographic origin are in bold.
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We amplified the hypervariable region 1 of the D-loop

using the following primers: L15513 (50-CTAGGAGACC

CAGACAACTA-30; modified from Irwin, Kocher &Wilson,

1991) and H16498 (50-CATCTGGTTCTTACTTCAGG-30;
modified from Fumagalli et al., 1996). Owing to difficulty in

sequencing this fragment because of the presence of a series of

repeated nucleotides, wemodified the primers from Palomares

et al. (2002) on the basis of a sequence obtained for the

common palm civet Paradoxurus hermaphroditus. The se-

quences of these new primers were LCR1 (50-CCACCAT
CAGCACCCAAAGC-30) and HCR2 (50-CCTCTTCTC
GCTCCGGG-30).

The PCR products were purified using theMinElute PCR

purification kit (Qiagen, Hilden, Germany) and sequenced

directly with an automated sequencer (CEQ 2000 DNA

Analysis system, Beckman Coulter, Fullerton, CA, USA).

Data analysis

Sequences were visually aligned using BioEdit version 5.0.6

(Hall, 1999). Phylogenetic relationships between individuals

were reconstructed using PAUP 4.0 (Swofford, 2001) to

perform maximum parsimony (MP) analysis with heuristic

search using 100 random addition sequence and tree-bisec-

tion-reconnection branch swapping (Swofford et al., 1996)

with 1000 bootstrap replicates (Felsenstein, 1985). Phyml

2.3 (Guindon & Gascuel, 2003) was used for maximum

likelihood (ML) analysis using an HKY model (Hasegawa,

Kishino & Yano, 1985) and 1000 bootstrap replicates. The

model that best fitted the data was identified by the Akaike

information criterion and the hierarchical likelihood ratio

test using the program MODELTEST 3.06 (Posada &

Crandall, 1998; see Posada & Buckley, 2004). For Bayesian

inference (BI) we used MrBayes 3.4 (Huelsenbeck et al.,

2001) with flat priors. Analysis parameters were four

characters state and six substitutions type following an

invgamma shape with the aparameter estimated from the

data set. Four cold Metropolis-coupled Markov chains

Monte Carlo (MCMCMC) for 1 000 000 generations were

run and one tree was retained every 100 generations.

The length of the ‘burn-in’ period was set at 2500 genera-

tions after plotting posterior probabilities against, or as

a function of, the number of generations (from 9975 trees

retained).

Arlequin version 2.000 (Schneider, Roessli & Excoffier,

2000) was used to determine genetic diversity and conduct

population differentiation analysis. Genetic differentiation

among samples from different geographic origins was

assessed by comparing the average number of pairwise

differences between populations (PiXY), the average num-

ber of pairwise differences within populations (PiX and

PiY), and the corrected average pairwise difference

(PiXY�(PiX+PiY)/2). The same program was used to

compute the minimum spanning network (MSN) obtained

from a distance matrix calculated between all haplotype

pairs. We also use the median-joining network (Bandelt,

Forster & Röhl, 1999) to define the geographic assignment

of all binturong mtDNA haplotypes.

Results

Phylogeography

The left domain of the mitochondrial DNA control region

was obtained for all 56 individuals (Genbank accession

numbers: DQ302034 to DQ302091). Its length varied from

319 to 390 base-pairs (bp). It covered the hypervariable

region 1 (HVR1) flanking the tRNAPro gene and the

extended terminal associated sequences (ETAS 1 and ETAS

2; Fumagalli et al., 1996; Sbisà et al., 1997). A deletion of

71 nucleotides occurred in two related individuals from

Malaysia (DNA numbers C-474 and L-10). We observed

84 variable sites and 49 parsimony informative sites in the

entire data set.

We identified 38 haplotypes within the 56 samples. With-

in the individuals with known geographic origin, four

samples present identical haplotypes: C-516 and C-519 from

Malaysia and C-45 and L-21 from Vietnam. Many indivi-

duals from European zoos were related and thus had

identical haplotypes. C-430 has the same haplotype to all

binturongs from Saint-Martin La Plaine, C-489, C-490 and

C-492 from Lille, C-500, C-501 and C-502 fromNetherlands

zoos, C-475 from Paignton Zoo and C-471 from the Con-

servators’ Centre. Individuals C-436 and C-476 have the

same haplotype as C-495 and C-516 has the same haplotype

as C-519.

The results of ML and MP analyses conducted with

individuals with a known geographic origin are shown in

Fig. 2. Both ML and MP analyses revealed two distinct

geographic clades supported by high bootstrap values, one

grouping individuals from the Indochinese zoogeographic

sub-region, and the other grouping those from peninsular

Malaysia (Sundaic sub-region). There is no strong support

for the position of the individual from Borneo. The same

analysis was conducted with the 38 haplotypes (Fig. 3). We

could suggest to which geographic clade these binturongs

are closer. For example, the haplotypes of two binturongs

(C-429 and C-530) from Servion Zoo group with the

haplotypes of binturongs from Thailand.

The MSN and the median-joining network both revealed

three groups (Fig. 4). Similar to the ML tree, the networks

separated a northern group from a southern one and

isolated the individual from Borneo. Samples C-474 and

L-10 are in a separate group because of the deletion of

71 nucleotides in the sequence. Moreover, these methods

allowed us to assess the geographic clade of captive-bred

individuals: C-151, C-152, C-429, C-430, C-431, C-463,

C-466, C-472, C-495, C-488, C-491, C-493, C-494, C-498,

C-503 and C-530 grouped with individuals from the Indo-

chinese sub-region and C-462, C-468, C-496 and L-5 in the

peninsular Malaysia clade.

Genetic diversity

Genetic differences were significant between the northern

and peninsular Malaysia groups (see Table 3), but were not

significant between individuals of the northern group.
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Binturongs from Asian zoos were either wild caught or

descended from wild individuals less than two generations

removed. In most European zoos (notably in France),

binturongs have been captive bred for several generations.

We divided the samples into two groups and compared their

genetic diversity: one with individuals born in captivity for

more than two generations, and the other from wild origins

or bred for less than two generations. The results (Table 4)

indicate that diversity was significantly lower for captive-

bred binturongs than for wild binturongs.

Among the captive binturongs from European zoos,

those from the Indochinese sub-region had low genetic

diversity (Table 5). In European zoos, binturongs from the

Indochinese sub-region have bred for several generations,

whereas captive binturongs from peninsular Malaysia have

been bred for less than two generations.

Discussion

Although the phylogeography obtained is partial (missing

representatives from northern India, southern China, Suma-

tra, Java and Palawan), the separation of Indochinese and

peninsular Malaysia binturongs is congruent with a well-

recognized geographic barrier, the Isthmus of Kra in penin-

sular Thailand, separating the Indochinese and Sundaic sub-

regions (Tougard, 2001). The zoogeography of mammals in

South-east Asia reveals that several species and sub-species

boundaries lie at the Isthmus of Kra (Lekagul & McNeely,

1988; Corbet & Hill, 1992; Hughes, Round & Woodruff,

2003). This rugged area may have acted as a natural barrier

to binturong dispersal as it has been proposed for the tiger

Panthera tigris (Luo et al., 2004). According to Woodruff

(2003) and supported by De Bruyn et al. (2005), the

Thai–Malay peninsula may have been flooded by marine

seaways during both the mid-Miocene and early Pliocene

high sand. More recently, during the Pleistocene much of

the Isthmus of Kra was flooded during sea-level oscillations

(Lekagul & McNeely, 1998). These sea-level fluctuations

may have effectively isolated some binturong populations

and prevented dispersal for extended periods of geologic

time.

Our results aid in the identification of evolutionary

significant units (ESUs) for binturong conservation (Moritz,

1994). According toMoritz’s model, ESUs are characterized

by reciprocally monophyletic mtDNA clades. Our data

support at least two ESUs, one from the Indochinese

ArctC474

ArctL10

ArctC460

ArctC465

ArctC464

ArctC516

ArctC522

ArctC521

ArctC505

ArctC45

ArctC478

ArctC279

ArctC480

ArctC461

ArctL22 Borneo
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Burma
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74/89
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60/60 62/68
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P. larvata

ArctC520

ArctL30

ArctL20

−1175.632385

Figure 2 Phylogenetic relationships among bin-

turongs Arctictis binturong with known geo-

graphic origin. Maximum likelihood analysis (ML)

tree with HKY model. Numbers above branches

represent bootstrap support from 1000 replicates

with MP followed by bootstrap values with ML

(only those over 50% are indicated). Arct, Arctic-

tis binturong.
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sub-region and one from the Sundaic sub-region. Pocock

(1933) recognized at least four sub-species: Arctictis bintur-

ong albifrons (including Arctictis binturong menglaensis and

Arctictis binturong gairdneri; see Table 1 and Fig. 1) in the

northern regions (northern India, southern China, Laos,

Vietnam, Burma and northern Thailand), Arctictis bintur-

ong binturong (Malay peninsula and Sumatra), Arctictis

binturong penicillatus (Java and Borneo) and A. b. whitei

(Palawan island). Our results are congruent with the ex-

istence of the sub-species A. b. albifrons, A. b. binturong and

A. b. penicillatus. If confirmed by further studies, then these

sub-species should be managed separately so that the evolu-

tionary heritage within the species is maintained and genetic

introgression is avoided.

There are several conceptual and practical problems,

given the lack of ecological information and data, on the

genetic structure and gene flow of wild binturong popula-

tions. According to Crandall et al. (2000), such studies are

necessary to gain greater insight into conservation units.

Given the distinctness of the two binturong clades, it would

be of interest to look for adaptative differences in the

different regions and its associated implications for reintro-

duction or supplement programs. The IUCN recommends

that only individuals from a similar climatic or ecological

zone (e.g. with a known geographic origin) should be used

for reintroduction or restocking programs (IUCN, 1987).

Our results have allowed the determination of the geo-

graphic origin of captive-bred individuals. What does this

imply for the conservation of the species? The American

Zoo and Aquarium Association (AAZA) asserts that zoos

should conserve the ESU of each species provided it does

not threaten species survival, because stochastic events like

genetic drift can endanger the ESU (Ryder, 1986). But can a

reproduction management program take different bintur-

ong ESUs into consideration? As we have shown, genetic

diversity among the European captive population is low,

particularly among individuals originating from the Indo-

chinese region. Managing ESUs could be possible provided

that the captive population from Asian zoos is used to

supplement the European zoos population through periodic

immigration, thus preventing drift of the European zoos

population from genetic characteristics of the wild popula-

tion. As few as one migrant per two generations would be

beneficial, and Z5 migrants per generation would virtually

ArctC503
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ArctC472
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ArctC45
ArctC279
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ArctC429
ArctC461
ArctC466
ArctC530
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ArctC516

ArctC521
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Burma + Vietnam

−1410.054985

ArctC520

ArctC505

ArctC465
P. larvata

ArctC468
ArctL30

ArctL20

ArctL5

ArctL22
ArctL10

ArctC152
ArctC151

Figure 3 Phylogenetic relationships among all

binturong Arctictis binturong mtDNA haplo-

types. Maximum likelihood analysis (ML) tree

with HKY model using Phyml. Numbers above

branches represent bootstrap support from

1000 replicates with MP followed by bootstrap

values with ML (only those over 50% are

indicated). Arct, Arctictis binturong.
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halt genetic drift within the European captive population

(Lacy, 1987).

The ultimate goal of captive breeding is to eventually

reintroduce some animals back into their natural environ-

ment (AZA, 1992). According to Snyder et al. (1996),

captive breeding should always be tightly coupled with

recovery objectives of wild populations and should not be

proposed as a long-term solution. Indeed, animals born in

captivity through several generations should not be released

in the wild because, for many species, long-term captive

breeding, despite all efforts to slow changes, may result in

domesticated forms with low reestablishment potentials

(Lacy, 1987). However, if binturongs are threatened in their

natural environment, there is no need to restock or reintro-

duce a binturong population in a degraded habitat if the

original causes of extinction have not been removed. There-

fore, more information is needed on binturong ecology and

short-term threats to survival before considering reintroduc-

tions.

Poaching throughout South-east Asia is a serious threat

facing binturongs. When animals are seized from poachers,

they are kept in captivity because, in most cases, their

geographical origin is unknown. Compiling a database of

sequences of binturongs with a known geographic origin

will allow assessment of their geographic origin. Animals

may then be released in the nearest natural habitat of their

origin, avoiding risks of genetic introgression. Conserva-

tionists may participate in interactive zoo-wild metapopula-

tion management. Zoo conservation efforts should focus on

the preservation of wildlife communities and habitats rather

than on captive propagation (Conway, 1995). Moreover, in

order to decrease poaching, a successful conservation pro-

gram should enhance public interest in the ecological

importance of binturongs, particularly as agents of seed

dispersal.
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Figure 4 Median-joining network depicting the

geographic assignment of all binturong Arctic-

tis binturong mtDNA haplotypes. The size of

each circle is proportional to the correspond-

ing haplotype frequency. Only numbers over

five mutational steps are indicated above

branches. Missing intermediates are indicated

by black circles. Individuals from Malaysia are

circled with a dotted line whereas individuals

from Indochina are circled with a continuous

line.

Table 3 Pairwise population differentiation for control region

sequences of binturongs Arctictis binturong with known geographic

origin

Thailand Burma Vietnam Malaysia

Thailand 3.23 4.35 7.17 36.79

Burma 2.19 1.07 2.16 35.51

Vietnam 5.55 1.62 0.00 38.43

Malaysia 31.76�� 31.55�� 35.01�� 6.84

Population average pairwise differences using the distance method

Kimura two-parameter with g=0.7. Above diagonal: average number

of pairwise differences between populations (PiXY). Diagonal ele-

ments: average number of pairwise differences within populations

(PiX and PiY). Below diagonal: corrected average pairwise difference

(PiXY�(PiX+PiY))/2.
��Corrected average pairwise differences that are statistically

different, Po0.01.

Table 4 Diversity indices

Exact test of sample differentiation based on haplotype frequencies

Populations Wild origin (o2 g)

(n=20)

Captive origin (42 g)

(n=25)

Haplotype

diversity

099�0.02 0.69� 0.10

Nucleotide

diversity

0.03�0.01 0.01� 0.008

Wild origin: individuals born in the wild or in captivity from less than

two generations; captive origin: individuals born in captivity for more

than two generations. We excluded individuals of uncertain origin.

Non-differentiation: exact P-value=0.00000� 0.00000.
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Conclusion

This study has shown that the genetic diversity within the

European zoo binturong population is low, and suggests

that several ESUs should be considered for managing the

breeding program. It also provides a tool to improve captive

breeding management in assessing a captive animal’s geo-

graphic origin. Such information should be required before

any reintroduction or restocking program.

According to Schreiber et al. (1989), taxonomic revisions

are a priority for such species, because sub-species with

small ranges, if valid, must then be considered threatened.

This study should be continued by the addition of more

wild-caught animals from other regions.

Despite obvious difficulties in studying binturongs in the

field because they are primarily nocturnal and arboreal,

investigations evaluating their ecological requirements and

status are essential to make informed decisions about ways

of preserving binturongs. First results have been obtained

on binturong ecology in Thailand (see Austin, 2002; Grass-

man, Michael & Nova, 2005), and we would like to under-

line the need for more field studies on this species in other

parts of their range.
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