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1 Introduction

In the Bayesian framework, we assume that observable data x are generated by underlying hidden causes s
in the world, which cannot be observed directly. The generative model specifies how the data gets generated
from the causes, which is encapsulated in the conditional probability p(x|s), and any prior information about
the distribution over the different states of the causes p(s). The generative probability distributions may
be parameterized by certain model parameters, so we sometimes write p(x|s;θθθ) and p(s;φφφ), where θθθ and φφφ
parameterize their respective distributions.

The recognition model involves computing the posterior distribution p(s|x), which is given by Bayes’ Theorem:

p(s|x) =
p(x|s)p(s)

p(x)

=
p(x|s)p(s)∫

p(x|s′)p(s′)ds′

=
p(x|s)p(s)

Z
∝ p(x|s)p(bs)

where Z = p(x) is the normalization constant independent of s (due to the integration). Implicit in this
formulation is the dependence on the model parameters θθθ and φφφ, so that p(x|s) =

∫
p(x|s;θθθ)p(θθθ)dθθθ and

p(s) =
∫

p(s;φφφ)p(φφφ)dφφφ. Computing the distributions p(θθθ) and p(φφφ), typically based on previously observed
data Dn ≡ {x1, . . . ,xn}, constitute the learning problem. In theory, this can be achieved again using Bayes’
Theorem; in practice, exact learning is often intractable, and so point estimates for θθθ and φφφ are used, or
samples are drawn from the posterior distribution p(θθθ,φφφ|Dn) to approximate the integration.

Given the observation x, it is often necessary to report or act on an estimate of s that “best” describes the
data. Bayesian decision theory formalizes this process of translating information into action. First, we define
the loss function lx(ŝ, s∗), which quantifies the loss or cost associating with report s = ŝ when the data were
actually generated by s = s∗. Then we can compute the average or expected loss:

Lx(ŝ) = 〈lx(ŝ, s∗)〉p(s=s∗|x) =
∫

lx(ŝ, s∗)p(s = s∗|x)ds∗ (1)

The expected loss is integrated over all possible settings of s, weighed by their relative probabilities, and
indicates how much loss can be expected when ŝ is chosen as the estimate. The optimal decision procedure
has to choose a ŝ that minimizes this expected loss. In the following, we look at three concrete and common
examples of loss functions and how this framework can be applied in each case. For simplicity, we will assume
in all these examples that the hidden variable is scalar and denote it as s.
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1.1 Binary (0-1) Loss

The 0-1 binary loss function has the following form:

lx(ŝ, s∗) = 1− δŝs∗ =

{
1 if s∗ 6= ŝ

0 otherwise
(2)

where δ is the Kronecker Delta function. This loss function is an appropriate choice when the same penalty
is incurred whenever the estimate does not exactly correspond to the true underlying variable (and none
otherwise), regardless of how far from the truth the estimate actually is. It makes most sense when the
hypothesis space (the space of values s can take on) is discrete. Substituting Eq. 2 into Eq. 1, the expected
loss is:

Lx(ŝ) =
∑
s∗

lx(ŝ, s∗)P (s = s∗|x)

=
∑
s∗

(1− δŝs∗)P (s = s∗|x)

=
∑
s∗

P (s = s∗|x)ds∗ −
∑
s∗

δŝs∗P (s = s∗|x)

= 1− P (s = ŝ|x)

Clearly, this quantity is minimized when ŝ is chosen to be the maximum of the posterior distribution P (s|x),
or the max a posteriori (MAP) estimate. The corresponding minimal loss that can be achieved is 1−P (s∗|x).

1.2 Square Loss

The square loss function is defined as follows:

lx(ŝ, s∗) = (ŝ− s∗)2 (3)

Unlike the binary loss function, the square loss function does care about how different the estimated ŝ is
from the true s∗. It is most appropriate when s lives in a continuous space with a well-defined metric, so
that it makes sense to look at the square distance two different values of s. Substituting Eq. 3 into Eq. 1,
we get the following:

Lx(ŝ) =
∫

lx(ŝ, s∗)p(s = s∗|x)ds∗

=
∫

(ŝ− s∗)2p(s = s∗|x)ds∗

= ŝ2

∫
p(s = s∗|x)ds∗ − 2ŝ

∫
s∗p(s = s∗|x)ds∗ +

∫
s∗2p(s = s∗|x)ds∗

= ŝ2 − 2ŝ〈s∗〉+ 〈s∗2〉
= ŝ2 − 2ŝ〈s∗〉+ 〈s∗〉2 + 〈(s∗ − 〈s∗〉)2〉
= (ŝ− 〈s∗〉)2 + 〈(s∗ − 〈s∗〉)2〉

where all the expectations are taken over p(s = s∗|x). Note that the second term in the last line is independent
of ŝ, and the first term is minimized when ŝ = 〈s∗〉. Thus, the expected square loss is minimized when ŝ is
chosen to be the expectation of s under the posterior distribution, and the minimal loss is the covariance of
this distribution.
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1.3 Absolute Loss

Another popular loss function that takes into account the quality of the estimate is the absolute function:

lx(ŝ, s∗) = |ŝ− s∗|. (4)

At first glance, this loss function may seem very similar to the square loss function. But we shall soon see
that minimizing this loss leads to a very different answer than the square loss case. Substituting Eq. 4 into
Eq. 1, we have the following:

Lx(ŝ) =
∫

lx(ŝ, s∗)p(s=s∗|x)ds∗

=
∫
|ŝ− s∗|p(s∗|x)ds∗

=
∫ ŝ

−∞
(ŝ− s∗)p(s∗|x)ds∗ +

∫ ∞

ŝ

(s∗ − ŝ)p(s∗|x)ds∗

= ŝ

(∫ ŝ

−∞
p(s∗|x)ds∗ −

∫ ∞

ŝ

p(s∗|x)ds∗

)
+
∫ ∞

ŝ

s∗p(s∗|x)ds∗ −
∫ ŝ

−∞
s∗p(s∗|x)ds∗

To obtain the optimal value of ŝ, we set the derivative of Lx(ŝ) to 0 and solve for ŝ. Utilizing the Product
Rule and the Fundamental Theorem of Calculus, we obtain the following:

dLx(ŝ)
dŝ

= 2ŝp(ŝ|x) +
∫ ŝ

−∞
p(s∗|x)ds∗ −

∫ ∞

ŝ

p(s∗|x)ds∗ − 2ŝp(ŝ|bx) (5)

=
∫ ŝ

−∞
p(s∗|x)ds∗ −

∫ ∞

ŝ

p(s∗|x)ds∗ = 0 (6)

This implies that the choice of ŝ is optimal when it is the median of the posterior distribution. That is,
when P (s < ŝ|x) = P (s > ŝ|x). Returning to Eq. 4, we see that the minimal expected loss for this loss
function is

∫∞
ŝ

s∗p(s∗|x)ds∗ −
∫ ŝ

−∞ s∗p(s∗|x)ds∗, which is smaller when the posterior distribution itself is
peakier (around the median).

2 Discussion

In this short tutorial, we have defined the basic problem and method of Bayesian decision making, and
applied the methodology to three common loss functions. In Bayesian decision making, a well-defined loss
function, indicating the potential loss incurred by each plausible cause-outcome pairing, is critical. Once
this loss function is specified, finding the optimal estimate consists of minimizing the expected loss, where
the expectation is taken over the posterior distribution over the variable of interest, taking into account any
uncertainty over the setting of the variable. Specifically, for the case of binary loss, we showed that the
optimal estimate is the MAP estimate (or mode), and the minimal expected loss is the probability that the
MAP estimate is incorrect. For the case of square loss, the optimal estimate is the expectation of the variable
under the posterior distribution, and the minimal expected loss the covariance of that distribution. For the
case of absolute loss, which may on the surface greatly resemble the square loss, we saw that the optimal
estimate is the median of the posterior distribution, while the minimal expected loss is

∫∞
ŝ

s∗p(s∗|x)ds∗ −∫ ŝ

−∞ s∗p(s∗|x)ds∗, which is smaller when the posterior distribution is peakier (around the median). Note
that in the case of a simple Gaussian distribution, the mode, the mean, and the median are all equivalent
quantities. Thus, the details of the loss function is most relevant when the posterior distribution is skewed,
multi-modal, or takes on other complex properties.
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