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Introduction:

One need only look at the slips of paper on the floor of the New
York Stock Exchange at closing to be aware of the extent to which
information is gathered, processed, and discarded on the macroscopic
level o§ human affairs. Information is represented physically by the
differeﬁt states of physical systems -- by a modulated frequency of an
electromagnetic wave, by neurotransmitters moving across a synapse, by
the level of current in a semiconductor. The gathering, processing, and
discarding of information is subject to physical laws as is any physical
process. Conversely, almost all physical processes involve the exchange
and transformation of information. When two electrons interact, their
momenta and spins become correlated just as do the the patterns of
firing neurons in the brains of two stock brokers talking on the phone.
The first two chapters of this thesis use statistical mechanics and
information theory to analyze the ways in which physical systems
exchange and process information.

Each chapter of this thesis arose out of a papér of the same name.
In the first chapter, "A Loophole in the Second Law of Thermodynamics,"
I examine the constraints that statistical mechanics imposes on devices
that gather information and put it to use to decrease entropy. Several
theorems on the mechanics of gathering information are proved, and the
possibility of violating the second law of thermodynamics by obtaining

information is discussed in light of these theorems. Without increasing



entropy elsewhere, a Maxwell’s demon can lower the entropy of his
surroundings by an amount equal to the difference between the maximum
entropy of his recording device and its initial entropy. A demon with
human-scale recording devices can reduce the entropy of a gas by a
negligible amount only; but the proof of the demon’'s impractibility
leaves open the possibility that complex systems in initial states of
low entropy, inducing correlations via long-range forces, can reduce the
entropy éf their surroundings by a substantial amount without increasing
entropy elsewhere. In the event that a boundary condition for the
universe requires it to be in a state of low entropy when small, the
correlations induced between different particle modes duringithe
expansion phase allow the modes to behave like Maxwell’s demons during
the contracting phase, reducing the entropy of the universe to a low
value.

The second chapter, "Complexity as Thermodynamic Depth," came out of
a paper written in collaboration with Heinz Pagels. 1In this chapter, a
measure of complexity for the macroscopic states of physical systems is
defined. Called thermodynamic depth, the measure is universal: it
applies to all physical systems. The form of the measure is uniquely
fixed by the requirement that it be a continuous, additive function of
the processes that can result in a state, and that it assign states of
thermodynamic equilibrium depth zero. The measure satisfies the
intuitive requirements‘that wholly ordered and wholly random systems are
not thermodynamically deep, and that a complex object together with a

copy are not much deeper than the object alone. A gas at equilibrium



is thefmodynamically shallow, and so is a salt érystal. One Brahma bull
is thermodynamically very deep, but six cloned Brahma bulls are only as
deep as the original bull plus the depth of the relatively shallow
cloning process.

The thermodynamic depth of a particular macroscopic state of a
system is defined to be the difference between the state’s coarse- and
fine-grained entropy; which in turn is proportional to the amount of
informatigﬁ discarded as the system evolved into that state. That the
amount of information discarded during some process is a measure of the
complexity of its result may at first seem strange. Think of long
division: to calculate the quotient of two numbers one must
calculate a number of multiples of the divisor as intermediate steps;
once the division has been completed, the results of these intermediate
\multiplications constitute information that is no longer useful --
"junk" information. Animals cull useful information from useless as a
simple érerequisite of the complex process of staying alive: 1ight
bouncing off a mosquito forms a distinct spot on the retina of a swift,
the swift'’s visual cortex registérs the mosquito’s position, the wings
adjust, the mouth'opens, snap, and then the next mosquito comes into
view. The position of the mosquito just eaten is no longer relevant to
the future survival of the swift, and all the information generated in
the process of catching that mosquito, once useful, now beomes useless.
To measure the amount of information generated and discarded by a living
system is beyond the ability of a physicist; however, one can readily

apply the)measure of thermodynamic depth to man-made systems, such as



computers, where the amount of information processed is simply
quantifiable. When one applies thermodynamic depth to physical systems
capable of computation, the measure yields a conventional computational
measure.of complexity as a special case: the computational complexity of
a problem is proportional to the number of elementary logical and
arithmetical operations that must be performed to solve the problem
starting from a given set of initial information. But as the example
given abové suggests, each logical and arithmetical operation involves
discarding a certain amount of information. In the remainder of the
chapter, physical and computational examples are given, the relation of
thermodynamic depth to previously proposed definitions of complexity is
discussed, theorems on the ways that physical systems transfer and
create information are proved, and applications to physical, chemical,

and mathematical problems are proposed.

The final two chapters of this thesis propose a new version of
quahtum statistical mechanics. The probabilities inherent in pure
. quantum states differ markedly from normal statistical mechanical
"probabilities: because quantum mechanical probabilities come out of
underlying probability amplitudes, quaﬁtum mechanical systems can
exhibit interference phenomena that classical systems cénnot. Quantum
and classical statistics do not always differ, however. In chapter
three, "Pure State Quantum Statistical Mechanics and Black Holes," a
number of theorems are proved that imply that the probabilities inherent

in the pure quantum states of systems with more and more degrees of



freedom differ less and less from the probabilities given by the normal
statistical mechanical ensembles? For example, if a gas confined to a
volume is in a particular pure quantum state with energy E, then for
most measurements made on the gas, the quantum statistics of the pure
state predict a distribution of results. (Contrast the quantum case
with the classical case: if a classical gas is in a particular
microscopic state, then any measurement made on the gas will give a
siﬁgle, welf-defined result.) The theorems proved imply that for most
measurements, the quantum mechanical distribution of résults implied by
the pure state has in the thermodynamic limit the same mean value,
standard deviation, and higher moments as the distribution implied by
the microcanonical ensemble for the gas with energy E. Another way of
stating this result is that a system with many degrees of freedom in a
pure state behaves with respect to most measurements as if it were in a
mixture. This result is applied to black holes, and in chapter 4, "Why

Deviations from Wave Function Collapse are Hard to Detect," to the

quantum mechanical measurement problem.
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Chapter 1: A lboghole in the second law of thermodynamics

Maxwell was the first to note the trade-off between entropy
and information: he pointed out that a being who could measure the
velocity of individual molecules in a gas could operate a shutter
between two containers of the gas, and by shunting fast molecules into
one container and slow molecules into the other, create a difference in
temperature beé&een the two containers, in apparent contradiction to the
second law of thermodynamics. William Thomson, Baron Kelvin, called
this being a "demon." Such a demon takes information about the
microscopic state of the gas and by acting judiciously, uses that
information to reduce the entropy of the gas. Szilard2 subsequently
suggested that the act of acquiring information by its very nature
generates entropy; he showed that one bit of information could be used
to reduce the entropy of a one-molecule gas by kBan, and gave an
example of a simple measuring device that created at least kB1n2 of
entfopy for each bit of information that it acquired. Brillouin3
elevated Szilard’'s result to the status of a "generalized Carnot
principle" : the amount by which a demon can redﬁce entropy by puttihg
his insider information to work is always less than or equal to the
amountvby which he increases entropy in the act of acquiring information
in the first place. More recent auﬁhors have dealt with the question of

’

minimum entropy increase in telecommunications and in

6 7 8
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computation.



The above authors investigate the trade-off between information and
entropy in specific devices. In this paper, the mechanics of the
general process by which one system obtains information about another
are examined. Almost any interaction generates correlation: not only
does a drift chamber get information about the trajectories of the
particles that pass through it -- an electron can be regarded as getting
information about the particles off of which it scatters, as well. Four
theorems that eﬁbloit the measure-preserving properties of classical and
quantum mechanical dynamics are proved. The first two theorems put
limits on the amount of information that a given system can gather, and
imply that a system such as a drift chamber or an electron that is to
obtain information through interaction must either have its entropy
reduced during the interaction, or else exist in a state of low entropy
beforehand. The third theorem confirms the well-known fact that a
reduction of the entropy of one system by normal thermodynamic means
requires an increase in entropy elsewhere; the fourth theorem shows that
the existence of correlations can mitigate the amount of the required
entropy increase. The generalized Carnot principle holds for drift
chambers and electrons, photocells and eyes, because in order to gather
information repeatedly such systems must repeatedly be placed in states
of low entropy, at the cost of a counterbalancing increase in entropy
elsewhere. However, the generalized Cafnot principle does not
necessarily hold for systems in preexisting states of low entropy, such
as gravitationally induced clusters of matter, that interact once and

for all to acquire information about other systems, such as nearby
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clusters. Maxwell’s demon cannot function to reduce the entropy of a
gas, but the existence of states of low entropy at early times together
with the presence of long range forces to induce correlations may imply
a violation of the second law of thermodynamics for the universe as a
whole.

In the event that a boundary condition for the universe requires
that it be in a state of high order when small, the second law of
thermodynamics must be violated during the recontracting phase. The
theorems proved here show how in this event the different particle modes
behave as Maxwell’s demons, using information acquired during the
expanding phase to decrease coarse-grained entropy during the

recontracting phase.

Entropy

The Shannon entropy of a system with states i is given by

S =- ? PilnPi ’

where Py is the probability that the system is in its i-th state given
macroscopicvconstraihté such as total energy, volume, number of
particles, etc.; for a thermodynamic system, the Shannon entropy is
equal to the fine-grained entropy divided by Boltzmann’'s constant. In
what follows, the word ’'entropy’ refers to the Shannon entropy unless |
otherwise noted. For a discrete system, the entropy is non-negative.
For a continuous classical system with coordinates and momenta labelled

by a, we have S = - f p(a)lnp(a)da, where p(a) is now a probability



density; S for a continuous system can be negative. For a quantum
mechanical system, S can be written S = -trplnp , where p is the
density matrix for the system? In each of these expressions for the
entropy, S gives a measure of how little we know about the system in
question. Note that if P;= 1/W, i=1 to W, so that the system can be in
any one of W states with equal probability, the usual expression for the
entropy, S = 1InW , is recovered.

The relation, S = 1lnW , does not immediately suggest Carnot’'s
original conception of entropy as a measure of the inability of a system
to do work: the closer tﬁe entropy of a heat engine together with its
reservoirs is to their maximum entropy, the less work the engine can
perform. Simply knowing more about a system such as a gas may constrain
the number of possible microstates without providing an obvious way to
make the gas do work as part of some heat engine; to do work, we must
imitate Maxwell’s demon and use our knowledge to produce a differential
in temperature, pressure, or some other thermodynamic potential. 1In the
cases of an ideal gas, Fermi and Bose gases, spin systems, etc., one can
explicitly establish the equality of kBan and the thérmodynamic
entropy; and knowledge of a departure from the maximum of the
statistical entropy as a function of energy, volume, and pafticle number
gives us the ability to create flows of heaﬁ, push pistons, and pump
particles. Given the equality of kBan and tﬁermodynamic entropy in
known cases, Qe assume that the thermodynamic entropy can generally bé
interpreted as a measure of our lack of knowledge of the actual state of

a system. Though not every increase in information about a system such
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as a gas brings about an ob&ious increase in our ability to make that
system do work, nevertheless, every decrease of AS in the thermodynamic
entropy of a gas necessarily entails a reduction in the number of
possible microscopic states of the system by a factor of gAS. In this
paper we prove a number of theorems on the mechanics of getting
information. As long as the correspondence between thermodynamic
entropy and kBan holds, these theorems proved purely in the context of
getting information and reducing the statistical entropy hold for the
reduction of the thermodynamic entropy as well.

An immediate problem with identifying the fine-grained entropy with

the thermodynamic entropy is that S = -3 pilnpi has the property of
‘ i

remaining constant under volume-preserving evolution in phase space for
classical systems and under unitary evolﬁtion for quantum mechanical
systemsf0 S = constant is particularly easy to see in the quantum
mechanical case. Under unitary evolution U, p =+ p'= UpUT ,and S =+ S'=
-trUbUTInUpUT. Expanding the logarithm in a power series and using the
cyclic property of the trace, we immediately get S'= S.

'The problem arises as follows: If the probability density po(a) or
the density matrix o reflects accurately our knowledge about the state
of a given system at time t=0, then the probability density pt(a) =
po(u;l(a)) or the density matrix P= UtpoUl reflects accurately our
knowledge at time t only if we know the exact form of the evolution u,

in phase space or of the unitary evolution Ut' But a detailed knowledge

of the evolution of a system such as a gas is out of the question. The



equations of motion for such a system are rarely integrable, and if we
constantly update our probability distributions and density matrices
according to experimentally acquired knowledge of the evolution, the
corresponding entropies will either remain constant or increase.

If the exact evolution of a system can be determined by integration
of the equations of motion, or by experiment, the entropy remains
constant. We prove that if the evolution of a system can be determined
only inexactly by analytic or experimental means, the fine-grained
entropy tends to increase. That is, we give a formal proof of the
straightforward idea that if we know something about the state of a
system to begin with, but know only approximately how the system evolves
in time, then we will know less about the state of the system in the
future. We thus prove a version of the second law of thermodynamics for
a closed system based on a coarse-graining over the space of the
system’s possible evolutions, rather than on a coarse-graining over

phase or Hilbert space.

Theorem:

(Second law of thermodynamics for isolated systems.)
If the time evolution of an isolated classical or quantum mechanical
system is known only inexactly, and if under such an evolution the

entropy S goes to S’, then S’ =2 S .
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Proof:

Take first the case of a classical; discrete system with n states.
A time evolution of such a system is given by a member of the group of
permutations of n objects, Sn' Let P; be the probability that the
system is in its ith state. Let x(o) be the probability that the actual

evolution of the system is o. As the system evolves, P; ° pi , where

= Z x(a)p _, =Z F..p,,

. . 1
aeSn o (1) j 37

!
31

-1
and Fij= the sum over all o, such that ¢ (i) = j, of x(o). Note that

S F.,. =XF,. =1 : the transformation of the probabilities is double
J

stochastic. Under such an inexact evolution, the entropy S = -3 pilnpi

i
oes to S’ = -Z p!lnp! = - F..p.In( Z F..,p.,
g > p;lnp: oy 1jPj (j' 1j'Pj )

2 - Z°F,.p.1lnp, , since xlnx is convex
i,j 1373 71

= - 3 p.lnp, , since X F,. =1
PRI T i

=S

The above proof holds also for any classical continuous system that can
be suitably modelled by a discrete system, e.g., any system that we can
model on a digital computer.

The proof that S'= S for quéntum mechanical systems goes as follows:
let X5 be the probability that the actual unitary evolution of the given
system is Ui' A particular density matrix p then transforms as

.p + p' =2 inip Ul . Look at a representation in which p’ is diagonal:
i

p'= diag(pi,...,pﬁ). The entropy S = -trplnp goes to

N
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[ ' [ ' [ j j
S trp’lnp Z pilop; Z 2 x;p;in( ?,xi.pi,) ,
i ji i )
where p% is the jth diagonal element of Uip Uz in the representation in

which p’ is diagonal. But xlnx is a convex function, and so we have

.

"> . - -3 pd1npd
S' = ; Xisi , Wwhere Si ? pilnpi
1 J
But if p = diag(pl,...,pn), then

) -0. . 2
pl = (v ul )l - sulk |

] AL Ing
Kk’

pkk' i . Pk ,

where

I

. ‘1 2 . .
the matrix FK = IU%kI is double stochastic, I pk _ 5 pik
. J k
Siz S as in the discrete case. Hence S’' > % Xisi =S
i

1, and so

We can also define a quantum mechanical entropy with respect to a

. b b, b b
particular basis: S (A) = -trpAlnpA, where Py = ? |bi><bil pA[bi><bi|,

and {Ibi>} is a basis for the Hilbert space of A. The entropy

S = -trplnp defined above is equal to the entropy defined with respect
to a basis in which p is diagonal, p = diag(pl,...,pn). Note that
ci o ci1 9 ‘s
sb-_3s [utd | pjln (= Jutd pj,) , where the U™ are the components
. i‘j j’

relating the basis in which p is diagonal to {|bi>}. Hence sz S, as
above: any process, such as measurement, that replaces p by pb also
tends to increase entropy.

That the statistically defined entropy obeys a version of the second
law of thermodynamics confirms the plausibility of identifying the
entropy defined in terms of probabilities with the thermodynamic

entropy. The proof of the second law given here differs from the proof



of Gibbs in that we have introduced a coarse-graining over the space of

possible evolutions rather than a coarse-graining over phase or Hilbert

space. The form of a particular coafse-graining'for a system depends on
the interactions that we can arrange between the system and the various

devices that can record information about the system’s state and

evolution. We now turn to the mechanics of getting such information.

Information

The relation, S = 1lnW, gives an explicit expression to the trade-off
between information and entropy. For example, if we compress an ideal
gas of N molecules isothermally to half its original volume, we decrease
its entropy by Nln2, and reduce the number of possible microstates of
the gas by a factor of 2N -- we gain information about the actual
microscopic state of the gas. Conversely, the more we know about a
system, the greater the number of constraints on its microscopic state,
the_lower its entropy. We can give a numerical measure to information
by defining the amount of information obtained about a system during
some process to be equal to the amount by which the entropy of the
system is reduced during the process?1

ATl = -AS
Two systems are correlated if when we look at one we get information

about the other. Given a joint probability distribution p(aibj) for the

states aibj of AB, the conditional entropy of A given that B is in the

state bj is S(A/bj) = - ? p(ai/bj)lnp(ai/bj), where p(ai/bj) =
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p(aibj)/p(bj) is the probability that A is in the state a; given that B
is in the state bj' The average entropy of A given the state of B is

S(A/B) = = P(bj) S(A/bj) = S(AB) - S(B)
J
In the quantum mechanical case, the average entropy of A given the state

of B depends on which basis {Ibi>) we use to describe B: Sb(A/B) =
Sb(AB) - Sb(B).

7

Coarse-grained entropy

Conditional entropies can be used to define thermodynamic, or
coarse-grained entropies in terms of interactions with meaéuring
devices. Let A be a system, such as a gas, with n states a; initially
described by a probability distribution p(ai) =1/n: i.e., nothing is
known about the state of A. Let B be a system, initially inrstate bO’
that interacts with A. If after the interaction B is in the state bi’
then A must have been in a state aj such that ajb04 akbi: the
transition, bof bi defines a set of states that‘A could have been in
before the interaction. Such a set of states corresponds to a
macroscopic §§g§§ of A defined by the interaction with B. 1In the
continuous case, each transition for B defines a volume in the phase
space of A. In the quantum mechanical case, each transitioﬁ |bo> - |bi>
defines a subspace of the Hilbert space for A. The coarse-grained
entropy of the macroscopic state of A given that B went from bO to bi is

E(A) = kBS(A/bi) after the interaction, where kB is Boltzmann's

constant. Boltzmann'’s constant is brought in to make the connection
g



between information theory and thermodynamics: coarse-grained entropies

such as E(A) are what is normally meant by "the entropy of a system."
For example, if a thermometer B is brought into contact with a gas A
confined to a certain volume, then S(A/bj) is the conditional entropy of

the gas given that the thermometer is in a state bj in which the

thermometer’s scale registers a certain temperature, E(A) is the
thermodynamic entrppy of the gas at that temperature.

Note that the céarse-grained entropy of a macroscopic state is equal
to the fine-grained entropy for a uniform distribution over the
microscopic states correéponding to the macroscopic state. The coarse-
grained entropy of a state is thus always greater tﬁan or equal to the
state’s fine-grained entropy.

The coarse-grained entropy of a system can always be written as
Boltzmann's constant times the conditional entropy of the system
relative to the state of a given set of measuring devices after
prescribed interactions. The following theorems put restrictions on how
much one can reduce the conditional entropy of a system through |
interaction; since the coarse-grained entropy of a system is Boltzmann's
constant times the conditional entropy of the system with respect to
certain measuring devices, the theorems proved also apply to how much
one can reduce the coarse-grained entropy during interaction. We now
use the fact that the fine-grained entropy never decreases to put a
limit to the amount by which the conditional entropy can be reduced

during any interaction.



|
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Theorem 1:

The amount by which the average entropy of A given the state of B
can be reduced during an interaction is limited by the difference
between the initial value of B's entropy, and its final value:

- ( S.(a/B) - 5,(A/B) ) = 5._(B) - S(B)
Proof:

St(AB) - SO(AB) >0

- S_(AB) - S _(B) - S,(AB) + S,(B) = 5,(B) - S.(B)

> - { S (A/B) - 5,(A/B) } = S_(B) - 5,(B)
In the proof for the quantum mechanical case we must take into account
the bases for B with respect to which the average entropy of A is given
at time zero and at time t. If at time zero we look at S(A/B) with
respect to a basis {ij>} for B and at time t we look at S(A/B) with
respect to another basis, {|cj>}, we have SEC(AB) - SB(AB) > 0. The
rest of the proof continues as after the first line above, and we have

- U SPa/B) - sga/B) ) < S2°(B) - Sp(B)

Accofding to an outside observer who applies the second law of
the;modynamics to AB as an isolated system, a decrease in the entropy of
A given B requires an increase in the entropy of B. But for an inside
observer who has access to the actual state of B, the entropy of B is
always zero. Where the outside observer sees an increase in S(B) in the
course of B's interaction with A, the insider sees not an increase in
entropy, but an increase in the amount of information that B has about

A
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The mutual information, or correlation, between A and B is defined

to be the average amount that the entropy of A is reduced given
knowledge of the state of B:
I(A,B) = the entropy of A
- the average entropy of A given the state of B
= S(A) - S(A/B) = S(A) + S(B) - S(AB).

Two important facts about mutual information: 1) I(A,B) = I(B,A) : the
average amount by which the entropy of A is reduced if we know the state
of B is equal to the average amount by which the entropy of B is reduced
if we know the state of A. 2) I(A,B) = 0 : the mutual information is
never negativef1

The quantuh mechanical version of mutual information between two

systems A and B with joint density matrix Ppp CaD be defined as

I(A,B)

S(A) + S(B) - S(AB)

= -trpAlnpA - trpBlan + trpABlnpAB ,
where Pa is the density matrix for A alone, got by taking the trace of.
PAB over B's degrees of freedom, similarly for Pg- Once again,>I(A,B) =
I(B,A) and I(A,B) = 0. The inherently statistical nature of quantum
mechanics implies that S(A), S(B) need not equal zero when S(AB) = O:
this makes the quantum mechanical mutual information generally larger

than the classical. For example, two electrons in the state

(1/J2) { ITX>ILX> - |¢x>|TX> ) exhibit anticorrelation of spins not only
along the x-axis, but along any other axis, as well. The mutual

information between the electrons is 21n2, twice the maximum value for
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the corresponding classical case. We can also define quantum mechanical
mutual information with respect to a particular choice of bases
{lai>'},{|bj>} for A,B : 1%P(a,B) = 5%(a) + sP(B) - s?P(aB)

- s%(a) - s2(a/B). Note that 12P(A,B) < I(A,B).

Mutual information allows us to give a measure to the amount of
information that one system gets about another during any interaction.
Suppose A and B are initially described by a classical probability
density po(ab), where é,b label both coordinates and momenta for A,B
respectively. Suppose that A and B undergo a volume-preserving
evolution on phase space u, in which the state ab goes to ut(ab) at time
t; the probability density po(ab) then goes to pt(ab) = po(uél(ab))

At time t, A and B will in general be correlated: It(A,B) >0 . The
following theorem puts a limit on the amount of information that B can

- get about A during such an interaction:

Theorem 2:
It(A,B) < Smax(AB) - SO(AB) , where Smax(AB) is the maximum entropy

for A and B and SO(AB) ='-f po(ab)lnpo(ab)dadb is the initial entropy.

Proof:
The mutual information between A and B at time t is

It(A,B) = St(A) + St(B) - St(AB) . But St(AB) > SO(AB), as noted above,

~and the maximum value for St(A) + St(B) = the maximum value for S(AB) =

1nVA+ anB , where VA,B

respectively. The quantum mechanical version of this proof is identical

are the volumes of phase space accessible to A,B
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.except that the maximum value for S(AB) is equal to In(nA) + ln(nB) ,

where nA,B are the dimensions of the Hilbert spaces for A,B.
Theorem 2 implies that if a system is to function as a measuring device,
it together with the system about which it is getting information must
be in a state of less than maximum entropy to begin with. If both A and
B are in states of ma§imum entropy at time 0, then Kt(AB) will always be
zero.

Theorem 2 puts limits on the amount by which the entropy of a system

" can be reduced by correlation. The next theorem puts limits on the

reduction of entropy by constraint.

Theorem 3:
If A and B are initially uncorrelated, IO(A,B) = 0 , then any
interaction between the two that decreases A’'s entropy by AS must

increase B's by at least AS.

Proof:
We have SO(A) + SO(B) = SO(AB) at time zero. At time t we have
S.(A) + S_(B) = S_(AB) . But S _(A) = S(A) - AS , and S _(AB) = S (AB),

so that St(B) > SO(AB) - SO(A) + AS = SO(B) + AS

In the case of an ideal gas isothermally compressed to half its original

volume, with corresponding entropy decrease AS = NIn2, the heat flowing
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out of the gas must increase the entropy elsewhere by at least that
amount.
We now prove a theorem that puts a limit on the amount by which

entropy can be reduced by a combination of correlation and constraint.

Theorem 4:
Any interaction between A and B that decreases A’s entropy by AS
must increase B’s entropy by at least AS - IO(A,B), where IO(AB) is the

correlation between A and B at the start of the interaction.

Proof:

We have SO(A) + SO(B) = SO(AB) + IO(A,B) at time 0. At time t we
have St(A) = SO(A) - AS, St(AB) > SO(AB), and St(A) +~St(B) > St(AB).
Now

St(B) > St(AB)'~ St(A) g St(B) > SO(AB) - SO(A) + AS
- St(B) > SO(A) + SO(B) - IO(A,B) - SO(A) + AS

- .St(B) > SO(B) + AS - IO(A,B)

Theorem 4, which inciudes theorem 3 as a special case, tells us that
if A and B are correlated to begin with, a decrease in A’s entropy need
not be fully compensated for by an increase in the entropy of B:
correlation can be "cashed in" to decrease entropy at less than the
normal cost. So, when a gas undergoes a Poincaré recurrence cycle the
correlations between the molecules conspire to produce a state of

abnormally low entropy.



Entropy and Information

The theorems proved above allow us to determine exactly when the
collection of information requires an increase in entropy and when it
does not. Let us analyze how much information a system B (a photocell,
a drift chamber, an electron) can get about another system A (a photon,
an electron) by interacting with it, and by how much or how little the
entropy of A and B increases during such a process.

Theorem 1 tells us that if the initial entropy of B is less than its
maximum value, SO(B) < Smax(B) , then the maximum amount of information
that B can get about A , i.e., the maximum amount by which the entropy
of A can be reduced by becoming correlated with B, is AI = Smax(B) -
SO(B). There is no reason why S(AB) must increase during such a
process. Nor is there any reason why the coarse-grained entropy must
increase. When an electron scatters off of another electron their
states become correlated; yet if the electrons begin in a pure state
;hen they end up in a pure state, Qith entropy zero. Nor need entropy
increase when B is macroscopic.8 Landauer6 pointed out that a Brownian
particle in a potential well that can be continuously modulated between
bistability and biased monostability can be used to record one bit of
information with vanishingly small increase in entropy as long as the
initial configuration of the well is known. Such a system can be

6 7
realized as a one-domain ferromagnet, ' or as a Josephson junction with

12
a controllable critical current.
Even the prototypical measuring device of Szilard that creates 1n2

of entropy for every bit of information acquired can be slightly



modified to give as small an entropy increase as desired. Szilard's
device consists of a piece of matter that is put in contact with one of
two reservoirs at different temperatures, either the first at T1 or the
second at T2 depending on the position of a pointer. The energy of the
matter and the position of the pointer become correlated, but at the
cost of an average increase of entropy of at least 1In2 as heat flows

from matter to reservoir and vice versa. If the initial temperature of

’

the matter is known: however, one can make the increase in entropy as
small as one likes simply by supplying reservoirs with incrementally
inéreasing temperatures between T1 and T2 , with which the piece of
matter comes into equilibrium on its way from one reservoir to the
other.

Theorem 1 tells us that the reason that these devices can get
information without increasing entropy is that they have been prepared
in states of less than maximum entropy: in each case above, the initial
state of the device is known at least approximately. Suppose that B has
obfained a maximal amount of information abouﬁ A, so that SO(B) =
Smax(B)' At this point it is certainly possible to arrange an
interaction between B and another system'C such that B gets information
about C, i.e., St(C/B) - SO(C/B) < 0 , but during such an interaction
the total entropy of A and C given B cannot decrease:

St(AC/B) - SO(AC/B) = SO(B) - Smax(B) =0
That is, once S(B) = SmaX(Bj, an interaction with B that decreases the

entropy of C by AS must increase the entropy of A by at least AS. Once

B has been saturated as a recording device, any further information that
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B gets about any system must be fully compensated for by an increase in
entropy elsewhere.

Landauer,sand Bennett8 have pointed out that it is the act of
erasure, rather than the act of recording information, that requires an
increase in entropy. We apply the theorems proved abové to treat the
act of erasure in detail. The second law of thermodynamics for isolated

systems implies that the demon must arrange an interaction with some

external system if he is to decrease the entropy of his recording

device, B, when S(B) =S (B). Note that when S(B) = S (B), the
max max

fine-grained entropy of B equals'the coarse-grained entropy,

kBS(B) = E(B). But this reduction in the entropy of B cannot take place
through correlation: even if B becomes correlated with some other system
C, this does the demon no good, since the demon can get no information
about C as long as S(B) = SmaX(B). Hence the demon must arrange to
decrease S(B) by constraint. We can now apply theorems 3 and 4: if the
demon arranges an interaction between B and a system C that has no

initial correlation with B, theorem 3 requires that every decrease of AS

in B's entropy be compensated for by an increase of AS in the entropy of

C. 1In addition, since §(B) = kBS(B), a decrease ofkaAS in E(B)
requires an increase of kBAS in the fine-grained entropy of C. 1If C is
already correlated with B, theorem 4 requires that a decrease of AS in
the entropy of B be matched by an increase in the entropy of C of AS -
IO(B,C), where IO(B,C) is the initial mutual information between B and

C. . Theorem 4 thus holds out the hope of decreasing the entropy of B



without a fully compensating increase in entropy elsewhere; but by
theorem 2, such a decrease can only be accomplished by also reducing the

information that B has about C.

Maxwell’'s demon can function up to a point: he can reduce the
entropy of a gas without generating entropy elsewhere by Smax(B)-So(B),
where SO(B) is the initial entropy of the device that he uses to record
information about the gas. He can reduce the coarse-grained entropy of
.the gas by kB times this amount. But that is all: any further
reductions in entropy can only be accomplished at the expense of
generating entropy elsewhere as the demon erases the information that he

has already gathered.

Discussion

Maxwell’s demon cannot function effectively because in order to
decrease the entropy of a gas by a substantial amount without increasing
entropy elsewhere, he needs to have a memory bank with at least as many
bits as theré are molecules in Fhe gas, all at a state of low entropy to
begin with. Even if the demon can use all the computers in the world to
record his information,'with,‘say, 1016 bits of memory, he will run out
of memory space before he has reduced the entropy of a gram of gas by a
factor of 10710. In practice, therefore, clever devices that can
violate the second law of thermodynamics by any substantial amount are
out of the question. Systems in states of low entropy, however, can get

a certain amount of information about other systems without increasing



entropy overall. One such example is the case of two scattering
electrons that are initially in a pure state. Gravitational systems
give another example: it was the information encoded in the
perturbations of the orbit of Uranus that that allowed the location of
Neptune to be pinpointed, yet the interaction between the two planets
that produced those perturbations did not produce ény increase in
entropy (apart from an irrelevant increase due to tidal action). 1In
reducing the uncertainty about the position of Neptune by their
calculations, though, Adams and Le Verrier produéed more than a
compensating amount of uncertainty in the positions and velocities of
the molecules in the paper on which they recorded the results of those
calculations.

A system in a state of zero entropy to begin with can record an
amount of information equal to the logarithm of the number of states
accessible to it in the course of interaction. The larger the system,
the more information it can record, the more if can reduce the entropy
of other systems without increasing entropy in‘turn. Maxwell's demon
operating with human-scale resources can decrease entropy by only the
smallest amount. The universe started out in a state of low entropy,
however, and a demon that can put to use a substantial fraction of the
matter in the universe as a recording device can reduce the entropy of
the remaining part by a correspondingly substantial amount. The
theorems proved here apply to the mechanics of getting information in
general and do not single out specific processes; however, they suggest

that by inducing correlations between the positions and velocities of



interacting masses the long-range electromagnetic and gravitational
forces could accomplish just such a large-scale uncompensated reduction
in entropy.

A number of authors = have pointed out that if there is a
boundary condition that requires that the universe must be in a state of
high order when small, then entropy must decrease as the universe
recollapses. The theorems proved here suggest the mechanism by which
such an entropy decrease can téké place. The universe starts off with
both fine- and coarse-grained entropy low. As the universe expands, the
fine-grained entropy remains constant, while the coarse-grained entropy
increases. In addition, as the universe expands, the states of |
different parts of the universe become correlated. As we will show, the
mutual information between the various parts of the universe gives a
lower bound on the increase in coarse-grained entropy. We will also show
that mutual information between the particle modes of the fields in the
universe is virtually certain to rise to its maximum value, driving the
coarse-grained entropy up to its maximﬁm value. As the universe
contracts, this‘mutuai information is used to decrease the coarse-
grained entropy of the universe as by theorem 4 above: each part of the
universe behaves like Maxwell's demon, using the information that it has
collected aboﬁt the other parts of the universe during the expanding
phase to decrease their coarse-grained entropy durihg the contracting

phase.
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We analyze this process in detail. First, we show that mutual
information gives a lower bound to the increase in coarse-grained

entropy:

Theorem 5:
Given a macroscopic state b of B at time t determined by the results

of inexact measurements on each of the degrees of freedom ll”"’lm of

B, and given any initial distribution po(ll...lm) at time ty, we have

St(b) - So(ll...ln) > kBIt(ll,...,lm) ,
where It(ll,...,lm) = St(ll) + ...+ St(lm) - St(ll...lm) is the mutual
information shared between 11,...,1m at time t.

Proof:
The coarse-grained entropy of b is equal to the sum of the coarse-

grained entropies in the degrees of freedom of B partially fixed by the

measurent that determines b, g(b) = g(ll) + ... + g(lm)' (For example,
a gas with m molecules is confined to a volume V if and only if each of
the individual molecules is constrained to lie within V. The entropy of

an ideal gas is equal to the sum of the entropies of its individual

molecules.) But g(li) > kBSt(li)’ where St(li) is the Shannon entropy

for li at time t given the underlying distribution, hence

S(b) = kB{ St(ll) +...+ St(lm) } = kB{ If(ll""’lm) + St(ll...lm) ),
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where It(ll""’lm) = St(ll) +...f St(lm) - St(ll...lm) is the mutual

information shared between the degrees of freedom of B at time t. But

St(ll...lm) = So(ll...lm) = (1/kB) SO(ll"’lm)' Thus,

S(b) - Sy(1...1) = 5(b) - kS (15...1) = kpT (11,...,1)

We can now apply the results of chapter three of this thesis, on the
increase of mutual information between the particle modes of quantum
fields. The modes of the quantum fields in the universe can be
represented as a set of harmonic oscillators. In chapter three we show
that, in the thermodynamic limit, an arbitrarily chosen interaction
between the oscillators causes them as a group to evolve into a state in
which the density matrix for each of the oscillators is exactly that for
the oscillator at thermal equilibrium; the evolution drives both the
mutual information and the coarse-grained entropy up to their maximum
values, equal to the equilibrium thermodynamic entropy.

_As the universe expands, the different modes of the quantum fields
collect eéactly the right amount of information about each other to
arrange the required decrease in coarse-grained entropy as the universe
contracts. If the boundary condition for the universe requires that
entropy be small at the big crunch, the interaction between the
different modes causes them to behave like Maxwell’s demons; using
existing information they decrease the coarse-grained entropy of the

remaining modes to its original, low level.
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Chapter 2: Complexity as Thermodynamic Depth

Introduction: the intuitive notion of complexity

What is complexity? Before giving a precise definition of
complexity it is usefﬁl to examine some intuitive properties that a
measure of the complexity of physical systems ought to have. These
intuitive notions can be compared with the ideas of "algorithmic
complexity,"1-4 "computational complexity,"5-7 and "logicalldepth,"g'
definitions of complexity that have already appeared in the literature.
Following this introductory discussion, we will give a precise, unique
definition of the physical complexity of a dynamical system, called
thermodynamic depth, which accords with intuitive notions, and show how
it is related to computational complexity and logical depth. We give
several examples of the application of thermodynamic depth, discuss the
implications of this concept of physical complexity for reversible

computation and the creation of mutual information, and prove several

theorems about the dynamids by which physical systems generate

therm§dynamical depth.

Dynamical systems range in a continuum from completely ordered,
regular systems like the arrangement of carbon atoms in a diamond to
completely disordered, chaotic systems like molecules in a gas. The
intuitive notion of complexity that we develop here is that complex
systems lie somewhere in the continuum between order and chaos.

Cells, brains, chickens and chicken DNA are all structurally complex --

they are neither wholly ordered nor wholly disordered. Any reasonable



measure of complexity should therefore vanish for the extremes of
complete order or disorder and not vanish for the structurally intricate
systems between these extremes.

Another intuitive requirement we should expect for a complexity
measure is that it be universal -- that it apply to any dynamical
system, whether living, non-living, or artificial. While abstract
cémputationai definitions of complexity may be useful when applied to
specific numerical problems, if a definition of complexity is to be a
useful measure for physical systems then it must be defined as a
function of physical quantities, which in turn obey physical ‘laws.
‘Furthermore, it is desirable that a physical definition of complexity
correspond to the previous definitions of complexity associated with
mathematical problem solving if the solutions of these problems are
regarded as the outputs of a physical system such as a digital or analog
computer.

If we think of complexity as a physical property of an object (such
as mass or entropy) then there is a puzzle. Objects can be copied. For
example, a bull is a complex object. Are seven bulls seven times as
complex as one bull?‘ Can complexity proliferate so cheaply? If
compiexity is simply an additive property of the parts out of whicﬁ an
object is assembled then it is easy, by copying, to create systems of
arbitrarily high complexity.

In order to évoid such indiscriminate proliferation, complexity can
not be an additive physical property of a "complex" object. Rather,

complexity must be a function of the process -- the assembly routine --



that brought the object into existence. If physical complexity is a
measure on the process or set of processes whereby a set of initial
states evolves into a final state, then seven bulls need not be very
much more complex than one bull. It took billions of years for the
earth to evolve one bull; but one bull and a few compliant cows will
prbduce seven bulls relatively speedily.

The definition of complexity that we define below has all of these
intuitive properties -- it is a property of the evolution of a state and

not of the state itself, it vanishes for ordered and disordered states,

it is a universal, physical quantity, and it corresponds to mathematical

complexity in problem solving. If, in accord with these intuitive
properties, we specify continuity'and additivity properties of the
complexity measure then the measure is defined uniquely.

Before proceeding it is important to comment on the "algorithmic
definition of complexit:y."l'4 This definition assigns a complexity
measure to computable numbers (or to anything that can be codified as a
numbér) by comparing the length of the numerically codified algorithm
for computing the number with the length of the number itself. If the
ratio of the two is near unity tﬁen the number is said to be complex.

- The algbrithmic definition of complexity is in our view a misnomer -
- it is really a definition of randomness (a profound one) and not
complexity. For example, the algorithmic definition of complexity
assigns a higher measure of complexity to a random sequence of letters
in the Latin alphabet or of nucléotides than to an equal length sequence

of The Merchant of Venice or of human DNA. Our intuitive notion of



complexity requires that the complexity of random sequences vanishes
while the algorithmic definition requiresrthat it be maximal. While
useful as a definition of randomness, the algorithmic definition does
not provide us with a measure of complexity.

The notion of "computational complexity"s.7 is well-defined in the
field of mathematical problem solving. The complexity of a problem is
identified with/the amount of computational effort that goes into
solving the problem starting from a given formulation. In the
travelling salesman problem, for example, one is to find the smallest
distance that one must traverse in visiting each of a number of cities,
given the distance between each. Each act of multiplication, addition,
information transfer, etc., "costs" a certain number of arbitrary units
and the complexity of the problem is identified with the total cost of
computation. In all known methods of finding the exact solution to the
travelling salesman problem, the cost of solving the problem rises
exponentially in the number of cities to be visited: the problem rapidly
becomes very complex.

The notion of complexity for problems can be extended to a notion of
complexity for numbers by fegarding a particular number as the solution
of a problem -- as the result of a calculation that starts from some
initial data. Appealing to the universal properties of Turing machines,
Bennetts.10 proposes a measure of complexity for numbers, called
"logical depth": the logical depth of a number is the number of machine
cycles that it takes a computer to calculate the number from the

shortest possible program. Due to the ability of computers to simulate



one other, this definition of complexity is roughly machine inﬁependent.
Under this measure of complexity, random numbers and ordered but highly
regular numbers are logically shallow: the shortest program that can
generate a random number N is the program that says "Print N," a fast
program, while a number such as 1l1...1 can be quickly generated by a
program that tells the computer to print 1 the requisite number of
times. The number maﬁe up of the first billion digits of x, however,
requires a significa&t amount of computational effort to generate from
its simple representations (e.g., as a continued fraction) and is
relatively deep compared to most other billion digit numbers.

Logical depth and the computational definition of compléxity are
useful and suggestive, but hard to apply to physical systems, which do
not come readily encoded as numbers. One might identify the complexity
of a physical system with the computational effort required to simulate
its evolution, but to simulate arbitrarily accurately a continuous,
classical system takes an arbitrarily large amount of computation on a
digital computer, and quantum mechanical systems exhibit long-range
correlationslaﬁd statistical behavior that a classical computer cannot
simulate. Deutsch11 has proposed a quantum mechanical computer that can
simulate any‘quantum mechanical system with a finite-dimensional Hilbert
space to any desired degree of‘accuracyf2 but to simulate accurately a
simple continuous process.such as a spin-spin interaction between two
electrons, or even the evolution of a single electron sitting in a
magnetic field, may take the computer a very large number of steps,

belying the simplicity of the underlying process. In general, physical



systems perform easily processes that are difficult for a computer to
simulate, for the simple reason that computers are designed to perform
sequences of logical operations, while most systems in nature, though
they may abide by logical rules, do not evolve step by step according to
Boolean algorithms. A cat following a bird with its eyes need not do

floating-point arithmetic to know where to pounce.

3
/

A physical measure of complexity

It is desirable, then, to define a measure of complexity for
physical systems that does not depend on computer simulations, but is
instead a function of physical properties of the systems themselves.
Such a measure, in accord with the intuitive notions we developed,
should assign low complexity to systems in random states and in ordered
but regular states, and, like computational complexity and logical
depth, be a measﬁre on the process by which the system evolves from
initial to final state. Complexity is then a measure of how hard it is
to put something together. 1If, in addition, one makes the following
simple requirements of a measure of complexity for a system that has
been determined by experiment to be in a particular macroscopic state:

a) the measure must be a function of the various processes that can
result in that state starting from a given set of initial states, and a
continuous function of the probabilities P that experiment assigns
those processes, and

b) the measure must satisfy the requirement of additivity: the

measure of increase in complexity of going from the initial set of



states to the final state is equal to the average increase in going from
the initial set to any intermediate set, plus the increase in going from
the intermediate set to the final state,

13

then the the measure must be proportional to the Shannon entropy

of the set of trajectories that lead to that state, S = - (Z piln pi),
: i

where P; is the probability of the i;th trajectory, plus a linear
combination of terms proportional to the Shannon entropies of other,
arbitrary weightings of the trajectories. If we demand that systems in
thermodynamic equilibrium have zero complexity, then thé form of the
measure is completely fixed (up to an overall multiplicative constant
which we set equal to one). The part of the measure that depends only
on the trajectories is fixed to be the thermodynamic entropy of the
state, and to make the connection between information theory and
statistical mechanics14 the constant of proportionality that multiplies
the Shannon entropy of the trajectories must be set equal to Boltzmann's

constant. ‘The measure of complexity that we define for a state of a

system, called the state’'s thermodynamic depth, is equal to the

difference between the coarse-grained entropy of the state (the state’s

-thermbdynamic entropy) and the state’s fine-grained entropy given the

initial distribution of states (Boltzmann'’s constant times the Shannon
entropy of the set of trajectories). Note that if the initial
distribution of states is determined by a macroscopic measurement at

time t then the fine-grained entropy at that time is set equal to the

O)

coarse-grained entropy of the macroscopic state that was the result of
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the measurement, and the thermodynamic depth of macroscopic states at a
later time t is equal to the increase in coarse-grained entropy in going
from ty to t. Equivalently, since the finé-grained entropy of a closed
system remains constant under volume-preserving evolution on phase space
or unitary evolution on Hilbert space, the thermodynamic depth
identifies a state’s complexity with the amount of information pumped
into the degrees of freedom of the system other than those fixed by that
state, in the process of going from some initial distribution of states
to the state in question.

The notion that the amount of entropy generated in arriving at a
particular state is a measure of that state’s complexity may seem odd at
first. Examples will be presented to make clear how the amount of
entropy, or junk information, generated by a system during some process
is a measure of the total amount of "information processing" that takes
place during that process. First, however, the definition of

thermodynamic depth will be made formally precise.

Thermodynamic depth

In what follows, the macroscopic states of a system B are defined by
prescribed interactions between B and a set of measuring devices; we
assume that B and its attendent measuring devices are part of a larger,
closed system whose time evolution preserves volume in phase space in
the classical case and in Hilbert space in the quantum case. A precise
definition of a measure of complexity, called thermodynamic depth, can

now be presented:
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The thermodynamic depth of a macroscopic state b of a classical

system B at time t given an initial distribution po(x) over the

microscopic states x of B at time to'is equal to
dpéb) = S(b) - kBSo(b) ,

where the

arbitrary constant of proportionality has been set to‘kB, Boltzmann's

constant, g(b? is the coarse-grained entropy of b,
= kB X 1ln( volume in phase space corresponding to b), and So(b) is the

Shannon entropy of the set of trajectories that evolve into b,

[ )
Hh

= -f pé(x)ln pé(x) dx , where pé(x) = po(x) / ( _lf po(x) dx )

u (b)
tot

-1
X € u. t(b) s pé(x) = 0 otherwise ( u, is the evolution on phase space
0

Ot

that maps states at time to to their values at time t ).

' The quantum mechanical definition of thermodynamic depth is
essentially the same, with Hilbert space substituted for phase space:
The thefmodynamic depth of a macroscopic state b of a quantum
mechanical system B at time t relative to an initial distribution of

states described by a density matrix Py at time o is equal to
dpéb) = S(b) - kBSO(b) )

where g(b) is the coarse-grained entropy of b, equal to kaln( dimension

of the subspace of Hilbert space corresponding to b), and
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So(b) = -tr péln pé is the Shannon entropy of the states that evolve

t . .
o totpoUtothUtot/ tr(same) is the density

matrix for the states that evolve into b ( Ut

into b, where pb = Ul thU

c is the unitary evolution
0
that takes states from ty to t; Pb is the projection operator onto the

subspace corresponding to b).

We show below that the thermodynamic depth so defined satisfies the
properties of continuity and additivity outlined above, and that the
form of the measure is unique up to an arbitrary multiplicative
constant. It is also a completely physical measure of complexity: the
thermodynamic depth of a macroscopic state is equal to the difference
between the coarse- and fine-grained entropies of the state given the
underlying probability distribution. 1In addition, the measure satisfies
the intuitive requirements on a measure of complexity discussed in the
introduction.

One such requirement was that the complexity measure vanish for
completely ordered and random systems. Systems at thermodynamic
equilibrium can be described completely by a few intensive variables
such as pressure, temperature and chemical potential, and by at least
one extensive variable sﬁch as volume. Simple and well-known
relationships hold between these variables: systems at thermodynamic
equilibrium are not complex. The definition of thermodynamic depth
reflects this fact. The thermodynamic depth of any state of a system

relative to the equilibrium distribution (i.e., a uniform distribution
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over all the accessible phase or Hilbert space) is zero: at equilibrium,

the coarse-grained entropy equals the fine-grained entropy, so that S =

kBS0 and dp= 0. Systems in a highly ordered, regular state -- such as a
0
salt crystal -- are also not very complex. The thermodynamic depth of a

system in a pure state is zero: S = SO= 0. In addition, systems close

to a pure state, wi?h s small, have small thermodynamic depth.
Another require&ent of the complexity measure was that we not be
able to proliferate complexity simply.by making copies of a complex
object. The thermodynamic depth of a number of identical copies of a
complex object that can be simply copied is not much larger than the
depth of the original object. The thermodynamic depth of a piece of
human DNA and an identical copy is much less than the twice the
‘thermodynamic depth 6f the piece of DNA alone. The property of
additivity implies that the depth‘of the DNA and its coﬁy is equal to

the depth of the DNA (large, for DNA from a living creature) plus the

depth of the copying process (small).

The thermodynamic depth of a macroscopic state of a system B depends
implicitly on the experiments that have been made on the system to
determine by what process the system evolved into that state; these
"experiments" correspond to interactions between B and the measuring
devices that define B's macroscopic state. Typically, measurements made
on a gas close to equilibrium determine very little about the way in

which the gas has approached equilibrium; the fine-grained entropy of
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the gas is on the order of the coarse-grained entropy, and its
thermodynamic depth is small. If, however, evidence exists from
measurements made at an earlier time that the gas was far from
equilibrium -- say, for example, that there was a temperature gradient
from one side of the gas to the other -- then the thermodynamic depth of
the final, equilibrium configuration of the gas is large. The existence
of experimental evidence that the gas started out in a particular state
far from equilibrium implies that if one ﬁerformed detailed enough
measurements on the state of the individual molecules of the gas after
the temperature has become the same throughout the gas, one could find
evidence of the original temperature gradient. At a microscopic level,
the motions of the molecules contain subtle and complex correlations
that point back to their original, non-equilibrium state. The
thermodynamic depth of a final state of the gas depends not only on the
characterization of the state itself, but on the experimental evidence
of the process by which it got there: the Shannon entropy of the set éf
trajectories of the final state of a system is equal to the conditional
entropy of the system given the state of the measuring devices with
which it has interacted.‘ The more precisely the process has been
defined, the smaller the fine-grained entropy, and the greater the
thermodynamic depth.

If we take a system given by the gas at equilibrium, together with
all the measuring devices that register the previous, non-equilibrium
state of the gas, then the gas is thermodynamically deep, because

evidence exists that points to the gas's detailed causal history. If we
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take a system given by the gas at equilibrium alone, with no measuring
devices that specify the gas’s causal history, the gas is
thermodynamically shallow. Thermodynamic depth thus satisfies another
intuitive property of complexity. Colloquially, a system that appears
simple at first glance may be complex on closer inspection. If one has
only measured the temperature and pressure of the gas, the gas is
thermodynamically shallow. If one has performed measurements to
determine more precisely the microscopic state of the gas, and acquired
evidence of the gas'’s detailed cagsal history, the gas is
thermodynamically deep. In contrast, no matter how many measurements
one has made on a crystal, the crystal remains thermodynamically
shallow, since the amount that one can decrease the fine-grained entropy
of the crystal through measurement is limited by the crystal’s coarse-

grained entropy, which is already small.

Example:

Since the only information that a measuring device outside a black
hole can get about the hole is its mass, charge and angular momentumf5
the fine-grained entropy of the hole is always equal to the coarse-
grained entropy of the hole (which is now no longer the equilibrium
thermodynamic entropy since black holes have negative specific heat and

cannot be in equilibrium). The thermodynamic depth of a black hole is

accordingly zero.
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Almost any interaction between a system B and another system reduces
B's fine-gfained entropy: the fact that the other system is in a
particular state after the interaction restricts the set of microscopic
states accessible to B. We can define the amount that a particular
subset of interactions contributes to the thermodynamic depth of é state
b of B to be equal to the amount that they reduce B’s fine-grained
entropy above and beyond the amount that it is reduced by the other
interactions éhat B has undergone. We can thus isolate the amount that
different elements of a process that result in a state contribute to the
state’s thermodynamic depth. For example, when a computer performs a
computation, we can separate out the amount that the logical elements
contribute to the thermodynamic depth of the result of the computation
from the contribution of irrelevantly generated heat by looking at how
much the setting of the bits in the input program reduced the fine-
grained entropy of the result given the level to which the fine-grained
entropy had already been reduced by the other interactions that

constructed the computer in the first place.

Additional properties of thermodynamic depth

Suppose that the initial distribution of states is determined by the

results of some macroscopic measurement, so that So(b) = S(c...d), where

c...d are the values of the degrees of freedom determined by the

measurement and E(c...d) is the thermodynamic (coarse-grained) entropy
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of c...d. The thermodynamic depth of b is then equal to the increase in
thermodynamic entropy in going from c...d to b.

Note that the number of bits needed to describe a macroscopic state

13 - -
b in a maximally efficient coding is I(b) = 1/(kB1n2) ( Stot’ S(b)),

where gtot is kB times the logarithm of the volume of B's entire phase
space. Similarly, the number of bits of information needed to describe

the initial distribution pé(x) of states that evolve into b is

I,(b) = (1/1n2) ( (1/kB)§ - S5(b) ) . The thermodynamic depth of a

tot
state b is proportional to the difference between the amount of
information needed to describe the initial distribution of states, and

the amount of information needed to describe b itself:

d(b) = E(b)l- kBSO(b) = (kBan) ( Io(b) - I(b) ).

For any system, such as a Hamiltonian system, whose evolution

" preserves volume in phase or Hilbert space, the fine-grained (Shannon)

entropy of the initial distribution is conserved. If the macroscopic
state b is determined by fixing some degrees of freedom of such a
system, and if the initial distribution of states that evolve into b has
entropy S, then after the system has evolved intq b, the entropy of the
remaining degrees of freedom must still be S. The different degrées of
freedom of a given system can be regarded as interacting subsystems, and
all the theorems of the previous chapter concerning the generation and
destruction of correlations and the increase and decrease of conditional

entropies apply. The thermodynamic depth of a state b is equal to the
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amount of entropy that the system has pumped from the "relevant" degrees
of freedom (those that need to be constrained for the system to evolve
into b) into "irrelevant" degreeé of freedom (the reméining ones) in the
course of constructing the state b. Equivalently, as the relation
d(b) = (kB1n2) ( Io(b) - I(b) ) suggests, the thermodynamic deﬁth of a
state is equal to the amount of information about the processes that
resulted in b that now resides in degrees of freedom other than those
fixed by b.

We now show that the requirements of continuity and additivity given
above imply that the Shannon entropy form for the measure is unique up
to a multiplicative constant. We consider separately the form for

deterministic and stochastic physical systems.

i) Deterministic case:
The macroscopic states of a deterministic system can be ordered in a
hierarchical tree (see figure 1), in which the nodes represent states

and the lines between the nodes connect each state with the state below

it into which it evolves (this hierarchical tree should in no way be

confused with the hierarchical trees of Huberman and Hoggt6 and of
Bachas and Huberman;”-18 their trees represent the height of potential
barriers between, say, the energy minima of a spin glass. The tree
given here represents the evolution of a dynamical system). The root of
the tree corresponds to the staté whose complexity is to be evaluated.

The states at the top of the tree correspond to the states of the

initial distribution that evolve into that state. The weights of the
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states at the top are given by experiment, and the weights of the states
below are assigned so that the weight of a given state is the sum of the
states immediately above it. Normalize the distribution so that the
weight of the root is one. Call the root (0). Call the states at the
first level (1), (2), ... where (1) is the state at the end of the first
branch, (2) is the state at the end of the second branch, etc. Call the
states at che second level (1,1), (1,2), ... , (2,1), (2,2), ... where
(1,2) is at the end of the second branch off of the state (1), (2,1) is
at the end of the first branch off of the state (2), etc. Continue so
numbering to the top. Let p(0,...,i) be the weight of the state
(0,...,1) at the top of the tree, and let all weights below be assigned
so that the weight of a state is equal to the weights of the states
directly above it. Then it is a theorem due to Shannon13 that the only
measure p( p(0,...,1), ... , p(0,...,n) ) that is a continuous function
of the p(0,...,1) and satisfies the previously described additivity

requirement that takes the form,

p( pC0,...,1), ... , p(0,...,n) ) =
p(0,u( p(0,1,...,1)/p(0,1), ..., P(O,l,..-,nl)/P(O,l) ) o+
. +p(O,m)u( p(O,m,...,1)/p(0O,m), ... , p(O,m,..{,nm)/p(O,m) ) + ...

(where n is the number of initial states; ny is the number of initial
states that evolve into the state (0,1), . . . ; n is the number of
initial states that evolve into the state (0,m), etc.) is

p( Py» -+ » Py )y = -k ( plln Py + L+ prln pr) , for
arbitrafy probabilities Pyr--vs Po such that p1+...+pr=1; k is an

arbitrary constant.
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An example of additivity is given in figure 2. There are five
possible initial states, four with probability 1/6 and one with
probability 1/3. There are two possible intermediate states, each with
probability 1/2. There are five different ways of getting to the final
state, to which the Shannon entropy assigns the measure

-( (4/6)In(1l/6) + (1/3)In(1/3) ) = (2/3)1In2 + 1In3. There are three
different ways of getting to the first intermediate state, with Shannon
entropy 1n3, and two ways of getting to the second, with Shannon entropy
-(2/3)In(2/3) - (1/3)In(1/3). There are two ways of getting from the
intermediate states to the final state, with Shannon’entropy In2. The
property of additivity requires that the Shannon entropy of the total
number of ways of getting to the final state be equal to the average
Shannon entropy of getting from the initial states to the set of
intermediate states, plus the Shannon entropy of getting from the
intermediate states to the final state:

(2/3)In2 + 1n3 = (1/2)1n3 + (1/2){-(2/3)ln(2/3)A- (1/3)In(1/3)) + 1n2.

ii) Stochastic case:

In the deterministic case, the weights of the initial states
determine a set of weights for the different pbssible trajectories that
the system may take in going from the distribution of initial states to
the final state: each initial state determines a trajectory, and the
measure of the complexity of the final state is then just the Shannon
entropy of the weighted set of trajectories. When a system evolves

probabilistically instead of deterministically, the evolution of its
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states can no longer be represented immediately by a hierarchical tree.
However, the weighting of the initial states together with the form of
the stochastic evolution of the system still defines a weighting of the
different trajectories that the system can take that result in the state
in question (specifically, the form of the evolution determines the
probability p(clcz;..cnb) that the system follows the sequence of states

..cnb\given an initial state c,, and the weighting of the initial

€12 1
states gives us the probability p(cl) of s the weight of the
trajectory cléz...cnb is then p(cl) p(clcz...cnb) ). In order to
satisfy the requirements of continuity and additivity as defined above,
the measure of complexity of the process that results in b must once
again be the Shannon entropy of the set of trajectories that result in b
with total weight normalized to one.

The stochastic system over the given degrees of freedom is
equivalent to a deterministic system over the given degrees of freedom
and a set of "hidden" degrees of freedom that label the different
possible trajectories. The initial distribution over the hidden degrees
of freedom is chosen to produce the correct weights for the different
trajectories. By the argument of the previous section, the only measure
for the deterministic system that is continuous over the probabilities
of the various trajectories and additive over intermediate distributions
is proportional to the Shannon entropy of the set of trajectories. But
the deterministic system over the original plus hidden degrees of

freedom is completely equivalent to the stochastic system over the

original degrees of freedom. Hence the unique measure for the
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stochastic system is proportional to the Shannon entropy of the set of

trajectories.

The entropy of the set of trajectories that result in a particular
state is the only continuous and additive measure of that state's
complexity relative to the original distribution of states. This result
holds for any dynamical system, stochastic or deterministic, dissipative
or conservétive.

An additive, continuous measure of complexity for a given
macroscopic state b must be proportional to the Shannon entropy of the
set of trajectories with probabilities P; determined by experiment, plus
a linear combination of terms proportional to the Shannon entropies of
the set of trajectories with other, arbitrary probability distributions.
These additional terms .do not spoil the continuity of the measure, since

they do not depend on the P;» and obey the additivity property. In

particular, the addition of the thermodynamic entropy g(b) to the

definition of logical depth does not spoil the additive properties of

the measure, since (l/kB)'S(b) is the Shannon entropy of the
trajectories that evolve into b given the uniform measure over the

underlying states. If the measure is to assign equilibrium states depth

zero, the only terms that can enter are g(b) and So(b), with
coefficients K and -KkB respectively, where K is an arbitrary overall

multiplicative constant. Setting K equal to one, we arrive at the

unique form for the thermodynamic depth, d(b) = E(b) - kBSO(b).



Generation of entropy during computation

In the course of a calculation a computer performs two basic
processes over and over again. 1) It copies information from one place
to another (e.g., from the memory to the central processing unit, or
CPU, and vice versa). 2) It transforms information using logic circuits
(e.g., taking the and of two bits, multiplying two floating point
numbers).

To copy information is to generate correlation, or mutual
information. To transform information using logical operations is to
cull the information that one needs from the information that one
doesn’'t need. An and gate takes two inputs, each of which can have the
values True or False, O or 1, and gives only one output, True if both
inputs are True, False otherwise. If the output of an and gate is
False, then one can not tell whether the inputs were True-False, False-
True, or False-False.

It is this action of separating information to be used later on in
the program from information that is no longer needed that in general
generates entropy. If the underlying dynamics of a systemrafe one-to-
one, as they are for all known systems at a microscopic level, then two
initially distinct states can not evolve into a single state without
creating some difference elsewhere. When an and gate operates, it
discards some information about the inputs: this information must show
up elsewhere. Suppose that the and gate is realized electronically by
means of transistors. If the first input is True and the second input

False, then we can not reconstruct the input from the output, False,
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alone. If, however, we could examine in sufficient detail the motions
of the electrons in the transistors after the gate has operated, we
‘would be able to discover some trace of the fact that the inputs were
True-False, not False-True or False-False. The information discarded by
the and gate has gone into the motions of the electrons at a microscopic
level: the égg gate, in operating, has generated entropy. Given an
initial distribution over the microscopic states of the transistors
together with power supply that realize the and gate with inputs True-
False, the thermodynamic depth of the output state, False, one machine

cycle later, is at least kBlnS.

Example:

A program that adds 11011010 to 11001 (binary) first copies the
numbers from the program stored in memory to the inputs to the adder in
the central processing unit. The CPU then adds the numbers together:

11011010

+ _00011001

11110011
In generél, there are 28 pairs of numbers that can be added together to
give a particular eight bit number: the addition process begins with two
eight bit numbers, finishes with one eight bit numbef, and has discarded
eight bits of information. Given an initial distribution over the
microscopic states of the CPU that realizes the two input numbers, the

thermodynamic depth of the result of the addition is at least 8kBln2.
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The two processes, creation of copies and generation of junk
information, have analogues in any physical system with more than one
degree of freedom. The values of the various degrees of freedom of a
system represent information no less than a particular orientation of
the magnetic field in one element of a magnetic core memory. Creation
of coﬁies corresponds to an increase in mutual information or
correlation between different degrees of freedém, while the generation
‘of junk information corresponds to the shunting of information from a
"relevant" degree of freedom to another, "irrelevant," degree of
freedom. In real physical systems, of course, information is not
necessarily processed according to Boolean algorithms. Exactly how the
sﬁates.that represent information transform depends on the Hamiltonian
of the system. Regardless of how a given system transforms information
locally, however, the amount of information processed globally can be
measured in terms of the correlations generated and the unneeded

information shunted away.

Example:

There are many ways that a computer can calculate a given result.

Since and and or, nand and nor, addition and multiplication are many-to-
one operations, oﬁe can stop a program at any stage, change the inputs
of the previous operation in>any way that one likes so long as the '
operation gives the same result as the original program, and have a way
of obtaining the final result that is different (albeit stupidly so)

from the way given by the initial program. Any device that can realize



the logical functions of a computer, in going from one of a set of
inputs that lead to a given final result after a certain amount of time,
must generate on average a.gross amount of junk information equal to the
logarithm of the total number k of inputs that lead to that result in
that amount of time; the thermodynamic depth of the result given a
distribdtion over the microscopic states of the computer that realizes
the given input is at least 1ln(k). In practice, the amount of junk
information generated by the "logic" degrees of freedom is roughly equal
to 1n2 per elementary logical operation performed. A computer that
performs a calculation of d logical steps has thermodynamic depth of at
least = de(an). df course, by profligately generating excess entropy
at every turn, a computer can generate large amounts of thermodynamic
depth amongst its microscopic degrees of freedom in addition to the
depth required by the logical operations. As noted above, we can
extract the contribution to the thermodynamic depth due to the operation
of the logical elements; even in a profligate computer, that has just
completed a 106 step calculation while raising the temperature of‘the
room by ten degrees, the contribution of the logical degrees of freedom
to the thermodynamic depth is = 106kBln2. In addition, it is possible
in principle to build a ;o-called-"reversible" computer that does not
shunt information generated by logical operations into microscopic
degrees of freedom and that generates no extraneous thermodynamic depth:
_such a computer has thermodynamic depth = de(an) for the result of a d

step calculation.
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Example:

In an n-piece one dimensional puzzle the edges of the pieces are
labeled with patterns of bits. Two pieces fit together if their
patterns of bits are complementary (see figure three). Each edge fits
onto exactly one other edge. Any process that assembles the puzzle must
check pégrs of bits to see whether they are equal or not. Any physical
system that realizes this checking process must generate junk
information, since the inputs 1-0, 0-1 both generate the same output,
Fit, while 0-0 and 1-1 both generate the output, No Fit. For each bit
checking operation, the system generates junk information ln2. To
compare the edges of two pieces to see whether they fit, one need only
proceed until one finds a mismatch. Each comparison generates on
average junk information
(1/2)1n2 + (1/4)21n2 + (1/8)31n2 + . . . + (1/2b)bln2, where b is the
total number of bits on each edge. If b is large, the average amount of
junk information generated per comparison is approximately equal to
21n2. 1In finding the piece that matches the first piece that one picks
up, one has to compare (n-1)/2 edges, on average. Once the first two
are matched, one must compare (n-2)/2 edges on average to find the next
match. The total amount of junk infofmation generated on average in
assemBling the puzzle is d = n(n-1)1n2. In any machine that assembles
the puzzle, the elements that perform the comparisons between pieces
contribute de(1n2) to the total thermodynamic depth of the result.
de(an) is a lower limit on the thermodynamic depth of the puzzle as

assembled by any machine.
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19.20
Example:

Newton'’s method for finding the zeros of an arbitrary polynomial
f(x) over xeC is given by the iteration of the following procedure.
Pick a point xleC, construct fhe tangent to f at X, call the point
where it hits the x-plane X,= T(xl). Repeat the procedure starting with
X, The global action of this algorithm gives a map from C into C.
Smale has shown that for a slightly modified version of Newton's method,
the probability can be made arbitrarily cloée to 1 that starting with a
randomly chosen Xq, the process converges to an approximate zero of f
after a finite number of iterations. (An approximate zero of f is a
zOeC such that z = Tn(zo) is well-defined for all n, z converges to z*
as n~o where f(z*)=0, and If(zn)/f(zn+1)| < 1/2 for all n=1,2,... .)
For large n the map T% is thus a compressive map on all the complex
numbers except a set of measure zero. If the map T is realized on some
finite interval y by a dynamical system such as an analog computer, the
amount of information discarded in n iterations as the system pursues
the zeros of £ is 1In{ p(Tn(y))/p(y) } (where u is the usual area measure
on the complex plane), which, multiplied by kB’

the thermodynamic depth of the result of the first n iterations as

gives a lower limit to

performed by any device, digital or analog. When in iterating T the
system reaches an approximate zero zg of £, the amount of information
shunted out becomes greater than 1ln2 per iteration, and the

thermodynamic depth increases by more than kBan.



Thermodynamic depth and mathematical comglekitx

Recall that the complexity of a mathematical result is identified
with the "cost" of calculating the result from a given formulat'ion.ls-7
If the calculation is performed by a.physical device, the measure of
thermodynamic depth applies. Any machine that discards d bits of
information in obtaining a result must start out with fine-grained
entropy at least d(1ln2) less than the coarse-grained entropy of the
result; a result that is obtained through d elementary logical
operations has thermodynamic depth > de(an). If we assign each
elementary logical operation a cost proportional to the amount of junk
information that it discards, then the mathematical complexity. is
proportional to the the amount that the physical elements that perform
fhe logical operations contribute to the total thermodynamic depth of
the result as calculated by any device. Equivalently, the mathematical
complexity is proportional to the thermodynamic depth of the result as
calculated on the most efficient device possible -- that is, one that
generates no more junk information than that required by the form of the
logical operations. The mathematical complexity of a result is equal to
the minimum tﬁermodynamic depth of the result "calculated" from the

initial conditions by all possible physical systems.

Thermodynamic depth and algorithmic complexity

One can also give an analogue to the shortest program that results
1.2
in a particular state. Given a system B and a probability

distribution pt(x) over the microscopic states of B at time t, the most
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plausible cause of a state b of B at t is the state co(b) at the most
recent time ty= ¢t that evolves into b given the induced probability

distribution (x) at time t, and that maximizes the coarse-grained .
- L PO 0 : g

entropy g(co).

Note that if B is at equilibfium at time t, then the most plausible
cause of any state is the state itself (b evolves into itself in no
time, and maximizes the coarse-grained entropy among macroscopic states

that evolve into b: any state c that evolves into b given an underlying
equilibrium distribution has §(c) < g(b)). Note also that since

I(c) = (1/kpln2) ( §to - S(c) ) the most plausible cause of b is the

t
state that evolves into b and that requires the féwest number of bits to
describe. The algorithmic complexity of a result is the length of the
shortest program that can calculate the result. The physical analogue
of algorithmic complexity for a macroscopic state b is I(co(b)) -- the
number of bits required to describe b’s most plausible cause. The
physical analogue of algorithmically random number is a state whose

coarse-grained entropy equals its fine-grained entropy: the physical

analogue of algorithmic randomness is thermodynamic equilibrium.

Thermodynamic depth and logical depth

The connection between computation and the discarding of information
also allows us to relate the thermodynamic depth of a number calculated
on a given computer to its logical depth. The logical depth of a number

relative to a given computer is equal, roughly, to the number of machine



cycles that it takés the computer to calculate the number starting from
the shortest possible program.s.10 The thermodynamic depth of the
number is approximately kB1n2 times its logical depth, given the most
efficient computer preprogrammed with the shorfest program to calculate
the number.

More prepisely, a result has logical depth d with significance b if
any program that can calculate the result in fewer than d steps can
itself be e#pressed as the output of a program b bits shorter than the
original program. This refinement in the notion of logical depth makes
the definition robust and reasonably machine independent. We will
connect thermodynamic depth to a closely analogous alternative
definition of logical depth: a result has logical depth d with
significance b if the programs that calculate the result in fewer than d
steps contribute a factor of less than 2°b to the results total
algorithmic probability.

To connect the notion of logical depth to thermodynamic depth,
suppose that we have some system whose evolution realizes the opefation
of a Turing machine. The initial distribution of microscopic states of
the system is such as to allow the machine to perform the required data
manipula;ions (moving the tape, copying and eraéing data, etc.), and to
give a uniform distribution over all one-sided sequences of bits on the
input tape of the machine. The initial weight of a sequence in which
the first n bits are fixed at particular values and the remaining bits

. -n
can vary is then 2 .
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The logical depth of a result is measured in machine cycles. As
seen above, a digital computer -that derives a result through d
elementéry logical operations discards about d(1ln2) worth of information
on average, and has thermodynamic depth 2> de(an). Thermodynamic depth
gives a measure of the complexity of constructing a particular result at
a particular time, starting from a given distribution, while logical
depth gives a measure of the complexity of constructing the result at an
indeterminate time, starting from a uniform distribution over the space
of input sequences. Thermodynamic depth can straightforwardly encompass
a definition analogous to logical depth by defining a macroscopic state
(determined by fixing the first m bits of the output tape) to have
thermodynamic depth d with significance b if the set of initial
macroscopic states with respect to which the result has thefmodynamic
depth of less than d (given the initial distribution restricted to any
one of those states) contributes a factor of less than 2-b of the total
probability that the final state arises in the first place. With this
definition a result’s 1dgical depth becomes proportional to its
thermodyﬁamic depth relative to any device that is set up to calculate
in a maximally efficient fashion, creating only the minimum amount of

junk information.

Reversible computers

In the previous chapter a number of theorems were proved on the
generation of mutual information shared between two systems, and on the

transfer of information from one system to another. In particular,



these theorems imply that one can not decrease the entropy of one system
without increasing the entropy of another unless the two systems are
correlated to begin with. That is, one can not erase junk information
except by creating junk information elsewhere, or by arranging an
interaction between the degrees of freedom that register the junk
information and the degrees of freedom that register the useful
information.

In principle it is po\ssiblen'28 (using Fredkin gates, for example)
to build computers that do not relegate the information that is not
needed to the microscopic level, but record it instead. If one copies
the useful information to memory and then runs the computer backwards,
the junk information can be erased reversibly, foregoing an increase in
entropy. It might seem that the in principle existence of reversible
computers that can perform complex calculations without increasing
entropy provide a counterexample to the definition of complexity given.
This is not the case.

. For a reversible computer there exists exactly one program that
starts with code on part of the input tape and blanks on the rest, and
that results after d steps in a specified output on the first n bits of
the output tape and blanks on the rest. "However, in general there exist
many programs that result after d steps in the specified output on the
first n bits of the output tape and other, junk, information on the
remainder. In fact, since the logical operations on a reversible
digital‘compﬁter are the same as on a conventional digital computer, the

number of programs that result in a specified output on the first n bits
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of the output tape and unspecified junk on the rest must be roughly the
séme for both. A reversible computer simply saves the information that
is no lénger needed to complete the calculation while a conventional
computer discards it. Since the definition of thermodynamic depth
depends only on the coarse- and fine-grained entropies of the specified
output and not on the exact state of the other degrees of freedom of the
computer -- in particular, it does not depend on whether the remaining
bits on the output tape are all zero or random -- the thermodynamic
depth of a particular computational result on a reversible computer is
about the same as the thermodynamic depth of the result on an optimal
conventional computer, that discards no more information than it has to
to derive the result.

The thermodynamic depth of a result on a reversible computer depends
on all trajectories that lead to that result, not merely the unique
trajectory that cleans up after itself. The trajectory that reversibly
erases the junk information created has special propertieé: in following
such a trajectory the computer must systematically destroy mutual

information, and as will be shown, natural processes that decrease

“mutual information substantially are few and far between. Mutual

information behaves like (the negative of) Boltzmann's H-function: if
mutual information starts at a low level, for almost all interactions it
rises to a high level, and stays high for a long time with small
downward fluctuations. In the next section, two theorems will be

exhibited that imply that for systems with many degrees of freedom, the



amount of time that one has to wait for mutual information to be erased
is of the order of the Poincare recurrence time.

The réversible erasure of junk information is not generally found in
nature (or in conventional computation) for the simple reason that it is
not necessary to erase the junk information to obtain the result. Since
the junk information is by definition that which is not needed to obtain
the end result, whether it is erased or not is irrelevant to obtaining
the result. The possibility of reversible computation is interesting
for systems that have strong constraints on how much entropy they can
generate, however; when close to equilibrium and subject to strong
constraints on how much négentropy is available, complex systems must be

ecologically minded.

Thermodynamic depth and mutual information

~The amount of computational effort that it takes to obtain a result
can be identified with the number of bits of junk information created,
which by simple counting is equal to the number of bits of information
copied ( = the total amount of mutual information created ) minus the
difference between the length of the final result and the input program
( = the amount of useful information generated). For a computer, then,
the thermodynamic depth of a result can be identified either with the
amount of junk information created, or with the amount of information
copied. The analogue of this result for physical systems in general can

be derived from theorem 5 of chapter one, which we restate here:



Theorem:
Given a macroscopic state b of B at time t determined by the results
of inexact measurements on each of the degrees of freedom 11,...,1m of

B, and given any initial distribution po(ll...lm) at time tO’ we have

»dpéb) > kBIt(11’°"’1m) ,
where It(ll,...,lm) = St(ll) + ...+ St(lm) - St(ll”‘lm) is the mutual
information shared between 11,...,1m at time t.

The thermodynamic depth of b relative to any initial distribution is
bounded below by Boltzmann's constant times the mutual information

between the degrees of freedom of B not completely fixed by b. The

mutual information is maximized for kBSt(li) = g(li), at which values
d(b)>= kBI. In the next section theorems are proved that imply that for
most interactions between degrees of freedom, their mutual information
tends to rise to near its maximum value and stay there to within
fluctuations. The previous theorem implies that as the mutual
‘information rises, the thermodynamic depth tends to rise as well,
although increase in correlation need not accompany an increase in
thermodynamic depth.29

Bennett has suggested the following counterexample‘to the idea that
mutual information is a good measure of complexity: Take a glass and
smash it with a hammer. Keep on smashing, and you will in short order

create a mass of shards that contains an amount of mutual information

greater than that between all the DNA in the human body. Since a bowl



of glass dust ought not to be more complex than human ‘genes, Bennett
argues, mutual information ought not to be considered a measure of
complexity.  The problem with this counterexample is that the complexity
of the genes in the body of a given human being is far greater than just
the mutual information that they possess amongst themselves. By virtue
of the extensive process of evolution by which these genes came into
existence, sequences of nucleotides in the DNA of the human genome are
highly correlated not only with sequences in the DNA of other human
beings, but with sequences in the genome of any other living thing on
the planet Earth. The structure of the DNA of living things is in turn
highly correlated with the features of the enviromment. In short, in
the course of the process that resulted in a particular piecelof DNA in
a human cell, .a whole lot of mutual information was produced,
accompanied by a correspondingly large production of thermodynamic
depth. This is not to say that a smashed up piece'of glass is not
complex (try reassambling it as a puzzle): it simply cannot compare in

thermodynamic depth to a sequence of human DNA.

Transfer of information and creation of mutual information
Thermodynamic depth identifies the complexity of a state of a
physical system with the amount of information processed in the course

of constructing that state. So far, we have concentrated on how
information is proceséed in computers. In this section we derive
results on how information is exchanged between the parts of physical

systems in general, not simply systems that evolve according to Boolean
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algorithms. Specifically, we show that almost all interactions between
two or more initially uncorrelated degrees of freedom tend to transfer

information from one to the other; in addition, almost all interactions
tend to produce mutual information between degrees of freedom, and that
mutual information, once created, tends to stay at a high level until

the Poincare recurrence time of the system in question.

i) Discrete classical systems:
Given a system AB with degrees of freedom A and B and with possible
states (a;,b), lsism, lsjsn, given initial probabilities p(ij) =

P(ai,bj), 2 p(ij) =1, p(1) = p(ay), p(J) =  p(ij), (the index i will
i,j i
always refer to a’'s, the index j to b’s), and given a one-to-one

evolution t: (ai,bj) - (ai"bj')’ where t is a member of the group of
- permutations of mn objects, tes™, t(ij) = i'j’', then there is a natural
action of t on the probability distribution p(ij): t: p(ij) - pt(ij) ,
-1 ‘
where pt(ij) = p(t (ij)) , with a corresponding action on P; and pj:
-1 -1
P (1) =2 p (1)) =2 p(t (i) , p ,(J) = 2 p (ij) = = p(t (ij))
j j | i i
The average amount of information transferred from B to A in the

course of the interaction is got by looking at the initial probability

distribution p(ij) = (1/m)§, for some initial state of A i,: i.e., A
0 .

is fixed at a given value i,, while B can be anything. The amount of
information that B transfers to A in the course of the interaction is
equal to St(A) after the interaction, since any variation in the value

of A after the interaction is due to the initial variation of B. St(A)
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‘depends both on the value of i and on the form of the joint evolution
t; however, we will now show that for any i, and for most teSmn, St(A)
is close to its maximum possible value, which is equal to ln(m) and

arises when pt(i) = 1/m when m<n and which is equal to 1ln(n) when m>n.

This result follows from the following theorems:

Theorem 1:

Given a system determined by degrees of freedom A and B initially
characterized by a probability distribution over their joint values
p(ai,bj) = p(ij), l<i<m, 1l<j<n, as above, the average value of pt(i) as
t ranges over s™ is 1/m, and the standard deviation of pt(i) from this

value is
1
n(m-1) oy 2 1 2
A m(mn-l) (izj (P(lJ)) - mn ) }

(Proof in Appendix A.)

~ A stronger result can be derived if the initial probability
distribution is one in which the value of A is fixed at a particular

value i, and the value of B is arbitrary:

Theorem 2:
Given degrees of freedom AB with possible values (aibj)’ 1<i<m,

l<j<n, n>>m, and initial probability distribution p(aibj) - (l/n)Si 5
0

and given an interaction between A and B, corresponding to a joint

evolution teS™ selected at random, then the probability that pt(ai)
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take on a particular set of values pt(ai) = P; after the interaction is

proportional to enS, where § = -3 piln P;-
i

Proof:

t selected at random permutes the mn probabilities p(aibj) at
random, and adds at random the n initial probabilities with wvalues 1/n
to the m "bins" corresponding to the m possible values of a;. The value
for pt(ai) after the interaction is just ni/n, where ng is the number of

non-zero probabilities that have been added to the i-th bin. The

probability that pt(al),...,pt(am) take on the values
p1=n1/n,...,pm=nm/m'after the interaction is proportional to
n!/(nl!...nm!), as in the Ehrenfest urn model.

Q

nln(n) - n - nlln(nl) + ny -...- nmln(nm) + n

-n X (n,/n)ln(n,/n)
; 1 i’

= nS.

The probability that pt(ai) take on the values P; is proportional to en§

If the initial probability distribution p(ij) = (1/n)6ii , as above,
0

then the first theorem above implies that the standard deviation of

P (1) from 1/m is
1
(m-1)/(m(ma-1)} = 1//a  for m,n>>1.

2
For n>>m , this result implies that pt(i) = 1/m and that St(A) is close

to its maximum value, ln(m). The second theorem implies that for n>>m,
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the amount of information transferred from B to A behaves exactly like

the negative of Boltzmann's H-function: if it starts out at zero it is
very likely to rise to close to its maximum value and stay there for a
long tim;, occasionally making small downward fluctuations. For m>>n,
pt(i) is a distribution in which almost all of the pt(i) that are not
zero are equal to 1l/n: St(A) is again close to its maximum possible
value given the initial distribution, this time Iln(n).

&
Example:
Suppose that A has two possible values, labeled 1 and 2, and B has

n, n>>2. Suppose that A is initially fixed at 1, uncorrelated with the
value of B, abouﬁ which nothing is known. I.e., the initial probability
distribution for AB is p(lj) = 1/n, p(2j) = 0, for all j. After

interaction, we expect Pt(l)’ pt(2) to be (inserting m=2, n=n in the
1 1 1
1 2

)

1 ( —L1—
4(2n-1)

formula above) 1/2 + ( 730 Ty )= 12+ (1/80), 1/2 -
1

1/2.- (1/8n)2. The value of A after the interaction is likely to be
almost completely uncertain: A has gotten close to the maximum possible
information about the initial state of B. As the interaction continues,
the expectation values and standard deviations for p(l) and p(2) remain
‘the same: the information that B has transferred to A remains close to
its maximum value. If n is large, the chance that p(l) and p(2) will
deviate by a substantial amount from 1/2 is small; we will have to wait
for a long time for A to get rid of the information that B has saddled

it with. The only way to be sure that A and B become uncorrelated again
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is to wait for the Poincare recurrence time -- on the order of 2n

iterations for a typical tes™.

Example:

Given k interacting binary systems, with states 0...00, 0...01,
0...10, etc., take an initial distribution in which all of the systems
are initially in the state 0 except for the last, which has a fifty-
fifty chance of being in either 0 or 1. I.e., p(0...00)=1/2,
p(O...01)=1/é, all other probabilities zero. After the systems have

interacted, we expect probabilities for any of the systems:
, k-2 ..k k >
p(0) =1 -p(1) =1/2+ (27 7/(2°-1) (/2 - 1/27) } = 1/2 £ 1/2/2
for k>>1. The fact that the standard deviation is less than 1/2

indicates that a substantial fraction of the systems are now correlated

with the initial state of the kth system, and ipso facto with eachother.

The following argument shows that roughly half are so correlated.

k
Under a transformation teS2 , the states 0...00 and 0...01 go to .

t(0...00) and t(0...01). If we look at the binary representations of
t(0...00) and t(Oi..Ol) and compare them bit by bit then the number of
systems that have p(0) = p(1l) = 1/2 after the interaction is equal to

the number of bits of t(0...00) and t(0...01) that don’'t match. If t is

k
selected at random from 82 , the number of bits that don't match is k/2

on average, and about k/2 of the systems will become correlated with the
initial state of the last system and with eachother; by transferring a

bit of information to each of k/2 other systems, the interaction has



created mutual information (k/2 - 1)1n2 between them. The probability
that none of the first k-1 systems will become correlated with the

2’(k-1).

initial state of the last system is - Once again the average

amount of time that we have to wait for the information created to be
. : . (k-1)
destroyed is on the order of the Poincare recurrence time, 2

iterations.

Of course, if k is small, the Poincare recurrence time is short.

Example: Fredkin gates

Take k=3 in the previous example, and let t be the permutation on
three bits that does not change the value of the third bit, and that
switches the values of the first and second bit if the third bit is 1
and leaves them alone otherwise. ¢t represents the operation of a
Fredkin gate,26 a gate that can realize various logical operations
reversibly, without shunting unneeded information to the microscopic
level. If the first two bits are 01 initially, and if the third bit can
be either 0 or 1 with probability 1/2, then t generates maximal mutual
information between each of the first two bits and the third. Since
t2 = 1, operating the Fredkin gate a second time brings one back to the
initial probability distribution and zero mutual information.

The ability of Fredkin gates to destroy mutual information without
consigning it to the microscopic level allows the possibility of
reversible computers that can calculafe without increasing entroﬁy in

principle. 1In practice, however, almost any interaction between two or

more degrees of freedom generates hard-to-destroy mutual information,
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and macroscopic information devices generate entropy whether they want
to or not by engendering correlation between the computing degrees of
freedom and microscopic, inaccessible degrees of freedom. 1In practice,

reversible computers are hard to build.

ii) Quantum mechanical information transfer:
Quantum systems differ from classical systems in that pure quantum

mechanical states have intrinsically statistical properties. For

example, if two electrons are in the state (1//5) { IT>l|l>2- |L>1|T>2),
then each electron taken on its own is described by the density matrix
p = (1/2) { |t><t| + |4><!| }, a statistical mixture. In general, if
the Hilbert space H for a quantum mechanical system can be decomposed
into a tensor prodﬁct space H = HA& HB’ as it can if there exist two

commuting operators A and B that together form a Casimir set for H, then

m,n

any |¢¥>eH can be written [y> = = cijlai>|bj>’ where m,n are the
, i,j=1

dimensions of HA,B and {Iai>}, {|bj>) are bases for HA,B’ and

2
= Icijl = 1. One of m,n is less than or equal to the other, suppose it
i.j

is m; then by a suitable change of bases for HA B’ |$> can be written in

m

. ) .
the form |¢y> = = 7i|ai>|bi>, where = |1i| = 1. The entropy of A, S(A) =
i=1 i

2 2
-trp(A)Inp(A) = = |7i| ln[vi| = S(B), and the mutual information between
i

2 2
A and B is then S(A) + S(B) - S(AB) = -2 = |7il lnlyil . A typical pure
i

quantum mechanical state for two degrees of freedom of a system exhibits

mutual information between them.
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If in the initial pure state, S(A) = 0, i.e., A has no information
about B, S(A) will increase for most interactions between A and B: for
almost any interaction, A gets information about B. The average value

of S(A) after the interaction is determined by the following theorem.

Theorem:

m,n
If |¢o> = |ag>|by> is taken to a state |[y> =i ?=lcij|ai>[bj> by a

unitary evolution Ut selected at random from Umn, m<n, then the
, m
probability that |¢y> = = 7i|ai>|bi>, for a particular set of Ivil is
i=1 )

. 2 (n-m)+1 2 2 2
proportional to (|7l|...|7m|) (a-m+l g (|7i| A DI
I 1<i<j<m J

(Proof in Appendix B.)
The distribution for the Iyil that maximizes St(A) = St(B) after the
interaction is |7i| = 1/m. The second faétor in the expression above
insures that the probability that Iyil=|7j|=(l/m) is zero, but the first
factor insures that if n>>m, most of the |7i| are likely to be very

close to 1/m. For example, if m=2 and n>>2, the most likely values for
1

2 2
vyl lrgl=-1v )" are |
1 1 )
2 P 2 2
vyl = (1/2) € 1+ 1/(2n-2) }, |7l = (1/2) € 1 - 1/(2n-2) ).
After the interaction, St(A) and St(B) are likely to be close to their
maximum value of 1n2. '

If A and B start out in a mixture instead of a pure state, St(A) is

still likely to be close to its maximum value.
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;f pt(AB) = i dk|¢k><¢k[, where i dk= 1, ;hen pt(A)‘= i dkpk(A) , where

pk(A) is the density matrix for A when AB is in the state |¢k>. But

St(A) = -trpt(A)lnpt(A) > § dktrpk(A)lnpk(A) = i dksk(A)’ and each of

the Sk(A) is likely to be close to its maximum value; hence St(A) is

likely to be close to its maximum value.

Example:

A system of n interacting spins, initially in a state that exhibits
no mutual information, tend to evolve into a state that exhibits a great
deaféof mutual information. The states of such a system can be labeled

[¥> = =
ij...

Cij k|ij...k>, where each index i,j,...,k can be t or {.

k L.

If the spins do not interact, each of the states |ij...k> are degenerate
and no increase in mutual information takes place. Given a small

perturbing interaction, Hin whose eigenstates are randomly selected

t'
superpositions of the |ij...k>, the amount of time that it takes an
initially uncorrelated state such as |$o> = |t4...1> to evolve into a
highly correlated state is t = h/(2nAE), where AE is the average energy

level spacing of Hin The amount of time that it takes the system to

.
return to a state that exhibits close to zero mutual information is on

the order of 2nh/(2ﬂAE) -- the Poincare recurrence time.



Conclusion

Thermodynamic depth is a universal measure of complexity: any
macroscopic state of a physical system can be assigned a thermodynamic
depth purely as a function of physical quantities. Thermodynamic depth
is the unique (up to a multiplicative constant) measure of a state’s
complexity that is a continuous function of the probabilities of the
various processes that can lead to that state, that is additive over
time, and that assigns measure zero to systems in thermodynamic
equilibrium. Thermodynamic depth satisfies intuitive requirements for a
measure(of complexity: it assigns low complexity to random and to highly
ordered but regular states. The thermodynamic depth of a complex system
and a copy is not equal to twice the depth of the system but to the
depth of the system plus the depth of the copying process.
Thermodynamic depth encompasses mathematical definitions of complexity:
the computational complexity of a problem is proportional to the
thermodynamic depth of the most efficient machine that solves that
problem. The thermodynamic depth of avresult calculated from a minimal
program on a reversible computer is proportional to the logical depth of
the result. |

Thermodynamic depth is equal to the difference between the coarse-
and fine-grained entropy, or equivalently, to l/kB times the amount of
information shunted between the various parts of a system in the process
of constructing a particular state. The processes that lead to
thermodynamically deep states are also universal: almost any interaction

between two or more degrees of freedom of a system transfers information
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from each degree of freedom to the others and generates mutual

information between them.

Applications:

Since thermodynamic depth applies universally to all physical

' systems, systems can be classified according to how thermodynamically

deep they are. For example, during the formation of macromolecules in
the early terrestrial environment, enzyme A is thermodynamically deeper
than enzyme B if more entropy had to be generated in the process of
constructing A than constructing B. The additive property of

{
thermod}namic depth implies that complexity increases as new depth-

producing chemical reactions come into play using the products of

) . 30_32
previous reactions.

If one extracts the genetic contribution to the overall

thermodynamic depth of an organism, one arrives at Kuhn'’s notion of

33
"Knowledge": the genetic complexity of an organism is proportional to

the amount of genetic information tried out and discarded by the process

- of natural selection on the ancestors of the organism. If one could map

out the evolutionary path by which simple organisms came into being,
then one could order organisms on the basis of their thermodynamic
depth. In addition, one could classify the various functions that
organisms perform by estimating, say, the depth of the process whereby a
cell assembles a particular molecule.

The thermodynamic depth of a state of any dissipative dynamical

system can be got by regarding it as a subsystem of a larger,



conservative system and calculating how much information the system must
exchange and discard in the process of arriving at the given state.

That is, one evaluates the thermodynamic depth of a dissipative system
by calculating how much the degrees of freedom of the dissipative system
contribute to the thermodynamic depth of the conservative system in
which it is embedded. For example, one could estimate the complexity of
an interlocking set of markets by modelling the exchange of goods as a
dynamical system and calculating that system’s thermodynamic depth.
Thermodynamically deep systems are necessarily far from equilibrium: are
comp%fx systems unstable? Complexity may come at a cost.

Finally, whenever a number is represented as the state of a physical
system, it has a thermddynamic depth. The relationship between
thermodynamic depth and logical depth implies that when a system
represents a logically deep number, that state is thermodynamically
deep. Since only a finite amount of thermodynamic depth has been
generated within our event horizon since the big bang, and since there
are an infinite number of arbitrarily logically deep numbers, there are
an infinity of numbers that are too deep to be represented physically at

this time in the universe. For example, a random integer greater than
S/k
e , where S is the entropy of the universe within our event horizon,

is unlikely to have any representation at this time since there are an

insufficient number of degrees of freedom available in the universe to

S/k

. B
'count’ that high. Of course, there are many numbers greater than e
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that can be represented concisely at this time; 10l is such a
number.

The limit on the possible thermodynamic depth of any physical system
at this stage in the evolution of the universe suggests the existence of
a further class of numbers. These are numbers that have a concise
description, but the problem of arriving at this description is so
complex that its thermodynamic depﬁh exceeds that allowed for the
universe at this time. Such numbers are in principle indistinguishible
from random numbers at the moment; but as the universe expands and the
1imit§on the possible thermodynamic depth of the description goes up,
such numbers cease to be random. As defined by thermodynamic depth, the
notion of algorithmic randomness is time-dependent. Conversely, in the
very early universe, numbers such as n that are far from algorithmically

random now, were random.



Chapter 3: Pure State Quantum Statistical Mechanics and Black Holes

If one flips a coin twenty times, and gets heads nine times and
tails eleven, one ascribes the variation in the results to differences
in how hard one flipped the coin, how it hit the ground, etc. If one
prepares twenty electrons in the state spin x up, then makes a
measurement of spin z on each electron and gets spin z up nine times and
spin z down eleven, then (if one does not believe hidden variable
theotieé) one ascribes the variation to the statistical properties of
pure quantum mechanical states.

In quantum statistical mechanics, the inherently statistical nature
of quantum mechanical pure states adds an additional element of chance
to the already chancy results of measurements made on systems with many
degrees of free&om, not all of which have been fixed by experiment. The
sort of probabilities that come out of quantum mechanical pure states
differ significantly from those that come out of classical probability
distributions. In this chapter we show, however, that the pure states
of quantum mechanical systems with many degrees of freedom reproduce the
statistics of the normal statistical mechanical ensembles such as the
microcanonical and canonical ensemble to a high degree of accuracy:
quantum mechanical systems with many aegrees of freedom in pure states
behave like statistical mixtures, with respect to most measurements. In

the thermodynamic limit, as the number of degrees of freedom of the
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system in question goes to infinity, the difference between the
statistics implied by the pure states of the system and the statistical
mechanical probabilities becomes impossible to detect.

Suppose; for example, that one has a gas composed of n particles,
confined to a box with sides of length L. Classically, if one fixes the
state of the gas by fixing the position and momentum of each particle,
then the results of any measurement that one makes on the gas are fixed
as well. Quantum mechanically, if one puts the gas as a whole in a pure
state by putting each of the particles in a pure state that is an
eigenstate of the energy and momentum for a particle in a box of the
given size, then only the results of measurements that correspond to
operators that commute with the particles’ momenta are fixed: if omne
makes a measurement on the position of a particle with energy and
momentum high compared with h/(2nxL), the particle can turn up in any
part of the box with equal probability. This uniform distribution for
the position of the particle in the box arises from the form of the pure
state of the gas as a whole, but it is exactly the same as the
distribution predicted by thé normal statistical mechanical ensemble for
the positions of the particles of the gas with total energy and momentum
fixed.

If a quantum mechanical system is in a pure state, then only
measurements that correspond to operators of which that state is an
eigenstate will give the same result each time. Other measurements will
give a statistical distribution of results when performed on an ensemble

of systems all prepared in that state. We will prove that for a given



e AT

measurement, if many copies of a system with many degrees of freedom
have all been prepared in the same pure state chosen at random from a
subspace of Hilbert space (such as the subspace HE,E+dE composed of all
states with energy between E and E+dE), the results of the measurement
made on these systems in this state lie in a statistical distribution
whose mean, standard deviation, and higher moments differ from the mean,
standard deviation, and higher moments predicted for the results of the

measurement by a conventional uniform distribution (the microcanonical
ensemble, for the subspace HE E+dE) over all states in that subspace by
’ H

a facto? of'l//;, on average, where n is the dimension of the subspace.
For a given measurement, most pure states of a system with many degrees
of freedom give statistical distributions of results that differ by only
a small amount from those predicted by the ensemble average. Note that
this result has no classicai analogue: many copies of a classical system
all prepared in the same state all give the same result for any
measurement made upon them -- they imply no distribution whatsoever.

As a corollary, we prove that for many copies of a quantum
mechanical system with many degrees of freedom prepared in a given state
(for example, a state with energy between E and E+dE), the results of

most measurements restricted to a given subspace (H E) fall in

E,E+d
distribution that have expectation values, standard deviations, and
1

2
higher moments that differ by only a small amount ( l/(dimHE E+dE) )

from the ekpectation values, standard deviations, and higher moments

predicted by the ensemble average over that subspace (the microcanonical
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ensemble for states with energy between E and E+dE). For a system with
many degreeé’of freedom, the quantum mechanical probabilities inherent
in the actual state of the system are likely to mimic the normal
statistical mechanical probabilities. In the thermodynamic limit, n-ew,
the correspondence is exact.

Another way of phrasing this result is that systems with many
degrees of freedom in pure states behave as if they were in statistical
mixtures with regard to most measurements. We apply this result to the
foundations o% statistical mechanics, to black holes, and in chapter 4

to the quantum measurement problem.

Our results follow directly from

1 2
Theorem: '’
Let H=¢" be a subspace of the Hilbert space for a quantum
mechanical system A. Let F be an Hermitian operator corresponding to

the measurement of some quantity on A. Then
L
' 2 2
{ the average over all |y>eH of ( <Y|F|y> - (1/n)trF ) )
1 1
2 2 2 2 2
= (I/(n+l) ) { tx(F )/n - (txF) /n )
(proof in appendix C).
In the case that H represents the Hilbert space of states compatible
with the results of macroscopic measurements that have been performed on
the system, we may paraphrase this theorem as follows: If the dimension

of the Hilbert space of states compatible with our macroscopic knowledge

of the system is large, then the amount by which the expectation value



of an operator F on a typical state |¢> differs from its average
expectation value over all compatible states is likely to be small.

Indeed, since
l
2 2 2 2
{ tr(F)/n - (trF) /n )} < max Ifil ,
where the fi are the possible results of the measurement, the theorem

above implies that the amount by which the expectation value of an

operator on a typical state differs from its expectation value over all

states is\likely to be less than 1//; X (the maximum magnitude of
the result).
For example, if a number of systems identical to A have all been

prepared in the same pure state |y> ¢ H the theorem above tells

E,E+dE °’

us that if n = dim‘HE is large, the distribution of results for a
measurement corresponding to a Hermitian operator F are likely to have
the same expectation value as that implied for the measurement by the
microcanonical ensemble. Of course, if |¥> is an eigenstate of F, or a
superposition of states dominated by a siﬁgle eigenstate of F, the
distribution of the different results, fi’ of the measurement implied by
|¥> differs markedly from the statistics given by the microcanonical
ensemble. If we.make a measurement corresponding to F on a number of
systems all of which have been prepared in some eigenstate of F, we will
obtain the samé result for each system. The microcanonical ensemble, in
contrast, predicts a range of rgsults. The theorem above says that if n

is large, the probability that a state selected at random will be a

superposition dominated by a single eigenstate of F is small.



The proof of the following corolléry follows immediately from the

proof of the theorem above:

Corollary:

Given a state |y> ¢ H = Cn, and a set of real numbers {fi}, the

average over all bases { |ei> ) for H of

' 2
( <$|F|y> - (1/n)trF )

is equal to

2 , 2 2
B 1/(n+l) { trF /n - (txF) /n } ,

where F =3I f_|e.><e,|.
; 11T

This corollary has the consequence that almost all measurements that
we can make on a number of systems all prepared in ; particular state
whose energy lies between E and E+dE will have expectation values very
close to those predicted by the microcanonical ensemble. Even if some
clever fellow has prepared our system in a very particular state, most
of the measurements that we perform on the system will have results that
follow a microcanonical distribution. To put the same point in a
different way: if we do not know in what pure state a system has been
prepared, the chances of our making a measurement that has that state as
one of its eigenstates are slim.

Wé have the following results: 1) The expectation value of a
particular operator over most quantum states of a system with n degrees

of freedom, and with energy in the interval [E, E+dE], is likely to be
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the same as the operator’s expectation value over the microcanonical

ensemble to within a factor of 1//n. 2) The expectation values of most
operators over a particular quantum state with energy in the interval

[E, E+dE] are likely to be equal to those operators’ expectation values

over the microcanonical ensemble to within a factor of 1//;.‘

We can go further. Not only do the pure quantum states of a system
with mény degrees of freedom give expectation values for measurements
théé are very close to the expectation values predicted by the
microcanonical ensemble, these pure states also give standard deviations
from those expectation_values that are very close to the staﬁdard
deviations predicted by the microcanonical ensemble.

For a particular measurement, F, the microcanonical ensemble over
HE,E+dE predicts a variance from the mean value of F of

2 ' 2
(1/n)trF - {(1/n)trF), where the traces are taken over H For an

E,E+dE"

ensemble of systems prepared in a pure state |¢¥>, the variance of the
results of a measurement of F from (1/n)txF is <yp|(F - (1/n)trF)2|¢>.
Let us look at tﬁe average amount by which the variance of F over | >
differs from F’'s variance over the microcanonical ensemble, i.e., let us

look at
1
2 2 2 2 2
[ the average of { <y|(F -(1/n)trF) |¢> - (trF /n - (trF/n) ) } ]
over |y> € L

By the theorem above, this quantity is equal to
1 1

(1/(m+1)°)  ( (I/n)erB” - ((1/n)trB)’)° , where B = ( F - (1/n)trF ) .
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. ’ 2 2 2
The quantity { (1/n)trB - ((1/n)trB) } 1is on the order of the

2
average magnitude of an eigenvalue of F and is independent of n; the
1

factor of 1/(n+1)2 out front then insures that as n gets large, the
amoungrby which the variance given by the pure state quantum statistics
differs from the variance implied by the microcanonical ensembie tends
to become small.

One can apply the same argument to the higher moments of the
distribution. Since the average over all |y> of

C<IF$> - /e )’ = (/@) ( Q/mer™ - (Q/mer™’ )
as n gets large the moments given by the pure quantum states converge on
the microcanonical moments.

For quantum systems with more and more degrees of freedom, not only
do the expectation values implied by the pure quantum states of the
system tend to mimic more and more exactly the expectation values of
statistical mechanics -- the quantum deviations away from those
expectatioh values get closer and closer to the deviations predicted by
statistical mechanics, as wéll. In the thermodynamic limit, n-wo, the

pfobability that a pure state selected at random from H E gives a

E,E+d
distribution for the results of a given measurement that differs from

the distribution implied by the microcanonical ensemble, is zero.

We now apply the results derived above to the canonical and grand

canonical ensembles.
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The Canonical Ensemble

In.this section we show that the exact state for a system in contact
with a thermostat at temperature T is likely to be a mixture that has
the same form as the canonical ensemble for the systém.

Suppose we have a joint system AB. If A and B are weakly
interacting, then their Hilbert space can be decomposed into the tensor

product space: H,, = HAQ HB. To lowest order in perturbation theory,

AB
the subspace HEB of HAE HB corresponding to energy E 1is spanned by a

basis of vectors of the form

k 1 k
lEi>A*® lEj> , where E.+ Ej = E, and the |E]._> , k=1 to d, (E;)

(dA(Ei) is the degeneracy of Ei in HA), span the subspace of HA
corresponding to energy Ei; similarly for the |Ej>;, 1 =1 to dB(Ej)'

A typical state |y> e Hi can be written

B
Z dA(Ei) dB(E-Ei) : N ' A1
|y> = Y ). a’ ., |E.> |E-E.>
i k=1 121 kl i"A i"B

The corresponding density matrix is

po= <y = ¥ ‘ :
i, i’ k,k'=1 1,1'=1
i-—-i k k! 11
[ 1% lEi> A <Ei'| ® IE-Ei> B

and the density matrix for A alone is got by taking the trace of »p

1
<E'Ei'| | -

over the degrees of freedom of B :
dg(E-E;)  d,(E;)
k ké
A

by = Y % Y ol ok, |E>
A i 1=1 k,k'=1 kl1k'l i

Note that Pa has no off-diagonal terms between states of different

E, |

energy. In general, for a particular pure state |¢> with energy E, A is
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in a mixture of states with different energies Ei’ each correlated with

a state of B with energy E-Ei.

_E. E.
We can write Pp = Z p(Ei) PE where Pg € HAH3 HA1 is a density
i i i

matrix for a system with energy Ei’ tr pp =1: the p(Ei) are the
i

probabilities that a measurement of energy on A will find the value Ei'

Tr Pp= tT pp = 1 implies that ) p(Ei) = 1. We can now ask, if we
i i

select |¥> ¢ HE at random, what are the most probable values for the

AB
p(Ei), and how much deviation do we expect from those values?

Applying theorem 1 above, we know that the most likely value for

p(Ei) is given by its value over the ensemble average. For a particular

. Ei E-Ei Ei E-Ei
PAB’ pr(Ei) = tr PAB PA ® PB , where PA ’PB _are the projection

operators onto the Ei eigenspace of HA and the E-Ei eigenspace of HB‘
Over the ensemble, P(Ei) averages out to ni/n, where n,= dA(Ei)dB(E-Ei);
i.e., over the ensemble, the probability of finding a certain energy Ei

for A is just proportional to the degeneracy of such states. Theorem 2

now tells us that p(Ei) deviates from its most likely value by
1 1

2 2 .2
(1/(n+l) ) € (ng/n) - (n;/n)" )

ll

(/;;)/n , on average.

So we have

py = (1/m) § d,(E;)dp(E-E)) (1% 1//n, ) P,

SA(Ei) SB(E-E.)

But dA(Ei) = e , and dB(E-Ei) = e , where SA and SB are the

entropies of A and B. If B has many more degrees of freedom than A,
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then terms with Ei near zero dominate the sum and we can approximate

SB(E-Ei) = SB(E) - Ei/T’ where 1/T = asB/aE, and we have

©-(E;- TS,(E)))/T

pA=(1/N)§{ (111//5';)};»Ei ,

Sg(E)
where 1/N = e ~ /n, and tr P = 1.
i

We see that for a system A in contact with a thermostat B at

temperature T, for almost all pure states |¢> € HEB,

A is likely to give (to within a small fluctuation) the same density

the exact state of

matrix as the canonical ensemble for A . " In the thermodynamic limit,
n, e, and the probability that the density matrix for A differs from a

thermal density matrix becomes zero.

Non-equilibrium pure state statistical mechanics

The results derived so far imply that if the initial state for a
system with many degrees of freedom is chosen at random, the
distributibns of results for measurements that that state implies do not
differ from the predictions of the normal statistical mechanical
ensembles in the thermodynamic limit. We now derive a non-equilibrium
result. We show that if a system A has an arbitrary weak interaction
with a larger system B, then even if A and B start out in a pure state
far from equilibrium, their joint state evolves into one in which the
density matrix for A has a thermal form. Suppose that A and B are
initially noninteracting with total energy E, as in the previous
section, and that one perturbs the system by adding a small interaction

Hamiltonian to the original Hamiltonian: H'= H + Hin Suppose that the

e
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initial state for AB is_|x0>, H|x0> = E|x0>. According to first order
degenerate perturbation theory, the eigenvectors of Hint confined to the
subspace of energy E are, to lowest order, arbitrary orthogonal linear
combinations of the unperturﬁed states of the subspace. If we wait an

amount of time t=h/(27AE), where AE is the average energy level spacing

of Hint’ the evolution of the system will take |x0> to a state that is
an arbitrary superposition of the original states |E1>§IE-Ei>é with

total energy E. Applying the results of the section on the canonical

ensemble above, the density matrix for A is then

-(E;- TS,(E)))/T

pA=<1/N>§{e <1i1//n—i>}PEi ,

as above. Once again Pa takes a thermal form. In the thermodynamic
limit, an arbitrarily chosen Hint causes A and B to evolve into a state
in which the density matrix for A is exactly that for A at thermal

equilibrium.

Grand canonical ensembles

In the above analysis, the only requirement on E was that it be an
additively conserved quantity. We can repeat the steps above including
other additively conserved quantities. For example, if the total

electric charge of A and B is Q then we find that the most likely

tot’
exact state for A is

-(E;- &Q - TSA(E-,Q))/T —
p. = (1/N") p (e 1t : (1%1//n. ) )
A iQ EiQ iQ
_E;Q E
where pEiQ e Hy" X HB has trace 1, niQ= dA(Ei,Q)dB(E-Ei,Q

"

tot-Q)’ and



® = -T(38S is the electric potential of B.

Ve

The exact state of a system A in contact with reservoirs of heat,
charge, particle #, etc., is likely to give to within a small
fluctuation the same density matrix as the various grand canonical
ensembles for A. In the limit that the size of the reservoits;goes to
infinity, the probability that the density matrix for A takes on an

exact grand canonical form goes to one.

Applications of pure state gquantum statistical mechanics

We apply the results derived above in three areas: 1) the
interpretation of quantum statistical mechanics, 2) horizon radiation
from black holes and cosmological particle production, and 3) the

quantum measurement problem.

The interpretation of probability in statistical mechanics

Historically, there are two approaches to interpreting the
probability distribution function in classical statistical mechanics.
In the ensemble approach, the probabilities that describe a complex
system are taken to refer to an imaginary ensemble of systems identical
to the one of interest, whose statgs are spread out uniformly over the
set of microscopic states consistent with our macroscopic information.

In the ergodic approach, the probability distribution is regarded as
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giving the relative frequencies of occurrence of the microscopic states
of the actual system of interest, averaged over time. For example, if
all we know about a system is that it has energy between E‘and E+dE,
then we describe the system by the microcanonical ensemble,
characterized by a probability distribution that assigns equal
probability to all states with energy in the interval [E, E+dE]. In the
ensemble approach, this distribution is taken to refer to an imaginary
ensemble of identical systems whose states are spread out evenly over
the hypersurface in phase space made up of points representing states
with energy between E and E+dE. In the ergodic approach the
microcanonical ensemble is held to describe the actual system of
interest in accordance with the ergodic hypothesis -- the trajectory of
the representative point of the system is hypothesized to fill up the
hypersurface of energy E uniformly, spending an equal amount of time in
equal volumes of phase space.

When Boltzmann proposed the first version of the ergodic hypothesis
in 1871,8 one of his goals was to provide a purely mechanical
description of the appréach to equilibrium, independent of statistical
considerations. In introducing his famous H-theorem in 1872,4 he
claimed to have proved the second‘law of thermodynamics on purely
mechanical grounds: any initial distribution of kinetic energy,
Boltzmann asserted, would eventually approach Maxwell'’s distribution.
It was not until several years later, prodded by Loschmidt, that he
acknowledged the statistical nature of his proof, inherent in the

assumption of molecular chaos.



The results on the statistics of pure quantum statés of systems with
. many degrees of freedom derived above suggest a purely ﬁechanical
interpretation of results normally derived statistically by taking
ensemble averages -- or rather, a purely guantum mechanical
interpretation. If we prepare a system with many degrees of freedom in
any state with energy between E and E+dE, then the great majority of
measurements performed on that system will give results that follow
closely the statistical predictions of the microcanonical ensemble. The
statistical nature of the outcome of such measurements arises not
because we do not know what state the sysfem is in (we prepared it in a
pure state), nor because we are making measurements over a long period
of time (we can make the measurements over as short a period of time as
we like as long as we do not conflict with the uncertainty principle),
but because quantum mechanics is inherently statistical. For a system
with many degrees of freedom, the quantum mechanical statistics inherent
in the pure states of the system converge on the statistics implied by

the microcanonical ensemble.

Horizon radiation and cosmological particle production

i) Horizon radiation

5.9
It is well established that a black hole of mass M emits
radiation with a thermal spectrum at temperature T = (8wM)-l, where we

have set G=h=c=1. Hawking uses this result to argue that a black hole
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behaves like a black body (albeit a strange black body, with négative
specific heat) with entropy S = AWMZ. In the normal derivation of
black-hole radiance, however, one treats the hole as a feature of the
background spacetime -- a geometric, not a thermodynamic object. The
thermal form of the radiation arises from the periodicity of the
Schwarzschild metric in imaginary time, nét from overtly statistical
considerations. T.D. Lee9 has pointed out that while black-body
radiation is incoherent, the radiation coming from the horizon of a hole
is fundamentally coherent over spacetime as a whole; Lee argues that the
coherence of the horizon radiation implies black holes are not black
bodies.

Using methods of field theory in curved spacetimea-9 one can show
that in thé presence of a black hole of mass M the incoming vacuum state

|0>in evolves into a state of the form

d(E;) -4mME;

i k k
Io>out = (1/N) % E I.Ei>insi.de | i“outside
k

where the IEi>outside are states with total energy Ei’ outside the hole
(the energy is determined by an observer in the asymptotically flat area
k

of spacetime; d(Ei) = the degeneracy of Ei)’ and the |-Ei>.

. are
inside

states with total énergy -Ei.inside the hole. The total energy and
charge of this state are still zero, but the state of the fields outside
the hole is a thermal mixture at temperature T = (8wM)'1.

To see the thermal form of the radiation, note1that the density

matrix for the fields over the whole of spacetime is
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d(E;)  -4m(E+E,) S

2
= (1/|N -E.>. . <-E.
étotal (/1N i?i' kgk'=l e I i inside 1'l
k k’
Q@ |Ep> <Es |

outside

A measurement made outside the horizon corresponds to an operator of the

form Iinsidég Aoutside’ where Iinside is the identity operator on the

Hilbert space of states inside the hole, and A is an Hermitian

outside

operator on the space of states outside the hole. We have

< Iinside‘8 Aoutside> =tr ptotal(Iinsidég Aoutside)
= tr poutsiderutside , where
P . = the trace over the internal degrees of freedom of the hole of
outside
Ptotal’
-4nM(E.+E.,)
2 i i k k!
= (/1N izi, e |Es>outsidsBir | S11 ki
k,k’
-8nME
2 i k k
= (/IN|%) T e YE> |

i"outside i
?
Note that even though the state of the fields over the whole of
spacetime is pure, the fields outside the hole are in a mixture. In

fact, the form of p is exactly that of a thermal mixture at

outside
temperature T = (BwM)-l. The hole radiates with a black-body spectrum.
T.D. Lee has argued that the coherence of the quantum fields over
the whole of spacetime implies that black holes should not be regarded
as black bodies, the radiation from which is incoherent. Our results
from the previous section imply the opposite: the form of the coherent

fields in the presence of a black hole is exactly what we expect of the

coherent fields in contact with a black body in the thermodynamic limit.

The results of the previous sections on the canonical ensemble imply
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that the pure state of the quantum fields interacting with a black body
of temperature T is very likely to take the form of a thermal mixture at
temperature. T. The results on non-equilibrium pure state statistical
mechanics derived above imply that if the quantum fields around the hole
are not initially in a thermal form, an arbitrary interaction between
the field modes and the degrees of freedom of the gravitational field
will induce the state of the fields to attain a thermal form, at least
locally (sihce black holes have negative specific heat, the fields can
not be in global stable equilibrium with the hole). If a black hole is
a black body with temperature T = (8FM)-1, then the factor by which the
form of the coherent state of the fields intéracting with the hole

2
deviates from the form of a thermal mixture is on the order of e-2ﬂM

76
e'(2“ x 10 ), for M = M. Black holes may not be black bodies, but if

they aren’t, it is very difficult to tell the difference.

ii) Increase of mutual information and cosmological particle production
The theorems on Hilbert space proved above allow us to carry further
the arguments of Hu and Kandrup,10 who treat the problem of cosmological
particle ggneration and entropy production in terms of increase of the
mutual information shared between the oscillators that represent the
modes of quantum fields in Fock space. Kandrup and Hu show that increase
in the mutual information between the oscillators is closely linked to
cosmological partical production. (As we have seen, a black hole

creates particles with induced entropy -trp Inp outside

outside outside



the hole, even though the fields over all of spacetime are in a pure
state.) They point out that the mutual information is never negative,
and if the .mutual information is initially zero, any interaction will
cause it to increase, at least initially.

We use the non-equilibrium results derived above to show that the
mutual information shared between the particle modes of the quantum
fields in the universe is very likely to increase to its maximum value.

The modes of the quantum fields can be representéd as a collection
of harmonic oscillators: we first examine the case of n operators
without interactions, then introduce interactions and take the
thermodynamic limit n»w. n noninteracting harmonic>oscillators are

described by a Hamiltonian H = H.+ H +...+ Hn’ where

1 2

[}
Hj= = i(h/2n)w1|i>1<i|, where i, is the i-th excited state of the 1-th
i=0

oscillator, w1>is its fundamental frequency, and we have set the zero
point energy to zero. Suppose that the oscillators start out in the
state |x0> = |i>1|j2>...|k>n, with total energy

E = (h/2x) (iw1+ jw2+...+ kwn). If there is no interaction between the
oscillators, then they will stay in this state forever. Suppose now
that one perturbs the system by adding a small interaction Hamiltonian
to the original Hamiltonian: H'= H + H, According to first order

int’

perturbation theory, the eigenvectors of Hi confined to the subspace

nt
of energy E are, to lowest order, arbitrary orthogonal linear
combinations of the unperturbed states of the subspace. If we wait an

amount of time t=h/(2nAE), where AE is the average energy level spacing
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of Hint’ the evolution of the system will take |x0> to a state that is

an arbitrary superposition of the original states |i>|j>...|k> with

total energy E. Applying the results of the section on the canonical

ensemble above, the density matrix for the first oscillator is then

1
© -

2
P1= (1/N)i§oli>1<i| d2‘..n(E-hwli) (1% 1/(d(E-ﬁw1i) )

where d2 n(E-‘hwli) is the dimension of the space of states of the

oscillators 2...n with total energy E-hwli, N is a normalization
' 1

2
constant, and the = 1/(...) expresses the uncertainty in the result due

to the lack of knowledge of the exact form of Hin If E is large and

=

n>>1, we can write

S (E-hw, 1) S (E) - (3858 /0E)hw. 1
d (E-w,i) = e 2...n 1= e 2...n 2...n 1 )
2...n 1

Taking the thermodynamic limit n-w, we obtain

L) -ﬁwli/T
p1= (1/N') = |i>1<i| e , where 1/T = 382 (E)/8E. The

1=0 ...n
expressions for Pgs---sP, are identical, with appropriate re-indexing.

In the thermodynamic limit, an arbitrarily chosen Hint causes the
oscillatérs as a group to evolve into a state in which the density
matrix for each of the oscillators is exactly that for the oscillators
at thermal equilibrium; the evolution drives both the mutual information
and the coarse-grained entropy up to their maximum values, equal to the
equilibrium thermodynamic entropy.

Our results imply that correlations exhibited by interacting quantum
systems in a pure state are not only likely to increase from an initial

zero value, but that they are likely to tend to continue rising and



attain an equilibrium value given by the normal statistical mechanical

entropy for the systems.
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Chapter 4: Why Deviations from Wave Function Collapse are Hard to Detect

In this chapter, we use the example of a Stern-Gerlach apparatus to
show that the quantum mechanical measurement problem ceases to be a |
physical problem for a measuring device with many degrees of freedom in
the sense that deviations from wave function collapse become virtually

impossible to detect.

The quantum mechanical measurement problem

The quantum mechanical measurement problem stems from the following
curious fact. When a quantum mechanical system evolves and interacts
normally its state vector changes in a continuous and deterministic
fashion, governed by the Schroedinger equation; yet if it undergoes an
interaction that constitutes a ’'measurement,’ the system jumps
stochastically into an eigenstate of the observable measured, a process
-- called collapse of the wave function -- that is incompatible with
Schroedinger evolution. A number of papers have tried to reconcilé the
determinism of quantum dynamics with the inherent chanciness of

?

measurement. In this chapter, we give a treatment of the measurement
3 4

problem along the lines of Peres and Zurek; in particular, we show

generally that if our measuring devices are systems with many degrees of

freedom, and if we are confined to making a reasonable number of

measurements on these devices, then the measurement problem ceases to be
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problematic in the sense that deviations from wave function collapse
become virtually impossible to detect.

We use Dirac notation to give a quantum mechanical description of an
object system, on which a certain quantity is to be measured, coupled to
a measuring device. If we label the eigenstates of the operator to
which the quantity to be measured corresponds as |i>, a measurement
interaction will be effected by the following joint evolution for the
object and measuring device:

|i>objectlo>device - lj’>object:lai>device ’

where |0> is the initial state of the measuring device, and Iai> is a
state that functions as a pointer, to tell us that the object system is
in the ith eigenstate. Note that the object system remains undisturbed
by the méasurement; our argument does not require this idealization, but
~is made less ponderous by it. If the object is not in a single
eigenstate but in a superposition of different eigenstates, we have the
following Schroedinger evolution of the state of the composite éystem:

= 4. |i>]0> -+ =T d.|i>|a,>

; L ; L i

Now the problem comes in. When we perform a'real experiment in
which the measuring device has been constructed to give the sort of
evolution above, we find that the final state of the object-device
system is of the form |i>|ai> : that is, the wave function of the object
system has ’'collapsed’--jumped to a single eigenstate, in spite of our
setting up the measurementrso as not to disturb the object system. If

we perform the experiment a number of times, preparing the object system
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in the state I di|i> and the measuring device in the state |0> each
' i

time, we find that the system jumps into the eigenstate |i> of the
superposition with probability |di|2. Hence we have von Neumann's
projection postulate 5: during measurement the state of a system is
projected onto (collapses stochastically to) one of the eigenstates of
the operator measured, i.e.,

f di|1>|0> - |1>|ai> ,

with probability |di|2.

This evolution is clearly different from the evolution given by the
Schroedinger equation for the éombined object-device system. Von
Neumann showed that we can not explain away this difference by ascribing
it to insufficient knowledge either of the initial state of the object
or of the apparat:us.6 The uncertainty of the final experimental result
is inherent in the quantum mechanical measurement process. Such a
stochastic evolution is incompatible with the deterministic evolution
given by the Schroedingér equation; and is irreversible if we run our
measurement process backwards in time: we can not be sure that our
present state will jump backward into the state it just came from.

"~ Given the apparently irreducibly statistical nature of quantum
mechanics, one might still hope to give an unambiguous interpretation to

the final superposition in terms of probabilities: that is, one might

claim that the state = di|i>|ai> represents a situation in which the

object and measuring device are either in the state |1>|a1>, or in the

state |2>|a2>, or in the state [3>|a3>, etc. . Unfortunately, the
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different components of the superposition can still interfere with each
other after the measurement interaction has taken place, and if we have
not looked at the results of the measurement yet, we cannot ignore the

possibility of interference between states, only one of which we would

like to imagine as present.

To make this point mathematically explicit, imagine that we have
isolated our object system and apparatus in a box, so that we know only
that the measurement interaction has taken place after some time, but
not what the result was. We know the probability is |di|2 that the
state of the object and apparatus will be found to be |i>|ai> when the
box is opened. Our probabilistic description of the object-apparatus
system must be given in terms of a weighted average of states,
conveniently expressed in density matrix notation as

- | 2
p = 2 |d|

> [i<i]| ® Iai><ai|

i
Note that ;2 does noﬁ in general eQual ; ; the density matrix that
corresponds to our description of the object-apparatus system is that of
a system not in a pure State, but in a mixture. However, the object
system and apparatus began in a pure state:

p = 1<l 9> - 3 g0, o= le<ply<s| = l¥><p| = 5,

and pure states
are carried to pure states by Schroedinger evolution. Pure states

cannot evolve into mixtures.
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We can restate the measurement problem as follows: Why does the
state of an object-apparatus system after measurement appear to be
characterized by the density matrix

» s la,]”i<i] @

p = - | il Il><l| Iaixail ’

i
a mixture, when Schroedinger evolution suggests that the proper density
matrix is
- d, |i><j ><a,| = p + = d.d, |ix] ><a,
p= T 4;d,[1<j] @ |ag><a;] = p + = d;d,[1><j]| @ [a;><a,| .
i,j ixj

a pure state? (There is, of course, the further question of how the
system goes from a mixture of eigenstates to a single one when we open

the box and look in, but if the object and apparatus can indeed be

described by ;, this change is no stranger than the probability of a
flipped coin being heads going from 1/2 to 0 or 1 when we look at it.
That is, we can give an ignorance interpretation to the mixture where we
cannot to the pure state.7)

To see that the measurement problem is really a problem, suppose
that we 'measure’ the spin of one electron by correlating it with the

spin of another electron in the following interaction:

(1/J2) { |,rx> - |¢X> ) ITZ> - (17J2) « |1x>|¢x> - |¢X>|Tx> )
The final state is just as in the Bohm incarnation of the Einstein-
A 8
Podolsky-Rosen thought experiment. Here we obviously cannot replace

p, the density matrix for the pure state, by the mixture,

p = (1/2)|1x><rx|®|¢x><¢x| + (1/2)|¢X><¢x|®|‘fx><1x| ,
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since ; does not exhibit correlation between the two particles with
respect to spin along the z-axis, a correlation that we know exists.

To paraphrase our statement of the measurement problem: after a
measurement interaction has taken place, quantum mechanics tells us that
our object system and apparatus are in a pure state, while observation
indicates that they are in a mixture. The measurement problem is only a
physical problem if we can make a further measurement on both object

system and apparatus that distinguishes between the pure state p and the
mixture p. We have just seen that if our measuring device is an

eledtron, the difference between p and p is simple to detect. But an
electron is hardly a typical measuring device. We now show that if we

correlate the state of a quantum system to the state of a macroscopic

object with many degree; of freedom, the difference between p and ; is
possible to detect in principle but very hard to detect in practice.

If the equations of motion for the measuring device are integrable,
then we can follow the method of Péres3 to exhibit an operator B for the
objéct system and measuring apparatus that will reveal large deviations
from wave function collapse. Since, in general, the equations of motion
for a system with many degrees of freedom are not integrable, one cannot
in general use the method of Peres to exhibit operators that give 1afge
deviatioﬁs from wave function collapse. (A measurement corresponding to
such an operator might be very difficult to make in any case.) However,
as shown below, almost any measurement exhibits deviations from wave

function collapse, as long as the operator to which it corresponds does
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not commute with the operator that defines the macroscopic states of the
measuring dévice to which the states of the object system has become
correlated. Nonetheless, to detect such a deviation from wave function
collapse, for a measuring device with many degrees of freedom, we show
that we must perform an exponentially large number of measurements on
the measuring device and quantum system. (In fact, the number of
measurements that we must make on average is equal to the dimension of
the subspace of Hilbert space corresponding to the original macroscopic
measurement that defines the macroscopic states of the measuring device
that became correlated with the states of the object system in the first
place.) The measurement problem is not a problem if we confine
ourselves to making a reasonable number of measurements with the normal
sort of instruments that one finds in a laboratory.

For the saké of concreteness, we examine what happens when we couple
the spin of an electron to the state of scintillators in a Stern-Gerlach
apparatus; the result derived depends only on the many degrees of
freedom of the scintillators, and our treatment is easily generalized to
any quantum system coupled to an arbitrary macroscopic measuring device.
Suppose that we have a device that uses a magnetic field with a non-zero
gradient in the z-direction to split an atomic beam into two components,
in one of which the electronic spins have spin z up and pass through
scintillator 1, in the other of which the electrons have spin z down and
pass through scintillator 2. Let us assume that the scintillators and

magnet are initially in the pure state |0>; an apparatus that is not
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initially in a pure state can only make it harder to detect a difference

between p and ;.

If we pass an electron in the state a|Tz> + bllz> through the
apparatus, the evolution of the combined eiectron-épparatus system is as
follows:

( ,alfz> + b|¢z> )| 0> - |y> = asz>|up> + b|¢z>|down> ,
where |up> 1is a state in which only scintillator 1 has fired, and
|down> 1is a state in which only scintillator 2 has fired.

The difference between using a scintillator to measure the spin of
the electron, and using another electron, is that the scintillator is an
object with many degrees of freedom:'the equations of motion for the
scintillator are in general not integrable, and our knowledge about the
state of thg scintillator is given by the results of a set of
macroscopic measurements made on the apparatus itself. Even if the
system is in a pure state, the measurements that determine the
macroscopic state of the system only locate that state to within a
large-dimensional subspace of Hilbert space. Since.the scintillator has
many degrees of freedom, what these measurements reveal about about the
state |up> is that it belongs to some subspace Hup’ where the
dimension of Hup is large (on the order of the exponential of Avogadro's
number). Similarly, what the measurements reveal about |down> is that
| down> ¢ Hdown , where Hdoﬁn is a subspace orthogonal to Hup; the

dimension of Hy is also large.
own
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If the measurement problem is to be of physical importance for the
measurement described, then after the initial measurement interaction we

must be able to make a further measurement on the electron and Stern-

Gerlach apparatus that distinguishes between p and ;, where

p = |¥><y| , and

- 2 2
p = |al ITZ><TZ| ® |up><up| + |b] |Lz><¢z| ® |down><down|

Such a measurement corresponds to an Hermitian operator, B, such that

trpB = tr;B
That is, we require B such that

<p| B - PoB Pup * Paoun® Pdown |[y> = 0

where P , P are the projection operators onto H
up down u

respectively.

, H

P down’

One need not exhibit exotic operators to find such a B: virtually

any operator that does not commute with Pup and P will satisfy this

down
inequality. But we can now show that if our measuring device has many

degrees of freedom, then for any B, even the most advantageously chosen,

the difference between trpB and tr;B is likely to be very small and

hard to detect. (One might also imagine that one could detect a
difference between p and ; by comparing the standard deviations that

they give from trpB, tr;B. The results of chapter three imply that the
differences between the standard deviations and between the higher

moments are just as hard to detect as the difference between trpB and

tr;B.)
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A given initial state of the electron, a|TZ> + bltz> , gives a final
state |¢> = aITz>|up> + bllz>]down> for the object and Stern-Gerlach
apparatus, where |up> is an arbitrary state in the Hilbert space Hup,

and |down> is an arbitrary state in H The difference between trpB

down
and tr;B is impossible to calculate in the absence of exact knowledge of

the states |up>, |down>; we can, however, give an expectation value to
the difference betweent trpB and tr;B by calculating the average amount
by which by which trpB differs from trpB as |up>, |down> range over Hup,

Hy .. respectively. 1In fact, the average over ]gp>eHup, |down>eHdown of

( trpB - trpB ) is zero. A better measure of deviation from wave

function collapse is the root mean square average amount that the

expectation value of B over p differs from its expectétion value over ;:

i.e., our measure of deviation from wave function collapse is.
1
A= { |x>eH__, |€>eH £ ( trpB 28 )’
= r -
average over |x>e up’ £>e¢ down © ( trp trpB ) )

= { average over |x>eHup,|§>eHdown of
: 1

2 2
( <y| B - PupB P _-P fv>) )

P downB Pdown

where |$> = a|Tz>|x> + b]¢z>|§> ,

= { average over lx>eHup,|§>eHdown of
1

- -_ 2 2
( ab<x|<tz| B |¢Z>|§> + ba<§|<¢z| B lfz>|x> ) )
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1
- @lal’ibl?) er (2B Ry (R B B 0T
k(n-k)
where k = dim H , n-k = dim H ,
up down
1 1
- ¢ 2n|a[2|b|2} ((tr BB Py . B)/n y2
k(n-k) up

To detect deviations from wave function collapse, we must measure B to
within an accuracy of A.

To get a scale-free measure of the deviation from wave function
collapse, we divide A by the root mean square average value of the

eigenvalues of B over the states in question:
1 _1_
2,,12,2 =
{ 2nlal”|bl") {(tr P__B P B)/n } / B , Where
k(n-k) P

A/B

1
2

- 2
B={ (1/n) txr [( P p+ P ) B (P p+ Pd )l )

A/B is essentially the ratio between the amount by which deviations from
wave function collapse disturb the the result of a measurement of B, and
the magnitude of the result; in order to detect deviations from wave

function collapse, we must measure B to within a fractional accuracy of

better than A/E.

1 1
2 2 2
Note that { nlal |b | } = ( 2/min(k,n-k) ) , and that even if we
k(n-k)
—2
choose B so as to maximize A, we have (tr P pB P B)/n < B . Hence

1
A/B < ( 2/min(k,n-k) )

As the number of degrees of freedom of the measuring device gets

greater and greater, A/E is suppressed by as factor of 1/(dimension of
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1
2 -
the space of accessible states) , and the difference between p and p

becomes harder and harder to detect. In fact, since in order to detect

a factor of 1//5 difference in expectation values it is necessary to

make at least m repetitions of the experiment, to detect a difference

between trpB and tr;B we must make a number of measurements equal to the
dimension of the space of states accessible to the measuring device, a
number on the order of the exponential of the number of degrees of
freedom of the device. It is possible, of course, that the particular

state |¢> in which the electron and measuring device end up gives a

lérge value for trpB - tr;B , but if our apparatus has very many

degrees of freedom such a large value is very unlikely. In the

thermodynamic limit A/E -+ 0 and deviation from wave function collapse
becomes impossible to detect. 'That is to say, the measurement problem
is not a problem for measuring devices with many degrees of freedom if
after the initial measurement interaction we confine ourselves to making

a reasonable number of measurements.

Discussion

In principle, it is always possible to detect deviations from wave
function collapse. Now matter how complex our measuring apparatus, if
we know its exact state, can integrate its equations of motion, and can
arrange a measurement corresponding to any Hermitian operator that we

like, then deviations from wave function collapse can be detected with



- 112 -

only a few measurements. In practice, when our measuring apparatus has
many degrees of freedom, so that we can not integrate its equations of
motion, and so that precise knowledge of its state requires a very large
number of measurements to be made on the apparatus itself, then even if
we can make measurements corresponding to any Hermitianvoperator that we
want, such deviations are virtually impossible to detect. We have shown
this result here for a Stern-Gerlach apparatus making measurements on
electrons, but the result is easily generalized to any apparatus with
many degrees of freedom, making measurements on any quantum system. In
the thermodynamic limit, as the number of degrees of freedom of the
apparatus goes to infinity, the quantum measurement problem ceases to be

a problem.
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Appendices

Appendix A:
Proof of theorem 1, chapter 2.
First, the mean values of pt(i) and pt(j) as t ranges over s™ are

1/m, 1/n respectively: <pt(i)> =1/(mn)! = o pt(i), and <pt(i)> =

teS
m

<pt(i')>, so <pt(i)> =1/(mn)! = mn(l/m) z pt(i) =1/(mn)! X (mn)! X
teS i=1

(1/m) x 1 = 1/m. Similarly, <pt(j)> = 1/n.

2
The variance of pt(i) from its mean is < (pt(i) - <pt(i)>) > =
2 2 2 2
i - i = 1 i -
<pt(1) > ~<pt(1)> l/(mn).t‘ez]Smn pt(l) 1/m
= 1/(mn)! X (the sum over all partitions of the p(ij) into m ordered

2 2
sets of n numbers of (the sum of numbers in the i-th set) ) - 1/m

-1 -1 2
=1/(mn)! = mt = p(t (ij) Yy ¢ = p(t (1ij')) )} - 1/m .

tes j j’
Pick one of the p(ij); call it p. 1If one were to write out all the
terms in the sum over permutatibns, p would appear (mn)!/m times
nultiplied by itself, and (mn)!/m times multiplied by 2x(the sum of n-1

>f the remaining p(ij)). p appears with each of the mn-1 remaining

>(1j) an equal number of times in the sum, and so the variance

m,n

2
=1/(mn)! { (mn)!/m [ = p(ij) + (n-1)/(mn-1) =  p(ij)p(i’'j’) 1 ).
' i,j-1 ij=i'j’ -
ut since X p(ij) =1, . p(ipp@E’'j") =z pij) (1 - pj) ),
i,j ij=i’j’ i,]

ind the expression for the variance, after a little algebra, is
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n(m-1)

2 . 2
:pt(l) > - <Pt(1)> = m(mn-l)

2 -
{ 2p(ij) - 1/(mn) ).

i,j

"he standard deviation stated in the theorem is the square root of the

rariance.

.ppendix B:

Proof of theorem 3, chapter 2.

m,n 2
Every state |$> = = c..|la.>|b.> , where msn and = |c..| =1,
i,j=1 1 ] i,j o

m
2
an be written in the form |[¢y> = = 1i|a£>|bi>, where = Iyil = 1. The
i=1 i

robability that the ]7i| take on a particular set of values if the c; s

re chosen at random subject to the normalization constraint 2|c1.|2=1

s proportional to the volume on the unit sphere in c™ taken up by

m
tates of the form |[x> = = 7i[ai>lbi> for the particular set of |v,]

i=1

ut for any normalized, orthogonal Iai>, |bi> e H, H

A B We calculate

his volume as follows.

The set whose volume is to be calculated is equal to the orbit of
0 - 0_,,.0 .
2y state of the form |$ > = = 7i|ai>|bi>, for the given lyil, under
i=1

1e action of the tensor product unitary group U(m)@U(n). We can

irametrize this orbit in terms of a set of the group parameters. The

1it sphere in c™ is isomorphic to the unit sphere in R2mn. The set of

2mn

>rmalized states corresponds to a 2mn-1 dimensional manifold in R

2
‘xing the values of Iyil subject to the requirement = |7i| = 1 adds
i
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m-1 further independent constraints: the set whose volume we are to

calculate is a 2mn-1 - (m-1) = 2mn-m dimensional manifold in R2mn
-i ¥ a,.A, -+ -
i, 3N 5
Any UleU(m) can be written U1= e ’ = e , where 1,j

range from 1 to m, a]._j are real numbers, and Aij is an mxm Hermitian
. . . . 0 . . ‘
matrix written with respect to the basis {Iai>} with entries

(A..)kl

1 = siksjl if i=j, = (1//2) ( 51k531 + 8.6, if i<j,

il’j

= (i/J2) ( aiksjl - 6446 k) if i>j. The Aij form a basis for the Lie

algebra of U(m) under the trace norm: tr AijAkl= 5ik6j1' Similarly, any
-i 2 b..B, -+ - A
1,5 94 ipeB
UzeU(n) can be written U2= e ! e , where i,j range from

one to n, the bij are real, and Bij are defined in the same way as Aij’

with respect to a basis the first m of whose members are {lbg>}.
Different members Aij’ Bkl of the algebra for U(m)®U(n) generate

different infinitesimal translations in the neighbourhood of |¢O>. For

each translation, we can define a one-form on the space of parameters

a.., b

ij’ kl®
-i dal Al 0 _ 0
D.. = e y J@I > - [$>
ij ‘
o 0_,.0
= -i ¢ dalJAlJ® I )iilyilai>|bi>.
. -i db, B
.. . k17kl, .0 0 2
Similarly, define Egq = Inmm1¢9 e |[¥™> - |¥ >. There are m +

2
n such infinitesimal translations, but only 2mn-m of them are linearly

indépendent. Note that Ek1= 0 if both k and 1 are greater than m, and

that Dii is proportional to Eii for l<i<m. The one forms Di"
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1<i,j<m, and Ek1 , k=1, 1<k,l<n, either k or 1 < m, correspond to a set

2 2 2 :
of m+n - (n-m) - m= 2mn - m linearly independent infinitesimal

. . 0. . ,mn = o
translations about the point [y > in C . Let Dij and Ek1 be the one
forms corresponding linearly independent infinitesimal transformations

about the point that corresponds to |¢o> in R2mn.

The volume 2mn-m form on the manifold whose volume we wish to

calculate is then equal to the wedge product,

11A D12A D21A ... A DmmA E12A E21A ... A EmnA Enm'

Writing out the explicit form of the terms in this product, and doing

D

the algebra, one finds that the dependence of this 2mn-m form on the

lv; | is

SEANNIAR

2(n-m)+1 2 2
m I ( I‘Yil - |7J| )

1<i<j=m

lThe volume of the manifold of states that can be written in the form |y>

=3 7i|ai>|bi> is equal to the integral of the volume 2mn-m form over
i

chis manifold. The total volume of this set of states is also

2 gl 1yl

oroportional to ( |vy| ... |v | ) L
» <i<j<m
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Appendix C:
Proof of theorem 1, chapter 3.

We want to prove the following: Given an Hermitian operator F on

H = Cn, then
4 1
2 2
{ the average over all |y>eH of ( <y|F|y> - (1/n)trF ) )
1 1

: 2 2 2 2 2
= (1/(n+l) ) { (txF )/n - (txF) /n )
Proof:
Pick a basis {Iei>} for H in which F is diagonal:

F=3 filei><ei| . The average over all |y> =3 ailei> € H of
- , i

2
( <p|F|y> - (1/n)trF ) is equal to the average over

(al,...,an) € the unit sphere in c™ of
n. 2 2
(2 £lagl’- 1/m )",
1=

which is equal to the average over the unit sphere of

' g £ £ 2 2 1 2 2 1 2
Aj_,j=]_ ij { 'ail IaJI - (/n)(lail + laJI ) + /n }

. 2 :
- But the average over the unit sphere of Iail is 1/n, the average of
2 2
|ai| Iajl is 2/n(n+l) if i=j, and is 1/n(n+l) if i=j. The average over
; 2
all |¢> € H of ( <p|F|y> - (1/n)trF ) is equal to

2 2
iEj fifj { 281j/n(n+1) + (I-Sij)/n(n+1) -2/n +1/n )

2 2 2
=  1/(n+l) ( (txF )/n - (trF) /n )

Taking the square root of both sides completes the proof.
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