Biomass Pollution Basics

presented by:

David Pennise

Center for Entrepreneurship in International Health and Development (CEIHD)

University of California-Berkeley

based on material prepared by:

Professor Kirk R. Smith Environmental Health Sciences University of California-Berkeley

Outline

- Biomass burning basics
 - combustion
 - pollutants emitted
- Particulate matter (PM)
 - types, sizes, and sources
 - human health effects
- Carbon monoxide (CO)
 - sources
 - human health effects

Wood is natural Burning is natural

How can wood burning be a significant health hazard?

Wood is mainly just carbon, hydrogen, and oxygen: [CH₂O]_x

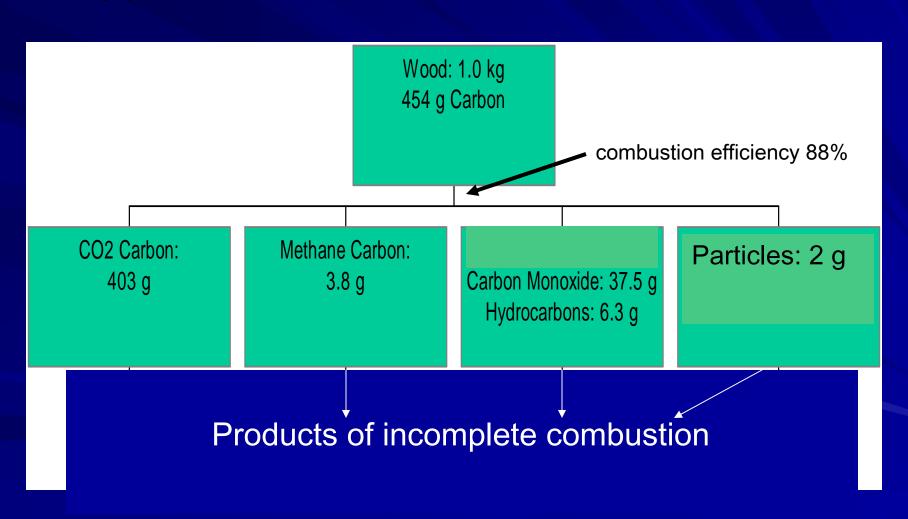
Combustion: $CH_2O + O_2 \rightarrow CO_2 + H_2O + heat$

Why doesn't wood emit only CO₂ and H₂O when it is burned?

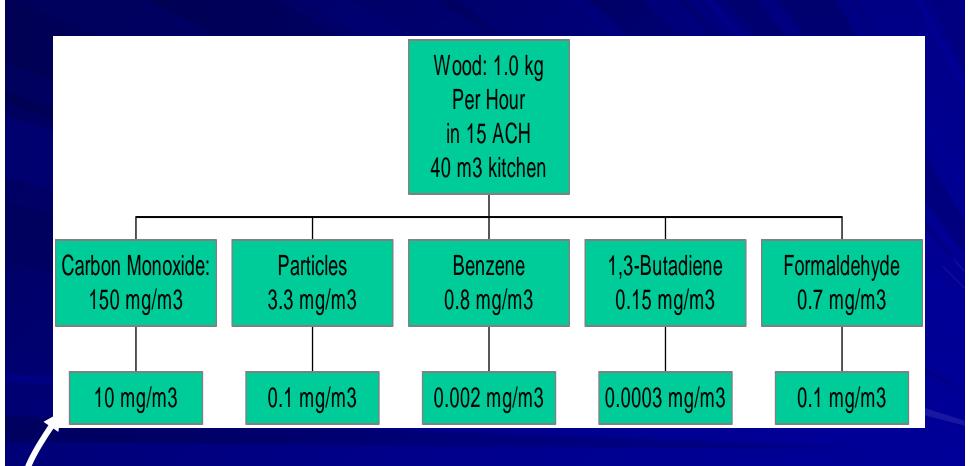
Answer: Incomplete combustion – unavoidably, some of the wood carbon is not completely combusted into CO₂

Pollutants in Solid Fuel Smoke

(many hundreds)


Biomass burning emits many products of incomplete combustion:

- Small particles, CO, NO₂
- Formaldehyde, Acrolein, Benzene, Toluene, Styrene, 1,3-Butadiene, etc.
- Polyaromatic hydrocarbons


A Few of the Chemicals in Woodsmoke (~g/kg emission factors)

	Carbon Monoxide	80-370	Oxygenated PAHs 0.15-1
	Methane 14-25		Polycyclic Aromatic Hydrocarbons (PAH)
	VOCs (C2-C7)	7-27	Fluorene 4x10-5 - 1.7x10-2
	Aldehydes	0.65.4	Phenanthrene 2x10-5 - 3.4x10-2
	Formaldehyde	0.1-0.7	Anthracene 5x10-5 - 2.1x10-5
	Acrolein	0.02-0.1	Methylanthracenes 7xl0-5 - 8x10-5 Fluoranthene 7xl0-4- 4.2xl0-2
	B 1 11 1		Pyrene 8x10-4 - 3.1x10-2
			Benzo(a)anthracene 4x10-4 - 2x10-3
	 Butryaldehyde 	0.01-1.7	Chrysene 5x104- 1x10-2
	 Acetaldehyde 	0.03-0.6	Benzofluoranthenes 6x10-4- 5x10-3
	Furfural	0.2-1.6 1.6	Benzo(e)pyrene 2x104 - 4x10-3
	Substituted Furans	0.15-1.7	Benzo(a)pyrene 3x104- 5x10-3
	Benzene	0.6-4.0	Perylene 5x10-5 - 3x10-3
	Alkyl Benzenes	1-6	Ideno(1,2,3-cd)pyrene 2xl0-4- 1.3x10-2
	Toluene	0.15-1.0	Benz(ghi)perylene 3x10-5- 1.lx10-2 Coronene 8x10-4- 3x10-3
	Acetic Acid	1.8-2.4	Coronene 8x10-4- 3x10-3 Dibenzo(a,h)pyrene 3x104- lx10-3
	Formic Acid	0.06-0.08	Retene 7x10-3 - 3x10-2
	Nitrogen Oxides (NO,N		Dibenz(a,h)anthracene 2x10-5 - 2x10-3
	Sulfur Dioxide	0.16-0.24	Trace Elements
•			Cr 2x10-5 - 3x10-3
	Methyl chloride	0.01-0.04	Mn 7xl0-5 - 4x10-3
	Napthalene	0.24-1.6	Fe 3x10-4 - 5x10-3
	Substituted Napthalene		Ni
	Oxygenated Monoaron	natics 1 - 7	Cu 2x10-4 - 9x10-4
	 Guaiacol (and de 	rivatives) 0.4-1.6	Zn 7xl0-4 - 8x10-3 Br 7x10-5 - 9x10-4
	 Phenol (and der 	ivatives) 0.2-0.8	Pb lx10-3 - 9x10-4
	 Syringol (and der 	rivatives) 0.7-2.7	Elemental Carbon 0.3 - 5
	Catechol (and denvatives)0.2-0.8		Cyclic di-and triterpenoids
	Particulate Organic Ca	,	Dehydroabietic acid 0.01 - 0.05
	Chlorinated dioxins	1xl0-5 - 4x10-5	Isopimaric acid 0.02 - 0.10
			Lupenone 2x10-3 - 8x10-3
_	Particulate Acidity .	7x10-3 - 7x10-2	Friedelin 4x10-6 - 2x10-5
	Normal alkanes (C24-C	730) 1X10-3 - 6X10-3	

Products of incomplete combustion: typical wood-fired cookstove (in India)

Typical indoor pollution concentrations from a typical wood-fired cookstove:

Typical standards to protect health

Clarifying Questions?

The best pollutants to measure for biomass combustion

- 1. Small particles (also called particulate matter, PM)
- 2. Carbon monoxide (CO)

Airborne Particles: In Brief (1)

- Particles are a mixture of dust (solids) and liquid droplets suspended in the air
 - All airborne solids and liquids (except pure water)
 - Size range 0.005-100 μm (micrometers, 10⁻⁶ m) in diameter
 - Importance of size has been demonstrated
 - -- smaller ones are more health-damaging

- Broad range of chemical species
 - Role of composition still uncertain sulfur, acidity, metals, organics, etc.

Airborne Particles: In Brief (2)

- Natural and human sources
- The first measured and regulated air pollutant
- Largest global impact, mechanisms still mysterious, new standards often proposed, much ongoing research

Important Particulate Matter (PM) Characteristics

Emissions Rate:

Amount emitted per unit of time or fuel

Particle Size:

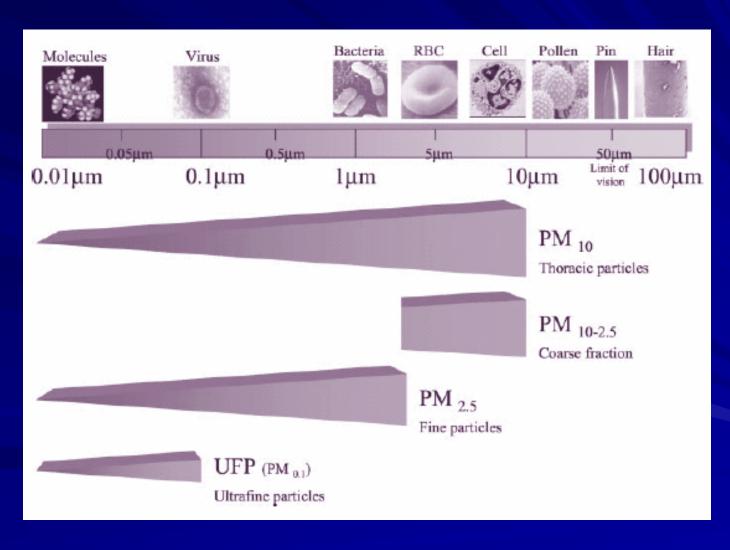
 Determines deposition properties and which particles can enter the lungs

Chemical Composition:

 Fractional abundance of different chemical elements and compounds in emissions

Temporal Variation:

 Emissions change on daily, weekly, seasonal, and annual cycles. The timing of emissions affects their transport, dilution, and human exposure to outdoor air pollution


Sources of Particulate Matter

- Primary particles: emitted directly into the air
- Secondary particles: formed in the atmosphere through chemical and physical reactions
 - involving sulfur dioxide, nitrogen oxides, volatile organic compounds, and ammonia gases and sunlight

Sizes of Atmospheric Particles

- "Coarse" particles (>2.5 μm diameter)
- "Fine" particles (<2.5 μm diameter)</p>
- "Ultrafine" particles (<0.1 μm diameter)</p>
- How do they differ?
 - Source origins
 - Transformation
 - Removal mechanisms from the atmosphere
 - Chemical compositions
 - Optical properties
 - Respiratory tract deposition

Visualizing Particulate Matter Size

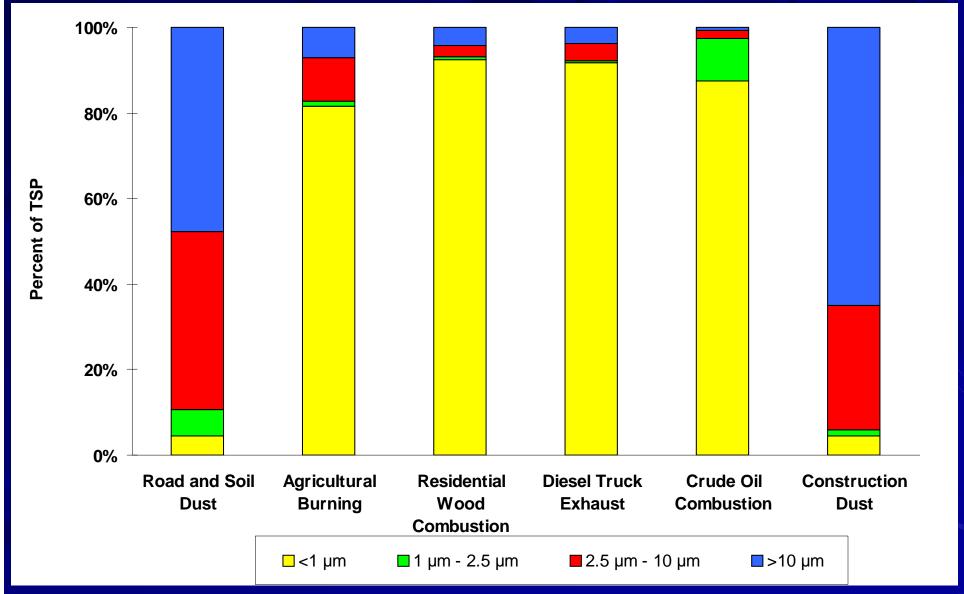
Source: Brook et al., Circulation 2004.

Coarse Particles (> 2.5 µm)

- Formed from mechanical processes
 - weathering, volcanic activities, wind blown soil, sea salt spray, pollen, grinding operations (mining)
- Given their heavy mass, they usually settle out of the air within a few hours to days

Fine Particles: (< 2.5 μm)

- Formed from:
 - Combination of smaller particles
 - Condensation of vapors onto particles that then grow
- Greatest surface area and most of mass concentration
- 0.1-2.5 µm particles are very hard to remove from the atmosphere, persisting days to weeks
- Precipitation accounts for 80% of removal
- Highly visible


Ultrafine Particles (< 0.1 μm)

- Formed from:
 - condensation of vapors during very high temperature combustion (motor vehicles, diesel, organic vapors, fly ash)
 - combination and growth of atmospheric particles
- Greatest number concentration, very little mass concentration due to small size
- Short atmospheric residence time due to random motion and collisions (combining with and forming other particles)
- Not visible

Four Major Human Sources of Particulate Matter (PM)

- 1. Fuel combustion (including biomass burning)
- 2. Industrial production
- 3. Non-industrial sources (road dust, cropland wind erosion, construction)
- 4. Transportation (cars)

Size Distribution of Biomass Smoke Particles

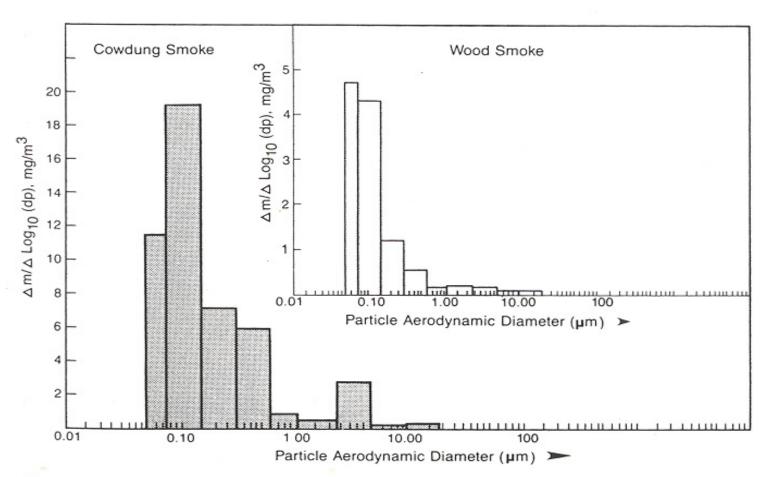
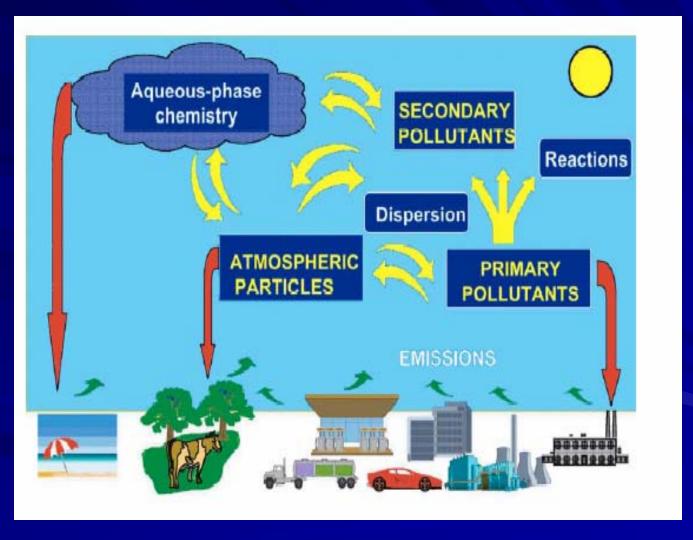



Figure 2.2. Size distribution of woodsmoke and dungsmoke particles. Measurements taken in the East-West Center simulated village house as reported in Smith *et al.* (1984b). (Figure prepared by Premlata Menon.)

Ambient Particulate Matter System

from Particulate Matter Science for Policy Makers: A NARSTO Agreement.

What effect does this have on human health?

Air Monitoring Device

Particulate Matter 4.0

Indoor open fire ~ 1000's µg/m³
This room = 8670 µg/m³

Three-Stone Fire

Particulate Matter Deposition in the Lungs


- Depends on:
 - Particle size range
 - Physical mechanisms that favor deposition at different regions which include:
 - Brownian diffusion
 - Impaction
 - Sedimentation
 - Lung structure and physiology:
 - Airway diameter, branching angles, filtration in prior compartments, ventilation rate

PM Uptake in the Human Body

Naso-oropharangeal region: large fraction of ultrafines and coarse PM removed

Tracheo-bronchial region: smaller percentages of ultrafines and coarse PM deposit

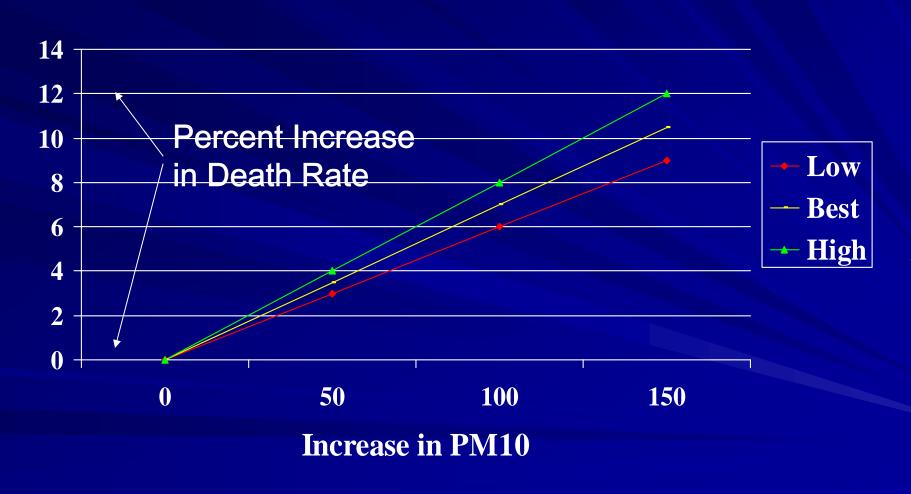
Alveolar region: fine PM penetrates and can be absorbed into the blood stream

How Does PM Effect the Respiratory System?

- (1) inhibiting and inactivating mucociliary streaming
- (2) killing or neutralizing alveolar macrophages
- (3) constricting airways
- (4) causing vasodilation and excess mucous secretion
- (5) causing changes in alveolar cell wall structure through abscesses and thickening which causes scar formation
- (6) traveling to other parts of the body, e.g., blood and heart

Particulate Matter Standards

PM Standards					
	Time Period	PM ₁₀ (μg/m³)	PM _{2.5} (μg/m³)		
United States EPA ^a	Daily	150	65		
United States EPA ^a	Annual	50	15		
California	Daily	50	Under discussion in 2002		
California	Annual	20	12 (Proposed in 2002)		
European Union ^b	Daily	50	Not set		
European Union ^b	Annual	20	Not set		


^a Under revision.

^b To be met in 2010 (to be reviewed in 2003).

Epidemiologic Evidence for Human Health Effects of PM

- Time-series studies in 90 cities in the U.S.
- Measure daily changes in ambient PM and daily morbidity and mortality patterns
- Outcome: 0.27% increase in mortality per
 10 μg/m³ increase in PM₁₀

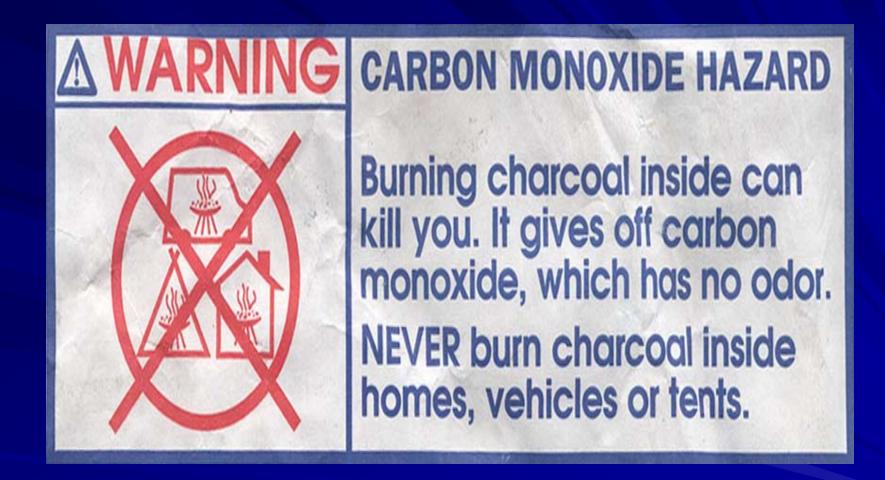
Daily Excess Mortality from Daily PM₁₀ Exposures

Future Epidemiologic Research Needs for Particulate Air Pollution

- How do the effects of PM differ across locations? What is the magnitude and the heterogeneity of these effects?
- What is the magnitude of "life shortening" with particle exposures? How much of this is due to "harvesting" effect?
- What are the toxic elements of the particle?
- What are the pathophysiological mechanisms or pathways that describe the exposure-outcome?

Source: Samet & Arden Pope (2003). Epidemiologic research needs for particulate air pollution. J Toxic. Environ. Health, 66: 1873-6.

Clarifying Questions about PM?


The second major biomass combustion pollutant:

Carbon Monoxide (CO)

The Carbon Monoxide Story

Colorless, odorless, tasteless

- Acute effects poisoning:
 - in USA, 600 unintentional deaths per year and 20,000 emergency room visits (home heating appliance failures)
- Chronic effects
 - cardiovascular system

Required warning on bags of charcoal in USA

CO Emissions

- Direct emissions from fossil fuel and biomass burning
- Indirect production through photochemical reactions in the atmosphere

- 70% of global CO emissions are from human activities
 - emissions in developing countries are thought to be significant, but are not well described

A reminder:

CO is produced by incomplete combustion CO2 + Water Vapor CO₂ + Water Vapor + CO 02 Fire Complete Combustion Incomplete

Combustion

Carbon Monoxide Uptake in the Human Body

- When inhaled, CO binds with hemoglobin in the blood (displacing O₂), forming carboxyhemoglobin [COHb]
- High levels of carboxyhemoglobin cause poor oxygenation of cells/tissues around the body
- CO-hemoglobin affinity (binding) is 250 times stronger than O₂-hemoglobin affinity

Acute (Toxic) Effects of CO

Dose = Ambient Concentration x Length of Exposure

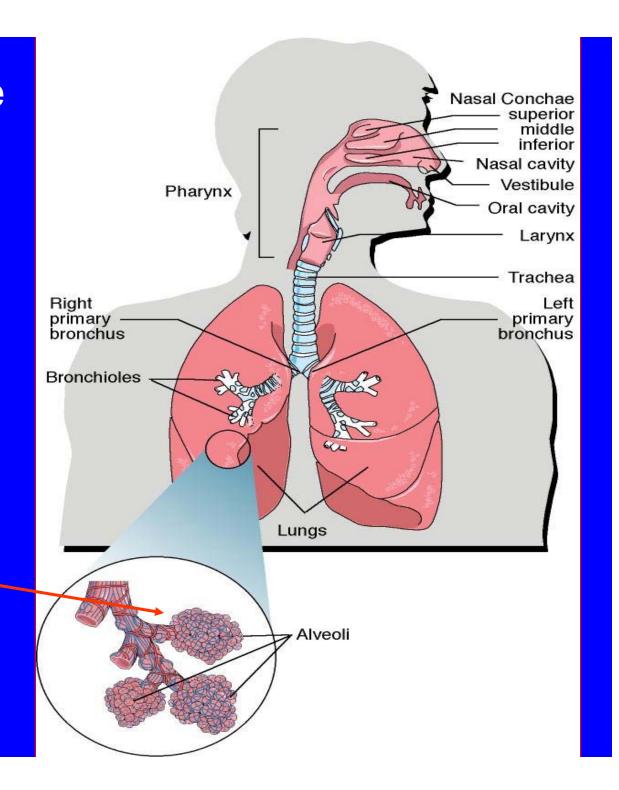
200 ppm for 2-3 hours	Mild headache, fatigue, nausea, dizziness
400 ppm for 1-2 hours	Serious headaches, symptoms intensify
800 ppm for 45 minutes	Nausea, dizziness, convulsions, unconscious within 2 hours
1600 ppm for 20 minutes	Death within one hour
3200 ppm for 5-10 minutes	Death within one hour

Source: http://www.coheadquarters.com/

Considering Chronic CO Effects: WHO's CO Exposure Guidelines

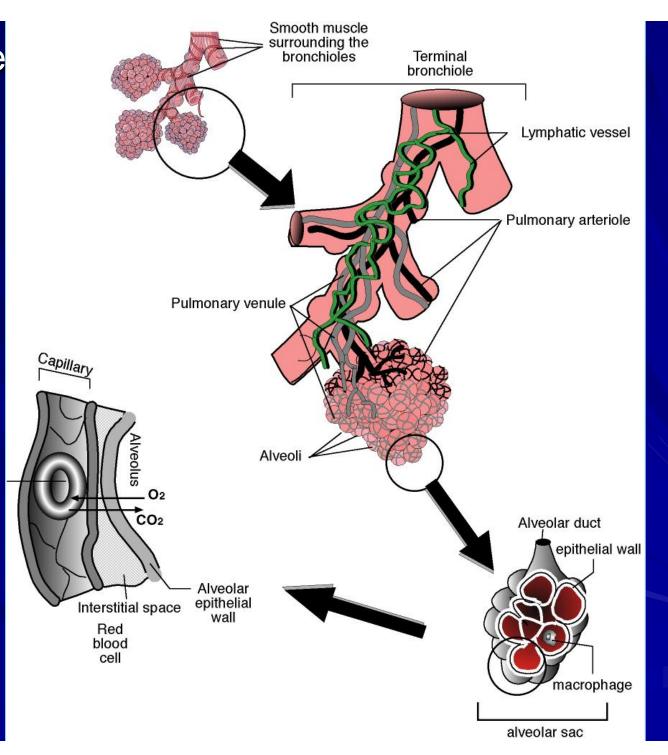
Four averaging times:

- > 100 mg/m³ for 15 min
- ▶ 60 mg/m³ for 30 min
- > 30 mg/m³ for 1 h
- > 10 mg/m³ for 8 h
- Determined so that a carboxyhemoglobin level of 2.5% is not exceeded


For comparison:

- Cigarette smokers average 4% carboxyhemoglobin
- Non-smokers average 1% carboxyhemoglobin

CO Uptake in the Human Body


Does not diffuse into upper airway lung tissue; not a pulmonary irritant

CO penetrates into the alveolar region where it can be absorbed into the blood stream

CO Uptake in the Human Body:

- -CO diffuses from the alveoli into the capillaries
- -binds with hemoglobin
- -travels throughout the body
- -leads to tissue hypoxia (heart and skeletal muscle)

Epidemiological Evidence for Human Health Effects of CO

- Acute experimental studies → many published studies
- Accidental exposures → case studies
- Chronic exposures to low concentrations → few studies to date
- Based on findings, sensitive populations: elderly, pregnant women, fetuses, young infants, and people with anemia, cardiovascular, or pulmonary disease

Epidemiological Evidence for CO (2):

- Cardiovascular effects are of greatest concern
 - 11+ major studies show heart disease exacerbation
 - Mix of pollutants, identifying CO effect is difficult
- Studies also show some evidence for daily mortality, respiratory effects, fetal effects, and neurobehavioral effects

Clarifying Questions about CO?

Causal Web for Air Pollution Health Effects

Physiologic changes Outcomes Sources Fuel & Acute biomass Respiratory Change in combustion Infections respiratory immune status Lung Cancer Air pollution Initiation and/or **Heart Disease** promotion of tumor growth Chronic Obstructive Pulmonary Industrial activity; Change in heart Disease availability & rate variability implementation of control technologies **Population** Decline in lung susceptibility function

Thank you

What is the most surprising fact you learned about biomass pollution?