A Ciritical Look at Inheritance

“Y ou can choose your friends, but
you' re stuck with your ancestors.”

| nheritance in OOD

» |nheritanceis often held to be sacrosanct in
OOQOD.

» Tendency for OO developers to gauge the
success of their efforts by the complexity of
their inheritance hierarchy.

* |t isinteresting to note that inheritance
hierarchy examplesin OO texts seldom deal
with software design problems.




| nheritance--The Reality
* Inheritance is a complex issue.

— Many different types of inheritance relationships.
— Basic notions differ among OO languages

— Some controversial issues--e.g. multiple
inheritance.

— Inheritance can break encapsulation.

— Poorly conceived inheritance relationships can
frustrate system reliability, maintainability, and
evolvability.

* Inheritance is neither inherently good or bad.

It must be used in adisciplined manner.

| nheritance--A Simpler Taxonomy

» Sysperski’s Classification
— Implementation I nheritance (subclassing)--
inheritance of implementation fragments/code.
* Notethis differsfrom Meyer’s use of the term
“implementation inheritance”.
— Interface Inheritance (subtyping)--inheritance
of contract fragments/interfaces.

* Note: Thisuse of the term sbutype differs from
Meyer’ s use of the term “ subtype”.




The Complexities of Implementation
linheritance

» Methods of a class may freely invoke each

other.

 Subclasses may override inherited methods.

 Subclass methods may call methods of
superclasses, including overridden

superclass methods.

» Thisisactually aform of “callback” from

subclass to superclass.

| nheritance | ssues Example

Text

-text: Array of Char
-used:Integer =0
-caret:Integer =0

+max( ):Integer

+length( ):Integer

+write(pos:Integer, ch:Char)

+delete(pos:Integer)

+caretPos( ):Integer

+setCaret(pos:I nteger)

posToXCoord(pos:Integer): Integer

posToYCoord(pos: I nteger):Integer

posFromCoord(x: Integer,
y:Integer):Integer

+type(Char)

+rubout( )

SimpleText

-cacheX: Integer =0
-cacheY: Integer =0

+setCaret(pos:I nteger)

+posToXCoord(pos:I nteger):Integer

+posToY Coord(pos:I nteger):Integer

+posFromCoord(x:Integer,
y:Integer):Integer

+hideCaret( )

+showCaret( )




Example--Continued

abstract class Text { class SimpleText extends Text {
privateint caret = 0; void setCaret(int pos) {
: int old = caretPos( );
if (old !'= pos) {
i _ hideCaret();
void setCaret(int pos) { super.setCaret(pos);
caret = pos, showCaret( );
} }
} }

Example--Continued

Interaction diagram resulting from call to method type of Text class:

Text SimpleText Display
typg
caretPos
-vﬁite

setCaret
hideCaret
" (update display)

Super.setCaret

showCaret
“stCaret




Example--Continued
A new version of Text classthat “breaks’ the subclass SimpleText:
abstract class Text {

void write (int pos, char ch) {

inti;

for (i =used; i > pos, i--)
text[i] = text[i-1];

used = used + 1;

if (caret >= pos)
caret = caret +1,

text[pos| = ch;

| nheritance Issues--The Fragile Base
Class Problem

» Thereisanimplicit interface between a
class and its ancestor classes (superclasses).
— Syntactic aspect--Does a class need to be
recompiled due to purely syntactic changes
among it superclasses?

— Semantic Aspect--How dependent is a subclass
upon changes in the implementation of its
superclasses?




Dealing With Class-Subclass
Dependencies

» Specialization Interface
— Interface between a class and its subclasses
— For Javaand C++, the specialization interface
consists of the public and protected interface of
the superclass.
 Various methods have been proposed to
control behavior across a specialization
interface

Controlling the Specialization Interface
» Lamping' s method

— statically declare dependencies among methods
in aclass and represent as a directed graph

— If the dependency graph is acyclic it can be
arranged into layers

— If the graph is cyclic, al methodsin a cycle
form agroup.

— If method A needsto call method B, A must
either be a member of the called member’s
group or a higher layer group.

— For subclassing, all members of a group must
be overriden.




Specialization Graph--Example

Specialization graph for Text class:

caret text posToXCoord posToY Coord posFromCoord

caretPos setCaret length read

v
type rubout

Alternatives to Inheritance--Object
Composition

» Object composition--composition of
behavior based upon references amon
objects rather than inheritance relations.

» Based upon “part of” relationship among
objects.
— Suppose object A requests help from object B

— B is“part of” A isreferencesto B do not leave
A.




Object Composition
outer

(owning) inner
object (owned)
e objects

Note: A reuses the implementation of objects B and C

Composition Versus Inheritance

» Aninstantiated object has one notion of self
even though it may inherit parts of its
implementation from several superclasses.

» “ Sdf-recursive invocations of methods
always return to the overriding versionin
the lowest level subclass

» Composed objects do not have a common
self--outer object does not share identify
with inner objects.




Example of self-recursive calls

Base Sub SubSub
Base uses A()
A() ‘
B() " AQ .
super.A
. Uses « . superA()
AQ) super.A()
T .
SubSub uses
Example of Composition
:SubSub ‘Sub :Base
Base
A"() A
A
B()A A
uses
Sub —
A'() .
AUSGS
SubSub
A()




Composition--Additional Observations

» Composition requires that object
interactions, including recursive interactions
among objects, be explicitly designed-in
rather than an implicit by-product of
implementation inheritance.

» Composition can be made as general as
implementation inheritance by use of
delegation, but that’s a subject for another
day.

| nheritance V ersus Composition--
Another Example

* Inheritance is generally not appropriate for
“isarole played by” relationships.

 For instance, consider rolesin an airline
reservation system:
— passenger
— ticket agent
— flight crew
— etc.
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Roles Example--A Potential
| nheritance Hierarchy

Person

CrewMember

TicketAgent

Passenger

Problem with this approach: a person may play different
roles. Aninstantiated subclass can only represent onerole.

Roles Example--An Attempt to Fix
the Inheritance Hierarchy

Person
[
[ I ]
CrewMember Passenger TicketAgent
CrewMemberAndTicketAgent TicketAgentAndPassenger
CrewM ember AndPassenger

CrewMember AndTicketAgentAndPassenger|
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Roles Example--A More Rational
Solution using Composition

CrewMember TicketAgent Passenger
0.1 0.1 0.1
Uses Uses Uses
11
1
Person =

Note: Most authorsrefer to this as delegation.
Szyperski uses the term forwarding and gives amore
specific meaning to the term delegation

Object Encapsulation via
Composition

TicketAgent
Object

Person
Object
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An Alternative Composition for the
Roles Example

CrewMember TicketAgent Passenger
0.1 0.1 0.1
Uses Uses Uses
1
1
1 Person

Object Encapsulation for Alternative
Composition
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| nheritance V ersus Composition--
Some Guidelines
* |t isgenerally not agood ideato use
inheritance for the following purposes:

— To represent dynamically changing alternative
roles of asuperclass

— To hide methods or attributes inherited from a
superclass.

— To implement a domain-specific classas a
subclass of a utility class.

Potential Drawbacks of Composition
(Delegation)

» There may be some minor performance
penalty for invoking an operation across
object boundaries as opposed to using an
inherited method.

» Delegation can’'t be used with partially
abstract (uninstantiable) classes

» Delegation does not impose any disciplined
structure on the design.
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