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The game of poker has been identified as a beneficial domain for current AI research
because of the properties it possesses such as the need to deal with hidden information
and stochasticity. The identification of poker as a useful research domain has inevitably
resulted in increased attention from academic researchers who have pursued many
separate avenues of research in the area of computer poker. The poker domain has
often featured in previous review papers that focus on games in general, however a
comprehensive review paper with a specific focus on computer poker has so far been
lacking in the literature. In this paper, we present a review of recent algorithms and
approaches in the area of computer poker, along with a survey of the autonomous
poker agents that have resulted from this research. We begin with the first serious
attempts to create strong computerised poker players by constructing knowledge-based
and simulation-based systems. This is followed by the use of computational game theory
to construct robust poker agents and the advances that have been made in this area.
Approaches to constructing exploitive agents are reviewed and the challenging problems of
creating accurate and dynamic opponent models are addressed. Finally, we conclude with
a selection of alternative approaches that have received attention in previously published
material and the interesting problems that they pose.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Many games have successfully (and enjoyably) been used as domains for Artificial Intelligence (AI) research over the
years. Early efforts for games such as chess, checkers, backgammon, Connect-4, Othello, Lines of Action and Scrabble have
produced strong computerised players and notable success stories. More recently, games such as bridge, Hex, Go and poker
have increasingly been the focus of AI research, so too have modern interactive computer (video) games such as first-
person shooters, role-playing games and real-time strategy games. Jonathan Schaeffer states in his 2001 article, A Gamut of
Games [81]:

Successfully achieving high computer performance in a non-trivial game can be a stepping stone toward solving more
challenging real-world problems.

The use of games as research domains has also played a significant role in the proliferation of competitions that guide
modern AI related research. Beginning with the highly publicised human vs. machine chess matches between Kasparov and
Deep Blue in the 1990s, these days all sorts of competitions exist for many different games. The International Computer
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Games Association [39] presently organises regular Computer Olympiads, where competitions are held for board and card
games such as chess, checkers, bridge and Go. RoboCup [73] is an annual competition for both simulated and robotic soccer
matches. There are also annual competitions for poker [1], real-time strategy games [19] and general game playing [29]. For
the above domains, competitions are successfully used to drive research and bring about improvements to the state-of-the-
art.

Each of the non-trivial games mentioned above share common beneficial properties such as well defined rules over possi-
ble actions and behaviours, the existence of clear goals and objectives, as well as embedded performance metrics. Each par-
ticular game also has its own unique, beneficial properties that make them good research areas. The game of poker has been
identified as a beneficial domain for current AI research [16] due to properties of the game such as imperfect information –
the inability to observe opponents’ cards and chance events – the random private and public cards that are dealt each hand.

The popularity of poker experienced a massive boom in the early 2000s due to a combination of factors such as the
emergence of online poker, the introduction of hole card cameras to televised events, as well as an amateur’s unlikely win
at the main event of the 2003 World Series of Poker. The use of poker as an academic research domain has undergone a
similar increase in popularity. The identification of poker as a useful research domain has inevitably resulted in increased
attention from academic researchers and has led to the investigation of a wide range of new algorithms and approaches.
In particular, work done by the University of Alberta’s Computer Poker Research Group1 (CPRG) and the establishment of
annual computer poker competitions at conferences such as AAAI and IJCAI since 2006, has resulted in the development of
a large number of computerised poker agents. However, as yet a comprehensive review of the algorithms and approaches
used to construct these numerous poker agents has been lacking.

Many past reviews have focused on games in general. In The Games Computers (and People) Play, Schaeffer [80] provides a
history of program development and case-studies for classic board and card games including backgammon, bridge, checkers,
chess, Othello, poker and Scrabble. Schaeffer identifies poker as a game where human supremacy may soon be challenged
and highlights the use of Monte-Carlo simulations within the poker domain due to an inability to directly apply alpha-beta
search.

Fürnkranz [27] adopts a problem-oriented approach in his survey of machine learning approaches in game playing. The
problem of opponent modelling is identified as a somewhat neglected area of research within game playing domains and
its importance in a game such as poker is highlighted.

More recently (and more specific to the poker domain), Darse Billings’ PhD thesis [8] provides a comprehensive descrip-
tion and analysis regarding the evolution of computer poker algorithms from 1997 to 2005 that he and his colleagues at
the University of Alberta CPRG have investigated. While many of the approaches discussed in [8] are also addressed in this
work, Billings’ obvious focus is on the personal contribution made by himself and his colleagues, whereas this document
incorporates previously published work from other researchers that has further extended and evaluated the original ideas
presented in [8], along with further advances that have occurred over recent years.

As the vast majority of published work focuses on one particular variant of poker – Texas Hold’em, this will be the sole
focus of this review paper. Furthermore, previous computer poker research can roughly be split into two broad categories
[16]. The first attempts to analyse smaller isolated subsets of the problem domain which typically leads to valuable insights
about specialised aspects of the game. The second category, on the other hand, attempts to tackle the domain as a whole,
resulting in the creation of an agent that is able to play the game autonomously. In this paper we will mostly restrict our
attention to the second category, i.e. published work that attempts to tackle the full game of Texas Hold’em by producing
autonomous poker playing agents that have been evaluated by challenging human or computerised opposition.

Each approach presented within this document will roughly follow the same pattern. First, the approach being reviewed
is introduced, typically followed by an example. Next, a survey of the autonomous agents that have employed the above
approach to play Texas Hold’em is presented, along with a discussion of the agent’s performance. Section 2 begins with a
review of early work on knowledge-based poker agents, followed by Section 3 which introduces Monte-Carlo simulation.
Section 4 focuses on ε-Nash equilibrium based agents produced via both linear programming and state-of-the-art iterative
algorithms. Section 5 reviews exploitive agents that attempt to adapt to their opponents’ playing style by constructing
accurate opponent models and Section 6 briefly reviews some alternative approaches that have received attention in the
literature, such as the use of case-based approaches, Bayesian poker and evolutionary algorithms. Finally, Section 7 concludes
this review.

Before reviewing the avenues of research that have been investigated in the area of computer poker, the remainder of
this section presents a description of the rules of Texas Hold’em, followed by a brief overview of the various performance
metrics and evaluators mentioned throughout the document.

1.1. Texas Hold’em

Here we briefly describe the game of Texas Hold’em, highlighting some of the common terms which are used throughout
this work. For more detailed information on Texas Hold’em consult [90], or for further information on poker in general
see [89].

1 http://poker.cs.ualberta.ca/.
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The game of Texas Hold’em is played in 4 stages – preflop, flop, turn and river. During the preflop all players at the
table are dealt two hole cards, which only they can see. Before any betting takes place, two forced bets are contributed to
the pot, i.e. the small blind and the big blind. The big blind is typically double that of the small blind. The player to the left
of the big blind, known as under the gun, then begins the betting by either folding, calling or raising. The possible betting
actions common to all variations of poker are described as follows:

Fold: When a player contributes no further chips to the pot and abandons their hand and any right to contest the chips
that have been added to the pot.

Check/Call: When a player commits the minimum amount of chips possible in order to stay in the hand and continue to
contest the pot. A check requires a commitment of zero further chips, whereas a call requires an amount greater
than zero.

Bet/Raise: When a player commits greater than the minimum amount of chips necessary to stay in the hand. When the
player could have checked, but decides to invest further chips in the pot, this is known as a bet. When the player
could have called a bet, but decides to invest further chips in the pot, this is known as a raise.

In a limit game all bets are in increments of a certain amount. In a no limit game players can wager up to the total
amount of chips they possess in front of them. Once the betting is complete, as long as at least two players still remain
in the hand, play continues on to the next stage. Each further stage involves the drawing of community cards from the
shuffled deck of cards as follows: flop – 3 community cards, turn – 1 community card, river – 1 community card.

During each stage players combine their hole cards with the public community cards to form their best 5 card poker
hand. Each stage also involves its own round of betting and play continues as long as there are players left who have not
folded their hands. A showdown occurs after the river where the remaining players reveal their hole cards and the player
with the best hand wins all the chips in the pot. If two or more players have the same best hand then the pot is split
amongst the winners.

1.2. Performance metrics & evaluation

This section will briefly summarise the different types of performance measurements and agent evaluations that are
mentioned in this work. Before evaluating the performance of a system, it is necessary to consider the different types of
strategies that a poker agent may employ.

1.2.1. Types of strategies
A strategy in this context refers to a mapping between game states and the actions that an agent will take at that

game state. Typically, an agent’s strategy consists of specifying a probability triple at every game state. A probability triple,
( f , c, r), specifies the proportion of the time an agent will either fold, check/call or bet/raise at a particular point in the
game. An agent’s strategy is said to be static when the strategy does not change over the course of the game. A strategy
that does evolve over time is said to be adaptive.

Throughout this work the concept of a Nash equilibrium strategy will be referred to. A Nash equilibrium is a robust, static
strategy that attempts to limit its exploitability against a worst-case opponent. In general, a set of strategies are said to be in
equilibrium if the result of one player diverging from their equilibrium strategy (while all other players stick to their current
strategy) results in a negative impact on the expected value for the player who modified their strategy [59]. Currently, it
is intractable to compute exact Nash equilibria for full-scale Texas Hold’em, but by applying simplifying abstractions to the
game (see Section 4) it is possible to derive ε-Nash equilibria, or simply near-equilibrium strategies, where, ε refers to the
maximal amount a player can gain by deviating their strategy.

As an ε-Nash equilibrium strategy assumes an unknown, worst-case opponent it will limit its own exploitability at the
expense of taking advantage of weaker opponents. Hence, while this sort of strategy may not lose, it will also not win
by as much as it could against weaker opponents. On the other hand, a player that attempts to isolate the weaknesses of
their opponent and capitalise on those weaknesses is said to employ an exploitive (or maximal) strategy. This is typically
achieved by constructing a model of an opponent and using it to inform future actions. An exploitive strategy can be either
static or adaptive, depending on how the opponent model is constructed. A consequence of an exploitive strategy is that it
no longer plays near the equilibrium and hence is vulnerable to exploitation itself, especially if the model of the opponent
is incorrect or no longer valid.

1.2.2. Performance evaluators
Evaluating the performance of a computer poker agent can be a difficult task due to the inherent variance present in

the game. Listed below are some of the various methods that have been used to evaluate the agents we make reference to
throughout this work. Measurements are made in small bets per hand (sb/h), where the total number of small bets won or
lost are divided by the total hands played. For example, assuming a $10/$20 hold’em game, where the small bet is $10 and
the big bet $20, a value of +0.1 sb/h indicates an average profit of $1 for each hand played.
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Measuring exploitability The goal of computing ε-Nash equilibria is to produce robust poker agents that can perform
well against unknown competition by limiting their own exploitability. Here, ε refers to how much an opponent
can gain by deviating their strategy. ε can be analytically computed by deriving a best-response to an agent’s
strategy. Given a known, static strategy a best-response can be calculated by choosing the action that maximises
the expected value against the agent’s strategy, for every game state. Strategies with lower values of ε allow an
opponent to gain less by deviating. Therefore, ε provides a convenient measure of exploitability that specifies a
lower bound on the exploitability of an agent in the full-scale version of Texas Hold’em.

IRC Poker Server Before the arrival of real-money online poker sites, humans and computerised agents played poker online
via an Internet Relay Chat (IRC) poker server. The IRC poker server allowed players to challenge each other to non-
real money games of Texas Hold’em. Notable early poker agents such as Loki-1, Loki-2, Poki and r00lbot were all
evaluated by their performance on the IRC server. While all the games involved play money, the IRC poker server
offered several levels where players were required to earn a certain amount in lower level games before being
allowed access to higher levels. As such the calibre of opponent in the higher tiered games was usually strong.
A consistent profit, over a large number of hands, in the higher tiered games was most likely an indication of a
strong poker agent.

Poker Academy Poker Academy Pro 2.52 is a commercial software product that allows humans and/or computerised agents
to compete against each other by playing Texas Hold’em poker. Poker Academy provides an API that allows devel-
opers to create their own poker agents and plug them into the software to test their performance. Also provided
with the software are strong poker agents developed by the University of Alberta CPRG including Poki, Sparbot
and Vexbot. Both Sparbot and Vexbot specialise in playing heads-up, limit hold’em. Sparbot attempts to approach
a Nash equilibrium strategy whereas, Vexbot plays an exploitive strategy. Results that are obtained using Poker
Academy typically involve gauging a poker agent’s performance by challenging Sparbot or Vexbot. As the variance
of Texas Hold’em is large, tens of thousands of hands need to be played to have confidence in the results.

Annual Computer Poker Competition The Annual Computer Poker Competition3 (ACPC) has been held each year at either
AAAI or IJCAI conferences since 2006. The ACPC involves separate competitions for different varieties of Texas
Hold’em, such as limit and no-limit competitions, as well as heads-up and multiple-opponent competitions. En-
trance into the competition is open to anyone and the agents submitted typically represent the current state of
the art in computer poker. The ACPC uses a duplicate match structure. For a heads-up match a duplicate match
proceeds as follows: N hands are played between two agents after which the agent’s memories are wiped and the
N hands played again, but in the reverse direction, i.e. the cards that were initially given to player A are instead
given to player B and vice-versa. This way both players get to play both sets of N cards and this reduces the
variance that is involved in simply playing a set of N hands in one direction only. Many duplicate matches are
played in order to achieve a significant result.

The ACPC typically involves two winner determination methods. The first is known as the instant run-off
competition and the second is the bankroll competition. The instant run-off competition uses a recursive winner
determination algorithm that repeatedly removes the agents that performed the worst against a current pool of
players. The bankroll competition simply rewards agents that are able to maximally exploit other agents, resulting
in increased bankrolls.

Man-Machine Poker Championship Another competition that has been cited in the results of some of the literature re-
viewed in this work is the Man-Machine Poker Championship. The Man-Machine Poker Championship is a limit
Texas Hold’em competition played between an agent named Polaris and a selected group of professional human
poker players. Polaris is a suite of state-of-the-art poker agents developed by the University of Alberta CPRG. Once
again a duplicate match structure is used. As it is not possible to erase a human player’s memory between sets of
N hands, a pair of human professionals are used to challenge Polaris.

2. Knowledge-based systems

The first approach that we review is that of knowledge-based systems. Knowledge based systems require experts with
domain knowledge to aid the design of the system. Knowledge-based applications for Texas Hold’em that have been im-
plemented and investigated in the past typically fall into two broad categories: rule-based expert systems and more general
formula-based methods. Both are briefly summarised below, before reviewing the agents that apply these approaches.

2.1. Rule-based expert systems

A simple rule-based expert system consists of creating a collection of if-then rules for various scenarios that are likely to
occur. An example of a possible rule that might be used in a rule-based expert system for Texas Hold’em is depicted in
Fig. 1. In this example, a rule is created for the preflop round where the agent holds a pair of Aces (the best starting hand

2 http://www.poker-academy.com/.
3 http://www.computerpokercompetition.org/.

http://www.poker-academy.com/
http://www.computerpokercompetition.org/
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Action preflopAction(Hand hand, GameState state){
if( state.betsToCall > 2 &&
state.opponentsInHand > 1 &&
state.relativePosition > 0.8 &&
hand.AAo){

return getAction(new Triple(0.0, 0.05, 0.95));
} else if...

}

Fig. 1. A hypothetical rule within a knowledge-based system for Texas Hold’em.

possible). The rule also specifies various other conditions that must be satisfied about the game state before it becomes
activated, for instance there must be more than one opponent already involved in the hand (state.opponentsInHand > 1),
the agent must be in late position (state.relativePosition > 0.8) and must call more than two bets to stay in the hand
(state.betsToCall > 2). The result of satisfying all these conditions is the generation of a probability triple. The example in
Fig. 1 produces a triple that indicates the agent should never fold in this situation and they should call 5% of the time and
raise the remaining 95%. A betting action is then probabilistically chosen based upon this distribution.

2.2. Formula-based strategies

A more generalised system, similar to a rule-based system, uses a formula-based approach. A formula-based approach
can roughly be characterised as accepting a collection of (possibly weighted) inputs that describe salient information about
the current game state. The formula then outputs a probability triple and a betting decision is made by randomly selecting
an action based upon the values provided in the triple.

Typically the inputs accepted by a formula-based system revolve around a numerical representation of hand strength and
pot odds [22,11]. Various methods are available for computing hand strength [22,13], some of which are mentioned below.

2.2.1. Hand strength computations
Enumeration techniques can be used to calculate the immediate hand rank (IHR) of a postflop hand [22]. Given a pair

of hole cards and the public community cards, the IHR can be computed by ranking the hand relative to the entire set of
all possible hands a random opponent may have. Combining all possible two card combinations of the remaining cards in
the deck with the known community cards results in the set of all possible hands the opponent may have. Counting the
number of times the hand wins, loses and ties against this set of all possible opponent holdings gives the IHR. Treating ties
as one half, the formula for IHR is given as follows:

IHR = (
wins + (ties/2)

)
/(wins + ties + losses) (1)

Calculating IHR is fast and can easily be computed in real time. On the flop there are
(47

2

) = 1081 possible opponent

holdings to consider,
(46

2

) = 1035 on the turn and
(45

2

) = 990 on the river.
As an example, consider player A has the hole cards T♣ J♣ and the flop cards are 2♦ T♠ K♥. Out of the 1081 possible

opponent holdings, player A will win 899 times, tie 6 times and lose the remaining 176 times, giving an IHR of: (899 +
6/2)/(899 + 6 + 176) = 0.834413.

The example above assumes a uniform distribution over the cards the opponent could be holding, however this assump-
tion is usually not correct as players will typically fold weaker hands before the flop and will therefore hold stronger hands
post flop. To improve the hand strength calculation the opponent’s set of possible two-card combinations can be weighted
to reflect the likelihood of holding a particular combination of cards at a specific point in the hand. This more informed
immediate hand strength (IHS) metric allows beliefs about opponents to be directly incorporated into the hand strength
calculation.

The immediate hand rank/strength described above provides a measure of hand strength at the current point in the hand,
but makes no considerations for future community cards to be dealt. A separate measure, hand potential [22], can be used to
compute the positive or negative effect of future community cards. Positive potential gives the probability of currently holding
an inferior hand, but improving to the best hand with future community cards. Conversely, negative potential computes the
probability of currently holding the better hand, but falling behind with future cards. Effective hand strength (EHS) [11,22]
combines the results of immediate hand strength and positive potential:

EHS = IHS + (1 − IHS) × PositivePotential (2)

Alternatively, potential can be directly factored into the hand strength calculation by first performing a roll-out of the
remaining community cards followed by an enumeration of all possible opponent holdings after all community cards are
known. Computing the average outcome for every possible roll-out combination gives the 7-card Hand Strength (7cHS) [44].
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2.2.2. Pot odds
A further input typically considered within a formula-based approach are the pot odds. The pot odds give a numerical

measure that quantifies the return on investment by contrasting the investment a player is required to make to stay in the
hand, given the possible future rewards. The equation to calculate pot odds is as follows:

PotOdds = c

p + c
(3)

where, c is the amount to call and p is the amount currently in the pot. The pot odds can be used to determine the
correctness of committing further chips to a pot. For example, if there is currently $60 in the pot and a player needs to call
a bet of $20 to stay in the hand, the pot odds are 0.25. This means the player needs to have better than a 25% chance to
win the hand to correctly call the bet.4

2.3. Knowledge-based poker agents

We now review a collection of agents, found in the literature, that have applied the knowledge-based approaches de-
scribed above to produce systems that play Texas Hold’em poker.

One area where rule-based expert systems commonly appear is in preflop play. Due to the restricted problem size
during preflop play, a rule-based expert system (of reasonable size) can be sufficient to handle the preflop stage of play
independently. There have been several poker agents that separate the preflop and postflop implementation in this way,
including [15,11,56]. Hobbyist, Greg Wohletz developed an agent named r00lbot that competed on the early IRC poker server.
r00lbot’s preflop play was determined by a rule-based system based upon detailed guidelines for preflop play published by
notable poker authors David Sklansky and Mason Malmuth in [90], where they identify and rank various equivalence classes
of starting hands. [11,22] used preflop roll-out simulations to determine the income rate of various starting hands and built a
preflop rule-based system around the results. They report that the results of the roll-out simulations were strongly correlated
with the ranked equivalence classes specified by [90].

Turbo Texas Hold’em [98] is a commercial software product that identifies a vast number of possible scenarios and
encodes these decision points within a knowledge-based system. Even considering the large scope of the project, [8] still
reports that the system is easily beaten by mediocre competition after initial exposure.

For his masters thesis project Follek [26] developed SoarBot, a rule-based expert system for multi-player, limit Texas
Hold’em, built upon the SOAR rule-based architecture [51]. Overall, Follek reports that SoarBot’s play was mediocre, stating
[26]:

It played much better than the worst human players, and much worse than the best human and software players.

Early agents produced by the University of Alberta CPRG that use knowledge-based approaches include the first version
of Loki [66,15] and the formula-based version of Poki [22,11], which was a re-write of the original Loki system. Poki uses
opponent modelling techniques and a formula-based betting strategy that accepts effective hand strength as its main input
and produces a probability triple as output. The formula-based Poki achieved consistent profit in the higher tiered, limit
hold’em games on the early IRC poker server [11]. Furthermore, a member of the Poki family of agents achieved first place
at the 2008 ACPC 6-Player limit hold’em competition [1].

More recently [56] compared and contrasted a knowledge-based implementation (Phase 1), with a more sophisticated
(Phase 2) implementation based on imperfect information game tree search (see Section 5). McCurley [56] designed the system
to play the no-limit, heads up variation of Texas Hold’em and tested it against human opponents on an online poker site.
While testing of the system was limited, the results reported that the Phase 1 implementation lost to the human opponents,
whereas the Phase 2 implementation was profitable.

While knowledge-based systems provide a simplistic framework for implementing computer poker agents, their various
short-comings have been identified and highlighted in the literature cited above. To begin with, knowledge-based systems
require a domain expert to encode their knowledge into the system which can itself be a challenging problem (i.e. the
knowledge elicitation bottleneck). As the system evolves, with the addition of further information and improvements, it soon
becomes difficult to maintain [10] and can easily lead to conflicting information and performance degradation. Furthermore,
any kind of system defined on static expert knowledge is likely to produce a rigid strategy that is unable to adapt to
changing game conditions and hence, will be exploitable by any observant opposition [14]. In general, there exist too many
scenarios in the complete game of Texas Hold’em for a knowledge-based system to identify and handle, which results in too
many dissimilar situations being merged together and handled in a similar manner. Rather, what is preferable is a dynamic,
adaptable system where advanced strategies and tactics are an emergent property of the approach itself.

4 Note this example uses immediate pot odds, a further concept in poker known as implied pot odds also considers the value of possible future bets in the
situation where the player does improve, however this is not easily calculated.
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Fig. 2. Three hypothetical trials within a simulation. Each trial contributes to the final estimation of the EV for checking or betting. The betting decisions
are as follows: k-check, b-bet, f-fold, c-call, r-raise.

3. Monte-Carlo and enhanced simulation

3.1. Introduction

Dynamic search of a state space usually offers an advantage over the static knowledge-based approaches mentioned in
Section 2. A typical game tree search, such as minimax search with alpha-beta pruning [45], involves exhaustively searching
the breath of a tree until a certain cut-off depth is reached. Nodes on the frontier of the cut-off depth are then assigned
values by some evaluation function and these values are backpropagated to the intermediate nodes of the tree. This type of
game tree search works well for games of perfect information, but fails for games involving imperfect information as the
missing information ensures that the exact state of the game cannot be known.

An alternative search procedure, known as Monte-Carlo simulation [57], involves drawing random samples for choice
nodes in the game tree and simulating play until a leaf node is reached, at which point the payoff value is known. By
repeating this procedure many times, the average of the expected values eventually converge to a robust evaluation value
for intermediate nodes in the game tree. Therefore, instead of completely searching the game tree until a certain cut-off
depth and estimating payoff values, a particular line of play is repeatedly selected and searched to the leafs of the tree,
until the average of the known payoff values approximate the true value of intermediate nodes.

Before being applied to poker, Monte-Carlo simulation was successfully used in games that involve chance events, such
as backgammon [91], as well as games that involve imperfect information such as Scrabble [87] and bridge [38].

3.2. Simulation example

The following example describes the simulation process as applied to the game of Texas Hold’em poker. Fig. 2 depicts
three hypothetical trials within a simulation. The known information at the beginning of each trial is as follows:

1. There are two players in the hand after the preflop betting.
2. The small bet is $10 and the big bet is $20.
3. The community cards on the flop are: 2♦ T♥ 5♣.
4. Player A’s personal cards are: A♦ K♠.
5. Player A is first to act and wishes to determine the expected value of either checking (k) or betting (b).
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In order to estimate the expected values for either checking or betting on the flop, player A must simulate out the rest
of the hand by making predictions about what hand the opponent may have, as well as their own future betting actions,
the opponent’s future betting actions and any future community cards yet to be dealt. Referring back to Fig. 2 each trial
continues as follows:

1. Player A predicts what hand player B may have at this point in the game and assigns this hand to player B. In Fig. 2,
player B’s predicted hand is listed in the bottom right hand corner of the box located at the root of each tree, e.g. for
trial 3 player A predicts B holds a pair of eights.5

2. Separate simulations are conducted to estimate the EV for checking/calling and betting/raising. The expected value of a
fold is always set to zero and player A contributes no future bets to the pot when they fold.

3. Player A then predicts future betting actions for itself and its opponent by generating a probability triple at each
decision node and then randomly selecting a betting action based on this triple. In Fig. 2, where a node is labelled
‘A’, player A predicts its own future action and where a node is labelled ‘B’ player A makes a prediction about the
opponent’s betting decision. The bold edges represent the predicted actions made during the simulation.

4. Where a further community card is required, player A randomly selects this card from the set of possible remaining
cards. For example, in trial 2 player A has randomly selected the T♦ as the turn card and in trial 3, player A has
randomly selected the A♠ as the turn card and the 4♦ as the river card.

5. Finally, given the above information, a numerical value for the trial can be determined at either the fold or showdown
nodes depending on how much money player A has won or lost during the trial. For example, in trial 2 when player A
decides to check they lose no money as they predict folding to player B’s bet. However, in the same trial, the outcome
of a betting decision on the flop is to lose $30 as player A has predicted they will bet on the turn and then fold to
player B’s raise.

As mentioned above, each trial contributes an estimate for the expected value of checking/calling as well as the expected
value of betting/raising at a certain point in the match. As the number of trials increase the average of the EV will eventually
converge to a stable set of values. This could involve hundreds or even thousands of trials. Furthermore, the more accurate
the predictions that player A makes about the strength of player B’s hand and the future betting decisions, the more accurate
the final EVs will be. Typically, the action with the greatest EV is then chosen as the appropriate move for player A.

Finally, Fig. 2 depicts the nature of the search conducted via Monte-Carlo simulation. Rather than exhaustively examining
every node in the game tree to a certain depth, a specific line of play is investigated by selectively expanding certain nodes
in the tree until the leafs are reached. This specific line of play is illustrated by following the bold edges through the game
tree in each trial. A thorough search of the game tree is ensured by performing many trials within the simulation.

3.3. Simulation-based poker agents

One of the earliest simulation-based “bots” that played on the IRC poker server was Greg Wohletz’s r00lbot. During
postflop play r00lbot typically conducted around 3000 trials by simulating the hand out to the showdown, against N random
opponent holdings, to determine the likelihood of winning. This information was then used to select a betting action.

Another early poker agent that played over IRC was Loki, which was developed by the University of Alberta CPRG to play
limit Texas Hold’em against multiple opponents. Loki-1 originally used a formula-based evaluation function to determine
its betting strategy [66,15]. Improvements to the Loki-1 system resulted in a new system, Loki-2, that augmented the static
evaluation function with simulation to better determine the expected value of check/call and bet/raise decisions [10,14,20].

Billings et al. [10] label their approach selective-sampling simulation, as opposed to Monte-Carlo simulation, due to the
selective bias introduced when choosing a random sample at a choice node. Rather than assigning an opponent random
hole cards during a simulation, a weight table is maintained and updated for each opponent after every observable action.
Each weight table contains an entry for every possible hole card combination that the opponent may hold e.g. AKs, 89s,
QQo etc. The weight assigned to each entry represents the possibility of the opponent playing the hand in the observed way
to a specific point in the game. These weights are then used to bias the distribution used for sampling during a simulation.

Self-play experiments between Loki-1 and Loki-2 highlighted a significant difference in earnings between the two agents,
with Loki-2 typically earning 0.05 sb/h more, on average, than Loki-1 [10]. Loki-2 also appeared to do better than Loki-1
against human competition on the early Internet Relay Chat (IRC) poker server, where both humans and agents could
compete for play money stakes [10]. The apparent success of the selective-sampling simulation-based approach led the
University of Alberta CPRG to advocate the method as a general framework to be used for games that involve chance events
and imperfect information [10,14,11].

Loki was later re-written and renamed Poki [22,11]. Once again Poki consisted of a Formula-Based Strategy (FBS) and a
Simulation-Based Strategy (SBS). The system was also improved with better opponent modelling capabilities and an updated
re-weighting method [22,23]. Analysis reported by Davidson [22] reiterated earlier findings [10] about the emergence of

5 In the diagram a player’s hand is identified by first listing the ranks of both hole cards followed by either an s, if the cards are of the same suit, or an
o, if the cards are offsuit.
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sophisticated plays, such as check-raising, that were witnessed using strategies produced by SBS-Poki. However, the overall
results of comparison between FBS-Poki and SBS-Poki were less convincing. While SBS performed better at introductory
levels on the IRC poker server, the same was not true at higher levels where the calibre of opponent was typically a lot
stronger. Furthermore, an experiment conducted by [22] showed that SBS-Poki performed a lot worse than FBS-Poki when
challenging human opponents at heads-up play. These results led Davidson to remark [22]:

It was expected that the SBS would be far superior to the FBS system, but to date, this has not been demonstrated.

It was observed that SBS-Poki played too tight in heads-up play, folding many hands. Conversely, SBS-Poki was too
aggressive in full, 10-player matches, raising and re-raising a lot. Davidson [22] identifies several possible scenarios that
cause the expected values generated to be inaccurate due to small biases introduced during simulation. The behaviour
observed during heads-up matches is roughly due to SBS-Poki falling into a cycle of folding behaviour. When simulating
future actions SBS-Poki predicts itself folding too often – this causes the EVs generated to become negative. Once the EVs
for calling or raising are less than 0, SBS-Poki simply decides to fold. Moreover, after making the decision to fold, SBS-Poki
needs to update its own model of itself, which ensures that given similar future situations it will again predict itself folding
during the simulations. On the other hand, during full table play SBS-Poki acts too aggressively. During simulations SBS-
Poki predicts its opponents calling and raising too often, which increases the amount of value in the pot, this gives SBS-Poki
the right odds to stay in the hand even with a moderate strength hand. So, SBS-Poki is observed calling and raising too
often with mediocre hands. Davidson concludes that a better, more robust method of game tree search6 is required that is
not as sensitive to bias as selective-sampling simulations are. Billings [8] also questions whether full-information simulations
are appropriate for decision making in an imperfect information environment, i.e. rather than making future decisions based
purely on what cards it is believed an opponent may hold, what is actually required is a solid, objective decision due to the
unknown information.

Despite the mixed results presented for simulation based betting strategies by [22] and [8], there have been other efforts,
outside of the University of Alberta CPRG, to develop poker agents based on Monte-Carlo Simulation. AKI-RealBot [85] is
a Monte-Carlo based exploitive poker agent that was the second place finisher in the 6-Player limit hold’em competition
at the 2008 ACPC. AKI-RealBot uses a similar simulation procedure as described above, but augments the result of the
simulations with a post-processing decision engine that makes it more likely for AKI-RealBot to get involved in a pot with a
player who is considered weak. A player is considered weak if they have lost money to AKI-RealBot over the course of the
last 500 hands. The post-processing procedure used by [85] decreases the likelihood of AKI-RealBot folding to this player
preflop, even if the EV for folding indicates this is the correct decision. An analysis of the 2008 AAAI competition results
show that AKI-RealBot’s success was largely due to its ability to exploit one weak opponent. So, while it lost to 3 out of the
6 agents, it made up for these losses by exploiting the weak agent by much more than any of the other competitors [1].

A recent algorithm that makes use of Monte-Carlo simulations is Monte-Carlo Tree Search (MCTS) [21]. MCTS combines
the evaluation information returned via Monte-Carlo simulations with game tree search. An initial game tree, consisting only
of the root, is built up through repeated simulations. Each node in the game tree records information such as expected value
and the number of visits to the node. The consequence of each successive simulation is the addition of a node to the game
tree, along with updates to its associated values. The effective result is the use of simulation to inform the construction
of a game tree via iterative deepening that reduces the probability of exploring ineffective lines of play. MCTS requires a
selection policy that controls the exploration/exploitation trade-off for nodes in the currently generated tree (e.g. the UCT
heuristic [46]) as well as a backpropagation policy that controls the value updates for nodes in the tree (typically the average
or maximum expected values of the node’s children).

The use of MCTS resulted in performance breakthroughs for the game of Go [21]. Standard alpha-beta search procedures
failed in the domain of Go due to the games massive branching factor, whereas the ability of MCTS to identify sub-optimal
branches and concentrate efforts on sampling only promising branches is considered to be one of the main reasons for its
success.

Van den Broeck et al. [92] have recently applied MCTS to the game of no limit hold’em. Van den Broeck et al. [92]
construct an offline non-player specific opponent model by learning a regression tree from online poker data. During sim-
ulations the model is used to predict action and hand rank probabilities for specific opponents. Van den Broeck et al. [92]
experiment with novel selection and backpropagation strategies that take into account information about the standard error
over the sampling distribution. The result is an exploitive hold’em agent constructed via MCTS that is able to challenge
multiple opponents and handle a no limit betting structure. Van den Broeck et al. [92] present results that indicate the
MCTS agent was able to successfully exploit naive, non-adaptive rule-based players.

4. Game theoretic equilibrium solutions

The next approach we review considers the computation of equilibrium solutions using game theoretic principles. We
start by introducing the field of game theory. An example, using the game of Rock-Paper-Scissors is described and the

6 The new method proposed is miximax and miximix search discussed in Section 5.1.



JID:ARTINT AID:2578 /REV [m3G; v 1.51; Prn:28/01/2011; 9:50] P.10 (1-30)

10 J. Rubin, I. Watson / Artificial Intelligence ••• (••••) •••–•••
Fig. 3. The game of Rock-Paper-Scissors represented as a tree.

concept of an equilibrium solution is explained. Approaches to computer poker that attempt to derive near-equilibrium
solutions using game theory are then surveyed and evaluated.

4.1. Game theory preliminaries

The field of game theory provides analytical tools to study situations where multiple agents compete and interact within
a particular environment [65,59]. Agents have individual goals and objectives that they try to achieve. Typically, a game will
involve the following components (replicated from [59]):

• A finite set of players.
• A finite set of moves each player can make at specific points in the game.
• A numerical payoff that is assigned to each player once the game is finished. A payoff could be either a negative value

(a loss), positive (a gain), or 0 (a draw).

In addition to the above components, a game can also consist of:

• Chance events, such as the flip of a coin or the drawing of a card from the deck.
• Hidden information, i.e. information that is not available to a player at the time that they make their move.

4.2. Rock-paper-scissors example

A game, as described above, can be represented either by rules, as a tree or as a matrix. Fig. 3 illustrates the game tree
for the simple game of rock-paper-scissors. When a game is represented as a tree it is said to be in extensive form.

Fig. 3 depicts the game tree for a two-person game of rock-paper-scissors. The two players are referred to as player A
and player B in the tree. Where a node is labelled with an A, this node is said to be owned by player A and where a node is
labelled with a B, the node is owned by player B. Each player has a choice of three moves that they can choose, either rock,
paper or scissors, represented as the edges in the tree labelled with R, P or S, respectively. The rules of the game state that
rock beats scissors, paper beats rock and scissors beats paper. If both players make the same choice then the game is a tie.
As a win for one player results in a corresponding loss for the other player, this type of game falls under the category of a
two-person, zero-sum game.

A and B choose their moves simultaneously. Once each player has made their decision they make their choice known to
their opponent. To represent this in the game tree of Fig. 3, you can imagine player A first makes their move and whispers
it to an independent third party, then B makes their move and also makes their choice known to the third party. The third
party then determines the outcome of the game. The fact that B does not know which move A has chosen is represented
by the grey background that surrounds the nodes that belong to B. In game theory, this is known as an information set. At
this point in the game, B knows that they are at one of the three nodes in the information set, but they don’t know exactly
which node it is. If they did then B would have perfect information of the game, however B doesn’t know which move A
made, hence they have imperfect information of the game, represented by the information set.

The leafs of the tree correspond to the conclusion of the game. Each leaf is labelled with two values that represent the
payoff to each player. The upper payoff value belongs to player A and the bottom value belongs to player B. For example,
if A chooses paper and B chooses paper the payoff is 0 for each player, i.e. it’s a draw. If however, A chooses paper and B
chooses rock the payoff is now +1 for A and −1 for B.

This payoff information can be represented in matrix form. Fig. 4 shows the payoff matrix for player A. When a game is
represented in this way it is said to be in normal form. In Fig. 4, each row of the matrix has been labelled with a strategy
that A could select and each column represents a strategy for B. A strategy can be thought of as specifying a move for
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⎛
⎝

R P S

R 0 −1 1
P 1 0 −1
S −1 1 0

⎞
⎠

Fig. 4. The game of Rock-Paper-Scissors represented as a matrix.

every possible game state a player may encounter. Referring again to the game tree in Fig. 3, there is only one node where
player A is required to make a move, i.e. the root node. At this node A has the choice of three moves R, P, S. This gives a
total of 3 strategies for player A. On the other hand, B owns 3 nodes in the game tree, however as these nodes all belong to
the same information set, the move that B makes at each node must be the same, e.g. B cannot choose P at the first node,
S at the second node and R at the third node as this assumes B has access to hidden information. So, B also has only three
strategies to play in total.

These 3 strategies are known as pure strategies. If A always played rock, B would eventually pick up on this and could
play paper to win every time. On the other hand, a mixed strategy is one which assigns a probability value to each pure
strategy, e.g. A may play rock 80% of the time, paper 10% of the time and scissors 10% of the time. Different combinations
of probabilities will result in different expected values for each player.

A pair of mixed strategies is said to be in equilibrium if the result of deviating from one of the strategies, while holding
the other constant, results in a loss in expected value for the player who changed strategies. In other words, given a pair
of equilibrium strategies, no player can do any better by choosing a different strategy as long as the other player sticks
to the equilibrium strategy. For two-person, zero-sum games, such as the rock-paper-scissors game we have described, an
equilibrium strategy, also known as a Nash equilibrium, is generally considered a solution to the game [59]. Finding a Nash
equilibrium is equivalent to determining the optimal combination of probability values that make up a mixed strategy.
One approach to determine these probability values is to represent the problem as an optimisation problem and use linear
programming algorithms (such as the simplex algorithm [59] or interior point methods [93]) to derive a solution. Doing so
for the rock-paper-scissors example gives a Nash equilibrium vector of probabilities as follows: ( 1

3 , 1
3 , 1

3 ), i.e. the equilibrium
solution is to just play rock, paper or scissors with equal probability.

4.3. Equilibrium strategies for Texas Hold’em

The example presented in the previous section showed that by representing a game as a payoff matrix in normal form
we can use linear programming to derive an equilibrium strategy. However, the scope of rock-paper-scissors is extremely
small when compared to more strategically interesting games such as poker. Using the normal form to represent the game
of rock-paper-scissors is satisfactory due to its size, however as the size of the game tree increases the corresponding size
of the normal form matrix increases exponentially. Using linear programming to solve the matrix game becomes infeasible
as the matrix gets too large.

Another representation, known as the sequence form [47], addresses some of the shortcomings of the normal form. Rather
than representing a strategy as a combination of probabilities over all possible pure strategies, the sequence form specifies
the probabilities of taking certain actions at each of the game tree’s information sets. This results in a representation that is
only linear in the size of the game tree and therefore allows larger games to be solved via linear programming.

While the use of the sequence form allows a much larger class of games to be solved using game theoretic methods
[48], it is still computationally infeasible to represent and solve for games that involve massive game trees, such as full-
scale Texas Hold’em. Fig. 5 depicts a high level view of the game tree for two-player, limit Texas Hold’em, which consists of
approximately 1018 game states. The numbers next to each round represent the number of nodes in the game tree generated
due to chance alone and the characters represent the possible betting sequences that lead to the next round. To put this
in perspective consider a reduced version of Texas Hold’em, called Rhode Island Hold’em [88]. Rhode Island Hold’em was
created because it retains the beneficial properties of Texas Hold’em, but reduces the number of game states from 1018

down to 109. Gilpin and Sandholm [33] report that applying the sequence form to Rhode Island Hold’em produces a linear
program with 91,224,226 rows and the same number of columns, which is much too large a matrix to solve. To overcome
this limitation it is necessary to limit the size of the game tree by imposing simplifying abstractions (see Section 4.4) to
the game itself. Applying abstractions to the game of Rhode Island Hold’em reduces this matrix to just 1,190,443 rows and
1,181,084 columns which was able to be solved via linear programming methods. The coupling of abstractions together with
the sequence form representation has resulted in computationally tractable large-scale games that are able to be solved
using linear programming methods.

4.4. Abstractions

The combination of game tree abstractions and the use of linear programming methods has resulted in the construction
of strong poker programs that approximate equilibrium solutions [9,31,4]. Each of these programs requires the use of a
combination of abstractions to reduce the size of the game tree.
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Fig. 5. A high level view of the game tree for 2-player Texas Hold’em, which consists of approximately 1018 game states. Based on original image presented
in [9].

In general, there are two categories of abstraction, those that respect the original strategic complexity of the game
(lossless abstractions) and those that compromise it (lossy abstractions). The following example will highlight the differences
between the two.

Consider the preflop stage of the game where each player is dealt two cards that only they can see. Out of a deck of
52 cards the first player is dealt 2 cards at random

(52
2

)
followed by the second player

(50
2

)
resulting in a total of 1,624,350

possible combinations (see Fig. 5). Imagine for one of these combinations that player one is dealt the two cards A♥K♥ and
player two is dealt T♣J♠. Now, during the preflop stage of the game there is no strategic difference between the hands
A♥K♥, A♠K♠, A♣K♣ or A♦K♦. The only difference between these hands are the suits and at present the suit information
has no bearing on the quality of the hand. All that matters is whether the hand is of the same suit or not. Hence, an
abstraction can be used where the hands A♥K♥, A♠K♠, A♣K♣ and A♦K♦ could all be represented as the single hand
AKs (where s stands for suited). The same holds for player two who was dealt T♣J♠, this player could have equivalently
been dealt T♥J♠, T♦J♣, T♥J♦ etc. the only difference is that the two cards are not of the same suit, so they could all
be represented as TJo (where o stands for off-suit). In total there are 169 equivalence classes of this form for all two card
combinations. Using this abstraction technique can drastically reduce the number of preflop card combinations in the game
tree from 1,624,350 to 28,561. The important point is that no strategic information has been lost to achieve this reduction.
The game tree has been reduced in size simply by reclassifying hands in a more concise manner.

Unfortunately, lossless abstractions alone do not always provide the reduction in size required to solve large scale games.
This results in the need for lossy abstractions that will affect the original strategic integrity of the game to some degree.
Furthermore, the example presented above only works for one stage of the poker game tree, i.e. the preflop. Once play
transitions to the next stage (the flop) suit information is required and this information has now been lost. A better ab-
straction would be one that is able to be used throughout the entire game tree. Bucketing (also known as binning) is a
powerful abstraction that has been used within many poker agents [88,9,31,4]. Bucketing is a lossy abstraction that groups
categories of hands into equivalence classes. One possible method of bucketing groups hands based on the probability of
winning at showdown against a random hand. This is given by enumerating all possible combinations of community cards
and determining the proportion of the time the hand wins. This is referred to as roll-out hand strength or expected hand
strength (E[H S]). Hands can then be grouped by assigning them into a particular bucket which holds hands with the same
E[H S]. For example, the use of five buckets would create the following categories:

[0.0–0.2][0.2–0.4][0.4–0.6][0.6–0.8][0.8–1.0]
and group all hands with the same winning probabilities into the same bucket. The abstract game model is now constructed
using buckets rather than cards. To complete the abstract game model, the final requirement of bucketing is to determine
the probability of transitioning between different buckets during each stage of play.

Abstraction via bucketing can either be performed manually, by the system designer, or the process can be automated.
Creating a manual abstraction allows the designer control over bucket types and boundaries, but may be costly when re-
creating an abstraction. On the other hand, automated abstraction, groups similar hands into buckets that are determined
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by the algorithm itself. Automated abstraction typically allows the specification of some granularity to determine how fine
(or coarse) to make a particular abstraction. Finer abstractions lead to larger models that are required to be solved.

4.4.1. Expectation-based abstraction
An abstraction that is derived by bucketing hands based on expected hand strength is referred to as an expectation-based

abstraction. Johanson [43] points out that squaring the expected hand strength (E[H S2]) typically gives better results, as
this assigns higher hand strength values to hands with greater potential. A hand’s potential refers to its ability to improve in
strength, given future community cards. Typically in poker, hands with similar strength values, but differences in potential,
are required to be played in strategically different ways [90].

The example above presented one standard procedure for automatically grouping hands by placing them into buckets,
based on a predefined partition of winning probabilities. One problem with this approach is that some buckets will contain
many hands, while others may contain very few. Further bucketing procedures attempt to improve upon the standard
bucketing approach presented above.

Nested bucketing attempts to further accommodate for the effects of hand potential. Nested bucketing begins like standard
bucketing, by combining hands into buckets that have similar E[H S2] values, however after the first bucketing
stage a second bucketing stage splits each of the first buckets based on standard E[H S]. This is done in order to
better distinguish between hands with high hand strength and hands with high potential.

Percentile bucketing is an automated bucketing technique that creates buckets that hold roughly the same amount of
hands. Percentile bucketing modifies the hand strength boundaries used for each bucket, such that each bucket
contains the same percentage of hands. For example, given 5 buckets for a betting round, the bottom 20% of hands
would be assigned into the first bucket, the next 20% of hands assigned into the next bucket, and so on. The top
20% of hands would be assigned into the last bucket.

History bucketing is a manual bucketing technique that allows finer control over bucket boundaries. In history bucketing
child buckets are individually determined for each parent bucket in the previous round. History bucketing makes
use of the fact that some buckets have a greater probability of transitioning to particular buckets in the next
round. For example, it is more likely that a bucket that represents high hand strength in one round, will transition
to a high hand strength bucket in the next round. Correspondingly, it is likely that a low hand strength bucket will
remain in a low hand strength bucket between rounds, rather than transitioning into a very high hand strength
bucket. By modifying bucket boundaries, history bucketing allows finer control over how many hands can be
mapped into a child bucket for each parent, resulting in an improved quality of abstraction, without increasing the
number of buckets.

4.4.2. Potential-aware automated abstraction
A separate automated abstraction method is potential-aware automated abstraction, developed by Gilpin and Sandholm

at Carnegie Mellon University [36]. Expectation-based abstractions require information about hand potential to be encapsu-
lated within a one-dimensional hand strength value, whereas potential-aware abstractions make use of multi-dimensional
histograms to assign similar hands into buckets.

Gilpin et al. [36] describe their procedure for generating potential-aware automated abstractions as follows. Firstly, given
the desired size for the final linear program to be solved, the maximum number of buckets available for each round is
decided upon. Buckets are populated for each individual playing round starting with the preflop. In order for the algorithm
to capture information about hand potential, buckets for future rounds first need to be represented in order to derive
buckets for the current round. This is achieved by performing several bottom-up parses of the game tree.

Consider the following example for computing preflop buckets. First, a bottom-up parse of the game tree is performed
by bucketing all river hands into a much smaller set of river clusters. As there are no future cards to come after the river,
there is no need to consider hand potential at this point, so river clusters are determined based on their final hand strength.
The k-means clustering [54] algorithm is used to group river cards into their corresponding clusters. Once the set of river
clusters has been determined, histograms for all possible hands on the turn are computed that represent the frequency
of transitioning to each river cluster. For example, if there are 5 clusters on the river, each hand histogram on the turn
will consist of 5 values, representing the possibility of ending up in each of the river clusters, given the final community
card that is dealt for the river. The use of a histogram for each hand captures whether a hand has high potential or not,
i.e. whether the hand has a high possibility of transitioning into a better cluster on the next round. Once histograms are
determined for each hand on the turn, these are also clustered into a smaller set, again via k-means clustering. This process
requires grouping together histograms that are similar to each other and hence requires a similarity function to be defined
between histograms. Gilpin et al. [36] determine the similarity between two histograms by summing the Euclidean distance
for each value in the histogram. This same process is repeated to create histograms for the flop and finally for the preflop.
Once the initial bottom-up parse of the game tree has completed the result is a set of N buckets for the preflop stage of
the game.

Establishing buckets for the flop and turn follow along similar lines, however instead of performing a complete bottom-
up parse of the entire game tree, a series of smaller bottom-up parses are conducted. One bottom-up parse for each of the
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previously decided upon parent buckets is performed, where the combination of hands to consider is limited to only those
hands that belong to the appropriate parent bucket.

A further requirement of deriving non-preflop buckets is to determine how many children each of the parent buckets
should have, given the specified limit on the total number of buckets available for the current round. Gilpin et al. [36]
achieve this by performing multiple k-means clusterings for each parent bucket, ranging from k = 1 up to some maximum
value, such that the limit on the number of buckets per round constraint is satisfied. For each k, an error measure is
calculated based on the distance of data points to their cluster centroids. Once these error measures are known, Gilpin et
al. [36] solve an integer program that minimises the error, based on constraints that limit the number of buckets to the
pre-specified amount. The result of solving this integer program determines the bucket structure for the non-preflop betting
round.

Finally, as there is no potential to consider on the river, k-means clustering is performed on the final hand strength
values to determine the river buckets. Once again an integer program is solved to determine the how many children each
of the turn buckets should have.

Gilpin et al. [34] perform a comparative evaluation of automated expectation-based abstraction compared to potential-
aware abstraction. They report that the potential-aware automated abstraction procedure outperformed expectation-based
automated abstraction for finer-grained abstractions, whereas expectation-based abstraction was better for coarser abstrac-
tions. Furthermore, [34] show that potential-aware abstractions are lossless in the limit, i.e. given a fine enough abstraction
and the computational power to solve the corresponding model, a potential-aware abstraction could be used to find an exact
Nash-equilibrium strategy.

4.4.3. Imperfect recall abstractions
The abstractions mentioned above all assumed perfect recall. Perfect recall ensures a player is not required to forget

previous observations and actions they have made at a particular point in the game. On the other hand, imperfect recall
forces a player to forget previous observations. In human beings, imperfect recall may not be enforceable, but for artificial
agents this type of forgetting is possible.

Imperfect recall has been investigated in the computer poker domain [97], due to the fact that creating an abstraction
that relaxes the perfect recall assumption can allow more emphasis to be placed on the most recent information a player
has at decision time, at a cost of forgetting (or blurring) the information about previous observations. In equilibrium finding
approaches to computer poker, imperfect recall has the beneficial quality of reducing computational costs and allowing
more expressive abstractions to be solved.

An imperfect recall abstraction allows more computational resources to be assigned to the current betting round by
reducing the granularity or completely eliminating information from previous betting rounds. For example, an increased
number of buckets could be assigned on the turn betting round by merging buckets from previous rounds together and
hence forcing the player to consider fewer histories from previous rounds. An even more extreme abstraction could force
a player to completely forget all previous round buckets, therefore allowing a finer distinction to be placed on the current
round buckets. On the other hand, a perfect recall abstraction would require that the number of buckets used per round be
reduced, as these need to be remembered and distinguished between during rounds.

Since the current state of the player’s hand is more important than how it came to be, a trade-off can be made by
allocating more computational resources for information that is important right now, in exchange for forgetting past infor-
mation. However, by relaxing the perfect recall assumption, many theoretical guarantees are now lost and, in some cases,
equilibrium finding algorithms are no longer well defined. Despite the loss of these guarantees, Waugh et al. [97] present
results that suggest this is not an issue in practise. Their results show imperfect recall abstractions are superior to their
perfect recall counterparts.

4.4.4. Other abstractions
Overall, bucketing is a powerful abstraction technique that can reduce the number of nodes in the abstract game tree

dramatically, however the consequence of this is that now multiple hands, which may not be strategically similar, will be
mapped into the same category. In addition to bucketing two further lossy abstractions for Texas Hold’em are described
below.

Betting round reduction In a typical game of limit hold’em each player is allowed to commit a maximum of 4 bets each
to the pot during each betting round. By reducing the allowed number of bets the branching factor in the abstract
game tree can also be reduced.

Elimination of betting rounds A more drastic abstraction involves the elimination of entire betting rounds. As an example,
consider a game of poker where play ends at the turn. This reduces the size of the game tree by eliminating the
last community card and the final round of betting. The effect of this abstraction can be softened by performing
a roll-out of all 44 possible river cards and computing the expected value of the outcome, rather than simply
truncating the game tree and awarding the pot to the player with the winning hand [9].

As lossy abstractions are required to produce full-scale poker agents they cannot be said to be true Nash equilibrium
solutions for the original game, as solving the abstract game model cannot guarantee Nash equilibrium solutions will be



JID:ARTINT AID:2578 /REV [m3G; v 1.51; Prn:28/01/2011; 9:50] P.15 (1-30)

J. Rubin, I. Watson / Artificial Intelligence ••• (••••) •••–••• 15
preserved. Instead, this approach is said to produce approximate equilibrium solutions, which may come close to a true
equilibrium strategy, but are not true equilibria, hence allowing the strategy to be exploitable to some degree. We will use
the terms near-equilibrium and ε-Nash equilibrium interchangeably when referring to these strategies.

4.5. Near-equilibrium poker agents

This section will survey a collection of poker agents that were produced using the techniques described above, i.e. by
representing and solving large abstract game models as linear programs (LP). Most of the agents presented play 2-player
Texas Hold’em and are split into limit and no limit agents.

4.5.1. Heads-up limit
Shi and Littman [88] produced a game theoretic player for the two player game of Rhode Island Hold’em. In Rhode Island

Hold’em each player receives one personal card followed by a round of betting. There are only two community cards dealt
separately between betting rounds. Shi and Littman’s game theoretic player was able to beat a range of rule-based players.

Selby [86] focused on the preflop stage of Texas Hold’em to produce equilibrium strategies for the first round of play
only. By performing a roll-out of the remaining community cards for future betting rounds, but not considering any betting
during these rounds, payoff values were computed and an LP created that involved all 169 equivalence classes of preflop
hands. Selby then solved this LP using the simplex algorithm to create an equilibrium strategy for preflop play.

Billings et al. [9] were the first to derive near-equilibrium solutions for full-scale two-player, limit Texas Hold’em by con-
structing and solving abstract game models that used a manually constructed, expectation-based abstraction that eliminated
betting rounds. The collection of poker agents produced by Billings and colleagues using this approach are known as PsOpti,
one version of which is publicly available as Sparbot within the commercial application Poker Academy Pro 2.5. Billings
et al. [9] report that they were able to reduce the original size 1018 poker game tree down, by a factor of 100 billion, to
separate models each of approximately 107 game states. In addition to the use of bucketing and betting round reduction,
Billings et al. [9] compute and solve separately a preflop model and a number of postflop models which they attempt to tie
together using preflop betting sequences to inform which postflop model to employ to effectively solve for the entire game
tree. A combination of the PsOpti suite of agents, named Hyperborean, was able to defeat all competitors at the first AAAI
Computer Poker Competition in 2006 [53].

Teppo Salonen’s limit version of BluffBot [78] finished second in the same 2006 competition. The limit version of BluffBot
is a near-equilibrium agent based on expert defined abstractions similar to PsOpti [78].

GS1 [31], developed by Andrew Gilpin and Thomas Sandholm from Carnegie Mellon University, also attempts to derive
near-equilibrium solutions for limit hold’em. GS1 relies on very little poker domain knowledge to construct the abstract
model. Instead, a system known as GameShrink [33] is used to automatically abstract the game tree. Given a description
of a game, the GameShrink algorithm is able to automatically generate lossless or lossy abstractions to reduce the size of
the game tree. For GS1 lossy abstractions were required to reduce the game tree to a manageable size, that was then able
to be solved via linear programming. However, rather than solving for the entire game offline, as PsOpti does, GS1 uses a
combination of offline and real-time equilibrium finding. For the first two stages of the game, i.e. the preflop and the flop,
an abstracted model of the truncated game is generated and solved. Whereas, on the turn and river equilibrium solutions
are computed in real-time during game play.

Gilpin and Sandholm later identified several weaknesses that resulted from using the automated, lossy abstractions
produced by the GameShrink algorithm when applied to Texas Hold’em [32]. The next agent they developed, GS2 [32],
used a better automated abstraction routine that relied on k-means clustering [54] to identify groups of strategically similar
hands. Using these hand groups a truncated, abstract game tree (consisting of the preflop, flop and turn betting rounds) was
constructed. This truncated model was then solved to derive a near-equilibrium strategy for GS2 to use during the preflop
and flop betting rounds. Rather than rely on uniform roll-outs that assume no future betting to determine payoff values at
the truncated leaf nodes (an assumption used by both GS1 and PsOpti), a further improvement introduced by GS2 is the
use of simulated betting actions on the river to determine more accurate payoff values for the leafs of the tree [32]. As with
GS1, GS2 again determines its betting strategy on the turn and river in real-time using the game state information. GS2
placed third in the limit equilibrium division of the 2006 AAAI competition [53].

4.5.2. Heads-up no limit
The agents mentioned in this section, so far, have solely focused on the limit variation of 2 player Texas Hold’em. In

limit poker there are only three betting actions possible at every decision point in the game, i.e. fold, check/call or bet/raise.
However, in no-limit a player may bet any amount up to the total value of chips that they possess. For example, assuming
a player begins a match with 1000 chips, after paying a forced small blind of 1 chip they then have the option to either
fold, call 1 more chip or raise by contributing anywhere between 3 and 999 extra chips.7 In a standard game of heads-up,
no-limit poker both player’s chip stacks would fluctuate between hands, e.g. a win from a previous hand would ensure that
one player had a larger chip stack to play with on the next hand. In order to reduce the variance that this structure imposes,

7 The minimum raise would involve paying 1 more chip to match the big blind and then committing at least another 2 chips as the minimum legal raise.
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a variation known as Doyle’s Game is played where the starting stacks of both players are reset to a specified amount at the
beginning of every hand.

Recall that with limited betting the Texas Hold’em game tree consists of approximately 1018 nodes, whereas for a no-
limit game, where each player begins with 1000 chips, the size of the game tree increases to roughly 1071 nodes [37].
Furthermore, increasing the starting stack sizes of the players has the effect of exponentially increasing the size of the game
tree.

Aggrobot [4] is a poker playing agent similar to PsOpti, but modified to play the no-limit variation of Texas Hold’em.
Aggrobot uses the same abstractions that were employed to create PsOpti with the addition of a further betting abstraction
to handle no-limit betting. Aggrobot generates separate preflop and postflop models that are then combined to produce a
near-equilibrium strategy for the game of no-limit hold’em. As the use of no-limit betting causes an exponential blow-up
of the game tree, a further abstraction that discretises betting amounts is required to produce a tractable model. Aggrobot
creates betting abstractions based on the value of chips that are currently in the pot. In total Aggrobot defines 4 separate
betting abstractions which are: half the pot, the full amount in the pot, 2 × the pot and all-in (all the player’s remaining
chips). All bets in the abstract model can now only belong to one of the above four categories. A consequence of this
abstraction is that a reverse mapping for betting amounts is required when the actual game-play begins. If Aggrobot’s
opponent bets an amount that isn’t represented by the above abstractions, such as 3

2 × the pot, this then needs to be
classified as either a pot sized bet or a bet of double the pot. Simply choosing the betting abstraction that is closest to the
bet amount results in an easily exploitable model [4,37].

Due to processor and memory limitations [4] was only able to produce near-equilibrium strategies for a starting chip
stack of at most 40 chips (assuming a 2 chip big blind).

Teppo Solonen has also produced no limit versions of his agent BluffBot [78]. Starting with BluffBot2.0 which placed first
in the heads-up, no limit competition at the 2007 ACPC [1]. While exact details about the no limit versions of BluffBot are
not available, they are described as using a game theoretic near-equilibrium strategy.

Rather than focusing on hand for hand cash game play, as the above agents have, [58] computed game theoretic equi-
librium jam/fold strategies for the end-game phase of a one table tournament where there are only two players remaining
with a total of 8000 chips in play and a small blind and big blind of 300 and 600 respectively. By restricting the player’s
betting actions to jam (all-in) or fold, Miltersen and Sørensen [58] were able to compute exact Nash equilibrium solutions
using standard LP procedures and showed that these restricted strategies also closely approximated a Nash equilibrium for
the unrestricted tournament where other betting actions are allowed. A separate analysis by [28] used an extension of fic-
titious play (see Section 4.6.1) to compute near-equilibrium jam/fold strategies for the end-game of a one table tournament
consisting of 3 players.

Procedures such as the simplex method and interior point methods for solving linear programs are severely restricted by
the size of the model they can accommodate. As such [9] were forced to combine separate preflop and postflop models to
approximate an equilibrium strategy. [31,32] handled the problem by creating offline equilibrium solutions for the preflop
and flop rounds and computing equilibrium strategies in real-time for the turn and river rounds. Producing near-equilibrium
strategies in this way was later identified as problematic [8] due to the fact that simply gluing disjoint strategies together
is not guaranteed to produce a complete and coherent equilibrium strategy.

Waugh et al. [95] in their paper on strategy grafting later showed that piecing together separately solved sub-games,
which they refer to as grafts, was able to produce a coherent overall strategy as long as the grafts were tied together via a
common base strategy. Strategy grafting allows finer abstractions to be solved, as each independent sub-game can be made
as large as is tractably possible to solve. After separately solving each sub-game these are then grafted onto the base strategy
to produce a completely unified strategy.

Next, we review a range of iterative algorithms for computing ε-Nash equilibria that are able to solve larger models due
to having fewer memory requirements than standard LP procedures. Even with the sequence form representation, solving
a model that considered all 4 betting rounds using simplex or interior point methods would likely require too coarse an
abstraction (e.g. too few buckets) to produce reasonable quality strategies. The iterative algorithms, introduced in the next
section, are able to solve fine abstractions involving all 4 betting rounds at once.

4.6. Iterative algorithms for finding ε-Nash equilibria

The previous section described an approach for finding equilibria in large scale games, where the sequence form repre-
sentation was used to construct matrices that acted as constraints within an optimisation problem. By solving the problem
using linear programming algorithms, equilibrium strategies were found for an abstract game. These were then used within
the original game as ε-Nash equilibrium strategies. A major drawback of this approach is that representing the game in this
way requires memory linear in the size of the game tree. There are however, other ways of finding equilibria in extensive
form games that make use of iterative algorithms. A selection of these approaches are introduced below along with the
poker agents they produce. We begin with a discussion of algorithms such as fictitious play and range of skill, which have
been used to produce solid limit hold’em agents. Following this, two algorithms that represent the current state-of-the-art
for computing ε-Nash equilibria are presented. The first is the excessive gap technique, which has been specialised for zero
sum, extensive form games by Andrew Gilpin and colleagues at Carnegie Mellon University. The second state-of-the-art
algorithm we review is counterfactual regret minimisation developed by the University of Alberta CPRG.
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4.6.1. Fictitious play
An alternative method for computing Nash equilibrium is via fictitious play [18]. Fictitious play revolves around the idea

that as two players repeatedly play a game against each other, their strategies will steadily adapt and improve over time.
The algorithm begins with each player adopting some arbitrary strategy, where a strategy is simply a probability distribution
over actions at every information set. Both players are aware of the details of their opponent’s strategy. A training phase
occurs where random game situations are presented to the players. Each player can then determine the correct move in the
situation, given the known strategy of their opponent. Players then update their average strategies based on this information.
As the number of iterations increases the updated strategies typically approach a Nash equilibrium.

Dudziak [24] produced a near-equilibrium agent, called Adam, for 2-player, limit Texas Hold’em by abstracting the poker
game tree and executing the fictitious play algorithm until it converged on a stable equilibrium strategy. Adam, was able to
achieve a consistent win rate when challenging Sparbot and Vexbot from Poker Academy Pro 2.5, over a period of 20,000
and 50,000 hands respectively.

Two successful agents developed using fictitious play are INOT and Fell Omen 2 – both developed by Ian Fellows at the
University of California, San Diego [25]. In 2007 INOT placed 2nd out of 15 competitors in the heads-up, limit instant run-
off competition at the AAAI Computer Poker Competition. The next year, in 2008, INOT’s successor, Fell Omen 2, placed 2nd
equal out of a total of 9 competitors, in the same event.

4.6.2. Range of Skill
The Range of Skill algorithm is an iterative procedure that was developed by Zinkevich et al. [99] at the University of

Alberta CPRG. The Range of Skill algorithm considers creating a sequence of agents, where the next agent created employs a
strategy that can beat the previously created agent by at least a certain amount, ε . This sequence has a finite length. As the
number of agents in the sequence approaches the maximum length, the agents’ strategies approach an ε-Nash equilibrium,
i.e. any further agents are not able to exploit the agent’s strategy by more than ε .

The Range of Skill algorithm makes use of a separate algorithm known as generalised best response. The generalised best
response algorithm computes a best response to a restricted set of allowed strategies, known as a restricted game. A best
response is a strategy that maximises its utility against a specific strategy. A best-response can be considered the worst case
opponent of a specific strategy.

The Range of Skill algorithm repeatedly calls the generalised best response algorithm. On each subsequent iteration the best
response from the previous invocation is included in the set of allowed strategies of the restricted game and once again a
best response is derived. The algorithm works by returning equilibrium strategies for restricted games of increasing size. As
the number of iterations increases, the strategies returned approach an ε-Nash equilibrium.

This algorithm was used to produce a family of ε-Nash equilibrium agents known as SmallBot and BigBot. [99] presents
SmallBot2298 and BigBot2298. SmallBot2298 uses a reduced betting abstraction where a maximum of 3 bets are allowed
per round, whereas BigBot2298 considers the full 4 bets per round. Both SmallBot2298 and BigBot2298 are some of the
first near-equilibrium strategies that consider a full four round betting model (preflop, flop, turn and river). Zinkevich et al.
[99] shows that this offers a significant improvement upon previous approaches which rely on connecting together separate
smaller models such as [9,31].

4.6.3. Excessive gap technique
Gilpin et al. [30] present an adapted version of Nesterov’s excessive gap technique [60] that has been specialised for two-

person, zero-sum imperfect information games. EGT refers to a procedure that allows smoothing to take place within an
optimisation problem.

Previous linear programming based approaches made use of the sequence form representation and used procedures such
as interior-point methods to solve the corresponding LP. The computational and memory costs associated with this approach
resulted in having to severely restrict the size of the LP’s that were able to be solved and required the combination of several
distinct LP’s in order to cover decision points for the entire game of 2-player limit Texas Hold’em. The use of EGT was one
of the first major advances away from this approach, which allowed a non-truncated model to be solved that consisted of
all four rounds of play.

The EGT algorithm presented by [30] is an iterative, anytime algorithm that requires O (1/ε) iterations to approach an
ε-Nash equilibrium. Allowing more iterations results in lowering the ε value of the resulting ε-Nash equilibria produced.
The algorithm makes use of the sequence form representation and directly handles the saddle-point formulation of the Nash
equilibrium problem, given by the following equation:

max
x

min
y

xT Ay = min
y

max
x

xT Ay (4)

where A is the payoff matrix for player 1, x is player 1’s strategy and y is a strategy for player 2. Eq. (4) represents the
situation in a two-player, zero-sum game where the first player is attempting to maximise their payoff and the second
player is attempting to minimise the payoff given to the first player.

As some of the terms in the equation are non-smooth, i.e. not differentiable, first smoothing takes place. This results in
smoothing the saddle point problem into differentiable, convex functions that can then be minimised. Once this is achieved
gradient-based methods are used to solve the corresponding minimisation problem. A major benefit of the EGT algorithm is
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the low computational and memory costs associated with each iteration (the most costly operation being the performance
of a matrix vector product). Using EGT, Gilpin et al. [30] were able to construct and solve abstractions that consisted of
roughly 1010 game states.

The use of EGT resulted in one of the first agents to solve a model that consisted of all four rounds of play [36]. The
result of solving a non-truncated game, together with the use of potential-aware automated abstraction (see Section 4.4.2)
was a solid opponent, GS3, that was able to beat the best agents from the 2006 ACPC, as well as Sparbot and Vexbot with
statistical significance [36].

Gilpin, Sandholm & Sørensen have also used EGT to create ε-Nash equilibrium strategies for no limit poker. Tartanian
[37], is able to build models for starting chip stacks of up to 1000 chips (cf. [4] which was only able to produce strategies
for starting stacks of 40 chips). Tartanian solves a complete abstract model of the entire game using automated potential-
aware card abstractions and discretisation of betting amounts. The actions allowed within the betting model chosen by [37]
were similar to those chosen by [4] with the removal of the 2×pot bet. Gilpin et al. [37] also removed the possibility of a
player becoming pot committed within the model, i.e. when a player commits a large proportion of chips compared to their
chip stack such that they become committed to the hand and there is no point in folding. Out of a total of 10 competitors,
Tartanian placed second in the no limit hold’em competition at the 2007 AAAI Computer Poker Competition [37,1].

Recently, Gilpin and Sandholm have presented two speed up improvements for EGT algorithms [35]. The first improve-
ment is based on randomised sampling, whereas the second specialises the algorithm to make use of modern ccNUMA
(cache-coherent non-uniform memory access) architecture, used in high-performance computing. The improvements can be
applied together or separately and are able to offer significant reductions in computation time [35].

EGT remains at present, one of the state-of-the-art algorithms for constructing ε-Nash equilibria in two-player zero sum
games.

4.6.4. Counterfactual regret minimisation
Another state-of-the-art algorithm for computing ε-Nash equilibria in two-player zero sum games is Counterfactual Regret

Minimisation (CFR). CFR is an iterative algorithm for finding equilibria in extensive form games [100,43]. The algorithm relies
on iteratively minimising a counterfactual regret value. A major advantage of this algorithm is that it only requires memory
linear in the size of a games information sets, rather than game states. The algorithm is only required to traverse the extensive
form game tree, rather than store it in memory. A separate information set tree is stored for each player. A single node in
an information set tree corresponds to an entire information set within the extensive form game tree.

Consider the example presented in Fig. 6. The tree at the top represents a portion of the extensive form game tree for
2-player Texas Hold’em. Non-terminal nodes are labelled with either an A or a B to indicate which player they belong to.
Information sets are highlighted by the dashed lines between nodes. The bottom tree is the corresponding information set
tree. Each of the 3 nodes that belong to B’s information set (in the top tree) will be mapped to 1 node in the information
set tree. Correspondingly, each of the 3 nodes that belong to the information set shown for player A will also be mapped
to a single node in the information set tree. Each node in the information set tree is required to also store values for the
accumulated regret so far, at that information set. As only the information set tree is required to be stored in memory
and not the extensive form game tree, this is what allows CFR to solve larger models than alternative algorithms, such as
standard LP solvers. The strategies developed are therefore better approximations to the true equilibria of the original game
[43].

The CFR algorithm is a regret minimising algorithm. An algorithm is regret minimising if, as the number of iterations
goes to infinity, the overall average regret approaches 0. The concept of regret is similar to opportunity cost in economics. At
each information set a player has a range of actions, a, to choose from, each with their own utility u(a). If the maximum
utility possible is given by taking action, a∗ , a player’s regret for choosing action a is then:

u
(
a∗) − u(a)

The CFR algorithm does not minimise one overall regret value, but instead decomposes regret values into separate in-
formation sets and minimises the individual regret values. The counterfactual aspect of the algorithm refers to the fact
that calculations are weighted by the probability of reaching a particular information set, given that a player had tried to
reach it. The summation of counterfactual regret from each information set provides a bound on overall regret, which when
minimised gives a strategy that approaches a Nash equilibrium.

Counterfactual regret minimisation is one of the most promising algorithms in current computer poker research and has
been used to create a range of successful hold’em agents in both heads-up limit [43] and no limit variations [84], as well
as multi-player games [71]. Next, we present an example of how counterfactual regret values are calculated and how these
values help to determine an action probability distribution at each information set.

4.6.5. CFR example
The algorithm begins by assigning arbitrary strategies to two players and having them play repeated perfect information

games against each other. After every game the players’ strategies are modified in a way that attempts to minimise their
regret against the current strategy of their opponent. As the number of iterations increases, the combination of both players’
strategies approaches an equilibrium strategy.
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Fig. 6. Depicts a partial extensive form game tree for 2-player Texas Hold’em (top) and the corresponding portion of the information set tree (bottom). The
extensive form game tree is required to be traversed, but not stored in memory. The information set tree is required to be stored in memory, it records
accumulated regret values at each information set.

The following example will illustrate how CFR values are calculated at a single node in the extensive form game tree.
These values are then added to accumulated CFR values within the information set tree, which are then used to update a
player’s strategy. The game being played is two-player, limit Texas Hold’em. The example is intended to give a general feel
for the way the algorithm proceeds. For a more detailed discussion on the theoretical background of the algorithm consult
[100].

We refer again to Fig. 6, which depicts a small portion of the extensive form game tree and the corresponding informa-
tion set tree. The greyed out nodes indicate portions of the game tree that will not be reached, given the players’ current
strategies. An ellipsis signifies missing game information due to space considerations. We have chosen to calculate CFR val-
ues for a node belonging to player A, that is reached after player B makes a raise. The actions available to player A at their
choice node are either fold, call or raise.

Let’s assume that B’s strategy indicates a 40% chance of raising in this situation and that A’s current strategy specifies
the following action probabilities at this node:

( f , c, r) = (0.2,0.4,0.4)

• The expected value for player A, given their current strategy is:

0.2 × (−4) + 0.4 × 1 + 0.4 × 6 = 2

• For each action, a, at this choice node. Player A’s regret for not taking action a is the difference between the expected
value for taking that action, and the expected value given A’s current strategy.

f : −4 − 2 = −6

c: 1 − 2 = −1

r: 6 − 2 = 4

• The values above indicate that A regrets not raising more than it regrets not calling or folding. These values then need
to be weighted by the probability of actually reaching this node, which gives the following immediate counterfactual
regret values.

f : −6 × 0.4 = −2.4
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c: −1 × 0.4 = −0.4

r: 4 × 0.4 = 1.6

• Recall that each node in the extensive form tree maps to a corresponding node in the information set tree. The informa-
tion set tree can be thought of as storing the sum of the accumulated CFR values for all nodes in the same information
set. After traversing all nodes in the extensive form tree, the information set tree is traversed and the accumulated CFR
values are used to calculate the player’s strategy for the next iteration.

• In this example, only 1 node in A’s information set contributes to the final accumulated counterfactual regret values,
because the probability of reaching the other nodes in the same information set is 0. Therefore, the information set tree
stores the following accumulated CFR values:

f : −2.4

c: −0.4

r: 1.6

• The updated strategy for player A, at this information set, can be calculated as follows:

Let, D = max{0, f } + max{0, c} + max{0, r}
if D > 0 then

( f , c, r) =
(

max{0, f }
D

,
max{0, c}

D
,

max{0, r}
D

)

otherwise, a default strategy is chosen, e.g. ( 1
3 , 1

3 , 1
3 ).

• Using the formulas above updates player A’s strategy at this choice node to

( f , c, r) = (0,0,1)

• Hence, if player A reaches this node on a future iteration the updated strategy advises them to raise with 100% proba-
bility.

Recall, that previous approaches solved separate smaller models with approximately 107 states each [9,31]. These ap-
proaches were forced to alter the game’s structure by eliminating betting rounds, reducing the number of raises that were
allowed and tying together separate preflop and postflop models. The CFR algorithm has been used to produce and solve
models with up to 1012 states, that preserve the full Texas Hold’em betting structure and only rely on bucketing abstrac-
tions [100]. Generally, increases in the size of the model (the less abstraction that is used) correlate with improvements
in performance (see Waugh and colleagues discussion on abstraction pathologies [96] for why this is not always the case).
Zinkevich et al. [100] and Johanson [43] show that CFR agents, produced with anywhere between 5 and 10 buckets per
round, consistently perform better than one of the strongest agents from the PsOpti family.

The example above presented CFR in its vanilla form where each game state within an information set contributes to
the overall accumulated counterfactual regret values in the information set tree. Further research efforts have shown that
sampling game states, rather than traversing every game state can offer significant improvements on convergence time.
Mote Carlo CFR (MCCFR) modifies the original CFR algorithm by only updating information sets along one particular history
during each iteration. MCCFR has been shown to converge to a Nash equilibrium much faster than standard CFR in several
game domains [52].

4.6.6. CFR-based poker agents
The University of Alberta CPRG have used CFR to produce ε-Nash equilibrium strategies for both Hyperborean-Eqm and

Polaris [17] since 2007.8 Both Hyperborean-Eqm and Polaris are based on similar techniques, but refer to competitors in two
separate events.

Polaris refers to the “Machine” entry in the Man-Machine Poker Championship in which some of the best human players
challenge computerised opponents in limit Texas Hold’em. In 2008, Polaris defeated its human opponents by a statistically
significant margin.

Hyperborean-Eqm refers to the group’s entry for the ACPC, where only computerised agents compete. From 2006 to 2008
Hyperborean-Eqm won every limit hold’em instant run-off competition at the ACPC. Both the limit and no limit versions of
the 2008 Hyperborean-Eqm agent were constructed using an imperfect recall abstraction [97].

In 2009, the instant run-off competition of the limit hold’em ACPC was won by GGValuta. GGValuta was developed by
a team of students from the University of Bucharest based on the CFR minimisation algorithm [1]. GGValuta differs from
Hyperborean-Eqm in the abstractions that are used to produce the model. In particular, GGValuta used a modified k-means

8 Polaris actually consists of a range of strategies, at least one of which is an ε-Nash equilibrium strategy constructed via CFR.
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clustering algorithm to assign postflop hands into groups, based on hand strength and potential [1]. In the same competition
Hyperborean-Eqm placed 2nd. The 2009 version of Hyperborean-Eqm was constructed by solving separate independent sub-
games (grafts) via the CFR algorithm and using strategy grafting [95] to combine the grafts via a base strategy.

Recently the CFR algorithm was applied to the 3-player game of limit hold’em [72]. The addition of the extra opponent
produced a massive increase in the number of game states and hence a more coarse-grained abstraction was required to
compute the ε-Nash equilibrium strategy [71]. Nevertheless, the resulting player, HyperboreanRing-Eqm, was able to beat all
6 opponents at the 2009 ACPC 3-player limit competition [1].

CFR has also been used to create no limit agents [84]. In particular, the agent HyperboreanNL-IRO won the instant run-
off division of the 2010 heads-up, no limit competition. The no limit variation of the game requires abstract game trees
that are much larger than the corresponding trees in the limit variation. Furthermore, no limit involves a more complicated
translation phase in order to have the strategies produced play appropriately in the full version of the game [83].

5. Exploitive counter-strategies

Nash equilibrium solutions are static, robust strategies that limit their own exploitability by maximising a minimum
outcome against a perfect opponent. In a two-person, zero-sum game where the guaranteed minimum outcome is zero, a
true Nash equilibrium strategy will never lose in the long run. However, while the strategy may never lose, it will also
never identify and exploit weaknesses in its opponents’ play. To exploit a weak opponent requires opponent modelling. An
exploitive counter-strategy will determine its actions based on how it believes the opponent plays, as represented by the
opponent model. The end result is that the exploitive counter-strategy will play off the equilibrium, therefore allowing itself
to be exploitable, however it will also exploit weak opposition for more value than an equilibrium strategy.

In this section, we review agents that attempt to exploit their opponents by constructing opponent models. First we
discuss adaptive, exploitive counter-strategies produced via imperfect information game tree search. This is followed by a
review of static, exploitive agents that use game theoretic principles to create strategies that make compromises between
limiting their own exploitability versus the level at which they exploit their opponents.

5.1. Imperfect information game tree search

In two-player, zero-sum games of perfect information the minimax search algorithm considers a Min and a Max opponent.
The algorithm proceeds by assuming that when it is Max’s turn to act it will perform an action that maximises its own
utility. Correspondingly, when it is Min’s turn to act they will choose an action to minimise the utility given to the Max
player. At the leaf nodes of the game tree the exact outcome of the game is known. These values are then recursively
backed up to intermediate nodes using the minimax procedure. In the case where the game tree can be fully searched to
the leaf nodes the minimax algorithm corresponds to a Nash equilibrium [82]. Typically, for games with large search spaces
it is not possible to search all the way down to the leaf nodes in the tree. Instead, an evaluation function is used to assign
utility values to nodes at some cut-off depth.

The minimax algorithm is useful for games such as chess and checkers. Expectimax is an extension of the minimax
algorithm that enables the procedure to also handle chance events, such as the roll of the dice or the dealing of cards. The
expected value at a chance node is given by weighting each outcome’s utility by its probability of occurrence and summing
over all the possible outcomes [6]. This addition allows the expectimax algorithm to handle games that involve chance, e.g.
backgammon.

Chess, checkers, backgammon etc. are all examples of perfect information games. In these domains the exact outcome of
the game is known at the leaf nodes, or, if an evaluation function is being used, the public game information can provide
a reasonable approximation for these values. A player’s action at any node in the tree can then easily be determined by
backing these values up from the leafs assuming Max will choose the action with the maximum value and Min will choose
the action with the minimum value. Unfortunately, when a game involves hidden information (such as the hidden cards
in poker) the exact expected value at the leaf nodes may no longer be known and the back up procedure can no longer
provide a reasonable assumption of the opponent’s actions.

Texas Hold’em is a game of imperfect information, as the hole cards of an opponent are hidden. Moreover, the cards
a player holds usually determines that player’s strategy. Without this information the likelihood of the opponent taking
certain actions is unknown, as is the probability of winning at a showdown. For these reasons the expectimax algorithm
cannot be directly applied to the game of Texas Hold’em. However, it is possible to augment the expectimax algorithm with
an opponent model to “fill in” the missing information. The effectiveness of the algorithm then depends on how accurate
the opponent model is. Two pieces of information required by the opponent model would be:

1. A distribution over an opponent’s actions at each opponent choice node in the game tree. And,
2. The probability of winning at showdown leaf nodes.

Using the information from the opponent model allows expected values to be assigned to opponent nodes in the game
tree by weighting each action’s outcome by the likelihood of the opponent taking that action at a particular point in the
game. Leaf nodes can also be assigned expected values by using the outcome probabilities estimated by the opponent model.
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Fig. 7. Part of player A’s opponent model of player B.

Fig. 8. Two showdown histograms for betting sequences on the river. Player A’s hand rank is in bucket 3.

The University of Alberta CPRG have developed two algorithms based on the above ideas, miximax and miximix [22,12].
The major difference between the two is that the miximax algorithm dictates that when choosing a player’s action within
the game tree the action that results in the maximum expected value should be chosen. On the other hand, the miximix
procedure avoids always choosing the maximum action so as to balance the exploration/exploitation trade-off and avoid
predictable behaviour of the agents produced.

5.1.1. Incomplete information game tree search example
We now present an example to illustrate the calculation of leaf node expected values and how these values are backed-

up to intermediate nodes in the imperfect information game tree using the miximax algorithm. Our example takes place
on the last betting round in a game of heads-up, limit Texas Hold’em and involves two players, player A and player B. At
the start of the last betting round there are 10 chips already in the pot, all further bets are in increments of 2 chips and
player B acts first.

Player A’s current beliefs about player B are represented by the opponent model in Figs. 7 and 8. Fig. 7 depicts the action
frequencies player A has observed player B make at this point in the game in the past, i.e. A expects B to always bet when
B is first to act and if raised A expects B to fold 10% of the time, call 90% of the time and never raise.

To simplify the calculations a player’s hand rank is assigned into 1 of 5 separate buckets. Bucket 1 represents the bottom
20% of hand ranks, bucket 2 represents hand ranks in the range of 20–40% and so forth, all the way up to bucket 5 which
indicates a hand rank in the top 20%. Fig. 8 depicts two showdown histograms based on A’s opponent model for player B.
The top histogram corresponds to hand ranks that player B has showed down in the past after making a bet on the river.
This tells us that player A has observed player B bet once with a hand in bucket 1, once with a hand in bucket 2 and 3
times with a hand in bucket 4. The bottom histogram represents the hand ranks that player B has showed down after being
raised on the river. In this case B has called the raise once with a hand in bucket 2 and 3 times with a hand in bucket 4.
For this example we assume that A has a hand rank in bucket 3.

We can now combine the information contained in the opponent model with a depth first search on the imperfect
information game tree (see Fig. 9). A simple formula is used to determine the leaf node values [12]:

EV(x) = Pr(Win) × TotalPot − PlayerInvestment (5)

where Pr(Win) is the probability that player A wins and x refers to a particular node in the game tree. In Fig. 9 all nodes
have been labelled with numbers to clarify the calculation. A depth first search on the game tree in Fig. 9 proceeds as
follows. As A’s opponent model indicates that player B will never check in this situation we ignore that entire sub-tree,
therefore the first leaf node we encounter (node 2) represents the situation when A folds to player B’s initial bet. Applying
formula (5) to the leaf node gives:

EV(2) = 0 × 12 − 5 = −5

The probability of winning when player A folds is trivial to calculate, i.e. it is always 0. There are a total of 12 chips in
the pot (10 plus the 2 chip bet by player B) and A has invested 5 of these chips, which gives an EV of −5. However, if A
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Fig. 9. Expected value calculation using the miximax algorithm.

calls the initial bet made by B (node 3) instead of folding, now calculating the probability of winning requires the use of
A’s opponent model. Recall that, based on A’s opponent model in Fig. 8, player A can expect to win a showdown 2 out of 5
times if A calls B’s bet. Inputting this value into formula (5) gives:

EV(3) = 2

5
× 14 − 7 = −1.4

The last action A has available at this point is to raise. Choosing this action results in a sub-tree in which the expected
values of the leaf nodes will have to be calculated as above. As A’s opponent model predicts B will never raise in this
situation (i.e. bR → (0.1, 0.9, 0.0) in Fig. 7), the sub-tree that would have been generated at this point can be ignored as its
value will only end up being multiplied by 0. This leaves EV calculations assuming that B folds (node 5) or calls (node 6):

E V (5) = 1.0 × 16 − 9 = +7

E V (6) = 1

4
× 18 − 9 = −4.5

Given the expected values for the leaf nodes we can now back-up these values to intermediate nodes using the miximax
procedure. Recall, that at opponent nodes the expected value is backed-up by multiplying the distribution over opponent
actions (given by the opponent model) by the expected values calculated at the child nodes. For node 4, this is given by:

EV(4) = 0.1 × (+7) + 0.9 × (−4.5) = −3.35

The backed-up expected value at node 1 is then just the maximum of the expected values of the child nodes, i.e.
EV(1) = −1.4.

The outcome of the imperfect information tree search indicates that, given A’s current beliefs about player B, A should
simply call B’s initial bet as this gives the maximum expected value.

5.1.2. Adaptive game tree search agents
Using the above ideas the University of Alberta CPRG produced two heads-up, limit Texas Hold’em agents that are both

adaptive and exploitive. Vexbot [12] is an imperfect information game tree search based agent that is available as part of
the commercial software product Poker Academy Pro 2.5. A separate, but similar agent is BRPlayer [82]. Both Vexbot and
BRPlayer use context tree data structures within their opponent models, which disregard the chance events and instead only
record betting sequences. Each betting sequence in the context tree records opponent action frequencies for intermediate
nodes and observed hand rank histograms at showdown leaf nodes. As few observations have been made during early
stages of play, both Vexbot and BRPlayer perform generalisations at showdown leaf nodes by defining various metrics to
identify similar betting sequences which can then be used to bolster observations at a particular leaf node. For example,
betting sequences that exactly match would correspond to the highest level of similarity. The next level of similarity would
consider a more coarse generalisation, such as counting the total number of bets and raises that were made by both the
player and the opponent during each betting round. In the case that there are not enough observations available in the
first similarity level, observations from the next level can be included in the model. This process would continue for further
levels of similarity until a required number of observations was attained, with greater levels of similarity being assigned
greater weight than observations from lower levels.

The main difference between Vexbot and BRPlayer is that BRPlayer considers more levels of (fine grained) similarity
compared to Vexbot. In total BRPlayer considers 5 separate similarity levels whereas Vexbot considers 3 levels [82]. Results
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reported for Vexbot show that it is able to exploit a wide range of computerised opponents [12]. Both Vexbot and BRPlayer
were able to discover and exploit weaknesses in Sparbot’s near-equilibrium strategy. Furthermore, Vexbot was able to ex-
ploit the static benchmark strategies of Always-Call and Always-Raise at a level that closely approximates the theoretically
computed maximum exploitability of those strategies [12].

McCurley [56] applied the miximax algorithm to heads-up, no limit hold’em. Rather than recording action frequencies
to predict opponent actions, McCurley [56] trained artificial neural networks (ANN) with hand history data obtained from
online poker sites. The hand history data was clustered to create opponent models based on different playing styles. During
game tree search the ANN is used at opponent choice nodes to predict action frequencies. A weighted hand range is also
maintained. Hand ranks in the range, as well as other game state information, are used as inputs into the ANN. The weighted
hand range is also used to determine EV at showdown leaf nodes. Due to computational costs, the imperfect information
game tree search was only conducted for the current betting round, with future betting rounds being ignored. However, the
results reported by [56] indicate that the agent was still profitable against human opposition on an online poker site.

Maîtrepierre et al. [55] created an adaptive heads-up, limit hold’em agent called Brennus. Rather than using miximax
search to explore an imperfect information game tree, Brennus constructs a forest of game trees. Within each separate game
tree the opponent is assigned a single weighted pair of hole cards, where the weight represents Brennus’s belief that the
opponent actually has the assigned hand. The weighted expected values from each tree are then combined to determine a
betting action.

Brennus maintains a belief table during each hand, which consists of all possible hole cards and a weight specifying the
probability that the opponent has the corresponding hole cards. At the beginning of a hand all pairs of hole cards are
assigned uniform probability. As the hand continues the probabilities are updated (via Bayes’ Theorem) based on the actions
that Brennus witnesses the opponent make. To update the probability values Maîtrepierre et al. [55] rely on a set of basis
opponent models that define particular styles of play (e.g. tight/aggressive).

Using the opponent models to guide the agent’s beliefs combined with the forest of game tree computations, gives
Brennus five basic strategies that it must dynamically select during play. To do so, Brennus uses the UCB1 [5] policy selection
procedure to appropriately handle the exploration/exploitation trade-off. Using the approach just described Brennus placed
8th out of 17 competitors at the 2007 AAAI Computer Poker Competition [55,1].

5.2. Game-theoretic counter-strategies

Imperfect information game tree search creates exploitive, adaptable agents by generating and searching the game tree
in real-time. This section reviews static, counter-strategies that are derived using offline, game theoretic algorithms.

5.2.1. Frequentist best response
Frequentist Best Response (FBR) [42,43] is an exploitive strategy that builds an offline opponent model for a chosen

opponent by observing training games involving that opponent. FBR assumes a static opponent strategy. This results in FBR
counter-strategies that are exploitive, but not adaptive. The following items briefly summarise the FBR procedure:

Preliminaries:

• Determine the abstraction to use (recall Section 4.4). FBR can be used within any abstraction.
• Determine a default policy. Given that FBR relies on observations to build its opponent model, it is likely that gaps in

the strategy will surface where no observations have been made in the training phase. A typical default policy is always
call.

Training:

• To develop an accurate and complete model of the opponent it is important to observe many training games consisting
of full information i.e. hole cards must be known. The training phase involves mapping observations of played hands
in the real game to frequency counts in the abstraction chosen above. The more training games observed, the better
the opponent model will become. As observations are being made about how the opponent plays in the real game, the
choice of the opponent’s opponent will also impact on the resulting model. For example, an opponent who mostly folds
is going to reduce the number of observations in the model. Johanson [43] recommends a simple “Probe” opponent
whose strategy involves never folding, but instead always calls and raises with equal probability. The use of this simple
opponent ensures that areas in the state space will be explored that otherwise may not have been, given a more
sophisticated opponent.

Best-response:

• Once the frequentist opponent model has been constructed a best-response is computed in the chosen abstraction.
Computing a best-response roughly involves visiting every information set in the abstraction and determining the action
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that will maximise the expected value against the opponent’s strategy. The frequentist opponent model derived in the
training phase is used as an approximation of the opponent’s actual strategy in the given abstraction.

Johanson [43] reports that a typical FBR counter-strategy requires approximately 1 million training games against the
“probe” opponent to generate an appropriate opponent model in a 5 bucket abstraction. Using this model and an always-call
default policy, Johanson presents results that indicate FBR counter-strategies are able to significantly exploit the opponents
they were designed to exploit. However, using these counter-strategies to challenge other opponents, who they weren’t
designed for, results in significant losses for the FBR strategies, highlighting their extremely brittle nature. Nevertheless, the
FBR algorithm remains a powerful tool for determining the exploitability of an opponent.

5.2.2. Restricted Nash Response
The Restricted Nash Response (RNR) [42,43] algorithm attempts to bridge the gap between FBR and ε-Nash equilibria.

While FBR strategies are able to exploit opponents they were designed to defeat by large margins, the losses they incur
against other opponents cancel out these winnings and degrade their overall effectiveness. RNR, on the other hand attempts
to produce counter-strategies that are still able to exploit specific opponents while limiting their own exploitability.

The RNR algorithm involves solving a modified game where the opponent plays a known fixed strategy with probability
p, and is free to play an unrestricted game theoretic strategy with probability 1 − p. Any method that computes a Nash
equilibrium can be used to solve the game, such as solving a linear program or using the counterfactual regret minimisation
algorithm. The result of finding an ε-Nash equilibrium in this modified game produces counter-strategies that will attempt
to exploit the known fixed strategy, while still protecting the counter-strategies own exploitability. To determine the oppo-
nent’s fixed strategy FBR is used. Intuitively, when p = 0 the strategies produced are ε-Nash equilibrium strategies, whereas
when p = 1 the counter-strategy is a best-response to the fixed strategy. Where p varies between 0 and 1, a trade-off is
made between the counter-strategies exploitation of its opponent and its own exploitability.

While the counter-strategies produced using RNR are not able to exploit their intended opponents by as much as FBR,
they also are not beaten by nearly as much as the FBR counter-strategies when facing opponents they were not designed
for [43]. As such, they have been labelled robust counter-strategies.

Just as with the vanilla implementation of the CFR algorithm, RNR algorithms have also been extended by introducing
selective sampling in replacement of full tree traversal. Monte-Carlo RNR (MCRNR) [68] is one such algorithm that allows a
faster rate of convergence than its non-sampled counterpart.

5.2.3. Data biased response
The last approach that we discuss in this line of research that produces non-adaptive, exploitive counter-strategies is

Data Biased Response (DBR) [41]. DBR produces robust counter-strategies in a manner similar to RNR, described above.
As with RNR, DBR computes a Nash equilibrium in a modified game where the opponent is forced to play a fixed

strategy a certain proportion of the time. However, instead of constraining the opponent’s entire strategy with one p value,
DBR provides individual pconf values for each information set in the game tree. The opponent is then forced to play a fixed
strategy at that particular location in the game tree with probability pconf and is free to play an unrestricted strategy with
probability 1 − pconf . The use of only one p value in the RNR algorithm imposes an unrealistic expectation on the opponent
model. It is more likely that the opponent model will have more observations at some areas in the game tree and fewer
observations in other areas. In this way pconf acts as a confidence measure of the accuracy of the opponent model. [41]
experimented with various functions to calculate values for pconf which vary between 0 and pmax , where pmax refers to the
final trade-off between exploitation and exploitability, similar to p in the RNR approach.

An advantage of DBR is that it eliminates the need for a default policy. For information sets where no observations have
been recorded for the opponent model, a pconf value of 0 can be returned, allowing the opponent to play an unrestricted
game theoretic strategy at this point. As the number of observations increase pconf will return greater values making it more
likely that the opponent will be constrained to take the action dictated by the opponent model at a particular information
set. Johanson and Bowling [41] present results that show that DBR does not overfit the opponent model, like RNR tends to.
Furthermore, with fewer observations DBR is still an effective strategy for constructing robust counter-strategies. The DBR
procedure was used to construct the 2009 version of the agent Hyperborean-BR [40], which placed second in the 2009 ACPC
2-player limit bankroll competition.

5.2.4. Teams of agents
The descriptions above suggest that a single counter-strategy will successfully exploit the intended opponent. However,

when challenging other competitors, dissimilar to the opponents they were designed to exploit, then the counter-strategies
will not fare as well. A brittle counter-strategy, such as FBR, is likely to lose a lot in this situation, whereas a robust counter-
strategy, such as RNR or DBR, will limit their own exploitability, but will be unable to exploit the new opponent.

To enable the exploitation of a range of dissimilar opponents, a team of counter-strategies is required, where each
member of the team is able to exploit a different style of opponent. During game play it is then required to select the
strategy that achieves the greatest profit against the current opponent. Johanson [43] describes the use of a coach, that
determines the appropriate strategy to employ against an opponent using the UCB1 algorithm [5]. The UCB1 algorithm
defines a policy selection procedure that achieves an effective trade-off between exploration and exploitation. In the case
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of a team of poker agents, strategy selection must consider the benefits of re-using a strategy that is known to successfully
exploit an opponent for a particular amount (exploitation), compared to selecting a different strategy that could potentially
exploit the opponent for more (exploration). Johanson et al. [42] present results which show that a team of robust counter-
strategies are able to achieve a greater profit against a set of opponents, compared to the use of a single ε-Nash equilibrium
strategy against the same opponents.

6. Alternative approaches

This final section briefly introduces some alternative approaches for constructing poker strategies that have not been
mentioned in the previous sections.

6.1. Case-based reasoning

Case-based reasoning (CBR) [70,49] is a type of lazy learning [2] algorithm, where a set of cases are stored and maintained
that encode knowledge of previously encountered situations, along with their solutions. Cases are typically represented as
feature-value pairs. When a new problem requires a solution, a case is created by binding appropriate values to its features.
The novel case is then compared against the stored cases in the case-base and the most similar cases retrieved, e.g. via the
k-nearest neighbour algorithm.

The application of CBR to Texas Hold’em poker involves storing cases that describe previous hands, along with their
solutions and outcomes, and re-using the solutions from previous similar cases to aid future betting decisions. Sandven
and Tessem [79] used CBR to create a limit hold’em agent called CASEY. CASEY began with an empty case-base. As it
played more and more games, cases were created and stored in the case-base along with their associated outcome. As the
case-base was initially empty, CASEY was forced to populate the case-base by making random decisions and recording
their outcomes. As CASEY recorded more hands it began to re-use decisions that had a positive outcome in similar past
situations. As expected, CASEY could initially form some incorrect beliefs about the value of certain decisions, however
after an initial training period CASEY’S play became less erratic.

Rubin and Watson [75], Rubin [74] have further investigated the use of CBR to derive betting strategies. Rubin and Wat-
son [75] created a case-based limit hold’em agent nicknamed CASPER (CASe based Poker playER). CASPER was designed
to play Texas Hold’em at a full table consisting of up to 10 players. Rather than learning a case-base from scratch, as in [79],
CASPER generated its case-base by observing hand histories which involved formula-based and simulation-based versions
of Poki within Poker Academy Pro 2.5. Each case recorded information such as hand rank and potential, the number of
active players, the number of players yet to act, the number of bets to call, the pot odds and so forth. A solution to a case
consisted of a betting decision. By retrieving the most similar cases a probability triple was constructed and used to deter-
mine a betting action. CASPER was shown to be competitive against a range of computerised opponents offered through
Poker Academy Pro, including Poki. CASPER was also tested against human opposition on an online poker site for both fake
and real money. While CASPER made a consistent profit at the non-real money tables, a small loss was made when playing
for miniature stakes at the real money tables [94,74].

A separate CBR system nicknamed Sartre (Similarity Assessment Reasoning for Texas hold’em via Recall of Experience)
specialises in heads-up, limit hold’em [76,77]. Sartre was trained on the hand history logs of the top ε-Nash equilibrium
agents from previous year’s AAAI Computer Poker Competitions. Sartre competed in the limit hold’em competition at the
2009 ACPC, placing 6th out of 13 competitors in the bankroll division. In 2010 Sartre improved to 3rd place, in the same
competition. A no limit version of Sartre also placed 2nd at the 2010 ACPC in the no limit, instant run-off competition [1].

6.2. Evolutionary algorithms and neural networks

The use of evolutionary algorithms, to automatically evolve strong poker agents, has also been the subject of investiga-
tion [62–64,7,69]. Evolutionary procedures evolve a population over successive generations. Members of the population are
typically evaluated via the use of a fitness function. Members of the population that achieve higher fitness are more likely to
proceed to the next generation, in which they produce offspring via a crossover procedure. Coevolution maintains separate
genetic populations, where members from one population are able to compete against members from another, but evolution
is restricted to within their separate populations.

A notable effort from this line of research is presented by Jason Noble in [63]. Noble used Pareto coevolution (PC) to
evolve limit hold’em agents that compete in full ring games with up to 10 players. The members of each population were
artificial neural networks (ANN) that compete against each other over numerous generations. Separate ANNs were used for
the preflop and postflop stages, where the inputs of each network mostly consisted of hand evaluation, opponent modelling
information and other game state parameters. The output nodes of the networks correspond to fold, call and raise betting
actions. A previous effort, from the same author, used a less sophisticated rule-based representation [64].

Noble identifies the potential problem of using a simplistic one-dimensional fitness function that rewards ANNs that
achieve a greater average bankroll compared to other ANNs. The problem is due to the intransitive nature of poker strate-
gies, i.e. while strategy A may beat strategy B and strategy B may beat strategy C, it doesn’t necessarily follow that A beats C.
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Fig. 10. A directed acyclic graph. A, B and C are random variables. Nodes A and B are the parents of node C and therefore they influence node C, represented
by the edges.

Rather, Noble attempts to evolve robust strategies by selecting members of a population based on multi-dimensional opti-
misation. To do so Noble [63] bases selection on Pareto dominance, where a player, A, Pareto-dominates another player, B, if
A performs at least as well as B against all opponents (including against B itself).

Noble [63] presents experiments that compare PC with standard coevolutionary algorithms where selection is based
on average bankroll balance. 5000 generations of evolution take place where the members of two populations compete
against a reference group of strategies. The results show that PC produces a steady improvement against the reference group,
whereas the performance of the standard coevolutionary procedure, against the same reference group, varies wildly. The
results indicate that knowledge was able to be maintained over successive generations using PC.

Nicolai and Hilderman [62] use a similar evolutionary procedure to evolve agents that play no limit Texas Hold’em at
a full table consisting of 9 players. Once again ANNs are used as members of the population. A static network structure is
defined that consists of 30 input nodes, 20 hidden nodes and 5 output nodes. Evolution takes place by refining the weights
used within the networks over successive generations.

Nicolai and Hilderman [62] use a tournament structure during the evolutionary process to assess a player’s performance.
In the tournament structure all players begin a match with an equal number of playing chips and play continues until one
player possesses all the chips. Players are then ranked based on their tournament placement, e.g. at a 9 player table the first
player eliminated receives a rank of 9, the next 8, then 7 etc. The winner of the tournament is assigned a rank of 1. Selection
is based on the average rank obtained over multiple tournaments. The selected players then act as parents within the next
generation. Nicolai and Hilderman [62] define a crossover procedure that produces offspring using a biased sum over the
weights of the parent networks. The evolved ANNs were evaluated by challenging a range of static benchmark strategies,
such as Always-Call, Always-Raise and Always-Fold together with a group of evolved agents from previous work [7]. The
results show that improvements were observed over a baseline evolutionary algorithm by introducing separate coevolved
populations (coevolution), as well as the introduction of a hall of fame heuristic, where members of the population compete
against a distinct set of high fitness past players, rather than competing against members from other populations.

A further neural network based agent worthy of mention is MANZANA. MANZANA is a limit hold’em agent, created by
Marv Andersen, that won the bankroll division of the limit hold’em competition at the 2009 and 2010 ACPC [1]. While
relatively few details of MANZANA’s design and implementation are available, it is known that separate ANNs are used for
preflop and postflop play [3]. Furthermore, rather than tuning the weights of the neural network via evolution (as the agents
above did) MANZANA was trained on the hand histories of the top agent from the previous year’s ACPC [1].

6.3. Bayesian poker

The last alternative approach we review focuses on the design and application of Bayesian networks to produce poker
playing agents. A Bayesian network is a directed acyclic graph where each node in the graph represents a random variable
[67]. The edges between nodes in the graph represent dependency relationships (see Fig. 10).

Each node within the network has an associated conditional probability table (CPT), which allows conditional probability
values to be calculated based on the values of the parent nodes. By assigning nodes within the network different values,
probabilities can be propagated throughout the network, resulting in a probability distribution over the random variables.

An influence diagram (or decision network) augments a Bayesian network with information about the utility of outcomes
within the network. In this way Bayesian networks can be used to inform decisions based on maximising expected utility.

An example Bayesian network, adapted from [50] is illustrated in Fig. 11. Here the network identifies variables for a
player and an opponent. Looking at the direction of the edges in the graph, the network indicates that the final hand of a
player and their opponent determines whether the player wins the hand or not. The current hand is influenced by the final
hand type and the opponent’s action is influenced by their current hand

AI researchers Ann Nicholson and Kevin Korb from Monash University have spent many years investigating the use of
Bayesian networks within the domain of poker, beginning with five-card stud [50] and later adapting this approach to Texas
Hold’em [61]. Korb, Nicholson et al. have designed and applied Bayesian decision networks for heads-up, limit hold’em
resulting in a poker agent called BPP (Bayesian Poker Program). The networks used by BPP consist of variables such as the
amount of chips in the pot, the opponent’s action, BPP’s current and final hand type, the opponent’s current and final hand
type and whether BPP will win the hand given the final hand types [61]. The estimated probability that BPP will win the
hand is then used to make a betting decision that attempts to maximise BPP’s total winnings.
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Fig. 11. A Bayesian network for poker, adapted from original image presented in [50].

While BPP has undergone several stages of development, results against other computerised players indicate there is
still further room for improvement. BPP competed in both the 2006 and 2007 AAAI Computer Poker Competitions. In 2006
BPP placed 3rd out of 4 competitors in the limit hold’em bankroll competition and 4th out of 4 in the instant run-off
competition [53]. In 2007, BPP lost to all, but one competitor placing 16th out of 17 in the bankroll competition and 14th
out of 15 in the instant run-off competition [1].

7. Conclusion

We have presented a review of recent algorithms and approaches in the area of computer poker, along with a survey of
some of the autonomous poker agents produced using the algorithms described. Each approach presented has highlighted
its own specific opportunities and challenges for AI research within the poker domain. For example, research into ε-Nash
equilibrium strategies has mostly been driven by solving larger game models. As a result, solving models that require
fewer simplifying abstractions has typically resulted in performance improvements and better automated poker agents.
On the other hand, a major challenge for research into exploitive agents involves the construction of accurate opponent
models in real-time with limited data, that have the ability to adjust quickly to changing opponents. For Monte-Carlo
simulations, problems were addressed such as how best to bias the sampling distribution to accurately reflect the game
conditions and hence perform a better informed search of the state space. Alternative research efforts within the poker
domain have also highlighted challenging problems such as how to best select strategies within an evolutionary procedure
given the intransitive nature of poker strategies, as well as the question of whether strong strategies can successfully be
approximated via observation and generalisation. While significant advances have been made in some of the above areas
there are still many challenges left to address. In particular, due to the large computational costs required to produce
sophisticated strategies, much of the work presented here has focused solely on two-player, limit hold’em, with a relatively
recent transition to no limit play. The difficulties of producing sophisticated strategies to challenge multiple opponents still
requires further investigation. Furthermore, almost all research has focused on hand by hand play with fixed blind levels
as in a poker cash game, with almost no consideration given to tournament play where increasing blind levels give rise to
changes in strategy. Considering the challenges encountered so far and the difficulties imposed by the many variations of
the game, it is evident that the poker domain is a vast, rich environment that seems likely to continue to offer challenging
problems and opportunities for AI researchers.
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