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Fair End-to-End Window-Based Congestion Control
Jeonghoon Mo and Jean Walrand, Fellow, IEEE

Abstract—In this paper, we demonstrate the existence of fair
end-to-end window-based congestion control protocols for packet-
switched networks with first come–first served routers. Our defini-
tion of fairness generalizes proportional fairness and includes ar-
bitrarily close approximations of max–min fairness. The protocols
use only information that is available to end hosts and are designed
to converge reasonably fast.

Our study is based on a multiclass fluid model of the network.
The convergence of the protocols is proved using a Lyapunov func-
tion. The technical challenge is in the practical implementation of
the protocols.

Index Terms—Bandwidth sharing, congestion control, fairness,
TCP, window.

I. INTRODUCTION

WE STUDY the existence of fair end-to-end congestion
control schemes. More precisely, the question is that of

the existence of congestion control protocols that converge to a
fair equilibrium without the help of the internal network nodes,
or routers. Using such a protocol, end-nodes, or hosts, monitor
their connections. By so doing, the hosts get implicit feedback
from the network such as round-trip delays and throughput but
no explicit signals from the network routers. The hosts imple-
ment a window congestion control mechanism. Such end-to-end
control schemes do not need any network configuration and
therefore could be implemented in the Internet without modi-
fying the existing routers or the IP protocol.

The Internet congestion control is implemented in end-to-end
protocols. The motivation for such protocols is that they place
the complex functions in the hosts and not inside the network.
Consequently, only the hosts that want to implement different
complex functions need to have their software upgraded. An-
other justification, which is more difficult to make precise, is
that by keeping the network simple it can scale more easily.

TCP is the most widely used end-to-end protocol in the In-
ternet. When using TCP [12], a source host adjusts its windows
size, the maximum amount of outstanding packets it can send
to the network, to avoid overloading routers in the network and
the destination host.

Many researchers have observed that, when using TCP, con-
nections with a long round-trip time that go through many bot-
tlenecks have a smaller transmission rate than the other con-
nections [4], [6], [22]. To improve fairness, Floyd and Jacobson
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[5] proposed a “constant rate adjustment” algorithm and Han-
dersonet al. [9] simulated a variation of this scheme. How-
ever, choosing the parameters of such algorithms is still an open
problem.

Thus, although end-to-end protocols such as those im-
plemented in TCP are very desirable for extensibility and
scalability reasons, they are unfair. Roughly, a fair scheme
is one that does not penalize some users arbitrarily. Accord-
ingly, the question that arises naturally is the existence of fair
end-to-end congestion protocols.

In an early paper, Jaffe [14] shows that power, defined as
, cannot be optimized in a dis-

tributed manner.
Chiu and Jain [3] show that in a network with users that

share a unique bottleneck node, a linear increase and multiplica-
tive decrease algorithm converges to an efficient and fair equi-
librium. Most current implementations of TCP window-based
control use a linear increase and multiplicative decrease of the
window size, as suggested in [12]. However, these implemen-
tations control the size of their window and not their transmis-
sion rate. Moreover, simple examples show that the algorithm
does not converge to an efficient and fair equilibrium in net-
works with multiple bottleneck nodes.

Shenker [28] considers a limited class of protocols and ar-
gues that “no aggregate feedback control is guaranteed fair.”
This statement suggests that end-to-end control cannot guar-
antee convergence to a fair equilibrium. Unfortunately, the class
of protocols that he considers excludes many implementable
end-to-end protocols. Jain and Charny refers to [28] to justify
the necessity of switch-based control for fairness [15], [2].

Recently, Kellyet al.[18] proposedproportional fairnessand
exhibited an aggregate feedback algorithm that converges to the
point. In their scheme, each user is implementing a linear in-
crease and multiplicative decrease of its rate based on an ad-
ditive feedback from the routers the connection goes through.
This protocol requires that the routers can signal the difference
between their load and their capacity. In our protocol, each host
controls its window size not its rate, based on the total delay.
Our protocol can be viewed as a refinement of TCP congestion
control algorithms.

Le Boudecet al. [10], [21] studied the exact form of fair-
ness founded by the linear increase, multiplicative decrease al-
gorithms. Massoulie and Roberts have done interesting work on
bandwidth sharing which is similar to ours [23]. They proposed
fixed window algorithms to achieve fairness.

In this paper, we revisit the fundamental question of the ex-
istence of fair end-to-end protocols and we provide a positive
answer by constructing explicitly such protocols. The rest of the
paper is organized as follows. In Section II, we present a multi-
class fluid model for window-based control and theoretical re-
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sults about the model. Section III presents our generalized defi-
nition of fairness and its relation to window-based congestion
control. In Section IV, we propose window-based end-to-end
fair algorithms and prove their convergence to a fair equilibrium.
Section V contains simulation results of our algorithms, which
support our claims. Finally, Section VI draws conclusions and
discusses future research directions.

II. NETWORK MODEL

This section explains a multiclass network model and a map-
ping between window size vector and the rate vector defined
by the model. Since it is through the rates that fair sharing is
defined and the protocol can control the window, the relation
between the rate vector and the window size vector is impor-
tant. We show that given the window size vector and network
topology, the rate vector is well defined.

A. Multiclass Fluid Model

We consider aclosed multiclass fluid networkwith
links and connections. The sender of connection ,
where is the set of users with the cardinality, exercises a
window-type flow control and adjusts the window sizeof the
connection. A connection follows a route that is a set of links.
Link has capacity, or transmission rate,, where is
the set of links with the cardinality . We define the matrix

where if connection uses
link and , otherwise. Let also be
the set of links that connectionuses and
the set of connections that use link.

Each connectionhas a fixed round-trip propagation delay,
which is the minimum delay between the sending of a packet by
the sender host and the reception of its acknowledgment by the
same host. We assume that the processing times are negligible.
A typical acknowledgment delay comprisesand some addi-
tional queueing delay in bottleneck routers. Letbe the flow
rate of the th connection for . For , we assume that
every link has an infinite buffer space, and we designate by
the work to be done by link. By definition, is the ratio of
the queue size in the buffer of linkdivided by the capacity .
The service discipline of the links is first come–first served.

We consider a fluid model of the network where the packets
are infinitely divisible and small. This model is represented by
following equations:

(1)

(2)

(3)

(4)

where

The inequality (1) expresses the capacity constraints: the sum
of the rates of flows that go through a link cannot exceed the
capacity of the link. The identity (2) can be written as

for

The th identity means that if the rate through link is
less than the capacity of the link, then the queue sizeat that
link is equal to 0. Finally, the identity (3) which can be written
as

means that the total number of packetsfor each connection
is equal to the number of packets in transit in the

transmission lines plus the total number of packets of
connection stored in buffers along the route. To clarify the
meaning of , note that

Now, is the number of packets in the buffer of linkand
a fraction of these packets are of connection. Thus,

is the backlog of packets of connection
in the buffer of link . Summing over all such that connection

goes through link shows that is the total backlog of
packets of connection.

Note that our model assumes that, for each link, the contri-
bution to the queue size of connectionis proportional to its flow
rate . This assumption is consistent with the fluid assumption
under which the packets are infinitely divisible.

We rewrite the identity (3) as follows:

where for (5)

The identity (5) means that the flow rate of connection is
equal to the ratio of the window size of the connection di-
vided by its total round-trip delay . The total delay con-
sists of fixed propagation delay plus a variable queueing
delay which depends on congestion in the network. Accord-
ingly, the flow rate of connection is a function of not only the
window size of the connection but also of the window sizes
of the other connections. When the network is not congested,

and the flow rates are proportional to
the window sizes. However, as congestion builds up, and
the rates are no longer linear in the window sizes.

B. Mapping from Window Size Vectors to Rate Vectors

In this subsection we prove that the flow rate vectoris a
well-defined function of the window size vector and we de-
rive some properties of the function. This result is intuitively
clear and its proof is a confirmation that the model captures the
essence of the physical system. Before proving the uniqueness
of the rate vector , we first show the existence of a rate vector

that solves the relations that characterize the fluid model.
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Theorem 1: For given values of , there exists at
least one rate vectorwhich satisfies the relations (1)–(4).

Proof: Let . Then for .
For , let

and

Fix and
in . We claim that is a
quasi-concave function of . By definition of quasi-concavity,
this means that is convex for all . To
verify the claim, note that

is increasing and concave on . Indeed, is the sum of
increasing concave functions on . If , then

is a decreasing function, which is quasi-concave on .
Also, in that case, . On the other hand,
if then is a unimodular function which increases
on and decreases on , which also is quasi-con-
cave. Moreover, in that case, . This proves
the quasi-concavity of .

By the theorem of Nash [11], the quasi-concavity of
in for any fixed implies that there exists at

least one vector such that

for

Let be such that (6) holds and let . We claim
that is a solution of (1)–(4). To verify the claim, observe
that our proof of the quasi-concavity shows that either
or and that in both cases . Hence,

and (2) follows. Moreover,
is equivalent to (1). Additionally, (3) and (4) are trivial by
construction.

Theorem 1 guarantees that the existence of a rate vector and
the next theorem proves its uniqueness.

Theorem 2: Given , the flow rate vector satis-
fying (1)–(4) is unique.

For readability, we briefly sketch the proof here. Refer to Ap-
pendix A for the details of the proof.

Sketch of the Proof:The proof is composed of two parts.
In the first part, we show that given , the set of bot-
tleneck links is uniquely determined. We assume two sets of
bottleneck and and derive a contradiction using Farkas’
lemma (see, e.g., [24]). In the second part, we show that, given

and , the vector of flow rates is unique. To
prove the uniqueness, we show that the partial derivative matrix

of the fixed point equation (40) is positive definite and use the
partial results of Rosen [27]. Combining those two parts com-
pletes the proof of the uniqueness.

C. Comments on the Mapping

1) Queue Size is Not Unique:Although the rate vector is
uniquely determined from the window sizes, the workload
vector generally is not, as the following example shows.
Consider a network with two bottleneck links in series with the
same capacity and a single connection with window size.
If , then the queues build up in the links. For this
network, any vector such that is
a solution of (1)–(4).

The following corollary shows a sufficient condition forto
be determined uniquely.

Corollary 1: If is equal to the number of
bottleneck links, then , uniquely determines the
vector .

Proof: From the uniqueness of flow rate vectorand (3),
. The inverse exists from

the full rank assumption.
2) Bottleneck: The following lemma provides sufficient

conditions for links not to be bottlenecks.
Lemma 1: For any given window size vector, – matrix
, and diagonal matrix

1) if , then ;
2) if and only if .

Proof:

1) Assume that . This implies . Now,
implies , since is the

upper bound on . From (2), , which is a contra-
diction. Hence, .

2) If , the window size vector from (3) where
. By (1), we prove if part.

The only if part is obvious from part 1).
The converse of part 1) is not always true, as can be seen

from the next example. Let
, and

If , clearly, , the flow rate out of resource
, but .

3) Some Properties of the Mapping:Let be
the mapping from the window space to a flow rate space
defined by (1)–(4). Let be the set of bottlenecks for the
window sizes . We call an interior point if there is
such that are same for all neighborhood of

. Otherwise, is said to be a boundary point.
is a continuous function but is not differentiable at the

boundary point. We illustrate this by the next example. For com-
plete proofs, see Appendix B.

Consider the network and connections in Fig. 1(a). Two users
are sharing one link and each uses another link. Fig. 1(b) is a plot
of along the horizontal dotted line 1 in Fig. 1(c). Fig. 1(b)
shows that is a continuous nondecreasing function of the
window size , but is not differentiable at the points where
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Fig. 1. (a) Network topology. (b) Flow ratex versus window size. (c) Mapping
betweenx andw.

the set of bottlenecks changes. Each region I, II, III, and IV cor-
responds to different sets of bottlenecks. For example, in region
I, user 1 does not suffer from any bottlenecks, but user 2 does.

Fig. 1(c) shows the mapping . If , the
queues are empty, andand are such that , so that

is differentiable in that region. If , is no
longer one to one. For instance, for all
and for all .

Let The dimension of is
related to the number of bottlenecks. To be precise, the dimen-
sion of is same as the rank of . This property fol-
lows from . Since ,
is a positive cone of with vertex , as we now illustrate
in Fig. 1(c). When , the inverse image of is a point,
of which the dimension is 0. When ,
is the dotted line 2 in the figure, whose dimension is 1. When

or , the number of bottlenecks is 2, which is
the dimension of .

III. FAIRNESS

Fairness has been defined in a number of different ways so
far. The notion of fairness characterizes how competing users
should share the bottleneck resources. In this section, we re-
view and compare standard definitions of fairness and gener-
alize them.

A. Max–Min Fairness

One of the most common fairness definitions ismax–minor
bottleneck optimalitycriterion [13], [1], [8], [16], [2]. A feasible
flow rate is defined to bemax–min fairif any rate cannot
be increased without decreasing somewhich is smaller than
or equal to [1]. Many researcher have developed algorithms
achieving max–min fair rates [1], [16], [2]. But a max–min fair
vector needs global information [25], and most of those algo-
rithms require exchange of information between networks and
hosts. In [8], Hahne suggested a simple round-robin way of con-
trol, but it requires all the links perform round-robin scheduling

and it needs to be guaranteed that packets of users are ready for
all links.

B. Proportional Fairness

Kelly [17] proposedproportional fairness. A vector of rates
is proportionally fair if it is feasible, that is, and

, and if for any other feasible vector, the aggregate
of proportional change is negative.1

(6)

In [18], Kelly et al.suggested a simple algorithm that converges
to the proportionally fair rate vector.2

Proportional fairness can be motivated in another way. Con-
sider the following optimization problem :

maximize

(7)

subject to

(8)

over

(9)

where is an increasing strictly concave function and theare
positive numbers.

Since the objective function (7) is strictly concave and the
feasible region (8), (9) is compact, the optimal solution of
exists and is unique. Let . The
Kuhn–Tucker conditions [24] for a solution of are

(10)

for (11)

(12)

(13)

where . When there is only
one link and connections, the optimal solution of is

for all : all the connections have an equal share of the
bottleneck capacity, irrespective of the increasing concave.
Indeed, (10) implies for all , so that
for all . If is a proportionally fair vector then it solves
when with for all . Thus, a proportionally
fair vector is one that maximizes the sum of all the logarithmic
utility functions.

The fair rate vector is not so simple when there are multiple
bottlenecks. Consider the following network with two different
bottlenecks and three connections. The max–min fair rate vector
of this network is if , while the
proportionally fair rate vector is not the same as the max–min

1Refer to http://www.ucl.ac.uk/uceemdb/work/phd.html for the discussion on
why the inequality should not be strict.

2In [10], Hurleyet al.showed that Kelly’s algorithm is based on the assump-
tion that the feedback is independent of the sending rate of the user. In the case of
proportional feedback, i.e., when senders receive feedback proportional to their
sending rates, they showed that the additive increase and multiplicative decrease
algorithm does not lead to the proportional fair rate, but to some variant of it.
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Fig. 2. Network with multiple bottlenecks.

fair rate in this case, since by decreasing the rate of user 1,
the sum of the utility functions increases. Hence, the optimal
vector depends on the utility functionwhen there are at least
two bottlenecks.

It is the concavity of the function that forces fairness be-
tween users. If is a convex increasing function instead of
concave, then to maximize the objective functionof , the
larger flow rate should be increased, since the rate of increase
of is increasing in . When is linear, the rate of increase
of is the same for all . When is concave, a smaller fa-
vored, since if .

C. -Proportional Fairness

It is a matter of controversy what is a fair rate allocation for
the network in Fig. 2. It can be argued that the max–min fair rate
is desirable. On the other hand, connection 1 is using more re-
sources than the others under the max–min fair rate. Generally,
the problem is how to compromise between the fairness to users
and the utilization of resources. The max–min definition gives
the absolute priority to the fairness. The following definition is
a generalization of proportional fairness and max–min fairness.
When , the given definition reduces to that of propor-
tional fairness and as becomes large, it converges to that of
max–min.

Definition 1 [ -Proportionally Fair]: Let
and be positive numbers. A vector of rates

is -proportionally fair if it is feasible and for any other
feasible vector

(14)

Note that (14) reduces to (6) when and
.

The following lemma clarifies the relationship between the
above definition and the problem .

Lemma 2: Define the function as follows:

if

otherwise.

Then the rate vector solves the problem with if
and only if is -proportionally fair.

Proof: Let be a solution of . We show that is
-proportionally fair. Multiplying (10) by , we

find . Summing the identity
(11) over , we obtain . Multiplying (8) by

, we get . Combining these relations, we see
that . Therefore,

. But .
Hence, . We have shown that the
solution of satisfies (14).

To prove the converse, assume that is -propor-
tionally fair. By showing that it solves , we complete the
proof. First note that

. The second
term for all
feasible and the third term is strictly negative by negative
definiteness of . Hence, is a local minimum. Since
has a unique global solution, solves .

The next lemma explains the relationship between max–min
fair rate and the parameter.

Lemma 3: If is a differentiable increasing concave neg-
ative function when , the solution of with

approaches the max–min fair rate vector as .
Proof: We will consider the case in which for all .

Extension to the general case is straightforward. Letbe the
optimal solution of with and .
Since is a sequence in a compact set, there exists a
subsequence, say , of such that converges
to some as .

We show that is the max–min vector. Since that max–min
vector is unique, this will prove that all the limit points of
are that unique max–min vector and, therefore, that con-
verges to the max–min vector, as we want to show.

Assume that is not a max–min vector. Then there exists a
user whose rate can be increased with decreasing the rates
of other users which are greater than . Let be the set of
saturated links used byand the set of the other links used by
. For each link , there exists a user, say , whose rate

is greater than , that is, for . Define
by

For simplicity, we denote and by and . From the
convergence of to , we can find such that for all ,
for all

(15)

where is the number of users. Define sequence of vectors
as follows:

if

if for

otherwise.

(16)

It can be shown and for without
difficulty since we choose small enough. We now establish a
contradiction with the optimality of . Consider the expression

defined by
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From the optimality of , we have . Now

From the theorem of intermediate values, there exist numbers
such that

Combining with (15), we find .
Similarly, there exist some numbers such that

and combining with (15) we find also . Thus

where is the cardinality of . The inequality follows from
the concavity of and and the bounds on and . Since the
last term in the parenthesis tends to 1 asincreases and ,
for large enough , which is a contradiction.

Corollary 2: The -proportionally fair rate vector ap-
proaches the max–min fair rate vector as .

This result follows from Lemma 3, since
in Lemma 2 satisfies the conditions of Lemma 3

with . Note that the constant does not affect
the solution of .

IV. FAIR END-TO-END ALGORITHMS

In this section, we propose protocols that achieve fairness as
defined in the previous section. We first show that the backlog
of each user can play the role of a decoupled fairness criterion
and prove the convergence of the proposed algorithms.

One implicit assumption for the convergence proof is that the
end user knows network conditions immediately, which is not
necessarily true. We do not consider feedback delays in the con-
vergence proof. However, in order to support our claims, we in-
clude simulation results. The impact of the delay on the conver-
gence will be a topic of further studies.

A. Decoupled Fairness Criteria

One of the major difficulties in achieving end-to-end fairness
is that it is hard for end users to know the fair share of the net-
work, since the fair share is a function of not only other users but
also of the topology of the network. Whenusers are sharing a
single bottleneck, the fair share will be capacity. To know
the fair share, each end user should know the behavior of other
users, which is not possible. Researchers have used similar ar-
guments to claim the impossibility of achieving end-to-end fair-
ness. This section proposes a decoupled fairness criteria, which

each user can use to achieve fairness without considering the
behavior of other users.

Let , and designate the window size, the rate, and
the round-trip propagation time of connection, respectively.
Let for . Define

for (17)

The expression can be interpreted as backlog of user
and as a target value. Hence, is the difference between

the actual and the target backlog. The next theorem shows that
any window vector such that for all corresponds to a

-proportionally fair rate vector .
Theorem 3: There is a unique window vector such that

for . Moreover, the corresponding rate vector
defined by (1)–(4) is a -proportionally fair rate vector.

The theorem states that the backlog of usershould be
for the rates to be proportionally fair. The interpretation of the
theorem is that when an estimated queue size is the
same as the target backlogof connection , for all users, the
resulting rate vector is proportionally fair. Note that all the pa-
rameters in the equation of Theorem 5 are observable or, at least,
can be estimated by an end-user. The window sizeis con-
trolled by the end-user, and the flow ratecan be determined
by observing return acknowledgments.

Proof: For any given , let be the rate vector
that corresponds to, as defined by (1)–(4). Fix . From
(3), we get where .
The last equality follows from the definition of . Hence, (10)
is satisfied. From (1), (2), and (4), if we replacewith , the
optimality conditions (11)–(13) of problem hold for

for . By Lemma 2, is a -proportionally fair
rate vector. The uniqueness offollows from the uniqueness of
the -proportionally fair rate vector, (3), and .

Observe that the workload vectoris same as the optimal
dual variables of the problem when the network is in the
state of -proportional fairness. This theorem implies that
by controlling the total backlogs of the network, we can operate
the network at the -proportionally fair point.

This theorem can be extended to the -proportionally
fair case. Let for and . Define

for (18)

Theorem 4: There is a unique window vector such that
for all . Moreover, the corresponding rate vector

defined by the identities (1)–(4) is a -proportionally fair
rate vector.

Proof: Note that if , then
. Consequently, , which is the optimality con-

dition (10). The other conditions, (12), (11), and (13), are satis-
fied, as can be shown as in the previous proof.

Note the difference that the target backlog is not
constant but a decreasing function of ratewhen . Since
the target backlog of a smaller rate connection is greater than
that of larger rate connection, the smaller rate connection tries to
put more backlogs in the network. By so doing, the equilibrium
they achieve can be closer to fair rate.
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B. -Proportionally Fair Algorithm

The previous section showed that can be used as
a decoupled fairness criteria. In this section, we construct an
end-to-end window control that achieves convergence to the
proportionally fair rate vector. Define for .
That is, is the measured round-trip delay of connection. Fix

.
Consider the following system of differential equations:

(19)

for (20)

Theorem 5 states that if each user changes its window size
based on (19) and (20), the rate vector achieved by the users
will be -proportionally fair.

Theorem 5: Let . Then is a Lya-
punov function for the system of differential equations (19),
(20). The unique value minimizing is a stable point of this
system, to which all trajectories converge.

Define

(21)

(22)

Let be the set of bottleneck links that correspond to. Des-
ignate by the submatrix of obtained by keeping only the
columns that correspond to a bottleneck link.

Lemma 4: The Jacobian of
with respect to is given by the following expression on

the interior point:

(23)

where .
For the proof of the Lemma 4, see Appendix B.

Proof of Theorem 5:We will first consider the case in
which is an interior point. Let . Note that

where is the Jacobian of.
From , ,
and (23)

Identity (24) is obtained from identity (23). Note that the ma-
trix in the bracket of (24) is positive definite. Hence is

strictly decreasing in on the interior points unless
for all .

Now consider the other case where is a boundary point.
Assume that the bottleneck sets ofduring and

are and , respectively, for small .

Even though we define the Jacobian matrix only on
interior points, this can be extended to boundary points. On
boundary points, we can define as a function of direction
. From Corollary 3 in Appendix B, the right-hand directional

derivative is well defined on the boundary points for an arbi-
trary direction . Hence, depending on to which bottleneck sets

and belong, the corresponding can be
used. Define be a right-hand derivative of defined on the
bottleneck set . Then, the above expression can be written as

as approaches 0. Since both
and are negative, the above expression is also negative.

We assumed that there exists ansuch that
lies in the same bottleneck. If a trajectory of oscillates be-
tween boundaries infinitely many times, it may not be possible
to find such an . However, from the continuity of , it can be
shown such an infinite oscillation cannot happen.

Therefore, we have shown thatis a decreasing function of
time unless . The theorem follows from [20].

In [18], Kelly et al.proposed rate-based proportionally fair al-
gorithm. Our algorithm is similar to Kelly’s in that both achieve
proportional fairness. However, it differs from Kelly’s algorithm
in that it is a window-based control and it does not need feedback
from the routers. Kelly’s algorithm changes the rate as follows:

where The source gets explicit
feedback , residual capacity, from the links and changes its
rate accordingly. The increase is linear and the decrease is mul-
tiplicative. Each plays the role of a Lagrange multipliers
of the problem as .

Our algorithm, however, controls the window size instead of
the rate explicitly. Note that

where

Here, the measured delay, which is the summation of plus
, plays the role of implicit feedback. Note also thatin our al-

gorithm is comparable to in Kelly’s. They are both Lagrange
multipliers of . However, we do not linearly increase and
multiplicatively decrease the window. When the network is not
congested, , . The increasing rate is a de-
creasing function of .

C. -Proportionally Fair Algorithm

In this subsection, we consider an algorithm that converges to
the -proportionally fair rate vector for . We know
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that if for all , then the rate
vector is -proportionally fair. We call the “target
queue length,” since is the estimated queue length in
the network. Note that the target queue length goes to infinity
when the rate is very small. When , the target queue
length is constant regardless of the rate. On the other hand, when

, the target queue length is a function of, which is
varying and is a decreasing function of the rate. Hence, when
the flow rate is large, the algorithm tries to maintain smaller
queues and vice versa.

One unfavorable property of the target queue length function
is that when , this function becomes very large

and the target queue length fluctuates and makes the control
unstable. Consequently, we consider instead of

, since the variation of the former is smaller than that
of the latter.

The objective function such that the solution of cor-
responds to is

if

if

if .

Note that and . These
observations show that is increasing concave and nonnega-
tive, and by the Claim 3 (Appendix B), the solution of with
objective function converges to max–min rate vector.

Consider the system of differential equations

(24)

where

(25)

(26)

Theorem 6: If for all , the function
is aLyapunov functionfor the system of equations

(24)–(26). The unique value minimizing is a stable
point of the system, to which all trajectories converge.

Proof: Note that

where
is the Jacobian of with respect to . Equation (24) can
be rewritten in a matrix form as where

. If we show that is positive

Fig. 3. Network topology.

definite, then is strictly decreasing with , unless
, the unique -proportionally fair point.

or

(28)

(29)

(30)

where and
. Hence

Since is positive semidefinite, is a
diagonal matrix with nonnegative entries, and is
positive definite, is positive definite.

By applying the same arguments of the previous proof for
boundary points, we complete the proof.

The algorithm (24)–(26) is more of theoretical interest than
practical. The difficulties such as variable queue size prevent
this control from being implemented. However, it is noteworthy
that max–min can be approximated in an end-to-end manner.

V. SIMULATION RESULTS

In this section, we describe simulation results of our
window-based algorithms to validate their performance. We
used thens simulator developed at the Lawrence Berkeley
National Laboratory [7].

A. Network Topology

Fig. 3 shows the topology of the network which will be used
to demonstrate the fairness and service differentiation of our
algorithm of Section IV-B. In Fig. 3, the squares denote fi-
nite-buffer switches and the circles denote the end-hosts. Con-
nection transmits packets from to , and each connec-
tion passes bottleneck links between the routersand . The
links are labeled with their capacities. The propagation delays
between and and that between and are 1 msec and
between and is msec. We choose different
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TABLE I
THROUGHPUT OF5 CONNECTION

TABLE II
THROUGHPUTDIFFERENTIATION WITH DIFFERENTTARGETS

Fig. 4. Plot of window and packets withp =2, 6, 10, 14, and 18.

propagation delays to show that our algorithm does not suffer
from round-trip delay bias.

B. Fairness

We ran simulations for five connections with of two
packets for 100 s. The packet size is 1 KB. We measure the
throughput achieved by those five connections. Table I shows
the results. The second and third columns show the throughputs
of connections when -fair algorithms and TCP-Renos
are used respectively. It can be observed that our algorithm
achieves fairer throughput without regard to the delay while the
throughput of TCP-Reno varies more.

We use a different value of for each connection. Table II
shows the throughput of each connections with 2, 6, 10,
14, and 18 packets for 60 s.

The buffer size is of the router is 100 packets and the
propagation delay of each connection is now set to 3 ms.

The left-hand side of Fig. 4 plots the window size over time
of the five connections. The bottom line corresponds to the con-
nection with target equal to 2 and the top line to that with target
equal to 18. Note that a bigger target results in a bigger window
size.

The right-hand side of Fig. 4 and Table II show that the
throughput of connection is almost proportional to . The
second column in Table II is the number of packets acknowl-
edged for the five connections during the last 50 s. We omit
the first 10 s to remove the effect of the slow start. Comparing

the third column with the fourth shows that throughput is
almost proportional to the target. This simulations shows that
by controlling the target backlog (), we can control the
throughput of each connection.

VI. CONCLUSION

In this paper, we have addressed the fundamental question
of the existence of fair end-to-end window-based congestion
control. We have shown the existence of window-based fair
end-to-end congestion control using a multiclass closed fluid
model. We showed that the flow rate vector is a well-defined
function of the window-size vector and characterized this func-
tion. We generalized the proportional fairness and related the
fairness to the optimization problem. Our definition of fairness
addresses the compromise between user fairness and resource
utilization. With the help of an optimization problem, we have
related window sizes and the fair rates. We have developed an
algorithm which converges to the fair rates and proved its con-
vergence using a Lyapunov function.

Our algorithm uses the propagation delay, measured delay
, and window size . Unfortunately, the end user cannot

know the exact value of propagation delay. Furthermore, the
value of propagation delay could change in the case of rerouting
in packet-switched networks. TCP-Vegas uses the minimum of
delays observed so far as an estimated propagation delay. TCP-
Vegas fails to adapt to the route change when the changed route
is longer than original route. Refer to Laet al.[26], [19] for this
problem. The impact of feedback delays on the convergence will
be also be topic of further studies.

APPENDIX A
UNIQUENESS OF THERATE VECTOR

Theorem 2: Given , the flow rate vector satis-
fying (1)–(4) is unique. We use two lemmas in the proof of the
Theorem 2. The first one is a partial result of Rosen [27] and the
second is Farkas’ lemma (see, e.g., [24]).

Lemma 5: Let be a vector of real-valued
functions defined on . If the Jacobian matrix exists
and is either positive definite for all or negative definite
for all , then there is at most onesuch that
holds.

Proof: Assume there are two distinct points and
such that for . Let
for . Since is the Jacobian of , we have

Hence

Multiplying both sides by gives
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The left hand side of the above equation is 0 and the right
hand side is either positive or negative depending on whether

is always positive definite or always negative defi-
nite. This contradiction completes the proof of the lemma.

Lemma 6 [Farkas]: has no solution if and
only if has a solution.

We are now ready to prove Theorem 2.
Proof of Theorem 2:The proof is composed of two parts.

In the first part, we show that given , the set of bot-
tleneck links is uniquely determined. In the second part, we
show that, given and , the vector of flow rates
is unique.

Claim 1: Given , the set of bottleneck links
defined by is the same for all that
satisfies (1)–(4).

Assume that there exist two different sets of bottleneck links
that correspond to two distinct solutions

and of (1)–(4), respectively. By (2), the queue size at
a nonbottleneck link is 0. For , designate by the
subvector of with nonzero components. Let also be the
submatrix of that consists of the columns ofthat correspond
to the nonzero components of . With this notation we can
write

for (31)

Plugging (31) into (3) and multiplying by , we find

for (32)

We partition the users into two sets and
and rewrite (32) as

(33)

by subtracting the identity (32) for from the same identity
for . The superscript and corresponds to the sets
and . Note that the right side of the (33) is less than or equal
to 0. From Lemma 6, if there is a row vector such
that

(34)

(35)

(36)

no satisfying (33) exists. We will show that
with and

is such a vector.
Plug defined above into (34), (35).

We drop the superscript in for simplicity. The inequalities
hold by inequality (1), hence (34) and (35) hold. For (36), note

that the right-hand side of (33) is nonnegative andis nonneg-
ative. Hence (36) holds with a possibility of equality. The strict
inequality follows from the fact . This completes the
proof of the claim.

Claim 2: Given and the corresponding set of
bottleneck links , the flow rate vector that solves (1)–(4) is
unique.

For simplicity of notation, we do not consider nonbottleneck
links. That is, we rewrite the equations where every one of the

links is a bottleneck. If , then the equations
determine uniquely. Now we consider the case when

. By renumbering the connections and the
network nodes, we can write as

where is a invertible matrix and is an
matrix. We claim that

(37)

To see why the above identity must hold, note that the rightmost
columns of are linear combinations of the leftmost

columns. That is, there is some matrix such that

Consequently, and . The first identity
implies and the second then yields ,
as claimed.

Let and be the vectors of flow rates corresponding to
and , respectively. From we find

(38)

where is a sub-vector of corresponds to from (1) and (2).
[In (38), the notation designates .] Let

or for all . Combining this
notation with (3), we find

(39)

where .
Multiplying the upper part of (39) by , we get an expres-

sion for in terms of : . Plugging
this expression into , we find

which reduces to

by (37). Let and . Note that
is a function of , since and are also functions of by
(38) and the definition of. We use Lemma 5 to show that there
is a unique so that .

For and , we compute
the partial derivative of with respect to as follows. Note
that

(40)
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where is row of . Now, for

Using (38), we see that

Combining the previous two identities, we get

Consequently

Using this result and (40), we find

where if and 0 otherwise. Hence the Jacobian
matrix of is

... ...

which is positive definite. From Lemma 5, there is a unique
so that and by (38), is unique.

APPENDIX B
SOME PROPERTIES OF THEMAPPING

Claim 3: is a continuous function of .
Proof: Consider an optimization problem

subject to (1) and (4).
Then the Kuhn–Tucker conditions correspond to (1)–(4).3

Hence, is the optimal solution of the problem. Take a
sequence such that and let . There
exists a subsequence that converges to, say, by the
compactness of the constraint set. By the optimality of

for all

Upon taking limits and invoking the continuity of

for all

This proves and therefore, is continuous.
Claim 4: is differentiable except at the boundary points.

Proof: Define , where
. If has a full rank, i.e.,

, then by the implicit function theorem,
is differentiable, hence is differentiable. Now

assume . Let such that .

3This observation is credited to S. Low. It also can simplify the proof of The-
orem 1 and 2.

Then applying same implicit function theorem to gives
the differentiability of . To make the proof complete,
observe that is the unique solution of . Since we
delete dependent rows from, if is a solution of ,
it is also solution of . Since the solution is unique,

is the solution of . This completes the proof.
Corollary 3: Let

Then exists for all .
Proof: If is an interior point, the conclusion is obvious.

If is a boundary point for any direction, there exists
such that has the same bottleneck. Then
restricting domain of to and applying the same
argument as in the proof of claim gives the result.

Lemma 4: The Jacobian of
with respect to is given by the following expression on

the interior point:

(41)

where

and

(42)

Proof: Our starting point is (3) which reads

(43)

where is the subvector of that corresponds to the bottleneck
links. This equation contains the dependencies ofon . Ac-
cordingly, we see that to compute we need only consider the
bottleneck links. We drop the subscript from and in
the rest of the proof. Let also be the subvector of that cor-
responds to the bottleneck links and we drop the subscript.
Without loss of generality, we can assume ,
since otherwise, we can reduceto have a full rank, and from
the proof of Theorem 2, the reduced system has the same solu-
tion as the original system.

With this notation, we have

(44)

(45)

Taking the partial derivative of (44) with respect to we find

We can write this identity as follows:

In matrix notation, these identities read

(46)

Multiplying this identity to the left by , we find

(47)
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Now, (45) implies that . Hence

(48)

Plugging (48) into (46) gives (41).
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