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Abstract  

Memory hierarchy performance, specifically cache memory 
capacity, is a constraining factor in the performance of 
modern computers.  This paper presents the results of two-
level cache memory simulations and examines the impact of 
exclusive caching on system performance.  Exclusive 
caching enables higher capacity with the same cache area 
by eliminating redundant copies.  The experiments 
presented compare an exclusive cache hierarchy with an 
inclusive cache hierarchy utilizing similar L1 and L2 
parameters.  Experiments indicate that significant 
performance advantages can be gained for some 
benchmarks through the use of an exclusive organization.  
The performance differences are illustrated using the L2 
cache misses and execution time metrics.  The most 
significant improvement shown is a 16% reduction in 
execution time, with an average reduction of 8% for the 
smallest cache configuration tested.   With equal size victim 
buffer and victim cache for exclusive and inclusive cache 
hierarchies respectively, some benchmarks show increased 
execution time for exclusive caches because a victim cache 
can reduce conflict misses significantly while a victim 
buffer can introduce worst-case penalties.  Considering the 
inconsistent performance improvement, the increased 
complexity of an exclusive cache hierarchy needs to be 
justified based upon the specifics of the application and 
system. 

1 INTRODUCTION* 

In modern computer development, the rate of improvement 
in microprocessor speed exceeds the rate of improvement 
in DRAM memory access latency.  To solve this disparity, 
cache has been used to effectively diminish the impact of 
the cycle time differential.  Cache memories are small, 
high-speed buffer memories, which contain the most 
recently used portions of main memory [1].  For on-chip 
cache, the cycle time of a small cache can match that of the 
processor, yielding an access time of 1-cycle.  Cache hit 
rate for a small cache is limited.  However, cache size 
cannot be increased without limitation.  For a fixed 
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technology, the larger the cache, the slower the cache will 
become [2], and larger caches increase the cost of 
manufacturing.  Another way to increase cache hit rate is to 
more effectively use the existing cache area.  Many desktop 
microprocessors use an on-chip two-level cache hierarchy.  
A two-level cache hierarchy allows a tradeoff between 
optimizing hit time and miss rate [9].  Two level caches can 
be designed to be either inclusive or exclusive.  For 
example, the Intel Pentium® 4 Willamette [13] has an on-
die 256kB inclusive L2 cache, while the AMD AthlonTM 
Thunderbird [14] has an on die 256kB exclusive L2 cache.  
An inclusive cache system implies that the contents of the 
L1 cache be a subset of the L2 cache [2]. This decreases the 
effective cache capacity available for unique information 
[3].  An exclusive cache hierarchy is a hierarchy in which 
the contents of the L1 and L2 are exclusive.  This means 
that the effective cache size is L1+L2, unlike inclusive 
caching, whose effective cache size is the size of the largest 
cache – typically the L2. 
 
Using an exclusive cache hierarchy, with the same die area 
dedicated to storage as a traditional inclusive cache, larger 
effective cache size can be obtained.  The exclusive cache 
state machine is more complex, and an exclusive cache 
requires a victim buffer.  These factors may result in a 
slightly larger combined circuit for the exclusive cache, but 
for a large cache the transistors allocated to storage 
dominate the circuit area required.  In the studies presented, 
inclusive and exclusive caches of equal size, and with 
victim caches or victim buffers respectively of equal size, 
are compared. 
 

2 BACKGROUND 

Exclusive caching is one technique used to maximize the 
effective cache size.  Jouppi and Wilton evaluated a direct-
mapped and 4-way set-associative exclusive cache 
compared with a conventional inclusive cache.  The results 
showed that the exclusive cache has improved performance 
over inclusive cache due to the increased on-chip capacity 
[5].  The concept of an exclusive cache hierarchy can be 
relevant to any microprocessor implementation utilizing 
multiple levels of cache.  Theodore et.al. examined the 
usage of exclusive caching in networking storage devices 
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[4].  In this study, only on chip microprocessor cache 
performance is addressed. 
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Figure 1: Exclusive Cache Architecture 

AMD introduced an implementation of an on-die two-level 
exclusive cache architecture in the AthlonTM and DuronTM 
processors in 2000 [3].  Figure 1 illustrates the architecture.  
The L2 cache contains only victim or copy-back cache 
blocks that are ejected from the L1 due to conflict misses.  
When a miss occurs in the L1, the victim block is 
transferred to the victim buffer (VB) while at the same time 
the L2 is checked.  There is 128KB of L1 cache, of which 
64KB is for instruction and 64KB is for data.  This 
provides a hit rate sufficiently high to ensure that the victim 
buffer is rarely fully occupied; the microprocessor can flush 
the victim block to the L2 when it is idle some time after 
the load request has been serviced, hiding the traffic.  The 
scenario which results in the highest L2 latency for the 
exclusive cache architecture occurs when the victim buffer 
is full and there is a L1 miss/L2 hit.  In this worst case 
scenario a three-step sequence is required.  The victim 
buffer entry must first be flushed to the L2, after which the 
L1 victim is moved to the victim buffer.  Only then can the 
requested data be retrieved from the L2.  
 
The victim buffers play a different role than that of a victim 
cache, although both are used to hold victims ejected from 
an L1 cache.  To minimize the stalls imposed upon the 
processor by the requirement of an available victim buffer 
entry to service an L1 miss, the victim buffer flushes the 
data as soon as the bus is idle.  This is in contrast to a 
victim cache, which maintains data all blocks in the hope 
that the data is reused soon.  To maintain coherence there 
are cases in an exclusive cache hierarchy when the victim 
buffer must function as a victim cache.  This occurs when 
written data has not been flushed completely from the 
victim buffer and the data requested by the processor is 
contained in the victim buffer.  When this happens, the 
victim buffer swaps the data with the block in the L1. 
 
 

L1 L2 L3 Main
Mem

L1, L2 exclusive; L3 inclusive with L1 and L2

L1 L2 L3 Main
Mem

L1, L2 inclusive; L3 exclusive with L2  
Figure 2: Three-level exclusive cache 

Exclusive caching or inclusive caching can be extended to 
multiple levels if more than two levels of cache are present.  
A multi-level exclusive hierarchy could be designed in 
many ways, and could include three-levels of cache with 
L1 and L2 inclusive and L3 exclusive, or L1 and L2 
exclusive and L3 inclusive.  Figure 2 shows these two 
architectures. 
 
Movement of blocks between cache levels is made easier 
through the use of a common line size.  Unequal cache line 
size will result in a cache hierarchy that is potentially only 
partially inclusive.  Fragmentary exclusivity may occur 
when L1 is set associative, the block size is not the same 
for L1 and L2, or the number of sets in L2 is smaller than 
that of L1 [8].  Fragmentary exclusivity implies that some 
but not all of the L1 contents are duplicated in L2, so that 
the effective cache is less than L1+L2. 
 
Many multiprocessors use a multilevel cache hierarchy to 
reduce both the demand on global interconnect and the 
cache miss penalty.  Inclusive caching simplifies the well-
understood cache coherence problem for multiprocessors.  
Some multiprocessors share address space, and for such 
systems, a given piece of information may have several 
copies in different places, which can cause coherence 
problems.  Many algorithms that are used to maintain 
memory consistency enforce inclusive caching.  If 
exclusive caching is used in a multiprocessor environment, 
then the L1 cache needs dedicated snoop ports as used in 
the AMD Athlon MP processor [11].  This method solves 
the coherence problem, but at the cost of die area and cache 
access latency. 
 
In this paper, two-level exclusive cache hierarchies in a 
uniprocessor system are compared with two-level inclusive 
cache hierarchies of equivalent size.  The victim buffer, 
which is necessary for an exclusive cache hierarchy, is the 
most significant resource differential between the exclusive 
and inclusive caches compared.  In an attempt to minimize 
the differences between the inclusive and exclusive 
hierarchies, each inclusive hierarchy simulated has a victim 
cache comparable to the victim buffer required by the 
exclusive cache of the same size.  The cache line size is 
fixed across L1, L2, and VC/VB for each configuration.  
The L2 has only one port, which is common practice in 
most modern microprocessors, since a single ported cache 
requires less area than a two-ported cache. The victim 
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buffer or victim cache has a variable number of entries, and 
it shares the bus with the L1 as shown in Figure 1.l 

3 SIMULATION TECHNIQUES 
To evaluate the performance of the exclusive cache system, 
a simulator for a parameterized exclusive cache hierarchy 
was built. This simulator was integrated into sim-outorder 
from the SimpleScalar toolset version 3.0c [6]. 

3.1 Experimental Settings 
Without modification, sim-outorder models a two-level 
cache system, which uses a write back policy for the L1 
cache and a write through policy for the L2 cache using a 
write allocate strategy. For the studies presented herein, this 
toolset is expanded to include three new models, which are 
integrated into the simulation environment.  These three 
models are: an exclusive cache model, a victim buffer 
model and a DRAM (Dynamic Random Access Memories) 
model, as shown in Figure 1.  Each model is modular and 
parameterized, and can be optionally incorporated in each 
simulation.  

3.2 Model Description 

Inclusive caching has been the standard cache behavior due 
to its simplicity.  For an inclusive cache, when a load 
misses in the L1 but hits in the L2, the cache block is 
copied from the L2 to the L1.  If the load misses in both the 
L1 and L2 cache, the data is retrieved from the main 
memory to the L2 cache, which then provides the data to 
the both the L1 and L2 caches each of which allocate a 
redundant copy 
 
In two-level exclusive caching, when a load misses in the 
L1 and hits in the L2, the contents of L1 and L2 are 
swapped.  That is, the victim block from the L1 cache is 
first transferred to the victim buffer; then the referenced 
data is transferred from the L2 cache into the L1 cache, 
after the request is serviced, the victim block is transferred 
to the second-level cache.  If a load misses in the both the 
L1 and L2, the desired item is copied directly into the L1 
from the main memory, potentially evicting a victim to the 
L2 cache.  Under this scheme, data cannot be in both L1 
and L2, which gives rise to “exclusion”. 
 
Whenever a cache is exclusive, a victim buffer is necessary 
to allow a read to be serviced prior to write completion.  
The victim buffer modeled between L1 and L2 utilizes a 
first-in first-out (FIFO) replacement policy.  To make the 
assessment comparable, the inclusive cache simulated also 
includes victim cache with the same size, which is accessed 
in parallel with the L1 cache. 
 
Figure 3 is a flow chart of the finite state machine (FSM) 
controlling accesses to a simulated exclusive two-level 
cache. When the CPU performs a memory access, it will 

check the L1 cache and the victim buffer simultaneously, 
and either one can service the request if the data is 
available. It should never be the case that the L1 cache and 
the VB contain the same data element since they are also 
exclusive.  Load instructions have priority to access the L2 
while the victim buffer contains write data destined for the 
L2 cache; the victim buffer is designed to flush data only 
when the bus is idle.  When the worst-case scenario occurs, 
the victim buffer drains only a single cache element, so as 
to minimize CPU stalling time, and allow the following 
access to be serviced as soon as a VB entry is available.  
Another potential advantage of an exclusive cache 
hierarchy is that the victim buffer can hold data longer in 
the same manner as a victim cache, allowing increased 
performance if a hit in the victim buffer occurs in the near 
future. 
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Figure 3: Block Diagram Of The Exclusive Cache  

The FSM logic of an exclusive cache is more complex than 
conventional inclusive cache, but more significantly, it 
integrates the control of the multiple on-chip caches. 
 
For both inclusive caching and exclusive caching, if the 
request is missed in the L2, the request goes on to the main 
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memory. In SimpleScalar 3.0c the main memory access 
latency is fixed to be 32 cycles with infinite parallelism. In 
order to improve the accuracy of this main memory model, 
a DRAM model is incorporated to provide a more realistic 
latency based upon the non-uniform access latency of real 
DRAM. In the new DRAM model, the memory controller 
and a bus with contention are emulated. Bank contention, 
DRAM precharge, and DRAM refresh are also considered, 
and several DRAM timing configurations can be selected. 
 
The exclusive L2 cache model verification was performed 
through deterministic benchmarks, the procedure of which 
is available [15]. 

3.3 Methodology and Benchmarks 

10 benchmarks from SPEC2000 [7] were used in the 
experiments presented. These benchmarks were 
precompiled binaries targeted for the PISA_SS_Little ISA 
and were randomly selected.  Each benchmark was 
simulated using a modified SimpleScalar 3.0c on RedHat 
Linux machines. Table 1 lists the benchmarks used in this 
study.  Also included is the input set used for the 
benchmark and the number of load instructions simulated 
for the benchmark. 

Table 1: Benchmarks for Simulations 
Name Input Number of Load 

Instructions 

ammp00 ammp 1.64E+09 
art00 test 4.11E+08 

bzip200 test 3.68E+08 
equake00 inp 1.85E+09 

gcc00 cccp 4.14E+08 
gzip00 test 5.87E+08 
mcf00 inp 40628928 
mesa00 test 5.55E+08 

vortex00 lendian 2.79E+09 
vpr00 test 2.07E+08 

 
To accurately model the non-uniform latency of a 
synchronous DRAM memory system a DDR333 / PC2700 
SDRAM model is integrated into sim-outorder. The timing 
characteristics of the DRAM Tcl-Trcd-Trp are 2-2-2, and the 
bus multiplier is 12, implying a processor clock speed of 
2GHz. SimpleScalar 3.0c assumes that a write buffer of 
unlimited size is used, reads are allowed to bypass writes, 
and the buffered data is written to main memory whenever 
there are no outstanding reads.  Writing from the victim 
buffer to the L2 cache is pipelined, and the bus between the 
victim buffer and the L2 cache is assumed to be as wide as 
the cache line size, so that the latency for writing each entry 
is one-cycle. 

4 SIMULATION RESULTS   

The simulations compare the performance of an inclusive 
cache with an exclusive cache, where the cache 
configurations vary in: L2 size alone, L1 and L2 cache size, 
and the number of victim buffer or victim cache entries.  
The number of L2 cache accesses, L2 misses, execution 
time and other statistics were gathered for each simulation.  

4.1 Cache Configurations 

A variety of cache configurations are used for the target 
machines. All L1 caches are equally split and direct 
mapped; all L2 caches are unified and use LRU 
replacement policy.  All other parameters are SimpleScalar 
3.0c defaults. 
 
A direct mapped L1 and a common block size for both L1 
and L2 simplifies the maintenance of an exclusive cache 
hierarchy.  This allows for a performance comparison 
between equivalent exclusive and inclusive cache 
hierarchies.  Under these circumstances, L1 hit rate is not 
used as a metric because it is identical across 
configurations. 
 
To evaluate the exclusive cache performance, simulations 
using 10 sets of cache configurations were performed. For 
each configuration, 10 benchmarks were examined. Among 
these configurations, one was selected as the standard 
machine, whose configuration is given in Table 2. 

Table 2: Standard Machine Configuration 

Parameter Configuration 
L1 I-cache 32kB direct; 32B line, 1 cycle lat
L1 D-cache 32kB direct; 32B line, 1 cycle lat

L2 Unified Cache 256kB 4-way, 6 cycle lat 
VB or VC entries 8 entries 
Branch Prediction 2k bimodal 

BTB 512 entry 4-way set assoc. 
Return Addr. Stack 8 entry queue 

ITLB 16 entry 4-way, 4kB mapping 
DTLB 32 entry 4-way, 4kB mapping 

Fetch/Issue/Commit Width 4 entries 
Register Update Unit size 32 entry queue 
Load / Store Queue size 8 entry queue 

Mem ports (to CPU) 2 ports 
Integer ALU 4 units 

Integer Mult / Div 1 unit 
FP ALU 4 units 

FP Mult / Div 1 unit 
 
The other configurations differ with the standard 
configuration in L1 cache size, L2 cache size, and VB 
entries respectively. Correspondingly, three groups of the 
configurations are defined, which are tabulated in Table 3. 
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Table 3: Cache configurations 

Group Config # Characteristics 
1 128k 

Standard 256k A (L2 cache size) 
2 512k 
3 32k split L1, 128k L2 

Standard 64k split L1, 256k L2 
4 128k split L1, 512k L2 

B (L1, L2 size) 

5 256k split L1, 1M L2 
6 2 entries 
7 4 entries 

Standard 8 entries 
C (VB size) 

8 16 entries 
 
Simulations were performed for all the benchmarks listed 
in Table 1 with each of the cache configurations listed in 
Table 3.  This means simulations were performed for 10 
benchmarks, 9 cache configurations each, resulting in a 
total of 180 simulations. 

4.2 L2 Cache Size 
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Figure 4: L2 misses comparison with varying L2 size 

Figure 4 shows the L2 misses of an exclusive cache 
normalized to the L2 misses of an inclusive cache with 
varying L2 cache size from 128kB to 512kB. When the L2 
cache size is relatively small (128kB), exclusive caching 
shows significant improvement over inclusive caching, 
where the average improvement is about 16%.  With a 
larger L2 cache size, the performance improvement 
becomes less significant.  This is because when L2 size 
increases, the increase in effective cache size is the same 
for both inclusive and exclusive caching, i.e., the ratio 

inclusivecachesizeeffective

exclusivecachesizeeffective

_

_
 decreases.  The minimal reduction in 

average L2 misses is still 1.6% when the L2 cache size is 
512kB. 
  

Increasing L2 cache size results in a less significant 
difference between exclusive and inclusive caches for 
benchmarks of art00 and equake00, as these benchmarks 
have an extremely large data set, have inherently poor 
cache performance, and are insensitive to cache size. 
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Figure 5: Execution time with varying L2 size 

Figure 5 shows the execution time of benchmarks with an 
exclusive cache normalized to that of an inclusive cache 
when L2 cache capacity is increased. In general, with larger 
L2 cache size, the execution time for both inclusive and 
exclusive caching is reduced. Figure 5 illustrates that the 
advantage of exclusive caching is significant for many 
benchmarks, especially when the L2 cache size is small.  
The best performance gained is 16% by the gzip00 
benchmark when the L2 size is 128kB.  Some benchmarks 
do not show significant reduction in execution time 
although they exhibit considerable reduction in L2 misses.  
In the case of mesa00 the execution time is slightly higher 
when exclusive caching is used due to stalls required when 
the victim buffer is full. 
 

0%
2%
4%
6%
8%

10%
12%
14%

am
m

p0
0

ar
t0

0

eq
ua

ke
00

bz
ip

20
0

gc
c0

0

gz
ip

00

m
cf

00

m
es

a0
0

vo
rte

x0
0

vp
r0

0

av
er

ag
e

Benchmarks

Fr
ac

tio
n 

of
 L

1 
m

is
se

s 
w

ith
 

fu
ll 

V
B

L2-128k

L2-256k

L2-512k

Figure 6: Rate of L1 Miss with Full Victim Buffer 

Exclusive caching may reduce performance for two 
reasons.  First, the exclusive cache has a higher worst-case 
penalty than the inclusive cache in the scenario where the 
victim buffer is full and an L1 miss occurs.  From Figure 6, 
it can be seen that this scenario happens frequently for 
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ammp00, gcc00, vortex00 and mcf00.  As L2 size increases, 
the worst-case latency is incurred more frequently, due to 
increased L2 hit rate.  The high latency associated with a 
VB ejection is more significant than the increased capacity 
available through exclusive caching, yielding reduced 
performance for exclusive caching in some benchmarks.   
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Figure 7: VB or VC hits rate 

The second reason why inclusive cache execution time may 
be less than exclusive cache execution time is due to the hit 
rate of the victim cache exceeding that of the victim buffer.  
All inclusive caches in this study incorporate victim caches.  
As can be seen in Figure 7, the hit rate of the VC is much 
higher than the VB.  For example, mesa00 achieves a 60% 
hit rate for VC while only a 0.06% hit rate for VB.  This 
gives an inclusive cache a significant benefit, especially 
when L1 cache size is small.  Even with this inclusive 
cache advantage due to the victim cache, the exclusive 
cache organization still results in a lower execution time for 
most benchmarks, as can be observed in Figure 5. 

4.3 L1 and L2 Cache Size 
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Figure 8: L2 misses with varying L1 and L2 size 

Figure 8 shows exclusive cache L2 misses normalized to 
inclusive cache L2 misses when the L1 and L2 cache size 
are similarly increased.  With a small L1 and L2, some 
benchmarks show significant performance improvement 
with exclusive caching.  For example, L2 misses are 
reduced by 25% for vortex00 and gcc00 with small cache 

sizes.  When L1 and L2 are sufficiently large, the L2 cache 
can satisfy most requests, so L2 misses will drop 
accordingly.  From the average L2 misses shown in Figure 
8 it can be seen that the performance advantage of an 
exclusive cache is reduced as L2 cache size increases.  This 
is due to the reduced capacity advantage of an exclusive 
cache relative to an inclusive cache as the L2 cache size is 
increased.  For a few benchmarks such as art00 and gcc00, 
when the L1-L2 size is increased to 256k-1M, exclusive 
caching demonstrates a significant reduction in L2 misses.  
This is because these benchmarks have a large data set, and 
exclusive caching provides greater capacity.  The average 
L2 misses are reduced by approximately 5% due to 
exclusive caching.  
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Figure 9: Execution time with varying L1 and L2 size 

Figure 9 illustrates the comparison of execution time, 
where the execution time with an exclusive cache is 
normalized to the execution time with an inclusive cache.  
It can be seen that the pattern is similar to that of the L2 
misses as shown in Figure 8.  Benefits of exclusive caching 
diminish with increased L1 and L2 size for some 
benchmarks such as gcc00 and vpr00.  The main reason for 
this phenomenon is that the working set of these 
benchmarks is relatively small.  This will cause the L2 
accesses to be reduced with a large L1, making the 
exclusive caching less useful.   Some benchmarks, such as 
equake00 and gzip00, have better performance with a larger 
cache size.  One reason is that the impact of a VB on 
execution time diminishes when cache size increases.  
Another reason is that a large cache size can satisfy the 
requirements of a large data set, and exclusive caching can 
provide larger effective cache size.  Art00 realizes a 
performance improvement of 15.5% with an exclusive 
cache hierarchy when L1 and L2 size are 256kB and 1MB 
respectively.  This is due to the significant reduction of L2 
misses. The average execution time reduced by exclusive 
caching is about 2.5% with a small cache size and 2% with 
a large cache size.  
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4.4 Victim Buffer Size 
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Figure 10: L2 misses with varied VB entries 

Figure 10 shows the L2 misses of an exclusive cache 
normalized to the L2 misses of an inclusive cache with VB 
entries varied from 2 to 16 entries.  Each VB entry has the 
same size as a cache line.  For exclusive cache, the victim 
buffers may theoretically service some L1 misses, resulting 
in fewer L2 accesses.  However, this caching function of a 
VB is secondary to the enabling of processor accesses to be 
serviced without waiting for an L1 victim to be flushed 
back to the L2 cache.  The hit rate of the victim buffer 
varies from 0% to 1.6%, whereas the hit rate of a victim 
cache varies from 0% to 60% as is seen in Figure 7.  The 
victim cache reduces misses more significantly than victim 
buffer does, but most of those misses are also available in 
the L2 cache.  Thus it can be seen that there is little 
difference in L2 misses, as shown in Figure 10, when VB 
entries are varied from 2 to 16.   
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Figure 11: Execution time with varied VB entries 

Figure 11 shows the execution time of an exclusive cache 
normalized to that of an inclusive cache with increasing 
victim buffer entries.  If the victim buffer has more than 
four entries, there is sufficient idle bus time to drain the 
victim block from the victim buffer, and the worst-case 
scenario does not introduce significant penalties to the 

exclusive cache execution time.  With smaller L1 cache, 
the number of VB entries needs to be increased in order to 
satisfy an increased number of accesses.  Correspondingly, 
as L1 cache size increases, the number of VB entries can be 
smaller since the accesses would be reduced, and fewer 
entries are sufficient to meet the requirement. 

5 CONCLUSIONS 

This research is motivated by the increasing performance 
differential between processor and main memory (i.e. 
DRAM).  Exclusive caching, like all caching, serves to 
reduce the dependence of the processor upon data residing 
in the main memory.  This furthermore reduces average 
access latency and bus traffic on limited bandwidth 
interconnects such as the front-side and DRAM bus.  
Exclusive caching has many advantages over conventional 
inclusive caching [5]. Increased associativity is provided 
through the increased capacity as two memory references 
that are mapped to the same cache set can reside in either 
the L1 cache or the L2 cache.  Increased hit rate is also 
made possible by the increased cache capacity which is 
better utilized, since there are no duplications between the 
contents of the L1 cache and L2 cache. 
 
This paper illustrates the effects of an exclusive two-level 
cache memory hierarchy with SPEC 2000 benchmarks.  
The cache configurations varied in L2 size, L1 and L2 size, 
and the number of victim buffer entries.  The results of the 
simulations are encouraging: exclusive caching provides 
benefits to most benchmarks, especially when L2 cache 
size is small.  As the L1 and L2 cache sizes increase, the 
advantages of exclusive caching become less noteworthy, 
especially for benchmarks with a large working set.  For 
systems that have small cache sizes, running applications 
with good caching behavior (high cache hit rate), the 
performance improvement attributable to exclusive caching 
is most significant. 
 
Some applications such as mesa00, which have a large 
amount of L1 conflict misses, demonstrate better 
performance with an inclusive cache hierarchy.  There are 
two reasons.  First, the victim cache in an inclusive 
hierarchy has a very high hit rate for these benchmarks.  
Second, the worst-case latency in an exclusive cache 
hierarchy occurs more frequently when the victim buffer 
has small size.  These observations explain why the 
execution time of an inclusive cache hierarchy may be less 
than that of an exclusive cache hierarchy.  
 
The results of our simulations yield that the number of 
victim buffer entries has little impact upon performance 
beyond 4 victim buffer entries.  This assumes a relatively 
large 64kB split L1 cache.  The victim buffer can act as a 
victim cache and reduce the L2 cache accesses.  However, 
in the simulations performed, the hit rate of the victim 
buffer never exceeded 1.6% regardless of the number of 
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victim buffer entries.  If the L1 cache size is increased, the 
victim buffer entries involved can be correspondingly 
smaller to supply both higher utilization and equivalent 
performance.  
 
One limitation of the two-level exclusive cache hierarchies 
simulated herein is that the cache block size is constrained 
to be identical for both the L1 and L2 cache, making the 
design space less flexible.  It is common to make the L2 
cache line larger than the L1 cache line, and if all caches 
(L1, L2, VB) use the same line size, each cache design will 
be less flexible and this may result in reduced performance.  
For this reason it is suggested that a prefetch buffer is used 
in combination with an exclusive cache utilizing a small or 
medium block size.  A second drawback of exclusive 
caching is that increased data movement among non-
redundant caches requires additional control and incurs 
additional power consumption.  A third drawback is that to 
implement exclusive caching in SMP requires more chip 
area to implement L1 snoop ports, which increases the cost.  
None of these criticisms of exclusive caching has been 
directly addressed in these simulations. 
 
Considering the complexity involved in an exclusive cache 
hierarchy and the current silicon technology, the exclusive 
cache hierarchy is suitable for server applications that 
perform a large amount of memory accesses and embedded 
systems that have limited silicon space for cache and 
memory.  This study is limited in that it only examines the 
single-threaded application workload.  Future work 
includes applying exclusive caching in multithreaded 
applications and multi-processor systems. 
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