TUTORIAL on QUATERNIONS Part II

Luis Ibáñez

August 13, 2001

This document was created using LyX and the LATEX Seminar style.

Contents

- Differentials of Quaternions
- Developments of Functions of Quaternions

Differentials of Quaternions

The difficult point in defining Differentials over Quaternions is

Lack

of the Conmutative Property.

$$P \diamond Q \neq Q \diamond P$$

Adopted Definition

Following Newton's definition of *Fluxions*

Hamilton [2] defined Simultaneous Differentials as

Limits of Equi-multiples of Simultaneous and Decreasing Differences.

Given a system of connected *Quaternions*

q, r, s

the symbols

$$\triangle q$$
, $\triangle r$, $\triangle s$

represent their Simultaneous Differences

The sums

$$q + \triangle q$$
, $r + \triangle r$, $s + \triangle s$

are a New system of Quaternions

satisfying the Same Laws of connexion as the Old system.

The differences $\Delta q, \Delta r, \Delta s$ start at an arbitrary size

Then, they are *simultaneously decreased* by a factor

Integer multiples of the new differences are considered

...the factor is further decreased

...and decreased...

...and decreased...

...and taken to the limit!

Definition Revisited

If all the multiples $n\Delta$ converge to the same value

when the factor Δ is decreased,

Then the *Limit* of Δ 's exist and they are called

Simultaneous Differentials

dq, dr, ds

Again....

Limits of Equi-multiples of Simultaneous and Decreading Differences.

Consequence of this Definition

The Surface *Differentials* of this black Rectangle (w,h)

$$dS = w \cdot dh + h \cdot dw$$

is the sum of shaded rectangles at the sides $(h \cdot dw)$ and $(w \cdot dh)$

Lies my Calculus Teacher told me...

Differentials are *infinitesimally small*...

The Truth is

What they have to be is *linearly related*

$$dS = h \cdot dw + w \cdot dh$$

NOT because

$$dw \cdot dh \rightarrow 0$$

BUT because

 $dw \cdot dh$

is **NOT LINEAR** with respect to a factor applied

simultaneously to dh, dw and dS

Differentials don't need to be **SMALL**

They are a LINEAR APPROXIMATION [1].

$$dy = A \cdot dx + B$$

In a 2D function z = f(x, y) the Linear Approximation is a *Plane*.

$$dz = A \cdot dx + B \cdot dy + C$$

The *Differentials*

dx dy dz

Can be as Large as you want

but

They have to be related by a Linear Equation

Differential of Functions of Quaternions

Let Q be a *Function* of the Quaternion variables $\{q, r, ...\}$

$$Q = F(q, r, \dots)$$

and let

$$dq, dr, \dots$$

be any *Simultaneous Differentials* of $\{q, r, ...\}$

Differential of Functions of Quaternions

The Simultaneous Differential of function Q is

$$dQ = \lim_{n \to \infty} n \cdot \left[F\left(q + \frac{dq}{n}, r + \frac{dr}{n}, \dots\right) - F\left(q, r, \dots\right) \right]$$

where *n*

is an integer multiple of a particular real value.

Differentials in one Dimension

The well known equation

$$\frac{df(x)}{dx} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Expressed according to the new definition

$$df(x) = \lim_{n \to \infty} n \left[f(x + \frac{dx}{n}) - f(x) \right]$$

Example

$$f(x) = (x)^2$$

$$df(x) = \lim_{n \to \infty} n \left[\left(x + \frac{dx}{n} \right)^2 - (x)^2 \right]$$

$$df(x) = \lim_{n \to \infty} n \left(x^2 + 2x \frac{dx}{n} + \frac{(dx)^2}{n^2} - x^2 \right)$$

$$df(x) = \lim_{n \to \infty} \left(2x \, dx + \frac{(dx)^2}{n} \right) = 2x \, dx$$

Differential of a Function of One Variable

The Differential dx is like another variable

$$df(x) = g(x, dx)$$

for example, given

$$f(x) = x^2$$

the differential is a function of Two Independent Variables x and dx

$$df(x) = g(x, dx) = 2 x dx$$

Differentials of Functions of Quaternions

Quaternions composition (multiplication) is **NOT** commutative

$$f(q) = q^2 = q \diamond q$$

The differential

$$df(q) = \lim_{n \to \infty} n \left[\left(q + \frac{dq}{n} \right)^2 - (q)^2 \right]$$

Results in

$$df(q) = q \diamond dq + dq \diamond q$$

Differentials of Functions of Quaternions

The Quotient

$$\frac{df(q)}{dq} = df(q) \diamond dq^{-1}$$

For the current example $f(q) = q^2$

$$\frac{df(q)}{dq} = q \diamond dq \diamond dq^{-1} + dq \diamond q \diamond dq^{-1}$$

$$\frac{df(q)}{dq} = q + dq \diamond q \diamond dq^{-1}$$

Which is a function of q and dq

Comparison with Traditional Differentials

	Function	Quotient of Differentials
Scalars	$f(x) = x^2$	$\frac{df(x)}{dx} = 2x$
Quaternions	$f(q) = q^2$	$\frac{df(q)}{dq} = q + dq \diamond q \diamond dq^{-1}$

The Quotient of Quaternion Differentials is a new Function of TWO INDEPENDENT variables :

q and dq

Geometric Interpretation of the **Differential of the Square Function**

$$q = \frac{\overrightarrow{A}}{\overrightarrow{B}} = \frac{\overrightarrow{B}}{\overrightarrow{C}}$$
 $q^2 = \frac{\overrightarrow{A}}{\overrightarrow{C}}$

$$q^2 = \frac{\overrightarrow{A}}{\overrightarrow{C}}$$

$$s = \frac{q + dq}{q} = 1 + \frac{dq}{q}$$

a variation in q is represented by the Differential dq

Geometric Interpretation of the Differential of the Square Function

In order to find the Differential dq, the vector \overrightarrow{S} corresponding to the chord of Vector-Arc s is taken and shifted to the origin of the sphere.

Geometric Interpretation of the Differential of the Square Function

The Quotient between vectors \overrightarrow{S} and \overrightarrow{A} is the Quaternion dq

$$dq = \frac{\overrightarrow{S}}{\overrightarrow{A}}$$

The sum of q and $dq \diamond q \diamond dq^{-1}$ is performed by finding first a common denominator vector, then adding the two vector in the numerator.

Sum of Reciprocals (a property)

$$R(q) = q^{-1} = \frac{1}{q}$$

$$R(p) + R(q) = p^{-1} + q^{-1} = \frac{1}{p} + \frac{1}{q}$$

$$\frac{1}{p} + \frac{1}{q} = \left(\frac{1}{q} \diamond q\right) \diamond \frac{1}{p} + \frac{1}{q} \diamond \left(p \diamond \frac{1}{p}\right) = \left(\frac{1}{q}\right) \diamond (p+q) \diamond \left(\frac{1}{p}\right)$$

$$\frac{1}{p} + \frac{1}{q} = \left(\frac{1}{q}\right) \diamond (p+q) \diamond \left(\frac{1}{p}\right)$$

Differential of the Reciprocal

$$f(q) = R(q) = q^{-1}$$

$$df(q) = \lim_{n \to \infty} n \left[\left(q + \frac{dq}{n} \right)^{-1} - (q)^{-1} \right]$$

$$df(q) = \lim_{n \to \infty} n \left[\left(q + \frac{dq}{n} \right)^{-1} \diamond \left(q - \left(q + \frac{dq}{n} \right) \right) \diamond (q)^{-1} \right]$$

$$df(q) = -q^{-1} \diamond dq \diamond q^{-1} = -q^{-1} dq q^{-1}$$

Comparison with Traditional Differentials

	Function	Quotient of Differentials
Scalars	$f(x) = x^{-1}$	$\frac{df(x)}{dx} = -x^{-2}$
Quaternions	$f(q) = q^{-1}$	$\frac{df(q)}{dq} = -q^{-1} \diamond dq \diamond q^{-1} \diamond dq^{-1}$

The Quotient of Quaternion Differentials is a new Function of TWO INDEPENDENT variables :

q and dq

Quotient of Differentials

The Quotient between two Differentials can be separated in Tensor and Versor parts

$$rac{df(q)}{dq} = rac{T(df(q))}{T(dq)} rac{U(df(q))}{U(dq)}$$

The Differentials df(q) and dq are Equi-Multiples,

so scaling dq will scale df(q) by the same factor.

Quotients of Differentials are Invariant to Scale changes in their Tensors

Quotient of Differentials

In the example $f(q) = q^2$

The Quotient of Differentials

$$\frac{df(q)}{dq} = q + dq \diamond q \diamond dq^{-1}$$

Can be reduced to

$$\frac{df(q)}{dq} = q + U(dq) \diamond q \diamond U(dq)^{-1}$$

That only depends on (dq)'s Direction represented by the Versor U(dq)

Partial Differentials

Given a function of several quaternion variables

$$Q = f(q, r, s)$$

Its Differential satisfies

$$dQ = d_q Q + d_r Q + d_s Q$$

each Partial Differential d_xQ is obtained by differentiating with respect to x as if the other variables were constant.

Succesive Differentials

For example, given the Quaternion function

$$f(q) = q^2 = q \diamond q$$

The first Differential is

$$df(q) = q \diamond dq + dq \diamond q$$

Taking the Differential of this last expression, where q and dq are considered as two independent variables

$$d^2 f(q) = dq \diamond dq + q \diamond d^2 q + d^2 q \diamond q + dq \diamond dq$$

Successive Differentials

The Second Differential of

$$f(q) = q^2$$

is then reduced to

$$d^2f(q) = q \diamond d^2q + d^2q \diamond q + 2dq \diamond dq$$

Which is a function of **THREE** independent Quaternion variables

$${q,dq,d^2q}$$

None of them necessarily **SMALL**

Taylor's Series Extended to Quaternions

Having that

$$d^m f(q) = d(d^{m-1} f(q))$$

The *Taylor's Series* Expansion can be applied to functions of Quaternions

$$f(q+dq) = f(q) + \frac{df(q)}{1!} + \frac{d^2f(q)}{2!} + \frac{d^3f(q)}{3!} + \frac{d^4f(q)}{4!} + \cdots$$

Where f(q+dq) will be a function of $\{q,dq,d^2q,d^3q,...\}$ Quaternion variables NOT necessarily SMALL

Taylor's Series Approximation

The Tensor of the Quaternion Variables

$$\{q, dq, d^2q, d^3q, \ldots\}$$

can be scaled by a Scalar factor x to produce an Approximation

$$Fx = f(q + xdq) - f(q) - \frac{x}{1!}df(q) - \frac{x^2}{2!}d^2f(q) - \frac{x^3}{3!}d^3f(q) - \cdots$$

Operations in Versor Space

Composition of Versors is equivalent to

sum of their **Vector-Arcs** on the Unit Sphere Surface.

This is a Non-Commutative operation

Operations in Versor Space

Increments of Versor's Angle is equivalent to Exponentiation

for example, in order to double the angle the versor is applied twice, which is $q \diamond q = q^2$

Like in Complex numbers

$$e^{\mathbf{i}\theta} = \cos\theta + \mathbf{i}\sin\theta$$

Operations in Versor Space

Subtraction of Vector-Arcs is equivalent to

a Quotient of Versors

$$\frac{p}{q} = p \diamond q^{-1}$$

$$\frac{p}{q} \diamond q = (p \diamond q^{-1}) \diamond q$$

$$= p \diamond (q^{-1} \diamond q)$$

$$= p$$

$$dq \quad q \quad dq \quad 1$$

Versor Spherical Linear Interpolation

Sperical Linear Interpolation (*Slerp*)

$$r(\alpha) = \left(\frac{p}{q}\right)^{\alpha} \diamond q$$

$$r(0) = q$$

$$r(1) = p$$

$$\alpha \in [0,1]$$

The Quotient $\frac{p}{q}$ produce the Quaternion that relates p with q. Exponent α allows to regulate how much of this Quotient is applied

Optimization of Versor Functions

If the Space of Quaternions is restricted to Versors

The only valid operations are those that keep the end of vectors in the surface of the **Unit Sphere**

Optimization of Versor Functions

The Versor Space is a 2D Space

In order to enforce that Variations of a Versor result in another versor, the only valid operations are compositions with Versors, (e.g. u and v)

Optimization of Versor Functions

Gradient Descent-like Optimization Method

$$r = \left(\frac{v}{u}\right)^{\alpha} \diamond u \diamond q$$

$$a = \frac{f(u \diamond q)}{f(u \diamond q) + f(v \diamond q)}$$

References

- [1] C. T. J. Dodson and T. Poston. *Tensor Geometry*. Graduate Texts in Mathematics. Springer-Verlag, second edition, 1990.
- [2] W.R. Hamilton. *Elements of Quaternions*, volume I. Chelsea Publishing Company, third edition, 1969. The original was published in 1866.