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The Rise of non-Archimedean Mathematics and
the Roots of a Misconception I: The Emergence
of non-Archimedean Systems of Magnitudes1,2

Philip Ehrlich

Communicated by J. J. Gray

As a matter of fact, it is by no means
impossible to build up a consistent “non-
Archimedean” theory of magnitudes in
which the axiom of Eudoxus (usually named
after Archimedes) does not hold.

Hermann Weyl
Philosophie der Mathematik
und Naturwissenschaft
1927, p. 36

Introduction

In his paper RecentWork On The Principles of Mathematics, which appeared in 1901,
Bertrand Russell reported that the three central problems of traditional mathematical

1 Portions of this work were presented at the Pittsburgh Center for Philosophy of Science
in November 1998 as part of a conference on Philosophical Problems in the Historiography of
Science jointly sponsored by the Center and the Division of Logic, Methodology, and Philosophy
of Science of the International Union of History and Philosophy of Science, at Northwestern
University in September 1999 as part of the Northwestern University History and Philosophy of
Science Seminar Series, and at the International History and Philosophy of Mathematics Meeting
in Seville, Spain in September 2003. We are very grateful to the various organizers for affording us
those opportunities. Thanks are owed also to the National Science Foundation for supporting the
early development of this research (Scholars Award #SBR 9602154). We also wish to express our
gratitude to Scott Carson and Kathleen Evans-Romaine, who from time to time served as knowl-
edgeable and helpful sounding boards for our translations of the German, French and Italian texts.
Finally, we are especially grateful to Jeremy Gray and Henk Bos, each of whom provided valuable
suggestions for improving the exposition.

Throughout the text we follow the convention of only providing the original German, French
and Italian texts in the cases of translations of substantial quotations.

2 The companion to the present paper referred to in the text is a continuation of the present
work that will focus on the emergence of non-Archimedean geometry. It is the author’s intention
to submit the latter paper for publication in the Archive in the not too distant future.
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2 P. Ehrlich

philosophy – the nature of the infinite, the nature of the infinitesimal, and the nature of
the continuum – had all been “completely solved” [1901, p. 89]. Indeed, as Russell went
on to add: “The solutions, for those acquainted with mathematics, are so clear as to leave
no longer the slightest doubt or difficulty” [1901, p. 89]. According to Russell, the struc-
ture of the infinite and the continuum were completely revealed by Cantor and Dedekind,
and the concept of an infinitesimal had been found to be incoherent and was “banish[ed]
from mathematics” through the work of Weierstrass and others [1901, pp. 88, 90]. These
themes were reiterated in Russell’s often reprinted Mathematics and the Metaphysician
[1918],3 and further developed in both editions of Russell’s The Principles of Mathe-
matics [1903; 1937], the works which perhaps more than any other helped to promulgate
these ideas among historians and philosophers of mathematics. In the two editions of the
latter work, however, the banishment of infinitesimals that Russell spoke of in 1901 was
given an apparent theoretical urgency. No longer was it simply that “nobody could dis-
cover what the infinitely little might be,” [1901, p. 90] but rather, according to Russell, the
kinds of infinitesimals that had been of principal interest to mathematicians were shown
to be either “mathematical fictions” whose existence would imply a contradiction [1903,
p. 336; 1937, p. 336] or, outright “self-contradictory,” as in the case of an infinitesimal
line segment [1903, p. 368; 1937, p. 368]. In support of these contentions Russell could
cite no less an authority than Georg Cantor, the founder of the theory of infinite sets.4

Having accepted along with Russell that infinitesimals had indeed been shown to be
incoherent, and that (with the possible exception of constructivist alternatives) the nature
of the infinite and the continuum had been essentially laid bear by Cantor and Dedekind,
following the development of nonstandard analysis in 1961, a good number of historians
and philosophers of mathematics (as well as a number of mathematicians and logicians)
readily embraced the now commonplace view that is typified by the following remarks:

In the nineteenth century infinitesimals were driven out of mathematics once and for all,
or so it seemed. [P. Davis and R. Hersh 1972, p. 78]

But ...

The German logician Abraham Robinson (1918–1974), who invented what is known as
non-standard analysis, thereby eventually conferred sense on the notion of an infinitesimal
greater than 0 but less than any finite number. [Moore 1990; 2001, p. 69]

Indeed ...

nonstandard analysis ..., created by Abraham Robinson in the early 1960s, used tech-
niques of mathematical logic and model theory to introduce a rigorous theory of both

3 Russell’s Mathematics and the Metaphysician is a reprinting of [Russell 1901] with newly
added footnotes that were introduced because “some points in this essay require modification
in view of later work” [Russell 1918, p. 7]. For additional historical remarks on this paper, see
[Russell 1993, pp. 363–365].

4 Russell was willing to accept that “lengths of bounded straight lines are infinitesimal as
compared to areas, and these again as compared to volumes of polyhedra.” However, according
to Russell, “such genuine cases of infinitesimals ... are always regarded by mathematicians as
magnitudes of a different kind . . . ” [1903, p. 337].
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[non-Cantorian] infinite and infinitesimal numbers. This, in turn, required a reevaluation
of the long-standing opposition, historically, among mathematicians to infinitesimals in
particular. [Dauben 1992a, pp. 113–114]5

All of this is of course well known to historians and philosophers, of mathemat-
ics alike. What is not so well known in these communities, however, is that whereas
most late nineteenth- and pre-Robinsonian twentieth-century mathematicians banished
infinitesimals from the calculus, they by no means banished them from mathematics.
Indeed, contrary to what the above remarks plainly suggest, between the early 1870s
and the appearance of Abraham Robinson’s work on nonstandard analysis in 1961 there
emerged a large, diverse, technically deep and philosophically pregnant body of con-
sistent non-Archimedean mathematics of the (non-Cantorian) infinitely large and the
infinitely small. Unlike non-standard analysis, which is primarily concerned with pro-
viding a treatment of the calculus making use of infinitesimals, most of the former work
either emerged from the study of the rate of growth of real functions, or is concerned
with geometry and the concepts of number and of magnitude or grew out of the natu-
ral evolution of such discussions. What may surprise many historians and philosophers
even more than the existence of these two bodies of literature is that the latter such body
contains constructions of systems of finite, infinite and infinitesimal numbers that are not
only sophisticated by contemporary mathematical standards but which are rich enough
to embrace the corresponding number systems employed in nonstandard analysis.6

5 These references only begin to indicate just how widespread this misconception is in the
literature–in the English-language literature, in particular. A further indication that this view has
reached the status of orthodoxy in the English-language literature is evidenced by the follow-
ing remarks from Graham Priest’s otherwise informative article “Number” from the Rutledge
Encyclopedia of Philosophy.

Despite the fact that Cauchy possessed the notion of a limit, he mixed both infinitesimal
and limit terminology, and it was left to Weierstrass, later in the century, to replace all
appeals to infinitesimals by appeals to limits. At this point infinitesimal numbers disap-
peared from mathematics (though they would return, as we shall see).

Indeed, as a result of the

development ... due to Robinson ... called ‘nonstandard analysis’ ... infinitesimals have
been rehabilitated as perfectly good numbers ... the existence of nonstandard models of
analysis made infinitesimals legitimate. [Priest 1998, pp. 51–52]

6 We are not, of course, referring to the sophisticated hyperreal number systems that are
frequently employed in non-standard analysis [cf. Keisler 1994], but merely to their underlying
non-Archimedean ordered “number” fields and to the systems of infinitesimals contained therein.
In particular, we are referring to the fact that each non-Archimedean ordered field is isomorphic to
a subfield of a Hahn field, the latter being a distinguished type of non-Archimedean ordered field
introduced by Hans Hahn in his great pioneering work Über die nichtarchimedischen Grössen-
systeme [1907]. Moreover, since this embedding theorem had already emerged as a folk theorem
among knowledgeable field-theorists by the early 1950s [cf. Conrad 1954, p. 328], it is quite likely
that Robinson, who was thoroughly conversant with the literature on ordered algebraic systems,
was well aware of this when he published his pioneering work on non-standard analysis [1961].
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This of course is not to deny that there were late nineteenth-century mathematicians
whose calls for the banishment of infinitesimals went beyond the familiar Weierstras-
sian admonitions to purge the calculus of infinitesimals. Indeed, there were. Cantor,
in particular, essentially called for such a banishment–believing that infinitesimals are
the “cholera-bacillus of mathematics” [December 13, 1893]. In addition, there were
mathematicians such as Killing [1885], Peano [1892] and Pringsheim [1898–1904] who
implicitly advocated a restricted form of such a banishment, believing along with Cantor
[1887] that the concept of an infinitesimal line segment is provably incoherent.And there
were other mathematicians such as Stolz [1883; 1888] and Vivanti [1891a; 1891b] who
having essentially equated the straight line of geometry with the continuous straight line
of Dedekind also denied the possibility of infinitesimal line segments. But these chal-
lenges never went unanswered; those of Killing [1895–96; 1897; 1898], Stolz [1891;
1891a] and Vivanti [1893–94, 1898; 1908] were essentially withdrawn; and unlike the
influence that those of Cantor and Peano had on their philosophical champion, Bertrand
Russell, from whose writings large numbers of historians and philosophers learned of the
debate, their influence on the mathematical community was never deeply pronounced
and all but disappeared in the years following the publication of Hilbert’s Grundlagen
der Geometrie [1899], the work that made infinite and infinitesimal line segments and
numbers to measure them an integral part of standard mathematics.

Hilbert’s Grundlagen der Geometrie together with Hahn’s Über die nichtarchimedis-
chen Grössensysteme [1907] constitute the loci classici of the twentieth-century theories
of non-Archimedean ordered algebraic and geometric systems. However, as Hahn [1907,
p. 601] aptly emphasized, this mathematically profound and philosophically significant
body of work grew out of the late nineteenth-century pioneering investigations of non-
Archimedean Grössensysteme of Stolz [1883, 1884, 1885, 1891], Bettazzi [1890] and
Veronese [1889], on the one hand, and the subsequent late nineteenth-century pioneer-
ing investigations of non-Archimedean geometries of Veronese [1891, 1894] and Levi-
Civita [1892–93, 1898], on the other. Work on the rate of growth of real functions by
du Bois-Reymond [cf. 1870 –71; 1873; 1875; 1877; 1882] and Thomae [1870; 1872;
1873] also played substantive roles in providing both inspiration and examples for the
just-cited non-Archimedean contributions of Bettazzi and Stolz; and Schur’s [1899] own
early development of portions of geometry independent of the Archimedean axiom also
deserves mention in connection with those of Veronese and Levi-Civita.

In this and a companion paper–building on the work of [Ehrlich 1994a; 1995]–we
will explore the origins and development of this important body of work in the decades
bracketing the turn of the twentieth century as well as the reaction of the mathematical
community thereto. Besides helping to fill an important gap in the historical record, it
is our hope that these papers will collectively contribute to exposing and correcting the
misconceptions regarding non-Archimedean mathematics alluded to above and to shed-
ding light on the mathematical, philosophical and historical roots thereof. In the present
paper we will focus our attention on the emergence of theory of non-Archimedean

For a discussion of Hahn fields and their influence in the twentieth century, see [Ehrlich 1995]; and
for a proof of the just-mention embedding theorem for ordered fields that appeared more recently
than those already mentioned in [Ehrlich 1995], see [Dales and Wooden 1996, pp. 49–50].
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Grössensysteme (systems of magnitudes) in the years prior to the development of non-
Archimedean geometry. It was this now largely forgotten pioneering work that laid the
groundwork for the modern theory of non-Archimedean magnitudes–the branch of late
19th- and early 20th-century mathematical philosophy that would, in the decades that
followed, evolve into the theories of non-Archimedean ordered groups and semigroups,
and the theory of non-Archimedean ordered algebraic systems, more generally.

1. The emergence of non-Archimedean systems of magnitudes I:
Setting the stage

Even before Cantor [1872] and Dedekind [1872] had published the modern theories
of real numbers that would be employed to all but banish infinitesimals from late 19th-
and pre-Robinsonian, 20th-century analysis, Johannes Thomae [1870] and Paul du Bois-
Reymond [1870 – 71] were beginning the process that would in the years bracketing the
turn of the century not only establish a consistent and relatively sophisticated alge-
braic theory of infinitesimals in mainstream mathematics, but make it, and especially
the closely related subject of non-Archimedean Geometry, the focal point of great inter-
est and a mathematically profound and philosophically significant research program.
Out of the same body of work of the early 1870s there also emerged a largely parallel
development of du Bois-Reymond’s Infinitärcalcül (calculus of infinities) that led in the
same period to the famous works of Hardy [1910; 1912], and some less well known
though distinguished work of Hausdorff [1906; 1907; 1909].

By the early 1880s, Otto Stolz [1882; 1883; 1884] had already introduced a pair of
number systems and a fledgling theory thereof that Abraham Robinson aptly described
as “a modest but rigorous theory of non-Archimedean systems” [1967, p. 39]. The first
is based on du Bois-Reymond’s system of orders of infinity that emerged in connection
with the latter’s aforementioned analytic work on the rate of growth of real functions;
and the second and closely related system of so-called moments of functions–named after
Newton’s (infinitesimal) moments–was introduced in part to show that it is possible to
model some of the more contentious practices of the early differential calculus using
late nineteenth-century algebraico-analytic means.

The two number systems were given large audiences through their incorporation
into Stolz’s widely used textbook Vorlesungen über allgemeine Arithmetik (Lectures on
General Arithmetic) [1885], “a work which,” as E. V. Huntington wrote in 1902, “has
long since proved indispensable to all who desire a systematic and rigorous develop-
ment of the fundamental elements of modern arithmetic” [1902, p. 40]. Their role in the
textbook, however, has little to do with analysis, standard or otherwise; rather, among
other things, they are offered as examples of systems of magnitudes that, unlike the
continuous system of real numbers, fail to satisfy the Archimedean axiom. With his All-
gemeine Arithmetik Stolz was thereby able to rapidly spread the word of a number of his
important early discoveries regarding the Archimedean axiom including the following
two:

Whereas (i) systems of absolute magnitudes that are continuous in the sense of Dedekind
areArchimedean, (ii) there are systems of absolute magnitudes that are non-Archimedean.
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In modern parlance, systems of absolute magnitudes in Stolz’s sense are systems
whose equivalence classes of elements together with the induced order and addition con-
stitute ordered Abelian semigroups that are strictly positive, naturally ordered, strictly
monotonic, and divisible.7 These systems, as Stolz himself shows [1885, pp. 79–80],
are (what are today called) strictly positive cones of additively written divisible ordered
Abelian groups. It was with these and related discoveries that Stolz laid the groundwork
for the modern theory of magnitudes. Given the historical significance of these results
as well as the mathematical, historical and philosophical significance of the papers with
which Stolz originally brought them to the attention of the mathematical community,
we will begin our historical overview with discussions of the latter.

Although Stolz first named and stated the importance of the Archimedean axiom in
1881 in the Appendix to his historically important paper that brought Bolzano’s con-
tributions to the calculus to the attention of 19th-century mathematicians [Stolz 1881,
p. 269], it was in his paper Zur Geometrie der Alten, insbesondere über ein Axiom des
Archimedes (On the Geometry of the Greeks, in Particular, on the Axiom of Archi-
medes) [1882, 1883]8 that Stolz first stated and offered purported proofs of (i) and
(ii) above.9

7 For thorough discussions of these and related conceptions as well as the relations between
them, the reader may consult [Clifford 1958], [Fuchs 1963] and [Satyanarayana 1979]. For the
sake of convenience, however, definitions of some of the pertinent conceptions as well as state-
ments of some of the relations between them are summarized below where, as the reader will
notice, “ordered” always means “totally ordered.” This convention is employed throughout the
paper for ordered rings and fields as well as for ordered groups and semigroups.

A structure 〈A, +〉 is a semigroup (written additively) if A is a set and + is an associative binary
operation on A. 〈A, +, <〉 is an ordered semigroup if 〈A, +〉 is a semigroup and < is a total order-
ing of A which collectively satisfy the following compatibility condition for all a, b, c ∈ A: if
a ≤ b, then a+c ≤ b+c and c+a > c+b. If 〈A, +, <〉 is an ordered semigroup and a, b, c ∈ A,
then 〈A, +, <〉 is said to be positively (strictly positively) ordered if a + b ≥ a, b(a + b > a, b);
it is said to be right-naturally ordered (naturally ordered) if it is positively ordered, and right-
solvable, i.e., a > b implies a = b + x for some x ∈ A (if it is positively ordered, and solvable,
i.e., a > b implies a = b + x = y + b for some x, y ∈ A); it is said to be strictly monotonic if
a > b implies a + c > b + c and c + a > c + b; and it is said to be divisible if for each a and
each positive integer n, there is an x ∈ A such that nx = a. Every right-naturally ordered Abelian
semigroup is, of course, naturally ordered, since every right-solvable ordered Abelian semigroup
is solvable. Moreover, the solvability condition for ordered Abelian semigroups may be written
in the strong form: a > b implies a = b + x = x + b for some x ∈ A. Furthermore, an ordered
semigroup is strictly monotonic if and only if it is cancellative, i.e., if it obeys the cancellation
laws a + c = b + c implies a = b and c + a = c + b implies a = b [cf. Clifford 1958, p. 305].

The strictly positive cone (positive cone) of an (additively written) ordered Abelian group is
the collection of elements of the group greater than (greater than or equal to) the additive iden-
tity (i.e., the zero element) of the group together with the addition and order relations restricted
thereto.

8 [Stolz 1883] is a revised and expanded version of [Stolz 1882].
9 At roughly the same time, Pasch, in his historically important axiomatization of projective

geometry, also employed the Archimedean axiom [1882, p. 105 (IV. Grundsatz)]. Unlike Stolz,
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Stolz sets the stage for these ideas by remarking that:

It has often been noted that Euclid implicitly used the principle: a magnitude can be so
often multiplied that it exceeds any other of the same kind. (See, in particular, X. Propo-
sition 1). Archimedes employed this principle as an explicit axiom in some of his works
.... For brevity, we will therefore henceforth refer to this principle as the Axiom of Archi-
medes. To investigate whether or not this is a necessary proposition, requires us first to
have agreement on a characterization of the concept of “magnitude.”10

Such agreement was required for, as Stolz emphasized two years later in the opening
lines of his Allgemeine Arithmetik:

The term “magnitude (mevgeqo") ” occurs in Euclid’s Elements, but he nowhere explains
the concept.11

Like a number of other mathematicians of the period, Stolz draws inspiration for
his conception of magnitude from the following passage from Herman Grassmann’s
influential Lehrbuch der Arithmetik (Handbook of Arithmetic):

Magnitude is anything that may be said to be equal to or not equal to another. Two things
are said to be equal, if in each statement you can substitute the one for the other.12

However, Grassmann’s conception–which has its roots inAristotle’s conception of quan-
tity and Leibniz’s conception of identity–is, according to Stolz, “as general as you can
imagine” [1883, p. 507]. Thus, being primarily interested in systems of magnitudes
exemplified by the collection of nontrivial bounded segments of the Euclidean line with
order, addition and “equality” (i.e., congruence) classically defined–systems of absolute
magnitudes, as he calls them13–Stolz proceeds to outline what appears to be the first

however, Pasch neither attempted to prove (i) and (ii) above, nor did he raise the issue of the
possibility of non-Archimedean systems of magnitudes.

10 [Stolz 1883, p. 504]: “Es ist schon öfter hervorgehoben worden, dass Euclid implicite den
Grundsatz gebraucht: eine Grösse kann so oft vervielfältigt werden, dass sie jede andere, ihr
gleichartige, übertrifft.(Vgl. insbesondere X. prop. 1). Bei Archimedes begegnet man einer aus-
drücklichen Annahme, welche mit diesem Grundsatze übereinstimmt .... Derselbe mag daher kurz
als das Axiom des Archimedes bezeichnet werden. Eine Untersuchung, ob der in Rede stehende
Satz als Grundsatz zu gelten hat oder nicht, erfordert zunächst, dass man sich über den Begriff
“Grösse” verständige.”

11 [Stolz 1885, p. 1]: “Die Bezeichnung “Grösse (mevgeqo")” kommt in Euclid’s Elementen
vor, doch ihren Begriff erklärt er nirgends.”

12 [Grassmann 1861, p. 1]: “Grösse heisst jedes Ding, welche einem andern gleich oder ungl-
eich gesetzt werden soll. Gleich heissen zwei Dinge, wenn man in jeder Aussage statt des einen
das andere setzen kann.”

13 Besides systems of absolute magnitudes, Stolz studied systems of absolute magnitudes sup-
plemented with a zero element, as well as systems of so-called relative magnitudes, that is, systems
of absolute magnitudes supplemented with a zero element as well as negative members [1883;
1885, pp. 79–80]. Systems of relative magnitudes are systems whose equivalence classes of ele-
ments with addition and order suitably defined constitute divisible ordered Abelian groups. For
our purpose here, however, we need only consider the absolute case.
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reasonably sophisticated attempted axiomatization of such a system,14 an axiomatiza-
tion that Stolz presents in greater detail and with minor modifications in his Allgemeine
Arithmetik [1885, p. 70; and pp. 4–5] as follows.

According to Stolz, the order relation and so-called equality can be defined arbitrarily
provided that the following conditions are satisfied:

(i) If A = B, then B = A;
(ii) If A > B, then B < A (and conversely);

(iii) A = B or A > B or A < B [it being understood that precisely one is the case];
(iv) If A = B and B = C, then A = C;
(v) If A = B and B > C, then A > C;

(vi) If A > B and B > C, then A > C.

In addition, Stolz tells us that + must be defined in such a manner that A + B is in the
system whenever A and B are, and it must satisfy the rules that govern the “absolute
whole numbers” (i.e., the strictly positive integers), namely: for all members A, B, and
C of the system

(vii) A + (B + C) = (A + B) + C;
(viii) A + B = B + A;

(ix) A + B = A′ + B ′ if A = A′ and B = B ′;15

(x) A + B > A′ + B ′ if A > A′ and B = B ′;
(xi) A + B > A;

(xii) A = B + X for some X in the system whenever A > B.

To complete the postulate set Stolz adds the following condition which du Bois-
Reymond appealed to in his definition of a linear magnitude (see Appendix I), a con-
dition that has its roots in Book VI of Euclid’s Elements and which in contemporary
algebraic parlance is frequently called the condition of divisibility:

(xiii) For each member A of the system and each positive integer n, there is an X in
the system such that nX = A.16

Like other authors writing on similar topics prior to the influence of the writings of
Peano [1889; 1894; 1900], Stolz did not explicitly list the reflexivity of the equality rela-
tion (i.e., A = A for all A) as an axiom. We hasten to add, however, that in his preliminary
remarks on magnitudes contained in the Introduction to his Allgemeine Arithmetik Stolz
does assert that “Each magnitude is equal to itself” is one of the basic presuppositions
of his discussion of magnitudes [1885, p. 2]. Also mentioned in this regard is that: “One
can posit each magnitude arbitrarily often .... So even after a is combined with b, a can

14 Stolz apparently drew some inspiration for his axiomatiztion of an Archimedean sys-
tem of absolute magnitudes from du Bois-Reymond’s conception of a linear magnitude [1882,
pp. 43–48]. For a statement of du Bois-Reymond’s conception and a brief discussion of its relation
to Stolz’s axiomatization, see Appendix I.

15 There is a typographical error in Stolz’s presentation of condition (ix): instead of “A+B =
A′ + B ′” we find “A + B = A′ + B.” The error is corrected in [Stolz and Gmeiner 1902, p. 100].

16 Proposition 9 of Book VI of Euclid’s Elements reads: “From a given straight line to cut off a
prescribed part” [Heath 1956 Volume 2, p. 211]. This is understood to mean that any line segment
can be divided into n equal parts for each positive integer n.
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nevertheless also be combined with b′; a can also be combined with itself” [1885, p. 2].
With these presuppositions Stolz’s axiomatization, while lacking elegance, is entirely
adequate to the task at hand and constitutes, in our opinion, sufficient reason for regard-
ing Stolz as the father of the modern theory of extensive magnitudes, an honor usually
conferred on Helmholtz [1887] or Hölder [1901] (cf. [Krantz et al. 1971, p. 71]).

2. The emergence of non-Archimedean systems of magnitudes II:
du Bois-Reymond’s orders of infinity of functions and Stolz’s ordered

algebraic system thereof

With his system of axioms for absolute magnitudes thus at hand, Stolz turns to his
attempt to establish their independence from the Archimedean axiom. As we alluded
to above, to establish the non-Archimedean case he appeals to a fragment of du Bois-
Reymond’s calculus of infinities, a system that two years earlier he had implicitly sug-
gested could be employed for just such a purpose [1881, p. 269]. To prepare the way
for Stolz’s construction, we begin with a brief summary of the relevant features of du
Bois-Reymond’s system.

Du Bois-Reymond laid the groundwork for his theory in his paper Sur la gran-
deur relative des infinis des functions (On the relative size of the infinities of functions)
[1870 –71], and developed it in more than a dozen other works [cf. 1873; 1875; 1877]
culminating in his mathematico-philosophical treatise Die Allgemeine Functiontheo-
rie (General Function Theory) [1882].17 Much of the primary motivation for du Bois-
Reymond’s Infinitärcalcül is neatly encapsulated by the following remarks with which
G. H. Hardy begins his celebrated monograph on du Bois-Reymond’s system.

The notions of the ‘order of greatness’ or ‘order of smallness’ of a function f (n) of a
positive integral variable n, when n is ‘large’, or of a function f (x) of a continuous
variable x, when x is ‘large’ or ‘small’ or ‘nearly equal to a’, are important even in the
most elementary stages of mathematical analysis. We learn there that x2 tends to infin-
ity with x, and moreover that x2 tends to infinity more rapidly than x, i.e. that the ratio
x2/x tends to infinity also; and that x3 tends to infinity more rapidly than x2, and so on
indefinitely. We are thus led to the idea of a ‘scale of infinity’ (xn) formed by the functions
x, x2, . . . , xn, . . . . This scale may be supplemented and to some extent completed by the
interpolation of non-integral powers of x. But there are functions whose rates of increase
cannot be measured by any of the functions of our scale, even when thus completed.
Thus log x tends to infinity more slowly, and ex more rapidly, than any power of x; and
x/(log x) tends to infinity more slowly than x, but more rapidly than any power of x less
than the first.

As we proceed further in analysis, and come into contact with its modern devel-
opments, such as the theory of Fourier’s series, the theory of integral functions, or the
theory of singular points of analytic functions in general, the importance of these ideas
becomes greater and greater. It is the systematic study of them, the investigation of general

17 For a complete list of du Bois-Reymond’s writings on his Infinitärcalcül and a good survey
of the contents thereof, see [Fisher 1981].
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theorems concerning them and ready methods of handling them, that is the subject of Paul
du Bois-Reymond’s Infinitärcalcül or ‘calculus of infinities’. [Hardy 1910, pp. 1–2]18

Du Bois-Reymond erects his calculus primarily on families of increasing functions
from R

+ = {x ∈ R : x > 0} to R such that for each function f of a given fam-
ily, lim

x→∞ f (x) = +∞, and for each pair of functions f and g of the family, 0 ≤
lim

x→∞ f (x)/g(x) ≤ +∞.19 He assigns to each such function f a so-called infinity, and
defines an ordering on the infinities of such functions by stipulating that for each pair of
such functions f and g:

f (x) has an infinity greater than that of g(x), if lim
x→∞ f (x)/g(x) = ∞;

f (x) has an infinity equal to that of g(x), if lim
x→∞ f (x)/g(x) = a ∈ R

+;

f (x) has an infinity less than that of g(x), if lim
x→∞ f (x)/g(x) = 0.

To represent these states of affairs du Bois-Reymond employs the symbolic expressions
“f (x) 	 g(x)”, “f (x) ∼ g(x),”, and “f (x) ≺ g(x)”, respectively.

Du Bois-Reymond was not always as clear as one would hope about the precise
contents of the families of functions with which he was concerned; nor did he make any
real use of arithmetic operations on the infinities arising from such families and attempt
thereby to bring algebra to his infinities as Stolz [1883], Pincherle [1884], Borel [1899;
1902; 1910] and others later would. He also mistakenly assumed (during the early stages
of the development of the theory) that each pair of increasing functions f and g from
R

+ = {x ∈ R : x > 0} to R for which lim
x→∞ f (x) = +∞ and lim

x→∞ g(x) = +∞
could be compared in the manner described above, something that Pincherle [1884],
Cantor [1895], Borel [1898] and Hausdorff [1907; 1909] emphasized is not the case.20

On the other hand, he did establish a number of order-theoretic results regarding his
“infinities”–some of which are illustrated by remarks made by Hardy above–which pro-
vided intimations of their inability to be adequately represented by ordered sets of real
numbers and, hence, by ordered subsets of Archimedean ordered groups. In particular,
he established the existence of families of functions whose open densely ordered sets of
infinities contain subsets having the order type of R but for which there are no infinitary
analogs of the following properties of R: (i) R contains a cofinal subset of order type ω;

18 It is interesting to note that in 1778, in his “De infinities infinitis gradibus tam infinite
magnorum quam infinite parvorum,” Euler had undertaken an analogous study of what he called
“degrees” of infinity and arrived at results analogous to some of those of du Bois-Reymond.
However, Euler’s comparisons were based upon treating expressions such as x2 and log x not as
designating functions that go to infinity as x goes to infinity but rather as the square and logarithm
of an infinite magnitude x. For an overview of Euler’s discussion, see [Bos 1974, pp. 84–86].

19 In some of his works (cf. [1870–71; 1875]), du Bois-Reymond also considers functions f

such that lim
x→∞

f (x) = +0. Moreover, as we shall later see, some authors such as Thomae also

consider functions f such that lim
x→∞

f (x) = c where 0 < c < ∞. On this matter, also see [Hardy,

1910, p. 4; 1924, p. 4].
20 That is, it can happen that f/g neither tends to +∞ nor to +0 nor remains between positive

bounds. Others who apparently followed du Bois-Reymond in failing to recognize this possibility
are Bettazzi [1890, § 66; 1893, p. 55] and Vivanti [1891a, p. 147].
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(ii) R contains a coinitial subset of order type ∗ω; (iii) for each a ∈ R, {x ∈ R : x < a}
contains a cofinal subset of order type ω, and {x ∈ R : x > a} contains a coinitial
subset of order type ∗ω.21,22 Indeed, it was the following violations of infinitary analogs
of (ii) and (iii) that du Bois-Reymond appealed to in his writings to illustrate that his
system of infinities constitutes a “broader idea of the numerical continuum” than the
Cantor-Dedekind continuum of real numbers [du Bois-Reymond 1877, p. 150].

I. Giving any series φ1, φ2, . . . , φn, . . . of increasing functions such that . . . ≺ φn ≺
. . . ≺ φ2 ≺ φ1, we can always find a function f that increases more slowly than any
member of the series, i.e., which satisfies the relation f ≺ φn for all positive integers n.
[Du Bois-Reymond, 1875, p. 153]
II. Given a function � and a series of functions φ1, φ2, . . . , φn, . . . such that φ1 ≺ φ2 ≺
. . . ≺ φn ≺ . . . ≺ �, there is a function f such that φn ≺ f ≺ � for each positive integer
n; moreover, given a function � and a series of functions φ1, φ2, . . . , φn, . . . such that
� ≺ . . . ≺ φn ≺ . . . ≺ φ2 ≺ φ1, there is a function f such that � ≺ f ≺ φn for each
positive integer n. [Du Bois-Reymond 1877, p. 153]

Du Bois-Reymond was also aware of the following ascending formulation of I,
though it was Borel who first established this formulation of what he, and later Hardy,
called Du Bois-Reymond’s Theorem.

III. Giving any series φ1, φ2, . . . , φn, . . . of increasing functions such that φ1 ≺ φ2 ≺
. . . ≺ φn ≺ . . . , we can always find a function f that increases more rapidly than any
member of the series, i.e., which satisfies the relation φn ≺ f for all positive integers n.
[Borel 1898, pp. 112–114]

Of course, simply pointing to the existence of a family of the said functions whose
open densely ordered set of infinities satisfies I, II, and III and contains a subset having
the order type of R does not alone constitute a proof that the family is in some significant
sense a richer densely ordered set than R. Arguably, it was Hausdorff [1908; 1909] who
first provided such a proof when he demonstrated that, unlike R, the ordered set I (P )

of infinities of functions comprising a pantachy P (i.e., a maximal family of pairwise
comparable such functions) satisfies the condition: for all finite or denumerably infinite
subsets X and Y of I (P ) where every member of X precedes every member of Y , there
is an infinity in I (P ) that lies strictly between those in X and those in Y .23 On the other

21 If Y is a subset of an ordered set X, then Y is said to be a cofinal (coinitial) subset of X if
for each x ∈ X there is a y ∈ Y such that y ≥ x(y ≤ x). Moreover, an ordered set X is said to
have order type ω(∗ω) if X is order-isomorphic to the ordered set of positive (negative) integers
in their natural order.

22 Although the general concepts of cofinal and coinitial subsets of an ordered set were first
introduced by Hausdorff in his early twentieth-century investigations of ordered sets, the basic
contents of the above result were certainly well known to mathematicians by the mid to late 1870s;
indeed, it would have been evident to any mathematician of the day that the ordered set of positive
integers instantiates (i), that the ordered set of negative integers instantiates (ii), and that for each
real number a, any strictly increasing (decreasing) Cauchy sequence of members of R whose limit
is a instantiates (iii).

23 In Hausdorff’s terminology, which remains in place today, whereas I (P ) is an η1 - set or an
η1 - ordering, R is merely an η0-ordering (cf. [Rosenstein, 1982]). Prior to the work of Hausdorff,
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hand, du Bois-Reymond’s results certainly persuaded some of the most distinguished
mathematicians of his day that there are ordered subsets of his infinities that are in some
sense richer than the continuum of real numbers. Poincaré, for example, was thus per-
suaded. Indeed, writing in response to the question “Is the creative power of the mind
[to construct dense systems of numbers] exhausted by the creation of the mathematical
continuum?” Poincaré wrote: “The answer is in the negative. And this is shown in a very
striking manner by the work of Du Bois-Reymond” [1893 in 1952, p. 28].

Otto Stolz was also persuaded that there are families of du Bois-Reymond’s infini-
ties that are richer than the ordered set of real numbers, and this together with his vague
understanding of the maximal nature of R

+ as an Archimedean, absolute system of mag-
nitudes may have been what led him to proclaim (without explanation) that it was du
Bois-Reymond’s system that was responsible for the recognition–presumably his own–
of the significance of the Archimedean axiom [1885, pp. iii–iv]. On the other hand, what
may have motivated Stolz’s remark is the far more elementary observation that insofar
as ex increases more rapidly than any power of x, if one could find a family of functions
including ex and x, x2, . . . , xn, . . . whose infinities are closed under addition where
the sum of the infinities of two such functions is defined as the infinity of the product
of the functions, one would have an immediate violation of the Archimedean condition.
Indeed, as we shall now see, whatever Stolz’s motivation might have been, it is precisely
the latter observation that lies both at the heart of Stolz’s construction and his proof of
the non-Archimedean nature of the resulting system.

To be more specific, Stolz considers the set of all functions f : R
+ → R

+ formed
by means of finite combinations of the operations +, −, ·, and ÷ from positive rational
powers of the functions x, ln x, ln(ln x), . . . ; ex, eex

, eeex

, . . . where ln x is the natural
logarithm of x and e is the base of the natural logarithm. Following du Bois-Reymond,
Stolz assigns to each such function f an infinity, which he denotes by “�(f )”, and
defines an ordering on the infinities of such functions by stipulating that for each pair of
such functions f and g:

�(f ) > �(g), if lim
x→+∞ f (x)/g(x) = +∞,

�(f ) = �(g), if lim
x→+∞ f (x)/g(x) = a ∈ R

+,

�(f ) < �(g), if lim
x→+∞ f (x)/g(x) = 0.

To complete the construction, Stolz defines addition and subtraction of the infinities by
the rules:

Borel [1898] showed that there are ordered sets of infinities of such pairwise comparable func-
tions that contain no countable cofinal well-ordered set. This together with Cantor’s [1882, p. 117]
result that R contains no uncountable well-ordered set showed that there is no order preserving
embedding of such a family of infinities into R, thereby showing that in some sense a pantachy
is a richer ordered set than the reals. Hausdorff’s result goes farther, however; Hausdorff’s result
implies Borel’s but not vice versa. Borel’s result may be obtained from Hausdorff’s by letting X

be an arbitrary countable infinite subset and Y be empty. Similarly, by letting X be empty and
Y be an arbitrary countable infinite set, one may show that a pantachy has no countable coinitial
subset.
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�(f ) + �(g) = �(f · g)

�(f ) − �(g) = �(f/g), if �(f ) > �(g).

With the construction thus at hand, Stolz correctly observes that the resulting system
can be shown to satisfy his aforementioned axioms for absolute magnitudes, and that
since lim

x→∞(ex/xn) = +∞ and n�(x) = �(xn) for each positive integer n, it follows

that while �(x) < �(ex), there is no positive integer p such that p�(x) > �(ex), which
establishes the system’s non-Archimedean nature.

Having exhibited an instance of a non-Archimedean system of absolute magnitudes,
Stolz turns his attention to proving that systems of absolute magnitudes that are contin-
uous are Archimedean. For this purpose Stolz employs the more general conditions of
density and absence of a least element in place of divisibility.24 Moreover, arguing that
Cantor’s definition of a linear continuum–connected and perfect–presupposes the Archi-
medean condition,25 Stolz makes use of Dedekind’s conception for this end. Following
a purported proof of the result, he concludes:

Thus, it is proved that the axiom of Archimedes for segments in the sense of ancient geom-
etry appears as a corollary if one adds continuity to the properties set forth by Euclid.
Should, however, this assumption be omitted, then the basic proposition in question for
the system of segments (as also for that of the angles) must be assumed among the axioms
of geometry. [Stolz 1883, p. 512: (Translation Fisher 1981, p. 129)]

24 Thus, it appears that Stolz was not aware that density is equivalent to the absence of a least
element in the case of systems of magnitudes satisfying his axioms (i)–(xii).

25 According to Cantor, a subset T of R
n– the n-dimensional Cartesian space with distance

defined in the standard fashion–is connected if for any two points t and t ′ of T , there are always a
finite number of points t1, t2, . . . , tv of T such that the distances t̄ t1, ¯t1t2, . . . , ¯tvt ′ are all less than
any given arbitrarily small number ε ∈ R

+; and T is perfect if T coincides with its first derivative
[Cantor 1883 in Ewald 1996, p. 906]. The latter condition, as Cantor later showed, is equivalent
to the assertion that: every convergent series in T has a limit in T and every member of T is the
limit of a convergent series in T .

Although Cantor’s definition was given for a subset of R
+, the basic idea could be applied to

systems of magnitudes, more generally, as Stolz was well aware. However, as we noted above,
Stolz chose not to use Cantor’s condition for his purpose because “it presupposes” theArchimedean
axiom; in particular, argued Stolz, Cantor’s connectivity condition presupposes the Archimedean
axiom. In fact, an absolute system of magnitudes in Stolz’s sense is Archimedean if and only if it
satisfies Cantor’s connectivity condition (suitably formulated). The nontrivial portion of the proof
is straightforward and was given by Stolz himself [1883, p. 509; Note*] as follows. Let �0 be
a system of magnitudes satisfying Stolz’s axioms together with Cantor’s connectivity condition.
Also let P and Q be magnitudes in �0 such that P < Q, and further suppose D is an arbitrary
magnitude in �0 for which D < Q − P . By connectivity, there is a finite number of magnitudes
R1, R2, . . . , Rn in �0 such that the differences R1 −P, R2 −R1, . . . , Q−Rn are all smaller than
D. But then Q − P < (n + 1)D, which suffices to prove the Archimedean condition.
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As our reference to Stolz’s “purported proof” of theArchimedean nature of Dedekind
continuous systems of absolute magnitudes suggests, the proposed proof is flawed.26

Among its shortcomings is its reliance on a defective characterization of continuity in
the sense of Dedekind [1883, p. 509]. The latter shortcoming was corrected (without
mention) by Stolz in his Allgemeine Arithmetik [1885, p. 83] but, as Veronese [1889,
p. 602] and Hölder [1901, p. 10; 1996, p. 248] later indicated, difficulties in the proof
remained. In response to the criticisms by Veronese, Stolz returned to the matter in
his Ueber das Axiom des Archimedes [1891], but by then Rudolfo Bettazzi [1890, pp.
42–44] had already presented an adequate proof of the result [cf. Vivanti, 1891, p. 58].
The proofs of Bettazzi and Stolz, however, were soon eclipsed by the proof of Hölder
[1901, p. 13]–the proof that Stolz and J. A. Gmeiner incorporated into their Theoretische
Arithmetik [1902, p. 115], the work that replaced Stolz’s Allgemeine Arithmetik as the
most highly respected and widely used textbook on real and complex numbers of its
day.27

3. The emergence of non-Archimedean systems of magnitudes III:
Stolz’s moments of functions

Stolz and Gmeiner’s Theoretische Arithmetik is a revised version of portions of
Stolz’s Allgemeine Arithmetik, and the axioms for systems of absolute magnitudes
employed in the earlier work remain essentially the same. On the other hand, du Bois-
Reymond’s infinitary calculus, which was by then quite well known, is merely mentioned
in passing in the latter work as an example of a non-Archimedean system of absolute
magnitudes [1902, p. 99]. In addition, Stolz’s systems of moments of functions (and par-
ticular extensions thereof) which serve as additional illustrations of non-Archimedean

26 Stolz himself later acknowledged the point on more than one occasion [1891; 1902, p. 114:
Note 2]. It is therefore evident that Gordon Fisher is mistaken when in reference to Stolz’s pur-
ported proof he says: “It seems likely that Stolz is the first to have given a satisfying proof of this
theorem” [Fisher 1891, p. 129; also see, p. 133].

27 The following quotation from G. H. Hardy’s review of Stolz and Gmeiner’s Theoretische
Arithmetik provides a good indication of the high esteem in which the mathematical community
continued to hold Stolz’s text.

This book is a new enlarged edition of certain chapters of Dr. Stolz’s well-known Allgeme-
ine Arithmetik. The merits of the latter are universally recognized, and no praise could be
higher than to say that in lucidity and thoroughness the present volume is an improvement
on it. [Hardy 1903, p. 808]

In fact, Stolz and Gmeiner’s book continued to be the standard reference work on real and complex
numbers into the third decade of the twentieth century when it was replaced by the textbooks on
abstract algebra by Haupt [1929] and van den Waerden [1930; 1937], both of which contain sec-
tions with references on non-Archimedean ordered fields as well as definitions of the infinitesimal
elements of such fields.
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systems of magnitudes in the earlier work are now replaced by lexicographically ordered
systems of “complex numbers having n units” [1902, p. 280]. The latter systems, which
have their roots in the work of Johannes Thomae [1871], will be one of the foci of our
attention when we come to the work of Bettazzi [1890]. For the present, however, we
turn to the systems of moments of Stolz and his extensions thereof.

As we emphasized in the Introduction, and the above has already begun to show,
while late nineteenth- and pre-Robinsonian twentieth-century mathematicians banished
infinitesimals from mainstream analysis, they by no means banished them from math-
ematics. In fact, even the banishment of infinitesimals from analysis was never quite as
complete as the standard histories (cf. [Boyer 1949; Edwards 1979; Bottazzini 1986])
might lead one to surmise. Indeed, as Robinson [1961, p. 433; 1974, p. 278] himself
was well aware, from time to time during the period separating the arithmetization of
analysis and the emergence of nonstandard analysis, there had been mainstream math-
ematicians who would not rule out the possibility of a logically satisfactory alternative
foundation for analysis based on infinitesimals. Perhaps the best known examples of such
mathematicians are Schmieden and Laugwitz in connection with their work Eine Erwe-
iterung der Infinitesimalrechnung (An Extension of the Infinitesimal Calculus) [1958;
also see Laugwitz 1961, 1961a]. However, to their voices one may add those of Neder
[1941–43; 1941–43a], Fraenkel [1928, pp. 116–117; 1953, p. 165], Klein [1911/1939,
pp. 218–219], Levi-Civita [1892–93], Bettazzi [1891] and, as we have already men-
tioned, Stolz.28

Stolz expressed this opinion, if only implicitly, in his mathematico-philosophical
essay Die unendlich kleinen Grössen (Infinitely Small Magnitudes) [1884]. Stolz begins
his discussion by remarking that:

Bossut said in one of his essays on the general history of mathematics, that he had
asked Fontaine for clarification on some of the theorems of the infinitesimal calculus
and received the answer: “Take the infinitely small as a hypothesis, study the application
of the calculus, and belief will come to you.” It seems annoying that also in mathemat-
ics the power of faith should be called for. However, this seems really necessary; since
the introduction of infinitely small magnitudes by Newton and Leibniz the infinitesi-
mal calculus has met with partial support and has aroused partial opposition. Currently
the argument on this seems to be turning more and more to its disadvantage; yes, it
appears to be already decided. Because it is possible without difficulty to present higher
analysis with its applications to geometry and mechanics without the use of the infi-
nitely small, this invention is for now dispensable. Such a conclusion, however, requires
us ... to ask the question whether or not they are permissible in mathematics although
they no longer have fundamental significance. Indeed, since for two centuries we have

28 In addition, some advocates of Smooth Infinitesimal Analysis have recently pointed out there
were differential geometers such as E. Cartan who made use of (nilpotent) infinitesimals in some
of their works. See, for example, the Introduction to [Moerdijk and Reyes 1991].
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calculated with infinitely small magnitudes just like real numbers, we cannot at all avoid
this investigation.29,30

As one would expect from his earlier work on the geometry of the ancients, Stolz sees
no reason for banishing infinitesimals from mathematics. In fact, despite the wording
of his query, Stolz’s paper is not really concerned with whether infinitesimals should
be allowed in mathematics per se, but rather with pointing out among other things that
given the then current state of knowledge one could not rule out the possibility of a
rigorous alternative development of the calculus based on infinitesimals. Moreover, in
an attempt at a modest contribution to the construction of such a calculus, Stolz shows
that it is possible to develop systems containing infinitesimals in which–contrary to the
well-known critiques of Berkeley and others–the derivative equals the ratio of differen-
tial (infinitesimal) magnitudes. Moreover, in the course of so doing, he shows that it is
possible to model the equally contentious claim of the early differential calculus that

x + dx = x

or, more generally, that a + A = a if A is infinitely small relative to a.31 It is the latter
absorptive aspect of Stolz’s addition that permits terms involving higher order differen-
tials to be eliminated in the process of differentiation that underlies Stolz’s treatment of
the derivative.

29 [Stolz 1884, pp. 21–22]: “Bossut erzählt in seinem Essai sur l’histoire générale des mathéma-
tiques, er habe Fontaine um Aufklärung über einige Sätze der Infinitesimalrechnung gebeten und
von ihm die Antwort erhalten: “Nehmen Sie die unendlich Kleinen als eine Hypothese an, stud-
iren Sie die Anwendung der Rechnung und der Glaube wird Ihnen kommen”. Manchen wird es
befremden, dass auch in der Mathematik die Kraft des Glaubens angerufen wird. Es muss das aber
wirklich nöthig sein; denn seit der Einführung der unendlich kleinen Grössen durch Newton und
Leibniz hat die Infinitesimalrechnung theils Anerkennung gefunden, theils Widerspruch erregt.
Gegenwärtig scheint sich der Streit über dieselbe mehr und mehr zu ihrem Nachtheil zu wenden,
ja bereits in diesem Sinne entschieden zu sein. Denn wenn es ohne irgend eine Schwierigkeit
möglich ist, die höhere Analysis mit ihren Anwendungen auf die Geometrie und Mechanik ohne
Gebrauch des unendlich Kleinen vorzutragen, so muss diese Erfindung vorläufig als entbehrlich
erscheinen. Eine solche Wahrnehmung enthebt uns jedoch nicht der Pflicht, über den wahren Sinn
der quantitates infinitesimae nachzudenken d. h. die Frage uns vorzulegen, ob sie überhaupt in der
Mathematik zulässig seien, wenn ihnen auch eine fundamentale Bedeutung nicht mehr beigelegt
werden kann. Ja, wir können u[n]s der angeregten Untersuchung gar nicht entschlagen gegenüber
der Thatsache, dass seit zwei Jahrhunderten mit den unendlich kleinen Grössen gerechnet wird
und zwar so, wie mit den reellen Zahlen.”

30 It is of interest to note that in his review of Stolz’s paper for the Jahrbuch über die Forts-
chritte der Mathematik, E. R. Hoppe [1884] criticized Stolz for claiming that the debate over the
use of infinitesimals in the calculus appears to have been settled to their disadvantage. As far as
Hoppe was concerned, the debate was still alive.

31 Although Stolz names his infinitesimals after Newton’s “moments,” he frames the discussion
in terms of Leibniz’s differentials. With respect to the issues at hand, however, the conceptions
can be used interchangeably. For discussions of these matters, see [Guicciardini 1989] and [Bos
1974].
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Following a discussion of these matters as well as a discussion of the algebraic vir-
tues and limitations of his systems, Stolz draws the following rather uncertain conclusion
about the future of the general program.

As is mentioned in the Introduction, the infinitely small is not at all required for the
Differential- and Integral-calculus. Already for Cauchy the term infinitely small magni-
tude serves only to indicate for short a variable magnitude which approaches the limit
zero and could be fully suppressed without leaving a gap. Cauchy’s presentation, which
has now been accepted nearly everywhere, is not invulnerable; however, the improve-
ments on his work are creating only a more precise formulation of his ideas, as he has in
part acknowledged. With respect to this, one cannot expect any more from any kind of
infinitely small magnitudes. Whether or not the theories developed above will have any
significance in mathematics cannot be decided without doubt. With even less certainty,
can one assume whether or not they can be replaced by another, more powerful theory.32

Although Stolz’s systems of 1884 were hardly adequate for the development of
analysis, they not only provided further examples of non-Archimedean systems of mag-
nitudes, but ones that have modest multiplicative structures as well. In the parlance of
contemporary mathematics, Stolz’s systems have all the properties of commutative semi-
rings with the exception that their additive operations are not regular, i.e., each of Stolz’s
systems contain elements a and b for which the equations a+x = b and x +a = b need
not have at most one solution in the system.33 The failure of regularity occurs because in
his systems the equation a + x = a has more than one solution–indeed, infinitely many
solutions–when the variable x takes on values infinitesimal relative to a [Stolz 1884, pp.
30, 34–35;1885, pp. 212–213].34

In his Allgemeine Arithmetik Stolz motivates his presentation of these systems with
the following observation that hints at their analytic roots.

One says, that a variable x becomes infinitely small if it has the limit 0. Furthermore, if
lim f (x) = 0 when lim x = a, then f (x) becomes infinitely small together with x − a.
Then the quotient f (x) : (x − a) can have a finite limit b .... This applies particularly for

32 [Stolz 1884, p. 36]: “Wie Eingangs erwähnt, bedarf man des unendlich Kleinen in der Differ-
ential- und Integralrechnung gar nicht. Schon bei Cauchy dient dieses Wort nur zur Abkürzung–
eine unendlich kleine Grösse ist eine Veränderliche, die sich dem Grenzwerthe Null nähert–und
könnte ohne eine Lücke zu hinterlassen, völlig unterdrückt werden. Cauchy’s Darstellung, die ge-
genwärtig fast überall angenommen ist, ist zwar nicht unanfechtbar; allein die daran angebrachten
Verbesserungen bilden nur eine genauere, zum Theil von ihm selbst anerkannte Formuli[e]rung
seiner Ideen. In dieser Beziehung ist also von irgend welcher Art unendlich kleiner Grössen nichts
mehr zu erwarten. Ob die im Vorstehenden entwickelten Theorien derselben dennoch eine Bedeu-
tung für die Mathematik haben, ist vorderhand nicht mit Sicherheit zu entscheiden. Noch weniger
lässt sich angeben, ob nicht etwa eine andere, mehr leistende Theorie an ihre Stelle gesetzt werden
könne.”

33 In the context of Stolz’s systems, the failure of regularity is equivalent to the failure of the
cancellation laws for addition (see Note 7). For the definition of a semiring and a discussion of
regularity and its relation to the cancellation laws, see [Redei 1967, pp. 36 and 45].

34 The discussion of Stolz’s moments in [Fisher 1981, pp. 131–132] is somewhat misleading
since it suggests that the failure of regularity only occurs in Stolz’s extensions of his systems of
moments, the latter of which will be discussed below.
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the quotient {g(x) − g(a)} : (x − a), where g(x) is a continuous function for x = a–the
consideration of which the differential calculus is concerned .... However, insofar as the
denominator x − a is zero for x = a, this quotient loses all meaning for x = a. There-
fore, if under these circumstances the number b should nevertheless arise by means of a
division, then the dividend and divisor cannot be real numbers, but must be something
essentially different from them, magnitudes of a new kind suitable for calculation.35

To provide an analytic representation of such quotients, Stolz requires a number system
containing real numbers as well as the just-cited “magnitudes of a new kind.” Following
a cautionary remark to the effect that he does not regard such a number system “to be
indispensable in analysis,” Stolz presents a construction of such a system in two stages
beginning with the “magnitudes of a new kind,” i.e., the infinitesimals or, moments of
functions as he calls them.

In general, Stolz [1884, pp. 27–28; 1885, pp. 206–207] constructs his systems of
moments of functions on selected families of increasing functions from R to R such
that for each function f of a given such family, lim

x→a+0
f (x) = +0 where a is a fixed

value such that −∞ ≤ a ≤ +∞, and for each pair of functions f and g of the family
0 ≤ lim

x→a+0
f (x)/g(x) ≤ +∞. In his Allgemeine Arithmetik, in particular, for an arbi-

trarily selected and fixed value a such that −∞ ≤ a ≤ +∞, Stolz considers the set of
all such functions that can be formed by means of finite combinations of the operations
+, −, ·, and ÷ from positive rational powers of the functions

x − a, −1/ ln(x − a), −1/ ln(−1/ ln(x − a)), . . . ; 1/e
1

x−a , 1
/

ee
1

(x−a)
, . . .

where again ln x is the natural logarithm of x and e is the base of the natural logarithm.
Stolz assigns to each such function f a moment, �(f ), and defines an ordering on the
moments by stipulating that for each pair of such functions f and g:

�(f ) > �(g), if , 1 < lim
x→a+0

f (x)/g(x) ≤ +∞,

�(f ) = �(g), if , lim
x→a+0

f (x)/g(x) = 1,

�(f ) < �(g), if 0 ≤ lim
x→a+0

f (x)/g(x) < 1.

To complete the construction, sums and products of moments and subtraction of moments
for which �(f ) > �(g) are defined by the rules:

35 [Stolz 1885, pp. 205–206]: “Man sagt, dass eine Veränderliche x unendlich klein wird, wenn
sie den Grenzwerth 0 hat. Ferner: Ist lim f (x) = 0 bei lim x = a, so wird f (x) zugleich mit x −a

unendlich klein. Dabei kann der Quotient f (x) : (x − a) einen endlichen Grenzwerth b haben ....
Das gilt insbesondere von den Quotienten {g(x) − g(a)} : (x − a), worin g(x) eine für x = a

stetige Function bedeutet, –mit deren Betrachtung die Differentialrechnung sich beschäftigt ....
Da aber der Nenner x −a für x = a Null ist, so verliert dieser Quotient für x = a jede Bedeutung.
Soll dennoch unter den obwaltenden Umständen die Zahl b durch eine Division entstehen, so
können Dividend und Divisor nicht reelle Zahlen sein, sondern müssen etwas wesentlich davon
Verschiedenes, zum Rechnen geeignete Grössen einer neuen Art sein.”
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�(f ) + �(g) = �(f + g);

�(f ) · �(g) = �(f · g);

�(f ) − �(g) = �(f − g).

To establish the non-Archimedean nature of the system, Stolz implicitly appeals to
the fact that there are pairs f, g of the said functions (e.g., f (x) = x2 and g(x) = x)
such that lim

x→a+0
f (x)/g(x) = 0, and observes that when lim

x→a+0
f (x)/g(x) = 0, it is

also the case that lim
x→a+0

pf (x)/g(x) = 0 for each positive integer p; in such instances

while �(f ) < �(g), it is nevertheless the case that p�(f ) = �(f ) < �(g) for each
positive integer p [1884, p. 30; 1885, p. 210].

In modern parlance, Stolz’s proof of the non-Archimedean nature of his systems of
moments shows that �(f ) is infinitesimal relative to �(g), if lim

x→a+0
f (x)/g(x) = 0; in

fact, for �(f ) to be infinitesimal relative to �(g) it is also necessary that lim
x→a+0

f (x)/

g(x) = 0. While Stolz does not expressly unpack the import of his condition in these
terms, its import is implicit in a number of critical junctures in his discussions of his
moments including the following where the issue of the absorptive nature of his addition
first arises.

Since the additive structures of Stolz’s systems of moments are not regular, they can
not be systems of absolute magnitudes in Stolz’s sense. However, rather than appeal
to lack of regularity to establish this, Stolz shows that they satisfy all the axioms for
a system of absolute magnitudes with the exception of two: in place of A + B > A,
they satisfy A + B ≥ A; and in place of A + B > A′ + B ′ if A > A′ and B = B ′, they
satisfy A + B ≥ A′ + B ′ if A > A′ and B = B ′. More specifically, Stolz [1884, p. 29;
1885, p. 208] shows:

�(f ) + �(g) ≥ �(f ), it being the case that �(f ) + �(g) = �(f ) if and only if

lim
x→a+0

g(x)/f (x) = 0; and

�(f ) + �(g) ≥ �(f1) + �(g1) if �(f ) > �(f1) and �(g) = �(g1), it being

the case that �(f ) + �(g) = �(f1) + �(g1) if and only if

lim
x→a+0

f (x)/g(x) = 0 and lim
x→a+0

f1(x)/g1(x) = 0.

In virtue of our earlier remarks, the first of the above two conditions may be interpreted
as asserting: �(f )+�(g) ≥ �(f ), it being the case that �(f )+�(g) = �(f ) if and only
if �(g) is infinitesimal relative to �(f ); and the second condition may be interpreted
similarly.

In the system of moments of functions thus constructed division is only possible in
isolated cases that collectively are not adequate to model the quotients with which Stolz
is concerned. To overcome this limitation, Stolz extends the system using techniques
from the analytic theory of rational numbers beginning with the introduction of new
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elements as follows [1884, pp. 33–34; 1885, pp. 211–212]. For each pair of moments
�(f ) and �(g) where lim

x→a+0
f (x)/g(x) = r for some real number r > 0 or for r = +∞

a new element is formally introduced as the ratio, �(f ) : �(g), of the given moments in
compliance with the equation

�(g) {�(f ) : �(g)} = �(f ).

This in essence sets �(f ) : �(g) = r (up to equivalence). Thus introduced, the new
elements are ordered according to the condition

�(f ) : �(g) � �(f1) : �(g1) if �(f ) · �(g1) � �(f1) · �(g);

or, what is equivalent,

�(f ) : �(g) � �(f1) : �(g1) if lim
x→a+0

f (x)g1(x)/f1(x)g(x) � 1.

The ordering of the old elements in the extended system is understood to remain the
same, and by appealing to the fact �(f ) > �(g) when lim

x→a+0
f (x)/f1(x)g(x) = +∞,

Stolz observes that each new element �(f ) : �(g) is greater than each moment �(f1),
thereby rendering the moments–which he describes as “infinitely small”–infinitesimal
relative to the finite elements (insofar as the extended system contains all the positive
rational numbers). To complete the construction, sums and products are defined by the
following pairs of rules, the first parts of which apply to sums and products of new
elements with old elements and the latter parts of which apply to sums and products of
new elements:

�(f ) : �(g) + �(h) = �(f + gh) : �(g),

�(f ) : �(g) + �(f1) : �(g1) = �(fg1 + f1g) : �(gg1).

{�(f ) : �(g)} · �(h) = �(f h) : �(g),

{�(f ) : �(g)} · {�(f1) : �(g1)} = �(ff1) : �(gg1).

In the system thus obtained division is possible when (and only when) lim
x→a+0

f (x)/

g(x) 
= 0; in particular, the derivative F ′(a) is equal to the ratio �(f ) : �(g) of infinitesi-
mal magnitudes where f (x) = F(a+x)−F(a) and g(x) = x−a. Moreover, extending
one of the already cited results governing the addition of moments, Stolz shows that in
the extended system: “A finite magnitude [i.e., a real number] remains unchanged when
an infinitely small one [i.e., a moment] is added to it” [1885, p. 212].
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4. Killing’s “proof” of the impossibility of infinitesimal line segments

Given the soundness of Stolz’s various constructions of non-Archimedean systems of
magnitudes along with the cogency of his proofs of their non-Archimedean natures, one
would think that the existence of non-Archimedean ordered algebraic systems would
have been universally embraced by Stolz’s contemporaries. However, while the vast
majority of Stolz’s contemporaries do indeed appear to have embraced their existence,
there was of course at least one important exception, and a rather vocal one at that,
Georg Cantor.36 However, two years before Cantor published his attempted proof of
the impossibility of such systems a more narrowly focused such “proof” appeared in
Wilhelm Killing’s treatise Die Nicht-Eukidischen Raumformen in analytischer Behand-
lung [1885]. Although Killing’s argument is explicitly concerned with the system of
nondirected line segments of a Euclidean space, its general structure is applicable to any
non-Archimedean system of magnitudes that is either absolute in Stolz’s sense or that
differs from such a system by the failure of divisibility.

Killing’s “proof” occurs as part of his more general attempt to establish the possi-
bility and uniqueness of measurement of Euclidean magnitudes by real numbers. “For
line segments,” says Killing,

this proof rests on the assertion:
Either two segments can be brought into coincidence or the first is congruent to a

part of the second, or the second is congruent to a part of the first; these three cases being
mutually exclusive . . . .

It should be mentioned . . . that in accordance with this proposition, whose proof
depends on the axiom of the circle [i.e., Euclid’s third postulate: a circle may be described
with any center and distance], segments are compared to be equal, greater and smaller.
Before we prove the possibility and uniqueness of measurement, however, it is appropriate
to consider two propositions, each of which is a direct consequence of the other, and each
of which following the designation of Mr. Stolz is named the Axiom of Archimedes:

If the points B and C lie in the same direction from A, and C does not belong to the
segment AB, one can compose from a finite number of parts, each of which is equal to
AB, a segment AD, that contains the point C, and conversely under the same assumption
the segment AC can be decomposed into a finite number of equal parts, so that at least
one point of division lies between A and B.

If the first part of the sentence [i.e., the Archimedean Axiom] is assumed to be incor-
rect . . . there would have to be in the direction of AB a point R such that a finite number
of multiples taken of AB would not pass beyond R, though they would pass over each
point situated between A and R. Now choose on AR a segment SR = AB; since in virtue
of the assumption of the addition of the segment to itself one arrives at a point that lies
between S and R, and hence also by the same [finite] process beyond R, the presumption
of a bound [having the properties attributed to R] is not permitted, whereby the proof is
produced.

36 While we suspect Cantor was not alone, we are not aware of any other of Stolz’s contem-
poraries who explicitly criticized Stolz’s systems.
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A......B..........C...........S......R

Figure 1

Hereafter the measurement of line segments offers no difficulty; it amounts to the
same process which leads in analysis from the number one to all the real numbers.37

In other words, according to Killing, if the Archimedean axiom fails, there should
be a point R (see Fig. 1) such that no finite multiple of (A, B) should surpass (A, R),
while for each point C contained strictly between A and R, there is a finite multiple n of
(A, B) such that n(A, B) ≥ (A, C). Moreover, by appealing to the “axiom of the circle,”
there is a segment SR on AR such that SR is congruent to AB. But then, by hypothesis,
there is a positive integer n such that n(A, B) ≥ (A, S), from which it follows that
(n + 1)(A, B) ≥ (A, R), contrary to hypothesis.

Unlike Cantor’s purported proof, Killing’s does not appear to have been discussed
or even referred to in the literature outside certain writings of Veronese [1889, p. 603;
1891, p. 132; 1894, p. 705; 1896, p. 424]. It is quite possible that among the reasons
for this is that, unlike Cantor’s “proof,” Killing’s is neither shrouded in obscurity nor
appeals to unstated theorems, which enabled the reader to unambiguously interpret the
challenge and readily isolate the limitations thereof. In fact, in his first contribution to

37 [Killing 1885, pp. 46 – 47]: “Dieser Nachweis gründet sich für gerade Stecken auf den Satz:
Zwei Strecken lassen sich entweder zur Deckung bringen oder die erste ist einem Teil der zweiten,
oder die zweite einem Teile der ersten kongruent; diese drei Fälle schliessen sich vollständig aus;
wenn also durch irgend eine Bewegung die eine Strecke mit der andern zur Deckung gebracht
werden kann, so ist es nicht möglich, sie durch eine andere Bewegung in Deckung zu bringen mit
einem Teile der zweiten.

Dieser Satz, dessen Nachweis sich, wie beiläufig bemerkt werden soll, auf das Axiom des
Kreises stützt, gestattet, Strecken nach gleich, grösser und kleiner zu vergleichen. Ehe wir nun die
Möglichkeit und Eindeutigkeit der Messung beweisen, schicken wir zwei Sätze voraus, von denen
jeder eine unmittelbare Folge des andern ist und welche also lauten (Axiom des Archimedes, nach
der Bezeichnung des Herrn Stolz):

Liegen die Punkte B und C von A aus in derselben Richtung und gehört C der Strecke AB

nicht an, so lässt sich aus einer endlichen Anzahl von Teilen, deren jeder gleich AB ist, eine
Strecke AD zusammensetzen, welche den Punkt C enthält, und umgekehrt kann man unter der-
selben Voraussetzung die Strecke AC derartig in eine endliche Zahl gleicher Teile zerlegen, so
dass mindestens ein Teilpunkt zwischen A und B liegt.

Angenommen, der erste Teil des Satzes sei nicht richtig und man könne nicht durch fort-
gesetzte Bildung einer neuen Strecke aus Teilen, welche sämtlich einer gegebenen Strecke AB

gleich sind, zu einer neuen Strecke gelangen, welche grösser ist als eine zweite gegebene Strecke,
so müsste sich auf der Richtung AB ein Punkt R finden, so dass Vielfache von AB in endlicher
Zahl genommen, nicht über R hinausführen, während sie über jeden zwischen A und R gelegenen
Punkt führen. Nun wähle man auf AR eine Strecke SR = AB; da man nach der Voraussetzung
durch Addition der Strecke AB zu sich selbst zu einem Punkte gelangt, welcher zwischen S und
R liegt, so führt derselbe Prozess auch über R hinaus, und die Annahme einer Grenze ist nicht
gestattet, wodurch der Beweis erbracht ist.

Hiernach bietet die Messung der geraden Strecke keine Schwierigkeit; dieselbe kommt auf
denjenigen Prozess hinaus, welcher in der Analysis aus der Eins zu den sämtlichen reellen Zahlen
führt.”
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non-Archimedean mathematics Veronese apparently felt sufficiently at ease to simply
dismiss the argument as circular [1889, p. 603]. He did, however, return to Killing’s
challenge in his Fondamenti di Geometria [1891; 1994], where he attempted to draw
attention to the source of the circularity.

To fully appreciate the contents of Veronese’s critique we require the idea of a line
segment (AA1) that is infinitesimal relative to a line segment (BB1), a conception that
was developed in Veronese’s Fondamenti di Geometria.38 For the purpose at hand, how-
ever, it suffices to note that according to Veronese’s definitions a segment (BB1) is
infinite with respect to a segment (AA1) if n(AA1) < (BB1) for each positive integer
n, and (AA1) is infinitesimal with respect to (BB1), if (BB1) is infinite with respect to
(AA1). Moreover, to say that a segment of a geometrical space is infinitesimal is to say
that it is infinitesimal with respect to another segment of the space; that is, the idea of
an infinitesimal segment for Veronese is a relativized notion.

Having introduced these conceptions earlier in his text [1891, pp. 86–87], Veronese
begins his critique of Killing’s argument by noting that: “He [i.e. Killing] says, if the
first property [i.e., the Archimedean Axiom] is not true, there should be a point R such
that no finite multiple of (A, B) should surpass (A, R), while it reaches every point
contained between A and R” [1891, p. 132]. Soon thereafter he goes on to add that:
“this hypothesis [i.e., the above assertion italicized by Veronese] contained in the proof
of Killing, which excludes infinitesimal segments, is, in essence, that which he wants
to prove” [1891, p. 132]. In other words, Veronese appears to be saying that insofar as
Killing is assuming that for each point C lying strictly between A and R there is a finite
multiple n of (A, B) such that n(A, B) ≥ (A, C), Killing is tacitly assuming that (A, B)

is not infinitesimal relative to (A, R)–“that which he wants to prove” [1891, p. 132].
Veronese is, in fact, on firm ground here; for given any points A, B and C on a line

(of an elementary Euclidean space)39 where B lies strictly between A and C, (A, B)

is not infinitesimal relative to (A, R) if and only if for each point C contained strictly
between A and R there is a finite multiple n of (A, B) such that n(A, B) ≥ (A, C).
Indeed, if (A, B) were infinitesimal relative to (A, R), then (A, B) likewise would be
infinitesimal relative to (A, S), and so there would be no positive integer n such that
n(A, B) ≥ (A, S), contrary to Killing’s assumption.

Whether Veronese’s remarks on Killing’s “proof” had any influence on Killing’s
thinking on the matter, we are in no position to say; however, within a decade of its
publication Killing implicitly renounced his purported proof of the Archimedean axiom,
as Veronese himself happily observed [1896, p. 424]. Indeed, in a series of works appear-
ing in the 1890s [1895–96; 1897; 1898], Killing refused to rule out the possibility of a

38 Also see the discussion below of the Appendix to [Vivanti 1891a] for another source of
the idea of infinitesimal relative to. In addition, see [Abeles 2001] for a discussion of Charles
L. Dodgson’s use of this notion in his [1888; 1890].

39 By an elementary (2-dimensional) Euclidean space, the reader may understand a model of
Hilbert’s axioms of order, incidence, congruence and parallelism for classical Euclidean geom-
etry, that is, all of Hilbert’s axioms for classical Euclidean geometry less his continuity axioms
(which includes the Archimedean axiom). An elegant alternative axiomatization and algebrai-
co-metamathematical investigation of these spaces was provided by Tarski. For references and a
discussion of a wide variety of non-Archimedean models of these spaces, see [Ehrlich 1997a].
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non-Archimedean geometry despite the fact that he was critical of aspects of Veronese’s
contributions to the subject. Moreover, while he does not appear to have ever publicly
withdrawn his criticisms of Veronese’s work, in his Handbuch des Mathematischen
Unterrichts [1910, pp. 25, 39] (co-authored with H. Hovestadt) Killing unequivocally
embraced the non-Archimedean geometries of Hilbert [1899] and Dehn [1900].

Before concluding our discussion of Killing’s argument, however, it will be instruc-
tive to consider a non-Archimedean ordered algebraic system in which Killing’s “hypoth-
esis” holds. Besides helping to bring into sharper focus the weakness of Killing’s
argument, this will also provide us with the opportunity to introduce a number of con-
cepts that will play a role in the subsequent discussion.

In the second part of his Beiträge zur Begründung der transfiniten Mengenlehre (Con-
tributions to the Founding of Transfinite Numbers), Cantor showed that every non-zero
ordinal α < ω1 has a normal form, i.e. a unique representation of the form

ωα0n0 +c ωα1n1 +c . . . +c ωαi ni

where i, n0, n1, . . . , ni are positive integers, α0, α1, . . . , αi is a descending sequence
of ordinals, and +c is the familiar Cantorian sum of ordinals [1897, p. 237; 1915,
p. 187]; and soon thereafter, Hessenberg extended the result to non-zero ordinals more
generally [1906, § 72]. It follows from Hessenberg’s result that by suitably expanding
their respective normal forms with “dummy terms” having zeros for coefficients, every
pair of non-zero ordinals α and β may be uniquely represented in the following fashion

α = ωγ0n0 +c ωγ1n1 +c . . . +c ωγknk, β = ωγ0m0 +c ωγ1m1 +c . . . +c ωγkmk

where γ0, γ1, . . . , γk is the unique decreasing sequence formed from the union of the
sets of exponents in the normal forms of α and β. Using the above, Hessenberg defined
what he called the natural sum of α and β, henceforth written +H , by the rule

α +H β = ωγ0(n0 + m0) +c ωγ1(n1 + m1) +c . . . +c ωγk (nk + mk)

where n0 + m0, n1 + m1, . . . , nk + mk are the familiar sums of non-negative integers
[Hessenberg 1906, § 75]. If α = 0 or β = 0, then α +H β = β or α +H β = α, respec-
tively. The natural sum of ordinals, or the Hessenberg sum of ordinals, as it is frequently
called, stands in sharp contrast to the familiar Cantorian sum. For example, unlike the
Cantorian sum, the Hessenberg sum is commutative and strictly monotonic with respect
to the standard ordering of ordinals. Moreover, its existence together with the existence
of Hausdorff’s closely related natural product of ordinals [1927, pp. 68–69; 1957, pp.
80–81] contradict Cantor’s long held view that not only were his operations on ordinals
the only legitimate such operations, but “the laws governing them [i.e. the Cantorian
laws] can be derived from immediate inner intuition with apodictic certainty” [Cantor
1883 in 1932, p. 170; Cantor 1883 in Ewald 1996, p. 886]. For non-zero ordinals α and
β, Hausdorff’s natural product, α ·H β, is obtained by summing together à la Hessenberg
all terms of the form

ωαs+H βt nsmt ,
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where ωαs ns and ωβt mt are component terms from the respective normal forms

ωα0n0 +c ωα1n1 +c . . . +c ωαi ni, ωβ0m0 +c ωβ1m1 +c . . . +c ωβkmk

of α and β, and nsmt is the familiar product of the positive integers ns and mt . If α = 0
or β = 0, then α ·H β = 0. Unlike the Cantorian product, the natural product is commu-
tative and satisfies both distributive laws (with respect to natural addition). As a result
of a generous remark by Hausdorff [1927, pp. 68–69; 1957, pp. 80–81], Hausdorff’s
natural product is frequently called “the Hessenberg product.”40

Returning now to Killing’s argument, let 〈K, +K, <K 〉 be the structure consisting
of the set K of all formal sums α ⊕ r (where α is an ordinal < ω2, and r is a positive real
number if α = 0 and a nonnegative real number, otherwise)41 with +K and <K defined
by the conditions:

(α ⊕ r) +K (α′ ⊕ r ′) = (α +H α′) ⊕ (r + r ′)

(α ⊕ r) <K (α′ ⊕ r ′), if either α < α′ or α = α′ and r < r ′

where α +H α′ is the Hessenberg sum of ordinals, r + r ′ is the familiar sum of reals,
and α < α′ and r < r ′ are the familiar ordering relations between ordinals and real
numbers, respectively. It is a simple matter to show that 〈K, +K, <K 〉 is a continuously
ordered system that satisfies all of Stolz’s axioms for an absolute system of magnitudes
except for divisibility and right-solvability, the latter being Stolz’s condition (xii). For
example, though ω ∈ K there is no X ∈ K such that X + X = ω (in violation of
divisibility), and while 1 < ω, there is no X ∈ K such that 1 + X = ω (which violates
right-solvability). On the other hand, insofar as K contains an element x, namely ω,
such that for each y < x, x is the least element of K that is infinitely large relative to y,
it follows that Killing’s “hypothesis” is satisfied by the members of K less than x, that
is: for all a, b ∈ K where a < b < ω, there is a positive integer n such that na > b, and

40 Actually, the situation is worse for Cantor’s view than the existence of the Hessenberg sum
and Hausdorff product of ordinals suggest. Building on the work of Hessenberg and Hausdorff,
Carruth [1942] later defined general conceptions of natural sums and natural products of ordinals
and showed that the operations of Hessenberg and Hausdorff are distinguished instances of these
general classes of operations on ordinals.

Although natural sums and products of ordinals have been fixtures in textbooks on classical
set theory throughout the twentieth century (cf. [Hausdorff 1927, pp. 68–69; 1957, pp. 80–81;
Bachmann 1967, pp. 107–111; Sierpinski 1965, pp. 323–324; Kuratowski and Mostowski 1968,
pp. 259–260; Fraenkel 1976, pp. 214–215; and Levy 1979, p. 130]) their existence and history, let
alone their significance, has been overlooked by historians and philosophers of mathematics, alike.
In a separate paper we intend to rectify this matter. For the time being, we note that their properties
have been carefully investigated in a number of works including [Carruth 1942] and [Zuckerman
1973], and their significance for the theory of ordered algebraic systems was brought to the atten-
tion of the mathematical community by Carruth [1942], Sikorski [1948], Klaua [1959/1960] and
Sankaran and Venkataraman [1962]. Today these operations play an important role in the study of
surreal numbers (cf. [Conway 1976, p. 28; Ehrlich 2001; and van den Dries and Ehrlich 2001]).

41 Formally speaking, a formal sum α ⊕ r is an ordered pair (α, r) written as a sum.
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ma < ω for all a < ω and all positive integers m. Indeed, it is not difficult to see that
for any non-Archimedean structure that satisfies all of Stolz’s axioms for an absolute
system of magnitudes save divisibility and right-solvability the existence of such an
element x is both a necessary and a sufficient condition for the satisfaction of Killing’s
“hypothesis.” It is also not difficult to see that the addition of right-solvability and/or
divisibility is sufficient to preclude the existence of such an element x. Killing, of course,
realized that the geometrical formulation of solvability is incompatible with the exis-
tence of such an element x–this was the basis from which he derived his contradiction.42

Where he went astray was in assuming that the denial of the Archimedean condition
implied the existence of such an x. An assumption analogous to Killing’s “hypothesis”
appears to have also played a role in leading Cantor astray in at least one of his early
criticisms of infinitesimals. It is to these early criticisms of Cantor to which we now
turn.

5. Cantor’s early antipathy to infinitesimals

Unlike Killing, Cantor appears to have remained an opponent of infinitesimals of
one sort or another throughout most of his life. Already in a letter to Dedekind dated
December 29, 1878, Cantor described the idea of “numbers . . . that are smaller than every
conceivable [positive] real number, yet different from zero” as “horribile dictu,” i.e., “too
horrible to even say” [Meschkowski and Nilson, 1991, p. 50]; and four years later, in the
third part of his Über unendliche lineare Punktmannigfaltigkeiten (Infinite Linear Point
Manifolds) [1882 in 1932, p. 156], he reiterated his doubts in print, albeit in a more mod-
erate form. The following year he developed the latter qualms further in his Grundlagen
einer allgemeinen Mannigfaltigkeitslehre (Foundations of a General Theory of Mani-
folds [1883]). The remarks from his Grundlagen take on added significance because
they also show that contrary to what is sometimes asserted (cf. [Dauben 1979, pp. 233–
236; Fisher 1981, p. 118]) Cantor was not a lifelong opponent of infinite numbers other
than his cardinal and ordinal numbers. While it is certainly true that Cantor vigorously
attacked and ultimately rejected the systems of infinite and/or infinitesimal numbers put
forth by Stolz, du Bois-Reymond, Thomae and Veronese, and, by the 1890s, apparently
in response to the challenge posed by Veronese’s infinite numbers, he seemed to sug-
gest that his cardinals and ordinals were the only legitimate infinite numbers [cf. Cantor
November 17, 1890; Cantor April 5, 1895; Cantor July 27, 1895; Cantor 1895a, pp. 300–
301; Cantor 1915, p. 117], for at least a period of time during the 1880s he appears to have
been a bit more open minded about the possibility of other infinite numbers as is evident
from the following remark from his Grundlagen with which he broaches the topic of
infinitesimals.

42 The Euclidean proposition that immediately implies the geometric version of solvability is
Proposition 3 of Book 1 of Euclid’s Elements: Given two unequal straight lines, to cut off from
the greater a straight line equal to the less. As Killing intimates in the passage quoted above, this
proposition is proved in the Elements using Euclid’s third postulate: a circle may be described
with any center and distance.
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The extended sequence of integers [i.e., the ordinals] can, if one wishes, be completed
without further ado into a continuous set of numbers by adjoining to every integer all real
numbers that are greater than zero and less than one.

Perhaps at this point the question will arise whether, since in this manner we have
achieved a determinate extension of the domain of real numbers into the infinitely large,
one cannot with equal success define determinate infinitely small numbers, or, what might
come to the same thing, define finite numbers which do not coincide with the rational and
irrational numbers (which later appear as the limiting values of the sequence of rational
numbers), but which might be inserted into supposed gaps amidst the real numbers, just
as the irrational numbers are inserted into the chain of the rational numbers, or the tran-
scendental numbers into the structure of the algebraic numbers. [Cantor 1883 in Cantor
1932, pp. 171–172; Cantor 1883 in Ewald 1996, p. 887; (Translation Ewald)]

In modern parlance, Cantor is considering the lexicographically ordered class of all
“numbers” of the form α + x where α is an ordinal and x is a real number such that
0 < x < 1.43,44 Henceforth, we shall refer to this structure as Cantor’s transfinite line
and designate it by “Lc.” We suspect it is no accident that he regarded this system as a
completion of the ordinals since it is the richest totally ordered system of “numbers” con-
taining the ordinals he appears to have ever embraced; and even this, as we noted, may
have been relatively short-lived. As to the idea of expanding the system (and hence the
reals) by inserting infinitesimals “into supposed gaps amidst the real numbers,” however,
he was already prepared to express doubts. Indeed, as he continues:

The question of the establishment of such interpolations, on which some authors have
expended much effort, can, in my opinion, only be clearly and distinctly answered with the
help of our new numbers–in particular, with the general concept of the Anzahl [number]
of well-ordered sets. The previous attempts, it seems to me, partly rest on an erroneous
confusion of the improper infinite [the potential infinite] with the proper infinite [the
actual infinite], and partly have been constructed on a thoroughly insecure and unstable
foundation.

The improper infinite has often been called by recent philosophers a ‘bad’ infi-
nite, in my opinion unjustly, since it has proved itself to be a very good and highly useful
instrument in mathematics and the natural sciences. The infinitely small quantities have,
so far as I know, until now in general been usefully developed only in the form of the
improper-infinite, and are thus capable of all those differences, modifications, and rela-
tions which are found in infinitesimal analysis and in the theory of functions, and which
are used to establish the rich profusion of analytic truths. But all attempts to force this
infinitely small into a proper infinite must finally be given up as pointless. If proper-
infinitely small quantities exist at all, that is, are definable, then they certainly stand in no

43 The reader will notice that in the passage from [Cantor 1883] quoted above, Cantor refers
to this collection as a “set.” Indeed, it was not until the end of the 1890s that Cantor came to the
conclusion that the collection of ordinals is not a set [cf. Hallett 1884, Ch. 4].

44 Cantor’s observation that the just-cited structure is continuous extends to an arbitrary lex-
icographically ordered class consisting of all elements of the form (α, x) where α is an element
of a non-empty well-ordered class and x is a real number such that 0 < x < 1 (cf. [Kelly 1955,
p. 64]). Formally speaking, sums of the form “α + x” are such ordered pairs written as formal
sums (see Note 41).
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direct relationship to the familiar quantities which become infinitely small. [Cantor 1883
in Cantor 1932, p. 172; Cantor 1883 in Ewald 1996, pp. 887-888; (Translation Ewald)]

Soon thereafter, at least in his published work, Cantor grew even more resolute in his
opposition to infinitesimals. In his review of Hermann Cohen’s Das Princip der Infini-
tesimalmethode und seine Geschichte [1883] he unabashedly asserted that “the so-called
infinitely small numbers or differentials do not belong to the sphere of the being” [1884,
p. 267]45; and in his Über die verschiedenen Standpunkte in bezug auf das aktuelle
Unendliche, which is an excerpt of a letter to G. Eneström dated November 4, 1885, he
declared that they are “illegitimate actual infinities” [1886 in 1932, p. 374]. One could
therefore appreciate just how taken aback Cantor must have been when Benno Kerry, in
his review of Cantor’s Grundlagen einer allgemeinen Mannigfaltigkeitslehre, not only
embraced actual infinitesimal numbers but suggested that they could be defined using
Cantor’s own transfinite ordinals. As Kerry put it:

in my opinion a formal definition of definite, infinitely small numbers is indeed given in
fixing the greatest of such numbers as one which produces the sum 1 by adding itself to
itself ω times; the next smaller is then the one which produces 1 by adding itself to itself
ω + 1 times, etc. The definite, infinitely small numbers would accordingly be denoted as:

45 On the other hand, in the following passage from a letter to Cohen’s disciple, Kurt Lass-
witz, dated December 27, 1884, Cantor appears to take a more cautious position–one closer to the
position just quoted from [Cantor 1883]. Indeed, writes Cantor:

This does not preclude that in a later state of analysis means can be found to define differ-
ent quantities that would deserve the name infinitely small quantities because they would
be smaller than the quantities used until now; however, these properly infinitely small
quantities will surely bear no relationship to our differentials.

[Cantor, December 27, 1884]: “Damit ist nicht ausgeschlossen, dass in einem späteren
Zustand der Analysis Mittel gefunden werden können, verschiedene Grössen zu defini-
ren, die den Namen: unendlichkleine Grössen verdienen, weil sie kleiner wären, als jede
der bisher gebrauchten Grössen; diese eigentlich-unendlichkleinen Grössen werden aber
dann sicherlich in keiner Beziehung zu unseren Differentialen stehen.”

Detlef Laugwitz has raised the following as a possible explanation for the moderate tone of
Cantor’s letter to Lasswitz.

Hermann Cohen had just published his book [Cohen 1883] on the principle of the infinites-
imal method, and in his letters to Lasswitz Cantor refers to this book. Cohen (1842–1918),
the founder of the neo-Kantian school at Marburg, was one of the outstanding philoso-
phers of the time, and Lasswitz was one of his followers. Cantor may have felt it advisable
to be on friendly terms with Lasswitz who could serve as a mediator between philosophy
and the sciences. Also, he was the author of influential popular books on foundational
questions of mathematics. All this may explain the rather moderate tone in the letters to
Lasswitz. [Laugwitz 2002, p. 111]
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1

ω
,

1

ω + 1
, . . . ,

1

2ω
, . . . ,

1

ω2

etc.46

6. Cantor’s argument against the possibility of infinitesimals of the form
1
ω

Judging from the picture that emerges from Cantor’s published works together with
the now published portions of his Nachlass, it may very well have been in response to
Kerry’s just-cited contention that Cantor began to work out his purported proof of the
impossibility of actual infinitesimals. Indeed, in a letter written by Cantor to Kerry, dated
February 4, 1887, we find what appears to be a forerunner to Cantor’s published “proof”
worked out for the special case where the purported infinitesimal has the form 1/ω. Like
the published “proof,” the former “proof” makes use of the concept of a “linear mag-
nitude,” a concept, which as Cantor’s critics repeatedly emphasized, he never defined
(at least not in print). On the other hand, in the letter he does draw attention to those
aspects of the notion that he believes are relevant to the “proof” contained therein. For
this reason, and because the “proof” in the letter may contain helpful clues about how
Cantor interpreted the more cryptic general “proof” that was composed soon thereafter
and appeared in print that year, the letter deserves more serious attention than it has
heretofore been given (see Note 57).

Cantor begins the portion of the letter regarding his “proof” by remarking:

The proof that numerical magnitudes [Zahlgrössen] of the kind 1
ω

are self-contradictory
emerges from the most minimal conditions that the idea of linear magnitudes has to sat-
isfy, and shows that they cannot be brought in harmony with the demands expressed by
the symbol 1

ω
.47

Cantor’s argument is presented in terms of a portion of his transfinite line that we shall
henceforth denote “L(0,ω1).” L(0,ω1) is the non-zero portion of the structure known to
contemporary topologists as the long line, the latter being the lexicographically ordered

46 [Kerry 1885, p. 212]: “meines Erachtens ist eine formelle Definition bestimmt-
unendlichkleiner Grössen schon dadurch gegeben, dass man die grösste derartige Grösse als eine
solche fixirt, die ω-mal zu sich selbst adddirt als Summe: 1 ergiebt; die nächst kleinere ist dann
diejenige, die ω + 1 -mal zu sich selbst addirt als Summe: 1 ergiebt u. s. w. Zu bezeichnen wären
demnach die bestimmt-unendlichkleinen Grössen als:

1

ω
,

1

ω + 1
, . . . ,

1

2ω
, . . . ,

1

ω2

etc.”
47 [Cantor February 4, 1887]: “Der Beweis, daß Zahlgrössen von der Art 1

ω
sich selbst widers-

prechen, geht von den minimalsten Bedingungen aus, welchen lineare Grössenbegriffe zu genügen
haben und zeigt, dass sie nicht in Einklang mit der in dem Symbol 1

ω
ausgedrückten Forderung

zu bringen sind.”
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class of all numbers of the form α +x where α is an ordinal < ω1 and x is a real number
such that 0 ≤ x < 1 (cf. [Munkres 1975, p. 159]).48 Indeed, writes Cantor:

Let us accept for the sake of argument the domain of the positive rationals and irrationals
i.e., all of the so-called positive real magnitudes, as well as the domain of the transfi-
nite numbers α of the second-class [the infinite ordinals < ω1] and the domain of those
numbers α + x emerging from both (where here x < 1). . . .49

Having done so, says Cantor,

the question therefore arises which conditions other positive numbers ζ, ζ ′, ζ ′′, . . . nec-
essarily have to satisfy if they may still claim the right to be called linear and stand in
relation to the known magnitudes with a fixed order of greater and less than.50

The “other positive numbers” Cantor is referring to are presumably infinitesimals;
and he answers his question by asserting:

To these conditions belong in any case the following:

1. The addition of a finite number of such magnitudes is always possible and satisfies the asso-
ciative law. In particular, finite multiples ζ.ν of each magnitude ζ 
= 2n [51] are possible,
when ν is a finite integral multiplier.

2. Also the summand magnitudes in a prescribed ordinary infinite series
ζ1, ζ2, ζ3, . . . must have a determined sum s, where s belongs either to the old or the
expanded domain.

So that however s be the sum of that infinite series, if s ′ is any magnitude (known to
be) smaller than s, there must be a finite whole number n such that ζ1 +ζ2 + . . .+ζn > s ′.
For if for each finite whole number n: ζ1 + ζ2 + . . .+ ζn ≤ s ′, it would also have to be the
case that ζ1 + ζ2 + ζ3 + . . . in inf. ≤ s ′, [52] which is incompatible with the assumptions
that ζ1 + ζ2 + . . . in inf. = s and s ′ < s.53

In a subsequent letter from Cantor to Kerry dated March 18, 1887 (see below), Cantor
makes it clear that the above two “axioms” while stated for the “other positive numbers”

48 The long line has long been of interest to topologists since while it is path connected and
locally homeomorphic to the ordered set of reals it cannot be embedded in the reals. Though
apparently introduced by Veblen [1905, p. 169; 1906], it was given a wide audience through its
appearance in [Huntington 1917/1955, p. 56].

49 [Cantor February 4, 1887]: “Setzen wir das Gebiet der positiven rationalen und irrationa-
len d.h. aller sogen. pos. reellen Grössen als gegeben voraus, ferner desgleichen das Gebiet der
transfiniten Zahlen zweiter Classe α und das Gebiet der aus jenen beiden hervorgehenden Zahlen
α + x (hierbei kann x < 1 festgesetzt sein) . . . .”

50 [Cantor February 4, 1887]: “so fragt es sich also zunächst, welche Bedingungen andere
positive Zahlen ζ, ζ ′, ζ ′′, . . . nothwendig zu genügen haben, wenn sie noch Anspruch auf die
Bedeutung linearer mit den schon bekannten und unter einander in fester Beziehung des Grösser
u. Kleinerseins stehenden Grössen machen sollen.”

51 The assumption that ζ 
= 2n is both curious and puzzling, and appears to play no role
whatsoever in Cantor’s argument.

52 The expression “ζ1 + ζ2 + ζ3 + . . . in inf. ≤ s ′” indicates that the infinite sum is ζ1 + ζ2 +
. . . + is ≤ s ′. The remaining assertions in Cantor’s letter employing the abbreviation “in inf.”
are analogously understood.

53 [Cantor February 4, 1887]: “Zu diesen Bedingungen gehören jedenfalls folgende:
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are understood to be applicable to linear magnitudes more generally. Accordingly, given
a natural assumption about the compatibility of the ordering relation and the addition
(see Note 7) as well as the rather minimal assumption that the sum of any two linear
magnitudes is itself a linear magnitude, Cantor’s first axiom implies that the collection of
linear magnitudes has an ordered semigroup structure.54 The second and more intriguing
axiom, on the other hand, appears to implicitly assert that not only are ordinary infinite
sums x1 + x2 + x3 + . . . of positive linear magnitudes well defined, but the value of
such a sum is the least upper bound of its partial sums x1, x1 + x2, x1 + x2 + x3, . . . .
Whether the least upper bound is supposed to be contained in the class of linear magni-
tudes or in some extension thereof Cantor does not say.55 In any case, with the content
of 2 apparently thus understood, Cantor presents his argument as follows.

Now, if ζ = 1
ω

were a magnitude, ζ would have the characteristic that:

ζ · ω = 1

i.e. if we set ζ1, ζ2, ζ3, . . . equal to ζ , i.e., if ζ1 = ζ2 = . . . ζν = . . . = ζ , it would be the
case that:

(A) ζ1 + ζ2 + ζ3 + . . . in inf. = 1.

Now suppose s ′ is a magnitude between 1
2 and 1, e.g., s ′ = 3

4 . Then following 2 there
must be a finite whole number n such that:

(B) ζ1 + ζ2 + . . . + ζn >
3

4
.

However, because all the ζ1, ζ2, . . . are equal and are = ζ , it follows from (B) that:

ζn+1 + ζn+2 + . . . + ζ2n >
3

4

and, consequently, that

1. Die Addition einer endlichen Anzahl jener Grössen ist stets möglich und genügt dem assozia-
tativen Gesetze. Im besonderen ist also eine endliche Vervielfachung jeder Grösse ζ 
= 2n ζ.ν

möglich, worin ν ein endlicher ganzzahliger Multiplicator ist.
2. Auch eine einfach unendliche Reihe ζ1, ζ2, ζ3, . . . jener Grössen muß in der vorgeschriebe-
nen Folge der Summanden eine bestimmte Summe s haben, wo s entweder dem alten oder dem
erweiterten Gebiete angehört.

Damit aber s die Summe jener unendlichen Reihe sei, muss, wenn s ′ irgend eine kleinere Grösse
(unter den bekannten) als s bedeutet, eine endliche ganze Zahl n vohanden sein, so dass die Summe
ζ1 + ζ2 + . . . + ζn > s ′. Denn wäre für jede endliche ganze Zahl n: ζ1 + ζ2 + . . . + ζn ≤ s ′, so
müsste auch ζ1 + ζ2 + . . . in inf. ≤ s ′ sein, was mit den Annahmen ζ1 + ζ2 + . . . + in inf. = s

und s ′ < s nicht verträglich ist.”
54 When addition is defined in L(0,ω1) in the manner we believe Cantor intended (see below),

L(0,ω1) is indeed an ordered semigroup.
55 It appears to be both reasonable and nonproblematic to assume that for Cantor the sum of

any two linear magnitudes is itself a linear magnitude. However, as we will later see, adopting the
analogous assumption in the case of infinite sums of linear magnitudes is not so clearly free of
difficulties.
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(C) ζ1 + ζ2 + . . . + ζn + ζn+1 + . . . + ζ2n >
3

4
+ 3

4
= 1

1

2
.

However, (C) is incompatible with (A) because it has the absurd consequence that
the first 2n terms on the left side of (A) have a sum which is larger than 1 1

2 while the
totality of terms has the smaller sum 1. Therefore the assumption of magnitudes of the
kind 1

ω
leads to contradiction.56,57

In contemporary parlance, Cantor’s argument appears to be concerned with a lexi-
cographically ordered semigroup, say �, whose universe extends L(0,ω1) and consists
of all formal sums of the form α + x + n · 1

ω
where either α = 0, x = 0, and n is a

positive integer, or α is an ordinal < ω1, x is a real number such that 0 < x < 1, and n

56 [Cantor February 4, 1887]: “Würde es nun eine Grösse ζ = 1
ω

geben, so hätte ζ die Eigens-
chaft, daß:

ζ · ω = 1

d. h. es würde, wenn wir unter ζ1, ζ2, ζ3, . . . überall ζ verstehen, d. h. ζ1 = ζ2 = . . . ζν = . . . = ζ

setzen, sein:

(A) ζ1 + ζ2 + ζ3 + . . . in inf. = 1.

Nehmen wir nun irgend eine Grösse s ′ zwischen 1
2 und 1 an, z. B. s ′ = 3

4 , so muss nach 2. eine
endliche ganze Zahl n vorhanden sein, so daß:

(B) ζ1 + ζ2 + . . . + ζn >
3

4
.

Weil aber alle ζ1, ζ2, . . . einander gleich und = ζ sind, so folgt aus (B), daß auch:

ζn+1 + ζn+2 + . . . + ζ2n >
3

4

mithin

(C) ζ1 + ζ2 + . . . + ζn + ζn+1 + . . . + ζ2n >
3

4
+ 3

4
= 1

1

2
.

Dieses Resultat (C) ist aber unvereinbar mit (A), weil es die absurde Folge hat, dass die 2n ersten
Glieder links von (A) eine Summe haben, welche grösser ist als 1 1

2 , während die Gesammtheit
aller Glieder die kleinere Summe 1 hat. Also führt die Forderung von Grössen der Art 1

ω
auf

Widerspruch.”
57 When the present paper was essentially complete we learned of the existence of [Laugwitz

2002]. Laugwitz’s paper, which was published posthumously, covers some of the same material
covered in the present paper and the aforementioned companion work, albeit in far less detail. With
the exception of the editorial remarks contained in [Meschkowski and Nilson 1991], Laugwitz’s
paper is the only work we are aware of that discusses the contents of the above letter from Cantor
to Kerry. Our assessment and analysis of the purported proof contained therein, however, differs
very substantially from Laugwitz’s. For Laugwitz’s view and our critique thereof, see Appendix II.
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is an integer ≥ 0. The argument is an interesting one; but contrary to Cantor’s conten-
tion it does not prove that “numerical magnitudes of the kind 1

ω
are self-contradictory.”

Indeed, it cannot–such numerical magnitudes are now known to be entirely coherent!
Rather, at best, the argument is a clever attempt to prove the impossibility of an ordered
semigroup extension of L(0,ω1) that both contains 1

ω
and satisfies Cantor’s second axiom

for linear magnitudes. However, it rests upon a mistaken assumption–henceforth called
the Kerry-Cantor thesis– which asserts that: if 1

ω
exists then in general 1

ω
“produces the

sum 1 by adding itself to itself ω times.” Indeed, it is Cantor’s adoption of this thesis
in conjunction with (2), which implies that 1

ω
+ 1

ω
+ 1

ω
+ . . . (taken ω times)is equal

to the least upper bound in � of the partial sums 1
ω
, 1

ω
+ 1

ω
, 1

ω
+ 1

ω
+ 1

ω
, . . . , and it is

the latter together with the fact that the just-mentioned partial sums have no least upper
bound in � that underlies Cantor’s derivation of a contradiction. Presumably, Cantor took
the Kerry-Cantor thesis to be entirely evident, being one of the “demands expressed by
the symbol 1

ω
.” However, to see that Cantor is mistaken about this as well as about the

supposed incoherence of the numerical magnitude 1
ω

, we will now consider a structure
known to contemporary order-algebrists that invalidates both of these contentions.

Let R be the ordered field of real numbers, Z be the orderedAbelian group of integers
and R(Z) be the set of all formal series of the form

∑
α<β

ωyα rα

where β is an ordinal, {yα : α < β} is a descending sequence of elements of Z and
rα ∈ R − {0} for each α < β. The unique such series for which β = 0 (i.e., the empty
series) is the 0 of the non-Archimedean ordered field that arises by ordering the elements
of R(Z) lexicographically and defining addition and multiplication according to the rules

∑
y∈Z

ωyay +
∑
y∈Z

ωyby =
∑
y∈Z

ωy(ay + by)

∑
y∈Z

ωyay ·
∑
y∈Z

ωyby =
∑
y∈Z

ωy




∑
(µ,ν)∈Z×Z

µ+ν=y

aµ bν




where terms with zeros for coefficients are inserted and deleted as needed.
R(Z), or, rather, an isomorphic copy thereof, was first introduced by Levi-Civita

[1898] in the second of his two great pioneering works on non-Archimedean geometry,
and alternative isomorphic copies thereof surfaced soon thereafter in related works of
Hilbert [1903; 1903a] and Hahn [1907: also see Ehrlich 1995]. It was Federigo Enriques,
however, in his Sui numeri non archimedei e su alcune loro interpretazioni (On non-
Archimedean Numbers and Some of their Interpretations) [1911b, pp. 90–96; also see
1912, pp. 472–478; 1924, pp. 367–372] who first realized that Levi-Civita’s ordered field
or rather the just-described isomorphic copy thereof was a natural vehicle for incorpo-
rating an initial segment of Cantor’s transfinite ordinals into a non-Archimedean ordered
field. Indeed, without mention of either normal forms or natural sums of ordinals, let
alone natural products of ordinals that had then yet to be introduced, Enriques essentially
showed that R(Z) is an extension of the lexicographically ordered semiring consisting
of all ordinals α < ωω (written in normal form) with sums and products defined natu-
rally. It is perhaps worth emphasizing that this now all but forgotten work of Enriques’
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appeared almost four decades before Roman Sikorski’s seminal paper On an Ordered
Algebraic Field [1948], the work to which contemporary order-algebrists usually trace
the insight that lexicographically ordered semirings of ordinals with sums and products
defined naturally can be embedded in ordered fields. Ordered fields that are extensions
of ordered semirings of ordinals so defined have received increasing attention in recent
years since they naturally arise in the study of surreal numbers (cf. [Conway 1976;
Ehrlich 2001; van den Dries and Ehrlich 2001]).

The reader will notice that in R(Z) 1
ω

(i.e., ω−1) is the multiplicative inverse of
ω = ω1 and, hence, that 1

ω
·ω = 1 in R(Z). On the other hand, in R(Z) the partial sums

1
ω
, 1

ω
+ 1

ω
, 1

ω
+ 1

ω
+ 1

ω
, . . . do not have a least upper bound (as is evident from the fact

that
{
x ∈ R(Z) : n

ω
< x < 1/2n = 1/2nω0

} = �). Accordingly, in this system while it
is indeed true that 1

ω
· ω = 1, it is not true that 1

ω
+ 1

ω
+ 1

ω
+ . . . (taken ω times)=1, at

least not if the infinite sum is defined in the usual manner as the limit of partial sums;
indeed, if understood in the usual manner, 1

ω
+ 1

ω
+ 1

ω
+ . . . (taken ω times) is not even

well defined.
This, however, should not be taken to imply that there can be no system in which

1
ω

·ω = 1 and 1
ω

+ 1
ω

+ 1
ω

+ . . . (taken ω times)=1. Indeed, consider the lexicographically
ordered subsemiring of R(Z) consisting of all formal series of the form∑

α<β

ωyα rα

where β is a positive integer and rα is a positive integer for each α < β. Since in this
system 1 is the least upper bound of the partial sums 1

ω
, 1

ω
+ 1

ω
, 1

ω
+ 1

ω
+ 1

ω
, . . . , one can

stipulate (without falling into logical difficulties) that within the system 1
ω

+ 1
ω

+ 1
ω

+ . . .

(taken ω times)=1. Moreover, since the multiplication in the semiring is simply the mul-
tiplication in the field restricted to the just-cited members, we also have 1

ω
· ω = 1.

7. Prelude to Cantor’s “proof” of the impossibility of infinitesimals

As we mentioned above, Cantor’s attempt to prove that “numerical magnitudes of
the kind 1

ω
are self-contradictory” essentially reduces to an attempt to prove that such

magnitudes are incompatible with his conception of a linear magnitude. This strategy
has an obvious potential weakness, however, as several of his critics later observed;
namely, it does not preclude the possibility that the existence of infinitesimals is entirely
compatible with some alternative, yet entirely legitimate, conception of magnitude. Be
this as it may, this was the strategy that Cantor continued to employ in his attempt to
prove the impossibility of actual infinitesimal magnitudes more generally.

Roughly one month after having sent his argument to Kerry, Cantor apparently
believed he had just such a general proof. In fact, by that time he apparently believed he
could prove the even stronger contention that the linear numbers were restricted to the
real numbers. In his letter to the Swedish mathematician and historian Gustav Eneström,
dated March 6, 1887, he expressed the matter thus:

Recently I have been successful in ascertaining an important point that long has engaged
me. You will recall, that on page 8 of my “Grundlagen” I left it open whether there are
actual infinitely small numbers and, more generally, if there are still other finite linear
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numbers besides the rational and irrational numbers; by a linear number here is under-
stood one which by comparison can be determined to be greater than, equal to or smaller
than a real number. Despite all the affirming claims that have been written by J. Thomae,
P. du Bois-Reymond, and O. Stolz, I was always of the view that the linear magnitudes are
thoroughly completed with the familiar real numbers, and therefore that there are besides
these no other linear numbers and in particular no fixed infinitely small numbers. Now I
can prove this with the aid of transfinite numbers.58

A proof-sketch of the purported proof–assuming it was the same one–was first pre-
sented in letters to F. Goldscheider [Cantor May 13, 1887] and K. Weierstrass [Cantor
May 16, 1887], and soon thereafter appeared in section VI of Cantor’s Mitteilungen zur
Lehre vom Transfiniten (Communications on the Theory of the Transfinite). Before exam-
ining it, however, we will first explore some further preparatory matters beginning with
the contents of a passage from a letter from Cantor to Kerry written one week after the
above letter to Eneström. The passage, while puzzling, is interesting because it provides
us with further insight into Cantor’s thinking about the concept of a linear magnitude.

Cantor begins the letter, dated March 18, 1887, by reminding Kerry “for the seventh
time”

. . . that to the nature of positive mathematical (not psychologistic) linear magnitudes not
only belong comparability (a � b) as you [Kerry] rightly emphasized, but also my two
axioms [1 and 2 in Cantor February 4, 1887] in which is expressed unrestricted addition
and subtraction (the latter of course in the sense that the smaller magnitude should be
subtracted from the larger). Thus each smaller magnitude is considered part of the larger
. . . .59

The chief insight that emerges from this passage is that Cantor took linear magnitudes
to be closed under subtraction of smaller from larger elements. While not surprising in
and of itself, this is closely related to the first of two puzzling aspects of this passage.
Namely, though L(0,ω1) (and Lc, more generally) is an ordered semigroup that is closed

58 [Cantor March 6, 1887]: “In letzter Zeit ist es mir gelungen, einen wichtigen Punct fest-
zustellen, der mich lange beschäftigt hat. Sie werden sich erinnern, dass ich in den “Grundlagen”
pag. 8 unbestimmt gelassen habe, ob es eigentlich-unendlich kleine und allgemeiner ob es ausser
den rationalen und irrationalen Zahlgrössen noch andere lineare endliche Zahlgrössen giebt; unter
einer linearen Zahlgrösse wird hier eine solche verstanden, welche einen bestimmten Vergleich
des Grösser, gleich und Kleinerseins mit den reellen Grössen zulässt. Trotz Allem, was darüber im
bejahenden Sinne von I. Thomae, P. du Bois Reymond, O. Stolz geschrieben worden ist, war ich
immer der Ansicht, dass das Gebiet der linearen Grössen mit den bekannten reellen Zahlgrössen
durchaus abgeschlossen sei, dass es also ausser diesen keine anderen linearen Zahlgrössen und
im Besonderen keine bestimmt unendlich kleinen Zahlen gibt. Jetzt kann ich dies mit Hülfe der
transfiniten Zahlen beweisen.”

59 [Cantor March 18, 1887] “. . . dass zum Wesen der positiven mathematischen (nicht psycho-
logistischen) linearen Grössen nicht nur die von Ihnen richtig hervorgehobene Vergleichbarkeit

(a � b) gehört, sondern auch die in meinen beiden Axiomen ausgesprochene unbeschränkte Addi-
tions- u. Subtractionsfähigkeit (letztere natürlich in dem Sinne, dass die kleinere Grösse von der
grösseren abziehbar sein soll). Daher ist jede kleinere Grösse als Theil der grösseren zu betrach-
ten. . . .”
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under (one-sided) subtraction of smaller from larger elements, assuming the addition is
defined in the manner we believe Cantor intended (see below), Cantor’s remark about
subtraction is misleading. The closure of subtraction of smaller from larger elements does
not follow from his assumptions about addition. Consider, for example, the ordered sub-
semigroup of positive real numbers consisting of all real numbers n and n + 1

2 where
n is a positive integer. While this system is closed under (ordinary finitary) addition,
it is not closed under subtraction of smaller from larger elements;

(
1 1

2 − 1
) = 1

2 , for
example, is not a member of this semigroup. Moreover, allowing for the infinite sums
expressed in Cantor’s second axiom does not alter the conclusion; consider, for example,
the subsemigroup of L(0,ω1) (with the addition either defined naturally or in the manner
described below) consisting of all numbers α + x where α is a non-zero ordinal < ω1
and x is either 0 or 1

2 ; again,
(
1 1

2 − 1
) = 1

2 is not a member of the semigroup.
The second aspect of Cantor’s letter that is puzzling is more crucial, but here the puz-

zle only emerges when the letter is read in conjunction with his letter written to Eneström
one week earlier. Namely, how can Cantor embrace his unrestricted addition for linear
numbers while maintaining “the linear magnitudes are thoroughly completed with the
known real numbers”? After all, 1 + 1 + 1 + . . . (taken ω times) is not a real number!
Of course, he could have avoided this difficulty in any of a number of ways; however,
as we shall soon see, while Cantor continued to embrace his unrestricted addition for
linear numbers (not to mention a substantial strengthening thereof), he subsequently
sidestepped the above problem by tacitly denying that such sums of linear numbers are
necessarily linear. Indeed, in his discussion containing his purportedly more general
proof of the impossibility of infinitesimals he essentially remarks in passing that every
linear number is bounded above by a real number. Before turning to the latter discussion,
however, we will further explore some of the properties of L(0,ω1) and of Cantor’s trans-
finite line Lc more generally, for it is our suspicion that just as Cantor’s thinking about
L(0,ω1) helped shape his “proof” of the impossibility of numerical magnitudes of the
kind 1

ω
, it was his thinking about Lc that helped shape his “proof” of the impossibility

of infinitesimals, more generally.
To begin with, as we alluded to earlier, L(0,ω1) and Lc are ordered semigroups closed

under (one-sided) subtraction of smaller from larger elements, if the addition is defined
in the manner we are confident Cantor intended. The latter is a straightforward extension
of Cantor’s addition for ordinals and may be defined for all α⊕ r, β ⊕ s ∈ Lc as follows,
where, again, +c is the familiar Cantorian sum of ordinals, and r + s is the ordinary
addition of real numbers:

(α ⊕ r) +Lc (β ⊕ s) = (β ⊕ s), if α +c β = β ;

(α ⊕ r) +Lc (β ⊕ s) = (α +c β) ⊕ (r + s), if α +c β > β .

The basic properties of subtraction in Lc and L(0,ω1) with addition thus defined par-
allel the Cantorian ones for ordinals. In his Grundlagen Cantor described the latter as
follows:

Subtraction can be considered from two points of view. If α and β are any two integers
[i.e. finite or transfinite ordinals], α < β, one easily persuades oneself that the equation
α+ξ = β admits one and only one solution for ξ . . . .This number is to be set equal toβ−α.
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If on the other hand one considers the following equation: ξ + α = β it turns out that
this can often not be solved for ξ at all; this case, for example, occurs in the following
equation: ξ + ω = ω + 1.

But also in those cases where the equation ξ +α = β is solvable for ξ it often happens
that it is satisfied by infinitely many numerical values of ξ ; but of these different solutions
one will always be least. [Cantor 1883 in Cantor 1932, pp. 201–202; Cantor 1883 in Ewald
1996, p. 913; (Translation Ewald)]60

The basis of our confidence that Cantor envisioned addition defined in L(0,ω1) (and in
Lc, more generally) in the manner specified above is twofold. To begin with, throughout
his career Cantor maintained that his definitions of sums and products of ordinals were
grounded in the very concept of set and were not subject to modification; accordingly, the
addition in L(0,ω1) when restricted to pairs of ordinals presumably would have to concur
with Cantor’s classical definition. What is more important, however, is that the above
addition appears to be naturally suggested by a discussion of an initial segment of L(0,ω1)

contained in Cantor’s own Mitteilungen zur Lehre vom Transfiniten [1887]. The remarks
in question originated in a letter from Cantor to Constantin Gutberlet dated January 24,
1886, that Cantor wrote in response to the theologian’s attempt to prove the impossibility
of an actual infinite line segment.According to Cantor, Gutberlet argued that a contradic-
tion could be derived using the proposition: “If an infinite line existed, one could excise
a finite stretch . . . and then draw together and reconnect the two remaining stretches”
[1887 in 1932, p. 397]. Precisely how Gutberlet’s argument runs Cantor does not say; but
he suggests it is defective insofar as it relies on the common misconception of attributing
to the infinite properties that are characteristic of the finite. In particular, writes Cantor:

If you displace a finite line AB in the direction such that its starting point A is moved
about the stretch AA′ = 1

A′ A M ′ M B ′ B

| − −| − −| − −| − −| − −|
to A′, it is also necessary for each of its other points [to be similarly shifted], e.g., M

is shifted to M ′ about an equal stretch MM ′ = 1 and, in particular, the end point B is
shifted to B ′ about the stretch BB ′ = 1.

Of course, however, if instead of the finite line AB we imagine an actual infinite line
AO in the same direction with the same starting point which has its endpoint O in the
infinite, it is also the case that if A is moved to A′ then each point M lying in the finite is
moved about MM ′ = 1 to M ′, but who informed you that this also applies to the infinitely
distant endpoint O?

60 Since 1 < ω and 1 + ω = ω, it follows from the convention specified in first of the three
just-quoted paragraphs that ω − 1 is an ordinal, and for similar reasons, so is ω2 − ω. Throughout
his career Cantor continued to set ξ equal to β − α when α < β and α + ξ = β (cf. [1897, p.
218; 1915, p. 155]). This tradition was continued by a number of twentieth-century set-theorists
including Sierpinski [1965, p. 278] and Kuratowski and Mostowski [1968, p. 248], the latter two
of whom emphasized that in accordance with the stated convention ω − 1 = ω and ω2 − ω = ω2.
Other authors, however, including Fraenkel [1976, pp. 209–210] and Kamke [1950, p. 94], because
of the non-commutative nature of the addition, preferred to set ξ equal to −α +β. Given the latter
convention, −1 + ω = ω, and ω − 1 is undefined. Ordinals of the form τ − 1 arise in accordance
with the latter approach if and only if τ is an immediate successor of an ordinal.
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Completely to the contrary, the acceptance of the latter leads to a contradiction, as
you have yourself shown; this contradiction, however, does not authorize the denial of the
possibility of an actual infinite line AO, as you assume; nothing contradictory follows
from the characteristic of the actually infinite line AO that the infinitely distant point O

alone remains fixed in its place while all other points M , A, B of the line AO are shifted
to the left in equal stretches MM ′ = AA′ = BB ′ = 1 . . . .

Here the magnitude of the imagined actual infinite line AO corresponds to the smallest
transfinite ordinal denoted by me with ω, so the just stated assertion involves the equation
1+ω = ω, which again is known not to contain the least contradiction, where 1 = A′A is
on the left side meaning the Augendus [augend] and ω = AO is the Addendus [addend].
By comparison, though, is ω + 1 ... a transfinite number different from ω, specifically the
whole transfinite following the smallest ordinal ω; however, the latter has no application
in your example, where for you the Augendus is a finite magnitude 1 = A′A lying in the
finite and the Addendus AO = ω is an actual infinite.61

61 [Cantor 1887 in 1932, pp. 397-398]: “In dieser Argumentation erkenne ich den Fehler, daß
die Eigenschaften einer endlichen starren Linie ohne weiteres auf eine unendliche starre Linie
übertragen werden, deren Eigenschaften von der Natur des Unendlichen abhängen.

Wenn Sie eine endliche Gerade AB in ihrer Richtung so verrücken, daß ihr Anfangspunkt A

um das Stück AA′ = 1

A′ A M ′ M B ′ B

| − − − − − − | − − − − − − | − − − − − − | − − − − − − | − − − − − − |

nach A′ geschoben wird, so ist dies nur so möglich, daß jeder andre ihrer Punkte, z. B. M nach M ′

um ein gleiches Stück MM ′ = 1 und im besonderen auch der Endpunkt B um das Stück BB ′ = 1
nach B ′ verrückt wird.

Denken wir uns aber statt der endlichen Linie AB in derselben Richtung und mit demselben
Anfangspunkte eine aktual-unendliche Linie AO, die ihren Zielpunkt O im Unendlichen hat, so
gilt zwar auch, daß jeder im Endlichen liegende Punkt M um MM ′ = 1 nach M ′ gerückt wird,
falls A nach A′ kommt, wer sagt Ihnen aber, daß hier auch das gleiche gilt vom unendlich fernen
Zielpunkt O?

Ganz im Gegenteil führt letztere Annahme, wie Sie selbst gezeigt haben, zu einem Widersp-
ruch; dieser Widerspruch berechtigt aber nicht, wie Sie annehmen, zur Leugnung der Möglichkeit
der Existenz einer aktual-unendlichen Geraden AO, sondern er führt zu der nichts Widersprechen-
des involvierenden Eigenschaft der aktual-unendlichen Geraden AO, daß, während alle anderen
Punkte M,A,B der Geraden AO um ein gleiches Stück MM ′ = AA′ = BB ′ = 1 nach links
gezogen werden ....

Da die gedachte aktual-unendliche Gerade AO ihrer Größe nach der von mir mit ω bezeichne-
ten kleinsten transfiniten Ordnungszahl entspricht, so läßt sich das soeben Behauptete auch in der
bekannten, nicht den geringsten Widerspruch involvierenden Gleichung 1+ω = ω wiederfinden,
wo auf der linken Seite 1 = A′A die Bedeutung des Augendus, ω = AO die des Addendus hat.
Dagegen ist allerdings ω+1 , wo ω als Augendus, l als Addendus figurieren, wie aus den Prinzipien
meiner “Grundlagen” geschlossen wird, eine von ω verschiedene transfinite Zahl, nämlich die auf
die kleinste ω nächstfolgende ganze transfinite Ordnungszahl; letzteres hat aber auf Ihr Exempel
keine Anwendung, da bei Ihnen der Augendus eine endliche und im Endlichen liegende Größe
A′A = 1 , der Addendus AO = ω eine aktual-unendliche ist.”
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The above remarks, of course, do not inform us how Cantor thought the sum of
two segments having lengths α

⊕
r, β

⊕
s ∈ Lc would be defined in the general case.

On the other hand, given that he is considering lengths of continuous line segments for
which 1 + ⊕

ω = ω and ω
⊕

1 > ω , it seems only natural for him to have further
supposed that 1

2 + ⊕
ω = ω and ω

⊕ 1
2 > ω . It is these and related intuitions that

suggest the definition of addition in Lc specified above. We now turn to the matter of
transfinite sums in Lc with ordinary finitary addition thus understood, and to Cantor’s
conception of transfinite sums more generally.

The definition of an ordinary infinite sum of positive magnitudes that is implicit in
Cantor’s second axiom for linear magnitudes is a special case of a more general defi-
nition of transfinite sums of positive magnitudes which by 1887 was an unpublished
principle of Cantor’s thinking, and later came to play an important role in his most
mature investigations of ordinals [1897, pp. 218–220; 1915, pp. 156–158]. In a letter to
Mittag-Leffler dated February 10, 1883, Cantor formulated the definition as follows:

The definition of the sum of a series of positive numbers, which is given as a well-ordered
set is provided by the least hyperfinite number which is greater than or equal to the sum of
arbitrarily many numbers of the set taken in their given succession; that such a minimum
exists is easily seen.62

Also in the letter, Cantor offered the following illustrations that are intended to show
that the resulting sums depend on the sequence of the summands:

1 + 2 + 3 + ...v... = ω

2 + 3 + ... + v + ... + 1 = ω + 1

1 + 3 + 5 + ... + (2v + 1) + ... + 2 + 4 + 6 + ...(2v) + ... = 2ω.63,64

Moreover, in a letter to Mittag-Leffler dated March 3, 1883 Cantor went on to note
that in accordance with his definition

62 [Cantor February 10, 1883]: “Die Definition der Summe einer Reihe aus positiven Zahlen,
welche als wohlgeordnete Menge gegeben ist wird nämlich geliefert durch die kleinste über-
endliche Zahl, welche grösser oder gleich ist der Summe von beliebig vielen in der gegebenen
Succession genommenen und summierten Zahlen der Menge; dass ein solches Minimum immer
vorhanden ist sieht man leicht.”

63 The expression “2ω” is not a typographical error. In 1883, Cantor had not yet adopted the
now familiar notation according to which the ordinal in question would be written “ω · 2”.

64 The same year that Cantor’s Grundlagen appeared in print Mittag-Leffler published a French
translation of an edited portion of it in his Acta Mathematica [Cantor 1883a]. During its prepa-
ration for publication Mittag-Leffler wrote to Cantor to seek clarification on a number of points
regarding Cantor’s theory. The first two of the three questions he raised read as follows:

1.Among your new numbers are there any that might fit between the rational and irrational
numbers? For example, between zero and one are there still other numbers besides the
rational and irrational numbers that are greater than zero and smaller than one? Can you
give me an example?
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1 + 1

2
+ 1

3
+ ... = ω.

He also took the opportunity to restate and amplify his definition thus: “According to
me,” says Cantor,

the definition of the sum of positive magnitudes of an absolutely infinite number series
which is given in the form of a well-ordered set aα , where α runs through all numbers
which are smaller than, or smaller than and equal to a bound [ordinal] , is as follows:
A∑

α=1
aα is equal to the upper bound of all the numbers

A′∑
α=1

aα where A′ < A (respectively

A′ ≤ A).
For the case where A = ω and the series

∑
aα converges, the sum which follows

from this definition agrees entirely with that which is obtained by the known definitions,
as you will certainly see. 65

2. Let
∑

αv be a divergent series with only positive terms [that are real numbers]. Are
such series given any meaning by your investigations? For example, can you say of two
such series

∑
αv and

∑
βv which is the larger?

“On your 1st question,” [responded Cantor] “allow me to answer you later; today I am
not yet certain I would be able to express myself beyond what I said in § 4 of my work.”

In response to the second question, however, Cantor wrote the remarks quoted above in the main
body of the text.

The original texts of Mittag-Leffler’s questions and Cantor’s just quoted response read as
follows:

“1. Giebt es unter Ihren neuen Zahlen solche die zwischen die rationalen und irrationalen
Zahlen eingepasst werden können? Giebt es zum Beispiel zwischen Null und Eins ausser
den rationalen und irrationalen Zahlen die grösser als Null und kleiner als Eins sind noch
andere Zahlen? Können Sie mir ein Beispiel geben?
2. Ich nehme an dass

∑
αv eine Reihe mit nur positiven Gliedern sei, welche divergiert.

Bekommt eine solche Reihe irgend eine Bedeutung bei Ihren Untersuchungen? Kann man
zum Beispiel von zwei solchen Reihen

∑
αv und

∑
βv aussprechen, welche die grössere

ist?” [Mittag-Leffler February 7, 1883, p. 115]
[Cantor February 10, 1883, p. 115]: “Auf Ihre 1te Frage erlauben Sie mir Ihnen später zu
antworten; heute würde ich mich noch nicht bestimmter darüber ausdrücken können als
in §4 meiner Arbeit.”

65 [Cantor March 3, 1883, p. 117]: “Die Definition der Summe positiver Größen, die in der
Form einer wohlgeordneten Menge aα gegeben sind, wo α alle Zahlen der absolut unendlichen
Zahlenreihe zu durchlaufen hat, die kleiner, oder kleiner und gleich sind einer Grenze A, ist bei
mir folgende:
A∑

α=1
aα ist gleich der oberen Grenze aller Zahlen:

A′∑
α=1

aα wo A′ < A resp. A′ ≤ A .

Für den Fall, dass A = ω und dass die Reihe
∑

aα convergirt stimmt die nach dieser Defi-
nition sich ergebende Summe mit derjenigen durchaus überein, welche man nach den bekannten
Definitionen erhält, wie Sie gewiss sehen werden.”
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As far as we know, the only such transfinite sums of numbers that Cantor treated in his
published work are transfinite sums of ordinals (and cardinals) and selected ordinary
infinite sums of real numbers. Cantor’s definition, however, is plainly applicable to
transfinite sums of members of Lc as well. Not only are such ordinary infinite sums
of members of L(0,ω1) well-defined in L(0,ω1) when finitary addition is defined in the
manner specified above, but the more general transfinite sums of members of Lc are
well-defined in Lc as well. This is of some significance since just as the existence of
such well-defined ordinary infinite sums of positive magnitudes in L(0,ω1) makes it pos-
sible to define ζ · ω in L(0,ω1) for each ζ ∈ L(0,ω1), the existence of the more general
transfinite sums in Lc makes it possible to define ζ · η in Lc for each ζ ∈ Lc and
each ordinal η. Indeed, if ζ ∈ Lc and ζ · η is defined (according to Cantor’s definition)

as the transfinite sum
η∑

α=1
ζα where ζα = ζ for all α, then ζ · η is well-defined for all

ordinals η and is equal to the least upper bound in Lc of all the partial sums
β∑

α=1
ζα where

0 < β < η if η is an infinite limit ordinal and 0 < β ≤ η if η is a successor ordinal;
furthermore, if ζ is itself an ordinal, then ζ ·η = ζ ·c η where ·c is the familiar Cantorian
product of ordinals.

It is our suspicion that Cantor was fully cognizant of the above, and it is this suspicion
that motivated our earlier observation that much as Cantor’s thinking about L(0,ω1)helped
shape his “proof” of the impossibility of numerical magnitudes of the kind 1

ω
, it may

very well have been his thinking about Lc that helped shape his “proof” of the impossi-
bility of infinitesimals, more generally. Indeed, for as we shall now see, just as Cantor’s
unpublished “proof” relies on the assumption that if 1

ω
is a linear magnitude then 1

ω
· ω

is well-defined, his published “proof-sketch” employs the tacit assumption that if ζ is a
linear magnitude then ζ · η is well-defined for all ordinals η.

8. Cantor’s “proof” of the impossibility of infinitesimals

As we have already mentioned, a sketch of Cantor’s purported general proof of the
impossibility of infinitesimals was first presented in letters to F. Goldscheider [Cantor
May 13, 1887] and K. Weierstrass [Cantor May 16, 1887], and soon thereafter appeared
in [Cantor 1887]. The discussion in the latter, which essentially follows the text of the
letter to Goldscheider, reads as follows.

You mention in your letter the question of actual infinitely small magnitudes. At sev-
eral places of my works you will find expressed the opinion that this is impossible, i.e.,
they are self-contradictory in thought, and I already implied in my work “Foundations of
a General Theory of Manifolds”, p. 8, §4, even though still with a certain reserve, that a
rigorous proof of this position could be derived from the theory of transfinite numbers.
During this winter, the time was first found to express my ideas on this subject in the form
of a formal proof. It concerns the theorem:
Non-zero linear numbers ζ (i.e., numbers which may be regarded as bounded, continuous
lengths of straight lines) which would be smaller than each arbitrarily small finite number
do not exist, i.e., they contradict the concept of linear numbers.
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The thought process of my proof is simply as follows: I proceed from the assumption of
a linear magnitude ζ which is so small that its n-fold product

ζ · η

is less than unity for each whole number, and prove from the concept of linear magnitude
with the help of certain propositions of transfinite number theory, that even when ν is an
arbitrarily large transfinite ordinal (i.e., the order type of a well-ordered set)

ζ · v

is smaller than any finite magnitude that is as small as you please. This means that ζ

cannot be made finite through any actual infinite multiplication, and is therefore certainly
not an element of finite magnitude. Thus, the assumption we made contradicts the concept
of a linear magnitude, which is of the sort that, according to it each linear magnitude must
be thought of as an integral part of another, in particular of finite linear magnitude. So
nothing is left but to let go of the assumption that there is a magnitude ζ which for any
finite whole number n would be smaller than 1

n
, and with this our proposition has been

proven.
It seems to me that this is an important application of the theory of transfinite numbers,

which is capable of pushing aside widespread prejudices.
The fact of actual infinite numbers is thus so little ground for the existence of actual

infinitely small magnitudes that, on the contrary, the impossibility of the latter can be
proven with the former.

I also don’t believe that this result can be reached fully and strictly in any other way.
The need of our theorem is especially clear for the purpose of opposing the newer

attempts of O. Stolz and P. Dubois-Reymond to derive the legitimacy of actual infinitely
small magnitudes from the so-called “Archimedean axiom” (cf. O. Stolz, “Zur Geometrie
der Alten, insbesondere über ein Axiom des Archimedes” 1881-82, 1883; “Die unendlich
kleinen Grössen” 1884; “Vorlesungen über allgemeine Arithmetik”, Part 1, Leipzig 1885,
p. 205).

Archimedes appears to be the first to remark that, the assertion used in Euclid’s Ele-
ments, where upon from any arbitrarily small line segment can be produced through
sufficiently large multiplication an arbitrarily large line segment, requires proof, and for
that reason he believed that this assertion should be called an “Assumption.”

(Cf. Euclid’s Elements, Book V, Definition 4: Magnitudes are said to have a ratio to
one another which are capable, when multiplied, of exceeding one another;also, especially
Elements, Book X, Proposition 1,Archimedes’The Sphere and Cylinder I, Postulate 5 and
the Introduction to his work: The Quadrature of the Parabola).

Now it is the reasoning of those authors (O. Stolz loc. cit.), that if one deletes this
supposed “axiom,” the permissibility of actual infinitely small magnitudes, which are
there called “moments,” would emerge. But if the above theorem of mine is applied to the
continuous straight line, the necessity of the Euclidean assumption immediately follows.
Therefore the so-called “Archimedean Axiom” is not an axiom at all, but a theorem that
follows with logical necessity from the concept of linear magnitude.66

In the years following the publication of these remarks questions and controversy
about them rapidly emerged. What was clear of course was that Cantor believed he had

66 For the original German text, see Appendix IV.
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provided a proof-sketch that infinitesimals contradict the concept of a linear magni-
tude and thereby a proof-sketch that infinitesimals “are self-contradictory in thought”
and hence that “the existence of actual infinitely small magnitudes... [constitutes an]
...impossibility.” It was also clear that Cantor believed that by applying his “theorem”
on the nonexistence infinitesimals to the continuous straight line he was able to prove
the version of the Archimedean axiom found in Euclid’s Elements and thereby obviate
its need as an independent axiom.67 Also apparent to at least some of Cantor’s readers
was that Cantor believed that his “proof” applied not solely to geometrical magnitudes
but stood in direct opposition to “the newer attempts of O. Stolz and P. Dubois-Reymond
to derive the legitimacy of actual-infinitely small magnitudes from the so-called ‘Archi-
medean axiom’.” On the other hand, what was not so evident to Cantor’s readers was
the precise content and import of Cantor’s “proof-sketch” or how Cantor thought the
argument should be fleshed out. This of course is not terribly surprising since Cantor’s
purported proof-sketch provides the reader with neither the definitions of the purported
proof’s central concepts nor a list of the propositions of transfinite number theory upon
which it is supposedly based. Nor, unfortunately, did Cantor ever attempt to fill these
gaps, at least not in his subsequent publications nor in any subsequent letters of which
we are aware. Nor, of course, did Cantor’s readers have general access to his earlier
unpublished letters where he did attempt to shed at least some light on these issues.

Perhaps the chief source of puzzlement, as we have already noted, concerned Can-
tor’s use of the term “linear number.” What precisely did he mean by such numbers?
Since, according to Cantor, “Non-zero linear numbers ... [are] ... numbers which may be
regarded as bounded, continuous lengths of straight lines,” it was probably safe for his
readers to assume at least:

(L0∗) The system 〈L, +, <〉 of non-zero linear numbers is a positively ordered semigroup,
having neither a least element nor any idempotent elements,68 that contains the strictly
positive cone 〈R+, +R+ , <R+〉 of real numbers as a substructure.

Also plausible given Cantor’s contention and perhaps more natural from the standpoint of
late nineteenth-century mathematics (see Note 69) was the somewhat stronger assump-
tion:

67 Apparently, Cantor also believed that by proving the Archimedean axiom he had fulfilled
a need that had long ago been recognized by Archimedes. However, precisely how Archimedes
viewed the so-called Axiom of Archimedes has long been the source of controversy, and Cantor’s
interpretation is only one of a number of possible interpretations. For insightful and provocative
discussions of Archimedes’ own views regarding the Archimedean axiom, see [Hjelmslev 1950;
Dijksterhuis 1987, pp. 148–150; Knorr 1987, pp. 431–433; and Knorr 1978, pp. 205–213 along
with the references cited therein]. Knorr’s [1978] contains arguments that lend support to Cantor’s
view.

68 An element µ is idempotent if µ+µ = µ. For further discussion of such elements including
an example of a positively ordered semigroup containing a non-zero idempotent infinitesimal, see
Appendix II.
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(L0) The system 〈L, +, <〉 of non-zero linear numbers is a strictly positively ordered semi-
group, without a least element, that contains the strictly positive cone 〈R+, +R+ , <R+〉 of
real numbers as a substructure.69

Still another plausible assumption for Cantor’s readers to have made, and an assertion
Cantor almost certainly did assume, is right-solvability, i.e.,

(L1∗) For all linear numbers ζ and ζ
′

where ζ < ζ
′

there is a linear number γ such that
ζ + γ = ζ

′
.70

Moreover, since Cantor remarked that “each [non-zero] linear magnitude must be thought
of as an integral part of another, in particular of finite linear magnitude” presumably it
was also safe for his readers to assume:

(L1) For each linear number ζ , there is a finite linear number r such that r ≥ ζ .

Before turning to an analysis of Cantor’s “proof-sketch” per se, it will be instructive
to briefly ponder the potential import for linear numbers and for Cantor’s hopes therefore
that accrue from the adoption of particular subsets of these four assumptions beginning
with L0∗ and L0.

At first sight, one might think it would have been safe for Cantor to assume for the
sake and purpose of his proof that the system of non-zero linear numbers satisfies strict
positivity (a + b > a, b for all a, b ∈ L) rather than mere positivity (a + b ≥ a, b for
all a, b ∈ L) and the absence of idempotent elements (a + a 
= a for all a ∈ L). How-
ever, while Cantor does not appear to have ever explicitly commented on any of these
conditions, let alone L0∗ and L0, we believe there are at least two reasons that might
have pushed him in the direction of positivity and the absence of idempotent elements, if
pressed. First, as we have already observed, in an earlier section of the paper containing
the above “proof-sketch,” Cantor discussed a transfinite straight line the measures of
whose line segments constitute an initial segment of his “continuous set of numbers”
Lc; moreover, whereas these measures satisfy positivity and the absence of idempotent

69 The basis of our contention that from the standpoint of late nineteenth-century mathematics
L0 would have been a more natural assumption than L0∗ is simply that idempotent elements do not
appear to have played any role in discussions of ordered semigroups until well into the twentieth
century. Whereas idempotent elements of groups (without total orders) had been discussed by
Frobenius in 1895 and by E. H. Moore in 1905, idempotent elements of semigroups, more gen-
erally, appear to have been first investigated by Ward, Suschkewitsch, Poole, Rees and Climescu
in the 1930s and 1940s [cf. Clifford and Preston 1961, p. 20]. Moreover, discussions of non-zero
idempotent elements of (additively written) ordered semigroups appear to have emerged even later
with A. H. Clifford’s influential investigations of positively ordered (as opposed to merely strictly
positively ordered) semigroups [cf. Clifford 1954b; 1958].
Unlike in (additively written) ordered semigroups, non-zero idempotent elements cannot occur in
(additively written) ordered groups.

70 Indeed, as we learned from Cantor’s letter to Kerry dated March 18, 1887, Cantor assumed
that linear magnitudes have the property of “unrestricted ... subtraction (... in the sense that the
smaller magnitude should be subtracted from the larger). Thus each smaller magnitude is consid-
ered part of the larger ....”
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elements they do not satisfy strict positivity (since, for example, 1 + ω = ω). Thus, for
Cantor, writing in 1887, it is not evident that the phrase “numbers which may be regarded
as bounded, continuous lengths of straight lines” carries with it the implication of strict
positivity. Second, as we believe Cantor himself makes clear, among the principal targets
of his “proof” are Stolz’s systems of moments, systems that likewise satisfy positivity
and the absence of idempotent elements but not strict positivity. Accordingly, if Can-
tor’s “proof” was to have any hope of undermining Stolz’s moments, he could not have
assumed strict positivity and, hence, L0 from the outset. This of course is not intended
to suggest that Cantor would not have deemed the linear numbers to be strictly positive;
since he held that the non-zero linear numbers could be shown to coincide with the
strictly positive real numbers he undoubtedly would, but given his purposes at hand this
would be something he would have to prove.71 On the other hand, as best as we can tell,
neither Cantor nor his critics ever expressed any recognition of this, and we suspect that
at least for his critics it was L0 rather than L0∗ that they tacitly assumed.72

Despite having informed Eneström only one month earlier that he was finally able to
prove with the aid of transfinite numbers that there are no non-zero linear numbers except
for the strictly positive real numbers Cantor made no overt attempt to incorporate such a
proof along with the above “proof-sketch.” Whether he believed that L0 (or, even, L0∗)
together with L1 and a proof of the nonexistence of non-zero infinitesimal linear numbers
was sufficient for that purpose we are in no position to say–though if he did believe it, he
would have been mistaken as the nontrivialArchimedean extensions of 〈R+, +R+ , <R+〉
that emerged in the work of Bettazzi [1890] would soon make clear.73On the other hand,

71 Everything just said about strict positivity applies to the cancellation laws of addition (see
Notes 7 and 33), neither of which is satisfied by Stolz’s systems of moments or by Cantor’s
transfinite straight line. It is perhaps also worth noting that while Stolz’s systems of moments
are solvable, i.e., they are both right-solvable and left-solvable (see Note 7), Cantor’s transfinite
straight line is merely right-solvable. The failure of left-solvability is evident from the fact that
while ω > 1 there is no ordinal γ such that γ + 1 = ω. Thus, for Cantor writing in 1887, it is
by no means evident that the phrase “numbers which may be regarded as bounded, continuous
lengths of straight lines” carries with it either the implications of strict positivity, cancellativity or
left-solvabiltiy.

See Parenthetical Observation I of Appendix III for further observations related to these
matters.

72 In fact, one of Cantor’s more sympathetic critics interpreted Cantor’s contention that “each
linear magnitude must be thought of as an integral part of another” as asserting that “the juxta-
position of two segments allows the formation of another segment, composed of the two though
different from each”[Vivanti 1891b, p. 254], an assertion whose analog for linear numbers is given
by:

(L0∗∗) For all non-zero linear numbers ζ and ζ
′
, ζ

′ + ζ 
= ζ
′
, ζ .

But, as is easy to see, the conjunction of L0∗ and L0∗∗ is equivalent to L0.
73 In modern parlance, Bettazzi isolated Archimedean, strictly positively ordered semigroups,

without least elements, that contain the strictly positive cone 〈R+, +R+ , <R+〉 of real numbers as
a substructure as well as anomalous pairs. Following Alimov [1950], two elements a and b of a
positively ordered semigroup are said form an anomalous pair if for all integers n > 0, na < nb <

(n + 1)a, or na > nb > (n + 1)a . Intuitively speaking, in an Archimedean positively ordered
semigroup two elements form an anomalous pair if they differ by an infinitesimal amount. Since
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of course, he might have believed quite correctly that L0 (or, even, L0∗) together with
L1, L1∗ and a proof of the nonexistence of non-zero infinitesimal linear numbers was
sufficient to show that 〈L, +, <〉 coincides with 〈R+, +R+ , <R+〉–though even if he did,
it is doubtful he would have been in a position to prove it.74 In connection with the above
one also cannot help wondering what Cantor took to be the justification for L1? Could
it be that L1, which in effect rules out infinitely large linear numbers, was introduced
by Cantor as a quick fix to the problem of unlimited addition of linear magnitudes we
alluded to in our discussion of Cantor’s letter to Kerry of March 18, 1887, or did Cantor
believe he had some more theoretical justification for maintaining that linear magnitudes
are parts of finite magnitudes? Again, we just don’t know. In any case, since L0∗ together
with L1 do preclude the possibility of linear numbers that are infinitely large relative to
the real numbers, to establish the Archimedean nature of 〈L, +, <〉 it only remained for
Cantor to show that there are no non-zero infinitesimal linear numbers.

As several of Cantor’s critics observed, in his attempt to establish the impossibility
of non-zero infinitesimal linear numbers, Cantor implicitly relied upon the following
two assumptions that transcend the familiar late nineteenth-century assumptions about
magnitudes, the second of which he apparently took to be a manifestation of his con-
tention that “each [non-zero] linear magnitude must be thought of as an integral part of
another, in particular of finite linear magnitude,” presumably, it being understood that
the ordinals constitute “the extended sequence of integers” [Cantor 1883 in Ewald 1996,
p. 887].

(L2) If ζ is a linear number, then ζ · η is well-defined for all ordinals η.75

(L3) If ζ and r are non-zero linear numbers for which ζ < r and r is finite, then ζ · η ≥ r

for some ordinal η (where ζ · η is itself a finite linear number).76

In particular, relying on L2 he believed he could prove his “theorem” by establishing
the incompatibility of the existence of an infinitesimal linear number and L3, and hence

a positively ordered semigroup without an identity is isomorphic to an ordered subsemigroup of
〈R+, +R+ , <R+〉 if and only if it is Archimedean and contains no anomalous pairs [Fuchs 1961;
1963, p. 169: Theorem 5], it readily follows that: if 〈L, +, <〉 satisfies L0∗ together with L1 and
the Archimedean Axiom, then 〈L, +, <〉 coincides with 〈R+, +R+ , <R+〉 if and only if L contains
no anomalous pairs.

See Parenthetical Observation II of Appendix III for an example of a continuous (i.e., dense
and Dedekind complete) structure that satisfies L0 together with the Archimedean axiom but does
not coincide with 〈R+, +R+ , <R+〉 .

74 For a proof-sketch that L0∗, L1, L1∗ and the absence of non-zero infinitesimal members of
L collectively suffice to show that 〈L, +, <〉 coincides with 〈R+, +R+ , <R+〉, see Parenthetical
Observation III of Appendix III.

75 Strictly speaking, Cantor’s “proof-sketch” only makes use of the following weaker version
of L2: If ζ is an infinitesimal linear number, then ζ ·η is well defined for all ordinals η. On the other
hand, as we shall soon see, in his letter to Veronese dated September 7, 1890, Cantor expresses
his support for L2.

76 While Cantor’s critics usually identify L3 as the assumption tacitly employed by Cantor in
conjunction with L2, there is nothing in Cantor’s remarks that would point to L3 rather than one
of the following two assertions as the assumption Cantor actually had in mind:
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the incompatibility of the existence of an infinitesimal linear number and the concept of
linear number, more generally, by proving what we shall call

Cantor’s Lemma. Let r and ζ be non-zero linear numbers where r is finite. If ζ is an
infinitesimal, then ζ · η < r for all ordinals η.

Unlike Cantor’s unpublished “proof” which indicates how 1
ω

·ω is to be defined, the
published “proof-sketch” contains no clear statement how ζ ·η is to be interpreted when
ζ is an infinitesimal and η is a transfinite ordinal. Despite this, most of the early com-
mentator’s on Cantor’s purported proof including Stolz [1888, p. 603], Vivanti [1891b,
pp. 253–254], Bettazzi [1891, p. 178; 1892, pp. 39–40], Frege [1892 in 1984, p. 180],
Veronese [1891, pp. 105–106] and Zermelo [Cantor 1932, p. 439] tacitly supposed that
Cantor intended these products to be defined in a manner which is entirely concordant
with Cantor’s unpublished definition of transfinite sum contained in his letters to Mit-
tag-Leffler discussed above, that is, by treating ζ as a unit element and defining ζ · η

in much the same manner as Cantor defines 1 · η. For example, when referring to the
multiplication in question, Frege observed that: “The word ‘multiplied’ would have to
be understood here in Cantor’s sense” [1892 in 1984, p. 180; 1892 in 1967, p. 165].
We suspect that these authors believed that if Cantor had intended the product to be
defined in some other way he would have felt obliged to say as much. Moreover, at least
one of his commentators, Veronese [1891, p. 105: Note 1], took Cantor’s previously
discussed treatment of actual infinite line segments of lengths ω and ω + 1 to provide
implicit support for this particular interpretation of how Cantor understood ζ · η is to be
defined when ζ is a bounded segment of a straight line and η is a transfinite ordinal. In
addition, with “ζ · η” thus understood Cantor’s “integral part” interpretation of L3 not
only takes on a natural geometrical interpretation in terms of segment addition but one
that is in complete harmony with Cantor’s just-mentioned discussion of line segments
having transfinite lengths. In any case, as we suggested above, given the contents of the
aforementioned letters to Kerry and the temporal proximity of these letters to those of
Eneström, Goldscheider and Weierstrass, this construal of Cantor’s intention appears to
have the ring of truth. This being the case, henceforth we will assume that Cantor did
indeed construe L2 in this manner and we will write L2c to designate L2 thus understood.

As Cantor’s remarks in his above-cited letters to Mittag-Leffler make clear, Cantor
would have been well-aware that L2c carries with it the presupposition that the system
of numbers in which the products ζ ·η are defined–presumably Lc supplemented, for the
sake of the proof, with supposed infinitesimals and any requisite elements that differ from

(L3∗) If ζ and r are linear numbers for which ζ < r and r is finite, then ζ ·η > r for some ordinal
η (where ζ · η is itself a finite linear number).

(L3∗∗) If ζ is a linear number, then ζ · η = r for some finite linear number r and some ordinal η.

Each of the three assertions could serve the same end in Cantor’s argument and each may be
naturally interpreted as expressing a manifestation of his contention that “each [non-zero] linear
magnitude must be thought of as an integral part of another, in particular of finite linear magnitude.”
In fact, as is demonstrated in Parenthetical Observation IV of Appendix III, if L2 is interpreted in
the manner we believe Cantor intended–see L2c below–the three assertions are equivalent.
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one another by infinitesimal amounts–satisfies some sort of least upper bound property;
in particular, ζ · η would be the least upper bound in the system of the set of products
ζ · α (α < η) whenever η is an infinite limit ordinal. Moreover, as a consequence of
this, one would have the following generalization of the second part of Cantor’s second
axiom of linear magnitudes from his letter to Kerry:

(C1) If s = ζ · η where ζ is a linear number and η is an infinite limit ordinal, and
0 < s ′ < s, then there is an ordinal α < η such that ζ · α > s ′.

Assuming Cantor to have indeed embraced L2c and, hence, C1, along with L0∗, one
could also imagine him proving his Lemma (and thereby his Theorem) by reductio ad
absurdum as follows. Suppose the Lemma is false. Then ζ is a non-zero infinitesimal
linear number, r is a non-zero finite linear number (i.e., a member of L which, in virtue
of L0∗, lies between two elements of R

+) and there is an ordinal η such that ζ · η ≥ r .
But since every subclass of ordinals has a least member, it follows that:

(�) There is a least non-zero ordinal, say, ν, such that ζ · ν ≥ s for some non-zero finite
linear number s (i.e., ζ · ν ≥ s for some non-zero finite linear number s and if ζ · ν ′ ≤ t ′

for some ordinal ν ′ and some non-zero finite linear number t ′, then 0 < ν ≤ ν ′).

Now, either µ is a limit ordinal or µ is a successor ordinal. If ν is a limit ordinal and s′
is any of the infinitely many non-zero finite linear numbers smaller than s, then by C1
ζ · µ ≥ s′ for some µ < ν, which contradicts �. Moreover, if ν is a successor ordinal,
then ζ · (ν − 1) ≥ s′′ for some non-zero finite linear number s′′, which likewise violates
�; thereby proving the Lemma.

This argument is in fact valid; thus, assuming it or an argument very much like it to
have been the argument Cantor had in mind, Cantor might very well have been on safe
logical ground. On the other hand, of course, it does not prove the impossibility of infin-
itesimals. At best, it proves the impossibility of an ordered semigroup extension of the
reals that contains infinitesimals and satisfies L0∗, L2c and L3.77 While stated perhaps

77 In his biography of Cantor, Joseph Dauben made a related though somewhat misleading
observation. According to Dauben:

Numbers were linear if a finite or infinite number of them could be added together to pro-
duce yet another linear magnitude .... Having assumed that all numbers must be linear, this
was equivalent to the Archimedean property, and thus it was no wonder that Cantor could
“prove” the axiom. The infinitesimals were excluded by his original assumptions, and
his proof of their impossibility was consequently flawed by its own circularity. [Dauben
1979, pp. 130–131]

To begin with, the characterization of linear numbers specified by Dauben neither implies nor is
implied by the Archimedean axiom. Consider, for example, Lc with finitary addition defined in the
manner we specified in the above discussion of Cantor’s letter to Kerry dated March 18, 1887, and
transfinite addition defined à la Cantor. With finitary and transfinite addition thus defined, the sum
of any finite or transfinite number of members of Lc is itself a member of Lc, but Lc is not Archi-
medean–since, for example, n1 < ω for all positive integers n. Conversely, while 〈R+, +R+ , <R+〉
is Archimedean, 1 + 1 + 1 + ... (taken ω times) is not a member of R

+. Moreover, even if Dau-
ben’s mathematical contention were correct, I do not see why it would be appropriate to describe
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with less precision, observations of this sort are not entirely new. The first person to draw
attention to such a limitation appears to have been Otto Stolz who directed his attention
to Cantor’s reliance on L2 and, apparently, L2c in particular. Other authors such as Bet-
tazzi called into question L3. Before moving beyond Cantor’s “proof-sketch” proper,
however, we will first say a few more words about the contention contained therein that
linear numbers are “numbers which may be regarded as bounded, continuous [stetiger]
lengths of straight lines,” a contention which, at first sight, appears to play no important
role in Cantor’s purported proof other than perhaps that of motivating such underlying
ordered semigroup assumptions as L0∗, L0 and L1∗.

As the reader might suspect, Cantor’s contention helped contribute to the controversy
and confusion that soon befell and continues to befall his purported proof of the impos-
sibility of infinitesimals. In particular, some authors such as Frege [1892 in 1984, p. 180]
and Meschkowski [1967, pp. 120–121] have apparently taken the just-quoted remark to
indicate that Cantor’s attempt to prove the impossibility of infinitesimals was an attempt
to show that the now standard geometrical linear continuum is devoid of infinitesimals.
However, while admitting that it would not be entirely unnatural to construe Cantor’s
remark in this fashion, especially when considered in isolation, we find this interpre-
tation to be implausible for several reasons that go beyond the simple observation that
both in his private letters and published works Cantor includes the works and remarks of
du Bois-Reymond and Stolz on infinitesimals among the targets of his “proof.” To begin
with, already in 1872 Cantor had published his seminal paper in which he introduced
his familiar construction of the real numbers [1872 in 1932, pp. 92–96], pointed out
that each point of a Euclidean line could be shown “by means of purely logical argu-
mentation” to be coordinated by a pair of such “number-magnitudes” [1872 in 1932,
p. 96], and introduced his own formulation of the so-called Cantor-Dedekind axiom
which postulates that “to every [real] number there corresponds a definite point of the
[Euclidean] line, whose coordinate is equal to that number” [1872 in 1932, p. 97]. Thus,
by 1872, for Cantor, as for Dedekind, establishing that the geometrical linear continuum
is devoid of infinitesimals was reducible to showing that the system of real numbers is
devoid of infinitesimals–something Cantor never perceived the need to prove! Indeed,
in his Grundlagen, when Cantor first proposed the idea of proving the impossibility of
infinitesimals using his theory of transfinite ordinals he characterized “infinitely small
numbers” (and numbers that differ from a real number by an infinitesimal amount, more
generally) as

numbers which do not coincide with the rational and irrational numbers ... but which might
be inserted into supposed gaps amidst the real numbers, just as the irrational numbers are
inserted into the chain of the rational numbers, or the transcendental numbers into the
structure of the algebraic numbers. [Cantor 1883 in Cantor 1932, p. 171; Cantor 1883 in
Ewald 1996, p. 887; (Translation Ewald)]

Cantor’s argument as circular since Cantor’s conception of a linear number is not a mere restate-
ment of either the Archimedean axiom or the absence of infinitesimals. On the other hand, as we
have already mentioned, Cantor’s purported proof would not be successful since it would merely
preclude the existence of infinitesimal linear numbers.
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Moreover, as Veronese [1891, p. 105: Note 1] later pointed out, if Cantor was merely
intending to establish that there are no infinitesimal segments in the ordinary contin-
uum, there was no need for him appeal to “propositions of transfinite number theory”
to achieve that end. In fact, we suspect Cantor was well aware that Stolz, in his paper on
the Axiom of Archimedes [1883, p. 509; Note*], had already provided an elementary
argument showing that any absolute (or relative) system of magnitudes in Stolz’s sense
is Archimedean if it is a linear continuum in the sense of Cantor (see Note 25). In addi-
tion, there seems to be no way to square this interpretation with the thrust of the earlier
“proof” contained in his letter to Kerry or with his already quoted remarks contained in
his letter to Gustav Eneström to the effect that:

I was always of the view that the linear magnitudes are thoroughly completed with the
familiar real numbers, and therefore that there are besides these no other linear numbers
and in particular no fixed infinitely small numbers. Now I can prove this with the aid of
transfinite numbers. [Cantor March 6, 1887]

However, if Cantor was not referring specifically to the Cantor-Dedekind geo-
metrical linear continuum, what did he have in mind and what possible role did it play
in his purported proof? While we are not aware of any published or unpublished writing
of Cantor’s that directly addresses these questions we suspect that an exchange of let-
ters between Cantor and Dedekind written in May and June of 1877 may help to shed
important light on them. The subject of the letters is, appropriately enough, “the essence
of continuity.”

In his Stetigkeit und irrationale Zahlen (Continuity and Irrational Numbers) Dede-
kind contends that “property IV”–what is now called the Dedekind cut axiom– expresses
“the essence of continuity” [1872 in Ewald 1996, pp. 767, 771]. While embracing the
substance of Dedekind’s implicit definition of a continuous ordered set, Cantor, in a card
dated May 10, 1877 and again in a letter dated May 17, 1877, nevertheless demurs that:

the stress which at various points in your paper you expressly lay on property IV as being
the essence of continuity must lead to misunderstanding ... [since] ... this property also
holds of the system of all integers, which can, however, be regarded as a prototype of
discontinuity. [Cantor May 17, 1877 in Ewald 1996, pp. 851–852; (Translation Ewald);
also see Noether and Cavaillès 1937, p. 22]

Perceiving that their “opinions diverge at most about expediencies, not about
necessities,” Dedekind retorts:

You concede ... that my definition in fact overlooks nothing; e.g. when I say ‘Domains
which possess properties I [the ordering relation is transitive] and II [the ordering relation
is dense] are called continuous if they also possess property IV .... But it seems that you
would prefer ... ‘Domains, whose elements ... [are] ... of the type defined by I are called
continuous if they also possess properties II and IV’.... [I]f the revised definition pleases
somebody better, I have nothing to say against its legitimacy–that is, not if it should be of
advantage for certain investigations. But my original formulation pleases me much better,
and I think it is more expedient in treating the essence of continuity to lay the emphasis
solely on IV and to discuss property II earlier, before continuity or discontinuity is at
issue.”[Dedekind May 18, 1877 in Ewald 1996, p. 852; (Translation Ewald); also see
Noether and Cavaillès 1937, pp. 22–23]
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Conceding the apparent force of these remarks, Cantor thanked Dedekind for his
letter and added that:

I completely agree with its contents; and I acknowledge that the difference in our points
of view was merely external [Cantor June 20, 1877 in Ewald 1996, p. 853; (Translation
Ewald); also see Noether and Cavaillès 1937, p. 25].

As is evident from the above exchange, in 1877 Cantor, like Dedekind, was of
the opinion that a totally ordered set is continuous if and only if it is dense and Dedekind
complete.78 Indeed, there we find unpublished anticipations of the now standard view
that grew out of the early twentieth-century work of Huntington [1905–1906, p. 15;
1917/1955, p. 44].79 Accordingly, if we assume that Cantor’s opinion did not change
in this regard, this would explain why he claimed in §4 of his Grundlagen that Lc “is
a continuous set of numbers” [Cantor 1883 in Ewald 1996, p. 887] despite the fact
that Lc is not connected and, therefore, not a linear continuum in the classic sense
he introduced in §10 [Cantor 1883 in Ewald 1996, p. 903] of the very same paper.
Moreover, if we likewise assume that this is the sense of “continuous” Cantor had in
mind when he contended that linear numbers are “numbers which may be regarded as
bounded, continuous lengths of straight lines,” this would also shed light on the basis
of his explicit and implicit use of least upper bound principles in his discussions of
linear magnitudes since a densely ordered set satisfies the Dedekind cut axiom if and
only if every bounded subset has a least upper bound. Indeed, while admitting that Can-
tor may well have had a different sense of “continuous” in mind, we are not aware of
any other sense that brings harmony and clarity to his disparate and sometimes cryptic
remarks regarding linear magnitudes or that squares as neatly with his views on related
matters.80

78 In modern parlance, the Dedekind completeness property for an ordered set P containing
more than one element may be stated thus: If P is the union of two nonempty subsets P1 and
P2 where every member of P1 precedes every member of P2, then either P1 contains a greatest
member or P2 contains a least member. In Dedekind’s original formulation it is not clear whether
Dedekind intended the sentence connective “or” to be understood inclusively or exclusively. Some
authors, including Russell [1903, pp. 279–280], interpreted it exclusively and others, including
Veblen [1905, p. 165] and Huntington [1917, p. 44], treated it inclusively, although it is not clear
they thought this is what Dedekind had in mind (cf. [Huntington 1904–1905, p. 164; 1917, 1955,
p. 19]). On the other hand, since in his exchange with Dedekind Cantor claimed that “this property
also holds of the system of all integers,” presumably he did understand it in the inclusive sense.
Of course, in the case of a densely ordered set, which is the case Dedekind was concerned with,
the assertions that result from adopting the two different senses of “or” are equivalent.

79 Although Huntington took his axioms for “continuous series” from Veblen [1905], Veblen
called such series “continuous” if and only if they are isomorphic to the standard linear continuum.
Moreover, while Stolz’s [1883] also essentially contained the general definition, unlike Hunting-
ton [1905–1906, pp. 16, 24; 1917/1955, pp. 45, 56], Stolz did not provide any example of an open
continuously ordered set that is not isomorphic to the standard linear continuum.

80 Recently, M. Moore [2002, p. 306] published an interesting paper containing an alternative
translation (attributed to W. D. Hart) of Cantor’s purported proof of the impossibility of infinitesi-
mals. Unfortunately, the translation omits the passages that refer to Cantor’s earlier work and that
directs the thrust of Cantor’s attack to the works of Stolz and du Bois-Reymond. From a histor-
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9. Stolz’s response to Cantor

Although doubts about the precise content and import of Cantor’s purported proof
soon emerged, there was never a doubt in Stolz’s mind that his works were among its
principal targets. Stolz accordingly published a formal response the following year in
Mathematische Annalen in a paper entitled Ueber zwei Arten von unendlich kleinen
und von unendlich grossen Grössen (Two Kinds of Infinitely Small and Infinitely Large
Magnitudes). Stolz begins his defense by asserting that:

Mr. G. Cantor has shown, that if a magnitude ζ is assumed to be smaller than each positive
real number and each of the multiples ζ · n, where n is a natural number, as well as each
of the products ζ · ν, where ν is an arbitrary transfinite ordinal number, are defined, then
each of the latter products must also be smaller than an arbitrarily small positive real
number. Accordingly, it is not possible to assume infinitely small elements of the linear
numbers.

This proposition, however, by no means stands in contradiction with the two kinds of
theories of infinitely small magnitudes I have already set up.81

ical standpoint, these are serious omissions because it is these passages that help place Cantor’s
“proof” into historical context and draw attention to its intended targets. Apparently unaware of
the history, Moore suggests that “Cantor’s argument is not just about arithmetic and set theory, but
also and crucially about analytic geometry, about the interplay between geometry and arithmetic,
and the ways in which that interplay is constrained by the properties of space.” Moreover, Moore
fleshes these ideas out in the course of his analysis using such ideas as Archimedean and non-
Archimedean ordered field as well as Cartesian space over Archimedean and non-Archimedean,
Pythagorean ordered fields. The fact that these path-breaking conceptions were first introduced by
Veronese, Levi-Civita and Hilbert in the decade following the publication of Cantor’s “proof” did
not deter Moore from offering this interpretation. We believe, therefore, Moore was wise when
he cautioned readers that: “I am no Cantor scholar. I am interested in the argument mainly as a
possible source of insight into philosophical problems arising from such recent theories of infin-
itesimals as Abraham Robinson’s nonstandard analysis. I am thus not so much concerned with
exactly what Cantor meant to say as I am with what we can say, along Cantor’s lines, about the
infinitely small. I will be accordingly be unapologetically anachronistic in giving my reconstruc-
tion ....” On the other hand, as our analysis would suggest, we are not inclined to embrace Moore’s
further contention that “my [i.e., his] reconstruction is a plausible first guess as to Cantor’s general
drift” [2002, pp. 305–306].

81 [Stolz 1888, p. 601]: “Herr G. Cantor hat gezeigt, dass wenn man von einer Grösse ζ an-
nimmt, sie sei kleiner als jede absolute reelle Zahl und es seien sowohl die Vielfachen derselben
ζ ·n, wo n jede natürliche Zahl, als auch die Producte ζ ·ν, wo ν jede transfinite Ordnungszahl sein
darf, erklärt, dann auch jedes der letzteren Producte kleiner als jede noch so kleine absolute reelle
Zahl sein muss. Demnach geht es nicht an, unendlich kleine Elemente der linearen Zahlgrössen
anzunehmen.
Mit diesem Satze steht die Theorie der [b]isher aufgestellten zwei Arten von unendlich kleinen
Grössen keineswegs in Widerspruch.”
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Indeed, with regard to his systems of moments of functions he notes:

The n-fold multiple of �(f ) is �(nf ). Generally, nf (x) has no limit as the natural number
n grows without bound, so the product �(f ) · ω is undefined, wherein ω signifies the first
number of the second number class.82,83

And with regard to his earlier system based on the ideas of du Bois-Reymond he adds:

Since by the multiple �(f ) · n the magnitude �(f n) is understood, it is already obvious
that in this case the product �(f ) · ω also can not be defined.84

Thus, Stolz does not appear to raise questions about the cogency of Cantor’s
purported proof, but rather about the applicability of the supposed theorem. Indeed,
according to Stolz, even if Cantor’s “Theorem” is in fact a theorem, it does not preclude
the existence of the two systems of infinitesimals he has discussed. After all, argues
Stolz, Cantor’s “Theorem” is only applicable to systems of linear magnitudes in Can-
tor’s sense, i.e., systems of magnitudes whose properties include a well-defined product
by transfinite ordinals, and the systems he has considered are not systems of linear
magnitudes in this sense!

However, while Stolz stands firm in maintaining the logical cogency of his systems
of infinitesimals, he does go on to add that:

I am far from attaching any value other than a formal one to the just-described systems
of magnitudes.85

In fact, says Stolz:

Since for the moments of functions there is no product �(f ) ·ν [for transfinite ν], one can-
not naturally regard them, like the elements of the absolute real numbers, as representing
line segments.86

Thus, Stolz seems to be suggesting that if Cantor’s argument is merely intended to rule
out the possibility of non-Archimedean number systems that can be employed to repre-
sent line segments, then given the absence of the aforementioned products by transfinite
ordinals, Cantor need not view the existence of Stolz’s systems as posing a challenge to
his view. Unfortunately, why he believes that such a product must be well-defined for

82 [Stolz 1888, p. 603]: “Das n-fache von �(f ) ist �(nf ). Da nf (x) bei unendlichem Wachsen
der natürlichen Zahl n imAllgemeinen keinen endlichen Grenzwerth hat, so lässt sich nicht einmal
das Product �(f ) · ω definiren, worin ω die erste Zahl der zweiten Zahlenclasse bedeutet.”

83 It is Stolz’s contention that the product �(f ) · ω is undefined because nf (x) has no limit as
the natural number n grows without bound that suggests to us that Stolz construed L2 as L2c.

84 [Stolz 1888, p. 603]: “Unter den Vielfachen �(f ) · n wird nunmehr die Grösse �(f n) ver-
standen, woraus ersichtlich ist, dass auch in diesem Falle schon des Product �(f ) ·ω nicht erklärt
werden kann.”

85 [Stolz 1888, p. 603]: “Ich bin weit davon entfernt, dem soeben geschilderten Grössensysteme
einen andern als formalen Werth beizulegen.”

86 [Stolz 1888, p. 603]: “Für die Momente der Functionen giebt es also keine Producte �(f ) ·ν,
so dass man natürlich auch sie nicht als Elemente der absoluten reellen Zalhen, bezw. der diese
darstellenden Strecken betrachten kann.”
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numbers that can represent line segments Stolz never says. On the other hand, Stolz’s
apparent rejection of infinitesimal line segments in 1888 seems to be entirely consistent
with the view implicit in his paper of 1883 where straight line for Stolz appears to be
equated with the continuous straight line of Dedekind. And this view emerges even more
clearly in the concluding paragraph of his response to Cantor where we are told:

For neither of the two described systems of magnitudes is the proposition that I call,
for brevity, the Axiom of Archimedes, unconditionally valid. That it is valid for each sys-
tem of continuous magnitudes, and therefore for the straight lines, I have shown taking
as a basis the Dedekind definition of continuity.87

Although Cantor never published a formal response to Stolz’s defense of 1888,
apparently he was not impressed with the strength of Stolz’s argument. Indeed, two
years later when Giuseppe Veronese reiterated Stolz’s defense in a letter to Cantor,
Cantor responded to Veronese as follows:

You say “Mr. Stolz has demonstrated that your [i.e., Cantor’s] theorem has no bearing on
either his infinitely small magnitudes or those of du Bois Reymond, because one can not
define their multiplication by the number omega.”

Mr. Stolz could not have done greater damage to his theory when he emphasized that
his alleged “infinitely small magnitudes” could not be multiplied by ω. An absolute linear
magnitude that is supposed to be real [i.e., have reality] but which nevertheless cannot be
multiplied without limit (and, hence, also with transfinite multipliers) is not a magnitude
at all. And even if he calls these (self contradictory and completely useless) abominations
magnitudes for his and du Bois Reymond’s private use, science will never follow. For
private purposes, he can just as well concern himself with square circles or hyperbolic
ellipses, as with actual infinitely small magnitudes; as long as they do not leave the con-
fines of his study, nobody will oppose these flights of fancy. As far as I’m concerned, such
activities are Signisticismus (playing with symbols).88

87 [Stolz 1888, p. 604]: “Für keines der beiden im Vorstehenden betrachteten Grössensysteme
gilt derjenige Satz, den ich kurz als dasAxiom desArchimedes bezeichne, unbedingt. Dass derselbe
für jedes System von stetigen Grössen, also auch für die geradlinigen Strecken von selbst erfüllt
ist, habe ich unter Zugrundelegung der Dedekind’schen Definition der Stetigkeit dargethan.”

88 [Cantor September 7, 1890]: “Sie sagen “M. Stolz a démontré que votre théorema ne vaut
pas pour ses grandeurs un fini ment [presumably, un fini ment = infiniment] petites ni pour celles
de duBoisReymond, car on ne peut pas définire leur multiple selon le nombre omega.”

Herr Stolz konnte seinen angeblichen “unendlich kleinen Größen” keinen stärkeren Stoß in’s
Herz versetzen, als indem er hervorhob, daß sie sich nicht durch ω vervielfachen lassen. Eine
absolut lineare Größe, die Realität haben soll und trotzdem sich nicht unbegrenzt, (also auch mit
transfiniten Multiplikatoren) vervielfachen läßt, ist gar keine Größe und wenn er diese (sich selbst
widersprechenden und ganz ohne Anwendung und Nutzen dastehenden) Undinge für seinen resp.
duBois Reymonds Privatgebrauch Größen nennt, so wird ihm die Wissenschaft nie darin folgen
können. Für private Zwecke kann man sich ebensogut mit viereckigen Kreisen oder hyperbol-
ischen Ellipsen, wie mit actual unendlich kleinen Größen beschäftigen; solange man damit aus
seiner Studirstube nicht heraustritt, wird Niemand diesen Passionen ein Hinderniss entgegenset-
zen. Derartige Beschäftigungen nenne ich Signisticismus (Zeichenspielerei).”
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10. The emergence of non-Archimedean systems of magnitudes IV:
The work of Thomae

Although Stolz first employed du Bois-Reymond’s system of orders of infinity to
establish the existence of a non-Archimedean system of absolute magnitudes, he could
have established the same result employing an alternative type of system, an instance
of which had been implicit in the literature since 1870 when components of it were
discussed by Johannes Thomae [1870, pp. 40–41; 1872, pp. 124–126; 1873, pp. 9–10;
1880, pp. 113–114]–the man who, according to Georg Cantor, “can claim a question-
able fame for having infected mathematics with the cholera bacillus of infinitesimals
...” [Cantor December 13, 1893 in Meschkowski, 1965, p. 505]. Indeed, as we already
noted, this is precisely what Stolz did in his Theoretische Arithmetik [1902, p. 280], and
he seems to have already hinted at this possibility in a pair of footnotes contained in his
paper of 1883 [p. 505: Note*; pp. 506–507: Note**].

Although Thomae did not explicitly mention the non-Archimedean natures of the
various systems he considered over the years, already in 1870 he asserted that his system
of “measures of ... the orders of vanishing of functions” constitutes a “number domain”
that is “infinitely more dense than ... the ordinary real numbers” and he exhibited a mem-
ber of the domain denoted “lg” which he describes as “a number which while not zero
is smaller than each specifiable number, i.e., a number in the ordinary number domain”
[1870, p. 40: Note*]. And two years later–the year that Cantor’s, Dedekind’s, Heine’s
and Weierstrass’s theories of real numbers first appeared in print–he developed these
ideas further when he wrote:

... these measures constitute a one-dimensional, continuous manifold [in the sense of Rie-
mann] for the determination of which all our ordinary rational and irrational numbers do
not suffice. Indeed, a rigorous theory of irrational numbers ... soon to be published by Mr.
E. Heine ... has need of the following hypothesis: “Any magnitude that is different than
zero by less than each number no matter how small is itself zero.” However, in the con-
tinuity of values of which we speak, and which designates the order in which a function
An vanishes as n approaches infinity there are such values that are essentially different
than zero but smaller than each arbitrarily small number .... I have already spoken of this
subject on page 40 of my book Abriss einer Theorie der complexen Functionen und der
θ -functionen einer Veränderlichen [1870]. There exists also in this range of numbers (if
it be permitted to generalize this name to serve for points of the continuity of the values
that designate orders of vanishing) numbers greater than all ordinary numbers ....89

Following an illustration of the latter point, Thomae goes on to conclude:

It may be that the numbers we have proposed will never play an important role in applied
mathematics; nevertheless it seems to me that it is not superfluous to bring these forms to
the attention of mathematicians, because they shed light on the nature of ordinary num-

89 [Thomae 1872, p. 125]: “... ces mesures constituent une continuité d’une dimension, pour la
détermination de laquelle tous nos nombres communs rationnels et irrationnels ne suffisent pas.
En effet, une théorie rigoureuse des nombres irrationnels ... publiée, ce que Mr. E. Heine fera
bientôt ... a besoin de l’hypothèse suivante: “Toute grandeur qui est différente de zéro de moins
que tout nombre d’une petitesse quelconque, est zéro elle même.” Dans la continuité des valeurs
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bers. For it clearly follows that it is not justified to claim that a point would immediately
follow another in the continuity of [ordinary = real] numbers, which appears intuitively
certain from the continuity of points of a line of the space. In addition, it follows that it is a
true [i.e., genuine] hypothesis to suppose that a number that is not negative but lesser than
all arbitrarily small positive ordinary numbers is itself zero, because one can abandon this
hypothesis without renouncing the laws of addition and multiplication, as I have shown in
the place quoted. Mathematicians, I believe, cannot remove infinitely small quantities that
are different than zero from the sphere of analytic discussion, even though the theory of
ordinary numbers and calculus based thereon are essentially based on the assumption that
such numbers do not exist. This is not the case except for the commonly used numbers.
One is readily disposed to extend this property to all mensurable continuous manifolds,
because it links [the ordinary] numbers to all the points of continuity; however, it is this
that has not always seemed just to me, since sometimes the [ordinary] numbers do not
suffice for all points.90

Like du Bois-Reymond’s “orders of infinity,” Thomae’s “measures” emerged
from the study of the rate of change of functions. However, as the preceding remarks
suggest, in his early work Thomae was primarily concerned with the orders of vanishing
of functions or, the orders of infinite smallness of functions, as Bettazzi [1890], Borel
[1899; 1902], Vivanti [1899; 1908] and Enriques [1911b; 1912] preferred to call them.
Whereas the orders of infinity of functions emerged primarily from the study of positive,
continuous, monotonic, increasing, real-valued functions, the orders of vanishing of
functions emerged largely from the intimately related investigation of positive, contin-
uous, monotonic, decreasing, real-valued functions. The order of vanishing of such a

dont nous parlons, et qui assignent l’ordre dans lequel une fonction An s’annule, n croissant à
l’infini, il y a de telles valeurs qui sont plus petites que chaque nombre aussi petit qu’on veut, et qui
cependant diffèrent essentiellement de zéro .... J’ai déjà parlé de ce sujet dans mon livre “Abriss
einer Theorie der complexen Functionen und der θ -functionen einer Veränderlichen” page 40. Il
existe aussi dans cette étendue des nombres (s’il est permis de généraliser ce nom et s’en servir
pour les points de la continuité des valeurs qui marquent les ordres de décroissement) des nombres
plus grands que tout nombre commun ....”

90 [Thomae 1872, pp. 125–126]: “Peut-être que les nombres que nous avons proposés ne jou-
eront jamais un rôle important dans les mathématiques appliquées; néanmoins il me semble qu’il
ne soit pas superflu de rendre attentifs les mathématiciens à ces formes, parcequ’elles peuvent
mettre dans son jour la nature des nombres communs. Car il en provient clairement, qu’il n’est
pas juste de prétendre qu’un point suive immédiatement un autre dans la continuité des nombres,
ce qui parait intuitivement sûr dans la continuité des points d’une ligne de l’espace. Il en résulte de
plus, qu’il est une vraie hypothèse de supposer qu’un nombre qui n’est pas négatif, mais moindre
que tout nombre commun positif, quelque petit qu’il soit, soit zéro luimême, parceque l’on peut
abandonner cette hypothèse sans renoncer aux lois de l’addition et de la multiplication, ce que j’ai
montré au lieu cité. Les mathématiciens, je crois, ne pourront éloigner de la sphère des discussions
analytiques les quantités infiniment petites, différentes néanmoins de zéro, bien que la théorie des
nombres communs et les calculs y fondés soient appuyés essentiellement sur cela, que de telles
nombres n’existent pas. Mais cela ne vaut que pour l’étendue des nombres usités. On est aisément
disposé à étendre cette propriété sur toutes les continuités mensurables, parcequ’on rapporte les
nombres aux points de toute continuité; c’est ce que ne me semble pas être toujours juste, puisque
les nombres quelque fois ne suffisent pas pour tous les points.”
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function f (x) is the rate at which f (x) tends to 0 as the variable x approaches a given
value a.91 In 1870, in particular, Thomae was concerned with the orders of vanishing of
functions of the form

xa · 1

(log x)β

1

(log2 x)γ
· · · 1

(logm x)µ
(as x approaches +0)

where α, β, ν, . . . , µ are real numbers, m is a positive integer, and log2 x = log log x,

log3 x = log log log x, etc. However, unlike du Bois-Reymond and Stolz, Thomae rep-
resented the rates of growth of functions with the members of an infinite-dimensional
version of Herman Grassmann’s systems of hypercomplex numbers or simply, complex
numbers, as most late nineteenth- and early twentieth-century mathematicians called
them.

Grassmann’s systems of complex numbers were developed in his monograph on
the calculus of extension [1862]. They are divisible Abelian groups consisting of all
elements of the form

a1e1 + . . . + anen

where n is a fixed integer > 1, e1, . . . , en, are distinct units, and a1, . . . , an ∈ R.
Addition for these complex numbers is defined by the rule

(a1e1 + . . . + anen) + (b1e1 + . . . + bnen) = (a1 + b1)e1 + . . . + (an + bn)en

where (a1 + b1), . . . , (an + bn) are the respective sums in R. 0e1 + . . . + 0en is the
zero of the group; and the divisibility of the group is evident since for each element
a1e1+. . .+anen of the group and for each positive integer m, (a1/m)e1+. . .+(an/m)en

is a member of the group for which

m[(a1/m)e1 + . . . + (an/m)en] = a1e1 + . . . + anen.

91 As we have already mentioned (see Note 19), du Bois-Reymond had also considered such
functions in his [1870–71]. In 1875 he went further when he observed that

... the most complete symmetry exists between functions becoming zero and becoming
infinite, in such a manner that everywhere the positive numbers correspond in the most
striking manner to becoming infinite, the negative numbers to becoming zero, zero to
remaining finite.

[du Bois-Reymond 1875, p. 363]: “... dass zwischen Null- und Unendlichwerden die vol-
lständigste Symmetrie herrscht, dergestalt, dass überall dem Unendlichwerden der Func-
tionen die positiven Zahlen, dem Nullwerden die negativen Zahlen, dem Endlichbleiben
die Null in schlagendster Weise entsprechen.”

Indeed, in the succeeding decades it became apparent that building on the just-described symmetry
one could construct a system of orders of infinite smallness along the lines taken by Stolz [1883].
For the details of the construction, see [Vivanti 1899, pp. 54–66; 1908, p. 194]. Also see [Bettazzi
1890, § 66; 1893, p. 55] and [Enriques 1911b, pp. 99–100; 1912, pp. 481–482].
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In fact, each of these groups may be naturally regarded as a n-dimensional vector space
over R, where the units e1, . . . , en constitute a basis for the space and for each r ∈ R

and each element a1e1 + . . . + anen

r(a1e1 + . . . + anen) = r(a1e1) + . . . + r(anen).

Thomae essentially extended Grassmann’s construction by considering a notational
variant of a system of complex numbers of the form a1e1 + . . . + anen + . . . where n

ranges over all positive integers, the ans are members of R, e1 = 1, and at most a finite
number of the coefficients are nonzero.92,93 More significant, however, was Thomae’s
realization that such a system can be ordered in accordance with the condition

a1e1 + . . . + anen + . . . < b1e1 + . . . + bnen + . . . , if at the first i

for which bi − ai 
= 0, ai < bi.

Indeed, in accordance with this lexicograghical ordering–as Hausdorff [1914] later
called it –Thomae’s and Grassmann’s systems of complex numbers are non-Archime-
dean ordered Abelian groups. This being the case, the set of strictly positive elements of
each such system is a non-Archimedean (totally) ordered absolute system of magnitudes
in the sense of Stolz.

Thomae constructs his measures and assigns them to the orders of vanishing of the
aforementioned functions in two stages: first he assigns to the “orders” of the func-
tions 1

log x
, 1

log2 x
, 1

log3 x
, . . . measures denoted by lg,lg2,lg3, and so on; and next to each

function of the form

xα · 1

(log x)β
· 1

(log2 x)γ
· · · 1

(logm x)µ

where α, β, ν, . . . , µ are real numbers and m is a positive integer, he assigns the measure

α + β lg +γ lg2 + · · · + µ lgm .

92 Three years earlier, Hankel [1867: Section 31] introduced a similar extension of Grassmann’s
construction.

93 Strictly speaking, Thomae never discusses addition for his “complex numbers” in his [1870;
1873 and 1880]. On the other hand, as the above quoted passage from his [1872] makes clear, he
believed that already in his [1870] he had demonstrated that his numbers can be added in a manner
that preserves the classical properties for addition. Perhaps the most natural interpretation of this
is that having identified his numbers as “complex numbers,” he took it to be understood that they
could be added in the then already standard termwise fashion. This would also help to explain why
he always specified the rule by which he intended his complex numbers to be multiplied [1870,
p. 41; 1873, p. 9 and 1880, p. 113]. Indeed, unlike the rule he specified (see above) that satisfies
the classical properties of multiplication and that is, as he emphasized, compatible with a total
ordering of his numbers, there were well-known non-commutative multiplications for complex
(i.e., hypercomplex) numbers in the literature due to Hamilton and Grassmann that were known
not to enjoy these properties.
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By now letting the elements 1, lg, lg2, ... serve as the units, and by defining addition
termwise and ordering the “measures” lexicograghically, Thomae obtains a divisible
ordered Abelian group (i.e., a totally ordered relative system of magnitudes in the sense
of Stolz (see Note 13)).

The reader will notice that in accordance with Thomae’s lexicograghical ordering,
0 < n lg < 1 for all n, 0 < n lg2 < lg, for all n, and so on, thereby establishing the
non-Archimedean nature of the system. Moreover, since 0 < n lg < 1 for all n, it follows
that 0 < lg < 1/n for all n, which justifies Thomae’s contention that lg is “a number
which while not zero is smaller than each number in the ordinary number domain.”

Moreover, as Thomae alluded to in his already quoted remark of 1872, the just-
described system of measures is closed under multiplication and preserves the familiar
multiplicative laws when multiplication for measures is defined by:

(α + β lg +γ lg2 + · · · )(α′ + β ′ lg +γ ′ lg2 · · · ) =

αα′ + (αβ ′ + βα′) lg +(αγ ′ + ββ ′ + α′γ ) lg2 + · · ·

Indeed, Thomae’s system has the full structure of an ordered commutative algebra with
identity when multiplication is defined as above. In fact, while Veronese [1891], Levi-
Civita [1892–93; 1898], Hilbert [1899] and Hahn [1907] made no reference to Thomae’s
definition, it was one or another generalization of the basic idea underlying it that was
later used in their constructions of non-Archimedean ordered fields.

In the first edition of his Elementare Theorie der analytischen Functionen einer
complexen Veränderlichen [1880], Thomae constructed a similar ordered algebra by
considering the orders of infinity of functions of the form

xa · (log x)β · (log2 x)γ · . . . · (logn x)ν,

as x approaches +∞, where α, β, γ, . . . , ν are real numbers, n is a positive integer
and log2 x, log3 x, etc., are defined as above. The measure of the order of the function
xa · (log x)β · (log2 x)γ · . . . · (logn x)ν as x approaches +∞ is defined by Thomae as
α + βl1 + γ l2 + . . . + νln where l1 denotes the order of log x, l2 denotes the order of
log2 x, and so on. Thomae informs us that:

The just formed number forms may be regarded as complex numbers with infinitely
many units [i.e., numbers of the form α + βl1 + γ l2 + . . . where zeros for coefficients
have been added as needed], to which backwards units l−1, l−2, . . . could also be added
corresponding to the orders of ex, eex

, . . . .”94

He also makes explicit in his discussion of multiplication what was already implicit in
his earlier discussions of 1870 and 1873, namely that Iµ · Iν = Iµ+ν for any two units
Iµ and Iν (it being understood that I0 = 1). What is genuinely new here, however, is his
assertion that the system so constructed can be extended to a system in which each mea-

94 [Thomae 1880, p. 113]: “Die eben gebildeten Zahlenformen können als complexe Zahlen
mit unendlich vielen Einheiten angesehen werden, wobei auch noch rückwärts Einheiten etwa
l−1, l−2, . . . zugefügt werden könnten, welche den Ordnungen von ex, eex

, . . . entsprechen ....”
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sure has a multiplicative inverse. According to Thomae, if α = 0, the units I−1, I−2, . . .

are required to express the inverse; and on the other hand, says Thomae:

If α is not 0, then

1

α + βl1 + γ l2 + · · · = 1

α

(
1 + β

α
l1 + γ

α
l2 · · ·

)−1

is to be introduced by the binomial theorem.95

Finally, to draw this section of his discussion of “order measure-numbers” to a close,
Thomae goes on to add:

That these numbers have heretofore not been introduced into analysis as a means of cal-
culation is because a field for their application to problems of applied mathematics has
not been found.96

It is perhaps worth noting that Thomae would be in algebraic trouble here if (as Fisher
[1981, p. 124] has suggested) his just-cited contention about the existence of multiplica-
tive inverses was intended to suggest that the infinities of the infinitary calculus or some
subset thereof, with sums and product defined à la Thomae, form a field. On the other
hand, if, as we suspect, Thomae was merely claiming that his abstract system of measures
could be extended to a field, his remark would have been somewhat prophetic. Indeed,
not only can his system be extended to an ordered field, as the aforementioned works of
Levi-Civita, Hilbert and Hahn implicitly showed, but by having drawn attention to the
role that can be played by the binomial theorem in determining multiplicative inverses in
fields of “formal power series” he would have anticipated to some extent the technique
employed by some of the early twentieth-century geometers and order-algebrists to do
just that (cf. [Vahlen 1905, p. 32; Forder 1927, p. 33; and Gleyzal 1937, p. 583: Theorem
1]). This technique was later given an elegant theoretical basis by B. H. Neumann in
his seminal work on ordered division rings [1949], and it together with the inductive
technique developed by Levi-Civita [1892–93], Hilbert [1899] and Hahn [1907] are the
standard techniques employed in the literature today.

In connection with the above, it should be noted that even Thomae’s definition of
multiplication may be problematic if it intended to represent the product of orders of
infinity of the aforementioned functions in a perspicuous fashion. This was first pointed
out by Salvatore Pincherle in his Ordini D’infinito Delle Funzioni [1884]. Pincherle
[1884, p. 746] argued that if a system of arithmetic for the orders of infinity of the afore-
mentioned functions is to be useful it must satisfy the following three principles that are,
however, collectively incompatible with the body of familiar laws of arithmetic:

95 [Thomae1880, p.113]: “Ist α nicht 0, so ist

1

α + βl1 + γ l2 + · · · = 1

α

(
1 + β

α
l1 + γ

α
l2 · · ·

)−1

nach dem binomischen Satze auszuführen.”
96 [Thomae1880, p.113]: “Dass diese Zahlen in der Analysis bisher nicht als Rechnungsel-

emente eingeführt sind, hat seinen Grund darin, dass ein Feld für Anwendung derselben auf
Probleme der angewandten Mathematik für sie noch nicht gefunden ist.
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(A) if , �(f ) ≥ �(g), then �(f + g) = �(f );

(B) �(f ) + �(g) = �(fg);

(C) �(f ) × �(g) = �{f (g)}.

Although Pincherle did not identify a specific set of the classical multiplicative laws that
are incompatible with (A) – (C), he illustrated the incompatibility of Thomae’s definition
by considering the function log(x log x). Guided, in part, by Hardy’s discussion of the
matter [1910, p. 26; 1924, p. 26], Pincherle’s argument-sketch [1884, pp. 746–747] may
be fleshed out as follows. Following Thomae, let �(x) = 1 and �(log x) = l1. Then, by
(C), �(log log x) = l2

1 , and hence, by (B), (C) and the fact that l2
1 = l2, we have

�(log(x log x)) = l1(1 + l1) = l1 + l2
1 = l1 + l2.

On the other hand, by (A) and the fact that log(x log x) = log x + log log x, we have

�(log(x log x)) = �(log x + log log x) = l1

which is impossible since l1 
= l1 + l2. Without reference to Thomae’s work, Borel
[1902, pp. 38–40; 1910, pp. 21–22] later explained the source of incompatibility more
clearly by showing that the multiplication specified in (C), while associative and right-
distributive over the (commutative and associative) addition specified in (B), is neither
commutative nor left-distributive over the addition.97,98

11. The emergence of non-Archimedean systems of magnitudes V:
The work of Bettazzi

While it was Thomae who first realized that the orders of infinity associated with
the members of a particular class of functions can be represented by members of a
lexicographically ordered system of complex numbers, the full significance of such
structures for non-Archimedean systems of magnitudes only became apparent in 1907
with the appearance of Hans Hahn’s great pioneering work Über die nichtarchimedis-
chen Grössensysteme [On non-Archimedean Systems of Magnitudes]. Indeed, it was
in this work that Hahn showed that every ordered Abelian group may be embedded
in an appropriate lexicographically ordered system of complex numbers. However, as

97 To say that the multiplication is merely right-distributive over the addition is to say that while
(�(f )+�(g))�(h) = �(f )�(h)+�(f )�(g), it is not in general the case that �(h)(�(f )+�(g)) =
�(h)�(f ) + �(h)�(g).

98 It is perhaps worth noting that whereas the ordered additive structures of systems of orders of
infinitude and infinitesimalitude find a natural interpretation in contemporary work on Hardy fields
(cf. [Rosenlicht 1983, p. 303]), interest in the multiplicative structures of such systems appears to
have gone by the wayside.
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Hahn himself acknowledged [1907, p. 602; also see Ehrlich 1996], his own embedding
theorem may be regarded as a generalization of a more modest embedding theorem
established by Rodolfo Bettazzi in his monograph Teoria Delle Grandezze [Theory of
Magnitudes] [1890; 1893]. It is to this and related contributions of Bettazzi that we now
turn.

Bettazzi’s monograph–which was awarded a prize in 1888 by the Accademia dei
Lincei–provided what was by far the most penetrating investigation of ordered algebraic
systems written until that time. Indeed, asVivanti commented in his article-length review
of the work for Darboux’s Bulletin des Sciences Mathématiques [1891]:

I am pleased to note that here is a work that is distinguished from the thus far analogous
others by the generality of its fundamental point of view, by the rigor of its reasoning, the
extent of its development, and the novelty and importance of some of its results.99

... the beautiful dissertation of M. Bettazzi ... deserves to be known and studied by all
who are interested in the fundamental questions of the science of numbers.100

Bettazzi’s monograph was in fact both read and referred to by some of the fore-
most order-algebrists of his time including Veronese [1891, pp. XXVI, 623–624], Stolz
[1891, p. 108], Hölder [1901, p. 4] and, ultimately, Hahn. Like Stolz before him, Bet-
tazzi drew inspiration for his investigation of systems of magnitudes from the remarks of
Grassmann. However, besides providing a deeper analysis than Stolz, Bettazzi concerned
himself with a wider range of types of systems of magnitudes or classes of magnitudes,
as he called them. Principal among these is what Bettazzi calls classes of magnitudes (of
one dimension) with respect to S, where S(A, B) denotes the sum of two elements A and
B in a given class [1890, § 31; 1893, p. 15]. These classes either consist solely of positive
elements, or contain both positive and negative elements as well as a zero element, and
are dubbed one-directional and two-directional, respectively [1890, § 28; 1893, p. 23].
Bettazzi’s one-directional and two-directional classes of magnitudes (of one dimension)
with respect to S are natural generalizations of Stolz’s systems of absolute magnitudes
and systems of relative magnitudes, respectively, insofar as the former satisfy all the
conditions of the latter systems except that they need not be divisible (or even dense,
for that matter), and they need not be right-solvable (see Note 7). Bettazzi calls a class
proper or improper depending upon whether or not it satisfies the latter condition [1890,
§ 31; 1893, pp. 24–25], and he says a class is limited or unlimited [1890, § 30; 1893,
p. 24] depending upon whether or not it contains a least positive element. In contempo-
rary parlance limited proper classes are said to be discrete; a proper class in Bettazzi’s
sense is limited if and only if it is not dense.

Following Stolz, Bettazzi distinguished between classes of magnitudes that satisfy
the Archimedean axiom and those that do not; he refers to them as classes of the 1st

99 [Vivanti 1891, p. 53]: “Nous sommes heureux de signaler ici un Ouvrage qui se distingue de
tant d’autres analogues par la généralité du point de vue fondamental, par la rigueur des raisonn-
ements, par l’ampleur des développements et par la nouveauté et l’importance de quelques-uns
des résultats.”

100 [Vivanti 1891, p. 68]: “... du beau Mémoire de M. Bettazzi ... qui mérite d’être connu et
étudié par tous ceux qui s’intéressent aux questions concernant les fondements de la science des
nombres.”
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kind and classes of the 2 nd kind, respectively [1890, § 54; 1893, p. 44]. Unlike Stolz,
however, Bettazzi observed (albeit without proof) that classes of the 2nd kind may be
(uniquely) decomposed into a totally ordered system of mutually exclusive and col-
lectively exhaustive classes of the 1st kind, the latter of which he calls the principal
subclasses of the class [1890, § 61; 1893, p. 51]. In modern parlance, these subclasses,
which were introduced independently by Veronese [1891], are called Archimedean clas-
ses.101 Bettazzi also offered a rudimentary taxonomy of the various kinds of systems of
principal subclasses classes of the 2nd kind could have which included the recognition
that there are classes having finitely many principal subclasses as well as those having
infinitely many such subclasses [1890, § 61; 1893, pp. 50–51]. He further observed that
a principal subclass of a proper class is not itself a proper class unless it is the first
principal subclass of a class. However, the remarkable insight that for each Cantorian
order type τ there is a system of magnitudes having a system of principal subclasses of
order type τ only emerged with the work of Hahn [1907; also see Ehrlich 1995].

As illustrations of classes having infinitely many principal subclasses Bettazzi offers
three purported examples, only two of which proved to be non-problematic. Of the latter,
one is Thomae’s system of 1870 [1890, § 66, § 150; 1893, pp. 55, 156–157], and the
second is a system with + and < defined as in [Stolz, 1883] whose universe consists of
orders of infinite smallness of the functions

xn, z
n1
1 = (a− 1

x )n1 , z
n2
2 = (a

− 1
z1 )n2 , z

n3
3 = (a

− 1
z2 )n3 , . . . z

np
p = (a

− 1
zp−1 )np , . . .

(where z1 = a− 1
x , z2 = a

− 1
z1 , . . . etc., with a > 1) and those of the products xmz

m1
1 z

m2
2 . . .

z
mp−1
p−1 z

mp
p where successively p = 1, 2, 3, . . . , n, n1, n2, n3, . . . , take on all the positive

integer values, and m, m1, m2, m3, . . . take on all the positive and negative integer val-
ues.102

In these two cases, as Bettazzi remarks, the ordered set of principal subclasses may be
indexed over the positive integers, the members of succeeding principal subclasses being
increasingly smaller. Indeed, says Bettazzi, in Thomae’s system we find

101 The term “Archimedean class” appears to be due to Neumann [1949]. It was Hahn [1907],
however, who first proved the decomposition theorem for Archimedean classes referred to above
(as an elementary part of his proof of his celebrated embedding theorem for ordered Abelian
groups). It is noteworthy that the various proofs of the decomposition theorem found in the liter-
ature make use of the Axiom of Choice (or some equivalent thereof), an axiom Bettazzi rejected
[Bettazzi 1892a; 1896; also see Moore 1982]. For proofs of Hahn’s Embedding Theorem, the
reader may consult [Clifford 1954a], [Fuchs 1963, pp. 56–60] and the wealth of other related
references referred to in [Ehrlich 1995].

102 [Bettazzi 1890, § 66; 1893, p. 55]: “ordini di infinitesimo delle funzioni

xn, z
n1
1 = (a− 1

x )n1 , z
n2
2 = (a

− 1
z1 )n2 , z

n3
3 = (a

− 1
z2 )n3 , . . . z

np
p = (a

− 1
zp−1 )np , . . .

(essendo z1 = a− 1
x , z2 = a

− 1
z1 , . . . ecc., con a > 1) e da quelli dei prodotti xmz

m1
1 z

m2
2 . . . z

mp−1
p−1 z

mp
p ,

facendo successivamente p = 1, 2, 3, . . . , dove n, n1, n2, n3, . . . prendono tutti i valori interi e
positivi, ed m, m1, m2, m3, . . . tutti i valori interi, positivi e negativi.”
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... in class I ... the orders of xn; in II those of ( 1
log x

)n1 ; in III those of ( 1
log2 x

)n2 , etc.103

Moreover, in the second system, says Bettazzi,

[t]he principal subclasses are those of the orders of infinite smallness ofxn, ofxm(a− 1
x )n1 =

xmz
n1
1 , of xmz

n1
1 z

n2
2 , etc.”104

Bettazzi’s third alleged example is du Bois-Reymond’s supposed system consist-
ing of

the orders of infinite smallness of all possible functions ....105

However, as we have already noted, this conception, which served as a source of confu-
sion and controversy, was later generally recognized not to be a one-dimensional, proper
class of magnitudes in Bettazzi’s sense.

However, while Bettazzi devoted a fair amount of attention to classes of magnitudes
having infinitely many principal subclasses, his aforementioned embedding theorem for
non-Archimedean classes is solely concerned with systems having a finite number of
such subclasses. Moreover, as Bettazzi emphasized, his embedding theorem for non-Ar-
chimedean classes is a straightforward generalization of his corresponding theorem for
Archimedean classes; namely

Bettazzi’s First Embedding Theorem: If A is an Archimedean, one-dimensional, proper
class (of magnitudes) and a is a positive member of A, then there is an embedding of A

into the one-dimensional, proper class of real numbers that sends a to 1.

Bettazzi, of course, does not employ the twentieth-century term “embedding,” but speaks
instead of the “metrical correspondence” (corrispondenza metrica) [1890, § 92; 1893,
p. 81] that exists between A and a one-dimensional, proper class of real numbers. The
real number that is associated with a given member of A in accordance with the metrical
correspondence that sends a to 1 is said to be the “measure of the magnitude with respect
to the chosen unit” [1890, § 102; 1893, p. 89].

Bettazzi formulates his embedding theorem for non-Archimedean structures in terms
of the notational variants of Grassmann’s aforementioned vector spaces over the reals
that arise by expressing the members in the form

α(0)10 + α(1)11 + . . . + α(n)1n

where α(0), α(1), . . . , α(n) are real numbers and 10, 11, . . . , 1n are the units associated
with the various Archimedean classes. More specifically, if for each positive integer n

we let B(n) be the set of all “numbers” of the form α(0)10 + α(1)11 + · · · + α(n)1n

103 [Bettazzi 1890, § 150; 1893, pp. 156–157]: “... nella classe I ... gli ordini di xn...; nella II
quelli di ( 1

log x
)n1 ; nella III quelli di ( 1

log2 x
)n2 , ecc.”

104 [Bettazzi 1890, § 66; 1893, p. 55]: “Le sottoclassi principali sono quelle degli ordini d’infi-
nitesimo di xn, di xm(a− 1

x )n1 = xmz
n1
1 , di xmz

n1
1 z

n2
2 , ecc.”

105 [Bettazzi 1890, § 66; 1893, p. 55]: “dagli ordini d’infinitesimo di tutte le funzioni possibili
....”
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with addition defined termwise and order defined lexicographically, then the following
expresses the content of

Bettazzi’s Second Embedding Theorem: If A is a one-dimensional, proper class (of mag-
nitudes) having n + 1 principal subclasses A0, . . . , An for some positive integer n, and
a0, . . . , an are positive members of A0, . . . , An, respectively, then there is an embedding
of A into B(n) that sends ai to 1i for each i such that 0 ≤ i ≤ n.

Having established his second embedding theorem Bettazzi briefly turned to the
question of whether an analog could be established for one-dimensional, proper classes
of magnitudes having infinitely many principal subclasses. He was quite pessimistic
about this possibility, however, remarking:

it looks to me as if the concept of measure is not in general applicable to classes of this
kind.106

It was not until the publication of Hahn’s aforementioned embedding theorem [1907;
also see Ehrlich 1995] that Bettazzi’s contention was shown to be wrong.107

12. The emergence of non-Archimedean systems of magnitudes VI:
Veronese’s non-Archimedean continuum

It is important to emphasize that unlike Bertrand Russell, Cantor’s other supporters
in his attack on infinitesimals did not necessarily share his rejection of infinitesimals per
se.108 Vivanti [1891a; 1891b], Peano [1892] and Pringsheim [1898–1904], in particular,
all proclaimed the logical cogency of the infinitesimals contained in Stolz’s non-Archi-
medean systems or in systems much like them. Like Cantor, however, they expressed
doubts about the use of infinitesimal line segments in geometry–in particular, according
to Cantor and Peano,Veronese’s use of them in his pioneering work on non-Archimedean
geometry [1891; 1894].

Intimations of Veronese’s introduction of infinitesimal line segments into geom-
etry first emerged in 1889 in his paper entitled Il continuo rettilineo e l’assioma V
d’Archimede (The Rectilinear Continuum and Axiom V of Archimedes). It was also in
this early contribution to the theory of magnitudes that Veronese first proposed the math-

106 [Bettazzi 1890, § 149; 1893, p. 156]: “mi sembra che il concetto di misura non sia applicabile
in generale alle classi di questo genere.”

107 Although Bettazzi made no attempt to link his pessimism to considerations involving the
Axiom of Choice, it is perhaps worth reiterating in connection with this our earlier observation
that the various extant proofs of Hahn’s Embedding Theorem make use of the Axiom of Choice (or
some equivalent thereof), an axiom that Bettazzi opposed. In fact, the role played by the axiom in
the extant proofs of the embedding theorem goes far beyond the role played by it in the proof of the
decomposition theorem referred to above in Note 101. Moreover, Hahn went so far as to suggest
that the theorem could not be proved without the axiom (or some equivalent thereof) [Hahn 1907,
pp. 602–603; Ehrlich 1995, p. 178].

108 Actually, as we have already mentioned in Note 4, even Russell accepted the existence of
some rather trivial examples of infinitesimals.
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ematico-philosophical thesis that the concept of a rectilinear continuum is independent
of the Archimedean axiom. This thesis, which presents a direct challenge to the Can-
tor-Dedekind philosophy of the continuum was developed in great detail by Veronese in
his Fondamenti di Geometria [1891; 1894] and further promoted by him in a number of
supplementary works [1893–94; 1897; 1898, 1898a; 1902; 1909].

Veronese begins his investigation by remarking:

In my study on the foundations of geometry of arbitrarily many dimensions which
will be published very soon, I occupy myself with the continuum. I note that Mr. Stolz
has revealed the importance of Axiom V of Archimedes’ famous work “The Sphere and
Cylinder.” Given two segments A and B, A < B, then according to this axiom ... there
always is a finite whole number n such that A.n > B. Mr. Stolz believed that from the
principle of the continuum it was possible to deduce this property; but especially after
conceiving the new infinite and actual infinitesimal which can satisfy my Principles I-V
of the continuum I persuaded myself it is not possible to deduce the above axiom from
a principle of continuity that does not contain in any way the principle in question. The
definition of the continuum employed by Stolz supposes implicitly the Axiom of Archi-
medes and, accordingly, his demonstration of this property is superfluous.

The aim of this note is therefore to clarify the position occupied by the Archime-
dean Axiom in the principles of the rectilinear continuum and to deduce some important
properties which are usually assumed as axioms without admitting any new ones.109

Already in Veronese’s paper of 1889, the reader finds the unfortunate marriage of
attributes that became characteristic of Veronese’s contributions to non-Archimedean
mathematics more generally: on the one hand, one finds ideas of a highly imaginative
and profoundly original mathematical thinker, and on the other, one finds ideas that
run the gamut from obscure to poorly stated to outright suspicious. In truth, evidence
of this montage of virtues and foibles is already present in the paper’s opening para-
graph. Indeed, even if one grants Veronese his important and prophetic contention that
the concept of rectilinear continuum is independent of the Archimedean condition it is
certainly misleading to suggest as Veronese does that Stolz’s attempt to demonstrate
this property using (a version of) Dedekind’s continuity condition is superfluous since
Dedekind’s continuity condition contains the Archimedean condition. The same point
was made twelve years later by Otto Hölder in his influential pioneering work “Die

109 [Veronese 1889, p. 603]: “Nei miei studi sui fondamenti della geometria a quante si vogliano
dimensioni, che saranno presto pubbicati, ho dovuto occuparmi anche del continuo. È noto che il
sig. O. Stolz ha rilevato l’importanza dell’assiomaV della celebre opera diArchimede “De sphaera
et cylindro”. Dati due segmenti rettilinei A e B, A < B, secondo questo assioma ... vi è sempre
un numero intero finito n tale che A.n > B. Il sig. Stolz ha creduto che dal principio del’continuo
si potesse dedurre questa proprietà; ma specialmente dopo la consizione di nuovi infiniti e infi-
nitesimi attuali che pur soddisfano ai miei principî I-V sul continuo mi sono persuaso che non si
può dedurre l’assioma suddetto dal principio della continuità se in qualche modo non è conten-
uto in questo principio stesso. La definizione del continuo del sig. Stolz suppone implicitamente
l’assioma d’Archimede, e la sua dimostrazione di questa proprietà è quindi inutile.

Lo scopo della presente Nota è dunque di far risaltare il posto che occupa l’assioma d’Ar-
chimede tra i principî del continuo rettilineo, e di dedurre alcune proprietà importanti che sono
assunte comunemente come assiomi, senza ammetterne di nuove.”
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Axiome der Quantität und die Lehre vom Mass,” (The Axioms of Quantity and the
Theory of Measurement). As Hölder put it:

Veronese ... has claimed that the concept of a continuum must be stated differently from
the way it is given by Dedekind, that Dedekind’s axiom (our axiom VII) contains the
Archimedean axiom, and, furthermore ... that Stolz’s definition of continuity (in his Vor-
lesungen über Arithmetik, p. 82) assumes the Archimedean axiom and that, consequently,
Stolz’s proof of this axiom is superfluous.

The comment that the Archimedean axiom is “contained” in Dedekind’s axiom of con-
tinuity could lead to misunderstandings. I emphasize that the Archimedean axiom can be
deduced from axiom VII aided by [our] axioms I to VI, but only via the proof given in the
text or something similar, which is why such a proof is by no means superfluous. [Hölder
1901, p. 10 in Hölder 1996, p. 248; (Translation Michell and Ernst)]

However, while Hölder certainly found reasons to criticize aspects of Veronese’s
paper, he also found much there which was valuable including the basis of his own
system of axioms for magnitudes. More specifically, axioms I to VI of Hölder’s system
collectively constitute a straightforward variation of Veronese’s Principles I-III; indeed,
it is essentially the most straightforward variation that is required to limit the range
of models of Veronese’s three principles to totally ordered systems. Hölder essentially
acknowledged as much when he wrote:

For convenience, it has been assumed that no equal magnitudes exist which are discernible,
that is, non-identical. Consequently, the axioms [stated by Veronese] that two magnitudes
are equal when they are equal to a third magnitude and that equal added to equal results
in equal are unnecessary. Of course, these facts must be considered in applications. ...
Axioms I–VI, used here, correspond to Veronese’s principles I–III .... [Hölder 1901, pp.
4–5 in Hölder 1996, p. 247; (Translation Michell and Ernst)]

Yet, despite Hölder’s remark, Veronese’s contribution has been all but forgotten. This
is especially apparent in the writings of contemporary measurement theorists where the
publication of Hölder’s system of axioms is treated as a watershed event (cf. [Krantz,
Luce, Suppes and Tversky, 1971, p.71]).

Veronese’s Principles I–III, which collectively consist of ten assertions, are stated as
follows.

Principle I. (1) If A and B are arbitrary objects (magnitudes) of a system �, one and only
one of the following relations is valid: A = B (A is equal to B), A > B (A is greater
than B), A < B(A is less than B).
(2) If A = B and B = C, then A = C.
(3) If A = B and B > C, then A > C.110

110 [Veronese 1889, p. 604]: “Princ. I. (1) Se A e B sono oggetti qualunque (grandezze) di un
sistema dato �, si ha una ed una sola delle relazioni: A = B(A uquale B), A > B (A maggiore
di B), A < B (A minorie di B).
(2) se A = C, A = B è B = C.
(3) se A = B, B > C è A > C.”
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Principle II. (1) If A and B are arbitrary objects (magnitudes) of a system �, the sign
A + B indicates one and only one object of the system, and we have:
(2) A + (B + C) = (A + B) + C

(3) A + B > A, A + B > B.
If A < B, there are objects X and X′ in � such that
(4) A + X = B

(5) X′ + A = B.
(6) If A = A′ and B = B ′, we have A + B = A′ + B = A + B ′ and hence A′ + B ′.111

Principle III. In the system there is no minimal interval (magnitude) if the zero is ex-
cluded.112

Veronese’s Principles I and II collectively insure that the equivalence classes of the
members of � with order and addition suitably defined is the strictly positive cone of an
ordered group; and Principle III, given the satisfaction of Principles I and II, is equivalent
to assuming (in modern parlance) the density of �, that is, for all A and B in � where
A < B, there is a C in � such that A < C < B.

It became evident from the aforementioned work of Hölder that Veronese’s three
principles together with Dedekind’s continuity condition implies both divisibility and
commutativity of addition. Also evident from Hölder’s work is that Principles I–III
together with Dedekind’s continuity condition implies the Archimedean condition, and
that Principles I–III together with the Archimedean condition are sufficient to obtain
commutativity of addition. It is of interest to note that these corollaries of Hölder’s
results for totally ordered systems are all that can be salvaged from an earlier more
general attempt of Veronese. Indeed, in his paper of 1889 Veronese attempted to show
that both divisibility and commutativity of addition are consequences of Principles I–III
together with his generalization of Dedekind’s continuity condition. However, by 1901
Hölder had already provided a nondivisible, non-Archimedean model of Veronese’s
Principles I–III together with Veronese’s generalization of the Dedekind’s continuity
condition; and more recently, Banaschewski [1957] has shown how to construct ordered
groups whose strictly positive cones are examples of non-Archimedean systems that
satisfy Principles I–III together with Veronese’s continuity condition but which fail to
satisfy commutativity.

111 [Veronese 1889, p. 604]:“Princ. II. (1) Se A e B sono oggetti qualunque del sistema �, il
segno A + B indica uno ed un solo oggetto del sistema, e si ha:
(2) A + (B + C) = (A + B) + C

(3) A + B > A, A + B > B.
Se A < B, vi sono in � oggetti X e X′ tali che
(4) A + X = B

(5) X′ + A = B.
(6) Se A = A′, B = B ′ si ha: A + B = A′ + B = A + B ′, e perciò = A′ + B ′.”

112 [Veronese 1889, p. 610]: “Princ. III. Nel sistema � non vi è un intervallo (grandezza)
minimo se si esclude lo zero.”
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Figure 2

Nevertheless, while Veronese’s attempt to establish divisibility and commutativ-
ity of addition using his continuity condition was ill-fated, his continuity condition
was not, though he has not always been given the credit for it he deserves. Indeed, as
we have recently emphasized [Ehrlich 1994a, pp. xx–xxi; 1997, pp. 224–225], during
the decades bracketing the turn of the twentieth-century Veronese’s absolute continuity
condition (as Veronese called it) was widely discussed by numerous authors including
Levi-Civita [1892/93; 1898; also see Laugwitz 1975], Hölder [1901, pp. 10–11; 1924,
p. 89], Schoenflies [1898, p.105; 1906, p. 27; 1908, pp. 58–64], Brouwer [1907 in 1975,
pp. 49–50], Vahlen [1907], Vitali [1912, pp. 133–134], Enriques [1907, pp. 37–38; 1911,
pp. 38–39], and Hahn [1907, p. 603]. However, when it reentered the theory of ordered
algebraic systems through the work of Baer [1929] and Cohen and Goffman [1949; 1950]
its connection with Veronese was overlooked. Since that time it has been rediscovered by
several authors [Aguiló Fuster 1963; Scott 1969; Massaza 1970–71], and is well known
to contemporary logicians and order-algebrists alike, albeit under a variety of other
names (cf. [Baer 1970; Hauschild 1966; Priess-Crampe 1983; and Ehrlich 1997]).113

Following a long string of definitions and subsequent elaborations [pp. 610–612],
Veronese states his absolute continuity principle as follows where, contrary to now
standard usage, “(XX′)” is understood to denote a closed interval whose extremities X

and X′ are distinct.

Principle IV. If an interval (XX′) whose extremities always vary in opposite directions
becomes indefinitely small, it always contains an element Y of � distinct from X and X′.114

Veronese understands his principle to apply to a variable interval (XX′) that is a sub-
interval of an arbitrary closed interval (A, B) in �; in particular, it is concerned with
two subintervals (A, X) and (A, X′) of (A, B) where (A, X) < (A, X′) and (XX′) =
(A, X′) − (A, X). While keeping A fixed and preserving the condition that (A, X) <

(A, X′), X is envisioned to increase in a strict monotonic fashion as X′ simultaneously
decreases in a strict monotonic fashion. (See Fig. 2)

Against this backdrop Principle IV asserts: if X may increase in a strict mono-
tonic fashion as X′ simultaneously decreases in a strict monotonic fashion so that for
each interval Z in � X and X′ take on distinct values for which (XX′) < Z (i.e.,
“(XX′) ... becomes indefinitely small”), then there is an interval (A, Y ) in � such that
(A, X) < (A, Y ) < (A, X′) for all such values of X and all such values of X′.

113 Two authors who do attribute the principle to Veronese are Neumann [1949, p. 215] and
Laugwitz [1975, p. 308].

114 [Veronese 1889, p. 612]: “Princ. IV. Se l’intervallo (XX′) i cui estremi sono sempre vari-
abili in verso opposto diventa indefinitamente piccolo, esso contiene sempre un elemento Y di �

distinto da X e X′.”
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The reader will notice that insofar as � is assumed to contain no least member
and X and X′, which are distinct, are assumed to vary simultaneously, X cannot assume
a greatest value and X′ cannot assume a smallest value. Accordingly, if one simply
replaces the references to the variables X and X′ with references to the collections of
values the variables assume, then on the basis of Veronese’s definitions we arrive at the
following crisp formulation of the condition that was originally made popular by Hölder
[1901, pp. 10–11; 1996, p. 248] and that is frequently employed in the literature today:

If X and X′ are nonempty subsets of � where X has no greatest member, X′ has no
smallest member, and every member of X precedes every member of X′, then if for each
δ in � there are elements a of X and b of X′ for which b − a < δ, there is a z in � lying
strictly between the members of X and those of X′.115

Moreover, since the element z referred to in Hölder’s formulation is unique, as Veronese
himself notes [1889, p. 612], the condition can also be stated in the following form
employed by Schoenflies [1906, p. 29] and Brouwer [1907/1975, pp. 49–50] that more
clearly highlights its relation to the Dedekind continuity condition.

If X, X′ is a partition of � into nonempty subsets for which every member of X precedes
every member of X′, and if for each element δ of � there are elements a of X and b of
X′ such that b − a < δ, then either X has a greatest member or X′ has a least member,
but not both.116

Veronese, of course, was well aware of the intimate relation that exists between the
two continuity conditions but he believed his was preferable to Dedekind’s. In a footnote
to his continuity axiom Veronese writes:

It seems to me that this [continuity] principle is easier to intuitively justify than the
others, even the one given by Mr. Dedekind, which is important to take into account in the
foundations of geometry, whose axioms must be derived from spatial intuition without
regard to all the possible abstract hypotheses that do not contradict those axioms. In my
opinion, it is not the division of the elements of an interval (A, B) into the two groups (X)

and (X′) [of values X and X′ respectively] such that we always have (A, X) < (A, X′)
that leads to the postulate of the continuum [presumably, the assertion that an element

115 Hölder originally stated the condition thus:

There are two classes of magnitudes, the magnitudes x and the magnitudes x ′; no mag-
nitude can belong to both classes at the same time, which does not necessitate that both
classes together comprise the totality of all magnitudes or all magnitudes within an inter-
val. Each magnitude, x, should be less than any magnitude, x ′; there should be no greatest
magnitude in x and no least magnitude in x ′; and for each magnitude, δ, in the totality of
all magnitudes, an x and an x ′ can be found such that x ′ − x < δ. Veronese’s postulate
implies that under these assumptions there exists a magnitude which lies between the two
classes and which differs from x and x ′. [Hölder 1901, pp. 10–11 in Hölder 1996, p. 248;
(Translation Michell and Ernst)]

116 The reader will notice that if � is assumed to be a group rather than the strictly positive
cone thereof, δ would have to be assumed to be a strictly positive element of �. The same applies
to Hölder’s formulation of Veronese’s continuity condition.
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determines the cut], but rather it is that (X, X′) becomes indefinitely small. In an absolute
continuum ... [to be defined below] ... there [may] exist these divisions without (X, X′)
becoming indefinitely small, and thus without there being elements Y which determine
them ....117

On the other hand, as Veronese goes on to add:

As we shall see, the postulate of Dedekind ... [which guarantees the absence of divisions
where (X, X′) cannot become indefinitely small] ... is proven with axiomV ofArchimedes
....118

Indeed, it is a simple matter to show that in the Archimedean case, and only in the
Archimedean case,Veronese’s metrical condition on cuts is invariably satisfied. Thus, for
Veronese, unlike Dedekind, continuous systems of magnitudes need not be completely
devoid of Dedekind gaps, although they must be devoid of those Dedekind gaps which
satisfy the metrical condition satisfied in the classical case.

As we alluded to above, Hölder introduced a non-Archimedean model of Veronese’s
Principles I–IV that fails to satisfy divisibility. Given the instructive nature of his con-
struction and the light his accompanying discussion sheds on our just-stated remarks,
we reproduce the relevant portion of Hölder’s discussion in its entirety.119 According to
Hölder:

A system of objects which satisfies Veronese’s axiom of continuity, but not the Archi-
medean axiom nor axiom VII [Dedekind’s continuity axiom], is obtained in the following
way: consider all functions of y of the form ay + by2, where a is a positive integer or
zero and b any real (finite) numerical value, but where, when a = 0, b must be positive
and non-zero. If one stipulates that of the two functions, a1y + b1y

2 and a2y + b2y
2, the

first is called the greater when (a1y + b1y
2) − (a2y + b2y

2) is positive for small positive
values of y, and when the addition of functions is defined in the usual [termwise] way,
then one can see that [our] axioms I to VI are fulfilled.

If one has two classes of functions satisfying the conditions of the modified Veronese
axiom, functions αy + βy2 in the first class and functions α′y + β ′y2 in the second class,
then one should be able to find the two functions, α0y + β0y

2 and α′
0y + β ′

0y
2, from the

first and second classes, such that (α′
0y + β ′

0y
2) − (α0y + β0y

2) < y2. From this inequal-
ity it follows that α′

0 = α0. If one considers all the functions of the first class which are
> α0y + β0y

2 and all functions of the second class which are < α′
0y + β ′

0y
2, then all

117 [Veronese 1889, p. 612]: “A me pare che questo principio si giustifichi intuitivamente meglio
degli altri, anche di quello dato dal sig. Dedekind, del che bisogna tener gran conto nei fondamenti
della geometria, i cui assiomi devono derivare dall’intuizione spaziale senza per questo trascurare
tutte le ipotesi astratte possibili che non contraddicono a questi assiomi. Secondo me non è la
divisione degli elementi di un intervallo (A, B) in due gruppi (X) e (X′) tali che si abbia sempre
(A, X) < (A, X′) che ci conduce al postulato del continuo, ma bensi il fatto che (X, X′) diventa
indefinitamente piccolo. Nel continuo assoluto ... vi sono di queste divisioni senza che (X, X′)
diventi indefinitamente piccolo e quindi senza che vi siano elementi Y che le determinano....”

118 [Veronese 1889, p. 612]: “Coll’assioma V d’Archimede si dimostra, come vedremo, il post-
ulato di Dedekind ....”

119 To see that Hölder’s model is not divisible one merely has to notice that while the function
1 · y is a member of his model the function 1 · y/2 is not.
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these functions will be of the form, α0y + by2, and differ only in the values of b. In this
way two classes of values of b are obtained which again satisfy the conditions in question,
and, since we are now dealing with ordinary, real numerical values, one can conclude that
there exists a value, b0, falling between these two classes. The function, α0y +b0y

2, is the
one whose existence is stated by Veronese’s postulate. This postulate is therefore fulfilled
in its modified, i.e., more general, form.

Since no multiple of y2 is greater than y, the Archimedean axiom is not satisfied here.
From this alone, it follows that Dedekind’s axiom of continuity is not valid here; this
becomes immediately apparent when one allocates the functions for which a = 0 to a
first class and those where a > 0 to a second.

Therefore, Veronese’s postulate is not equivalent to Dedekind’s axiom (VII), although
axioms I to VI have been assumed right from the beginning. On the other hand, it can be
easily seen that under the assumptions made this last axiom is equivalent to the fact that
an infinite number of magnitudes, which are less than a certain defined magnitude which
does not belong to them, always have a so-called “upper bound.” [Hölder 1901, p. 12 in
Hölder 1996, p. 249; (Translation Michell and Ernst)]

While Hölder’s just-described system satisfies Veronese’s continuity condition,
it is not an absolute continuum in Veronese’s sense. According to Veronese [1889, p.
613], for a model of Principles I–IV to be so designated it must also satisfy his

Principle V. If α and β are two intervals of the system and α < β there is a determined
symbol of multiplication (number) η such that ηα > β.120

PrincipleV is, of course, a straightforward generalization of theArchimedean axiom.
Indeed, as Veronese notes:

If the number η is always in the class of natural numbers 1 2 3 ... n ... then principle V is
called axiom V of Archimedes.121

“In this case,” says Veronese,

the system � is called [an] ordinary continuum.122

Veronese’s emphasis on “multiplication” in the statement of PrincipleV is significant
since with the exception of the Archimedean case the operation required by Principle V
is not reducible to repeated addition. This foreshadows the fact that the non-Archime-
dean models of Veronese’s principles offered by Veronese [1891], Levi-Civita [1892–93;
1898], and others are strictly positive cones of non-Archimedean ordered fields and non-
Archimedean ordered rings. It is the members of a given such system that are infinitely
large and infinitely small, relative to the multiplicative identity (i.e., the unit element)
of the system, which are respectively the “new infinite and actual infinitesimal” entities
that Veronese mentioned in the opening paragraph of his paper. Veronese says very little

120 [Veronese 1889, p. 613]: “Princ. V. Se α e β sono due intervalli dell sistema ed è α < β vi
è sempre un simbolo di molteplicità (numero) η determinato tale che ηα > β.”

121 [Veronese 1889, p. 613]: “Se il numero η è sempre della classe naturale 1 2 3... n ... il
principio V si chiama assioma V d’Archimede.”

122 [Veronese 1889, p. 613]: “In tal caso il sistema � si chiama continuo ordinario.”
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about these entities in his paper of 1889. However, with regard to the numbers η referred
to in Principle V he does indicate that

There is no place here for Cantor’s transfinite numbers because they have neither the
second part of property II3 nor property II5....123

On the other hand, as he goes on to add:

Our infinite whole [i.e., natural] numbers satisfy this condition, but it is not our present
aim to introduce the properties of these numbers that enlarge the field of abstract continua.
In our book, which is now being printed, these numbers will be discussed at length with
the application of absolute continua to geometry itself.124

Besides characterizing a one-dimensional absolute continuum as above, Veronese
considers a number of variations of his system including those containing a zero element
with or without directed elements as well as totally ordered versions thereof. However,
since these variations, which are motivated by the straight line of geometry, do not add
anything significantly new to the present discussion, we will not consider them further
at this time.

13. Stolz’s rethinking of continuity and of infinitesimal line segments

As is evident from its opening remarks, Veronese’s paper of 1889 appears to have
been written in part as a response to Stolz’s early acceptance of the Cantor-Dedekind
philosophy of the continuum. In fact, as Veronese explains in a note affixed to the paper’s
title, the paper itself is an extract of a manuscript addressing these matters that he sent to
Stolz “last June” [1889, p. 603: Note 1]. Veronese appears to have also used that oppor-
tunity to draw Stolz’s attention to defects in the “proof” contained in Stolz’s Allgemeine
Arithmetik that Dedekind continuity implies the Archimedean axiom. Stolz’s response to
all of this, which was announced in the just-cited footnote of Veronese’s paper, appeared
under the title Ueber das Axiom des Archimedes [1891]. Veronese was undoubtedly quite
pleased with Stolz’s response for not only did Stolz revise the just-cited proof in light
of Veronese’s criticisms but he openly proclaimed that

Veronese ... has recognized that the Axiom of Archimedes is not a consequence of conti-
nuity....125

As in his earlier discussions of continuity, Stolz’s [1891] is concerned with a sys-
tem having all the properties of an absolute system of magnitudes except that the more

123 [Veronese 1889, p. 613]: “Ciò non ha luogo pei numeri transfiniti di G. Cantor perchè per
essi non ha sempre luogo la seconda delle proprietà II3 et la proprietà II5....”

124 [Veronese 1889, p. 613]: “I nostri numeri interi infiniti soddisfano a questa condizione,
ma non è nostro scopo di far conoscere qui le proprietà di questi numeri che allargano il campo
del continuo astratto. Nel nostro libro, che sta ora sotto stampa, questi numeri saranno trattati
ampiamente per l’applicazione del continuo assoluto alla geometria stressa.”

125 [Stolz 1891, p. 107]: “Veronese ... erkannte ... dass das Axiom des Archimedes nicht Folge
der Stetigkeit sei ....”
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general conditions of density and absence of a least element are assumed in place of
divisibility. And, as in his earlier discussions, central to his analysis is the now familiar
notion of a gap.126 What is new to Stolz’s later treatment, however, is the following
result that was established independently by Bettazzi [1890] and which, as we shall later
see, plays an implicit role in Bettazzi’s own treatment of continuity:

If a system � has the properties specified above, then � is Archimedean if and only if for
each gap (P1, P2) of � and each magnitude D in � there are magnitudes p1 in P1 and p2

in P2 such that p2 − p1 < D. [1891, p. 108]127

In his earlier works, Stolz attempted to show that a system � having the properties
specified above is Archimedean, if � is continuous, by showing: i) if � is continuous,
then � has the least upper bound property, and ii) if � has the least upper bound property,
then � is Archimedean. However, in virtue of the above result it was evident that if � is
non-Archimedean, then it contains a gap, say, (P1, P2), which in turn implies the failure
of the least upper bound principle since P1 has no such bound. Accordingly, having
embraced Veronese’s contention that a continuous system of magnitudes need not be
Archimedean, Stolz was forced to renounce the above line of reasoning by rejecting (i).
In the final sentence of his paper Stolz did so when he wrote:

Consequently, it is not permissible, as I formerly maintained, to regard this axiom [i.e.,
the Archimedean axiom] for line segments as a consequence of continuity or to prove it
by means of the concept of bound.128

Moreover, having accepted the logical possibility of a non-Archimedean geometrical
continuum, Stolz would also have to revise his earlier view by accepting the consistency

126 Stolz uses the term “gap” in its contemporary sense. That is, by a gap of � Stolz means a
partition of � into two groups P1 and P2 (that are tacitly assumed to be nonempty) having the
following properties: (i) each magnitude of � is contained in one and only one of the groups; ii)
whenever p1 is a magnitude in P1, every magnitude of � smaller than p1 is in P1, and whenever
p2 is a magnitude in P2, every magnitude of � greater than p2 is in P2; (iii) P1 contains no greatest
magnitude and P2 contains no smallest magnitude [1883, p. 508; 1885, p. 81; 1891, pp. 107–108].

127 Appended to Stolz’s statement of the theorem is the following footnote:

After finishing this note I found that these comments have already been made by Mr.
Bettazzi in his Accademia dei Linci prize-winning ‘Teoria della grandezze’ (Pisa 1890).
[1891, p. 108]

128 [Stolz 1891, p. 112]: “Es ist mithin nicht zulässig, wie ich früher behauptete, dieses Axiom
für die Strecken als eine Folge der Stetigkeit anzusehen oder mittelst des Begriffes der Grenze zu
beweisen.”
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of line segments that are infinitesimal relative to other segments. He essentially did as
much the same year when in his Grössen und Zahlen (Magnitude and Number) he wrote:

we have been successful in our day in setting up consistent infinitely large and infinitely
small magnitudes ....129

and included among his examples

the new actual infinities and infinitesimals announced by ...Veronese [in his [1889]].130,131

14. Does the actual infinitesimal exist? The Bettazzi-Vivanti debate I:
Vivanti’s opening arguments

The same year that Stolz made the above announcements, Giuseppe Peano began the
publication of Rivista di matematica, a journal devoted to issues in the foundations of
mathematics, and mathematical philosophy more generally. To help inaugurate his jour-
nal Peano invited Bettazzi, Vivanti, and Veronese to engage in a debate on the question of
the existence of infinitesimals. Vivanti and Bettazzi accepted the invitation, but Veronese
declined because he was “busy with the publication” of his Fondamenti di Geometria, a
book which in any case “already dealt with the subject in great depth” [Veronese 1891,
p. 622; Veronese 1894, p. 702]. As it turned out, the exchange extended over the first two
volumes of the Rivista and consisted of four installments: an opening article by Vivanti
[1891a], a response by Bettazzi [1891], a response to Bettazzi’s response by Vivanti
[1891b], and a final response by Bettazzi [1892]. And while Veronese did not formally
participate in the exchange, when his Fondamenti di Geometria appeared in 1891 he
used the opportunity to respond to remarks made in [Vivanti 1891a] about his earlier
work and the purported proof of Cantor [Veronese 1891, pp. 622–625].

The exchange between Bettazzi and Vivanti is interesting not only because it pro-
vides us with detailed insight into the thinking of two of the participants in the general
late nineteenth-century debate but because it offers us a glimpse of the state of the debate
immediately preceding the advent of non-Archimedean geometry. Moreover, and what
is perhaps most important, it brings to the fore in an unmistakable fashion the fact that the
issues at stake in the debate were not always restricted to what would today be regarded
as straightforward mathematical questions, but also embraced considerations arising
from competing philosophies of geometry, competing philosophies of the infinite, com-

129 [Stolz 1891a, p. 16]: “ist es in unseren Tagen auch gelungen, widerspruchsfreie actuale
unendlich grosse und unendlich kleine Grössen aufzustellen.”

130 [Stolz 1891a, p. 16]: “Veronese angekündigten neuen infiniti und infinitesimi attuali ....”
131 While Stolz never changed his mind about the consistency of infinitesimal line segments,

his embrace of Veronese’s philosophy of the continuum appears to have been short-lived. In his
(and Gmeiner’s) Theoretische Arithmetik [1902, pp. 113–117], Stolz not only returned to his
original embrace of the Cantor-Dedekind philosophy but made no mention of Veronese’s theory.
He did, however, remind the reader that “due to criticisms of the proof raised by G. Veronese,” the
proof that continuity implies the Archimedean axiom contained in his Allgemeine Arithmetik was
withdrawn [1902, p. 114].
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peting philosophies of the continuum and competing philosophies of mathematics more
generally.

Vivanti opens the exchange with a number of historical remarks including the obser-
vation that infinitesimals have been interpreted in the literature in a variety of fashions,
which he lists as follows:

a) The infinitesimal is a null quantity (Euler);
b) It is a finite variable quantity that tends to zero (Carnot, Cauchy);
c) It is an entity of a nature different than that of ordinary quantities, an intensive mag-
nitude, devoid of extension, that acts as a generating moment of the quantities (Newton,
Kant);
d) It is an ordinary quantity that is so small that when repeated any finite number of times
doesn’t form any assigned finite quantity (Poisson, Du Bois-Reymond).132

After identifying the latter interpretation–which he erroneously attributes to Poisson and
du Bois-Reymond–with “the actual infinitesimal,”133 he observes:

While the actual infinitesimal has been banished from the calculus, it has reappeared
in other parts of mathematics. To examine its nature and the role that it has in this science,
it is necessary first of all that I define it exactly.134

“What is the meaning of the term infinitesimal?,” asks Vivanti, and he answers the
question, albeit somewhat clumsily, as follows:

Let us divide a unit into n [equal] parts; if m is an arbitrary number smaller than n, m of
those parts (m n-esimals) will not be sufficient to form the unit. We now let n increase
beyond any limit until it becomes infinite, any part of the unit can now be called an infin-
itesimal, and, if m is an arbitrary number smaller than n, m of those parts (m n-esimals)
will not be enough to form the unit. Accordingly, we have been able to characterize the
infinitesimal by means of this property, that is, when repeated any finite number of times, it

132 [Vivanti 1891a, p. 136]:
“a) L’infinitesimo è una quantità nulla (Eulero);
b) Esso è una quantità finita, variabile e tendente a zero (Carnot, Cauchy);
c) Esso è un ente di natura diversa dalle quantità ordinarie, una grandezza intensiva, priva d’es-

tensione, che funge quale momento generatore delle quantità (Newton, Kant);
d) Esso è una quantità ordinaria tanto piccola, che ripetuta un numero finito qualsiasi di volte

non forma mai una quantità finita assegnata (Poisson, Du Bois-Reymond).”
133 While Poisson and du Bois-Reymond certainly championed “the actual infinitesimal,” it is

misleading for Vivanti to attribute characterization d–which closely resembles one of the modern
conceptions of an actual infinitesimal–to them. After all, according to Poisson “[a]n infinitely
small magnitude is a magnitude less than any magnitude of the same nature” [Poisson, 1883, p.
16]; and, as Veronese correctly observed, “[t]his proposition evidently contains a contradiction in
terms” [1891, p. 622]. Moreover, as Veronese repeatedly emphasized, du Bois-Reymond appears
to have never actually defined precisely what he meant by an infinitesimal [1894, p. 700; 1909, p.
198; 1994, p. 169].

134 [Vivanti 1891a, p. 137]: “Ma l’infinitesimo attuale, bandito dal Calcolo, ricompare in altri
campi della Matematica. Per esaminare la sua natura e la parte che esso ha in questa scienza, ci è
d’uopo anzitutto definirlo esattamente.”
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never constitutes the unit (or any finite determined quantity). The infinitesimal so defined
appears like a constant quantity of the same nature as 1/2, 1/3, . . . , 1/n, . . . .135

“[I]t is this sort of actual infinitesimal of which we want to speak” [1891a, p.137], says
Vivanti, and with this understood he poses the question:

Does the actual infinitesimal exist?136

Answering this question is the focus of the remainder of the essay, beginning with
a brief section entitled Cantor’s Demonstration of the non-Existence of Infinitesimals.
Vivanti opens the section by remarking:

First of all, we should orient ourselves to see in which domain we should seek this
entity, the existence of which we have put in discussion.

All the segments that can be considered upon an unspecified straight line are of one
of two kinds:

Either we have a segment bounded by the two points A, B of the line (segment AB);
Or we have a segment consisting of the portion of a straight line, located to the right

or to the left of a point O of the line (segment O∞ or ∞O)....
The segments of the first kind are called finite, and those of the second infinite.137

Having thus placed himself squarely in the classical tradition regarding the distinc-
tion between finite and infinite line segments, Vivanti informs us that if we take a finite
segment as a unit of measure the question of the existence of an infinitesimal segment
reduces to the question whether or not the following is the case:

135 [Vivanti 1891a, p. 137]: “Sia divisa l’unità in n parti; se m è un numero qualunque minore
di n, m di quelle parti (m n-esimi) non basteranno a formare l’unità. Facciamo ora crescere n

oltre ogni limite, sino a che divenga infinito; ciascuna parte dell’unità potrà dirsi un infinitesimo,
e, se m è un numero finito qualunque, m di quelle parti non potranno mai formare l’unità. Si
può adunque caratterizzare l’infinitesimo mediante questa proprietà, che esso, ripetuto un numero
finito qualsiasi di volte, non forma giammai l’unità (oppure una quantità finita determinata qua-
lunque). L’infinitesimo cosı̀ definito ci appare come una quantità costante, della stessa natura di
1/2, 1/3, . . . , 1/n, . . . ”

136 [Vivanti 1891a, p. 137]: “Esiste l’infinitesimo attuale?”
137 [Vivanti 1891a, p. 137]: “Ci occorre anzitutto orientarci e vedere in quale campo dobbiamo

cercare questo ente la cui esistenza abbiamo posto in discussione.
Tutti i segmenti che possono prendersi sopra una retta indefinita sono dell’una o dell’altra di

queste due specie:
O si ha un segmento limitato da due punti A, B della retta (segmento AB);
O si ha un segmento costituito dalla porzione della retta posta a destra o a sinistra d’un punto

O di essa (segmento O∞ ◦ ∞O) ....
I segmenti della prima specie si dicono finiti, quelli della seconda infiniti.”
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There is a segment such that when repeated a finite number of times, however large that
number might be, that would never exhaust an assigned finite segment.138,139

Moreover, says Vivanti:

G. Cantor has answered this question negatively. We are given [however] a brief and
incomplete outline how he reached this conclusion ....140

Still, adds Vivanti:

It seems that the idea of the proof of Cantor is this. Asserting that ζ is a segment
is equivalent to admitting that if we successively arrange a sufficiently large series of
segments, all equal to ζ , upon a straight line, we shall of necessity eventually cover
the assigned finite segment in its entirety; next Cantor states (and here there is a gap in
his explanation) that if this is not possible by means of a finite series of segments, it is
impossible by means of an infinite series as well, however extended the series might be.141

Having found Cantor’s argument to be at best incomplete,Vivanti goes on to construct
his own argument against the existence of infinitesimal line segments–an argument that is
not only dubious by contemporary standards but that struck his readers as dubious as well.

Vivanti begins laying the groundwork by noting that:

The question of the existence of the infinitesimal could be considered from a little different
point of view.142

In particular, after stating the “Postulate of Archimedes” Vivanti asserts:

One could now ask: What is the nature of this assertion, and from what does it draw its
force?143

138 [Vivanti 1891a, p. 138]: “Esiste un segmento tale, che, ripetuto un numero finito comunque
grande di volte, non esaurisca mai un segmento finito assegnato?”

139 The reader will notice that in accordance with the classical distinction between finite and
infinite segments, every bounded infinitesimal segment is finite. In the companion work to the
present paper referred to in the Introduction, we will see that this idea was called into question by
Veronese [1891, p. 623; 1894, pp. 703–704].

140 [Vivanti 1891a, p. 138]: “G. Cantor ha risolto tale questione in senso negativo. Del come
egli sia giunto a questa conclusione si trova un accenno breve e incompleto ....”

141 [Vivanti 1891a, p. 138]: “Il concetto della dimostrazione di Cantor sembra essere questo.
Dire che ζ è un segmento equivale ad ammettere che, disponendo successivamente sopra una retta
una serie abbastanza grande di segmenti tutti eguali a ζ , si debba di necessità arrivare a coprire
per intero un segmento finito assegnato; ora Cantor stabilisce (e qui v’ha una lacuna nella sua
esposizione) che, se ciò non è possibile mediante una serie finita di segmenti, non lo è neppure
mediante una serie infinita, comunque estesa essa sia.”

142 [Vivanti 1891a, p. 139]: “La questione dell’esistenza dell’infinitesimo può essere considerata
sotto un punto di vista un po’ diverso.”

143 [Vivanti 1891a, p. 139]: “Ora può chiedersi: Di quale natura è questa asserzione, e da che
attinge essa la sua forza?”
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“To answer such a question,” says Vivanti, “it is appropriate to begin with some gen-
eral considerations” [Vivanti 1891a, p. 139] about the nature of mathematical objects,
which he spells out as follows.

The objects, whose study forms the subject matter of mathematics, are fictitious enti-
ties, perfectly arbitrary creations of our thought, which may have any properties provided
that they do not contradict one another. However, since this science, like each of the others,
is born from the observation of nature, to a large extent mathematical entities may be said
to ensue from the idealization of really existing objects; as, for example, the concepts of
straight line and plane probably emerged by freeing themselves from the waters of thin
taut threads and surfaces.

Consequently, a mathematical entity E somehow constitutes an ideal image of a real
object E1. Above all, the entity E is rigorously defined; that is from among the most
evident properties of E1, suitably idealized, are chosen properties that are sufficient to
distinguish our entity from any other. The choice of these properties can generally be
made in more than one way; however, once E’s definition is fixed, all of its other proper-
ties can be demonstrated from this base. Such properties are likewise axioms or theorems,
depending on whether they are evident from the definition of E or they are deduced from
it by means of a longer chain of ratiocinations.144

Before continuing with his preparatory remarks, Vivanti explains why in the preced-
ing observation he merely claimed that “to a large extent mathematical entities may be
said to ensue from the idealization of really existing objects.”

Today’s mathematics, [says Vivanti,] with its tendency to generalize, has also turned atten-
tion to entities whose concepts are not derived directly from the observation of existing
objects, and whose properties are selected completely arbitrarily without the guide of con-
siderations relative to the real world .... [S]uch entities may be said to be conventional....145

144 [Vivanti 1891a, p. 139]: “Gli oggetti, il cui studio forma l’argomento della Matematica, sono
enti fittizi, creati dal nostro pensiero in modo perfettamente arbitrario, ed aventi quelle proprietà
qualunque (purchè tra loro non contradditorie) che ci piace d’attribuire ad essi. Però, siccome
quella scienza è nata, al pari d’ogni altra, dalla osservazione della natura, gli enti matematici
derivano in gran parte, ci sia permessa la frase, dalla idealizzazione di oggetti realmente esistenti;
cosı̀, per esempio, un filo sottile fortemente teso e la superficie libera delle acque hanno dato
probabilmente origine ai concetti di retta e di piano.

Sia pertanto E un ente matematico, che costituisca in qualche modo l’imagine ideale d’un
oggetto reale E1. Si tratta anzitutto di definire rigorosamente l’ente E; cioè di scegliere alcune
fra le più evidenti proprietà di E1, convenientemente idealizzate, e tali che bastino a distinguere il
nostro ente da qualunque altro. La scelta di queste proprietà può generalmente farsi in più modi;
stabilita però in un dato modo la definizione di E, tutte le altre sue proprietà devono potersi di-
mostrare in base a questa. Tali proprietà costituiscono altrettanti assiomi o teoremi, secondochè
esse risultano in modo evidente dalla definizione di E o devono dedursi da essa mediante una più
o meno lunga catena di raziocini.”

145 [Vivanti 1891a, p. 140]: “La Matematica odierna, per la sua tendenza a generalizzare, ha
rivolto l’attenzione anche ad enti il cui concetto non è derivato direttamente dall’osservazione di
oggetti esistenti, le cui proprietà sono scelte in modo completamente arbitrario e senza la guida
di considerazioni relative al mondo reale .... [T]ali enti ... potrebbero dirsi convenzionali ....”
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As we shall later see, it is presumably this distinction between conventional and noncon-
ventional entities that Vivanti believes permits him to embrace the systems of infinites-
imals developed by du Bois-Reymond, Thomae, and Stolz while denying the existence
of infinitesimal line segments.

Having concluded his digression, the discussion turns to a sketch of the logically
equivalent definitions of the classical linear continuum due to Veronese and Bettazzi
using Bettazzi’s terminology (see Note 147 for definitions) as a common thread. As
Vivanti puts it:

Bettazzi chooses the following to constitute the definition of the continuum:

a) C is a [one-dimensional] proper class;
b) C is connected;
c) C is closed.

From this definition of the continuum the Postulate of Archimedes can be proved.
Veronese instead defines the [ordinary] continuum in terms of the following proper-

ties:

a) C is a [one-dimensional] proper class;
b) C is unlimited [i.e. has no least strictly positive member];
c) C is closed;
d) C possesses the property expressed by the Postulate of Archimedes.146,147

146 [Vivanti 1891a, p. 140]: “Fra queste Bettazzi sceglie le seguenti a costituire la definizione
del continuo:
a) L’insieme considerato è una classe propria C;
b) C è connessa.
e) C è chiusa.

Definito cosı̀ il continuo, si può dimostrare che per esso ha luogo il postulato d’Archimede.
Veronese definisce invece il continuo colle proprietà seguenti:
a) Esso è una classe propria C;
b) C è illimitata;
c) C è chiusa;
d) C gode della proprietà enunciata nel postulato d’Archimede.”

147 As Vivanti notes, according to Bettazzi [1890, § 48; 1893, p. 41], a continuous class of one
dimension is a one-dimensional proper class that is both connected and closed. The definitions of
connected and closed emerge, for Betttazzi, as the culmination of a series of definitions that unfold
as follows. Let C be a proper class in the sense of Bettazzi, and let (X, Y ) be a partition of C such
that x < y for all x ∈ X and all y ∈ Y . If X has a maximal member and Y has a minimal member,
then (X, Y ) is said to be a succession; and if X has no maximal member and Y has no minimal
member, then (X, Y ) is said to be a section or a jump, respectively, depending upon whether or
not the following condition holds: for each δ ∈ C there are x ∈ X and y ∈ Y such that y − x < δ.
[In contemporary parlance, a section of C is a Dedekind gap (X, Y ) of C such that for each δ ∈ C

there are x ∈ X and y ∈ Y such that y − x < δ; and a jump is a Dedekind gap (X, Y ) of C that is
not a section.] If C exhibits neither successions nor jumps it is said to be connected (connessa),
and if C admits no sections and every section of an arbitrary subclass of C is filled by at least one
magnitude of C, it is said to be closed (chiusa) [Bettazzi 1890, § 48; 1893, p. 40].

As Bettazzi mentions in his Teoria Delle Grandezze [1890 § 49; 1893, p. 41], his definition of a
“continuous class of one dimension” is intimately related to Cantor’s conception of a “continuous
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With the preliminaries now in place, Vivanti asks the reader to “consider the collec-
tion I of all finite segments on a given straight line having a common extremity on the left,
say, p” and, with reference to this, attempts to prove the nonexistence of infinitesimal
line segments as follows:

Clearly, if we define addition of segments in the ordinary way our collection constitutes
a proper class of magnitudes of one dimension [in the sense of Bettazzi]. To completely
characterize this collection, however, we must consider other of its properties and select
among them the most evident. Now what among the properties of the considered collec-
tion are there which are evident from the intuitive concept we have of the straight line?

In our opinion, it could be maintained as intuitively evident that the collection I is con-
nected and closed; this being the case it has all the characteristics attributed by Bettazzi
to the continuum. This implies that the collection I satisfies the postulate of Archimedes
and, hence, also that there does not exist an actual infinitesimal rectilinear segment.148

Thus, the basis of Vivanti’s argument essentially reduces to the contention that the
Archimedean axiom is a logical consequence of connectivity and closure, the latter being
intuitively evident properties of the straight line that result from suitably idealizing the
straight line of experience. Why Vivanti believed it could be maintained as intuitively
evident that the straight line thus construed is connected and closed he does not say.
Following the presentation of his argument, however, he does go on to add that:

the definition of [the continuum given by] Veronese ... doesn’t appear to be suitable to
adopt, because property d [i.e., the Archimedean condition] which distinguishes it can
not be regarded as evident, as is evidenced by the fact that the opposite hypothesis–the
existence of the actual infinitesimal–was and still is admitted by mathematicians and by
philosophers.149

Presumably, therefore, Vivanti believed no one would ever countenance the possibility
of the denial of either connectivity or closure. But if he did, he would have been wrong!
A number of mathematicians beginning with Bettazzi and Veronese would soon chal-
lenge the claim that connectivity–which implies the Archimedean axiom–is a necessary

point-set,” that is, a point-set that is both perfect and connected in the sense of Cantor (see Note
25). Indeed, as Vivanti [1891a, pp. 57–58] observed in his review of Bettazzi’s work, the two
definitions are equivalent when applied to the kind of systems of magnitudes with which Bettazzi
is concerned–one dimensional proper classes in the sense of Bettazzi.

148 [Vivanti 1891a, p. 141]: “Definita nel modo ordinario l’addizione dei segmenti, è chiaro che
il nostro insieme costituisce una classe propria di grandezze ad una dimensione. A caratterizzare
completamente questo insieme dobbiamo prendere altre proprietà di esso, e dobbiamo sceglierle
fra le più evidenti. Ora quali tra le proprietà dell’insieme considerato ci risultano come evidenti
dal concetto intuitivo che abbiamo della linea retta?

A nostro avviso può ritenersi come evidente, che l’insieme I è connesso e chiuso; per modo che
esso ha tutti i caratteri attribuiti da Bettazzi al continuo. Ne risulta che nell’insieme I ha luogo il
postulato d’Archimede; quindi anche per questa via siamo giunti alla conclusione, che non esiste
un segmento rettilineo attualmente infinitesimo.”

149 [Vivanti 1891a, p. 141]: “alla definizione di Veronese ... non ci sembra da adottarsi, perchè la
proprietà d che ne fa parte non può considerarsi come evidente,–e ne è prova il fatto, che l’ipotesi
opposta–l’esistenza dell’infinitesimo attuale–fu ed è tuttora ammessa da matematici e da filosofi.”
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property of the straight line. Moreover, challenges to the claim that closure–which im-
plies the absence of Dedekind gaps–is similarly necessay were already implicit in the
writings of Cantor [cf. 1882 in 1932, pp. 156–157] and Dedekind. Dedekind expressed
the latter matter rather poignantly when, in the preface to his Was sind und was sollen
die Zahlen?, he wrote:

in works on geometry continuity is only casually mentioned by name, but is never clearly
defined, and therefore cannot be employed in demonstrations. To explain this matter more
clearly I note the following example: If we select three non-collinear points A, B, and
C at pleasure, with the single limitation that the ratios of the distances AB, AC, BC are
algebraic numbers, and regard as existing in space only those points M , for which the
ratios of AM, BM, CM to AB are likewise algebraic numbers, then it is easy to see that
the space made up of the points M is everywhere discontinuous. But in spite of this dis-
continuity, and despite the existence of gaps in this space, all constructions that occur
in Euclid’s Elements, can, so far as I can see, be just as accurately effected here as in a
perfectly continuous space; the discontinuity of this space would thus not be noticed in
Euclid’s science, would not be felt at all. If anyone should say that we cannot conceive
of space as anything else than continuous, I should venture to doubt it and call attention
to the fact that a far advanced, refined scientific training is demanded in order to perceive
clearly the essence of continuity and to understand that besides rational quantitative rela-
tions, also irrational, and besides algebraic, also transcendental quantitative relations are
conceivable. [Dedekind 1888 in Ewald 1996, p. 793; (Translation Ewald)]

Having concluded his argument against the existence of infinitesimal line segments,
Vivanti considers three arguments that purport to establish the contrary. The first is
based on the geometrical theory of probability, the second has its roots in the history
of philosophy, and the third is an attempt to show that the existence of Cantor’s infinite
ordinals implies the existence of the infinitesimal. However, since only the second was
championed by any of the principal late nineteenth-century proponents of infinitesimal
line segments, and therefore might have had a nonnegligible impact on the general late
nineteenth-century debate, we will limit our attention to it.150

The argument in question, as Vivanti emphasizes, has its roots in the philosophy of
the continuum and is concerned with the age-old Zenonean question of whether a line
may be regarded as being composed of points. Du Bois-Reymond [1882], along with
Veronese [1891] and the philosopher-logician, Charles Sanders Peirce, [1898; 1900;
1976] all appealed to arguments of this kind to help establish the need for theories of
infinitesimals. It was the versions of the argument developed by du Bois-Reymond in
his Die allgemeine Functionentheorie, however, that principally exercised Vivanti.

Vivanti broached the matter thus.

It is assumed by many, that the existence of the infinite harbors the same consequence
for that of the infinitesimal. If you could divide the unit into an actually infinite number
of parts, each of these, it is said, will be actually infinitesimal. But what will be the nature
these parts? More precisely, if we imagine that a finite segment is divided into an infinite

150 It is the author’s intention that the present paper as well as the companion paper referred
to in the Introduction will be incorporated into a more comprehensive work. At that time we will
also treat the other two arguments, both of which are rejected by Vivanti and Bettazzi.
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number of parts, will each of these be a point or a segment? Here all the arguments come
to mind which have been accumulated in philosophy throughout time against the possi-
bility that the continuum is constituted of points. Du Bois-Reymond reproduced some of
them in somewhat different forms that necessarily arrive at the conclusion that the actual
infinitesimal exists.151

Although du Bois-Reymond discussed this issue in a number of places, his central
argument on the matter appears in the section of his monograph entitled The Infinitely
Small and its Main Characteristics. There he writes:

The statement that the quantity of division points on the unit segment is infinitely large
generates with logical necessity a belief in the infinitely small.

For if we consider what we presented above as the correct concept of quantity, that
points on a length do not follow one another without distance, so cannot adjoin one another,
but are always separated by segments, so that points alone can never form a segment, then
also the infinitely many points are separated by infinitely many segments, and so finite,
that is, finite in number of these segments can be contained in the unit segment, because
by the arbitrariness of the unit length, any segment, however small, must have the same
character as the unit segment, so that infinitely many division points must again be present
on it.

It therefore results that the unit segment decomposes into infinitely many subsegments
of which none is finite. Thus the infinitely small actually exists. [du Bois-Reymond 1882,
pp. 71–72: (Translation Fisher 1981, p. 114)]

In response to this type of argument (and, we suspect, the above argument in partic-
ular)152 Vivanti writes:

We do not attribute great significance to such arguments, which in substance reduce to
the impossibility of conceiving the straight line as composed of points. Here it seems
that the same impossibility is even more valid for the infinitesimal segment in that such a
segment, being in turn decomposable into infinitesimally smaller segments, does not have
the character of an element, and therefore his overture does not budge the problem of the
constitution of the continuum but leaves it unresolved.153

151 [Vivanti 1891a, p. 144]: “Si ammette da molti, che l’esistenza dell’infinito porti come con-
seguenza quella dell’infinitesimo. Se si può dividere l’unità in un numero attualmente infinito di
parti, ciascuna di queste, si dice, sarà attualmente infinitesima. Ma di qual natura saranno queste
parti? Più precisamente, se imaginiamo diviso un segmento finito in un numero infinito di parti,
ciascuna di queste sarà un punto od un segmento? Qui tornano al pensiero tutti gli argomenti
accumulati dalla filosofia d’ogni tempo contro la possibilità che il continuo sia costituito di punti.
Du Bois-Reymond, riproducendone alcuni sotto forma un po’ diversa, arriva necessariamente alla
conclusione che l’infinitesimo attuale esiste.”

152 Vivanti directs the reader to § 21 of du Bois-Reymond’s book for the statement of the argu-
ment he is concerned with. However, since no such argument is contained in § 21, we suspect his
reference should have been to § 24 where the above passage is found.

153 [Vivanti 1891a, p. 144]: “Noi non sappiamo attribuire gran valore a tali argomenti, i quali
si riducono in sostanza alla impossibilità nostra di concepire la retta come formata di punti. Ci
sembra anzi che la stessa impossibilità sussista pel segmento infinitesimo, con questo di più, che
essendo tale segmento a sua volta decomponibile in segmenti infinitesimi più piccoli, esso non ha
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Having rejected du Bois-Reymond’s argument along with the two other aforemen-
tioned “proofs” of the existence of infinitesimal line segments, Vivanti draws the main
body of the paper to a close by summarizing his central conclusions. In addition to
reiterating his rejection of the purportedly positive proofs, Vivanti observes that:

1. The infinitesimal calculus does not need anything besides the finite quantities;
2. The field of existence of a real positive variable consists exclusively of finite quantities,

with the exception of only two, 0 and ∞; and the actual infinitesimal as an extended
magnitude, that is one that can be represented by means of a segment, does not exist.154

In his review of Bettazzi’s monograph referred to above, Vivanti identifies the sys-
tems of moments of functions and of infinities of functions studied by Stolz and du
Bois-Reymond as non-Archimedean systems of magnitudes and appears to lend his
support to them [Vivanti 1891, p. 59]. Nevertheless, on the basis of the main body of
the present work it would not have been unreasonable for a reader to wonder if Vivanti
had had a change of heart and came to deny the existence of actual infinitesimals per se.
However, as we alluded to above, this was not the case. Indeed, immediately following
his just-quoted conclusions he opens the Appendix to the work with the remark:

However, even if the actual infinitesimal does not exist in the realm of real quantities,
as we have already established, this does not preclude that in other mathematical fields
it is possible to define entities possessing analogous properties to such infinitesimals.
Although such entities have no bearing on our argument, I hope it will not seem entirely
inappropriate to say a few words about them.155

The systems Vivanti is referring to are primarily those of du Bois-Reymond, Thomae
and Stolz, and he devotes the bulk of the Appendix to providing summaries of them.
As we suggested above, it is presumably the presence in mathematics of what Vivanti
calls “conventional entities” that he believes permits him to embrace the existence of
such systems of infinitesimals while denying the existence of infinitesimal line segments.
Moreover, he does eventually clarify this point in response to some prodding by Bettazzi,
as we shall later see.

From a historical point of view, however, what is far more interesting about Vivanti’s
Appendix than his embrace and overview of the aforementioned systems is the follow-
ing passage he uses to introduce them. In it we find one of the earliest recognitions of

il carattere di elemento, e quindi la sua introduzione non fa che spostare lasciandolo irresoluto, il
problema della costituzione del continuo.”

154 [Vivanti 1891a, p. 146]: “1. II calcolo infinitesimale non ha bisogno che delle sole quantità
finite;
2. Il campo d’esistenza d’una variabile reale positiva consta unicamente di quantità finite, ad ec-
cezione di due sole, 0 e ∞, e l’infinitesimo attuale, come grandezza estensiva, cioè rappresentabile
mediante un segmento, non esiste.”

155 [Vivanti 1891a, p.146]: “Ma se l’infinitesimo attuale non esiste, come abbiamo ormai stabil-
ito, nel campo delle quantità reali, non è escluso che in altri campi pur essi soggetti al dominio delle
Matematiche possano definirsi enti dotati di proprietà analoghe a quelle degl’infinitesimi. Benchè
tali enti sieno estranei all’argomento propostoci, non parrà, speriamo, del tutto inopportuno il
dirne qualche cosa.”
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the relative nature of finite, infinite and infinitesimal magnitude. Vivanti expresses the
matter thus:

We have already pointed out what we understand by magnitude in general, and by one-
dimensional magnitude in particular; and now let us add that the magnitude:

S(A, A, A, . . . , A)

1 2 3 m

is called the m-multiple of the magnitude A. If we proceed to consider more general
magnitudes, the previously given definition of finite, which is essentially based upon the
concept of real quantities, will not have any meaning. Not being able to preserve the abso-
lute meaning of the word finite, let us attempt at least to maintain the relative meaning
of the three words finite, infinitesimal and infinite. For this purpose, given a class of one-
dimensional magnitudes and having agreed to regard as finite a determinate magnitude A,
we need to establish a criterion to decide which magnitudes of the class should be called
finite, infinitesimal, or infinite with respect to A: and we should choose such criteria in
such a way that the meanings of these words would vary as little as possible from the
meanings they have in the theory of ordinary quantities.

Let us call
finite with respect to A every magnitude B such that there are two successive multiples

of A between which an assigned multiple of B is contained;
infinitesimal with respect to A every magnitude C all of whose multiples are smaller

than A;
infinite with respect to A every magnitude [D] greater than all the multiples of A.
It can be easily shown that a magnitude that is infinitesimal (or infinite) with respect to

A is likewise with respect to any other magnitude that is finite with respect to A. Therefore,
if in the class in question there actually exist magnitudes of the characters of B, C, D, the
class will be divided into three subclasses β, γ, δ containing magnitudes that are finite,
infinitesimal and infinite, respectively, [with respect to A].156

156 [Vivanti 1891a, pp. 146–147]: “Abbiamo già accennato che cosa s’intenda per grandezza in
generale, e per classe di grandezze ad una dimensione; ed aggiungiamo ora che la grandezza:

S(A, A, A, . . . , A)

1 2 3 m

si dice m-upla della grandezza A. Se prendiamo a considerare le grandezze più generali, la defi-
nizione già data di finito, la quale si basa essenzialmente sul concetto reale di quantità, non ha più
alcun significato. Non potendo però conservare il valore assoluto della parola fı̀nito, tentiamo di
mantenere almeno il valore relativo delle tre parole finito, infinitesimo, infinito. A tal uopo, essen-
do data una classe di grandezze ad una dimensione, e convenendo di riguardare come finita una
grandezza determinata A, occorre stabilire un criterio per decidere quali grandezze della classe
debbano respetto ad A chiamarsi finite, quali infinitesime, quali infinite: e conviene scegliere tali
criteri per modo che il senso di queste parole si scosti il meno possibile da quello che esse hanno
nella teoria delle quantità ordinarie.

Chiameremo finita rispetto ad A ogni grandezza B tale che possano trovarsi due multipli
successivi di A fra cui sia compreso un multiplo assegnato di B;

infinitesima ogni grandezza C di cui tutti i multipli sono minori di A;
infinita ogni grandezza maggiore di tutti i multipli di A.
Si dimostra senza alcuna difficoltà, che una grandezza infinitesima (o infinita) rispetto ad A lo

è parimenti rispetto a qualunque altra grandezza finita rispetto ad A. Se dunque esistono effettiv-
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Finally, following in the footsteps of Bettazzi, Vivanti goes on to add that depending
upon their respective contents, the classes γ and δ might also be so partitioned, and the
resulting classes so partitioned, and so on.

In this way [saysVivanti] infinitesimals and infinities of various orders shall be obtained.157

15. Does the actual infinitesimal exist? The Bettazzi-Vivanti debate II:
Bettazzi’s response to Vivanti

Bettazzi begins his Observations on the article of Vivanti by reiterating Vivanti’s
findings and by emphasizing that, like Vivanti, he is solely concerned with the “actual
infinitesimal” that “has the properties of a fixed quantity.” This, says Bettazzi, stands
in opposition to the “potential [infinitesimal] employed in all the treatises on the calcu-
lus, which is defined as a finite, variable quantity approaching zero,” a concept which
“undoubtedly is very rigorous and evidently sufficient to treat the calculus” [Bettazzi
1891, p. 175].

Unlike Vivanti, however, Bettazzi was well aware of the shortcomings of the earlier
attempts, including Vivanti’s, to define the actual infinitesimal by means of “division
into infinitely many equal parts.” As Bettazzi puts it:

It is preferable to derive the definition of actual infinitesimal from the words of the
author [Vivanti] .... “when repeated any finite number of times, it (the infinitesimal) never
constitutes ... any finite determined quantity” than from the same author’s words ... which
are not well defined ... according to which the infinitesimal would be obtained by means
of division into infinitely many equal parts, since the word repeat is understood in the
ordinary manner of multiplication.158

“Having defined an actual infinitesimal in such a way,” says Bettazzi, “it seems to
me that the question posed by the author has already been resolved” [Bettazzi 1891, p.
175]. More specifically, as Bettazzi explains:

In mathematics it is said that an object exists when its definition does not contradict
the definitions and properties of the objects already admitted .... For this type of existence
it is not necessary that an object of mathematics should be met in reality, otherwise we
would not study, for example, zero, the infinite, spaces of more than three dimensions,
non-Euclidean geometry, etc.; it is enough that the already admitted postulates are not
contradicted.

amente nella classe considerata grandezze della natura di B, C, D, la classe resterà divisa in tre
sottoclassi β, γ, δ contenenti rispettivamente le grandezze finite, infinitesime e infinite.”

157 [Vivanti 1891a, p. 147]: “Si avranno cosı̀ infinitesimi ed infiniti di vari ordini.”
158 [Bettazzi 1891, p. 175]: “La definizione dell’infinitesimo attuale, meglio che dalle parole

dell’autore ... per le quali l’infinitesimo si otterrebbe dalla divisione in infinite parti uguali, non
ben definita, si ha dalle altre dello stesso autore, che fanno seguito a quelle citate: “..... esso
(l’infinitesimo), ripetuto un numero finito qualsiasi di volte, non forma giammai ... una quantità
finita determinata qualunque” purchè si prenda la parola ripetere nell’ordinario significato della
moltiplicazione.”
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Thus, the question posed by the author ... is equivalent to this: “Does the concept of
an infinitesimal contradict itself or any other concept of mathematics?” This question has
already been answered in a negative fashion by the introduction of examples of classes
of objects for which ... the condition called the postulate of Archimedes is not satisfied
while all the other ordinary properties of magnitudes are satisfied: and the author himself
reports such examples in the Appendix .... Thus we can conclude: “the infinitesimal does
exist.”159

Having established to his satisfaction that the actual infinitesimal is not self-contra-
dictory and therefore exists in this sense and, according to Bettazzi, the only sense that
is of relevance to mathematics, Bettazzi adds: “Now we have to examine the importance
that such an infinitesimal can have in mathematics.” His examination begins with the
following prophetic remark.

Its study will certainly have an abstract importance like that of any other existing object,
and it will probably render us important service, if nothing else a treatment of the calculus
other than the ordinary one ....160

“[H]owever,” Bettazzi goes on to add,

we should ask ourselves if it [the infinitesimal] would have any value when confronting
reality or the usual manner of considering magnitudes.

This is, after all, the question the author [Vivanti] really wants to pose as is apparent
from the course of his article. Moreover, it should be observed that if we shall discover
that the concept of an infinitesimal contradicts some other concept ... this will not testify
against the existence of infinitesimals, but rather against the use of infinitesimals with that
concept in the same way that the impossibility of applying complex numbers to continu-
ous segments does not testify against the use of complex numbers in many other parts of
mathematics.

The author in reality seeks to find out if the infinitesimal exists in a particular domain,
that of linear magnitudes, that is the magnitudes corresponding to segments, and as such
his question can be formulated in the following way: “Does an actual infinitesimal seg-
ment exist?”

In virtue of what has already been said, answering this question consists of decid-
ing whether the concept of an infinitesimal segment agrees with the postulates that are

159 [Bettazzi 1891, pp. 175–176]: “In matematica si dice che un ente esiste quando, non contra-
ddicendo esso per la sua definizione alle definizioni ed alle proprietà degli enti già ammessi .... Per
tale esistenza dunque non occorre che un ente della matematica abbia riscontro nella realtà, senza
di che non si studierebbero, p.es., lo zero, l’infinito, gli spazi a più di tre dimensioni, la geometria
non euclidea, ecc.; ma basta che non contraddica i postulati già ammessi e le loro conseguenze.

Allora la domanda dell’autore ... equivale all’altra: “Il concetto di infinitesimo ha contraddizi-
oni in sè o con gli altri concetti generali della matematica?” A questa domanda è stato già risposto
negativamente col dare esempi di classi di enti dei quali ... cioè non è soddisfatta la condizione
che suol dirsi Postulato d’Archimede, mentre lo sono tutte le altre proprietà ordinarie delle grand-
ezze: e l’autore stesso riporta ... i relativi esempi nell’appendice .... Possiamo quindi concludere:
“L’infinitesimo attuale esiste.”

160 [Bettazzi 1891, p. 176]: “Importanza astratta avrà certamente il suo studio come quello di
qualunque altro ente esistente, e forse esso potrà rendere importanti servigi, se non foss’altro in
una trattazione del calcolo diversa dall’ordinaria ....”
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employed to define a segment as a magnitude, and thus depends on such postulates. And
since the choice of postulates for a segment, as for any other object, is arbitrary and is
made only according to the purpose that is put forth in the study of it, we shall therefore
have to come to an understanding of which postulates we want to be valid for the segment
from the outset.

In this choice we can be guided either by purely theoretical concepts or by the desire
to have a segment that will better render to the mind the nature of a straight line and
its parts that are employed in common practice. It seems that the author has taken the
second approach: as such clearly among the postulates to be posited for a segment is the
postulate of Archimedes, which is equivalent to the assertion that the class of segments
is connected, ... the upshot of which is, as the author correctly points out, that an actual
infinitesimal rectilinear segment does not exist.161

On the other hand, as Bettazzi notes, the choice of which postulates to adopt “can
be guided ... by purely theoretical concepts” and as such the adoption of the denial the
postulate of Archimedes “while not in correspondence to what is met in practice, at least
as far as observation can reach, would be admissible in theory” [Bettazzi 1891, p. 177].
Still, as Bettazzi goes on to caution, regardless of which approach is adopted, care must
be taken in what conclusions about the existence of infinitesimals are actually drawn.
Indeed, says Bettazzi:

If we hold that the domain of our observations is too restricted to enable us to judge
whether we are closer to reality when we admit that the class of segments is connected

161 [Bettazzi 1891, pp. 176–177]: “ma ci si può chiedere se esso avrà valore di fronte alla realtà
o al modo consueto di considerare le grandezze.

Questa è del resto la questione che veramente vuol porsi l’autore, come appare dal corso
dell’articolo. Occorre per altro osservare che se si troverà che il concetto d’infinitesimo ripugni
a qualche altro concetto ... ciò non deporrà contro l’esistenza dell’infinitesimo, ma bensı̀ contro
l’uso dell’infinitesimo in quel concetto: cosı̀ come non si oppone all’uso del numero complesso
in tante parti della matematica il fatto che esso non si può applicare al continuo dei segmenti.

L’autore cerca in realtà se l’infinitesimo esiste in uno speciale campo, quello delle grandezze
lineari, cioè delle grandezze corrispondenti ai segmenti: talchè possiamo cosı̀ formulare la sua
domanda: “Esiste il segmento attuale infinitesimo?”

Tale ricerca consiste, per quanto si è già detto, nel giudicare se il concetto d’infinitesimo va
d’accordo o no coi postulati che servono a definire il segmento come grandezza, e quindi dipende
da tali postulati. E siccome la scelta dei postulati pel segmento, come per qualunque altro ente,
è arbitraria e si fa soltanto a seconda dello scopo che ci proponiamo nello studio di esso, cosı̀
bisognerà dapprima intendersi sui postulati che vogliamo validi per il segmento.

In questa scelta ci possiamo lasciar guidare o da concetti puramente teorici o dal desiderio di
avere un segmento che meglio renda alla mente il fatto di retta e di sue parti che si ha nella pratica
comune. In questo secondo modo di vedere sembra che sia l’autore: ed allora, poichè è chiaro
che fra i postulati da porsi per il segmento v’è il postulato d’Archimede, il quale equivale all’altro
che la classe dei segmenti è connessa, ... si conclude, come giustamente avverte l’autore, che il
segmento rettilineo attualmente infinitesimo non esiste.”
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or when we admit the opposite hypothesis, then the question of the infinitesimal [in the
physical world] will remain unresolved ....162

Having dealt withVivanti’s principal argument against the existence of infinitesimals,
Bettazzi turns to Cantor’s argument, an argument he believes “does not have the value
of the first” [Bettazzi 1891, p. 177]. While admitting that the argument “is incomplete
and ... thus a rigorous conclusion cannot be drawn from it,” he nevertheless suggests that
it would be useful “to assume that the demonstration has been completed or is easy to
complete, and thus that the conclusion of Cantor is proven.” That is, we should assume
it is proven that: (*)

if in a class of linear magnitudes there are magnitudes α and β such that α is infinitesimal
while β is finite and accordingly nα < β for each integer n, then nα < β for each transfi-
nite number n as well: a conclusion that, according to Cantor, contradicts his conception of
a linear magnitude, and therefore demonstrates the falsity of the first hypothesis nα < β

[for each integer n] and, thereby, the falsity of the existence of the infinitesimal α.163

Having adopted this assumption, says Bettazzi:

We can then ask ourselves if this contradiction with the concept of linear magnitudes really
exists, and if this [i.e., Cantor’s] concept of magnitude is the most legitimate one.164

“As to the first question,” says Bettazzi,

nα < β for each finite or transfinite number n, implies that a magnitude equal to or greater
than β can never be composed from magnitudes equal to α whether they are taken a finite
or infinite number of times: now, since the concept of linear magnitudes (segments) given
by Cantor requires that with a sufficiently large number of magnitudes [equal to] α it
will be possible to reach or even surpass β, then the contradiction would only exist if the
transfinite numbers would exhaust the series of sufficiently large infinite numbers. Can
we really say that this is the case? And if this has not been demonstrated, does it not seem
that the preceding results instead of containing a contradiction that leads to the negation

162 [Bettazzi 1891, p. 177]: “Qualora per altro si ritenga che il campo delle nostre osservazioni
sia troppo ristretto per poter giudicare se meglio ci si accosti alla realtà con l’ammettere che la
classe dei segmenti sia connessa piuttosto che con l’ipotesi opposta, resterà insoluta la questione
dell’infinitesimo ....”

163 [Bettazzi 1891, p. 178]: “che cioè se in una classe di grandezze lineari si suppone che
esistano due grandezze α e β di cui α sia infinitesima di fronte a β finita e quindi sia nα < β con
qualunque n intero, dev’essere nα < β anche se n è un numero qualunque transfinito: conclusione
che, secondo il Cantor, ripugna col concetto da lui assunto per le grandezze lineari e che quindi
dimostra f’alsa la prima ipotesi nα < β perciò falsa l’esistenza dell’infinitesmio α.”

164 [Bettazzi 1891, p. 178]: “Possiamo allora chiederci se realmente questa contraddizione col
concetto di grandezza lineare c’è, ed inoltre se questo concetto di grandezza è il più giusto.”
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of the infinitesimal points to the insufficiency of transfinite numbers because of the ability
of α to surpass β?165

Indeed, as Bettazzi goes on to add:

The transfinite numbers are immensely larger than any finite number; but since it is not
demonstrated that they represent the highest expression of number, and since it is a mere
assertion of Cantor (Acta mathem., vol. 2◦, page 390) that it is possible to reach all the
diverse powers that are encountered in the material and non-material natural world with
the help of them, we must only conclude that they are insufficient to render nα > β, and
accordingly we shall need other [numbers] ν of a broader conception for which να > β

is the case.166

That is, according to Bettazzi, if we embrace Cantor’s conception of a linear magnitude
and assume that (*) has been proven, then:

If we say for two numbers n and m of any kind that m < n if mα < nα, then the numbers
[ν] we need [to assure that να > β] must be larger than all those of Cantor.167

Actually, Bettazzi seems to be on shaky ground here, since his argument rests on the
assumption that “the concept of linear magnitudes (segments) given by Cantor requires
that with a sufficiently large number of magnitudes [equal to] α it will be possible to reach
or even surpass β.” However, what the concept of linear magnitudes given by Cantor
actually seems to require is that with a sufficiently large number, say η, of magnitudes
equal to α, where η is one of Cantor’s ordinals (finite or transfinite), it will be possible to
reach or even surpass β. Accordingly, if, for the sake of argument, we embrace Cantor’s
concept of linear magnitudes, then Bettazzi’s suggested way out of Cantor’s argument
does not seem to be available.

165 [Bettazzi 1891, p. 178]: “se essendo n un numero qualunque finito o transfinito si ha sempre
nα < β, vuol dire che con grandezze uguali ad α, sia che si prendano un numero finito od un
numero transfinito di volte, non si compone mai una grandezza uguale o maggiore di β: ora poichè
il concetto di grandezze lineari (segmenti) dato dal Cantor esige che con un numero sufficiente-
mente grande di grandezze α si possa raggiungere o superare β, la contraddizione si avrebbe solo
se i numeri transfiniti esaurissero la serie dei numeri infiniti sufficientemente grandi. Puo vera-
mente dirsi che ciò sia? E se ciò non è dimostrato, non sembra che i risultati precedenti, invece
che contenere una contraddizione che condurrebbe alla negazione dell’infinitesimo accennino ad
una insufficienza dei numeri transfiniti a potere dalla grandezza α passare a quella β?”

166 [Bettazzi 1891, p. 178]: “I numeri transfiniti sono immensamente più grandi di qualun-
que numero finito; ma non essendo dimostrato che essi rappresentano la più alta espressione del
numero ed essendo, a mio credere, una pura asserzione quella del Cantor (Acta mathem., vol. 2◦,
pag. 390) che si possa con essi arrivare a tutte le potenze diverse che s’incontrano nella natura
materiale ed immateriale, dobbiamo concludere solo che essi sono insufficienti a rendere nα > β,
e che quindi ne occorreranno altri ν di concetto più vasto, in modo che con essi sia να > β.”

167 [Bettazzi 1891, p. 178]: “Se di due numeri di qualunque specie m, n si dice m < n se
mα < nα, i numeri che occorrono devono essere maggiori di tutti quelli di Cantor.”
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Be this as it may, Bettazzi was not prepared to accept Cantor’s conception of linear
magnitude in any case. Indeed, writes Bettazzi:

[I]s the concept of linear magnitude or of segment given by Cantor really the most legiti-
mate one or, rather, the most opportune one? Is it required by the concept of magnitude that
a magnitude be formed from a determinate finite or infinite number of other magnitudes?
Note the indetermination that reigns in the phrase “infinite number of times,” a phrase
that will be incomplete until all the infinite numbers have been subjected to an adequate
and rigorous study. It is true that such a study has been done for the whole transfinite
numbers; but I already noted how disadvantageous it is to be limited to them since they do
not represent the most general conception of infinite number, and, as such, in my opinion,
the condition of formation we are talking about seems inopportune.168

With this remark the reader is only beginning to get a hint of what is really wor-
rying Bettazzi about Cantor’s “condition of formation,” a worry that Bettazzi will not
clearly state until his second installment in the debate–namely: “if a magnitude cannot
be defined as a well-ordered collection which transfinite number will correspond to it?”
On the other hand, if one wants to limit oneself to observable phenomena, says Bettazzi,
then a satisfactory finitary version of Cantor’s “condition of formation” is acceptable.
“In fact,” says Bettazzi,

such a condition is put forth by Du Bois-Reymond in his Allgemeine Functionentheorie
for what he calls linear magnitudes [see Appendix I]. Then, since this condition is the
postulate of Archimedes, one immediately has the nonexistence of infinitesimals, and the
demonstration of Cantor becomes unnecessary.169

Following his discussion of Cantor’s argument, Bettazzi turns his attention to the
purported proofs for the existence of infinitesimals based on the theories of probability
and transfinite numbers we alluded to earlier. Bettazzi not only rejects the arguments but
goes on to suggest that actual infinitesimals have nothing to fear from these theories as
well. Having done so, he goes on to summarize his views on the existence of an actual
infinitesimal segment as follows:

it seems to me that the question, as it has been posed by me, is well resolved ...: the exis-
tence of the actual infinitesimal is a postulate that is not opportune for segments intended
for ordinary use.

168 [Bettazzi 1891, p. 179]: “il concetto di grandezza lineare o del segmento dato dal Cantor è
davvero il più giusto o, meglio, il più opportuno? È necessario nel concetto di grandezza quello
di formazione di essa con un determinato numero finito od infinito di altre? Faccio osservare l’in-
determinazione che regna nella frase “numero infinito di volte”, frase che sarà incompleta finchè
tutti i numeri infiniti non saranno assoggettati ad uno studio sufficiente e rigoroso. Questo studio
è fatto, è vero, per i numeri interi transfiniti; ma ho già notato come non sia conveniente limitarsi
ad essi, che non rappresentano il concetto più vasto del numero infinito, e quindi la condizione di
formazione di cui si tratta apparisce, a mio credere, inopportuna.”

169 [Bettazzi 1891, p. 179]: “Tale condizione pone infatti il Du Bois-Reymond nella sua Allgeme-
ine Functionentheorie per quelle che egli dice quantità lineari. Allora, siccome questa condizione
è il postulato d’Archimede, si ha immediatamente che con essa l’infinitesimo non esiste, e la
dimostrazione di Cantor diviene inutile.”
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It seems to me that this is the conclusion the author [Vivanti] wanted to come to even
though in some passages it is not so evident: in any case, I find mistaken or at least unclear
his assertion that “The actual infinitesimal does not exist in the field of real quantities.”
In fact, if by the field of real quantities is meant that of ordinary rational or irrational
numbers, it should be noted immediately that it satisfies the postulate of Archimedes,
and thus among them infinitesimals do not exist. If by the real quantities are meant those
quantities representing reality, then the non-existence of infinitesimals among them is, as
we have seen, only a consequence of a postulate deduced from observation, and it can
be dispensed with whenever we want. There is no doubt that if a segment is to be useful
in material practice it must be defined with the postulate of Archimedes, which excludes
the infinitesimal; but just as the existence of a plane where there can exist only one par-
allel line drawn to another line through a given point does not exclude the importance
of a geometry similar to that of a pseudo-sphere, where the parallels are infinite, in the
same manner the appropriateness of segments without infinitesimals does not exclude the
interest of those having them.170

Thus Bettazzi, while making no reference to Veronese’s forthcoming work on non-
Archimedean geometry, was willing to countenance the mathematical possibility and
interest of such a geometry. Following this prophetic remark, Bettazzi closes his paper
by listing “the conclusions that seem ... to be rigorously drawn,” namely:

1◦ The existence of the actual infinitesimal does not imply contradictions, and accordingly
the actual infinitesimal does exist.

2◦ It is not convenient to admit the existence of an actual infinitesimal segment if we only
want to create a geometry representing the most common facts of our ordinary limited
observations.

3◦ Nothing can be deduced against the actual infinitesimal from either the theory of
probability or transfinite numbers.

4◦ The infinitesimal calculus does not need actual infinitesimals but will be able to use
them when the study of them is completed; then it will only be left to decide whether

170 [Bettazzi 1891, pp. 181–182]: “la questione, come da me è stata posta, mi sembra ben riso-
luta ...: l’esistenza dell’infinitesimo attuale è un postulato, il quale non è per altro opportuno per i
segmenti destinati all’uso ordinario.

Questa è la conclusione a cui appare voglia giungere l’autore, sebbene in qualche frase ciò non
sia cosı̀ evidente: comunque trovo non corretta, o almeno non chiara la sua proposizione (Appen-
dice): “L’infinitesimo attuale non esiste nel campo delle quantità reali”. Infatti, se per campo delle
quantità reali s’intende quello dei numeri ordinari razionali ed irrazionali, per essi è noto immedi-
atamente che soddisfano al postulato d’Archimede, e che quindi fra essi non esistono infinitesimi:
se s’intende per quantità reali quelle che sono destinate a rappresentare la realtà, il non esistere fra
esse l’infinitesimo è solo effetto, come si è visto, di un postulato desunto dall’osservazione, e che
può sopprimersi quando si voglia. Nessun dubbio che il segmento, per essere utile nella pratica
materiale, debba essere definito col postulato d’Archimede, che esclude l’infı̀nitesimo; ma come
l’esistenza di un piano in cui di rette parallele condotte da un punto ad una retta non ve n’è che una
(il che corrisponde alla pratica dentro i limiti delle nostre osservazioni) non esclude l’importanza di
una geometria simile a quella della pseudosfera, dove le parallele sono infinite, cosı̀ l’opportunità
dei segmenti senza infinitesimi non esclude 1’interesse di quelli che ne posseggono.”
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it is better to develop it with their use or with the use of the potential infinitesimals that
are usually employed.171

16. Does the actual infinitesimal exist? The Bettazzi-Vivanti debate III:
Vivanti’s response to Bettazzi

Whether Peano had intended Vivanti to write a response to Bettazzi’s Observations
is not clear. However, whatever the original intention may have been, Vivanti makes it
clear in the opening remarks of his second installment that he felt the need to clarify his
views. He writes:

The Observations of ... Professor R. Bettazzi ... have convinced me that the fear of being
too prolix made me appear obscure in some fundamental points of the discussion. And
in fact if not the author, then the readers of the Observations suggest that I have been
preoccupied with a problem which is not really a problem and which reduces to nothing
more than a play on words or a question of expediency.172

To help counter this perception Vivanti offers the following explanation of why he
interpreted the question of the existence of infinitesimals in the manner he did.

The human sciences in order to study natural phenomena considered it necessary to
decompose them into parts as small as possible .... It is easy to see how this idea ... gave
rise to the concept of an actual infinitesimal considered as an actually existing quantity....

The quantities that have figured exclusively in analysis, at least until modern times
when the breeze of generalization started to blow upon all the fields of mathematics, are
those which constitute the substratum of natural phenomena, that is durations, lengths,
velocities, temperatures, etc. Thus it is only within the field of these quantities that the
question [of the existence of infinitesimals] I just mentioned must be raised; and to bring
it outside this field would distort it. But these quantities have a common character that
is reducible to a single type arbitrarily chosen among them; thus for example the class
of linear segments can be taken. That is why the question can be limited to this class

171 [Bettazzi 1891, p. 182]:
“1◦ L’esistenza dell’infinitesimo attuale non involge contraddizione, e quindi l’infı̀nitesimo attuale
esiste.
2◦ Non è conveniente ammettere l’esistenza di un segmento infinitesimo attuale, solamente se si
vuole una geometria che rappresenti i fatti più comuni delle nostre ordinarie limitate osservazioni.
3◦ Non può dedursi niènte contro l’infinitesimo attuale dalla teoria delle probabilità e dei numeri
transfiniti.
4◦ II calcolo infinitesimale non abbisogna degli infinitesimi attuali, ma potrà usarli quando ne
sia stato fatto completo lo studio, restando poi da decidersi se meglio si svolga con essi o cogli
infinitesimi potenziali di cui si serve ordinariamente.”

172 [Vivanti 1891b, p. 248]: “Le Osservazioni del ... Prof. R. Bettazzi ... mi hanno convinto che il
timore di essere troppo prolisso m’ha fatto riuscire oscuro in alcuni punti capitali della trattazione.
Ed invero, se pure già non era nell’autore, s’ingenera almeno nei lettori delle Osservazioni l’idea,
aver io trattato un problema che non è problema, e che si riduce a poco più d’un giuoco di parole
o d’una questione d’opportunità.”
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of magnitudes without detriment to generalization. Therefore the question of my first
article: “whether an actual infinitesimal segment exists” is nothing else but a translation
into a simpler form of the age-old and, I would say, classical question of the existence of
infinitely small constant quantities.173

Vivanti’s words lend credence to Bettazzi’s suspicion that when in the main body
of Vivanti’s earlier work Vivanti argued against the existence of actual infinitesimals
he was primarily concerned with “those [quantities] which constitute the substratum of
natural phenomena.” “After all,” as Vivanti later adds:

it is natural that, when the question [of the existence of infinitesimals] is understood in all
its generality, one must answer it affirmatively; and in order to clarify this I referred to a
few examples of infinitesimal magnitudes in §12.174

Having made clear the origins and importance of the question of the existence of an
actual infinitesimal line segment, says Vivanti, “I will examine its true nature” [Vivanti
1891b, p. 251]. Interestingly, according toVivanti, this is to be found in the philosophy of
the continuum. Indeed, while admitting that both he and Bettazzi agree on the definition
of the continuum, it is with respect the philosophical underpinnings of the concept that
he finds real divergence and, ultimately, the source of fault in Bettazzi’s view. He begins
by expressing the matter as follows in terms of a class of line segments that is continuous
in the sense of Bettazzi:

Essentially, according to Bettazzi, the continuity of the class A (and consequently the
validity of the postulate of Archmedes) is the result of experience, which, as such, can be
contradicted tomorrow by more accurate observations.

Is this way of seeing the matter correct?
The question, though unaltered, will be better seen in its true light if for a standard of a

quantity we shall take time rather than the straight line .... There is a fact about which there
can be no disagreement, and it is that the continuity of time is not based upon experience,

173 [Vivanti 1891b, pp. 248–249]: “La scienza umana, per sottoporre a misura ed a studio i
fenomeni naturali, ha ritenuto necessario scomporli in fasi quanto è possibile piccole .... È facile
comprendere come questa idea ... dato origine al concetto dell’infinitesimo attuale considerato
come quantità effettivamente esistente ....

Le quantità che hanno figurato esclusivamente nell’analisi, prima almeno che la moderna aura
generalizzatrice venisse a soffiare su tutti i campi delle matematiche, sono quelle che costituisc-
ono il substrato dei fenomeni naturali, cioè tempi, lunghezze, velocità, temperature, ecc. Quindi
è soltanto entro il campo di queste quantità che si è agitata e deve tuttora agitarsi la questione a
cui ho testè accennato; portarla fuori di esso sarebbe volerla snaturare. Ma quelle quantità hanno
il carattere comune di potere essere ridotte ad un unico tipo scelto ad arbitrio fra esse; come tale
può prendersi p. es. la classe dei segmenti rettilinei. Ecco perchè la questione può, senza danno
della generalità, limitarsi a questa classe di grandezze. Pertanto il problema fondamentale del
mio primo articolo: “Cercare se possa darsi un segmento attualmente infinitesimo” non è che una
traduzione sotto forma più semplice della questione secolare e, direi, classica della esistenza di
quantità infinitamente piccole costanti.”

174 [Vivanti 1891b, p. 253]; “Del resto è naturale che, presa la domanda in tutta la sua generalità,
si debba rispondere ad essa affermativamente; ed appunto per mettere in chiaro ciò io ho recato
nel §12 alcuni esempi di grandezze infinitesime.”
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and cannot be so, because the idea of time itself does not result from observations, but
rather is the condition necessary for the possibility of any empirical observation.175

Appended at this point in the passage is a note that reads: “Here the theory of space and
time of Kant comes to mind ....” Having so informed the reader Vivanti continues:

In other words, it is not our limited observations that tell us that time is continuous; it
is our mind that refuses to conceive of it in any other way, it is our mind which is not
capable of conceiving of time passing from one instant to another instant without passing
through all the instants in between. And the same can be said about lengths, velocities,
temperatures, etc. I would like to add that the question directs us to the conceivability of
the infinitesimal rather than to the existence of it in the field of ordinary quantities. And
the question is quickly resolved: since continuity excludes the existence of the infinitesi-
mal, and because it is the fundamental characteristic of quantities . . . actual infinitesimal
durations, lengths, temperatures, etc., are absurd, inconceivable entities (impossible, i.e.,
contradictory in thought, as Cantor says). As long as the human mind remains the same,
this conclusion cannot change; there is nothing to hope for or to fear of in the future from
more perfect observations.

This is not true for the parallel postulate, which, instead, is based upon experience;
and thus the comparison between the two cases will not stand. And it is possible to cite as
a distinctive fact, that Helmholtz, one of the strongest supporters of the empirical origins
of the geometrical axioms, repeatedly declares that his ideas do not oppose the Kantian
conceptions of space and time.176

175 [Vivanti 1891b, p. 252]: “In sostanza, secondo il Bettazzi, la continuità della classe A (e
quindi la validità nella stessa del postulato d’Archimede) è un risultato dell’esperienza, che, come
tale, può domani venire contraddetto da osservazioni più accurate.

É giusto questo modo di vedere?
La questione, pur restando inalterata, apparirà meglio nella sua vera luce se come tipo delle

quantità di cui nel prenderemo, non più la linea, ma il tempo .... V’ha un fatto su cui non può
cadere disaccordo, ed è, che la continuità del tempo non è fondata sull’esperienza, nè potrebbe
esserlo, giacchè l’idea stressa di tempo non risulta dalla osservazione, ma è bensı̀ una delle idee
che costituiscono le condizioni necessarie per la possibilità di qualsiasi osservazione empirica.”

176 [Vivanti 1891b, pp. 252–253]: “In altre parole, non sono già le nostre limitate osservazioni
che ci dicono il tempo essere continuo; e la nostra mente che si rifiuta a concepirlo in modo diverso,
che non è capace di seguire il tempo che scorre da uno ad un altro istante senza passare per tutti gli
istanti intermedi. E ciò che si dice del tempo può ripetersi delle lunghezze, velocità, temperature,
ecc. Ben dissi dunque sopra che la questione, meglio che sulla esistenza, versa sulla concepibilità
dell’infinitesimo, nel campo delle quantità ordinarie. E la questione è ben presto risolta: poichè
la continuità esclude l’esistenza dell’infinitesimo, e poichè essa è il carattere fondamentale delle
quantità . . . i tempi, le lunghezze, le temperature, ecc., attualmente infinitesime, sono enti assurdi,
inconcepibili (unmögliche, d. h. in sich widersprechende Gedankendinge, come dice Cantor). Fin
che la mente umana resta la stessa, questa conclusione non può mutare; nulla v’ha a sperare nè a
temere da future e più perfette osservazioni.

Cosı̀ non è del postulato delle parallele, il quale invece si fonda realmente sull’esperienza;
epperò il paragone fra i due casi non regge. E si può citare come fatto caratteristico, che Helmholtz,
uno dei più caldi sostenitori dell’origine empirica degli assiomi geometrici, dichiara ripetutamente
le sue idee non essere punto in opposizione col concetto kantiano di tempo e spazio.”
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Turning his attention to the first part of Bettazzi’s critique of Cantor’s purported proof,
“a proof, which, to tell you the truth, should not be discussed since it is incomplete”
[Vivanti 1891b, p. 253], Vivanti writes:

First of all, according to Bettazzi, it is not proven that transfinite numbers are the
highest expression of number, and it is a pure assumption of Cantor’s that it is possible
to reach the diverse powers encountered in the material and nonmaterial natural world
with their aid.– To prove that this is not the case it might be enough to recall what a
transfinite number is. A transfinite number is nothing more than a concept obtained from
a well-ordered collection by abstracting from the peculiar nature of its elements in such
a way that to every well-ordered collection a transfinite number ipso facto corresponds.
Now, in our case, we have to deal precisely with a well-ordered collection, that is, with
a series of infinitesimal segments, all of them equal, placed end to end upon a straight
line; thus however much the series of segments be extended, there is always a transfinite
number that represents it.177,178

177 [Vivanti 1891b, pp. 253–254]: “Anzitutto, secondo il Bettazzi, non è provato che i numeri
trasfiniti sono la più alta espressione del numero, ed è una pura asserzione quella di Cantor, che
si possa con essi arrivare a tutte le potenze diverse che s’incontrano nella natura materiale ed im-
materiale.–Per mostrare che ciò non è esatto, basta rammentare che cosa sia un numero trasfinito.
Un numero trasfinito non è altro che il concetto che si ottiene da un insieme ben ordinato facendo
astrazione dalla natura speciale dei suoi elementi; per modo che a qualunque insieme ben ordinato
corrisponde ipso facto un numero trasfı̀nito. Ora nel caso nostro abbiamo a fare appunto con un
insieme ben ordinato, e cioè con una serie di segmenti infinitesimi tutti eguali disposti l’uno di
seguito all’altro sopra una linea retta; quindi, per quanto sia estesa la serie dei segmenti, sempre
v’ha un numero trasfinito che la rappresenta.”

178 Although Vivanti would have had no way of knowing it, he is not on firm twentieth-century
mathematical ground when he contends: “to every well-ordered collection a [Cantorian] transfinite
number ipso facto corresponds.” It is of course true that to every well-ordered set of Zermelo-
Fraenkel set theory (ZF), a Cantorian ordinal corresponds. However, there are set theories such
as those due to von Neumann-Bernays-Gödel, Morse, and Ackermann that countenance well-
ordered proper classes (in the set-theoretic sense–not Bettazzi’s sense) that correspond to no set
of ZF and, hence, to no Cantorian ordinal. The best known example of such a class is, of course,
the well-ordered class, On, of all Cantorian ordinals–a class that is itself an “ordinal,” albeit not
a Cantorian ordinal. In these theories, however, one can introduce even greater “ordinals” such
as On + 1, On + 2, On + 3, . . . although in the theories of von Neumann-Bernays-Gödel and
Morse, where a proper class may not be a member of a class, well-known special techniques must
be employed in defining such entities (cf. [Ehrlich 2001, p. 1233]). In Ackermann’s theory, on
the other hand, where proper classes may be members of proper classes, these “ordinals” may be
defined using a straightforward generalization of the standard von Neumann ordinal construction.
Thus, while Bettazzi certainly did not anticipate anything like the theoretical frameworks that
would lend credence to such numbers, it is not misguided, as Vivanti contends, to envision the
possibility of numbers that correspond to well-ordered collections that are greater than each of
Cantor’s ordinals. For good overviews of the theories of von Neumann-Bernays-Gödel, Morse,
and Ackermann, see [Fraenkel, Bar-Hilllel, Levy 1973, pp. 119–153].
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“The second remark of Bettazzi,” says Vivanti,

concerns the concept of linear magnitude adduced by Cantor; the concept that, according
to him, is neither the most legitimate nor the most opportune. Let us carefully examine
this concept, and see upon what it is based.

As I have mentioned earlier, a linear segment could be imagined to be composed either
of points or of infinitesimal segments. The characteristic that distinguishes these two types
of elements is that a point does not have any dimensions, while a segment has a length. In
other words: we cannot understand how a point can be placed next to another point without
the two coinciding, while, on the contrary, the juxtaposition of two segments allows the
formation of another segment, composed of the two though different than each. In my
opinion, this is what Cantor means when he says that according to the concept of a linear
magnitude any such magnitude must be regarded as an integral part of another analogous
one. And the demonstration of Cantor is reduced to showing that an infinitesimal segment,
if it existed, would not have this characteristic property, since nothing would distinguish
it from an unextended point.179

17. Does the actual infinitesimal exist? The Bettazzi-Vivanti debate IV:
Bettazzi’s closing remarks

Bettazzi begins his second and final response by remarking that:

I state with pleasure that a complete accord reigns between us [Vivanti and himself] in
regard to the principal questions: 1◦ The concept of an infinitesimal is not contradictory,
as there are (proper) classes of magnitudes (of the 2nd kind) in which for two opportune
magnitudes A, B, we have nA < B for any integer n, and for which therefore A is said
to be an (actual) infinitesimal with respect to B. 2◦ In the classes of segments intended
for the study of natural phenomena the infinitesimal segment is to be excluded.

I note that the author does not approve of my remarks regarding the second question,
where I say that the actual infinitesimal segment does not exist by reason of analogy
with what we encounter in practice within the limits of our observations; he maintains
it is necessary in virtue of the very nature of our minds that which I consider merely an
opportune representation of reality based upon necessarily limited observations, namely,

179 [Vivanti 1891b, p. 254]: “Il secondo appunto del Bettazzi riguarda il concetto di grandezza
lineare adottato da Cantor; concetto che, secondo lui, non è nè il più giusto nè il più opportuno.
Esaminiamo bene questo concetto, e vediamo su che esso si fondi.

Come già dissi, un segmento lineare può immaginarsi come composto, o di punti, o di segmenti
infinitesimi. Il carattere che distingue tra loro tali due specie di elementi è questo, che il punto non
ha dimensioni, mentre il segmento ha una lunghezza. In altre parole: noi non sappiamo concepire
che si possa porre un punto immediatamente accanto ad un altro senza che i due coincidano,
mentre al contrario la giustapposizione di più segmenti dà luogo alla formazione di un segmento
composto dei medesimi e diverso da ciascuno di essi. Ecco che cosa significa, a mio credere, l’es-
pressione di Cantor, che secondo il concetto di grandezza lineare ciascuna di tali grandezze deve
immaginarsi come parte integrante di altre analoghe. E la dimostrazione di Cantor si riduce a far
vedere che il segmento infinitesimo, se esistesse, sarebbe privo di questa proprietà caratteristica,
sicchè nulla più lo distinguerebbe dal punto inesteso.”
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the continuity of the class of the ordinary segments, which excludes the existence of the
infinitesimal. Thus the question enters the field of philosophy, where I did not intend to
lead it; being quite ignorant of the relevant studies, I do not intend to open a discussion
in that field. I will limit myself to saying that the strictly mathematical question to which
I intended to restrict myself is exhausted; as long as the straight line is defined and the
segments are defined as its parts retaining for themselves the usual concepts of greater,
smaller, sum, and difference, the choice between the two postulates is logically free . . . .180

Turning next to Vivanti’s reaction to his critique of Cantor’s “proof,” Bettazzi goes
on to write:

I called unproven that the transfinite numbers of Cantor are the highest expression of
number and Dr.Vivanti judges me to be mistaken, because, as he writes “A transfinite num-
ber is nothing more than a concept obtained from a well-ordered collection by abstracting
from the peculiar nature of its elements in such a way that to every well-ordered collection
a transfinite number ipso facto corresponds.” But I ask, if a magnitude cannot be defined
as a well-ordered collection which transfinite number will correspond to it? Are all mag-
nitudes to be considered well-ordered collections? Since the latter is not in general the
case, given the common concept of magnitude, the insufficiency of the transfinite number
as a concept corresponding to the magnitudes seems clear to me, unless they are either
limited to special classes or something more is added to the generally accepted conception
of them.

The author abides by this way of thinking for the case of segments for the remainder of
the article and continues: “Now, in our case, we have to deal precisely with a well-ordered
collection, that is, with a series of infinitesimal segments, all of them equal, placed end to
end upon a straight line.” It seems clear to me that a new and independent hypothesis is
stated here, and not a truth necessitated by the concept of an infinitesimal segment. The
common magnitudes are composed of magnitudes which follow one another, but they are
finite, that is to say of the same nature of the magnitudes they constitute; on the other
hand, it seems to me that nothing in observation or logic teaches us that a magnitude must
be conceived as a collection composed of other magnitudes which are not of its same

180 [Bettazzi 1892, pp. 38–39]: “e constato con piacere come regni fra noi due l’accordo comp-
leto sulle questioni principali–1◦ Il concetto d’infinitesimo attuale non è contradditorio, in quanto
esistono classi (proprie) di grandezze nelle quali per due grandezze opportune A, B si ha nA < B

qualunque sia n intero, e quindi A è da dirsi un infinitesimo (attuale) rispetto a B (classi di 2a

specie). 2◦ Nella classe dei segmenti destinati allo studio dei fenomeni naturali è da escludersi il
segmento infinitesimo.

Noto peraltro che l’autore non approva i miei argomenti relativi alla 2a questione, là dove
io dico che il segmento attualmente infinitesimo non esiste per ragione di analogia con quello
che si riscontra in pratica dentro i limiti delle nostre osservazioni; ritenendo egli esser necessario
per la natura stessa della nostra mente il fatto che io ho detto essere soltanto opportuno come
rappresentazione della realtà basata su osservazioni necessariamente limitate, vale a dire la con-
tinuità della classe degli ordinari segmenti, che esclude l’esistenza dell’infinitesimo. Essendo la
questione entrata cosı̀ nel campo filosofı̀co, dove io non volevo condurla perchè affatto profano
ai relativi studi, non intendo aprire la discussione in quell’indirizzo. Mi limito ad osservare che la
questione strettamente matematica alla quale intendevo arrestarmi può dirsi esaurita; inquantochè
definita la retta, e definiti i segmenti come sue parti, ritenendo per essi i consueti concetti di uguale,
maggiore, minore, somma e differenza è logicamente libera la scelta fra i due postulati . . . .”
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nature. And if there is no well-ordered collection of infinitesimal segments out of which
a finite segment is composed, then the support that the author seeks for Cantor’s proof of
the non-existence of infinitesimals is missing.181

Although Bettazzi did not say as much, he undoubtedly was aware that he could have
illustrated his first point by appropriately choosing an element from any of the discrete
non-Archimedean classes of units that he investigated in his Teoria Delle Grandezze
[1890, §129; 1893, pp. 119–123]. Consider, for example, the element 1 · 11 = 11 in the
subclass A of B(2) consisting of all elements of the form α(0)10 + α(1)11, where α(0) is
a positive integer and α(1) is an integer. With the addition and order inherited from B(2),
A is a limited proper class (in Bettazzi’s sense); moreover, the ordered set of elements
of A less than or equal to 11 is given by

10, 210, . . . , n10, . . . . . . , 11 − n10, . . . , 11 − 210, 11 − 10, 11

But this ordered set has order type ω +∗ ω, which is not the order type of a well-ordered
set.

On the other hand, what Bettazzi plainly did not anticipate is that among the prop-
erties of the non-degenerate line segments of the various non-Archimedean geometrical
spaces that would soon be developed by such writers as Veronese [1891], Levi-Civita
[1892–93], Hilbert [1899], Dehn [1900], Schur [1899; 1902; 1903; 1905; 1909], Hessen-
berg [1905; 1905a] and Hjelmslev [1907], is that every such segment can be decomposed
into a discrete ordered set182 〈Ds, <Ds 〉 of non-degenerate congruent subsegments that

181 [Bettazzi 1892, pp. 39–40]: “Io dissi non esser provato che il numero transfinito del Cantor
sia la più alta espressione del numero: e il Dr Vivanti mi giudica in errore, giacchè, come egli
scrive, “Un numero transfinito non è altro che il concetto che si ottiene da un insieme ben ordina-
to, facendo astrazione dalla natura speciale dei suoi elementi: per modo che a qualunque insieme
bene ordinato corrisponde ipso facto un numero transfinito”. Ma, domando, e se una grandezza
non si può definire come un insieme bene ordinato, quale numero transfinito le corrisponderà? O
piuttosto tutte le grandezze sono da ritenersi quali insieme bene ordinati? Siccome quest’ultima
cosa non è da affermarsi in generale, dato il concetto comune di grandezza, cosı̀ mi pare chiara la
insufficienza del numero transfinito come concetto corrispondente alle grandezze, a meno che o
ci si limiti a loro classi speciali, o si aggiunga qualcosa di più all’idea che ordinariamente si ha di
esse.

A quest’ultimo modo si attiene del resto per il caso dei segmenti l’autore, il quale cosı̀ prose-
gue: “Ora nel caso nostro abbiamo a fare appunto con un insieme bene ordinato, e cioè con una
serie di segmenti infinitesimi tutti eguali, disposti l’uno di seguito all’altro sopra una linea retta”.
Mi pare chiaro che qui si enuncia una ipotesi nuova ed indipendente, e non un fatto necessaria-
mente incluso nel concetto di segmento infı̀nitesimo. Le grandezze comuni sono composte di parti
che si seguono, ma quando queste sono finite, cioè della stessa natura delle grandezze che esse
ricompongono; nulla invece mi pare che l’osservazione o la logica c’insegnino circa il modo in
cui si deve concepire una grandezza come insieme di altre che non sono della sua stessa natura. E
se manca questa disposizione dei segmenti infinitesimi che fa del segmento finito un insieme bene
ordinato, manca l’appoggio che per il suo assunto l’autore chiede alla dimostrazione del Cantor
circa la non esistenza dell’infinitesimo.”

182 An ordered class is said to be discrete if every member, unless it be the first, has an immediate
predecessor and every member, unless it be the last, has an immediate successor.
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are infinitesimal relative to S where Ds has a first member and a last member and <Ds

is defined by the condition: S′ <Ds S′′ if and only if no point of S′ succeeds (in the
ordering of points on the line) any point of S′′.183 Since the set of points on each of the
lines of these spaces is dense, it follows from the above that in these decompositions
the last point of each subsegment S′ with the exception of the last point of S itself coin-
cides with the first point of the subsegment that is the immediate successor of S′. That
the said segments admit such a decomposition follows from an elementary result about
ordered Abelian groups (see Note 184) and the fact that the set of points on a line in each
of the aforementioned spaces together with order and addition suitably defined either
constitutes an ordered Abelian group in which for each strictly positive element a there
is a strictly positive element b that is infinitesimal relative a, or, as in case of an elliptic
space, is suitably related to such a structure.184 It is worth noting, however, that the only
general proofs of the existence of these decompositions that we are aware of require the
Axiom of Choice (or some equivalent thereof), an assumption that, as we have already
mentioned, Bettazzi was not prepared to accept. However, what role, if any, the possible
dependence of the general existence of these decompositions on the Axiom of Choice

183 In a space such as an elliptic space where there is no global total order on the points of a
line the order is defined locally on the segment itself.

184 To be a bit more precise, the set of points on a line in each of the aforementioned spaces
together with order, addition, and multiplication suitably defined either constitutes a non-Archi-
medean ordered field, or, as in case of an elliptic space, is suitably related to such a field. However,
the ordered additive structure of every non-Archimedean ordered field is an ordered Abelian group
in which for each strictly positive element a there is a strictly positive element b that is infinitesi-
mal relative a.

The existence of the aforementioned decomposition, however, depends solely on the ordered
additive structure. To state the theorem in question, we require the following definition in which
if [a, b] and [c, d] are nondegenerate closed intervals of an ordered Abelian group G, then [a, b]
is said to be as long as (smaller than) [c, d], if b − a = d − c(b − a < d − c). If I and I ′ are
nondegenerate closed intervals of an ordered Abelian group 〈G, +, >〉 and I ′ is smaller than I ,
then I will be said to have an I ′ - covering if I can be decomposed into (i.e., is the union of)
an ordered class 〈CI ′ , <CI ′ 〉 of non-degenerate closed intervals having the following properties:
i. 〈CI ′ , <CI ′ 〉 is a discrete ordered class (see Note 182) having a first member and a last member
whose order is defined by the condition for all X, Y ∈ CI ′ , X <CI ′ Y if and only if no member
of X is > any member of Y ; ii. each interval in CI ′ is as long as I ′.

Theorem If I and I ′ are nondegenerate closed intervals of an ordered Abelian group
and I ′ is infinitesimal relative to I , then there is an I ′- covering of I . Any such I ′- covering
of I is not well ordered.

A proof of the above theorem was given by the author in paper entitled “Zeno’s Paradox of
Extension and its Solution” that was presented at the Pacific Meeting of the American Philosophi-
calAssociation in Long Beach, California in 1984.A revised version of the paper is being prepared
for publication.

A closely related result, whose proof is attributed to R. Hartshorne, is presented in [Moore
2002, p. 317: Proposition 30].
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played in Bettazzi’s thinking about the matter we are in no position to say. On the other
hand, what does perhaps reflect favorably on Bettazzi’s observations is that the ordered
sets of segments associated with these decompositions are never well-ordered sets.

18. A prelude to Veronese’s non-Archimedean geometry
and Peano’s reaction thereto

Appended to the end of Bettazzi’s second installment of his debate with Vivanti is
an editorial footnote by Peano that reads: “In an upcoming issue I will develop Cantor’s
proof of the impossibility of a constant infinitesimal line segment” [Bettazzi 1892, p. 40].
The development appeared soon thereafter in Peano’s “Dimostrazione dell’impossibilità
di segmenti infinitesimi costanti” (Demonstration of the Impossibility of Constant Infin-
itesimal Segments) [1892]. In this paper–contrary to what is sometimes suggested (cf.
[M. Klein 1980, p. 274])–Peano does not argue against the possibility of infinitesimals
per se but rather against the possibility of infinitesimal line segments and other “com-
monplace magnitudes” more generally. Indeed, as is evident from the opening remarks
of Peano’s paper, unlike Cantor he embraces the idea that the order of infinity of one
real function can be infinitesimal with respect to the order of infinity of another such
function. In particular, he writes

We will say that a magnitude u is infinitesimal with respect to a magnitude v if every
finite whole numerical multiple of u is less than v. The existence or nonexistence of infin-
itesimal magnitudes depends upon the meaning we attribute to the word magnitude. And
there have actually been formed categories of entities in which it is possible to define the
relationships and operations similar to those performed in algebra with numbers, and in
these categories of entities one can find infinitesimals. Thus the order of infinity of one
function can be infinitesimal with respect to the order of infinity of another function. In my
work [Sulla formula di Taylor, 1891] I have already shown that in one and the same Taylor
formula we can choose to consider the successive terms either as variable infinitesimals
or as constant infinitesimals of different orders.185

Having established that he accepts the existence of at least some types of infinitesi-
mals he goes on to add:

In all these cases the entity is determined by a real function of a real variable. But do
infinitesimals exist among the commonplace magnitudes, for example, among the seg-
ments of a straight line?

185 [1892, p. 58; Opere Scelte III, p. 110]: “Si dice che una grandezza u è infinitesima rispetto
alla grandezza v, se ogni multiplo di u, secondo un numero intero finito, è minore di v. L’esistenza
o meno di grandezze infinitesime dipende dal significato che attribuiamo alla parola grandezza.
Ed effettivamente si sono formate delle categorie di enti, sui quali si possono definire le relazioni e
operazioni analoghe a quelle dell’algebra sui numeri, nelle quali categorie di enti si trovano degli
infinitesimi. Cosı̀ l’ordine di infinità d’una funzione può essere infinitesimo rispetto all’ordine di
infinità d’un’altra. In un mio scritto [Sulla formula di Taylor, 1891] già feci vedere che nella stessa
formula di Taylor i successivi termini si possono considerare a nostro arbitrio come infinitesimi
variabili o costanti d’ordine diverso.”
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This question, discussed by Doctors Vivanti and Bettazzi in the Rivista di Matematica,
is very interesting, and more so because recently there have appeared theories and printed
volumes based upon the hypothesis of their existence. Cantor has responded negatively
to this question; however, the proof given by this illustrious mathematician against the
theory is so concise that it has been considered incomplete. The purpose of this note is to
develop this proof.186

Foremost among the theories of infinitesimals Peano is referring to is that of Gius-
eppe Veronese developed in his Fondamenti di Geometria [1891], a work to which Peano
gave a scathing review [Peano 1892a]. Peano’s review appears in the same volume of
Rivista di Matematica containing his development of Cantor’s “proof.” Peano’s pur-
ported proof can be viewed as much as an attack on Verosene’s pioneering investigation
of non-Archimedean geometry as it can as a development of Cantor’s abstract argument.
Indeed, his “proof” together with his aforementioned review of Veronese’s Fondamenti
may be regarded as the opening salvo in the multifaceted critique of non-Archimedean
geometry and/or Veronese’s contributions thereto that ensued following the publication
of Veronese’s path-breaking work. This being the case, we will defer our discussion of
Peano’s purported proof to the aforementioned companion to the present work where
the emergence of non-Archimedean geometry and the reaction thereto will be the central
focus of the discussion.

Appendix I. Du Bois-Reymond’s conception of a linear magnitude and its relation
to Stolz’s axiomatiztion of an Archimedean system of absolute magnitudes

As we mentioned in Note 14, Stolz apparently drew some inspiration for his axi-
omatiztion of an Archimedean system of absolute magnitudes from du Bois-Reymond’s
conception of a linear magnitude [1882, pp. 43–48] (a conception that should not be
confused with Cantor’s namesake conception discussed in Sections 6, 7 and 8). Accord-
ing to du Bois-Reymond, the concept of a linear magnitude is grounded in our idea of a
straight line. Indeed, says du Bois-Reymond:

They can essentially be regarded as lines; their differences, their parts and their multiples
are also magnitudes of the same kind, as are lines; they are capable of being very small
and very large, as are lines, and, like lines, they are comparable and measurable.187

In the section of his work entitled “A More Precise Definition of Linear Magnitude”
du Bois-Reymond characterizes such systems in terms of the following six assertions

186 [1892, p. 58; Opere Scelte III, p. 110]: “In tutti questi casi l’ente è determinato da una
funzione reale di una variabile reale. Ma fra le grandezze comuni, p. e. fra i segmenti rettilinei,
esistono degli infinitesimi?

Questa questione, dibattutasi fra i dott. Vivanti e Bettazzi sulla Rivista di Matematica, è assai
interessante tanto più che negli ultimi tempi sul’ipotesi della loro esistenza si sono fatte teorie e
stampati dei volumi. Ad essa rispose negativamente il Cantor; ma la dimostrazione che questo
illustre matematico ne diede è cosı̀ concisa, che fu giudicata incompleta. Scopo della presente
nota si è di sviluppare questa dimostrazione.”

187 [1882, p. 23] “Sie sind auf Längen zurückführbar, ihre Unterschiede, Theile und Vielfache
sind wie bei den Längen wieder Grössen derselben Art, sie sind wie Längen in der Richtung des
Kleinsten und Grössten ausgedehnt, sie sind wie Längen vergleichbar, messbar.”
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[1882, pp. 44–47].

I. The linear mathematical magnitudes are either equal or unequal. They are equal if their sensual
manifestations produce the same impression under the same conditions. One is larger than
the other, if its appearance can be altered through exhaustion so that it completely coincides
with the other, and the contrary is impossible.

II. Among the linear magnitudes of a kind, e.g. all possible segments, none is distinguished, and
consequently we have no conception of a necessary limit either for the smallness or for the
greatness of a [linear] magnitude.

III. If two or more magnitudes of the same kind are combined it results again in a magnitude of
the same kind, which is larger than the components. On the other hand, each magnitude can
be divided into arbitrarily many others of the same kind, and each such part is smaller than
the undivided magnitude.

IV. If a magnitude is larger than another, then there is always a third of the same kind as the two
that combined with the second results in the first.

V. One can always combine equal or unequal magnitudes, whose smallest need not be smaller
than an arbitrarily small given magnitude, in sufficient number, to obtain a magnitude that is
not smaller than any given one of the same kind.

VI. A magnitude is divisible into smaller magnitudes in innumerable ways, the divisions being
distinguished in that the magnitude is divided into two, three or more mutually equal magni-
tudes. The division of a magnitude can be continued till all the parts become smaller than an
arbitrarily small given magnitude of the same kind. However, no matter how far the division
is carried out the parts are always magnitudes of the same kind.188

However, while du Bois-Reymond’s conception of a linear magnitude may be re-
garded as a forerunner of Stolz’s concept of an Archimedean system of absolute magni-

188 “I. Die lineären mathematischen Grössen sind entweder gleich oder ungleich. Gleich sind
sie, wenn ihre sinnlichen Erscheinungen unter denselben Bedingungen denselben Eindruck her-
vorbringen. Die eine ist grösser wie die andere, wenn ihr sinnliches Bild durch Exhaustion so
abgeändert werden kann, dass es das der anderen vollständig enthält, und das umgekehrte Verhal-
ten unmöglich ist.
II. Keine besondere unter den lineären Grössen einer Art, z.B. keine besondere Strecke
unter allen möglichen Strecken besitzt an sich einen Vorzug, und wir haben mithin keine Vor-
stellung einer nothwendigen Schranke weder für die Kleinheit noch für die Grossheit einer Grösse.

III. Zwei oder mehrere Grössen derselben Art zusammengefügt ergeben wiederum eine Grösse
derselben Art, die grösser ist als ihre Bestandtheile. Andererseits kann jede Grösse in beliebig
viele andere derselben Art getheilt werden, und jeder Theil ist kleiner als die ungetheilte Grösse.

IV. Wenn eine Grösse grösser ist als eine andere zweite, so giebt es stets eine dritte von derselben
Art, wie jene beiden, mit welcher vereinigt die zweite die erste ergiebt.

V. Man kann stets gleiche oder ungleiche Grössen, deren kleinste nicht unter eine beliebig klein
anzunehmende Grösse fallen soll, in genügender Anzahl zusammenfügen, um eine Grösse zu
erhalten, die nicht kleiner ist, als irgend eine vorgelegte derselben Art.

VI. Eine Grösse ist auf unzählige Weise in kleinere theilbar, unter welchen theilungen sich die
auszeichnet, bei der sie in zwei, drei oder mehr untereinander gleiche Grössen zerfällt. Die Thei-
lung einer Grösse kann so lange fortgesetzt werden, bis die Theile sämmtlich kleiner werden als
eine beliebig klein anzunehmende Grösse derselben Art. Wie weit getrieben die Theilung aber
auch gedacht werden mag, stets sind die Theile Grössen derselben Art.”
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tudes, we believe that Stolz was being far too generous when in his [1883] he made the
following two remarks:

the magnitudes we call absolute can be divided into two classes, depending upon whether
or not they satisfy the Archimedean axiom. The magnitudes of the first class have been
aptly termed linear by Mr. du Bois-Reymond; those of the second class are supposed to
be termed non-linear.189

I see the distinction between linear and non-linear magnitudes discovered by Mr. P. du
Bois-Reymond’s as a fundamental idea, and thus have used it (as well as the other ideas
developed in this essay) for my Vorlesungen über allgemeine Arithmetik W.S. [Winter
Semester] 1881-2.190

To begin with, du Bois-Reymond’s conception of a linear magnitude lacks both the clar-
ity and richness of Stolz’s conception; at best, it provides an incomplete and imprecise
intimation of Stolz’s concept. Moreover, there appears to be little evidence to support
Stolz’s contention (apparently seconded by Fisher [1981, p. 126]) that his own way
of drawing the linear/non-linear distinction coincides with du Bois-Reymond’s way of
drawing the distinction (or even that du Bois-Reymond really had any very clear dis-
tinction in mind). Indeed, while du Bois-Reymond’s condition V does embody a crude
formulation of the Archimedean axiom (and the second sentence of condition VI con-
stitutes a crude statement of the formulation of the Archimedean axiom familiar from
Euclid X,1), it is not at all clear that du Bois-Reymond was attempting to get at any-
thing like Stolz’s Archimedean/non-Archimedean distinction. In fact, du Bois-Reymond
appears to never actually characterize non-linear magnitudes per se but rather simply
offers examples of magnitudes that are not linear i.e., magnitudes that violate at least
one of his conditions I-VI. For example, perceived color tones and perceived pitches
of sound–which are magnitudes, according to du Bois-Reymond–are non-linear, since
they lack the requisite additive structure [1882, p. 35]. Moreover, the complex quantities
are non-linear since in this case “the distinction of greater or smaller disappears” [1882,
p. 39]. In addition, du Bois-Reymond’s own infinities of functions, which are discussed
above in Section 2, are non-linear because here “what determines greater or smaller is
not the difference but the quotient” [1882, p. 39].

It is noteworthy that when Stolz’s Vorlesungen über allgemeine Arithmetik appeared
in print in 1885, it did not contain a single reference to du Bois-Reymond’s concept of a
linear magnitude. Perhaps in the intervening period Stolz had come to realize just how
overstated and self-effacing his earlier remarks had been.

189 [1883, pp. 506–507]: “die absolute Grössen heissen mögen, in zwei Classen getheilt werden,
je nachdem das Axiom des Archimedes besteht oder nicht. Die Grössen der ersten Classe hat Hr.
P. du Bois-Reymond treffend als lineare bezeichnet; die der zweiten Classe sollen nicht-lineare
genannt werden.”

190 [Stolz 1883, p. 512]: “Ich sehe die von Hrn. du Bois-Reymond entdeckte Unterscheidung
zwischen linearen und nicht-linearen Grössen als einen fundamentalen Gedanken an und habe
ihn demgemäss (sowie auch die übrigen in diesem Aufsatze entwickelten Ansichten) für meine
Vorlesungen über allgemeine Arithmetik in W. S. 1881|2 benutzt.”



The Emergence of non-Archimedean Systems of Magnitudes 105

Appendix II (see Note 57). A critique of Laugwitz’s assessment of Cantor’s
argument against the possibility of infinitesimals of the form 1

ω
contained

in Cantor’s letter to Kerry of February 4, 1887

In [Laugwitz 2002], immediately following his summary of the just-cited argument
(see Section 6), Laugwitz writes:

This is a nice argument, and one wonders why Cantor did not repeat it in letters to math-
ematicians. He communicated the result without proof in a letter to Weierstrass on May
16, 1887, ... which is also mentioned in a footnote of his Mitteilungen ....

Perhaps Cantor saw that transfinite numbers were not at all essential for his argument.
In modern terms, he considered an ordered semigroup extension of the additive semigroup
of non-negative real numbers which had the least upper bound property. The subset of
infinitely small elements had to have a least upper bound ξ , which must either be infini-
tesimal or not. In the first case ξ + ξ was infinitesimal, so ξ was not an upper bound. In
the second case, a real positive p < ξ existed, so ξ was not the least upper bound.

It follows that the result was not an application of Cantor’s transfinite numbers, a fact
which he might have found hard to admit. [Laugwitz 2002, pp. 113–114]

As we mentioned above (see Note 57), [Laugwitz 2002] was published posthu-
mously. Accordingly, one does not know if upon further reflection Laugwitz would have
revised the above remarks. Unfortunately, however, as they stand they are historically
and mathematically misleading.

To begin with, as we point out in Section 8, the result that Cantor communicated to
Weierstrass and which is referred to in a footnote of his Mitteilungen is not the “result”
about 1

ω
from his letter to Kerry but rather his more general “result,” a “result” which,

we might add, is not discussed in Laugwitz’s paper. Moreover, immediately following
his purported proof-sketch of the latter, Cantor writes: “It seems to me that this is an
important application of the theory of transfinite numbers .... I also don’t believe that this
result can be reached fully and strictly in any other way” [1887 in 1932, p. 408]. Given
this, Laugwitz’s contention that “[p]erhaps Cantor saw that transfinite numbers were not
at all essential for his argument” seems doubtful. In any case, as we alluded to above,
the argument that Laugwitz suggests Cantor might have been aware of is flawed–albeit
only slightly.

Indeed, contrary to the contention that is implicit in Laugwitz’s remark, there are
ordered semigroup extensions of R

+ having the least upper bound property that contain
elements that are infinitesimal relative to the members of R

+. One can state the matter
in terms of the following

Theorem There is a positively ordered semigroup extension of R
+ without a zero that

has the least upper bound property and contains elements that are infinitesimal relative to
the members of R

+; moreover, if � is such an extension of R
+, then � contains a maximal

infinitesimal µ (which is, of necessity, an idempotent element, i.e., µ +� µ = µ).

Proof. An ordered semigroup � is positively ordered if a + b ≥ a, b for all a, b ∈ �.
Plainly then, if � contains a maximal infinitesimal µ, then µ +� µ = µ. To establish
the non-trivial portion of the theorem, consider, for example, the structure 〈A, +A, <A〉
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whose universe, A, is the set of all a such that either a = r or a = rω−1 for some
r ∈ R+ or a = µ, and where <A and +A are defined as follows where <R+ and +R+
are the standard order and addition in R

+, and r and r ′ are arbitrary members of R
+:

rω−1 <A r ′ω−1 if r <R+ r ′; rω−1 <A µ; rω−1 <A r ′; µ <A r; r <A r ′ if r <R+ r ′;
a +A b = r +R+ r ′ if a = r and b = r ′; a +A b = b +A a = r if a = r and b = µ or
b = r ′ω−1; a +A b = b +A a = µ if a = µ and b ≤ µ; a +A b = (r +R+ r ′)ω−1 if
a = rω−1 and b = r ′ω−1. The reader can readily verify that 〈A, +A, <A〉 is a positively
ordered semigroup extension of 〈R+, +R+ , <R+〉 without a zero consisting of a contin-
uous set {rω−1 : r ∈ R

+} of infinitesimal elements followed by the single infinitesimal
element µ followed by the continuous set of elements of R

+. To see that 〈A, +A, <A〉
is continuous (and thus has the least upper bound property) simply note that the order
type of 〈A, <A〉 is θ + 1 + θ where θ is the order type of R

+.
In virtue of the above, it is not difficult to identify the error in Laugwitz’s argument

and to see how to overcome it. Laugwitz assumes that if ξ is an infinitesimal (which is
tacitly assumed to be greater than 0), then ξ + ξ > ξ . However, if we assume that the
semigroup is positively ordered (i.e., a + b ≥ a, b), then Laugwitz’s assumption will
hold if and only if ξ is not an idempotent element. Of course, if we assume that the
semigroup is strictly positively ordered (i.e., a + b > a, b), then ξ cannot be an idem-
potent element and Laugwitz’s argument will go through. On the other hand, one does
not need the full strength of the latter assumption to make Laugwitz’s argument work.
Indeed, the very nature of Cantor’s argument not only presupposes that if 1

ω
is a linear

number then it is not idempotent, but the stronger assertion that 1
ω

has infinite order,
i.e., the assertion that 1

ω
< 1

ω
+ 1

ω
< 1

ω
+ 1

ω
+ 1

ω
< . . . All the elements of a positively

ordered semigroup A have infinite order if and only if A is idempotent-free (i.e., A has
no idempotent elements) if and only if ξ + ξ > ξ for each ξ ∈ A [cf. Clifford 1958, pp.
306–308; Clifford and Preston 1961, pp. 19–20]. Although Cantor never explicitly says
as much, we strongly suspect that Cantor always tacitly supposed that ξ + ξ > ξ is a
property of an arbitrary linear number ξ .

Appendix III (see Notes 71, 73, 74 and 76). Parenthetical observations related
to Cantor’s argument against the possibility of infinitesimals

Parenthetical Observation I. In Note 71 we observed that for Cantor writing in 1887,
it is by no means evident that the phrase “numbers which may be regarded as bounded,
continuous lengths of straight lines” carries with it either the implications of strict pos-
itivity, cancellativity or left-solvabiltiy. On the other hand, since Cantor had hoped to
show that the Archimedean axiom is implied by the concept of a linear magnitude, it
is perhaps worth adding that the following result, which is an immediate consequence
of work of Clifford [1954b; also see Fuchs 1963, pp. 163–165: Lemma C and Theorem
2] and Satyanarayana and Nagore [1979; also see Satyanarayana 1979, p. 57; and Beh-
rend 1956], suffices to show that the three just-cited properties are consequences of the
Archimedean axiom together with properties specified in LO (or, even, L0∗) along with
L1∗ (see Section 8).
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Theorem Every Archimedean, right-solvable, positively ordered semigroup without a
least element is cancellative, strictly positive and solvable. (See Note 7 for definitions).

This result, which is a strengthening of a classical result of Hölder [1901], is a special
case of a more general theorem that is formulated using a version of the Archimedean
axiom that is appropriate for positively ordered (as opposed to merely strictly positively
ordered) structures.

Parenthetical Observation II. In Note 73 we noted that there are continuous proper
extensions of 〈R+, +R+ , <R+〉 that satisfy L0 together with the Archimedean axiom.
We now establish this using a variation on the structure 〈A, +A, <A〉 introduced in
Appendix II.

Let AI be the set of infinitesimals from the just-mentioned structure 〈A, +A, <A〉;
that is, a ∈ AI if and only if either a = rω−1 for some r ∈ R

+ or a = µ. Also let +AI

and <AI
be the addition and order in 〈A, +A, <A〉 restricted to the members of AI , i.e.,

for all r, r ′ ∈ R
+, let rω−1 <AI

r ′ω−1 if r <R+ r ′; rω−1 <AI
µ; a+A b = b+A a = µ

if a = µ and b ∈ AI ; a +A b = (r +R+ r ′)ω−1 if a = rω−1 and b = r ′ω−1. Finally, let
〈B, +B, <B〉 be the structure whose universe, B, consists of all r ∈ R

+ together with
all formal sums of the form r + a where r ∈ R

+ and a ∈ AI , and whose order and
addition are defined by the following conditions where, for the sake of convenience, a
real number r ∈ B is written “r + 0”: r + a <B r ′ + a′ if r <R+ r ′ or r = r ′ and either
a <AI

a′ or, a = 0 and a′ ∈ AI ; r +a +B r ′ +a′ = (r +R+ r ′)+ ā, where ā = a +AI
a′

if a, a′ ∈ AI , ā = a if a′ = 0, and ā = a′ if a = 0.
To see that 〈B, <B〉 is continuous one need only note that 〈B, <B〉 arises from

〈R+, <R+〉 by replacing each r ∈ R
+ by a closed continuous interval–the closed con-

tinuous interval whose first member is r , whose last member is r + µ, and whose
intermediate members are the elements of B of the form r + r ′ω−1 where r ′ ∈ R+.

Parenthetical Observation III. In Note 74 we remarked that L0∗, L1, L1∗ (see
Section 8) and the absence of non-zero infinitesimal members of L collectively suffice
to show that 〈L, +, <〉 coincides with 〈R+, +R+ , <R+〉. This is a consequence of the
following result and the elementary observation that L0∗, L1 and the absence of non-zero
infinitesimal members of L jointly imply the Archimedean nature of 〈L, +, <〉.

Theorem If 〈L, +, <〉 is an Archimedean right-naturally ordered semigroup with-
out a least element, then 〈L, +, <〉 can be embedded in 〈R+, +R+ , <R+〉 in precisely
one way that maps a given member of L to a given member of R+. Accordingly, if
〈R+, +R+ , <R+〉 ⊆ 〈L, +, <〉, the embedding is a surjection and, as such, 〈L, +, <〉 =
〈R+, +R+ , <R+〉.

Historical Proof-Sketch. Hölder [1901] established the first and non-trivial portion of
the above theorem for the case where 〈L, +, <〉 is strictly positive and naturally ordered.
Behrend [1956, p. 340: Theorem 1] improved upon Hölder’s result by showing that nat-
urally ordered could be replaced by right-naturally ordered albeit with strict positivity
retained. Finally, as a result of the theorem collectively due to Clifford, Satyanarayana
and Nagore mentioned in Parenthetical Observation I, it is now known that naturally
ordered and strict positivity can be replaced by right-naturally ordered alone.
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Parenthetical Observation IV. In Note 76 we remarked that if L2 is interpreted
as L2c, then L3, L3∗ and L3∗∗ are equivalent. This is a consequence of the following
elementary theorem and the fact that L2c implies:

(L2∗) For all linear numbers ζ , all ordinal numbers α and all positive integers n, the n-fold
sum of ζ · α is given by ζ · (α ·c n) where ·c is the familiar Cantorian product of ordinals.

Theorem If the system 〈L, +, <〉 of non-zero linear numbers satisfies L0∗, and there is
a multiplication on L that satisfies L2 and L2∗, then L3, L3∗ and L3∗∗ are equivalent.

Proof. Since it is evident that L3∗ implies L3 which in turn implies L3∗∗, it only remains
to show L3∗∗ implies L3∗. Accordingly, suppose L3∗∗ is the case and let ζ ∈ L. Then
ζ · α = r ′ for some finite r ′ ∈ L and some ordinal α. If r < ζ · α, then by letting α = η

we are finished. On the other hand, if ζ · α ≤ r then since ζ · α and r are both finite, the
n-fold sum of ζ ·α is greater than r for some positive integer n, and so by L2∗, ζ · η > r

where η = α ·c n, thereby proving L3∗∗ implies L3∗.

Appendix IV. Text of Cantor’s “proof” of the impossibility of infinitesimals
contained in [Cantor 1887] and based on the text of Cantor’s letter

to F. Goldscheider of May 13, 1887

Sie erwähnen in Ihrem Schreiben die Frage über die aktual unendlich kleinen Größen.
An mehreren Stellen meiner Arbeiten werden Sie die Ansicht ausgesprochen finden, daß
dies unmögliche, d. h. in sich widersprechende Gedankendinge sind, und ich habe schon
in meinem Schriftchen “Grundlagen e. allg. Mannigfaltigkeitslehre” pag. 8 im § 4, wenn
auch damals noch mit einer gewissen Reserve, angedeutet, daß die strenge Begründung
dieser Position aus der Theorie der transfiniten Zahlen herzuleiten wäre. Erst in diesem
Winter fand sich die Zeit dazu, meine diesen Gegenstand betreffenden Ideen in die Gestalt
eines förmlichen Beweises zu bringen. Es handelt sich um den Satz:

“Von Null verschiedene lineare Zahlgrößen ζ(d.h. kurz gesagt, solche Zahlgrößen,
welche sich unter dem Bilde begrenzter geradliniger stetiger Strecken vorstellen lassen),
welche kleiner wären als jede noch so kleine endliche Zahlgröße, gibt es nicht, d. h. sie
widersprechen dem Begriff der linearen Zahlgröße.” Der Gedankengang meines Beweis-
es ist einfach folgender: ich gehe von der Voraussetzung einer linearen Größe ζ aus, die
so klein sei, daß ihr n-faches

ζ · n

für jede noch so große endliche ganze Zahl n kleiner ist als die Einheit, und beweise
nun aus dem Begriff der linearen Größe und mit Hilfe gewisser Sätze der transfiniten
Zahlenlehre, daß alsdann auch

ζ · ν

kleiner ist als jede noch so kleine endliche Größe, wenn ν irgendeine noch so große
transfinite Ordnungszahl (d. h. Anzahl oder Typus einer wohlgeordneten Menge) aus ir-
gendeiner noch so hohen Zahlenklasse bedeutet. Dies heißt aber doch, daß ζ auch durch



The Emergence of non-Archimedean Systems of Magnitudes 109

keine noch so kräftige actual unendliche Vervielfachung endlich gemacht werden, also
sicherlich nicht Element endlicher Größen sein kann. Somit widerspricht die gemachte
Voraussetzung dem Begriff linearer Größen, welcher derartig ist, daß nach ihm jede lineare
Größe als integrierender Teil von anderen, im besonderen von endlichen linearen Größen
gedacht werden muß. Es bleibt also nichts übrig, als die Voraussetzung fallen zu lassen,
wonach es eine Größe ζ gäbe, die für jede endliche ganze Zahl n kleiner wäre als 1/n,
und hiermit ist unser Satz bewiesen.

Es scheint mir dies eine wichtige Anwendung der transfiniten Zahlenlehre zu sein, ein
Resultat, welches alte, weit verbreitete und tiefwurzelnde Vorurteile zu beseitigen geeig-
net ist.

Die Tatsache der aktual-unendlich großen Zahlen ist also so wenig ein Grund für die
Existenz aktual-unendlich kleiner Größen, daß vielmehr gerade mit Hilfe der ersteren die
Unmöglichkeit der letzteren bewiesen wird.

Ich glaube auch nicht, daß man dieses Resultat auf anderem Wege voll und streng zu
erreichen imstande ist.

Das Bedürfnis unseres Satzes ist besonders einleuchtend gegenüber neueren Versu-
chen von O. Stolz und P. Dubois-Reymond, welche darauf ausgehen, die Berechtigung
aktual-unendlich kleiner Größen aus dem sogenannten “Archimedischen Axiom” abzu-
leiten. (Vgl. 0. Stolz, Math.Annalen Bd. 18, S. 269; ferner seineAufsätze in den Berichten
des naturw. medizin. Vereines in Innsbruck, Jahrgänge 1881—82 und 1884; sie sind be-
titelt: “Zur Geometrie der Alten, insbesondere über ein Axiom des Archimedes” und “Die
unendlich kleinen Größen”; endlich vergleiche man desselben Autors: “Vorlesungen über
allgemeine Arithmetik”, Leipzig 1885, I.Teil, S. 205.)

Archimedes scheint nämlich zuerst darauf aufmerksam geworden zu sein, daß der in
Euklids Elementen gebrauchte Satz, wonach aus jeder noch so kleinen begrenzten gerad-
linigen Strecke durch endliche, hinreichend große Vervielfachung beliebig große endliche
Strecken erzeugt werden können, eines Beweises bedürftig sei, und er glaubte darum die-
sen Satz als “Annahme” (λαµβανóµ∈νoν) bezeichnen zu sollen.

(Vgl. Eukl. Elem. lib. V, def. 4: lovgon e[cein pro;" a[llhla megev»q¼h levgetai,
Óa duvnatai pollaplasiazovmena ajll»hJ¼lwn ujperevcein; ferner insbesondere Elem.
lib. X, pr. l. Archimedes: de sphaera et cylindro I, postul. 5 und die Vorrede zu seiner
Schrift: de quadratura parabolae.)

Nun ist der Gedankengang jener Autoren (0. Stolz a. a. 0.) der, daß wenn man dieses
vermeintliche “Axiom” fallen ließe, daraus ein Recht auf aktual unendlich-kleine Größen,
welche dort “Momente” genannt werden, hervorgehen würde. Aber aus dem oben von
mir angeführten Satze folgt, wenn er auf geradlinige stetige Strecken angewandt wird,
unmittelbar die Notwendigkeit der Euklidischen Annahme. Also ist das sogenannte “Ar-
chimedische Axiom” gar kein Axiom, sondern ein, aus dem linearen Größenbegriff mit
logischem Zwang folgender Satz. [1887 in 1932, pp. 407–409]
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