
 1

Performance Evaluation of Exclusive Cache Hierarchies

Ying Zheng Brian T. Davis Matthew Jordan

Electrical & Computer Engineering Department,
Michigan Technological University

{yizheng, btdavis, mcjordan}@mtu.edu

Abstract

Memory hierarchy performance, specifically cache memory
capacity, is a constraining factor in the performance of
modern computers. This paper presents the results of two-
level cache memory simulations and examines the impact of
exclusive caching on system performance. Exclusive
caching enables higher capacity with the same cache area
by eliminating redundant copies. The experiments
presented compare an exclusive cache hierarchy with an
inclusive cache hierarchy utilizing similar L1 and L2
parameters. Experiments indicate that significant
performance advantages can be gained for some
benchmarks through the use of an exclusive organization.
The performance differences are illustrated using the L2
cache misses and execution time metrics. The most
significant improvement shown is a 16% reduction in
execution time, with an average reduction of 8% for the
smallest cache configuration tested. With equal size victim
buffer and victim cache for exclusive and inclusive cache
hierarchies respectively, some benchmarks show increased
execution time for exclusive caches because a victim cache
can reduce conflict misses significantly while a victim
buffer can introduce worst-case penalties. Considering the
inconsistent performance improvement, the increased
complexity of an exclusive cache hierarchy needs to be
justified based upon the specifics of the application and
system.

1 INTRODUCTION*

In modern computer development, the rate of improvement
in microprocessor speed exceeds the rate of improvement
in DRAM memory access latency. To solve this disparity,
cache has been used to effectively diminish the impact of
the cycle time differential. Cache memories are small,
high-speed buffer memories, which contain the most
recently used portions of main memory [1]. For on-chip
cache, the cycle time of a small cache can match that of the
processor, yielding an access time of 1-cycle. Cache hit
rate for a small cache is limited. However, cache size
cannot be increased without limitation. For a fixed

This work is supported by NSF CAREER Award CCR – 0133777.

technology, the larger the cache, the slower the cache will
become [2], and larger caches increase the cost of
manufacturing. Another way to increase cache hit rate is to
more effectively use the existing cache area. Many desktop
microprocessors use an on-chip two-level cache hierarchy.
A two-level cache hierarchy allows a tradeoff between
optimizing hit time and miss rate [9]. Two level caches can
be designed to be either inclusive or exclusive. For
example, the Intel Pentium® 4 Willamette [13] has an on-
die 256kB inclusive L2 cache, while the AMD AthlonTM
Thunderbird [14] has an on die 256kB exclusive L2 cache.
An inclusive cache system implies that the contents of the
L1 cache be a subset of the L2 cache [2]. This decreases the
effective cache capacity available for unique information
[3]. An exclusive cache hierarchy is a hierarchy in which
the contents of the L1 and L2 are exclusive. This means
that the effective cache size is L1+L2, unlike inclusive
caching, whose effective cache size is the size of the largest
cache – typically the L2.

Using an exclusive cache hierarchy, with the same die area
dedicated to storage as a traditional inclusive cache, larger
effective cache size can be obtained. The exclusive cache
state machine is more complex, and an exclusive cache
requires a victim buffer. These factors may result in a
slightly larger combined circuit for the exclusive cache, but
for a large cache the transistors allocated to storage
dominate the circuit area required. In the studies presented,
inclusive and exclusive caches of equal size, and with
victim caches or victim buffers respectively of equal size,
are compared.

2 BACKGROUND

Exclusive caching is one technique used to maximize the
effective cache size. Jouppi and Wilton evaluated a direct-
mapped and 4-way set-associative exclusive cache
compared with a conventional inclusive cache. The results
showed that the exclusive cache has improved performance
over inclusive cache due to the increased on-chip capacity
[5]. The concept of an exclusive cache hierarchy can be
relevant to any microprocessor implementation utilizing
multiple levels of cache. Theodore et.al. examined the
usage of exclusive caching in networking storage devices

 2

[4]. In this study, only on chip microprocessor cache
performance is addressed.

CPU
CPU

L1 Cache
L1 Cache

Victim Buffer
Victim Buffer

L2 Cache
L2 Cache

Main Memory
(DRAM)

Main Memory
(DRAM)

M
U

X
BIU

BIU

Figure 1: Exclusive Cache Architecture

AMD introduced an implementation of an on-die two-level
exclusive cache architecture in the AthlonTM and DuronTM
processors in 2000 [3]. Figure 1 illustrates the architecture.
The L2 cache contains only victim or copy-back cache
blocks that are ejected from the L1 due to conflict misses.
When a miss occurs in the L1, the victim block is
transferred to the victim buffer (VB) while at the same time
the L2 is checked. There is 128KB of L1 cache, of which
64KB is for instruction and 64KB is for data. This
provides a hit rate sufficiently high to ensure that the victim
buffer is rarely fully occupied; the microprocessor can flush
the victim block to the L2 when it is idle some time after
the load request has been serviced, hiding the traffic. The
scenario which results in the highest L2 latency for the
exclusive cache architecture occurs when the victim buffer
is full and there is a L1 miss/L2 hit. In this worst case
scenario a three-step sequence is required. The victim
buffer entry must first be flushed to the L2, after which the
L1 victim is moved to the victim buffer. Only then can the
requested data be retrieved from the L2.

The victim buffers play a different role than that of a victim
cache, although both are used to hold victims ejected from
an L1 cache. To minimize the stalls imposed upon the
processor by the requirement of an available victim buffer
entry to service an L1 miss, the victim buffer flushes the
data as soon as the bus is idle. This is in contrast to a
victim cache, which maintains data all blocks in the hope
that the data is reused soon. To maintain coherence there
are cases in an exclusive cache hierarchy when the victim
buffer must function as a victim cache. This occurs when
written data has not been flushed completely from the
victim buffer and the data requested by the processor is
contained in the victim buffer. When this happens, the
victim buffer swaps the data with the block in the L1.

L1 L2 L3 Main
Mem

L1, L2 exclusive; L3 inclusive with L1 and L2

L1 L2 L3 Main
Mem

L1, L2 inclusive; L3 exclusive with L2
Figure 2: Three-level exclusive cache

Exclusive caching or inclusive caching can be extended to
multiple levels if more than two levels of cache are present.
A multi-level exclusive hierarchy could be designed in
many ways, and could include three-levels of cache with
L1 and L2 inclusive and L3 exclusive, or L1 and L2
exclusive and L3 inclusive. Figure 2 shows these two
architectures.

Movement of blocks between cache levels is made easier
through the use of a common line size. Unequal cache line
size will result in a cache hierarchy that is potentially only
partially inclusive. Fragmentary exclusivity may occur
when L1 is set associative, the block size is not the same
for L1 and L2, or the number of sets in L2 is smaller than
that of L1 [8]. Fragmentary exclusivity implies that some
but not all of the L1 contents are duplicated in L2, so that
the effective cache is less than L1+L2.

Many multiprocessors use a multilevel cache hierarchy to
reduce both the demand on global interconnect and the
cache miss penalty. Inclusive caching simplifies the well-
understood cache coherence problem for multiprocessors.
Some multiprocessors share address space, and for such
systems, a given piece of information may have several
copies in different places, which can cause coherence
problems. Many algorithms that are used to maintain
memory consistency enforce inclusive caching. If
exclusive caching is used in a multiprocessor environment,
then the L1 cache needs dedicated snoop ports as used in
the AMD Athlon MP processor [11]. This method solves
the coherence problem, but at the cost of die area and cache
access latency.

In this paper, two-level exclusive cache hierarchies in a
uniprocessor system are compared with two-level inclusive
cache hierarchies of equivalent size. The victim buffer,
which is necessary for an exclusive cache hierarchy, is the
most significant resource differential between the exclusive
and inclusive caches compared. In an attempt to minimize
the differences between the inclusive and exclusive
hierarchies, each inclusive hierarchy simulated has a victim
cache comparable to the victim buffer required by the
exclusive cache of the same size. The cache line size is
fixed across L1, L2, and VC/VB for each configuration.
The L2 has only one port, which is common practice in
most modern microprocessors, since a single ported cache
requires less area than a two-ported cache. The victim

 3

buffer or victim cache has a variable number of entries, and
it shares the bus with the L1 as shown in Figure 1.l

3 SIMULATION TECHNIQUES
To evaluate the performance of the exclusive cache system,
a simulator for a parameterized exclusive cache hierarchy
was built. This simulator was integrated into sim-outorder
from the SimpleScalar toolset version 3.0c [6].

3.1 Experimental Settings
Without modification, sim-outorder models a two-level
cache system, which uses a write back policy for the L1
cache and a write through policy for the L2 cache using a
write allocate strategy. For the studies presented herein, this
toolset is expanded to include three new models, which are
integrated into the simulation environment. These three
models are: an exclusive cache model, a victim buffer
model and a DRAM (Dynamic Random Access Memories)
model, as shown in Figure 1. Each model is modular and
parameterized, and can be optionally incorporated in each
simulation.

3.2 Model Description

Inclusive caching has been the standard cache behavior due
to its simplicity. For an inclusive cache, when a load
misses in the L1 but hits in the L2, the cache block is
copied from the L2 to the L1. If the load misses in both the
L1 and L2 cache, the data is retrieved from the main
memory to the L2 cache, which then provides the data to
the both the L1 and L2 caches each of which allocate a
redundant copy

In two-level exclusive caching, when a load misses in the
L1 and hits in the L2, the contents of L1 and L2 are
swapped. That is, the victim block from the L1 cache is
first transferred to the victim buffer; then the referenced
data is transferred from the L2 cache into the L1 cache,
after the request is serviced, the victim block is transferred
to the second-level cache. If a load misses in the both the
L1 and L2, the desired item is copied directly into the L1
from the main memory, potentially evicting a victim to the
L2 cache. Under this scheme, data cannot be in both L1
and L2, which gives rise to “exclusion”.

Whenever a cache is exclusive, a victim buffer is necessary
to allow a read to be serviced prior to write completion.
The victim buffer modeled between L1 and L2 utilizes a
first-in first-out (FIFO) replacement policy. To make the
assessment comparable, the inclusive cache simulated also
includes victim cache with the same size, which is accessed
in parallel with the L1 cache.

Figure 3 is a flow chart of the finite state machine (FSM)
controlling accesses to a simulated exclusive two-level
cache. When the CPU performs a memory access, it will

check the L1 cache and the victim buffer simultaneously,
and either one can service the request if the data is
available. It should never be the case that the L1 cache and
the VB contain the same data element since they are also
exclusive. Load instructions have priority to access the L2
while the victim buffer contains write data destined for the
L2 cache; the victim buffer is designed to flush data only
when the bus is idle. When the worst-case scenario occurs,
the victim buffer drains only a single cache element, so as
to minimize CPU stalling time, and allow the following
access to be serviced as soon as a VB entry is available.
Another potential advantage of an exclusive cache
hierarchy is that the victim buffer can hold data longer in
the same manner as a victim cache, allowing increased
performance if a hit in the victim buffer occurs in the near
future.

L1 m iss

V B em pty?

V B h it?

W ors t case?

S w ap V B en try
w ith L1 v ic tim , and

re tu rn

F lush one b lock to
L2

Insert the vic tim if
it exis ts and

update s ta tus

A ccess L2 cache

Is th is a V B F lush?

L2 h it?

R etrieve data from
L1, inva lida te the
b lock , and re tu rn

A ccess D R A M

Insert the flushed
b lock from V B ,

upda te s ta tus , and
re tu rn

N o

N o

N o

Y es

N o

N o

Y es

Y es

Y es

Y es

Figure 3: Block Diagram Of The Exclusive Cache

The FSM logic of an exclusive cache is more complex than
conventional inclusive cache, but more significantly, it
integrates the control of the multiple on-chip caches.

For both inclusive caching and exclusive caching, if the
request is missed in the L2, the request goes on to the main

 4

memory. In SimpleScalar 3.0c the main memory access
latency is fixed to be 32 cycles with infinite parallelism. In
order to improve the accuracy of this main memory model,
a DRAM model is incorporated to provide a more realistic
latency based upon the non-uniform access latency of real
DRAM. In the new DRAM model, the memory controller
and a bus with contention are emulated. Bank contention,
DRAM precharge, and DRAM refresh are also considered,
and several DRAM timing configurations can be selected.

The exclusive L2 cache model verification was performed
through deterministic benchmarks, the procedure of which
is available [15].

3.3 Methodology and Benchmarks

10 benchmarks from SPEC2000 [7] were used in the
experiments presented. These benchmarks were
precompiled binaries targeted for the PISA_SS_Little ISA
and were randomly selected. Each benchmark was
simulated using a modified SimpleScalar 3.0c on RedHat
Linux machines. Table 1 lists the benchmarks used in this
study. Also included is the input set used for the
benchmark and the number of load instructions simulated
for the benchmark.

Table 1: Benchmarks for Simulations
Name Input Number of Load

Instructions

ammp00 ammp 1.64E+09
art00 test 4.11E+08

bzip200 test 3.68E+08
equake00 inp 1.85E+09

gcc00 cccp 4.14E+08
gzip00 test 5.87E+08
mcf00 inp 40628928
mesa00 test 5.55E+08

vortex00 lendian 2.79E+09
vpr00 test 2.07E+08

To accurately model the non-uniform latency of a
synchronous DRAM memory system a DDR333 / PC2700
SDRAM model is integrated into sim-outorder. The timing
characteristics of the DRAM Tcl-Trcd-Trp are 2-2-2, and the
bus multiplier is 12, implying a processor clock speed of
2GHz. SimpleScalar 3.0c assumes that a write buffer of
unlimited size is used, reads are allowed to bypass writes,
and the buffered data is written to main memory whenever
there are no outstanding reads. Writing from the victim
buffer to the L2 cache is pipelined, and the bus between the
victim buffer and the L2 cache is assumed to be as wide as
the cache line size, so that the latency for writing each entry
is one-cycle.

4 SIMULATION RESULTS

The simulations compare the performance of an inclusive
cache with an exclusive cache, where the cache
configurations vary in: L2 size alone, L1 and L2 cache size,
and the number of victim buffer or victim cache entries.
The number of L2 cache accesses, L2 misses, execution
time and other statistics were gathered for each simulation.

4.1 Cache Configurations

A variety of cache configurations are used for the target
machines. All L1 caches are equally split and direct
mapped; all L2 caches are unified and use LRU
replacement policy. All other parameters are SimpleScalar
3.0c defaults.

A direct mapped L1 and a common block size for both L1
and L2 simplifies the maintenance of an exclusive cache
hierarchy. This allows for a performance comparison
between equivalent exclusive and inclusive cache
hierarchies. Under these circumstances, L1 hit rate is not
used as a metric because it is identical across
configurations.

To evaluate the exclusive cache performance, simulations
using 10 sets of cache configurations were performed. For
each configuration, 10 benchmarks were examined. Among
these configurations, one was selected as the standard
machine, whose configuration is given in Table 2.

Table 2: Standard Machine Configuration

Parameter Configuration
L1 I-cache 32kB direct; 32B line, 1 cycle lat
L1 D-cache 32kB direct; 32B line, 1 cycle lat

L2 Unified Cache 256kB 4-way, 6 cycle lat
VB or VC entries 8 entries
Branch Prediction 2k bimodal

BTB 512 entry 4-way set assoc.
Return Addr. Stack 8 entry queue

ITLB 16 entry 4-way, 4kB mapping
DTLB 32 entry 4-way, 4kB mapping

Fetch/Issue/Commit Width 4 entries
Register Update Unit size 32 entry queue
Load / Store Queue size 8 entry queue

Mem ports (to CPU) 2 ports
Integer ALU 4 units

Integer Mult / Div 1 unit
FP ALU 4 units

FP Mult / Div 1 unit

The other configurations differ with the standard
configuration in L1 cache size, L2 cache size, and VB
entries respectively. Correspondingly, three groups of the
configurations are defined, which are tabulated in Table 3.

 5

Table 3: Cache configurations

Group Config # Characteristics
1 128k

Standard 256k A (L2 cache size)
2 512k
3 32k split L1, 128k L2

Standard 64k split L1, 256k L2
4 128k split L1, 512k L2

B (L1, L2 size)

5 256k split L1, 1M L2
6 2 entries
7 4 entries

Standard 8 entries
C (VB size)

8 16 entries

Simulations were performed for all the benchmarks listed
in Table 1 with each of the cache configurations listed in
Table 3. This means simulations were performed for 10
benchmarks, 9 cache configurations each, resulting in a
total of 180 simulations.

4.2 L2 Cache Size

0
0.2
0.4
0.6
0.8

1
1.2

am
m

p0
0

ar
t0

0

eq
ua

ke
00

bz
ip

20
0

gc
c0

0

gz
ip

00

m
cf

00

m
es

a0
0

vo
rte

x0
0

vp
r0

0

av
er

ag
e

Benchmarks

L2
 m

is
se

s

L2-128k

L2-256k

L2-512k

Figure 4: L2 misses comparison with varying L2 size

Figure 4 shows the L2 misses of an exclusive cache
normalized to the L2 misses of an inclusive cache with
varying L2 cache size from 128kB to 512kB. When the L2
cache size is relatively small (128kB), exclusive caching
shows significant improvement over inclusive caching,
where the average improvement is about 16%. With a
larger L2 cache size, the performance improvement
becomes less significant. This is because when L2 size
increases, the increase in effective cache size is the same
for both inclusive and exclusive caching, i.e., the ratio

inclusivecachesizeeffective

exclusivecachesizeeffective

_

_
 decreases. The minimal reduction in

average L2 misses is still 1.6% when the L2 cache size is
512kB.

Increasing L2 cache size results in a less significant
difference between exclusive and inclusive caches for
benchmarks of art00 and equake00, as these benchmarks
have an extremely large data set, have inherently poor
cache performance, and are insensitive to cache size.

0
0.2
0.4
0.6
0.8

1
1.2

am
m

p0
0

ar
t0

0

eq
ua

ke
00

bz
ip

20
0

gc
c0

0

gz
ip

00

m
cf

00

m
es

a0
0

vo
rte

x0
0

vp
r0

0

av
er

ag
e

Benchmarks

 E
xe

cu
tio

n
tim

e

L2-128k

L2-256k

L2-512k

Figure 5: Execution time with varying L2 size

Figure 5 shows the execution time of benchmarks with an
exclusive cache normalized to that of an inclusive cache
when L2 cache capacity is increased. In general, with larger
L2 cache size, the execution time for both inclusive and
exclusive caching is reduced. Figure 5 illustrates that the
advantage of exclusive caching is significant for many
benchmarks, especially when the L2 cache size is small.
The best performance gained is 16% by the gzip00
benchmark when the L2 size is 128kB. Some benchmarks
do not show significant reduction in execution time
although they exhibit considerable reduction in L2 misses.
In the case of mesa00 the execution time is slightly higher
when exclusive caching is used due to stalls required when
the victim buffer is full.

0%
2%
4%
6%
8%

10%
12%
14%

am
m

p0
0

ar
t0

0

eq
ua

ke
00

bz
ip

20
0

gc
c0

0

gz
ip

00

m
cf

00

m
es

a0
0

vo
rte

x0
0

vp
r0

0

av
er

ag
e

Benchmarks

Fr
ac

tio
n

of
 L

1
m

is
se

s
w

ith

fu
ll

V
B

L2-128k

L2-256k

L2-512k

Figure 6: Rate of L1 Miss with Full Victim Buffer

Exclusive caching may reduce performance for two
reasons. First, the exclusive cache has a higher worst-case
penalty than the inclusive cache in the scenario where the
victim buffer is full and an L1 miss occurs. From Figure 6,
it can be seen that this scenario happens frequently for

 6

ammp00, gcc00, vortex00 and mcf00. As L2 size increases,
the worst-case latency is incurred more frequently, due to
increased L2 hit rate. The high latency associated with a
VB ejection is more significant than the increased capacity
available through exclusive caching, yielding reduced
performance for exclusive caching in some benchmarks.

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

am
m

p0
0

ar
t0

0

eq
ua

ke
00

bz
ip

20
0

gc
c0

0

gz
ip

00

m
cf

00

m
es

a0
0

vo
rte

x0
0

vp
r0

0

av
er

ag
e

Benchmarks

V
B

/V
C

 h
its

 ra
te

L2-256-i

L2-256-e

Figure 7: VB or VC hits rate

The second reason why inclusive cache execution time may
be less than exclusive cache execution time is due to the hit
rate of the victim cache exceeding that of the victim buffer.
All inclusive caches in this study incorporate victim caches.
As can be seen in Figure 7, the hit rate of the VC is much
higher than the VB. For example, mesa00 achieves a 60%
hit rate for VC while only a 0.06% hit rate for VB. This
gives an inclusive cache a significant benefit, especially
when L1 cache size is small. Even with this inclusive
cache advantage due to the victim cache, the exclusive
cache organization still results in a lower execution time for
most benchmarks, as can be observed in Figure 5.

4.3 L1 and L2 Cache Size

0

0.2

0.4

0.6

0.8

1

1.2

am
m

p0
0

ar
t0

0

eq
ua

ke
00

bz
ip

20
0

gc
c0

0

gz
ip

00

m
cf

00

m
es

a0
0

vo
rte

x0
0

vp
r0

0

av
er

ag
e

Benchmarks

L2
 m

is
se

s

L1L2-32-128k

L1L2-64-256k

L1L2-128_256k

L1L2-256-1M

Figure 8: L2 misses with varying L1 and L2 size

Figure 8 shows exclusive cache L2 misses normalized to
inclusive cache L2 misses when the L1 and L2 cache size
are similarly increased. With a small L1 and L2, some
benchmarks show significant performance improvement
with exclusive caching. For example, L2 misses are
reduced by 25% for vortex00 and gcc00 with small cache

sizes. When L1 and L2 are sufficiently large, the L2 cache
can satisfy most requests, so L2 misses will drop
accordingly. From the average L2 misses shown in Figure
8 it can be seen that the performance advantage of an
exclusive cache is reduced as L2 cache size increases. This
is due to the reduced capacity advantage of an exclusive
cache relative to an inclusive cache as the L2 cache size is
increased. For a few benchmarks such as art00 and gcc00,
when the L1-L2 size is increased to 256k-1M, exclusive
caching demonstrates a significant reduction in L2 misses.
This is because these benchmarks have a large data set, and
exclusive caching provides greater capacity. The average
L2 misses are reduced by approximately 5% due to
exclusive caching.

0.75

0.8

0.85

0.9

0.95

1

1.05

am
m

p0
0

ar
t0

0

eq
ua

ke
00

bz
ip

20
0

gc
c0

0

gz
ip

00

m
cf

00

m
es

a0
0

vo
rte

x0
0

vp
r0

0

av
er

ag
e

Benchmarks
 E

xe
cu

tio
n

tim
e

L1L2-32-128k

L1L2-64-256k

L1L2-128_256k

L1L2-256-1M

Figure 9: Execution time with varying L1 and L2 size

Figure 9 illustrates the comparison of execution time,
where the execution time with an exclusive cache is
normalized to the execution time with an inclusive cache.
It can be seen that the pattern is similar to that of the L2
misses as shown in Figure 8. Benefits of exclusive caching
diminish with increased L1 and L2 size for some
benchmarks such as gcc00 and vpr00. The main reason for
this phenomenon is that the working set of these
benchmarks is relatively small. This will cause the L2
accesses to be reduced with a large L1, making the
exclusive caching less useful. Some benchmarks, such as
equake00 and gzip00, have better performance with a larger
cache size. One reason is that the impact of a VB on
execution time diminishes when cache size increases.
Another reason is that a large cache size can satisfy the
requirements of a large data set, and exclusive caching can
provide larger effective cache size. Art00 realizes a
performance improvement of 15.5% with an exclusive
cache hierarchy when L1 and L2 size are 256kB and 1MB
respectively. This is due to the significant reduction of L2
misses. The average execution time reduced by exclusive
caching is about 2.5% with a small cache size and 2% with
a large cache size.

 7

4.4 Victim Buffer Size

0.7

0.74

0.78

0.82

0.86

0.9

0.94

0.98

1.02
am

m
p0

0

ar
t0

0

eq
ua

ke
00

bz
ip

20
0

gc
c0

0

gz
ip

00

m
cf

00

m
es

a0
0

vo
rte

x0
0

vp
r0

0

av
er

ag
e

Benchmarks

L2
 m

is
se

s

vb-2

vb-4

vb-8

vb-16

Figure 10: L2 misses with varied VB entries

Figure 10 shows the L2 misses of an exclusive cache
normalized to the L2 misses of an inclusive cache with VB
entries varied from 2 to 16 entries. Each VB entry has the
same size as a cache line. For exclusive cache, the victim
buffers may theoretically service some L1 misses, resulting
in fewer L2 accesses. However, this caching function of a
VB is secondary to the enabling of processor accesses to be
serviced without waiting for an L1 victim to be flushed
back to the L2 cache. The hit rate of the victim buffer
varies from 0% to 1.6%, whereas the hit rate of a victim
cache varies from 0% to 60% as is seen in Figure 7. The
victim cache reduces misses more significantly than victim
buffer does, but most of those misses are also available in
the L2 cache. Thus it can be seen that there is little
difference in L2 misses, as shown in Figure 10, when VB
entries are varied from 2 to 16.

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

am
m

p0
0

ar
t0

0

eq
ua

ke
00

bz
ip

20
0

gc
c0

0

gz
ip

00

m
cf

00

m
es

a0
0

vo
rte

x0
0

vp
r0

0

av
er

ag
e

Benchmarks

 E
xe

cu
tio

n
tim

e

vb-2

vb-4

vb-8

vb-16

Figure 11: Execution time with varied VB entries

Figure 11 shows the execution time of an exclusive cache
normalized to that of an inclusive cache with increasing
victim buffer entries. If the victim buffer has more than
four entries, there is sufficient idle bus time to drain the
victim block from the victim buffer, and the worst-case
scenario does not introduce significant penalties to the

exclusive cache execution time. With smaller L1 cache,
the number of VB entries needs to be increased in order to
satisfy an increased number of accesses. Correspondingly,
as L1 cache size increases, the number of VB entries can be
smaller since the accesses would be reduced, and fewer
entries are sufficient to meet the requirement.

5 CONCLUSIONS

This research is motivated by the increasing performance
differential between processor and main memory (i.e.
DRAM). Exclusive caching, like all caching, serves to
reduce the dependence of the processor upon data residing
in the main memory. This furthermore reduces average
access latency and bus traffic on limited bandwidth
interconnects such as the front-side and DRAM bus.
Exclusive caching has many advantages over conventional
inclusive caching [5]. Increased associativity is provided
through the increased capacity as two memory references
that are mapped to the same cache set can reside in either
the L1 cache or the L2 cache. Increased hit rate is also
made possible by the increased cache capacity which is
better utilized, since there are no duplications between the
contents of the L1 cache and L2 cache.

This paper illustrates the effects of an exclusive two-level
cache memory hierarchy with SPEC 2000 benchmarks.
The cache configurations varied in L2 size, L1 and L2 size,
and the number of victim buffer entries. The results of the
simulations are encouraging: exclusive caching provides
benefits to most benchmarks, especially when L2 cache
size is small. As the L1 and L2 cache sizes increase, the
advantages of exclusive caching become less noteworthy,
especially for benchmarks with a large working set. For
systems that have small cache sizes, running applications
with good caching behavior (high cache hit rate), the
performance improvement attributable to exclusive caching
is most significant.

Some applications such as mesa00, which have a large
amount of L1 conflict misses, demonstrate better
performance with an inclusive cache hierarchy. There are
two reasons. First, the victim cache in an inclusive
hierarchy has a very high hit rate for these benchmarks.
Second, the worst-case latency in an exclusive cache
hierarchy occurs more frequently when the victim buffer
has small size. These observations explain why the
execution time of an inclusive cache hierarchy may be less
than that of an exclusive cache hierarchy.

The results of our simulations yield that the number of
victim buffer entries has little impact upon performance
beyond 4 victim buffer entries. This assumes a relatively
large 64kB split L1 cache. The victim buffer can act as a
victim cache and reduce the L2 cache accesses. However,
in the simulations performed, the hit rate of the victim
buffer never exceeded 1.6% regardless of the number of

 8

victim buffer entries. If the L1 cache size is increased, the
victim buffer entries involved can be correspondingly
smaller to supply both higher utilization and equivalent
performance.

One limitation of the two-level exclusive cache hierarchies
simulated herein is that the cache block size is constrained
to be identical for both the L1 and L2 cache, making the
design space less flexible. It is common to make the L2
cache line larger than the L1 cache line, and if all caches
(L1, L2, VB) use the same line size, each cache design will
be less flexible and this may result in reduced performance.
For this reason it is suggested that a prefetch buffer is used
in combination with an exclusive cache utilizing a small or
medium block size. A second drawback of exclusive
caching is that increased data movement among non-
redundant caches requires additional control and incurs
additional power consumption. A third drawback is that to
implement exclusive caching in SMP requires more chip
area to implement L1 snoop ports, which increases the cost.
None of these criticisms of exclusive caching has been
directly addressed in these simulations.

Considering the complexity involved in an exclusive cache
hierarchy and the current silicon technology, the exclusive
cache hierarchy is suitable for server applications that
perform a large amount of memory accesses and embedded
systems that have limited silicon space for cache and
memory. This study is limited in that it only examines the
single-threaded application workload. Future work
includes applying exclusive caching in multithreaded
applications and multi-processor systems.

REFERENCES

[1] A.J.Smith, “Cache Memories,” ACM Computing
Surveys, Vol.14, No.3, September 1982.

[2] J.L.Baer, and W.H.Wang. “On the inclusion

properties for multi-level cache hierarchies,”
Proceedings of the 15th Annual International
Symposium on Computer Architecture, page 73-80,
1988.

[3] ADVANCED MICRO DEVICES, INC. “AMD

AthlonTM Processor and AMD DuronTM Processor
with full-speed on-die L2 cache,” June 19, 2000.

[4] T.M.Wong, Gregory R.G, J.Wilkes, “My cache or
yours? Making storage more exclusive,” November
2000.

[5] N.P.Jouppi and Steven J.E.Wilton, “Tradeoffs in

Two-Level On-chip Caching,” WRL Research
Report 93/3, October 1993.

[6] “SimpleScalar LLC”, http://www.simplescalar.com

(Current June 2003).

[7] SPEC, “SPEC CPU2000 Benchmarks,” Standard

Performance, Evaluation Corporation, 2000.
http://www.spec.org/osg/cpu2000/ (Current June
2003).

[8] D.E.Culler, J.P.Singh, A.Gupta. “Parallel Computer

Architecture, A Hardware Software Approach,”
1998, p396.

[9] J.L.Hennessy and D.A.Patterson, “Computer

Architecture: A Quantitative Approach,” Morgan
Kaufmann Publishers, 2nd edition, 1996.

[10] B.T.Davis, Modern DRAM Architectures, doctoral

dissertation. Dept. Electrical Engineering and
Computer Science, Univ. of Michigan, Ann Arbor,
Nov. 2000.

[11] J.J.Johnson, “ The AMD-760TM MPX Platform for

the AMD AthlonTM MP Processor,” January 4, 2002.

[12] N.P.Jouppi, “Improving direct-mapped cache

performance by the addition of a small fully-
associative cache and prefetch buffers,” Proceedings
of the 17th Annual International Symposium on
Computer Architecture, p.364-373, May 1990.

[13] Intel Corporation, http://www.intel.com (Current

June 2003).

[14] Advanced Micro Devices, AMD,

http://www.amd.com/us-en (Current June 2003).

[15] Ying Zheng, Exclusive Cache Architecture and

Performance Evaluation, MS thesis, Dept. Electrical
and Computer Engineering, Michigan Tech,
Houghton, May. 2003.

