A Ciritical Look at Inheritance

“Y ou can choose your friends, but
you' re stuck with your ancestors.”

| nheritance in OOD

» |nheritanceis often held to be sacrosanct in
OOQOD.

» Tendency for OO developers to gauge the
success of their efforts by the complexity of
their inheritance hierarchy.

* |t isinteresting to note that inheritance
hierarchy examplesin OO texts seldom deal
with software design problems.

| nheritance--The Reality
* Inheritance is a complex issue.

— Many different types of inheritance relationships.
— Basic notions differ among OO languages

— Some controversial issues--e.g. multiple
inheritance.

— Inheritance can break encapsulation.

— Poorly conceived inheritance relationships can
frustrate system reliability, maintainability, and
evolvability.

* Inheritance is neither inherently good or bad.

It must be used in adisciplined manner.

| nheritance--A Simpler Taxonomy

» Sysperski’s Classification
— Implementation I nheritance (subclassing)--
inheritance of implementation fragments/code.
* Notethis differsfrom Meyer’s use of the term
“implementation inheritance”.
— Interface Inheritance (subtyping)--inheritance
of contract fragments/interfaces.

* Note: Thisuse of the term sbutype differs from
Meyer’ s use of the term “ subtype”.

The Complexities of Implementation
linheritance

» Methods of a class may freely invoke each

other.

 Subclasses may override inherited methods.

 Subclass methods may call methods of
superclasses, including overridden

superclass methods.

» Thisisactually aform of “callback” from

subclass to superclass.

| nheritance | ssues Example

Text

-text: Array of Char
-used:Integer =0
-caret:Integer =0

+max():Integer

+length():Integer

+write(pos:Integer, ch:Char)

+delete(pos:Integer)

+caretPos():Integer

+setCaret(pos:I nteger)

posToXCoord(pos:Integer): Integer

posToYCoord(pos: I nteger):Integer

posFromCoord(x: Integer,
y:Integer):Integer

+type(Char)

+rubout()

SimpleText

-cacheX: Integer =0
-cacheY: Integer =0

+setCaret(pos:I nteger)

+posToXCoord(pos:I nteger):Integer

+posToY Coord(pos:I nteger):Integer

+posFromCoord(x:Integer,
y:Integer):Integer

+hideCaret()

+showCaret()

Example--Continued

abstract class Text { class SimpleText extends Text {
privateint caret = 0; void setCaret(int pos) {
: int old = caretPos();
if (old !'= pos) {
i _ hideCaret();
void setCaret(int pos) { super.setCaret(pos);
caret = pos, showCaret();
} }
} }

Example--Continued

Interaction diagram resulting from call to method type of Text class:

Text SimpleText Display
typg
caretPos
-vﬁite

setCaret
hideCaret
" (update display)

Super.setCaret

showCaret
“stCaret

Example--Continued
A new version of Text classthat “breaks’ the subclass SimpleText:
abstract class Text {

void write (int pos, char ch) {

inti;

for (i =used; i > pos, i--)
text[i] = text[i-1];

used = used + 1;

if (caret >= pos)
caret = caret +1,

text[pos| = ch;

| nheritance Issues--The Fragile Base
Class Problem

» Thereisanimplicit interface between a
class and its ancestor classes (superclasses).
— Syntactic aspect--Does a class need to be
recompiled due to purely syntactic changes
among it superclasses?

— Semantic Aspect--How dependent is a subclass
upon changes in the implementation of its
superclasses?

Dealing With Class-Subclass
Dependencies

» Specialization Interface
— Interface between a class and its subclasses
— For Javaand C++, the specialization interface
consists of the public and protected interface of
the superclass.
 Various methods have been proposed to
control behavior across a specialization
interface

Controlling the Specialization Interface
» Lamping' s method

— statically declare dependencies among methods
in aclass and represent as a directed graph

— If the dependency graph is acyclic it can be
arranged into layers

— If the graph is cyclic, al methodsin a cycle
form agroup.

— If method A needsto call method B, A must
either be a member of the called member’s
group or a higher layer group.

— For subclassing, all members of a group must
be overriden.

Specialization Graph--Example

Specialization graph for Text class:

caret text posToXCoord posToY Coord posFromCoord

caretPos setCaret length read

v
type rubout

Alternatives to Inheritance--Object
Composition

» Object composition--composition of
behavior based upon references amon
objects rather than inheritance relations.

» Based upon “part of” relationship among
objects.
— Suppose object A requests help from object B

— B is“part of” A isreferencesto B do not leave
A.

Object Composition
outer

(owning) inner
object (owned)
e objects

Note: A reuses the implementation of objects B and C

Composition Versus Inheritance

» Aninstantiated object has one notion of self
even though it may inherit parts of its
implementation from several superclasses.

» “ Sdf-recursive invocations of methods
always return to the overriding versionin
the lowest level subclass

» Composed objects do not have a common
self--outer object does not share identify
with inner objects.

Example of self-recursive calls

Base Sub SubSub
Base uses A()
A() ‘
B() " AQ .
super.A
. Uses « . superA()
AQ) super.A()
T .
SubSub uses
Example of Composition
:SubSub ‘Sub :Base
Base
A"() A
A
B()A A
uses
Sub —
A'() .
AUSGS
SubSub
A()

Composition--Additional Observations

» Composition requires that object
interactions, including recursive interactions
among objects, be explicitly designed-in
rather than an implicit by-product of
implementation inheritance.

» Composition can be made as general as
implementation inheritance by use of
delegation, but that’s a subject for another
day.

| nheritance V ersus Composition--
Another Example

* Inheritance is generally not appropriate for
“isarole played by” relationships.

 For instance, consider rolesin an airline
reservation system:
— passenger
— ticket agent
— flight crew
— etc.

10

Roles Example--A Potential
| nheritance Hierarchy

Person

CrewMember

TicketAgent

Passenger

Problem with this approach: a person may play different
roles. Aninstantiated subclass can only represent onerole.

Roles Example--An Attempt to Fix
the Inheritance Hierarchy

Person
[
[I]
CrewMember Passenger TicketAgent
CrewMemberAndTicketAgent TicketAgentAndPassenger
CrewM ember AndPassenger

CrewMember AndTicketAgentAndPassenger|

11

Roles Example--A More Rational
Solution using Composition

CrewMember TicketAgent Passenger
0.1 0.1 0.1
Uses Uses Uses
11
1
Person =

Note: Most authorsrefer to this as delegation.
Szyperski uses the term forwarding and gives amore
specific meaning to the term delegation

Object Encapsulation via
Composition

TicketAgent
Object

Person
Object

12

An Alternative Composition for the
Roles Example

CrewMember TicketAgent Passenger
0.1 0.1 0.1
Uses Uses Uses
1
1
1 Person

Object Encapsulation for Alternative
Composition

13

| nheritance V ersus Composition--
Some Guidelines
* |t isgenerally not agood ideato use
inheritance for the following purposes:

— To represent dynamically changing alternative
roles of asuperclass

— To hide methods or attributes inherited from a
superclass.

— To implement a domain-specific classas a
subclass of a utility class.

Potential Drawbacks of Composition
(Delegation)

» There may be some minor performance
penalty for invoking an operation across
object boundaries as opposed to using an
inherited method.

» Delegation can’'t be used with partially
abstract (uninstantiable) classes

» Delegation does not impose any disciplined
structure on the design.

14

