AN OPTIMAL ALGORITHM FOR
SELECTION IN A MIN-HEAP

Greg N. Frederickson

CSD-TR-91-027
April 1991

An Optimal Algorithm for
Selection in a Min-Heap

Greg N. Frederickson*

Department of Computer Science

Purdue University
West Lafayette, Indiana 47907

email: gnf@cs.purdue.edu

April 19, 1991

Abstract. An O(k)-time algorithm is presented for selecting the k-th smallest ele-
ment in a binary heap of size n 3> k. The result matches the information theoretic
lower bound, settles an open problem, and contradicts a recently reported lower

bound. Two applications are given for this algorithm.

Key words and phrases. Data structures, heap, partial order, resource allocation,

selection.

"This research was supported in part by the National Science Foundation under grants CCR-
86202271 and CCR-9001241, and by the Office of Naval Research under contract N00014-86-1{-0689.

1. Introduction

A problem of importance in the design of a number of algorithms is that of finding
the £-th smallest element in a set of unordered elements [BFPRT], [SPP], [BJ]. A
more general version of this problem, and one with additional applications, allows the
set of elements to satisfy a relation encoded in some partial order [FJ2], or forbids
certain total orders for the set [FJ1], [CSSS]. For example, algorithms with optimal
running times have been given in [FJ2] for selecting the &-th smallest element in a
collection of sorted matrices (matrices whose entries in any row or column are in sorted
order). For the above version of this problem, the upper bounds match information
theory lower bounds [FJ2]. A natural question to ask is whether the complexity of
finding the £-th smallest element in a set of elements organized in any given partial
order coincides with the information theory lower bound. Thus we wish to know if
the information in certain partial orders can be extracted efficiently. In addition, we
wish to know how to coordinate the acquisition of information from partial orders.

We focus these questions by consiciering a partial order for a binary min-heap,
Le., a partial order on items z;, 2 = 1,2, - -, n, where z; > Tyigz) fori=2,--. n. We
shall concentrate on examples in which 4 is much much smaller than n, so that for all
intents and purposes the heap can be viewed as infinite. (This is not a real restriction
on the problem, since the heap can be viewed as “padded out” with very large values.)
The problem of selecting the k-th smallest element in a heap is challenging because
the partial order associated with a heap is rather “bushy”, and for & > 1 the k-th
smallest element can be in any one of 2* — 2 positions in the heap. In investigations
culminating in [FFJ2], this author and Donald Johnson observed that there was a

sizable gap between the straightforward lower bound of Q(k) and a simple upper

bound of O(k log £).!

1All logarithms are to the base 2.

The problem of narrowing this gap by raising the lower bound was stated as an
open problem in [AK]. Recently, a lower bound of (klogk) has been claimed in
[WN], but the arguments make unwarranted assumptions about how such a selection
algorithm must work.

The straightforward lower bound is based on information theory. The number
Qkk), which is greater than 4%/(kv/xk). (See
pp. 388-389 of [K]). It follows that the height of any decision tree to select the k-th

of binary trees with & nodes is Yo, (

element in an infinite heap is at least 2k — 2log k — 1.

The straightforward upper bound is achieved by creating an auxiliary heap. The
auxiliary heap is initialized as containing a single value equal to that of element z,.
Then the following is done for £ steps: The minimum is extracted from the auxiliary
heap, and two values are inserted into it. The values inserted are equal to elements z,;
and Fi41, where z; equals the value just extracted from the auxiliary heap. Clearly,
this takes O(klog k) time. We note that the inverse problem of finding the rank of
a given element z in a heap is easy. Just perform an inorder traversal of the subtree
induced by all values no greater than z. This clearly takes O(k) time, where & is the
rank of £ in the heap.

In this paper we present an algorithm to select the &-th smallest element in a heap
that is optimal to within a constant factor. We achieve a time of O(k) by using the
following ideas. First, we organize appropriate elements into groups, called clans, and
handle a representative of each clan in a heap. Second, we form clans on a number of
difterent levels, forming larger clans recursively from smaller clans. We use heaps on
each of the resulting O(log™ &) levels.? Third, we redefine clans, choosing a nonobvious
rule for inclusion of elements into a clan. Finally we form each clan incrementally,

using a number of different clan sizes on any level, and insert the new representative

*The function log™ & is the iterated logarithm of k, defined by log" L = log" 2 = 1 and log™ k& =
1+ log™[logk] for & > 2.

of an enlarged clan back into a heap.

We discuss two applications for our selection problem. The first application is
the enumeration of the & smallest combinatorial objects of some particular type. We
focus on enumerating the k smallest spanning trees of a weighted undirected graph,
as discussed in [F2). Let 7; denote the i-th smallest spanning tree of the graph.
The & — 1 spanning trees T5,---, 7} can be generated one at a time. Each tree T}
with 2 > 1 will be derived from some tree T}, j < 7, by a swap (e;, f;), in which a
tree edge e; is replaced by a nontree edge f;. So that no tree is derived more than
once, an inclusion-exclusion approach can be used [L1] and [L2, pages 100-104). Tt
follows that a binary tree describes how the spanning trees are derived from each
other. From this binary tree, a min-heap can be derived such that each node in the
min-heap is labeled by the cost of a corresponding spanning tree. Qur algorithm here
can be used in the algorithm of [F2) to identify the cost of k-th smallest spanning
tree. The portions of the min-heap accessed by our algorithm here can be generated
on the fly by the algorithm in [F2] at only a constant multiplicative factor increase in
time. The total time for the algorithm in [F2], exclusive of operations that search the
min-heap, is O(m log #(m,n) + min{k%?2, km!/2}). Using our algorithm for selecting
the &-th smallest element in a min-heap rather than the straightforward O(k log k)-
time algorithm gives a faster algorithm whenever & grows faster than 2™'*. If the
underlying graph is planar, then there is an algorithm in [F2] whose total time,
exclusive of operations that search the min-heap, is O(n + k(logn)3). Using our
algorithm for selecting the k-th smallest element in a heap gives a faster algorithm
whenever k grows faster than 207}

Our selection problem in a binary heap also has an application in the area of
resource allocation problems [IK]. Consider for example a sales region, that can

be divided into subregions, which can be subdivided into smaller regions, etc. The

manager for the sales region will have an assistant for each subregion, and each
assistant will have an assistant for each smaller region, etc. This organization can
clearly be modeled by a tree. Assume that any sales region that is divided into two
subregions, so that the organization is modeled by a binary tree. Assume that a
certain positive benefit z; accrues to the placement of each manager or assistant in a
particular region 7, and that the benefit of placing a manager in a region is greater
than the benefit obtained by placing any of his assistants. Suppose that the company
has k people that it wishes to place, so as to maximize the total benefit obtained.
This problem reduces to the problem of selecting the k-th largest element in a max-
heap. Qur algorithm for selecting the k-th smallest element in a min-heap can be
easily adapted and applied, identifying the & people who should be placed, along with
which regions should be divided. This is a special case of tree-structured resource
problems, which have been discussed in a general context in [IK, sections 9.3 and 9.4],
[B1], [B2], [M]. Our algorithm is faster than the algorithms discussed in the above
references, for the problem in the form discussed here.

In section 2 we show how to group the elements together into a relatively simple
scheme that realizes a time of O(k log log £). We then apply this approach recursively
to yield an O(k 3'°¢"*)-time algorithm. (Note that k 39" # is asymptotically a slowly
growing function.) In section 3 we elaborate on the additional ideas that bring the
time down first to O(k 2'°6°*), and then to O(k). For simplicity in the exposition, we
assume that all elements in the heap are distinct.

A preliminary version of this paper appeared in [F1].

2. Grouping elements into clans

In this section we show how to group elements into subsets in order to reduce the

overhead ol extracting a minimum in a heap. First, we show how to use a second

auxiliary heap to achieve a time of O(klogiog k). Then we generalize the problem
and apply a recursive scheme to achieve a time of O(k 308" %),

Our first idea is to group elements together into subsets of equal size, called clans.
We shall choose the clan size initially to be |logk|. The largest element in each
clan will be called the representative of the clan. The representatives of the clans
are then inserted into and extracted from the auxiliary heap. If the clans are formed
appropriately, then after [k/|log k|| eztracimin operations, the last element extracted
will have rank between k and 2% in the original heap. It is then easy to identify all
elements in the original heap smaller than this element and select directly in this
set, using the algorithm from (BFPRT]. Note that since there are only [k/|log#]|]
eztractmin operations in the auxiliary heap, the total time to perform these exirectmin
operations is O(k) and thus is no longer a bottleneck in the algorithm. It follows that
the bottleneck in the algorithm is in forming the clans.

The crucial issue is how the elements should be grouped into clans. A logical choice
is to group the [log | smallest elements together to form a first clan C,. A second
clan C; can be formed by grouping the next |log %] smallest elements together. To
describe the formation of the remaining clans we introduce some terminology. Assume
that the clans are formed one at a time. When a clan C; is formed, those elements
that are not in Cj, but are children of elements in the original heap that are in C;, are
called the offspring 0s(C;) of clan C;. For i > 2, the clan C; can be formed in one of
two ways. First, consider an eztractmin operation, which extracts the representative
of some clan, say C;. A clan C; is [ormed by grouping the llog k] smallest elements
from the subheaps rooted at the offspring 0s(C;) of C;.

The second way to form a clan is motivated by the following. Since there may
be some offspring of clan C; not included in C, and since clan C; no longer has a

representative in the auxiliary heap, we assign them as a responsibility to the new clan

Ci, and call them the poor relations pr(C;) of clan C;. Thus if there is a nonempty
set of poor relations pr(C;) of clan C;, then when the representative of clan C; is
extracted from the auxiliary heap, a second clan Cip1 is created, consisting of the
|log k] smallest elements from the subheaps of the original heap rooted at the poor
relations of clan Cj.

Thus for each clan C;, j > 1, there are two sets associated with tt, the offspring
0s(C;) and the poor relations pr(C;). When the representative of Cj is extracted
from the auxiliary heap, clans must be formed starting with each of these two sets.

As an example, consider the heap in Figure 1. We can imagine that the heap is
actually much larger, and only the first five levels are shown in the figure. Suppose k =
8. Then each clan will be of size 3. The first four clans created have been circled. First
we find Cy = {1,2,3}, with 0s(C1) = {7,10,12,4} and pr(C,) = 8. The representative
of C1 will be 3. When 3 is extracted from the auxiliary heap, clan (, will be created.
Clan C; is grown from 0s(Cy). Thus C; = {4,5,6}, 0s(C,) = {8,11,17,19} and
pr(C2) = {7,10,12}. The representative of C, will be 6. When 6 is extracted from
the auxiliaty heap, clans C3 and C, will be created. Clan Cj is grown from os(C3).
Then C3 = {8,11,13}, 0s(C3) = {26,21,79,20,14} and pr{C;) = {17,19}. The
representative of C3 will be 13. Clan Cy is grown from pr(C;). Then Cy = {7, 9, 10},
05(Cy) = {15,16,32,18,28)} and pr(C,) = {12}. The representative of C, will be 10.
When 10 is extracted {rom the auxiliary heap, clans Cs and Cs will be created. (We
do not identify these here.) Note that 3 values will be extracted from the auxiliary
heap. Then the set of values in the original heap that are less than or equal to 10
will be identified, and the &-th smallest value among them will be selected directly.

The maximum size ol the offspring and poor relations sets will be 2|log k| and
2|log k] — 1, resp. The bound on the size of the offspring follows, since each element,

in the oflspring set is a child of some element in the clan, and each element lias at

most two children. The bound on the size of poor relations follows, since all but one
element in the offspring can become poor relations when a clan is formed. (Also, a
clan can be formed from a poor relations set, but this cannot produce a bound as
large as that from forming a clan from offspring.)

A clan can be formed from either an offspring set ot a poor relations set by doing
the following. Initialize yet another heap to contain the members of the set. Then for
[log &| times, extract the minimum from the heap, and insert its two children from
the original heap. It will take O(log k log log k) time in total to determine a clan,

We summarize our first algorithm SELL as follows. Using an auxiliary heap H,
find the |log k| smallest elements in H,. Let these be clan C;, and determine the
offspring 05(C\). Set pr(C1) to the empty set. Initialize an auxiliary heap H, with
the representative of Cy. Then for [k/|logk]] times, do the following. Perform an
eztracimin operation in Hy. Let C; be the clan represented by the element extracted.
Using heap Hj, find the [log k| smallest elements in the subheaps rooted at members
of 05(C;). Let these be clan C;, where i —1 is the number of ¢lans found up to that
point. Determine the members of the sets 0s(C;) and pr(C;). If pr(C;) is not empty,
find the |log k| smallest elements in the subheaps rooted at members of pr(C;). Let
these be clan Ciy. Determine the members of the sets 0s(Ciy,) and pr(Ciy,). Insert
the representatives of C; and Cyy, into H;. When the above loop terminates, take the
last element extracted from H,, and identify the set of elements in Hy less than or
equal to this element. Select the k-th smallest element in this set, using the algorithm

in [BFPRT]. This completes the description of algorithm SEL1.

Lemma 2.1. Algorithm SELI finds a k-th smallest element in a binary heap in
O(k log log k) time.
Proof. For correctness, note that the clans are disjoint, and that the representative of

a clan is the largest clement in the clan. Furthermore, the last element extracted from

7

auxiliary heap H, is the largest of [k/[logk|] representatives. Thus the last element
exiracted is transitively as large as at least k elements. Since algorithm SELI selects
from the set of all elements less than or equal to the last element extracted, all
elements less than or equal to the &-th smallest element when be included in this set.
Thus the algorithm will return the &-th smallest element.

We analyze the time of algorithm SFL1 as follows. As discussed previously, the
O(k/log k) operations in heap H, will use O(k) time. Since at most 2[k/|logk]] + 1
clans are formed, and each clan can be formed in O(logkloglogk) time, the total
time to form all clans will be O(k loglog £). It remains to bound the time to form
and select in the set of all elements less than or equal to the last element extracted
from H;. We claim that the cardinality of this set is O(k), so that the time for this
last step is O(k), and the time for the algorithm as a whole is O(k log log k).

We complete the proof by showing that the cardinality of this set is as claimed.
Note that for any clan C; whose representative is in H,, its representative is smaller
than any of its offspring or poor relations. Thus when any clan representative is
extracted from H,, any element smaller than it must be in some clan. Every time a
representative of a clan Cj, 7 > 1, is extracted from the auxiliary heap, at most two
clans are formed. Thus after the representative of clan C;, 7 > 1, has been extracted,
there are at most 2j clans. Thus after the [k/|logk[]-th eztractmin is performed,
yielding value z, there are fewer than 2(k 4 [log £]) elements in all clans. Since the
last two clans are created as a result of extracting z, all elements in them are greater

than z. Thus there are fewer than 2k elements less than or equal to z. O

We note that the above scheme creates and uses heaps on two levels. We next
wish to extend this scheme recursively. Since the smaller heaps were initialized with
more than element, we generalize our problem as follows. Let & be a positive integer,

and let H be a forest of at most 24 (infinite) heaps. We wish to find a k-th smallest

8

element in H. Our definition of clans will be essentially the same, except that the
basis of the definition will be different. In general there will be more than one clan
created before any representative elements are extracted from the corresponding heap.
Our algorithm SEL2 to select the &-th smallest element in a heap is the following.
It calls the recursive procedure RSEL2 with parameters {Hp}, 1, and k. In general,
procedure RSEL2(*H, I,r) returns the r smallest elements, as well as the r-th smallest
element in a collection H of at most 2r heaps. The parameter { is a level number.
(The level number is not actually used by the procedure, but it is useful in describing
the action of the procedure.) Thus the initial call RSEL2({H,}, 1,k) returns the &
smallest elements, as well as the £-th smallest element in the original heap.
Procedure RSEL2(M, {,r) is the following. If r = 1, return the smallest value
among the roots of the heaps in H. Otherwise, do the following. Partition into
subsets, with each subset except at most one, containing 2|logr| heaps, and the
remaining at most one subset containing fewer than 2[logr| heaps. For each subset
H; recursively find the |logr]| smalles£ elements in H;. Designate these elements as
clan C;, and determine the offspring 0s(C;). Set pr(C;) to the set of roots of heaps
in H; that are not in C;. Initialize an auxiliary heap H, with the representatives
of the clans C;. Then for [r/|logr|] times, do the following. Perform an eztractmin
operation in H;. Let C; be the clan represented by the element extracted. Recursively
at level /+1 find the |logr] smallest elements in the subheaps rooted at members
of 0s(C;). Let these be clan C;, where i—1 is the number of clans found up to that
point. Determine the members of the sets 0s(C;) and pr(C;). If pr(C};) is not empty,
recursively find at level {+1 the {logr| smallest elements in the subheaps rooted
at members of pr(C;). Let these be clan C;y,. Determine the members of the sets
0s(Ciy1) and pr(Ciy(). Insert the representatives of C; and C,y, into H,. When the

above loop terminates, take the last element extracted from H;, and identify the set

of elements in H less than or equal to this element. Select the r-th smallest element,
in this set. Return the r smallest elements in this set. This completes the description

of recursive procedure RSEL2.

Lemma 2.2. Algorithm SEL2 finds a k-th smallest element in a binary heap in
O(k 3'°8° %) time.

Proof. Correctness is established in a fashion similar to that in the proof of Lemma
2.1. We analyze the time for a call to RSEL2 with parameter r. The time to find
the elements with which to initialize heap ; is dominated by the time to perform at
most [r/|logr|] recursive calls on problems of size |logr|. The time to set up the
heap and perform [r/|logr|] eztractmin operations and 2[r/|logr|] insert operations
is O(r) time. For each exiracimin there are either 1 or 2 recursive calls on problems
of size |logr], one for the offspring 0s(C;) of clan Cj, and the other call for the poor
relations pr(Cj), if any, of C;. Finding the r-th smallest element from among all
elements in H less than or equal to the last representative extracted will take O(r)
time. This follows since these elements will be only in the at most 3[r/|logr|] clans
that are created, and by an argument similar to that in the proof of Lemma 2.1,
there will be O(r) such elements. Thus the time to find the r-th smallest element is

described by the recurrence:

=
I

C

T(r) < er+3{r/|logrj]T(|logr|)
It follows that T'(r) is O(r 3'8°7), D

3. Redefining the clans and building them incrementally

In this section we identify additional ideas that speed up our basic approach. First,

we show how to avoid discarding the structure built up from previous recursive calls.

10

Instead of forming clans that contain the {log r| smaliest elements in a given subset on
recursive levels, we form clans from smaller clans that have smallest representatives
from a given subset. This idea reduces the time somewhat, and sets the stage for
the remaining idea. Second, we reduce the number of elements larger than the rth
smallest element that are examined. This is accomplished by introducing a number of
sizes of clans at each level of recursion, and by expanding clans incrementally. When
a less than full-size clan is expanded, its new representative is inserted back into the
heap. The appropriate combination of these ideas yields an O(k)-time algorithm.

We first discuss how to avoid discarding the structure built up from previous
recursive calls. Our recursive procedure from the previous section sets up an auxiliary
heap H; on level [, and recursively identifies clans whose representatives are inserted
into ;. It then returns the r smallest elements, as well as the r-th smallest element.
Identifying the r-th smallest element ruins the structure, because in general many
clans will have only some and not all of their elements less than or equal to the r-th
smallest.

To be able to reuse the structure generated within the recursion, we modify the
recursive procedure so that it does not identify an r-th smallest element. Instead, the
modified procedure will return the last representative extracted from H;, which will
represent a clan at level { containing clans at level {+1 represented by elements that
were extracted from H;. Thus we revise the notion of a clan as follows. First, we
define a function A(-} that defines the sizes of clans in terms of a target size ». This
helps whenever the size of a clan at level {+1 does not evenly divide into a target
size . I[r =1, then A(r) = 1. Otherwise, i(r) = h(|logr])[r/k([logr])]. Clearly,
r < h(r) < 2r.

Next, we specify a clan as follows. If r = 1, then the clan is the smallest element in

the appropriate subset of elements. Otherwise, a clan at level ! is the set of elements

Il

in the k(r)/h(|logr]) clans at level {+1 whose representatives were extracted from
heap f; to form this clan at level {. When a clan is formed, it will have an element
and a pointer associated with it. The element will be the largest element, which will
be the representative of the clan. The pointer will be to the remaining portion of
heap Hj.

We are able to reuse the structure generated within the recursion in the sense
that we do not discard the remaining portion of heap H;, but save it so that we can
perform additional ertractmin operations (and the corresponding insert operations
too) in it. This alone is not enough, since the repeated straightforward reuse of this
heap over the course of time would cause it to grow very large, with a concomitant
growth in the cost of performing a heap operation. To prevent this growth, every
time when we wish to reuse a heap structure Hj, we split it into two heaps of equal
size, and then use each of these two heaps in a recursive call. (The motivation for this
splitting is similar to the motivation in SEL1 and SEL2 for generating two sets os(C;)
and pr(C;), rather than just one combined set, whenever a clan C; is generated.) If a
heap H; is handled in this way, then it will never contain more than 2k(r)/2(|logr])
elements in it.

Our algorithm SEL3 to select the £-th smallest element in a heap is the following.
It calls the recursive procedure RSEL3 with parameters nzl, 1 and k. Procedure
RSEL3(H,!,r} should identify a clan at level ! of size h(r) generated starting with
the heap pointed to by H, il H is not nzl, and using the original heap Hy otherwise. At
the time of the call to RSEL3, heap H should have at most 4(r)/h(|logr|) elements
in it. Procedure RSEL3(H,!,r) returns the representative element of the clan and a
pointer to what remains of the heap used to build the clan. Algerithm SEL3 then
searches the original heap Hy Lo identify all elements in Hy less than or equal to the

representative of the clan, and then selects the k-th element within this set directly.

12

L

We next describe procedure RSEL3(H,I,7). If r = 1, then do the following. If
H = n:l, then take the minimum element z, of Hy as the single element of the clan,
and set H to be a heap containing z; and z; of Hy. Otherwise, if H # nil, extract the
minimum element from heap H to be the single element of the clan, and insert into
heap H the children of the clan’s element in Hp. (Actually, the minimum element
from H may already have been designated as a clan. If so, then it already has a heap
H' containing its children in Ho. Thus H’ can be merged into H.) In either case, let
the clan’s representative be its single element, and return the representative and a
pointer to the heap.

Otherwise, if r > 1, do the following. First we initialize an auxiliary heap H; as
follows. If H = nil, then do the following. Call RSEL3(H, {+1, |logr|) recursively.
Let the items returned by this call be rep_elt and Aptr. Initialize heap H; with rep_elt,
and associate hpir with this entry. Otherwise, if H # nil, then initialize H; to be
H. After initializing auxiliary heap), we do the following. For A(r)/h(|logr])
iterations, do the [ollowing. Perform an eziracimir operation in H;. Let ezt_eit be
the element extracted, and let hptr be associated with exi_elf. Split the heap pointed
to by hptr arbitrarily into into two heaps of equal size, pointed to by Aptrl and
hptr2. Gall RSEL3(hpirl, 41, |log r|) recursively, and let the items returned by this
call be rep_elt’ and hptr'. Insert rep_elf’ into H; and associate hpir’ with this entry.
Call ISEL3(hptr2,14+1, |log r]) recursively, and let the items returned by this call be
rep_elt” and hptr”. Insert rep_elt’ into H; and associate Apir” with this entry. When
the above loop terminates, let last_elf be the last element extracted from H,. Return

last_elt and a pointer to ;. This conciudes the description of RSEL3.

Lemma 3.1. Algorithm SEL3 finds a &-th smallest element in a binary heap in
O(k 228" ¥} time.

Proof. For correctness, we argue the [ollowing. For a given level I, any element is

13

extracted from a heap at that level at most once. Thus, by induction on the level
numbers, each clan generated at level [contains distinct elements, and any pair of
clans at level [are disjoint. Thus the element returned to algorithm SEL3 can be no
smaller than the k-th smallest element in the original heap Hp. Since algorithm SEL3
selects {from the set of all elements less than or equal to the last element extracted,
all elements less than or equal to the %-th smallest element will be included in this
set. Thus the algorithm will return the k-th smallest element.

We analyze the time of algorithm SEL3 as follows. Consider a call to RSEL3 with
parameter 7 > 1. The time to set up a heap and perform h(r)/h(|logr|) extractmin
operations and 2h(r)/h(|logr|) insert operations is O(h(r)). For each eztracimin
there are 2 recursive calls generating clans of size h(|logr|). Let T'(r) be the time
used by procedure ASEL3 when it is called with last parameter equal to ». Then

T{r) is bounded by the recurrence:

T(1)

IA

c

T(r) < ch(r)+2h{r)/h(llogr|)T(]log7])

It follows that T(r) is O(h(r) 25 7). Since for r > 1, h(r) < 7+ 2(|log 7)), it follows
that T(r) is O(r 218" 7).

To complete the analysis, we show that the rank of the element returned by
procedure RSEL3 to algorithm SEL3 is O(k 298’ ¥). Clearly this is true if £ = 1, so
consider £ > 1. First observe that any representative of a clan is smaller than the
elements in the associated heap for the clan. Next, observe that any element z in Hy
that is not in any clan created by RSEL3 has an ancestor y that is not in a clan but
whose parent z comprises a clan of size 1. Element z will be the representative of its
clan, and thus be in an associated heap. A recursive application of the first observation

establishes that z is larger than the element returned to algorithm SEL3. But z is

14

smaller than z, which imphes that any element not in a clan created by RSFL3 is
larger than the element returned to algorithm $EL3. The number of elements placed
in clans at all levels while finding a clan of size 2(r} is at most T'(r). Thus the element
returned to SEL3 has rank that is O(k 2'°"%). The time to select the k smallest in

the set of elements less than or equal to the returned element will be O(k 2'°8°¥). O

In Figure 2 we consider a heap, the first five levels of which are shown in Figure
1, with & = 2%, Note that for » = 2% = 256, |logr| = 8, [loglogr| = 3, and
|logloglogr] = 1. Thus A([logloglogr]) =1, A(|loglogr]) =3, A{{logr]) =9, and
R(r) = 9-[256/9] = 9-29 = 261. Thus algorithm SEL3 will find a clan at level
1, consisting of 29 clans at level 2, each of which consists of 3 clans at level 3, each
of which comnsists of 3 clans at level 4. The clans at level 4 contain single elements.
The actual contents of the clans depend on the particular implementation of heap
operations used.

We discuss the formation of the first clan C,; at level 2. The initial clan at level 3
was Ca; = {1,2,3}. Its associated heap contained {7,10,12,4}, and its representative
was 3. Thus the heap for forming C,; contained {3} at this point. When 3 was
extracted from this heap, the associated heap for C3; was split into {7,10} and
{12,4}, and clans C32 = {7,9,10} and C33 = {4, 5,6} were formed from these heaps,
resp. Their associated heaps contained {15,16, 32, 18,28} and {12,8,11,17,19}, resp.,
and their representatives, 10 and 6, were inserted into the heap for forming C,. When
6 was extracted from this heap, the associated heap for Cj 3 was split into {12,8} and
{11,17,19}, and clans Cs4 = {8,12,13} and Cs5 = {11,14,17} were formed from
these heaps, resp. Their representatives, 13 and 17, were inserted into the heap for
forming C>1. A snapshot at this point in the algorithm is shown in Figure 2, with
the clans of level 3 that are already included in C,; shown in dashed edges. and the

remaining three clans of level 3 shown in solid edges.

15

At the next step in the algorithm, 10 is extracted from the heap for forming
C21- The associated heap for Csy4 is split into {15,16} and {32,18,28}, and clans
Cse = {15,22,16} and C;7 = {32,18, 28} were formed from these heaps, resp. Their
representatives, 22 and 32, were inserted into the heap for forming Cz;. At this point,
the formation of clan C3, is complete, and consists of the union of clans C34, Cs
and C33. Its associated heap contains {22,32,13,17}. A snapshot at this point in
the algorithm is shown in Figure 3, with the clan C,; shown in bold, and the four
remaining clans of level 3 shown in solid edges. To proceed with finding the first clan
at level 1, one would split the associated heap for Cy;, and recursively find clans C,
and C,3. Having illustrated at this point the salient features of our algorithm, we
carry the example no further.

What keeps the time bound on algorithm SEL3 comparatively large is that in
finding a clan at level I, many clans at level I+ 1 can be created whose elements
will not be included in any subsequent clan at level I. We thus reduce the number of
elements in such clans at level I+1. To do this we have, for each level, clans of a number
of different sizes. The actual number of sizes will be (log™)2, chosen to limit the total
number of elements examined to O(k). Let f(r) = [({log7]/log™r)?]. Asin algorithm
SEL3, we define a function A(-) that defines the sizes of clans in terms of a target size
r. Again, this helps whenever the size of a clan at level [+1 does not evenly divide
into a target size r. If r = 1, then h(r) = 1. Otherwise, A(r) = A(f(r))[r/R(f())].
The sizes of clans will be z h(f(r)), for i = 1,2, -, (log™ r)2.

Whenever a new clan at level [+ 1 is created, it is created at the smallest size.
When a representative of a clan at level /41 is extracted from heap H), and the clan
is not of full size, the growth process is resumed for that clan, using the associated
heap at level I+1, up to the next larger size. The new representative of this clan at

level {+1 is then retnserted into H;, and the count of elements so far in the clan being

16

built at level ! is incremented by 2(f(r)). Thus when we perform an eztracimin in
H,, giving element z, we assign to the clan being built at level ! the A(f(r)) elements
less than or equal to z that were most recently assigned to the clan at level 41
whose representative was just extracted. When a representative of a full-size clan
is extracted from heap H, this element is reported as extracted, and the count of
elements so far is incremented by h(f(r)).

Our algorithm SEL4 to select the k-th smallest element in a heap is the following.
It calls the recursive procedure RSEI4 with parameters nil, 1 and k. Procedure
RSEIA(H,1,r) should identify a clan at level { of size A(r) generated starting with
the heap A, if H is not nil, and using the original heap Hp otherwise. Procedure
RSELA(H,I,r) returns the representative element of the clan and a pointer to a heap
representing what remains of the heap used to build the clan. After the return from
RSELA, algorithm SEI4 searches the original heap Hp to identify all elements in Hq
less than or equal to the representative of the clan, and then selects the k-th element
within this set directly.

We next describe procedure RSEL4(H,I,r). If r = 1, then do the following. If
H = nul, then take the minimum element z, of Hy as the single element of the clan,
and set ff to be a heap containing z; and x3 of Hy. Otherwise, il H £ nil, extract
the minimum element from heap A to be the single element of the clan, and insert
into heap A the children of the clan’s element in Hy. (Again, the minimum element
from H may already have been designated as a clan. If so, then it already has a heap
H' containing its children in Hp. Thus H’ can be merged into H.) In either case, let
the clan’s representative be its single element, and return the representative and a
pointer to the heap.

Otherwise, if r > 1, do the following. First we initialize an auxiliary heap H; as

follows. Il H = nil, then do the lollowing. Call RSELA(H, I+1, f(r)) recursively. Let

17

the items returned by this call be rep_elt and Apir. Initialize heap H; with rep_elt, and
associate hptr and a clan category of 1 with this entry. Otherwise, if H # nil, then
initialize fl; to be H. After initializing auxiliary heap H;, we do the following. For
h{r)/h(f(r)) iterations, do the following. Perform an ezéracémin operation in H;. Let
ext_ell be the element extracted, and let Aptr and clan_cat be associated with ezi_elt.
If clen_cat < (log™)%, then call RSELA(hptr,I+1, f(r)) recursively, and let the items
returned by this call be rep_elt’ and hptr’. Insert rep_elt into H; and associate hpir’
and 1+clan_cat with this entry. Otherwise, when clan_cat = (log™ r)?, do the following,.
Split the heap pointed at by hptr arbitrarily into two heaps of approximately equal
size pointed at by Apirl and hpir2. Call RSEL4(hpirl,I+1, f(r)) recursively, and
let the items returned by this call be rep_el¢’ and hptr’. Insert rep_elt’ into H, and
associate hpir’ and 1 with this entry. Call RSEL4(hptr2,i+1, f(r)) recursively, and
let the items returned by this call be rep_elt” and hpir”. Insert rep_elt” into H; and
associate hpir” and 1 with this entry. When the above loop terminates, let last_elt
be the last element extracted from H;. Return last_elt and a pointer to H;. This

concludes the description of RSELA.

Theorem 3.2. Algorithm SEI4 finds a k-th smallest element in a binary heap in
O(k) time.

Proof. For correctness, note that [logr] > log™r whenever r > 1, so that f(r) is
positive for » > 1. The rest of the discussion concerning correctness is similar to
that in the proof of Lemma 3.1.

We analyze the time of algorithm SEL4 as follows. Consider a call to RSEL4 with
parameter v > 1. The time to set up a heap and perform A(r)/h(f(r)) eztractmin and
insert operations is O((A(r)/R(f(r))[logr]), which is O(A(r){log™r)?/[log r]). Since
2 recursive calls are made only when clan.cat = (log™r)? and 1 call is made the rest

of the time, we charge each eziractmin with 1 + 1/(log" r)? recursive calls. Let T(r)

18

be the time charged to procedure RSEL4 when it is called with last parameter equal

to . Then T(r) is bounded by the recurrence:

(1)

(log" r)? 1 h(r)
) < ek T+ (14) e TU)

[A
)

We claim that
2log* r

T(r) < c'A(r) H 1+ 2)

=1

for an appropriate constant ¢!. The proof is by induction on r. The basis is for » < 2.
Forr =1, T(1) < ¢, so that the claim is satisfied if ¢ < /- 1(1 +4/1)(1 +4/4) = 10¢'.
Forr=2,7T(2) <c-2-1/14+ (1 4+1/1)2/1-c = 3¢, so that the claim is satisfied if
3¢ < - 2(1 +4/1)(1 + 4/4) = 20¢.

For r > 2, assume that the claim is true for ' < r. Note that for r > 2, it can be
verified that log®r > log™ f(r). Then

(log™ r)? 1 A(r)
Tr) < ehlr) oy (1 * (1og-,-)z) O

og= 72 r 2log* J(r)
<enn Bl + (14 o) ey T 04)

[log 7] (2log™r)?] h(f(r)) i1
(log' r)z 4 , 2log* r—2 4
< ch(r) flogr] (l+m)ch(r) I__Il (1+3)

]_0 - 2 2log” r
= ch(,—)% + (c'h(r) [T+ %‘)) / (1 + _—_(2log'f" — 1)2)

i=!

The claim will hold if

i=1 f=1

] r 2log* r 4 , 2log* r 4 |
erer it + (v T 020} (14) <ene T 0+ |

which will hold if

(log r 4 4 , 2log*r 4
(") g [logr] (1 i (2log™ r — 1)2) < (2log™r — 1)? ch(r) 1I (1+ 1_2)

i=1

19

which will hold if
- 2 . 1)2
(log™r) ((2lgigi 1) :r4) c<d
4[logr] [T.=F "(1 + =)

The lefthand side takes on its maximum in the range r = 17 to r = 32, for which the

above reduces to 1.596 ¢ < ¢’. The claim then follows by induction, with ¢’ chesen to
be 1.596¢.

From the claim it follows that T(r) is O(r), since for r > 1, A(r) < 2r, and

2.(1+ &) is 2 constant.

Upon its return to algorithm SEIA, procedure RSEL4 has identified an element
that is no smaller than the &-th smallest element in Hy. By reasoning similar to that
in the proof of Lemma 3.1, the number of elements placed in clans at all levels while
finding a clan of size i(r) is at most T'(r). Thus the element returned to SEL4 has
rank that is O(k). The time to select the k smallest in the set of elements less than
or equal to the returned element will be O(k). O

We note that the constant implied by the analysis in the above proof is rather
large. We would not be surprised if this value could be reduced substantially by a

more careful analysis.

4. Discussion

Rajamani Sundar has pointed out that the information theory bound is not tight
for a t-ary heap, if ¢ is assumed to be variable [S]. The number of t-ary trees with
k nodes is (t-_ll)k'+_1 (t:) (See exercise 11, page 396 of [K]). The best lower bound
that this gives is Q(klogt). However, a simple adversary argument gives a bound of
Q(kt) for £ > 1: Assume that the &£ — 1 smallest elements are already identified. An
adversary can force any algorithm to examine each of the (¢ —1)(k —1) 4+ 1 remaining

children of the & — 1 smallest elements. As for the upper bound, our methods can

easily be adapted to {-ary heaps, increasing the time for each step by a factor of .

20

Acknowledgement.

I would like to thank Rajamani Sundar and a referee for their careful reading of

the manuscript and many helpful comments. I would also like to thank Mike Atallah

and Jan Munro for bringing some references to my attention.

References

[AK]

[BJ}

[BFPRT)

[B1]

[B2]

[CSSS]

[F1]

[F2]

M. J. Atallah and 5. R. Kosaraju. An adversary-based lower bound for
sorting. Info. Proc. Lelf., 13:55-57, 1981.

S. W. Bent and J. John. Finding the median requires 2n comparisons. In
Proc. [Tth ACM Symp. on Theory of Computing, pages 213-216, 1985.

M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan. Time
bounds for selection. J. Comput. Syst. Sci., 7:448-461, 1972.

P. Brucker. Network flows in trees and knapsack problems with nested
constraints. In H. J. Schneider and H. Gottler, editors, Proc. 8th Conf.
on Graph Theoretic Concepts in Computer Science, pages 25-35, Munich,
1982, Hanser.

P. Brucker. An O{nlogn) algorithm for the minimum cost flow problem
in trees. In G. Hammer and D. Pallaschke, editors, Proc. 8th Symp. on
Operations Research: Selected Topics in Operations Research and Mathe-
matical Economics, pages 209-306, Berlin, 1984. Springer. Lecture Notes
in Economics, Vol. 226.

R. Cole, J. S. Salowe, W. L. Steiger, and E. Szemeredi. An optimal-time
algorithm for slope selection. SIAM J. Comput., 18:792-810, 1989.

G. N. Frederickson. The information theory bound is tight for selection in
a heap. In Proc. 22nd ACM Symp. on Theory of Compuling, pages 26-33,
1990.

G. N. Frederickson. Ambivalent data structures for dynamic 2-edge-

connectivity and k smallest spanning trees. manuscript, March 1991.

21

[FJ1]

[FJ2]

[IK]

K]

(L1]

(L2]

[M]

[SPP]

[S]
[WN]

G. N. Frederickson and D. B. Johnson. The complexity of selection and
ranking in X 4+Y and matrices with sorted columns. J. Comput. Syst. Seci.,
24:197-208, 1982.

G. N. Frederickson and D. B. Johnson. Generalized selection and ranking:
sorted matrices. SIAM J. on Computing, 13:14-30, 1984.

T. Ibaraki and N. Katoh. Resource Allocation Problems: Algorithmic Ap-
proaches. MIT Press, Cambridge, Massachusetts, 1988.

D. E. Knuth. The Art of Computer Programming, Vol. 1, second edition.
Addison-Wesley, Reading, Massachusetts, 1973.

E. L. Lawler. A procedure for computing the &£ best solutions to discrete
optimization problems and its application to the shortest path problem.
Management Sci., 18:401-405, 1972.

E. L. Lawler. Combinatorial Optimization: Networks and Matroids. Holt,
Rinehart and Winston, New York, 1976.

K. M. Mjelde. Discrete resource allocation with tree constraints by an
incremental method. European Journal of Operational Research, 17:393-
400, 1984.

A. Schonhage, M. Paterson, and N. Pippenger. Finding the median. J.
Comput. Syst. Sci., 13:184-199, 1976.

R. Sundar. email communication, 1989.

M. A. Weiss and J. K. Navlakha. The distribution of keys in a binary
heap. In J.-R. Sack F. Dehne and N. Santoro, editors, Proc. Workshop

on Algorithms and Data Structures, pages 213-216. Springer-Verlag, 1989.
LNCS, Vol. 382.

§< '° «»\

B@REORDBBE®OEGEEME®@GME)

Figure 1. The first five levels of a large heap, plus some clans of size 3.

@\? ®)(@ @\@ @ ®),
BOOE®E ®® GO BB OE

Figure 2. A snapshot just before the first clan
at level 2 is generated by RSEL3.

\
\e @(@ @ \

@@@@@@@@@@@@@@@@

Figure 3. A snapshot just after the first clan ar level 2
is generated by RSEL3.

