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Abstract
We define Wieferich numbers to be those odd integers w ≥ 3 that

satisfy the congruence 2ϕ(w) ≡ 1 (mod w2). It is clear that the distri-
bution of Wieferich numbers is closely related to the distribution of
Wieferich primes, and we give some quantitative forms of this state-
ment. We establish several unconditional asymptotic results about
Wieferich numbers; analogous results for the set of Wieferich primes
remain out of reach. Finally, we consider several modifications of the
above definition and demonstrate that our methods apply to such sets
of integers as well.
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1 Introduction

Let ϕ(n) be the Euler function and λ(n) be the Carmichael function. We re-
call that these functions give the order and exponent of the group of invertible
elements modulo n, respectively.

Throughout this paper, for any real number x > 0 and any integer � ≥ 1,
we write log� x for the function defined inductively by log1 x = max{log x, 1}
(where log x is the natural logarithm of x) and log� x = log1(log�−1 x) for
� > 1. When � = 1, we omit the subscript in order to simplify the notation;
however, we continue to assume that log x ≥ 1 for any x > 0.

In what follows, we use the Landau symbol O and the Vinogradov symbols
� and� with their usual meanings, with the understanding that any implied
constants are absolute. We recall that the notations A � B, B � A and
A = O(B) are equivalent. We always use the letters p and q to denote prime
numbers, while m and n always denote positive integers.

An odd integer w ≥ 3 is called a Wieferich number if the congruence

2ϕ(w) ≡ 1 (mod w2) (1)

holds. Note that if w = q is prime, this agrees with the classical definition
of a Wieferich prime. If (1) does not hold, we call w ≥ 3 a non-Wieferich
number . Accordingly, we denote by W , U , and Q the sets of Wieferich
numbers, non-Wieferich numbers, and Wieferich primes, respectively.

Wieferich primes were first introduced in [21] in relation to the first case
of Fermat’s Last Theorem. In that historical work, Wieferich showed that
if q is an odd prime, and xq + yq + zq = 0 has a solution in integers x, y, z
with q � xyz, then necessarily q ∈ Q. Many other surprising links have
been discovered between Wieferich primes and other (sometimes seemingly
unrelated) number theoretic problems; see [10, 17, 19] for some examples,
problems and further references.

Despite the many efforts that were made to study Wieferich primes, very
few theoretical or numerical results emerged. To this day, only two Wieferich
primes have been discovered (q1 = 1093 was found by Meissner in 1913,
and q2 = 3511 was found by Beeger in 1922; see, for example, [18] and
also [4, 7, 15]); it is not known whether #Q > 2 or #Q = 2, and it is
unknown whether or not there exist infinitely many “non-Wieferich” primes.

Building on results of Agoh, Dilcher and Skula [1], it is easy to show that
if Q is a finite set, then W is also finite; see Theorem 9 below. In particular,
if Q = {1093, 3511}, then the set W contains exactly 104 numbers; these can
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be determined precisely, the largest one being 16547533489305, and they are
the only currently known examples of Wieferich numbers; see [1].

If S = W , U , or Q, or any other set of odd integers that we consider in
the sequel, and x ≥ 3 is a real number, we then let S(x) ⊂ S be the set of
positive odd integers n ≤ x such that n ∈ S. In this paper, we give estimates
for #W(x) and #U(x) as x →∞.

In Section 3, we show that #U(x) � x/(log x)o(1) (see Theorem 5 for a
more precise statement). Since #U(x) = x/2−#W(x) + O(1), this yields a
nontrivial upper bound on #W(x) as x →∞.

Rough heuristic arguments imply that the number #Q(x) of Wieferich
primes q ≤ x should be about log2 x. Indeed, assuming that the quotient
(2q−1 − 1)/q is equally likely to fall into any one of the congruence classes
modulo q, the “probability” that

(2q−1 − 1)/q ≡ 0 (mod q)

is about 1/q, which leads to the expected number

#Q(x) ∼
∑
q≤x

1

q
∼ log2 x (2)

of Wieferich primes q ≤ x. The same arguments, applied naively, lead to the
conclusion that the number #W(x) of Wieferich numbers w ≤ x should be
roughly

#W(x) ∼
∑
n≤x

1

n
∼ log x. (3)

In Section 4, we derive conditional upper and lower bounds for #W(x) under
various assumptions about the growth rate of #Q(x), including (2).

Finally, in Section 5 we discuss some alternative ways to extend the notion
of Wieferich primes to arbitrary odd integers. We also give some arguments
which suggest that the conjecture (3) might be false and that, in fact, it is
likely that

#W(x) � log x log2 x

(log3 x)2
. (4)

Acknowledgements. The authors wish to thank Glyn Harman and
Filip Saidak for some useful conversations. The authors are also grateful to
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part by grants SEP-CONACYT 37259-E and 37260-E, and I. S. was sup-
ported in part by ARC grant DP0211459.

2 General Results on Wieferich Numbers

For a prime p, we denote by νp(n) the p-adic valuation of an integer n ≥ 1;
in other words, pνp(n) is the largest power of p dividing n.

For an integer n ≥ 2, we denote by n∗ the squarefree kernel of n; that is,
n∗ is the product of the distinct primes dividing n.

The following characterization of Wieferich numbers is elementary (see,
for example, Theorem 5.5 in [1] for a more general version of this result).

Lemma 1. An odd integer w ≥ 3 is a Wieferich number if and only if the
inequality

νp(w) ≤ νp(2
p−1 − 1)− 1 + νp(ϕ(w∗))

holds for every prime divisor p of w.

Let P (n) denote the largest prime divisor of an integer n ≥ 2.

Lemma 2. If w is a Wieferich number, then P (w) is a Wieferich prime.

Proof. Clearly, if w ≥ 2 and q = P (w), then q cannot divide ϕ(w∗); hence,
νq(ϕ(w∗)) = 0. If w ∈ W, by Lemma 1, we have νq(2

q−1 − 1) ≥ 2; thus,
q ∈ Q.

On page 154 of [18], it is shown that Mersenne or Fermat primes cannot
be Wieferich primes. Here, we show that this result can be extended to
Wieferich numbers.

Theorem 3. If m > 1 is of the form m = 2n ± 1 for some positive integer
n, then m is non-Wieferich.

Proof. Assume that m = 2n − 1. Clearly, n is the multiplicative order of
2 modulo m, that is, the smallest positive integer k with 2k ≡ 1 (mod m).
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Therefore, n |ϕ(m). Now write ϕ(m) = nλ. If m ∈ W , then m2 | 2nλ − 1,
therefore

0 ≡ 2nλ − 1

2n − 1
= 1 + 2n + 22n + · · ·+ 2λn ≡ λ (mod 2n − 1).

Hence 2n−1 |λ, and therefore λ ≥ 2n−1. This leads to ϕ(2n−1) ≥ n(2n−1),
which is impossible since n ≥ 2.

The case in which m = 2n + 1 can be handled similarly.

3 Non-Wieferich Numbers

In this section, we derive an unconditional lower bound for the number of odd
non-Wieferich numbers w ≤ x. Our principal tool is the following simplified
and uniform version of a well-known theorem of Wirsing [22].

Lemma 4. For any positive real number x and any odd prime p ≤ log2 x,
let Tp(x) be the set of those odd positive integers n ≤ x such that every prime
factor q of n satisfies q �≡ 1 (mod p). Then

#Tp(x) ≥ x exp

(
− log2 x

(p− 1)
+ O(log3 x)

)
.

Proof. Define parameters w, z, k as follows:

w = log x, z = exp

(
log x

log2
2 x

)
, and k =

⌊(
p− 1

p− 2

)
log2 x

⌋
.

Let M be the set of those squarefree integers m having precisely k prime
factors q, all from the open interval (w, z) and satisfying q �≡ 1 (mod p).
Note that for every m ∈ M the inequality m < zk ≤ x1/3 holds (since
log2 x ≥ p ≥ 3), and therefore x/m ≥ x2/3.

Let n be any integer of the form n = m�, where m ∈M, and � is a prime
in the interval (x1/2, x/m] with � �≡ 1 (mod p). Clearly, n ∈ Tp(x), and the
integers n constructed in this way are distinct for different values of m. By
the classical Page bound (see Chapter 20 of [6]), for each m ∈M the number
of possibilities for � is at least

π(x/m)− π
(
x1/2

)
− π(x/m; 1, p) �

(
p− 2

p− 1

)
x

m log(x/m)
� x

m log x
.
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Consequently,

#Tp(x) � x

log x

∑
m∈M

1

m
. (5)

We now show that the estimate∑
m∈M

1

m
=

Sk

k!
(1 + o(1)) (6)

holds, where

S =
∑

w<q<z
q �≡1 (mod p)

1

q
.

For this, we begin with the estimate

Sk

k!
≤

∑
m∈M

1

m
+

∑
r>w

1

r2

1

(k − 2)!

 ∑
w<q<z

q �≡1 (mod p)

∑
j≥1

1

qj


k−2

. (7)

Observe that

1

(k − 2)!

 ∑
w<q<z

q �≡1 (mod p)

∑
j≥1

1

qj


k−2

≤ 1

(k − 2)!
(S + O(w−1))k−2

=
Sk−2

(k − 2)!
exp

(
O

(
k

wS

))
.

Using the Page bound again and partial summation, we derive that

S =

(
p− 2

p− 1

)
(log2 z − log2 w) + o(1) =

(
p− 2

p− 1

)
log2 x + O(log3 x);

in particular, k � S. Therefore,

Sk−2

(k − 2)!
� Sk

k!
· k2

S2
� Sk

k!
,
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and from inequality (7) we obtain that

Sk

k!
≤

∑
m∈M

1

m
+ O

(
Sk

k!

∑
r>w

1

r2

)
≤

∑
m∈M

1

m
+ o

(
Sk

k!

)
,

since ∑
r>w

1

r2
� 1

w log w
=

1

log x log2 x
= o(1).

This proves the lower bound of (6), while the upper bound is trivial.
Returning to the inequality (5), we now see that

#Tp(x) � x

log x
· Sk

k!
� x

log x log
1/2
2 x

(
eS

k

)k

.

Since
eS

k
= e

(
1 + O

(
log3 x

log2 x

))
,

we get that

#Tp(x) � x exp

(
− log2 x +

(
p− 2

p− 1

)
log2 x + O(log3 x)

)
= x exp

(
− log2 x

(p− 1)
+ O(log3 x)

)
,

and the proof is complete.

Theorem 5. Let β = log1/2 2 = 0.8325 . . . . Then

#U(x) ≥ x exp
(
−2β log

1/2
2 x + O

(
log

1/3
2 x

))
.

Proof. Let x be a large positive real number, put y = β−1 log
1/2
2 x, and let p

be any prime in the interval [y, y + y2/3]; the existence of such a prime (for
sufficiently large x) is guaranteed by the known results about primes in short
intervals (see, for example, [14]).

Let h = νp(2
p−1 − 1); note that ph ≤ 2p−1 − 1 < 2p−1. If n = phm, where

m ∈ Tp(x/ph), then Lemma 1 immediately shows that n is a non-Wieferich
number. Since

log2(x/ph) = log2 x + O

(
p

log x

)
= log2 x + O

(
log

1/2
2 x

log x

)
,
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and p ≤ log2 x if x is sufficiently large, by Lemma 4, we conclude that

#U(x) ≥ Tp(x/ph) ≥ x

ph
exp

(
− log2(x/ph)

(p− 1)
+ O(log3(x/ph))

)
≥ x exp

(
−(p− 1) log 2− log2 x

p− 1
+ O(log3 x)

)
= x exp

(
−2β log

1/2
2 x + O(log

1/3
2 x)

)
,

where the last estimate follows from our choice of p.

4 Conditional Results

As mentioned in the introduction, heuristic arguments lead to a conjectural
asymptotic formula

#Q(x) ∼ log2 x (8)

for the number of Wieferich primes q ≤ x. In this section, we consider the
problem of estimating #W(x), the number of Wieferich numbers w ≤ x,
under various assumptions about the rate of growth of #Q(x). We also note
that [10, 17, 19] contain several results of a very different spirit which are also
based on various assumptions about the size of #Q(x) (and similar sets).

We begin with an observation that if the sum of the reciprocals of the
Wieferich primes converges: ∑

q∈Q

1

q
< ∞, (9)

then #W(x) = o(x). Roughly speaking, the underlying argument runs as
follows. If (9) holds, then most integers are not divisible by a large Wieferich
prime. On the other hand, most integers are divisible by some large prime.
Thus, for most integers n, the largest prime factor P (n) is non-Wieferich,
and by Lemma 2, it follows that n �∈ W.

To make the preceding argument precise, we begin by defining (as usual):

Ψ(x, y) = #{n ≤ x : P (n) ≤ y}.
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Since P (w) ∈ Q for each w ∈ W by Lemma 2, it follows that

#W(x) ≤ Ψ(x, y) +
∑
q≥y
q∈Q

∑
w≤x
w∈W

P (w)=q

1 ≤ Ψ(x, y) +
∑
q≥y
q∈Q

∑
w≤x
q |w

1.

Therefore

#W(x) ≤ Ψ(x, y) + xR(y), (10)

where

R(y) =
∑
q≥y
q∈Q

1

q
.

According to Corollary 1.3 of [13] (see also [5] and Chapter III.5 of [20]), the
bound

Ψ(x, y) ≤ xu−u+o(u)

holds as u → ∞, where u = (log x)/(log y), provided that u ≤ y1/2. If we
choose (for example):

y = exp(log1/2 x) and u =
log x

log y
= log1/2 x,

it follows that Ψ(x, y) = o(x), and by (9), we also have R(y) = o(1); thus,
#W(x) = o(x).

We remark that, by partial summation,

R(y) �
∫ ∞

y

1

z2
#Q(z) dz, (11)

and therefore

#W(x) � Ψ(x, y) + x

∫ ∞

y

1

z2
#Q(z) dz.

Clearly, under various assumptions about the growth rate #Q(z), one can
obtain different explicit versions of the above statement by optimizing the
choice of y in order to balance upper bounds on Ψ(x, y) and xR(y). For
example:
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• If #Q(z) � z/ log2 z, then from (11) we derive R(y) � 1/ log y; hence,
taking

u =
log2 x

log3 x
and y = x1/u,

and using (10), we obtain that

#W(x) � x
log2 x

log x log3 x
.

• If #Q(z) � zα for some constant α < 1, then from (11) it follows that
R(y) � y−1+α; thus, taking

y = exp

((
1

2(1− α)
log x log2 x

)1/2
)

,

and using (10), we obtain that

#W(x) � x exp
(
− ((2− 2α + o(1)) log x log2 x)1/2

)
.

Theorem 6. Suppose that ∑
log2 x≤q≤x

q �∈Q

1

q
→∞

as x →∞. Then
#W(x) = o(x).

Proof. We have:∑
n≤x

P (gcd(n,ϕ(n)))≥z

1 ≤
∑
p≥z

∑
m≤x/p
p|ϕ(m)

1 +
∑
p≥z

∑
m≤x
p2|m

1 � x log2 x
∑
p≥z

1

p2
,

where the last inequality follows from Theorem 3.5 of [8], which gives the
bound ∑

m≤y
p|ϕ(m)

1 � y log2 y

p
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for any real y > 0. Therefore,∑
n≤x

P (gcd(n,ϕ(n)))≥z

1 � x log2 x

z log z
. (12)

By the Brun sieve, we see that the assumption of the theorem implies
that x + o(x) positive integers n ≤ x are divisible by a non-Wieferich prime
q > log2 x. By (12), we see that for all but o(x) of such n, we can also
assume that q � ϕ(n). Thus, by Lemma 1, we conclude that every such n is
non-Wieferich.

Assuming that #Q(x) grows sufficiently slowly, the following result im-
proves the preceding upper bounds.

Let expr x denote the r-th iterate of exp x; that is, exp1 x = exp x, and
expr x = exp(expr−1 x) for r ≥ 2. Note that expr a · expr b ≤ expr ab for all
positive real numbers a, b > 1, a fact that is easily proved by induction on r.

Theorem 7. Suppose that for some constant A > 0 and some integer r ≥ 1,

#Q(x) ≤ expr

(
logA

r+1 x
)

as x →∞. Then there exists a constant B > 0 depending only on A and r,
such that

#W(x) ≤ exp

(
B

log x log3 x

log2 x

)
.

Proof. For every w ∈ W(x), we write

w = m�,

where every prime factor of m lies in Q, and no prime factor of � lies in Q.
It is clear that the above decomposition of n is unique, and that m and � are
coprime.

We first fix m and bound the number of admissible values of �.
Since w is Wieferich, and no prime factor of � is Wieferich, Lemma 1

implies that � |ϕ(�∗)ϕ(m∗). In particular, �∗ |ϕ(�∗)ϕ(m∗). If �∗ > 1, we then
consider the following filtration of the squarefree number �∗.

Let �1 = gcd(�∗, ϕ(m)). Note that �1 > 1 for otherwise �∗ |ϕ(�∗), which is
clearly impossible for �∗ > 1. It then follows that �∗/�1 divides ϕ(�∗/�1)ϕ(�1).
If �∗ = �1, we stop.
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Otherwise, let �2 = gcd(�∗/�1, ϕ(�1)). By the same argument as before, it
follows that �2 > 1 and that �∗/(�1�2) divides ϕ(�∗/�1�2)ϕ(�2). If �∗ = �1�2,
we stop; otherwise, we continue this process.

In general, given �j > 1, and assuming that �∗ �= �1 . . . �j, we define the
next integer �j+1 = gcd(�∗/(�1 . . . �j), ϕ(�j)). Arguing as before, we see that
�j+1 > 1, and that �∗/(�1 . . . �j+1) divides ϕ(�∗/(�1 . . . �j+1))ϕ(�j+1).

We stop at the first k such that �∗ = �1 . . . �k.
For a given m, we now determine an upper bound for the number of

admissible values of �. First, observe that �1 |ϕ(m). Since �2 |ϕ(�1), it follows
that �2 |ϕ(ϕ(m)). By induction, �j |ϕ(j)(m), where we use ϕ(j) to denote the
j-th iterate of ϕ. Let n be the first index such that ϕ(n)(m) = 1. Then �∗ is
an odd squarefree divisor of

n∏
j=1

ϕ(j)(m), (13)

and, in particular, the number of admissible prime factors of any such number
� is at most ω̂ϕ(m), where ω̂ϕ(m) denotes the number of odd prime factors of
the number shown in (13) above. We now use induction on m to show that

2ω̂ϕ(m) ≤ m (14)

holds for all positive integers m ≥ 2. This is clearly so for m = 2 and 3.
Assume now that m is given, and that the above inequality (14) is true for
all positive integers smaller than m. We may assume that m is squarefree
and odd, for otherwise we can replace m by its largest odd squarefree divisor
and use the induction hypothesis. Now clearly the odd squarefree part of
ϕ(m) is at most ϕ(m)/2ω(m). Since

ω̂ϕ(m) = ω(m) + ω̂ϕ(ϕ(m)) = ω(m) + ω̂ϕ

(
ϕ(m)

2ω(m)

)
,

it follows from the induction hypothesis that

2ω̂ϕ(m) = 2ω(m)2ω̂ϕ(ϕ(m)/2ω(m)) ≤ 2ω(m)ϕ(m)

2ω(m)
≤ m,

which completes the induction and establishes (14) for all m ≥ 2.
The above argument shows that

ω̂ϕ(m) ≤ log m

log 2
≤ 2 log m ≤ 2 log x
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for each m. Since ω(�)! ≤ � ≤ x, the inequality ω(�) ≤ K also holds with
K = �2 log x/ log2 x�, for sufficiently large x. Thus, the number of admissible
choices for �∗, is, by Stirling’s formula, at most

∑
k≤K

(
ω̂ϕ(m)

k

)
≤ K

(
2e log x

K

)K+o(K)

= exp

(
O

(
log x log3 x

log2 x

))
. (15)

Now suppose that both m and �∗ are fixed; we estimate the number of
admissible choices for �. Writing

�∗ =
ν∏

j=1

pj,

it suffices to count the number of ν-tuples (δ1, . . . , δν) of positive integers
such that

ν∏
j=1

p
δj

j ≤ x.

This inequality implies that

ν∑
j=1

δj ≤ 2 log x,

and it is clear that, by the Stirling formula, the number of ν-tuples (δ1, . . . , δν)
satisfying this latter inequality is at most(�2 log x�

ν − 1

)
≤

(�2 log x�
K

)
≤

(
2e log x

K

)K+o(K)

= exp

(
O

(
log x log3 x

log2 x

))
.

(16)

By the estimates (15) and (16), we see that if m is given, then the number
of choices for � such that m� ∈ W(x) is at most exp(O(log x log3 x/ log2 x)).
It now remains to count the number of possible values for m.

As before we assume that the elements of Q = {qj} are indexed in the
ascending order (for example, q1 = 1093, q2 = 3511).

From the inequality

j = #Q(qj) ≤ expr

(
logA

r+1 qj

)
,
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we derive that

log qj ≥ expr

(
log1/A

r j
)

(17)

for some constant c > 0. Let s be the largest integer such that

s∑
j=1

log qj ≤ log x.

From the bound (17), we deduce that

s � log x

expr

(
0.5 log

1/A
r+1 x

) .

Since

log x ≥ log m ≥
∑
q |m

log q ≥
ω(m)∑
j=1

log qj,

we have ω(m) ≤ s for each such m. Therefore, m∗ can take at most

#Q(x)s = exp

O

expr−1

(
logA

r+1 x
)
log x

expr

(
0.5 log

1/A
r+1 x

)


= exp

O

 log x

expr

(
0.5 log

1/A
r+1 x

A logr+2 x

)



= exp

O

 log x

expr

(
log

1/2A
r+1 x

)
 = exp

(
O

(
log x

log2 x

))
values, once x is sufficiently large. For each fixed value of m∗ there are no
more than

(2 log x)s = exp (O (s log2 x))

= exp

O

 log x log2 x

expr

(
0.5 log

1/A
r+1 x

)
 = exp

(
O

(
log x log3 x

log2 x

))
corresponding values of m, which completes the proof.
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Theorem 8. If the inequality

#Q(x) ≥ α log2 x

holds for some positive absolute constant α and all sufficiently large x, then

#W(x) ≥ (log x)α log 2+o(1).

Proof. Let x be large, and put t = #Q(x), y = x1/t and s = #Q(y). Then,

s = #Q(y) ≥ α log2 y = α(log2 x− log #Q(x)) = (α + o(1)) log2 x.

Using Lemma 1, it is clear that each of the 2s − 1 squarefree numbers w ≥ 3
whose prime factors lie in Q(y) is a Wieferich number, and each one satisfies
w ≤ ys ≤ yt = x.

In particular, assuming (8), Theorem 7 and Theorem 8 yield the bounds

(log x)log 2+o(1) ≤ #W(x) ≤ exp

(
O

(
log x log3 x

log2 x

))
for the number of Wieferich numbers w ≤ x.

We now show that if Q is finite, then W is finite as well and can be
effectively evaluated.

Theorem 9. Assume that Q is a finite set. Then W is a finite set too, and

W ≤ 2Q#Q exp ((1 + o(1))Q) ,

where W = maxw∈W w and Q = maxq∈Q q.

Proof. By Lemma 2, we see that P (w) ≤ Q. Let

M =
∏
q≤Q

(q − 1),

where the product is taken over all primes q ≤ Q. Now, by Lemma 1, we
conclude that for every prime p,

νp(w) ≤ νp

(
2p−1 − 1

)
− 1 + νp(M).
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Therefore

W ≤
∏
p∈Q

2p−1pνp(M)
∏
p≤Q
p�∈Q

pνp(M) =
∏
p∈Q

2p−1
∏
p≤Q

pνp(M) ≤ 2Q#QM.

Using the well-known bound

log M ≤
∑
p≤Q

log p = (1 + o(1))Q,

we finish the proof.

5 Some Alternative Definitions of Wieferich

Numbers

By definition, a Wieferich number is an odd integer w ≥ 3 satisfying (1).
As we have already mentioned, in the special case that w = q is prime, this
definition is consistent with the usual definition of a Wieferich prime. In this
section, we consider some other sets of positive odd integers, similar to W ,
whose intersection with the set of primes is precisely Q.

One of the possible ways to extend the definition of Wieferich primes is
to request that

gcd

(
2ϕ(w) − 1

w
, w

)
> 1.

Let W̃ be the set of odd integers w ≥ 3 satisfying this condition, and let Ũ
be the complimentary set consisting of all odd integers w ≥ 3 with w �∈ W̃ .
Surprisingly enough, it has been shown that W̃ is a set of relative density 1
in the set of all odd positive integers; that is, #W̃(x) = x/2 + o(x) (see [9]).

Next, let W be the set of odd integers w ≥ 3 satisfying the congruence

2λ(w) ≡ 1 (mod w2),

and let U be the complimentary set of odd integers.
Combining the first two approaches, one can also consider the set Ŵ of

all odd integers w ≥ 3 for which the inequality

gcd

(
2λ(w) − 1

w
, w

)
> 1

16



holds. We also denote by Û the complimentary set.
Finally, let W† be the set of odd integers w ≥ 3 such that w is a product

of Wieferich primes, and let U † be the complimentary set of odd integers.
We observe that:

Q �W† �W �W � Ŵ � W̃ . (18)

Here, the various inclusions follow immediately from the definitions (although

the inclusion W ⊂ Ŵ is less obvious; for this, the idea is to show that if
w ∈ W, then for q = P (w) ∈ Q one has qw | 2λ(w) − 1); the fact that these
are all proper inclusions follows from the examples:

3837523 ∈ W† \Q, 3279 ∈ W \W†, 68859 ∈ W \W ,

21 ∈ Ŵ \W , and 63 ∈ W̃ \ Ŵ .

We remark that gcd(ϕ(w), λ(w2)) = λ(w) if w ≥ 3 is odd and squarefree;
thus, if w ∈ W is squarefree, then w ∈ W since

2ϕ(w) ≡ 1 ≡ 2λ(w2) (mod w2).

We also note that if w ∈ W and gcd(w, ϕ(w)) = 1, then w ∈ W†; this follows
immediately from Lemma 1.

We believe that our methods from the preceding sections can be applied
to derive upper and lower bounds on #W†(x), #W(x), #Ŵ(x) and #W̃(x)
(and thus, on the complementary sets as well), which in some cases are
sharper than those that follow directly from the inclusions (18). In particular,
we remark that the statement and proof of Theorem 8, without any changes,
applies to #W(x) as well. Moreover, proceeding as in the proof of Theorem 5,
we can take integers n = phm, where

h =

⌈
p log 2

log p

⌉
≥ νp(2

p−1 − 1),

and m ≤ x/ph is such that each prime factor q of m satisfies q �≡ 1 (mod ph).
Lemma 4, with obvious minor adjustments, yields a lower bound on the
number of such m, and choosing p as the smallest prime p such that 2p ≥
log2 x, one derives the estimate

#U(x) ≥ x

ph
exp

(
− log2(x/ph)

ph−1(p− 1)
+ O(log3(x/ph))

)
≥ x exp

(
−p log 2− log2 x

2p−1
+ O(log3 x)

)
� x(log2 x)−C ,

17



for some absolute constant C > 0. In fact, taking n = 3phm with p ≡ 1
(mod 3) in the construction of Theorem 5 and in the above construction, we
have

ν3(2
ϕ(n) − 1) = ν3(2

ϕ(3phm) − 1) ≥ ν3(2
ϕ(3ν3(m)+1p) − 1)

≥ ν3(p− 1) + ν3(m) + 1 > ν3(n),

which in turn shows that

#W̃(x)−#W(x) � x exp
(
−2β log

1/2
2 x + O

(
log

1/3
2 x

))
,

where β = log1/2 2 as in Theorem 5; and

#W̃(x)−#W(x) � x(log2 x)−C .

On the other hand, proving that #W(x)−#W(x) →∞ still appears to be
out of reach.

As we have remarked, it is shown in [9] that #Ũ(x) = o(x). Here, we show
that in fact one can obtain an explicit upper bound on the larger quantity
#Û(x) ≥ #Ũ(x).

Theorem 10. The following bounds hold:

#Ũ(x) ≤ #Û(x) � x

log3 x
.

Proof. We assume that x is large enough and put

y =
log2 x

3 log3 x
.

Let E1 be the set of positive integers n ≤ x which do not have a prime
divisor p ≤ y. By the Brun sieve (see Theorem 2.2 in [11]), and the Mertens
formula,

#E1 � x
∏

2≤p≤y

(
1− 1

p

)
� x

log y
.

Let E2 be the set of positive integers n ≤ x such that there exists a prime
p < y with pνp(n) > y. Clearly,

νp(n) ≥
⌈

log y

log p

⌉
≥ 2.

18



Hence, putting

K =

⌈
log y

log 2

⌉
,

we obtain

#E2 �
K∑

k=2

∑
y1/k<p≤y1/(k−1)

x

pk
� x

K∑
k=2

k

y(k−1)/k
� xy−1/2+xK2y−2/3 ≤ xy−1/2.

Therefore, the set I of odd positive integers n ≤ x such that for some prime
p we have pνp(n) ≤ y is of cardinality I = x/2 + O(x/ log y).

Let E3 be the set of odd positive integers n ∈ I such that there exists a
prime p with pνp(n) ≤ y and such that λ(n) �≡ 0 (mod pνp(n)). Again by the
Brun sieve, we obtain

#E3 � x
∞∑

k=2

∑
pk≤y

exp

−
∑
�≤x

�≡1 (mod pk)

1

�

 ,

where � and p run through odd prime numbers (see the proof of Theorem 3.4
in [8], or that of Lemma 2 in [16]). For pk ≤ y ≤ (log x)1/3, one easily
derives from the classical results on the distribution of primes in an arithmetic
progression, that∑

�≤x
�≡1 (mod pk)

1

�
= (1 + o(1))

log2 x

pk−1(p− 1)
≥ (1 + o(1))

log2 x

y
.

Hence,
#E3 � xy exp(−(1 + o(1))y−1 log2 x).

Thus, the set J = I\E3 is of cardinality

#J = x/2 + O(x/ log y + xy exp(−(1 + o(1))y−1 log2 x)).

For every n ∈ J , there exists a prime p ≤ y such that νp(n) ≤ νp(λ(n)).
Therefore, pνp(n)(p − 1) |λ(n); thus, pνp(n)+1 | 2λ(n) − 1. This implies that

p | gcd
(
(2λ(n) − 1)/n, n

)
. Hence, #Ŵ(x) ≥ #J . Recalling the value of y,

we finish the proof.
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6 Some Heuristics and Further Questions

Let again

y =
log2 x

3 log3 x
.

The proof of of Theorem 10 (the bounds on #E2 and #E3), shows that for

t ≥ exp(y3),

all odd positive integers n ≤ t, except for a set F(t) of cardinality #F(t) =
O(ty−1/2 + ty exp(−(1 + o(1))y−1 log2 t))), we have∏

p|n
p≤y

p
∣∣ gcd

(
(2ϕ(n) − 1)/n, n

)
.

Thus, it is natural to assume that for each odd n with exp(y3) ≤ n ≤ x and
n �∈ F(x), the “probability” that n is Wieferich is at least f(n)/n, where

f(n) =
∏
p|n
p≤y

p,

which suggests that

#W(x) �
∑
n≤x

f(n)

n
.

We now consider the set V(t) of integers of the form n = ab, where a is
an odd squarefree integer in the interval [y/2, y], and b ≤ t/y is an positive
integer whose all prime divisors are greater than y (that is, b is a so-called
y-rough number). It is well-known (see Theorems 3 and 4 in Section 3.6
of [20]), that b takes at least (e−γ + o(1)) t/y log y possible values in any
interval b ≤ t with y = o(t), where γ = 0.5772 . . . is the Euler-Mascheroni
constant. In particular, #V(t) � t/ log y; thus, for the above value of y we
have #F(t) = o(#V(t)). Since f(n) ≥ y/2 for every n ∈ V(x)\F(x), we
derive

#W(x) ≥
∑

exp(y3)≤n≤x
n∈V(x)\F(x)

f(n)

n
� y

∑
exp(y3)≤n≤x
n∈V(x)\F(x)

1

n
� y

∑
exp(2y3)≤n≤x
n∈V(x)\F(x)

1

n
.
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Using the fact that # (V(t)\F(t)) � t/ log y for t ≥ exp(y3) together with
partial summation, we derive∑

exp(2y3)≤n≤x
n∈V(x)\F(x)

1

n
�

∑
exp(2y3)≤n≤x

(
# (V(n)\F(n))− exp(y3)

) 1

n2

� 1

log y

∑
exp(2y3)≤n≤x

1

n
� log x

log y
.

Recalling the value of y, leads us to the conjectured inequality (4).

As in [9], we also remark that the set W̃ is contained in the set of the
so-called Crandall numbers ; thus, Theorem 10 gives an upper bound on the
cardinality of the set of non-Crandall numbers n ≤ x.

Let us consider the limit

ϑ = lim sup
n→∞

log gcd
(
(2ϕ(n) − 1)/n, n

)
log n

.

Certainly, if Q is infinite then ϑ = 1. We now show that this also follows
from a variant of the Dickson prime s-tuplets conjecture, which has somewhat
more support (see [3]). Indeed, assume that for every s there exists a constant
As ≥ 2 such that there are infinitely many chains of primes p1, . . . , ps with
pi+1 = aipi + 1, for some positive integers ai ≤ As, i = 1, . . . , s− 1. Putting
n = p1 . . . ps, we see that

ps ≤ (As + 1)sp1 ≤ (As + 1)sn1/s,

and that pi(pi − 1)|ϕ(n), for i = 1, . . . , s− 1. Thus,

gcd

(
2ϕ(n) − 1

n
, n

)
≥ p1 . . . ps−1 = n/ps ≥ (As + 1)−sn1−1/s,

which implies that ϑ = 1. It is also easy to see that in fact one can allow the
ai to grow together with pi as ai = p

o(1)
i , for i = 1, . . . , s− 1.

We now present an unconditional lower bound on ϑ. By [2] (and some
simple counting arguments), there are infinitely many primes p with q =
P (p − 1) ≥ p0.677 and ν2(p − 1) + ν2(q − 1) ≤ log1/2 p. Write p − 1 =
2α�α1

1 . . . �αs
s m, where q − 1 = 2β�β1

1 . . . �βs
s is the prime number factorization
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of q − 1 and the integers α1, . . . , αs, m are such that gcd(m, q − 1) = 1. Put
n = 2−α−β(q − 1)(p− 1)p. We see that

m2�
2(α1+β1)
1 . . . �2(αs+βs)

s | 2ϕ(n) − 1.

Hence, gcd
(
(2ϕ(n) − 1)/n, n

)
≥ (q−1)(p−1)2−α−β � n0.6264+o(1). Therefore,

ϑ ≥ 0.6264 . . . ,

which naturally leads to a question about getting a better unconditional
bound on the above upper limit (and on the similar upper limit with ϕ(n)
replaced by λ(n)).
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[8] P. Erdős, A. Granville, C. Pomerance and C. Spiro, ‘On the normal
behavior of the iterates of some arithmetic functions’, Analytic Number
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