
Gauss and the History of the 
Fast Fourier Transform 

INTRODUCTION 

THE fast Fourier transform (Fm has become well known . 
as a very efficient algorithm for calculating the discrete 

Fourier Transform (Om of a sequence of N numbers. The 
OFT is used in many disciplines to obtain the spectrum or . 
frequency content of a Signal, and to facilitate the com­
putation of discrete convolution and correlation. Indeed, 
published work on the FFT algorithm as a means of calcu­
lating the OFT, by J. W. Cooley and J. W. Tukey in 1965 [1], 
was a turning point in digital signal processing and in cer­
tain areas of numerical analysis. They showed that the OFT, 
which was previously thought to require N 2 arithmetic 
operations, could be calculated by the new FFT algorithm 
using only N log Noperations. This algorithm had a revo­
lutionary effect on many digital processing methods, and 
remains the most Widely used method of computing 
Fourier transforms [2]. 

In their original paper, Cooley and Tukey referred only 
to I. J. Good's work published in 1958 [3] as having 
influenced their development. However, It was soon 
discovered there are major differences between the 
Cooley-Tukey FFT and the algorithm described by Good, 
which is now commonly referred to as the prime factor 
algorithm (PFA). Soon after the appearance of the Cooley­
Tukey paper, Rudnick [4] demonstrated a similar algo­
rithm, based on the work of Danielson and Lanczos [5] 
which had appeared in 1942. This discovery prompted 
an investigation into the history of the FFT algorithm by 
Cooley, Lewis, and Welch [6]. They discovered that the 
Oanielson-Lanczos paper referred to work by Runge pub­
lished at the tu rn of the centu ry [7, 8]. The algorithm devel­
oped by Cooley and Tukey clearly had its roots in, though 
perhaps not a direct influence from, the early twentieth 
century. 

In a recently published history of numerical analysis [9], 
H. H. Goldstine attributes to Carl Friedrich Gauss, the emi­
nent German mathematician, an algorithm similar to the 
FFT for the computation of the coefficients of a finite Fou­
rier series. Gauss' treatise describing the algorithm was 
not published in his lifetime; it appeared only in his col­
lected works [10] as an unpublished manuscript. The pre­
sumed year of the composition of this treatise is 1805, 
thereby suggesting that efficient algorithms for evaluating 
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coefficients of Fourier series were developed at least a 
century earlier than had been thought previously. If this 
year is accurate, it predates Fourier's 1807 work on har­
monic analysis. A second reference to Gauss' algorithm 
was found in an article in the Encyklopadie der Mathemati­
schen Wissenschaften [11], written by H. Burkhardt in 1904. 
It is interesting to note that Goldstine's and Burkhardt's 
work went almost as unnoticed as Gauss' work. 

Because of Goldstine's discovery, the history of the 
FFT is again open to question. Is Gauss' method indeed 
equivalent to a modern FFT algorithm? If so, which type? 
And why was this work by a great mathematician' not 
known to engineers and physicists even after the publica­
tion of Goldstine's book? What influenced Gauss' work 
and who developed the OFT? How firmly established is the 
date of writing? To answer these questions and to trace 
the history of Fourier series coefficient calculation into the 
eighteenth and nineteenth centuries, we undertook our 
own historical investigation\ dealing primarily with origi­
nal texts and concentrating on Gauss' work. What follows 
is a summary of our work, with historical references and 
evidence provided for readers to pursue the history 
as they wish. Another class of efficient OFT algorithms, 
called prime factor algorithms, which includes work from 
Thomas [13], Good [3], Winograd [14], and others, is not 
included in this investigation. 

THE TWENTIETH CENTURY 

Cooley, Lewis, and Welch [6] discovered that Danielson 
and Lanczos referred to the work of Carl David Tolm~ 
Runge (1856-1927) [7,8] as the inspiration for their algo­
rithm. In these two papers and the book by Runge and 
Konig [15], a doubling algorithm is ·described which com­
putes the Fourier transform of two N-point subsequences 
to obtain a 2N-point Fourier transform using approxi­
mately N auxiliary operations. This algorithm is not as 
general as the Cooley-Tukey FFT algorithm because it only 
allows doubling of the original sequence length, whereas 
the Cooley-Tukey approach efficiently computes the OFT 
for any multiple of the original length. The work of Runge 
also influenced Stumpff, who, in his book on harmonic 
analysis and periodograms [16], gives a doubling and 
tripling algorithm for the evaluation of harmonic series. 
Furthermore, on p. 142 of that book, he suggests a 
generalization to an arbitrary multiple. All of this historical 
information was exposed by Cooley, LeWiS, and Welch [6] 
in much greater detail, and is mentioned here to provide 



a background on the knowledge of the history of the FFT 
circa 1967. 

LATE NINETEENTH AND EARLY TWENTIETH CENTURY 

One interesting aspect to this historical information is 
that the work of Runge was well known in the early part 
of the twentieth century and is even referred to in the 
popular textbook written by Whittaker and Robinson [17], 
originally published in 1924. Whittaker and Robinson 
state that Runge's method had been widely published 
and cite a paper by Silvanus Phillips Thompson (1851-1916) 
[18]. Thompson-also a biographer of'Sir William 
Thomson, lord Kelvin (1824-1907) - was apparently trying 
to popularize Runge's method in Great Britain [18,19]. 
Thompson's second paper [18] does not actually use an 
FFT method to obtain computational savings, but is inter­
esting because of the discussion included at the end of the 
paper. This discussion includes comments by George 
Howard Darwin (1845-1912) (son of the more famous 
Charles), who claims to have used efficient techniques 
for the harmonic analysis of tides in 1883 [20] which he 
attributes to Archibald Smith (1813-1872) in 1874 [21], and 
to Sir Richard Strachey (1817-1908) in 1884 [22]. In Darwin's 
paper [20], reference is made to a paper by Joseph David 
Everett (1831-1904) published in 1860 [23], and credit is also 
given to Archibald Smith. Everett was working with lord 
Kelvin on the harmonic analysis of daily temperature varia­
tions, and he gives a method for harmonic analysis using 
12 samples. He claims this is an extension of the method 
used by lord Kelvin in [24]. lord Kelvin used a method 
based on 32 samples which was credited to Archibald 
Smith, originally published in 1846 [25] and presented in 
more detail in 1850 [26] and 1855 [27]. Apparently, S. P. 
Thompson was unaware of the use of efficient harmonic­
analysis techniques in this paper. 

The British discovery of efficient techniques for har­
monic analysis can be reliably traced to Archibald Smith in 
1846. Other algorithms had been developed indepen­
dently by various researchers in the nineteenth century, 
and are tabulated on pp. 686-687 of [11]. The earliest 
method referenced in [11] is that of Francesco Carlini 
(1783-1862) from 1828 [28] for n = 12. The only other 
method which predates Archibald Smith's is that of 
Peter Andreas Hansen (1795-1874) from 1835 [29] for 
n = 64. Hansen was heavily influenced by Gauss in his 
astronomical work, but does not mention Gauss in the 
development of his algorithms for harmonic analysis, for 
reasons which shall be made clear later. 

An important detail that should not be overlooked is 
that most of the methods preceding Runge were not in­
tended for computing harmonics above the fourth. This 
was adequate for most applications of harmon ic analysis in 
the nineteenth century, because the measurement quan­
tization was generally on the same order of magnitude as 
the contributions of the higher-order harmonics. These 
methods are, therefore, similar to what are now called 

'Thls has resulted In a bibliography of over 2000 entries (12). 

"pruned" FFT's [30]. Most of these methods were de­
scribed by computational tables for a fixed number of 
samples and were not presented as general techniques for 
computing harmonics for an arbitrary number of samples. 

EARLY NINETEENTH CENTURY 

Based only on the aforementioned evidence, one might 
conclude that FFT-type methods originated with Francesco 
Carlini in 1828. However, on p. 249 of A History of Numer­
ical Analysis from the 16th Through the 19th Century by 
Herman H. Goldstine [9], the following footnote appears. 

This fascinating work of Gauss was neglected and was redis­
covered by Cooley and Tukey in an Important paper in 1965. 

This quotation refers to the treatise written by Gauss 
(17n-1855) entitled "Theoria Interpolationis Methodo 
Nova Tractata" [10]; this was published posthumously in 
volume 3 of his collected works in 1866, but was originally 
written, most likely, in 1805. Goldstine [9] gives, on 
p. 249-253, an English translation of parts of Gauss' paper 
related to trigonometric interpolation algorithms, which 
are Articles 25-28 of the original latin text. Gauss wrote 
his important works and his personal mathematical diary 
in a nineteenth-century version of latin which is now 
called neo-latin. Unfortunately, neo-latin is difficult for 
the casual student of classical latin to translate accurately. 
Another source of difficulty for the modern reader is the 
notation adopted by Gauss to describe his method. 
Examples of this notation are the use of 'TT as the length 
of a sequence (instead of N), the use of symbols a, b, c, 
d, ... ; a', b', c', d', ... ; a", b", c", d"; etc. as the indices 
of the time series; and the use of capital letters to refer to 
the value of a function at a point whose index is the corre­
sponding small letter (e.g., f(a) = A). Gauss' method was 
also derived using real trigonometric functions rather than 
complex exponentials, making it more difficult to relate 
his method to current FFT techniques. 

At this point, there are three questions to be addressed. 
Was the method used by Gauss in [10] a form of what is 
now called an FFT? If so, what type and how general was 
it? Did Gauss realize he had developed a computationally 
efficient algorithm? 

THE BACKGROUND OF GAUSS' WORK 

The analysis of a trigonometric series goes back at least 
to the work of leonhard Euler (1707-1783) (31-33]. He 
had no particular application in mind as far as we can tell. 
He dealt with infinite, cosine-only series, and did not con­
cern himself with convergence issues. The stature of Euler 
in his own time meant that his work was read by his con­
temporaries, particularly the French mathematicians 
Clairaut, d'Alembert, and lagrange. Alexis-Claude 
Clairaut (1713-1765) published in 1754 [34] what we cur­
rently believe to be the earliest formula for the OFT, but it 
was restricted to a cosine-only finite Fourier series. Joseph 
louis lagrange (1736-1813) published a OFT-like formula 
for sine-only series in 1762 [35]. Daniel Bernoulli 
(1700-1782) expressed the form of a vibrating string as a 
series of sine and cosine terms with arguments of both 
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time and distance in 1753 [36], which implied that an arbi­
trary function could be expressed as an infinite sum of 
cosines. The most authoritative compilation of the early 
history of trigonometric series is a 536-page article by 
H. Burkhardt [37]. 

Clairaut and Lagrange were concerned with orbital me­
chanics and the problem of determining the details of an 
orbit from a finite set of observations. Consequently, their 
data was periodic and they used an interpolation approach 
to orbit determination: in modern terminology and no­
tation, an even periodic function f(x) which has a period of 
one is represented as a finite trigonometric series by 

N-' 

computed for the original N, samples. Gauss realized the 
problem and proceeded to develop a method for cor­
recting the coefficients he had already calculated, and to 
determine additional coefficients for the higher-frequency 
harmonics. Using modern terminology, we would say that 
the waveform was undersampled, and that therefore the 
coefficients were in error because of aliaSing of the high-. 
frequency harmonics [2]. 

Gauss' solution to this problem was to measure a total 
of N2 sets of N, equally spaced samples, which together 
form an overall set of N = N, N2 equally spaced samples. 
The finite Fourier series for the entire set of N samples is 
computed by first computing the coefficients for each of 

f(x) = L a" cos 27Tkx, 0<xs1. 
11:-0 

(1) the N2 sets of length N" all shifted relative to a common 
origin, and then computing coefficients of the N, series of 
length N2 which are formed from the coefficients of corre­
sponding terms in the N2 sets of coefficients originally 
computed. A final trigonometric identity is used to convert 
these coefficients into the finite Fourier series coefficients 
for the N samples. 

The problem is to find the coefficients {a,,} from the N 
values of f(x) for values of Xn = n/N with n = 0, 1, ... , 
N - 1. By forcing f(x) to equal the observed values at the 
abscissas {xn }, one can easily show that the coefficients 
{a,,} are given by the cosine-only OFT of the observed 
values of f(x). Gauss knew of the works of Euler and 
Lagrange [38]: he borrowed their works from the library 
at GOttingen while a student from 1795 to 1798.2 

GAUSS' ALGORITHM FOR COMPUTING THE OFT 

Gauss extended this work on trigonometric interpola­
tion to periodic functions, which are not necessarily odd 
or even. This was done while conSidering the problem of 
determining the orbit of certain asteroids from sample 
locations. These functions are expressed by a Fourier 
series of the form 

m m 
f(x) = L a" cos 2",./ex + L b" sin 2",./ex (2) 

"-0 ,,-, 
where m = (N - 1)/2 for N odd, or m = N/2 for N even. 
Gauss showed in Articles 19-20 of his interpolation trea­
tise that if one were given the values of f(xn ), Xn = n/N 
(n = 0,1, ... , N - 1), the coefficients a" and b" are given 
by the now well-known formulas for the OFT [40]. This set 
of equations is the earliest explicit formula for the general 
OFT that we have found. 

Gauss develops his efficient algorithm by using N, (or P­
in his notation) equally spaced samples over one period of 
the signal. This set of N, samples is a subset of N total 
samples, where N = N, N2 (or",. = p-v). Gauss computes 
the finite Fourier series which passes through these 
samples using m harmonics, where m is as defined in (2). 
He then assumes that another subset of N, equally spaced 
samples of the signal are measured which are offset from 
the original set of samples by a fraction, 1/N2 , of the origi­
nal sample interval where N2 is a positive integer. A finite 
Fourier series with m harmonics is computed which 
passes through this new set of samples, and it is discov­
ered that these coefficients are quite different from those 

20unnington (39) has compiled a list of books borrowed by Gauss at 
GOttingen by searching the University library records. 
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In modern terminology, the OFT of the samples of f(x) 
is defined by 

N-' 
C(k) = L X(n)W::''' (3) 

where, if f(x) has a period of one, X(n)=f(n/N) are the N 
equally spaced samples, WN=e-j2'rtfN, and k=O, 1, ..• , 
N :- 1 are the indices of the Fourier coefficients. This OFT 
can be rewritten in terms of N2 sets of N, subsamples by 
the change of index variables [41] 

n = N2n, + n2 

k ~ k, + N,k2 

for n" k, = 0, 1, ... ,N, - 1 and n2, k2 = 0, 1, ... ,N2 - 1. 
Each subsequence is a function of n,; n2 denotes which 
subsequence it is. The OFT in (3) becomes 

• 
(4) 

where the inner sum calculates the N2 length-N, OFT's 
corrected by WN , and the outer sum calculates the N, 
length-N2 OFT's. This is exactly the exponential form of 
Gauss' algorithm where the WN term accounts for the 
shifts from the origin of the N2 length-N, sequences. This 
is also exactly the FFT algorithm derived by .Cooley and 
Tukey in 1965 [1] where the WN is called a twiddle 
factor [2], a factor to correct the OFT of the inner sum 
for the shifted samples of X(n). The equivalence of Gauss' 
algorithm and the Cooley-Tukey FFT is not obvious due 
to the notation and trigonometric formulation of Gauss. 
One can easily verify the results by calculating the inner 
sum of (4) and comparing the numerical results with 
the intermediate calculation in Article 28 of [10] after 
converting from exponential to trigonometric form and 
correcting for factors of 1/N,. 

The example of N = 12 for the orbit of the asteroid 



I, 

April 30, 1m 
Sept., 1795 

Nov. 25, 1796 

DAnNG OF GAUSS' WORK ON THE FFT 
THEOlllA 'NTEllflDlAflONl8 "&THODO NOVA fllACTATA 

VDLUME III, WEIIKE 

Gauss is born in Brunswick. 

Gauss arrives at Gottingen. Throughout his stay there, he checked out many 
books from the university library. In particular, he continually read Miscellanea 
Taurinensia, the proceedings of the academy located in Turin. When these pro­
ceedings were being published, Lagrange was there and this journal served as his 
exclusive outlet. In Volume III, Lagrange's OFT (sine only) appears. 

Diary entry 443
, which reads Formula interpo/ationis e/egans. Translated, this entry 

means "Elegant formula for interpolation." The editor of the diary connected this 
with the Lagrange interpolation formula. No specific library books can be readily 
connected to this entry. 

Dec. 1796 Diary entry 46, which reads Formulae trigonometricae per series expressae. Trans­
lated, this entry means "Trigonometric formulas expressed with series." The editor 
of the diary made no comment about this entry. On December 16, 1796, Gauss 
checked out both volumes of Euler's Opuscula Analytica. In this work, Euler relates 
algebraiC series for trigonometric functions to the calculation of 'IT. This diary entry 
probably refers to this kind of series. 

Sep. 28, 1798 Gauss returns home to Brunswick after finishing his studies at GOttingen. 

Dec. 1804-Dec. 1805 Correspondence between Gauss and Bessel indicates their concern with the 
interpolation problem. No mention is made, however, of the trigonometric inter­
polation problem.4 

May 1805 Publication date of an issue of Monatliche Correspondenz, a collection of 
unreviewed notes containing' astronomical observations ' and information. This 
note credits Gauss with further measurements of the orbit of the asteroid Juno, 
among which is the eccentricity value 0.254236.5 This number is used by Gauss in 
an example in his FFT writings. Thus, the treatise must have been completed after 
this date. 

Nov. 1805 Diary entry 124, which reads Theoriam interpo/ationis ulterius excoluimus. Trans­
lated, this entry means "We have worked out further a theory of interpolation. " The 
editor takes this entry to mean that his treatise on interpolation could not have been 
written before November 1805. He refers to a notebook of Gauss consisting of short 
mathematical notes (Mathematische Brouillons), which was begun in October 1805. 
Volume 18 of the notebook contains an opening note on interpolation. The editor 
takes this note to be a first draft of the treatise. However, the collected work of 
Gauss does not contain this paper. 

July 30,1806 Date attached to a letter sent from Gauss to Bode, in which the eccentricity value 
for Juno of 0.2549441 is given. Presumably, this means that the FFT treatise 
must have been written prior to this date. This letter appeared in Monatliche 
Correspondenz later in 1806.6 

Nov. 8, 1808 A letter from Schumacher, a former student of Gauss, to Gauss mentions 
that Schumacher'S mother has a handwritten copy of his work on interpolation.7 

It is unclear whether this letter is referring to Mathematische Brouillons or the 
Theoria interpo/ationis. 

June 8, 1816 Schumacher writes Gauss that he has a handwritten version of Gauss' work on 
interpolation, which he hopes Gauss will publish soon.7 Thus, Gauss did not keep 
this work secret, but presumably was not interested in publishing it. 

lfhe entries of Gauss' mathematical diary are published with accompanying comments by the editors in volume X.1 of the Werke, 
'p'p.488-Sn. 
Briefwechsel zwischen Gauss und Bessel, Leipzig, 1880. 

SVolume VI, Werke, p. 262. 
'Volume VI, Werke, p.279. 
7Volume X.2, Werke, p. 125. 
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Principal Discoveries of Efficient Methods of Computing the DFT 

Number of 
Researcher(s) Date Sequence lengths DFT Values Application 

C. F. Gauss [10] 1805 Any composite integer All Interpolation of orbits 
of celestial bodies 

F. Carlini [28] 1828 12 Harmonic analysis of 
barometric pressure 

A. Smith [25] 1846 4,8,16,32 5 or 9 Correcting deviations 
In compasses on ships 

J. D. Everett [23] 1860 12 5 Modeling underground 
temperature deviations 

C. Runge [7] 1903 2ftk All Harmonic analysis of 
functions 

K. Stumpff [16] 1939 2nk,3nk All Harmonic analysis of 
functions 

Danielson and 1942 2n All X-ray diffraction in 
lanczos [5] crystals 

l. H. Thomas [13] 1948 Any integer with All Harmonic analysis of 
relatively prime factors functions 

I. J. Good [3] 1958 Any integer with All Harmonic analysis of 
relatively prime factors functions 

Cooley and 1965 Any composite integer All Harmonic analysis of 
Tukey [1] functions 

S. Winograd [14] 1976 Any integer with All Use of complexity theory 
relatively prime factors for harmonic analysis 

Pallas was worked out in Article 28 of [10] for N, = 4, 
Nl = 3 and for N, = 3, Nl = 4, and an example was given 
in Article 41 for N = 36 with N, = Nl = 6 and for the 
special case of odd symmetry. 

In Article 27, Gauss states that his algorithm can be gen­
eralized to the case where N has more than two factors, 
although no examples are given. This and the observed 
efficiency are seen in the following translation from 
Article 27. 

And so for this case, where most of the proposed values of 
the function X, an Integral period of the arrangement, the 
number is composite and = 'II' = /JoII, in articles 25, 26, we 
learned that through the division of that period into II periods 
of /Jo terms, it produces, when all values are given, the same 
satisfactory function, which by the immediate application of 
the general theory applies to the whole period; truly, that 
method greatly reduces the tediousness of mechanical calcu­
iations, success will teach the one who tries it. Now the work 
will be no greater than the explanation, of how that division 
can be extended still further and can be applied to the case 
where the majority of all proposed values are composed of 
three or more factors, for example, if the number /Jo would 
again be composite, in that case clearly each period of /Jo terms 
can be subdivided into many lesser periods. 

Gauss did not, however, go on to quantify the com­
putational requirements of his method to obtain the now 
familiar N I N, or N log N expression for its compu­
tational compleXity. From his short excerpt, Gauss clearly 
developed his procedure because it was computationally 
efficient and because it could be applied to a select, but 
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interesting, set of sequence lengths. Thus, Gauss' algo­
rithm is as general and powerful as the Cooley-Tukey 
common-factor algorithm and is, in fact, equivalent to a 
decimation-in-frequency algorithm adapted' to a real 
data sequence. 

The hints used by Gauss' biographers [39,42] and by us 
to establish a date for this work are summarized in the 
accompanying table. From these facts, we infer that Gauss 
wrote this treatise in October-November 1805. This work 
predates the 1807 work of Jean Baptiste Joseph Fourier 
(1768-1830) on representations of functions as infinite har­
monic series. Fourier did not publish his results until 1822 
[43] because his presentation to the Academy of Sciences 
in Paris on December 21, 1807 was not well received by 
Lagrange and was refused publication in the Memoirs of 
the Academy. One of his earlier manuscripts dates back 
to 1804-1805 and includes research which he may have 
started as early as 1802 [44]. 

The OFT approach to solving the orbital mechanics 
problem was one of several. Approaches related to 
Newtonian mechanics gave alternative solutions to the 
problem, and, in the end, came to be preferred even by 
Gauss. Mathematicians concerned with orbital mechanics 
who read his posthumous treatise in 1866 would probably 
not have found the technique described therein of much 
interest. Thus, the dated nature of the publication, its 
publication in Latin, and the lack of notice of Goldstine's 
and Burkhardt'S work contributed to the "loss" of Gauss' 
FFT technique until now. 



CONCLUSION 

Although it appears that the discrete Fourier transform 
should really have been named after Gauss, it is obviously 
not practical to rename it. However, the term "Gauss­
Fourier transform (GFT),' was coined by Hope [45] in 1965, 
and the term "discrete Gauss transform (DGn" has also 
been previously used [46]. T. S. Huang was unknowingly 
accurate when he satirically remarked in 1971 that the FFT 
was Gauss' 1oo1st algorithm [47]. 

This investigation has demonstrated, once again, the 
virtuosity of Carl Friedrich Gauss. In addition, it has shown 
that certain problems can be timeless, but their solution 
rediscovered again and again. Burkhardt pOinted out this 
algorithm in 1904 and Goldstine suggested the connection 
between Gauss and the FFT in 1977, but both of these 
went largely unnoticed, presumably because they were 
published in books dealing primarily with history. It was 
shown that various FFT-type algorithms were used in Great 
Britain and elsewhere in the nineteenth century, but were 
unrelated to the work of Gauss and were, in fact, not as 
general or well-formulated as Gauss' work. Almost one­
hundred years passed between the publication of Gauss' 
algorithm and the modern rediscovery of this approach by 
Cooley and Tukey. 
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