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Fields Medal

Grigory Perelman

CITATION: "For his contributions to geometry and his revolutionary insights 
into  the  analytical  and  geometric  structure  of  the  Ricci  flow"

The name of Grigory Perelman is practically a household word among the 
scientifically  interested public.  His  work  from 2002-2003 brought  ground-
breaking insights into the study of evolution equations and their singularities. 
Most  significantly,  his  results  provide a  way of  resolving two outstanding 
problems  in  topology:  the  Poincare  Conjecture  and  the  Thurston 
Geometrization Conjecture.  As  of  the  summer of  2006,  the mathematical 
community is still  in the process of checking his work to ensure that it is 
entirely correct and that the conjectures have been proved. After more than 
three years of  intense scrutiny,  top experts  have encountered no serious 
problems in the work.

For decades the Poincaré Conjecture has been considered one of the most 
important  problems  in  mathematics.  The  conjecture  received  increased 
attention from the general public when it was named as one of the seven 
Millennium Prize Problems established by the Clay Mathematics Institute in 
2000. The institute has pledged to award a prize of one-million US dollars for 
the  solution  of  each  problem.  The  work  of  Perelman  on  the  Poincaré 
Conjecture is the first serious contender for one of these prizes.

The  Poincaré  Conjecture  arises  in  topology,  which  studies  fundamental 
properties  of  shapes  that  remain  unchanged  when  the  shapes  are 
deformed---that  is,  stretched,  warped,  or  molded,  but  not  torn.  A  simple 
example of such a shape is the 2-sphere, which is the 2-dimensional surface 
of a ball in 3-dimensional space. Another way to visualize the 2-sphere is to 
take a disk lying in the 2-dimensional plane and identify the disk's boundary 
points to a single point; this point can be thought of as the north pole of the 
2-sphere. Although globally the 2-sphere looks very different from the plane, 
every point  on the sphere sits in a region that  looks like the plane.  This 
property  of  looking locally  like the plane is  the defining property  of  a  2-
dimensional manifold, or 2-manifold. Another example of a 2-manifold is the 
"torus", which is the surface of a doughnut.

Although locally the 2-sphere and the torus look the same,  globally their 
topologies are distinct: Without tearing a hole in the 2-sphere, there is no 
way to deform it into the torus. Here is another way of seeing this distinction. 
Consider a loop lying on the 2-sphere. No matter where it is situated on the 
2-sphere, the loop can be shrunk down to a point, with the shrinking done 
entirely within the sphere. Now imagine a loop lying on the torus: If the loop 



goes around the hole, the loop cannot be shrunk to a point. If loops can be 
shrunk to a point in a manifold, the manifold is called "simply connected". 
The 2-sphere is simply connected, while the torus is not. The analogue of the 
Poincar\'e Conjecture in 2 dimensions would be the assertion that any simply 
connected 2-manifold of finite size can be deformed into the 2-sphere, and 
this assertion is correct. It is natural then to ask, What can be said about 
non-simply-connected 2-manifolds? It turns out that they can all be classified 
according to the number of holes: They are all deformations of the torus, or 
of the double-torus (with 2 holes),  or of the triple torus (the surface of a 
pretzel),  etc.  (One actually needs two other technical  assumptions in this 
discussion, compactness and orientability.) 

Geometry  offers  another  way of  classifying 2-manifolds.  When one views 
manifolds topologically, there is no notion of measured distance. Endowing a 
manifold with a metric provides a way of measuring distance between points 
in the manifold and leads to the geometric notion of curvature. 2-manifolds 
can be classified by their geometry: A 2-manifold with positive curvature can 
be deformed into a 2-sphere; one with zero curvature can be deformed into a 
torus; and one with negative curvature can be deformed into a torus with 
more than one hole.

The Poincaré Conjecture,  which originated with the French mathematician 
Henri Poincaré in 1904, concerns 3-dimensional manifolds, or 3-manifolds. A 
basic example of a 3-manifold is the 3-sphere: In analogy with the 2-sphere, 
one obtains the 3-sphere by taking a ball in 3-dimensions and identifying its 
boundary points to a single point. (Just as 3-dimensional space is the most 
natural home for the 2-sphere, the most natural home for the 3-sphere is 4-
dimensional space---which of course is harder to visualize.) Can every simply 
connected  3-manifold  be  deformed  into  the  3-sphere?  The  Poincaré 
Conjecture asserts that the answer to this question is yes. Just as with 2-
manifolds,  one could  also  hope for  a  classification  of  3-manifolds.  In  the 
1970s, Fields Medalist William Thurston made a new conjecture, which came 
to be called the Thurston Geometrization Conjecture and which gives a way 
to classify all 3-manifolds. The Thurston Geometrization Conjecture provides 
a  sweeping  vision  of  3-manifolds  and  actually  includes  the  Poincaré 
Conjecture as a special case. Thurston proposed that, in a way analogous to 
the case of 2-manifolds, 3-manifolds can be classified using geometry. But 
the analogy does not extend very far: 3-manifolds are much more diverse 
and complex than 2-manifolds.

Thurston  identified  and  analyzed  8  geometric  structures  and  conjectured 
that  they  provide  a  means  for  classifying  3-manifolds.  His  work 
revolutionized  the  study  of  geometry  and  topology.  The  8  geometric 
structures were intensively investigated, and the Geometrization Conjecture 
was verified in many cases; Thurston himself proved it for a large class of 
manifolds. But hopes for a proof of the conjecture in full generality remained 
unfulfilled.

In 1982, Richard Hamilton identified a particular evolution equation, which he 
called  the  Ricci  flow,  as  the  key  to  resolving  the  Poincaré  and  Thurston 



Geometrization Conjectures. The Ricci flow is similar to the heat equation, 
which describes how heat flows from the hot part of an object to the cold 
part, eventually homogenizing the temperature to be uniform throughout the 
object.  Hamilton's  idea  was  to  use  the  Ricci  flow  to  homogenize  the 
geometry  of  3-manifolds  to  show that  their  geometry  fits  into  Thurston's 
classification. Over more than twenty years, Hamilton and other geometric 
analysts made great progress in understanding the Ricci flow. But they were 
stymied  in  figuring  out  how  to  handle  "singularities",  which  are  regions 
where  the  geometry,  instead  of  getting  homogenized,  suddenly  exhibits 
uncontrolled changes.

That was where things stood when Perelman's work burst onto the scene. In 
a  series  of  papers  posted  on  a  preprint  archive  starting  in  late  2002, 
Perelman established ground-breaking results about the Ricci  flow and its 
singularities.  He  provided  new  ways  of  analyzing  the  structure  of  the 
singularities and showed how they relate to the topology of the manifolds. 
Perelman broke the impasse in the program that Hamilton had established 
and validated the vision of using the Ricci flow to prove the Poincar\'e and 
Thurston Geometrization Conjectures. Although Perelman's work appears to 
provide a definitive endpoint in proving the conjectures, his contributions do 
not stop there. The techniques Perelman introduced for handling singularities 
in the Ricci flow have generated great excitement in geometric analysis and 
are beginning to be deployed to solve other problems in that area.

Perelman's combination of deep insights and technical brilliance mark him as 
an outstanding mathematician. In illuminating a path towards answering two 
fundamental  questions in  3-dimensional  topology,  he has had a profound 
impact on mathematics.
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Grigory Perelman was born in 1966 in what was then the Soviet Union. He 
received his doctorate from St. Petersburg State University. During the 1990s 
he  spent  time  in  the  United  States,  including  as  a  Miller  Fellow  at  the 
University of California, Berkeley. He was for some years a researcher in the 
St. Petersburg Department of the Steklov Institute of Mathematics. In 1994, 
he was an invited speaker at the International Congress of Mathematicians in 
Zurich.


