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Fair End-to-End Window-Based Congestion Control

Jeonghoon Mo and Jean Walraellow, IEEE

Abstract—in this paper, we demonstrate the existence of fair [5] proposed a “constant rate adjustment” algorithm and Han-
end-to-end window-based congestion control protocols for packet- dersonet al. [9] simulated a variation of this scheme. How-

switched networks with first comefirst served routers. Our defini- - ayer choosing the parameters of such algorithms is still an open
tion of fairness generalizes proportional fairness and includes ar- problem

bitrarily close approximations of max—min fairness. The protocols .
use only information that is available to end hosts and are designed ~ Thus, although end-to-end protocols such as those im-
to converge reasonably fast. plemented in TCP are very desirable for extensibility and

Our study is based on a multiclass fluid model of the network. scalability reasons, they are unfair. Roughly, a fair scheme
The convergence of the protocols is proved using a Lyapunov func- 5 e that does not penalize some users arbitrarily. Accord-
tion. The technical challenge is in the practical implementation of . : - . . .
the protocols. ingly, the question that arises naturally is the existence of fair

end-to-end congestion protocols.

In an early paper, Jaffe [14] shows that power, defined as
(throughput)/(average delay), cannot be optimized in a dis-
tributed manner.

I. INTRODUCTION Chiu and Jain [3] show that in a network wifti users that

E STUDY the existence of fair end-to-end congestioﬁhare aunique bottl_eneck node, alinear incr_egse and mL_JItipIic_a-
control schemes. More precisely, the question is that BYe. decrease algorlth_m converges toan eff|<:|ent_ and fair equi-
ium. Most current implementations of TCP window-based

the existence of congestion control protocols that converge tB

fair equilibrium without the help of the internal network nodesc,oerI use a linear increase and multiplicative decrease of the

or routers. Using such a protocol, end-nodes, or hosts, monif dow size, as suggested in [12]. However, these implemen-

their connections. By so doing, the hosts get implicit feedba&tlons control the siz€ of their window and not their transr_nls-

from the network such as round-trip delays and throughput pn rate. Moreover, simple _e>_<amp|es Sh.OW th‘?[ the al_gonthm
no explicit signals from the network routers. The hosts impl 10es no_t converge to an efficient and fair equilibrium in net-

ment a window congestion control mechanism. Such end-to-efy rks with multiple bottleneck nodes.

control schemes do not need any network configuration and henker [28] considers a limited class of protocols and ar-

therefore could be implemented in the Internet without mo jues that "no aggregate feedback control is guaranteed fair.”

fying the existing routers or the IP protocol his statement suggests that end-to-end control cannot guar-
' Ejtee convergence to a fair equilibrium. Unfortunately, the class

The Internet congestion control is implemented in end-to-e tocols that h id lud impl tabl
protocols. The motivation for such protocols is that they pla protocols that he considers excludes many implementable

the complex functions in the hosts and not inside the netwo _d—to—end. protocolls. Jain and Charny refgrs to [28] to justify
Consequently, only the hosts that want to implement differe e necessity of switch-based control for f§1|rness_[15], [2].
complex functions need to have their software upgraded. An_R'ec.:entIy, Kellyetal.[18] proposecproportlonal fairmeszaind
other justification, which is more difficult to make precise, isexh'b'ted an_aggregate feedback al_go_nthm that converges to_the
that by keeping the network simple it can scale more easily. point. In their sc.he.me,_ each user is mplementmg a linear in-
TCP is the most widely used end-to-end protocol in the I c2>¢ and multiplicative decrease of its rate based on an ad-
ternet. When using TCP [12], a source host adjusts its window ive feedback from the routers the connection goes through.

size, the maximum amount of outstanding packets it can s 'F| is protocol requires that the routers can signal the difference

to the network, to avoid overloading routers in the network a tvtvelen{helr_lodad an_d the|rt(:_§1pact|ty. l')n ou(; prott(;]colt, falcg TOSt
the destination host. controls its window size not its rate, based on the total delay.

Many researchers have observed that, when using TCP, cQH—r protocol can be viewed as a refinement of TCP congestion

nections with a long round-trip time that go through many bof—OntrOI algorithms.

tlenecks have a smaller transmission rate than the other conl-‘e Boudecet al. [10], [21] studied the exact form of fair-

nections [4], [6], [22]. To improve fairness, Floyd and JacobsdIESS founded by the linear increase, multiplicative decrease al-
Y ’ gorithms. Massoulie and Roberts have done interesting work on

bandwidth sharing which is similar to ours [23]. They proposed
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sults about the model. Section Il presents our generalized defi- Q) =diag(q).

nition of fairness and its relation to window-based congestion

control. In Section IV, we propose window-based end-to-erihe inequality (1) expresses the capacity constraints: the sum
fair algorithms and prove their convergence to a fair equilibriunof the rates of flows that go through a link cannot exceed the
Section V contains simulation results of our algorithms, whictapacity of the link. The identity (2) can be written as

support our claims. Finally, Section VI draws conclusions and

discusses future research directions. g [(ATz); —¢;] =0, forjeL.

Il. NETWORK MODEL The jth identity means that if the ratel” z); through linkj is

less than the capacity of the link, then the queue sizg at that

_This section explains a multiclass network model and a magsy s equal to 0. Finally, the identity (3) which can be written
ping between window size vector and the rate vector defingd

by the model. Since it is through the rates that fair sharing is
defined and the protocol can control the window, the relation 2 [(Ag)i +di] = wi, ‘€N
between the rate vector and the window size vector is impor- ’

tant. We show that given the window size vector and netwofeans that the total number of packetsfor each connection

topology, the rate vector is well defined. i(e N) is equal to the number;d; of packets in transit in the
] ] transmission lines plus the total numhef Ag); of packets of
A. Multiclass Fluid Model connection: stored in buffers along the route. To clarify the

We consider aclosed multiclass fluid networkvith A4 meaning ofz;(Aq);, note that
links and N connections. The sender of connectiore N,
where  is the set of users with the cardinaliy, exercises a zi(Ag)i =z ¥ Aijg; = Y Aijzig;.
window-type flow control and adjusts the window sizeof the j j
connection. A connection follows a route that is a set of links. ) ) o
Link j € £ has capacity, or transmission rate, whereZ is Now, ¢jq; 18 the number of packets in the buffer o_fblnjkand
the set of links with the cardinality/. We define the matrix @ fractionz;/c; of these packets are of connectianThus,
A= (A, i €N, jeL)whered; = 1 if connectioni uses (chj)(xi/cj) = @igj is the packlog of packets of connectllon
link j andA;; = 0, otherwise. Let alsol;.:= {j|4;; = 1} be 1N the buffer of Ilpkg. Summing overaly such that connection
the set of links that connectionuses andA.;:= {i|4;; = 1} ¢90€s through Ime'shows thatr;(Ag); is the total backlog of
the set of connections that use lipk packets of connection ) _
Each connectionhas a fixed round-trip propagation delgy Note that our model assumes that, for each jinthe contri-
which is the minimum delay between the sending of a packet Bytion to the queue size of connectida proportional to its flow
the sender host and the reception of its acknowledgment by fRE:- This assumption is consistent with the fluid assumption
same host. We assume that the processing times are negligifler which the packets are infinitely divisible.
A typical acknowledgment delay comprisésand some addi- e rewrite the identity (3) as follows:
tional queueing delay in bottleneck routers. kgtbe the flow w; .
rate of theith connection foi € A. Forj € £, we assume that Ti= whereD; = d; + (Ag);, forie N.  (5)
every linkj has an infinite buffer space, and we designate, by ’
the work to be done by link. By definition, ¢; is the ratio of The identity (5) means that the flow ratg of connectior is
the queue size in the buffer of linkdivided by the capacity;. equal to the ratio of the window size; of the connection di-
The service discipline of the links is first come—first served. vided by its total round-trip delay;. The total delayD; con-
We consider a fluid model of the network where the packesssts of fixed propagation delay; plus a variable queueing
are infinitely divisible and small. This model is represented byelay which depends on congestion in the network. Accord-

following equations: ingly, the flow rater; of connectiori is a function of not only the
window sizew; of the connection but also of the window sizes
Atz —c<0 (1)  of the other connections. When the network is not congested,
Q(ATz —¢) =0 (2) ¢=(q,...,qu) = 0and the flow rates are proportional to
X(Ag+d)=w 3) the window sizes. Howeyer, as conge_stlon bu_|Id3qup,O and
the rates are no longer linear in the window sizes.
r20, ¢20 (4)
where B. Mapping from Window Size Vectors to Rate Vectors
In this subsection we prove that the flow rate vectos a
z=(xy, ..., z5)" well-defined function of the window size vectar and we de-
c=(c1, ..., em)T rive some properties of the function. This result is intuitively
T clear and its proof is a confirmation that the model captures the
¢=(a, .-, qu) essence of the physical system. Before proving the uniqueness
d=(di, ..., dv)" of the rate vector, we first show the existence of a rate vector
X =diag(z) x that solves the relations that characterize the fluid model.
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Theorem 1: For given values ofw, A, d, ¢), there exists at of the fixed point equation (40) is positive definite and use the
least one rate vectar which satisfies the relations (1)—(4).  partial results of Rosen [27]. Combining those two parts com-
Proof: LetlU = Zﬁil w;. Theng; € [0, U] for j = £. pletes the proof of the uniqueness.
Forq € [0, UM, let
w: C. Comments on the Mapping
zi(g)= ma ieN 1) Queue Size is Not UniqueAlthough the rate vector is
‘ T Vi uniquely determined from the window sizes, the workload
Hg)=c—ATa(g) vector ¢ generally is not, as the following example shows.

and Consider a network with two bottleneck links in series with the
hi(g) = —ff(q), jeL. same capacity and a single connection with window size
' If (w/d) > ¢, then the queues build up in the links. For this
Fixj € {1,..., M} and¢’:=(q1,...,¢j—1,9j+1,---,qu) network, any vectofq:, ¢2) such thaly; + g2 = (w/c) — dis
in [0, UM ~1. We claim thath;(q) = h;(q1, ..., qu) iS @ a solution of (1)—(4).

quasi-concave function af;. By definition of quasi-concavity,  The following corollary shows a sufficient condition fgtto
this means thafq;|h;(¢) > a} is convex for alla € R. To be determined uniquely.

verify the claim, note that Corollary 1: If rank(Ag) is equal to the numbelB| of
, ws bottleneck links, thern(w, A, ¢, d), uniquely determines the
g _ T
filay, @) =¢; — ZANW vectorg.
‘ ' Vi ‘ Proof: From the uniqueness of flow rate vectoand (3),
=c; — ZAﬁ i q= (AEAB)—lAE(Xgle — dp). The inverse exists from
i i+ Auq + Aijg the full rank assumption.
I#j 2) Bottleneck: The following lemma provides sufficient

conditions for links not to be bottlenecks.
Lemma 1: For any given window size vectas, 0—1 matrix
A, and diagonal matrixD

1) if A;"D™'w < ¢;, theng; = 0;

is increasing and concave ¢@, {/]. Indeed,f; is the sum of
increasing concave functions ¢ U]. If f;(0, ¢/) > 0, then
h; is a decreasing function, which is quasi-concave®@r/].
Also, in that casesrg max,, h;(q;, ¢’) = 0. Onthe other hand, _ - /
if £;(¢’) <Othenh;isa tnimodular function which increases  2) ' D~'w < cifand only ifg = 0.

on [0, ¢7] and decreases ofy}, U], which also is quasi-con- Proof. S

cave. Moreover, inthat caseax,, f;(g;, ¢/) = 0. Thisproves 1) Assume thay; > 0. This impliesz; < (w;/d;). Now,

the quasi-concavity of;. ALD tw < ¢; implies ATz < ¢;, sinceD 'w is the
By the theorem of Nash [11], the quasi-concavity of  upper bound or. From (2),q; = 0, which is a contra-
h;(q;, @) in g; for any fixed ¢/ implies that there exists at diction. Henceg; = 0.
least one vectog* € [0, /]* such that 2) If ¢ = 0, the window size vectaw = X d from (3) where
D = diag(d;,i =1, ..., N). By (1), we prove if part.
q = argq_xg{gx{}} Pilals s @15 @Gy Gty -0 Qar) The only if part is obvious from part 1). [ |

The converse of part 1) is not always true, as can be seen
from the next example.Le¥/ =2, N =2, C = (5, 5)%, d =

T
Let ¢* be such that (6) holds and let = z(¢*). We claim (1, 1), and
that =* is a solution of (1)—(4). To verify the claim, observe 1 1
A= [ } .

forj e L.

that our proof of the quasi-concavity shows that eitjfer= 0 10

or f;(¢*) = 0 and that in both caseg;(¢*) > 0. Hence,

q; fi(¢") = 0 and (2) follows. Moreoverf;(q;, @) > 0 If w= (10, 20), clearly,go = 0, the flow rate out of resource
is equivalent to (1). Additionally, (3) and (4) are trivial byl < 5, butAZD~1w = 10 > 5.

construction. [ | 3) Some Properties of the Mappindcet F': W — X be
Theorem 1 guarantees that the existence of a rate vector #melmapping from the window spagg to a flow rate spac&’

the next theorem proves its uniqueness. defined by (1)—(4). LeB(w) be the set of bottlenecks for the
Theorem 2: Given(w, A4, d, ¢), the flow rate vectox satis- window sizesw. We callw an interior point if there is > 0

fying (1)—(4) is unique. such thatB(w) are same for alfv € neighborhoodV,(w) of
For readability, we briefly sketch the proof here. Refer to Apw. Otherwisew is said to be a boundary point.

pendix A for the details of the proof. F'is a continuous function but is not differentiable at the

Sketch of the ProofThe proof is composed of two parts.boundary point. We illustrate this by the next example. For com-
In the first part, we show that giveiw, A, d, ¢), the set of bot- plete proofs, see Appendix B.
tleneck linksB is uniquely determined. We assume two sets of Consider the network and connections in Fig. 1(a). Two users
bottleneckB; and B, and derive a contradiction using Farkasare sharing one link and each uses another link. Fig. 1(b) is a plot
lemma (see, e.g., [24]). In the second part, we show that, givefr; along the horizontal dotted line 1 in Fig. 1(c). Fig. 1(b)
(w, A, d, ¢) and B, the vector of flow rates is unique. To shows thatr; is a continuous nondecreasing function of the
prove the uniqueness, we show that the partial derivative matwindow sizew;, but is not differentiable at the points where
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" and it needs to be guaranteed that packets of users are ready for
USERI1({d1=1) .
all links.
L el
Py — ez ) — _ _
| (v) m] - B. Proportional Fairness
USERI (@2=1) s - v Kelly [17] proposedproportional fairnessA vector of rates
@ «* is proportionally fair if it is feasible, that isz* > 0 and
® ATz* < ¢, and if for any other feasible vectet the aggregate
of proportional change is negative.
w2 R
. & Y EE <o (6)
NUR - ; - xf
3 : (u:uuzns !
| o on In[18], Kelly e_t al.sugggsted a simple algorithm that converges
© 7| e to the proportionally fair rate vecter.
T wi R xi Proportional fairness can be motivated in another way. Con-
© sider the following optimization problerf¥):

Fig.1. (a) Network topology. (b) Flow rateversus window size. (c) Mapping maximize
between: andw.

g= Zpif(xi) )

the set of bottlenecks changes. Each region I, 11, 1ll, and IV cosubject to
responds to different sets of bottlenecks. For example, in region ATz <c 8)
I, user 1 does not suffer from any bottlenecks, but user 2 does.

Fig. 1(c) shows the mapping = F(w). If w € (0), the
queues are empty, andandx are such thaty; = x;d;, so that z 20 9)
x = F(w) is differentiable in that region. v & (0), F' is no _ . . : .
longer one to one. For instancg(w) — (1, 2) for all w € (2) wheref is an increasing strictly concave function and ghare

andF(w) = (2, 1) for all w € (4). positive numbers. _ o
Let F~1(x) = {w|F(w) = «}. The dimension of ~!(x) is Since the objective function (7) is strictly concave and the

related to the number of bottlenecks. To be precise, the diméﬁ?Sible f§9i°” ,(8)’ (9) is compact, the opgmal szgjtionjﬁp
sion of F~1(x) is same as the rank of . This property fol- ©XiSts and is unique. Le(x, 1) = g(x) + 1~ (¢ — A" ). The
lows fromw = Xd + X Ag. SinceX Aq = X Apqn, F~ (w) Kuhn-Tucker conditions [24] for a solutiaet of (P) are

is a positive cone oK A with vertex X d, as we now illustrate

T _ T AT _
in Fig. 1(c). Wheng = 0, the inverse image of is a point, Vg ”TA* 0 . (10)
of which the dimension is 0. When = (1.5, 1.5), F1(x) pi(c; — Ayx™) =0 forje L 11)
is the dotted line 2 in the figure, whose dimension is 1. When Algr <¢ (12)
x = (2, 1) or (1, 2), the number of bottlenecks is 2, which is >0, p>0 (13)

the dimension of"~*(x).

whereVg? = (p1f/(x1), ..., puf'(x,)). When there is only
. FAIRNESS one link and¥ connections, the optimal solution @f) is z; =

¢/N for all 4: all the connections have an equal share of the

Fairess has been defined in a number of different ways §gieneck capacity, irespective of the increasing congave
far. The notion of fairness characterizes how competing Us§fsiced (10) implieg’(x;) = y for all 4, so thatr; = f'~(u)
should share the bottleneck resources. In this section, we g&- 4 L If  is a proportionally fair vector then it solvés)

view and compare standard definitions of fairness and 9eNGlien f(x) = log x with p; = 1 for all i. Thus, a proportionally

alize them. fair vector is one that maximizes the sum of all the logarithmic
. ) utility functions.
A. Max-Min Fairness The fair rate vector is not so simple when there are multiple
One of the most common fairness definitionsriax—minor bottlenecks. Consider the following network with two different
bottleneck optimalitgriterion [13], [1], [8], [16], [2]. A feasible bottlenecks and three connections. The max—min fair rate vector

flow rate  is defined to benax—min fairif any ratez; cannot Ofthis networkig(c; /2, ¢1/2, c2—(c1/2)) if ¢ < cz, whilethe
be increased without decreasing samevhich is smaller than Proportionally fair rate vector is not the same as the max-min
or e_qu?‘l tow; [1] Man)_/ researcher have develoDed algquthms 1Refer to http://www.ucl.ac.uk/uceemdb/work/phd.html for the discussion on
achieving max—min fair rates [1], [16], [2]. But a max—min faifvhy the inequality should not be strict.
vector needs global information [25], and most of those algo-2in [10], Hurleyet al. showed that Kelly’s algorithm is based on the assump-
rithms require exchange of information between networks afiep thatthe feedback is independent of the sending rate of the user. In the case of
. . roportional feedback, i.e., when senders receive feedback proportional to their
hosts. In [8], Hahne suggested a simple round-robin way of ¢

: ¢ g ) ~-sending rates, they showed that the additive increase and multiplicative decrease
trol, but it requires all the links perform round-robin schedulinglgorithm does not lead to the proportional fair rate, but to some variant of it.
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c1 c2 pF AT (z—2*) < 0.BUtVgL (z—2*) = 3. (pi(x—a*) /(=*").
USER1 N\ yAERN Hence,Y . (pi(z — *)/(«*")) < 0. We have shown that the
( ) ( ) solution of (P) satisfies (14).
=" [ <7 ] To prove the converse, assume thét is (p, «)-propor-
USER2 USER3 tionally fair. By showing that it solve$P), we complete the

proof. First note thay(z) = g(z*) + Vg(z*) ' (z — 2*) +
(1/2)(x — 2*)'V2g(z*)(x — 2*) + o(||z — z*||?). The second
termVg(2*) (. — 27) = 3, (pi(x — 2*)/(2*")) < 0 for all
feasiblez and the third term is strictly negative by negative
fair rate in this case, since by decreasing the rate of userdkfiniteness oV2g. Hence,z* is a local minimum. Since®

Fig. 2. Network with multiple bottlenecks.

the sum of the utility functiong increases. Hence, the optimahas a unique global solution; solves(P). [ |
vectorz depends on the utility functiofiwhen there are atleast  The next lemma explains the relationship between max—min
two bottlenecks. fair rate and the parametet

It is the concavity of the functiorf that forces fairness be-  Lemma 3: If h(z) is a differentiable increasing concave neg-
tween users. Iff is a convex increasing function instead ohtive function whenz > 0, the solution of(P) with f, =
concave, then to maximize the objective functipaf (P), the —(—h)* approaches the max—min fair rate vectonas> oc.
larger flow rater; should be increased, since the rate of increase  Proof: We will consider the case in whigh = 1 for all i.
of f(x;) isincreasing irx;. When/ is linear, the rate of increase Extension to the general case is straightforward.4%be the
of f is the same for alt. When f is concave, a smaller; fa-  optimal solution of P) with £, andt’ = {z|A7z < ¢, z > 0}.

vored, sincef’(z) > f'(y) if z < y. Since {z*} is a sequence in a compact skt there exists a
subsequence, sdyy;, £ > 1}, of @ such thatz** converges
C. (p, «)-Proportional Fairness to somer € A ask — oo.

It is a matter of controversy what is a fair rate allocation for e Show that is the max-min vector. Since that max-min

the network in Fig. 2. It can be argued that the max—min fair raY&Ctor is unique, this will prove that all the limit points £}

is desirable. On the other hand, connection 1 is using more &€ that unique max-min vector and, therefore, {hat} con-
sources than the others under the max—min fair rate. Generaf§f9es o0 the max-min vector, as we want to show.

the problem is how to compromise between the faimess to user§'SSUme tharr is not a max-min vector. Then there exists a
and the utilization of resources. The max—min definition give&€r: Whose rater; can be increased with decreasing the rates
the absolute priority to the fairness. The following definition i§f Other users:; which are greater tham;. Let L, be the set of

a generalization of proportional faimess and max—min fairneS@turated links used byand/, the set of the other links used by
Whena = 1, the given definition reduces to that of proporé- FOr €achlink € Ly, there exists a user, sayl), whose rate
tional faimess and as becomes large, it converges to that of () IS greater tham;, thatis,z.,q) > z; for j € L:. Defineé

max—min. by

Definition 1 [(p, «)-Proportionally Fair]: Let p =
(pl, .oy DN) and_a be po;itiyg n_umber_s. A vector of rate$ § = 1 min {min(fu(l) —%;), min(c; — (ATf)l)} )
is («, p)-proportionally fair if it is feasible and for any other teln tels

feasible vector:
For simplicity, we denotg,, andz®* by f; andz*. From the

T — convergence af* toz, we can findko such that for alk > ko,
> p=—+t <o (14)

= for all j

No'ie that (14) reduces to (6) when= (1, ..., 1) and T; — % < a:i‘ <z + % (15)
o = 1.

above definition and the proble(®). as follows:

Lemma 2: Define the functionf,, as follows:
ah 46, ifj=i

log x, ifa=1 . N o
yj =4 x; =96, if j=wu(l)forle L, (16)

falw):= { (1—a)~tz'= otherwise.
zk otherwise.

Then the rate vectar* solves the problemiP) with f = f, if

and only ifz* is (p, «)-proportionally fair. It can be shown/* > 0 and ATy* < cfor k > ko without
Proof: Let z* be a solution of 7). We show that:* is difficulty since we choosé small enough. We now establish a

(p, a)-proportionally fair. Multiplying (10) by(z — z*), we contradiction with the optimality of*. Consider the expression

find Vg*'(z — 2*) = p* AT (x — 2*). Summing the identity A, defined by

(11) overj, we obtaing®c = pf ATz*. Multiplying (8) by

u, we getu? ATz < pu'c. Combining these relations, we see A, = (Y = £ (™) .

thatu” ATz < pl'c = p?' ATz*. ThereforeVg® (z — z*) = * EJ: (Fal) = fute)
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From the optimality of:*, we haved, < 0. Now each user can use to achieve fairness without considering the
behavior of other users.
Ap = filaf+6) = frlzD)+ > (fk(ﬂﬁﬁ(z) —6) - fk(afﬁ(z))) - Letwy, z;, andd; designate the window size, the rate, and
Icly the round-trip propagation time of connectianrespectively.

From the theorem of intermediate values, there exist numb&®& pi > 0 fori € N. Define

cF such that .
s; = w; — xid; — i, forie NV. (17)

The expressiom; — x;d; can be interpreted as backlog of user
1 andp; as a target value. Hence, is the difference between
Combining with (15), we find* < z; + (§/N)+ 6 < 7; +26. the actual and the target backlog. The next theorem shows that

{xfgcfgxf—i—é

Similarly, there exist some numben,’§(l) such that any window vector suph thats; = 0 for all < corresponds to a
(p, 1)-proportionally fair rate vector.
a:,’;;(l) -6< cf;(l) < a:,’;;(l) Theorem 3:There is a unique window vectar such that
Fele = 8) — fu(a ) = — (6 s; = 0fori € M. Moreover, the corresponding rate vecifw)
M) MFuy) = T\ () defined by (1)—(4) is &p, 1)-proportionally fair rate vector.

The theorem states that the backlog of usshould bep;
for the rates to be proportionally fair. The interpretation of the
) theorem is that when an estimated queue size- z;d; is the

and combining with (15) we find alsd;(l) > T; + 36. Thus

same as the target backlpgof connectior, for all users, the

=5 <f;2(6§“) S R

leLy resulting rate vector is proportionally fair. Note that all the pa-
> 6 (f1(mi +26) — Gf(T; + 36)) rameters in the equation of Theorem 5 are observable or, at least,

S fi(T; +26) can be estimated by an end-user. The window 8izés con-

=0 f3(T; +26) <1 - Gm) trolled by the end-user, and the flow ratecan be determined

R by observing return acknowledgments.

where( is the cardinality ofZ,. The inequality follows from Proof: Forany givens € [0, o)V, letz be the rate vector
the concavity off, and and the bounds efi andc}; ). Since the - that corresponds ta, as defined by (1)—(4). Fix € W. From
last term in the parenthesis tends to Lascreases ang, > 0, (3), we getX Aqg = w — Xd = p wherep = (py, ..., pn)7.
for  large enough;, > 0, which is a contradiction. B The last equality follows from the definition & . Hence, (10)
Corollary 2: The (p, a)-proportionally fair rate vector ap- js satisfied. From (1), (2), and (4), if we replagewith ¢;, the
proaches the max—min fair rate vectoreas- oc. optimality conditions (11)—(13) of proble(d) hold for f (x) =

This result follows from Lemma 3, sinck,(z) = (—1/(a—  p;logxfori € A. By Lemma 2z isa(p, 1)-proportionally fair
1))(1/z)*~* in Lemma 2 satisfies the conditions of Lemma 3ate vector. The uniquenesswofollows from the uniqueness of
with b = —(1/x). Note that the constaiv— 1) does not affect the(p, 1)-proportionally fair rate vectar, (3), andX Ag=pm

the solution of( P). Observe that the workload vectgris same as the optimal
dual variableg. of the problemP) when the network is in the
IV. FAIR END-TO-END ALGORITHMS state of(p, 1)-proportional fairness. This theorem implies that

In this section, we propose protocols that achieve fairnessfiscontrolling the total backlogs of the network, we can operate
defined in the previous section. We first show that the backldge network at thép, 1)-proportionally fair point.
of each user can play the role of a decoupled fairness criterionl Nis theorem can be extended to the «)-proportionally

and prove the convergence of the proposed algorithms. ~ fair case. Lep; > 0 fori € A" anda > 1. Define
One implicit assumption for the convergence proof is that the 4
itions immedi ich | C =y —ad;— 2 forie N (18)
end user knows network conditions immediately, which is not Sg = Wi — Xidy o1 teEN.

%

necessarily true. We do not consider feedback delays in the con-
vergence proof. However, in order to support our claims, we in- Theorem 4: There is a unique window vectas such that
clude simulation results. The impact of the delay on the conver* = ( for all <. Moreover, the corresponding rate vectgt)

gence will be a topic of further studies. defined by the identities (1)—(4) is(@, «)-proportionally fair
_ o rate vector.
A. Decoupled Fairness Criteria Proof: Note thatifs¢ = 0, themw; —z;d; = (p; /a*~*) =

One of the major difficulties in achieving end-to-end fairness; A;.q. Consequentlyr® Ag = p, which is the optimality con-
is that it is hard for end users to know the fair share of the neatition (10). The other conditions, (12), (11), and (13), are satis-
work, since the fair share is a function of not only other users hiigd, as can be shown as in the previous proof. [ |
also of the topology of the network. Wherusers are sharinga Note the difference that the target back(qg/a:?fl) is not
single bottleneck, the fair share will Bgn capacity. To know constant but a decreasing function of rafevhen« > 1. Since
the fair share, each end user should know the behavior of ottiee target backlog of a smaller rate connection is greater than
users, which is not possible. Researchers have used similarthat of larger rate connection, the smaller rate connection tries to
guments to claim the impossibility of achieving end-to-end faiput more backlogs in the network. By so doing, the equilibrium
ness. This section proposes a decoupled fairness criteria, whioey achieve can be closer to fair rate.
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B. (p, 1)-Proportionally Fair Algorithm

The previous section showed that — x;d; can be used as

a decoupled fairness criteria. In this section, we construct a X
fhssume that the bottleneck setsotluring(t —¢, ¢) and(t, ¢+

end-to-end window control that achieves convergence to
proportionally fair rate vector. Defing = d; + A;.gfori € N
That is,d; is the measured round-trip delay of connectioRix
k> 0.

Consider the following system of differential equations:

(20)

wi(t) = =

8; =wi — Tidi — pi

fori e V.
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strictly decreasing irt on the interior points unless;(t) = 0
for all ;.
rNow consider the other case whew¢) is a boundary point.

¢) are B; and Bz, respectively, for smal > 0.

Viw(t+e) — V(iw(t—re))
2e
_ V(w(t+9) = Vw®) | V(w®) - V(wt =)
2¢ 2¢ )
Even though we define the Jacobian matdx only on
interior points, this can be extended to boundary points. On
boundary points, we can defing, as a function of direction

+

Theorem 5 states that if each user changes its window sjz&-rom Corollary 3 in Appendix B, the right-hand directional
based on (19) and (20), the rate vector achieved by the usggsiative is well defined on the boundary points for an arbi-

will be (p, 1)-proportionally fair.
Theorem 5:Let V(w) = 32 (si/w;). ThenV is a Lya-

trary directiond. Hence, depending on to which bottleneck sets
w(t — ¢) andw(t + ¢) belong, the corresponding, can be

punov function for the system of differential equations (19),5e(. Defind’; be a right-hand derivative f defined on the

(20). The unigue value minimiziny is a stable point of this
system, to which all trajectories converge.

Define
Jy = [axi,i,jej\/} (21)
8wj
8q7; . .
Jg = ,ieL, JEN]. (22)
8wj

Let B be the set of bottleneck links that corresponditdes-

ignate byA 5 the submatrix of4 obtained by keeping only the time ¢ unlesss;(¢) = 0. The theorem follows from [20].

columns that correspond to a bottleneck link.
Lemma 4: The Jacobiaw, = [(dz;/0w;), i, j € N] of

bottleneck seB. Then, the above expression can be written as
(1/2)(V, (t) + Vi, (t)) ase approaches 0. Since boths, (t)
andVp, (t) are negative, the above expression is also negative.
We assumed that there existscauch thatw(s) s € (¢, t+-¢)
lies in the same bottleneck. If a trajectory:oft) oscillates be-
tween boundaries infinitely many times, it may not be possible
to find such ane. However, from the continuity of, it can be
shown such an infinite oscillation cannot happen.
Therefore, we have shown thitis a decreasing function of
[ |
In[18], Kelly et al.proposed rate-based proportionally fair al-
gorithm. Our algorithm is similar to Kelly’s in that both achieve

x(w) with respect taw is given by the following expression onproportional fairness. However, it differs from Kelly’s algorithm

the interior point:

J.=D ' (I - XAp(ALXD *'Ap) 'ALD ') (23)
whereD = diag(d; + A;.q, i € N), X = diag(z;, i € N).
For the proof of the Lemma 4, see Appendix B.
Proof of Theorem 5:We will first consider the case in
whichw(t) is an interior point. Let; = s;/w,. Note that

d OV du(t)
7 (w(t) = Z dw; b

’ dt
%
J [

dr; .
=—wrf T

—
dw]' J

whereJ,.:= ((dr; /dw;), i € N, j € N) is the Jacobian of.
From.J, = (XDW 2+ PW~2 - DW~1J,),w = DD ~'r,
and (23)

2V (i)
=k [(XDW™2 4+ PW~2 - DW™1J,)DD ']
—krf[PW™2DD !
+ DD 2AR(AEXD ' Ag)'ALD T2 D)r.

in thatitis awindow-based control and it does not need feedback

from the routers. Kelly’s algorithm changes the rate as follows:
%) = rpi — xi(8) Aipi (1))

wherep;(t) = ((ATz); — C;—e€) /€. The source gets explicit

feedbacku; (), residual capacity, from the links and changes its

rate accordingly. The increase is linear and the decrease is mul-

tiplicative. Eachy;(t) plays the role of a Lagrange multipliers

of the problemP’ ase — 0.

Our algorithm, however, controls the window size instead of
the rate explicitly. Note that

L) = n <& +

d: d: _
— - —1)= hered; = d;
dt w; d; ) di7 where + Z €

JCA.

Here, the measured deldy, which is the summation aof; plus

d;, plays the role of implicit feedback. Note also thatn our al-
gorithm is comparable tp; in Kelly’s. They are both Lagrange
multipliers of (P). However, we do not linearly increase and
multiplicatively decrease the window. When the network is not
congestedy = 0, w = x(p;/w;). The increasing rate is a de-
creasing function ofv.

C. (p, «)-Proportionally Fair Algorithm

Identity (24) is obtained from identity (23). Note that the ma- In this subsection, we consider an algorithm that converges to

trix in the bracket of (24) is positive definite. Hent&w(t)) is

the (p, «)-proportionally fair rate vector forx > 1. We know
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that if s¢ = w; — z;d; — (p; /=$~1) = 0 for all 4, then the rate
vector is(p, «)-proportionally fair. We calp; /z¢~* the “target

queue length,” sincey; — z;d; is the estimated queue length in 10Mb 10
the network. Note that the target queue length goes to infinity 1.5Mb

when the rate is very small. When = 1, the target queue

length is constant regardless of the rate. On the other hand, wher ° 10Mb R,

« > 1, the target queue length is a function af which is :

varying and is a decreasing function of the rate. Hence, when
the flow rate is large, the algorithm tries to maintain smaller
queues and vice versa.

One unfavorable property of the target queue length function
pi/a??_l is that whenz; < 1, this function becomes very large

9 10Mb

and the target queue length fluctuates and makes the config{3- Network topology.

unstable. Consequently, we consigef(z; + 1)*~! instead of

pi/z3t, since the variation of the former is smaller than thalefinite, thenV (w(¢)) is strictly decreasing witht, unless

of the latter.
The objective functiork,, such that the solution dfP) cor-
responds t¢* = w; — x;d; — (p;/(z; +1471)) = 01is

log = ifa=1
10g< a:1> if =2
ho(z) = T
a—2
T 1
log —— fa=3,4,...
og <$+1>+Z=1'[,(x+1)z & ) Xy

Note thath!, = 1/(z(x + 1)) andlim, .., ho = 0. These

s = 0, the uniquep, «)-proportionally fair point.

Os; .. ox; o ox;
a—wj —6LJ—dZa—W+(a—1)pZ(a:Z+1) T,
or
Js=I-DJ,+(a—1H)P(X+1)"J, (28)
=1-UlJ, (29)
=(I-UDY+UD'XAJ, (30)
where U = diag(u;,¢ = 1,...,N) and J, =

((Oz;/0w;), it € N, j € £). Hence

observations show that,p is increasing concave and nonnega-; v — xy — (D - (a — 1)PX)J, XU

tive, and by the Claim 3 (Appendix B), the solution(@?) with
objective functiom,, converges to max—min rate vector.
Consider the system of differential equations

d
%wi = —KT;S;W; (24)
where
ey — i — PP
s; =w; — x;d; @t 1ot (25)
Di
s=d; — (o — 1)————. 26
w =t~ o= D (29)

Theorem 6: If p; < d;/(«a—1) forall ¢, the functionV (w) =
(1/2)
(24)—(26). The unique valuer minimizing V(w) is a stable
point of the system, to which all trajectories converge.

Proof: Note that

d AV dw;(t)
it )) = _- J
iV ) zj:awj dt
=3 s
; 2 dZUj
=sTJ

where J, = ((ds;/dw;)} = 1,...,N,j5 = 1,...,N)

is the Jacobian of with respect tow. Equation (24) can
be rewritten in a matrix form asy —kXUs where
U = diag(w;, i =1,...,N). If we show that/, X U is positive

; s7 is aLyapunov functioffor the system of equations

= -DD HXU +(a—-1)P(X +1)"*D XU
+UD ' XAJXU.

SinceD X AJ, X is positive semidefinite(/ — DD ~!)is a
diagonal matrix with nonnegative entries, aRdX + 1)~ is
positive definite,/, X U is positive definite.

By applying the same arguments of the previous proof for
boundary points, we complete the proof. [ |

The algorithm (24)—(26) is more of theoretical interest than
practical. The difficulties such as variable queue size prevent
this control from being implemented. However, it is noteworthy
that max—min can be approximated in an end-to-end manner.

V. SIMULATION RESULTS

In this section, we describe simulation results of our
window-based algorithms to validate their performance. We
used thens simulator developed at the Lawrence Berkeley
National Laboratory [7].

A. Network Topology

Fig. 3 shows the topology of the network which will be used
to demonstrate the fairness and service differentiation of our
algorithm of Section IV-B. In Fig. 3, the squares denote fi-
nite-buffer switches and the circles denote the end-hosts. Con-
nection: transmits packets fron¥; to D;, and each connec-
tion passes bottleneck links between the routgrand R,. The
links are labeled with their capacities. The propagation delays
betweenS; andR; and that betweeR; andR, are 1 msec and
betweenRk, andD; is8 + (i — 1) - 5 msec. We choose different
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TABLE | the third column with the fourth shows that throughput is
THROUGHPUT OF5 CONNECTION almost proportional to the target. This simulations shows that
connection | Fair | TCP-Reno by controlling the target backlogp{), we can control the
1 3645 6723 throughput of each connection.
2 3479 2520
3 3510 2159 VI. CONCLUSION
g Zggg Zg';(l) In this paper, we have addressed the fundamental question
of the existence of fair end-to-end window-based congestion
control. We have shown the existence of window-based fair
TABLE I end-to-end congestion control using a multiclass closed fluid
THROUGHPUTDIFFERENTIATION WITH DIFFERENT TARGETS model. We showed that the flow rate vector is a well-defined
target(p;) | throughput | throughput ratio | target ratio function of the window-size vector and characterized this func-
2 420 1 1 tion. We generalized the proportional fairness and related the
6 117 2.66 3 fairness to the optimization problem. Our definition of fairness
:2 ;zgg g"z‘z ‘;’ addresses the compromise between user fairness and resource
18 3353 7.08 9 utilization. With the help of an optimization problem, we have

related window sizes and the fair rates. We have developed an
algorithm which converges to the fair rates and proved its con-

vergence using a Lyapunov function.
“ /[////////”/////////A Our algorithm uses the propagation detgymeasured delay
///////////////// d;, and window sizew;. Unfortunately, the end user cannot
. { 4 know the exact value of propagation delay. Furthermore, the
///////////// value of propagation delay could change in the case of rerouting

& in packet-switched networks. TCP-Vegas uses the minimum of
/////// delays observed so far as an estimated propagation delay. TCP-
.«"’"’

=

-3
3

Window
&

'a:

1

Vegas fails to adapt to the route change when the changed route

i

WUy

P — R i is longer than original route. Refer to leaal.[26], [19] for this
- problem. The impact of feedback delays on the convergence will
Fig. 4. Plot of window and packets with =2, 6, 10, 14, and 18. be also be topic of further studies.
propagation delays to show that our algorithm does not suffer APPENDIX A
from round-trip delay bias. UNIQUENESS OF THERATE VECTOR

] Theorem 2: Given(w, A, d, ¢), the flow rate vectox satis-

B. Fairness fying (1)—(4) is unique. We use two lemmas in the proof of the

We ran simulations for five connections witty of two Theorem 2. The first one is a partial result of Rosen [27] and the
packets for 100 s. The packet size is 1 KB. We measure tsecond is Farkas’ lemma (see, e.g., [24]).
throughput achieved by those five connections. Table | showsL.emma 5: Let I' = (f1, ..., f.) be a vector of real-valued
the results. The second and third columns show the throughpiusctions defined orR™. If the Jacobian matrix\ F'(z) exists
of connections wher{p, 1)-fair algorithms and TCP-Renosand is either positive definite for all € R™ or negative definite
are used respectively. It can be observed that our algorithiet all z € R™, then there is at most onesuch thatF'(z) = 0
achieves fairer throughput without regard to the delay while th®lds.
throughput of TCP-Reno varies more. Proof: Assume there are two distinct point$ and x2

We use a different value gf; for each connection. Table Il such thatF'(z*) = 0 for i = 1, 2. Letz(f) = z* + 6(z* — 2*)
shows the throughput of each connections with= 2, 6, 10, for ¢ € [0, 1]. SinceAF is the Jacobian of’, we have
14, and 18 packets for 60 s.

The buffer size is of the routeR, is 100 packets and the ~ 2£'(@(6)) _ AF(x(g))dx(e) = AF(2(0))(2? — zY).
propagation delay of each connection is now set to 3 ms. de do

The left-hand side of Fig. 4 plots the window size over timgjance
of the five connections. The bottom line corresponds to the con-
nection with target equal to 2 and the top line to that with target (22 / AF(z
equal to 18. Note that a bigger target results in a bigger window
size.

The right-hand side of Fig. 4 and Table Il show that thMultiplying both sides by(z? — z*)*" gives
throughput of connection is almost proportional t;. The
second column in Table Il is the number of packets acknow” — )" (F(2?) — F(a1))
edged for the five connections during the last 50 s. We omit Lo, s 1
the first 10 s to remove the effect of the slow start. Comparing = /0 (2% = 27)" AF(2(6))(z" — =) df.

(z — z') db.
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The left hand side of the above equation is O and the rigthtat the right-hand side of (33) is nonnegative grid nonneg-
hand side is either positive or negative depending on whetltagive. Hence (36) holds with a possibility of equality. The strict
AF(z(0)) is always positive definite or always negative defiinequality follows from the fact:® # z2. This completes the
nite. This contradiction completes the proof of the lemmam  proof of the claim.

Lemma 6 [Farkas]: Az = b, z > 0 has no solution if and  Claim 2: Given (w, A, d, ¢) and the corresponding set of
only if yA > 0, yb < 0 has a solution. bottleneck linksB, the flow rate vector that solves (1)—(4) is

We are now ready to prove Theorem 2. unique.

Proof of Theorem 2:The proof is composed of two parts. For simplicity of notation, we do not consider nonbottleneck

In the first part, we show that givelw, A, d, ¢), the set of bot- links. That is, we rewrite the equations where every one of the
tleneck linksB is uniquely determined. In the second part, wé{ links is a bottleneck. Itank(A) = N, then the equations
show that, giverfw, A, d, c¢) andB, the vector of flow rates  AZ'x = ¢ determiner uniquely. Now we consider the case when
is unique. rank(A) = k < N. By renumbering the connections and the

Claim 1: Given(w, A, d, ¢), the set of bottleneck link®# network nodes, we can writé as
defined byB = {j|(ATz); = ¢;} is the same for alk that E F
satisfies (1)—(4). A= { }

Assume that there exist two different sets of bottleneck links G H
By # B, that correspond to two distinct solutios, ¢') whereE is ak x k invertible matrix and is an(N — k) x &

and(z?, ¢*) of (1)—(4), respectively. By (2), the queue size ghatrix. We claim that
a nonbottleneck link is 0. Fat = 1, 2, designate byj* the

subvector ofy* with nonzero components. Let alsh, be the H=GE™'F. (37)

submatrix ofA that consists of the columns dfthat correspond ) } )
to the nonzero components gf. With this notation we can 10 Se€e why the above identity must hold, note that the rightmost
write N — k columns ofA are linear combinations of the leftmost

columns. That s, there is sorex (N — k) matrix M such that
Agh = Aug®, fork=1, 2. (31) ” 5
= M
Plugging (31) into (3) and multiplying bgX*)~*, we find [H} [G}
. 1 Consequently’ = EM andH = GM. The first identity
g +d= X" w, fork=1,2 (32) impliesM = E~'F and the second then yields = GE~1F,
as claimed.
Let zg andx s be the vectors of flow rates corresponding to
E andd, respectively. Fromd”z = ¢ we find

+ +7 5 -
|: AT —A7 :| |:(]1:| _ |:(X1+ — X2+) Lyt (33) rg = ET—lcE _ ETflGTxG (38)

S R IS CE S S R

We partition the users into two sefét = {i|z; > 27} and
N~ ={1,..., N\NT and rewrite (32) as

) _ _ ) ~ wherecg is a sub-vector of corresponds t@& from (1) and (2).
by subtracting the identity (32) fér = 2 from the same identity [In (38), the notatiorE? ! designatesE—1)7 = (ET)~1 ] Let
for k = 1. The superscript- and— corresponds to the sed*  ;, _ y—1,, _ jorp, = (w; /z;) — d; for all i. Combining this
andN~. Note that the right side of the (33) is less than or equghiation with (3), we find
to 0. From Lemma 6, if there is a row vectpe= (y+, y~) such

w5 2] le] e

ba
ytAT —y AT 20 (34) .
gt AT —yA; <0 (35) whereb” = (by, be) = ((br, -+, br), (b1, -5 b))
ol - oy 2 O 2= Multiplying the upper part of (39) by —!, we get an expres-
y (X - Xt +y (X7 - X7 )w” <0 (36)  sjon forgy in terms ofgr: gp = E~tbr — B~ Fgr. Plugging
this expression int@qr + Hgr = bg, we find GE~tbp +

no (g, 62)_ satisfying (33) exists. We will show that = (H — GE*F)qr = be which reduces to
(y*. v ) with y* = (2 — o) andy~ = (22 — 21 )7
is such a vector. GE b = b

Plug(y*, v~ ) defined above into (34), (35). B B
by (37). LetG:=GE~! andF(zg):= Gbg — bg. Note thatF’
oY AT 2l AT — 22T AT — 22 A7 =2t A - 224 is a function ofz, sincebr andb; are also functions of by
—cp, — %A, >0 (38) and the definition of. We use Lemma 5 to show that there

is a uniquer so that?’ =0.
a:H'A;— + xl_AQ_ + $2+A§|_ + $2_A2_ =2t Ay — 2° Ay duere (zc)

. Fori=1,...,N—kandj =k+1, ..., N, we compute
=x Az —cp, £0.  the partial derivative of; with respect taz; as follows. Note
that

We drop the superscrigtin 2 for simplicity. The inequalities R
hold by inequality (1), hence (34) and (35) hold. For (36), note Fi(zg) = Gibg — biy14s (40)
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whered;. is row: of G. Now, form =1, ...
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Then applying same implicit function theorem tg; gives
the differentiability of z(¢5). To make the proof complete,

IE)m _ _w;" O observe thatr(¢z) is the unique solution of. Since we
dx; T, O delete dependent rows froB, if x is a solution ofA%a: = cq,
Using (38), we see that it is also solution ofAZx = cp. Since the solutiom is unique,
x(gqg) is the solution ofyp. This completes the proof. [ ]
Orm _ e Corollary 3: Let D F' = lim,|o(F(w + eu) — F(w))/e.
dx; ’ Then D} F exists for allw.

Combining the previous two identities, we get
Wm, A

a(bFJ)rn _

Consequently

8 . w; T
—bg = diag <x_3> Gj,.

Proof: If w is an interior point, the conclusion is obvious.
If w is a boundary point for any directiaf there existg > 0
such thato € (w, w + eu] has the same bottlened& Then
restricting domain of" to (w, w + eu] and applying the same
argument as in the proof of claim gives the result. ]
Lemma 4: The Jacobiaw,, = [(0z;/0w;), i, j € N] of
x(w) with respect taw is given by the following expression on
the interior point:

8a:j
Using this result and (40), we find Jy =D ' (I - XAp(ARXD 'Ap) tAED 1Y) (41)
OF;(zq) _ Gy diag <%z> é;_p | Wi 6 where
z; x; x ;2 _
D =diag(d; + Ai.q, i € N)
whered;; = 1if ¢ = j and 0 otherwise. Hence the JaCObiaﬁnd
matrix AF(zg) of F is
w Wi
_2]L 0 S—H 0 X =diag(x;, i € N). (42)
R R Tht1
G G*+ Proof: Our starting point is (3) which reads
0 Wk 0 wN
.’L’% aj?\, Z; [(ABQFJ)i, + d7] =w;,t €D (43)
which is positive definite. From Lemma 5, there is a unigqée \herey; is the subvector of that corresponds to the bottleneck
so thatl"(x¢) = 0 and by (38) is unique. B Jinks. This equation contains the dependencies; afn w,. Ac-
cordingly, we see that to compufg we need only consider the
APPENDIX B

SOME PROPERTIES OF THEMAPPING
Claim 3: F: W — X is a continuous function af.

bottleneck links. We drop the subscriptfrom Ag andgg in
the rest of the proof. Let alsgg be the subvector af that cor-
responds to the bottleneck links and we drop the subsé&ipt

Proof: Consider an optimization problem Without loss of generality, we can assumewk(Ag) = |B|,
max, f(w,z) = 3, w;logx; — d;x; subject to (1) and (4). since otherwise, we can redugeto have a full rank, and from
Then the Kuhn-Tucker conditions correspond to (1)3(4)_the proof of Theorem 2, the reduced system has the same solu-
Hence, F(w) is the optimal solution of the problem. Take dion as the original system.
sequencey,, such thatw, — w and letz, = F(w,). There  With this notation, we have
exists a subsequence,, that converges to, sa¥, by the
compactness of the constraint set. By the optimality,of zi[Aig +d] =w;

ATz =

(44)

(45)

f(wnka xn,k) Z f(wnk, .’L'), for all x.

Upon taking limits and invoking the continuity gf
flw, @) = f(w, @),

This provest = F(w) and thereforeF'(z) is continuous. ®
Claim 4: Fis differentiable except at the boundary points.
Proof: Define gp(w, q) = ALz(gs) — cp, where

Taking the partial derivative of (44) with respect:itg we find

(J2)ij(Aiig + di) + 2i(Ai(Jg).5) = bij.
for all z.
We can write this identity as follows:

z(qs) = wi/(d; + Aiqp). If Ap has a full rank, i.e., In matrix notation, these identities read
rank(Ag) = |B|, then by the implicit function theorem, —
gp(w) is differentiable, hencec(w) is differentiable. Now DJe+ XAJg =1 (46)
assumeank(Ap) = < |B|. Let B C B suchthalB| = 7.\ iioiving this identity to the left by4ZD *, we find
3This observation is credited to S. Low. It also can simplify the proof of The- _ _
orem 1 and 2. AT I, +(ATD'XA)J, = ATD ™. (47)
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Now, (45) implies thatd”.J, = 0. Hence

Plugging (48) into (46) gives (41). [ |

J,=(ATD'XA)tATD ! (48)

[21]
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