Programming in Oberon
A derivative of Programming in Modula-2 (1982)
Niklaus Wirth

Table of Contents

Preface

Part 1

1. Introduction
2. A First Example
3. A Notation to Describe the Syntax of Oberon
4. Representation of Oberon Programs
5. Statements and Expressions
6. Control Structures

6.1 Repetitive Statements

6.2 Conditional Statements
7. Elementary Data Types

7.1 The Type INTEGER

7.2 The Type REAL

7.3 The Type BOOLEAN

7.4 The Type CHAR

7.5 The Type SET
8. Constant and Variable Declarations
9. Arrays

Part 2

10. Procedures
11. The Concept of Locality
12. Parameters
12.1 Variable Parameters
12.2 Value Parameters
12.3 Open Array Parameters
13. Function Procedures
14. Recursion
15. Type Declarations
16. Record Types
17. Dynamic Data Structures and Pointers
18. Procedure Types

Part 3

19. Modules
20. Definitions and Implementations
21. Program Decomposition into Modules
22. The concept of sequence
22.1. About input and output
22.2. Files and Riders
22.3. Texts, Readers and Writers
22.4. Standard Input and Output

Part 4
23. Object-oriented Programming
23.1. The origins of object-oriented programming
23.2. Type extensions and inhomogeneous data structures
23.3. Methods
23.4. Handlers and Messages

Appendix: Syntax, Keywords, Standard functions

Preface

This text is an introduction to programming in general, anguide to programming in the language
Oberon in particular. It is primarily oriented towardople who have already acquired some basic
knowledge of programming and would like to deepen their understamaia more structured way.
Nevertheless, an introductory chapter is added for the ibefighe beginner, displaying in a concise
form some of the fundamental concepts of computers apdogfamming them. The text is therefore
also suitable as a self-contained tutorial. The rmiatised is Oberon, which lends itself well for a
structured approach and leads the student to a workingtisafléas generally become known under the
heading oftructured programming.

As a manual for programming in Oberon, the text covairadst) all facilities of this language. Part 1
covers the basic notions of variable, expression, assignoanditional and repeated statement, and the
data structure of the indexable array. Together with Baxhich introduces the important concept of the
procedure or subroutine, it contains essentially theemahtcommonly discussed in introductory
programming courses. Part 3 concerns data types and stsuana constitutes the core of an advanced
course on programming. Part 4 introduces the notion obduta, a concept that is fundamental in the
design of large programming systems, and to programmitgams. The two basic notions of files and
texts are introduced in the forms of modules containiegferations performed on files and texts. Texts
are presented as our standard medium for program ingudwdput.

The language Oberon, published in 1988, has a long histasya llescendant of Algol 60 (1960), Pascal
(1970), and Modula (1979). Algol 60 [1] was designed by an internatcmmaiittee of 13 scientists,
and it was the first language to be specified with a oigeformalism, &yntax, in machine-independent
form. Algol was largely oriented toward numerical altjoris, as were computers at that time. Pascal [2]
was the result of an enduring debate about wideningaihgerof application of Algol, and it became
widely used, in particular but not only, in education. MoeRilg8] introduced the concept of modules,
the parts of large systems connected by clearly speéifterfaces. The module allows to hide details of
procedures and variables from its users (clients), adlibdies the principle @fiformation hiding. The
language Oberon [4] emerged from the urge to reduce thelerity of programming languages, of
Modula in particular. This effort resulted in a remarkatbncise language. The extent of Oberon, the
number of its features and constructs, is smallen ¢lwan that of Pascal. Yet it is considerably more
powerful.

The one feature that was added in Oberon was the extignsibdata types (record types). Whereas in
strongly types languages, such as Algol, Pascal, and Maslgey constant, variable, or function has a
fixed type, recognizable from the program text, Obertowa to define hierarchies of types, and to
determine the actual type of a variable (within theaniry) at run-time. This, together with records
containing fields of procedural types, is the sterolpéct-oriented programming. Such records are then
calledobjects, and the procedural fields are calleethods. Part 4 is added to cover this subject and to
show, that Oberon encourages an object-oriented stybeogfamming with hardly any new language
features.

Zurich, 1. October 2004 N.W.

1. P. Naur, Ed. Revised Report on the Algorithmic Langusgol 60.Comp. J. 5, 349-367 (1962), and
Comm. ACM, 6 (1963) 1 — 17.

2. N. Wirth. The Programming Language Pasaetia Informatica, 1 (1971), 35 — 63.
3. N. Wirth. Programming in Modula-2. Springer-Verlag, 1982. ISBN 0-387-50150-9

4. N. Wirth. The Programming Language Ober@aftware - Practice and Experience, 18, 7, (July
1988), 671- 690.

Part 1

1. Introduction

Although this manual assumes that its reader is alreadifidr with the basic notions of computer and

programming, it may be appropriate to start out with elxplanation of some concepts and their
terminology. We recognize that - with rare exceptiorgregrams are written - more appropriately:

designed - with the purpose of being interpreted by a compittercomputer then performs a process,
i.e. a sequence of actions, according to the specifitatjiven by that program. The process is also
called acomputation.

The program itself is #ext. Since it specifies a usually fairly complex process] anust do so with
utmost precision and care for all details, the meaafrthis text must be specified very precisely. Such
precision requires an exact formalism. This formalisis become known aslanguage. We adopt this
name, although a language is normally spoken and much kxssgbly defined. Our purpose here is to
learn the formalism or languageberon. It has a long tradition among programming languages. Its
ancestor was Algol 60, followed by Pascal and Modula-2.

A program usually specifies a process that causes itpiater, i.e. the computer, to read data (the so-
calledinput) from some sources and to vary its subsequent adimwding to the accepted data. This
implies that a program does not only specify a (singlefess, but an entire - usually unbounded - class
of computations. We have to ensure that these procassegcording to the given specifications (or
should we say expectations?) in all cases of this dlslsereas we could verify that this specification is
met in the case of a single computation, this is implesén the general case, because the class of all
permitted processes is much too large. The conscienilaggammer ensures the correctness of his
program by careful design and analysis. Careful desitreisssence of professional programming.

The task of designing a program is further complicatedhieyfact that the program not only must
describe an entire class of computations, but often dhalgb be interpreted (executed) by different
interpreters (computers). At earlier times, this requtiee manual transcription of the program from its
source form into different computer codes, taking inteoant their various characteristics and
limitations. The difficulties have been drastically regllicalbeit not eliminated, by the creation of high
level languages with formal definitions and the consimncof automatic translators converting the
program into the codes of the various computers.

In principle, the formal language should be definedrirabstract, perhaps axiomatic fashion without
reference to an actual computer or interpretation mésmanf this were achieved, the programmer
would have to understand the formal language only. Howeweh generality is costly and often
restrictive, and in many cases the programmer shouldkstiw the principal characteristics of his
computer(s). Nevertheless, the qualified programmermadke as little reference to specific computer
characteristics as possible and rely exclusively orrules of the formal language in order to keep his
program general and portable. The language Oberon assidtsis task by confining computer
dependencies to specific objects, by allowing to encapdhlate in specific, small parts of a program
text.

From the foregoing it follows that a translation meg lies between the program's formulation and its
interpretation. This process is calledamnpilation, because it condenses the program's source text into a
cryptic computer code. The quality of this compilation rbeycrucial to the efficiency of the program's
ultimate interpretation. We stress the fact thateheay be many compilers for a given language (even
for the same computer). Some may be more efficient tithers. We recognize that efficiency is a
characteristic of implementations rather than the languétgtherefore is important to distinguish
between the concepts of language and implementation.

We summarize:

- A program is a piece ¢éxt.

- The program specifieomputations or processes.

- A process is performed by an interpreter, usuatignaouter, interpreting (executing) the program.

- The meaning of the program is specified by a formatiatiedprogramming language.

- A program specifies a class of computations,itipat data acting as parameter of each individual
process.

- Prior to its execution, a program text is translated éomputer code by a compiler. This process is
called acompilation.

Program design includes ensuring that all members ofdhiss of computations act according to
specification. This is done by careful analytierification and by selective empirical testing of
characteristic cases.

Programs should refrain from making reference to chaistits of specific interpreters (computers)
whenever possible. Only the lack of such referencereasghat their meaning can be derived from rules
of the language.

A compiler is a program translating programs fromirttseurce form to specific computer codes.
Programs need to be compiled before they are executegraRmming in the wider sense not only
includes the formulation of the program, but also theciate preparation of the text, its compilation,
correction of errors, so-calladtbugging, and the planning of tests. The modern programmer useg man
tools for these tasks, including text editors, compilensl debuggers. He also has to be familiar with the
environment of these components. We shall not destirése aspects, but concentrate onldhguage
Oberon.

2. A First Example

Let us follow the steps of development of a simple prograd thereby explain some of the fundamental
concepts of programming and of the basic facilities of @hefThe task shall be, given two natural
numbers x and y, to compute their greatest commonaodi(ged). The mathematical knowledge needed
for this problem is the following:

1.if x equals y, x (or y) is the desired result

2.the gcd of two numbers remains unchanged, if we reph@ckarger number by the difference of the
numbers, i.e. subtract the smaller number formahgel one.

Expressed in mathematical terms, these rules takertime fo
1. ged(x, X) = x
2. ifx>y, ged(x,y) = gcd(x-y,)

The basic recipe, the so-calladjorithm, is then the following: Change the numbers x andcpraing

to rule 2 such that their difference decreases. Repisatritil they are equal. Rule 2 guarantees that the
changes are such that gcd(x,y) always remains the sacheyla 1 guarantees that we finally find the
result.

Now we must put these recommendations into terms of Obérdinst attempt leads to the following
sketch. Note that the symbol # means "unequal".

WHILE x #y DO
"apply rule 2, reducing the difference and maintainingOxand y > 0"
END

The sentence within quotes is plain English. The secorsibwerefines the first version by replacing the
English by formal terms:

WHILE x #y DO
IF x>y THEN x :=x-y ELSE y := y-x END
END

This piece of text is not yet a complete program, bubdins already the essential characteristic of a
structured programming language. Version 1 is a statenask, this statement contains another,
subordinate statement (within quotes). In version 2 thislaborated, and yet further subordinate
statements emerge (expressing the replacement of a wdlyeanother value x-y). This hierarchy of
statements expresses the underlying structure of thethigoit becomes explicit due to the structure of
the language, allowing the nesting of components of grane. It is therefore important to know the
language's structure (syntax) in full detail. Textuallyexpress nesting or subordination by appropriate
indentation. Although this is not required by the rulesheflanguage, it helps in the understanding of a
text very considerably.

Reflecting an algorithm's inherent structure by the texstiaicture of the program is a key idea of
structured programming. It is virtually impossible necognise the meaning of a program when its

structure is removed, such as done by a compiler whetugirag computer code. And we should keep in
mind that a program is worthless, unless it existsome form in which a human can understand it and
gain confidence in its design.

We now proceed towards the goal of producing a completegmmofjom the above fragment. We realize
that we need to specify an action that assigns liniiies to the variables x and y, as well as aro@acti
that makes the result visible. For this purpose we shaciually know about a computer's facilities to
communicate with its user. Since we do not wish ta tef@ specific machinery, and particularly not in
such a frequent and important case as the generation mitoue introduce abstractions of such
communication facilities. These facilities are notedity part of the language, but are procedures
declared in some (library) modules, to which all proggdmve access. We postulate read and write
procedures as shown in the following example, and will assbatelata are thus read from a keyboard
and written on a display.

Texts.Scan(S); x := S.i;
Texts.Scan(S); y := S.i;
WHILE x #y DO
IF x>y THEN x :=x-y ELSE y := y-x END
END;
Texts.Writelnt(W, X, 6)

The proceduré&can scans an input text and reads a (non-negative) intederTl®e procedur&\ritelnt
outputs an integer as specified by its first parameteiTbg.second parameter (6) indicates the number
of digits available for the representation of this vatluéhe output text. Both procedures are taken from
the imported (library) modul@exts, and they use a locally declared scanner S and a glatedisred
writer W, connecting to an input source (the text follogvthe command) and output sink (the Log text)
imported from the environme@beron. Details are explained in Chapter 22 of this tutorial.

In the next and final version we complete our text shahit becomes a genuine Oberon text:

PROCEDUREGcd*;

VAR X, y: INTEGER; S: Texts.Scanner;

BEGIN Texts.OpenScanner(S, Oberon.Par.text, Oberon.Bar.po
Texts.Scan(S); x := S.i; Texts.WriteString(W, " "}; T exts.Writelnt(W, x, 6);
Texts.Scan(S); y := S.i; Texts.WriteString(W, ='Y; Texts.Writelnt(W, y, 6);
WHILE x #y DO

IF x>y THEN x :=x-y ELSE y := y-x END
END;
Texts.WriteString(W, " gcd ="); Texts.Writelnt(W, x, @)exts.WriteLn(W);
Texts.Append(Oberon.Log, W.buf)
END Gcd.

The essential additions in this step deelarations. In Oberon, all names of objects occurring in a
program, such as variables and constants, have to teretbcA declaration introduces the object's
identifier (name), specifies the kind of the object (whethis a variable, a constant, or something else)
and indicates general, invariant properties, such ayleeof a variable or the value of a constant.

The entire piece of text is calledporocedure, given a name, and has the following format (see @kso
10):

PROCEDURE name;
<declarations>
BEGIN
<statements>
END name

In this and the following examples, a particular propeftythe Oberon system becomes apparent.
Whereas in older languages, the notions of program agalible unit were identical, we distinguish
carefully between them in Oberon terminology: Whatduse be called grogram is now called a
module, a system unit typically incorporating variables andcatable statements resident in a system
(see also Ch. 19). Compilers accept a modulecamgilable unit of text. Anexecutable unit of program

we call aprocedure. In the Oberon system, any parameterless proceduteecased as eommand, if its
name is marked with an asterisk. It can be activatedibkirad) on its name visible anywhere on the

display. A module may contain one or several commandsa A®nsequence, the preceding and
following examples of “programs” appear in the form of procedycommands), and we will always
assume that they are embedded in a module importing twitesenodulesTexts and Oberon and
containing the declaration of a writéf for output:

MODULE Pattern;
IMPORT Texts, Oberon;
VAR W: Texts.Writer;

PROCEDURE command*; (*such as Gcd*)

BEGIN ... (*using W for output*) ...
Texts.Append(Oberon.Log, W.buf)

END command;

BEGIN Texts,OpenWriter(W)
END Pattern.

A few more comments concerning ddcd example are in order. As already mentioned, the procedure
WriteLn, WriteString, Writelnt andScan are not part of the language Oberon itself. They dipatkin a
module calledlexts which is presumed to be available. The often encoetht@oduleslexts, Files and
Oberon will be defined and explained in Chapter 22 of this book. Keranerely point out that they
need to be imported in order to be known in a programs iE done by including the names of these
modules in the import list in the importing module’s hegdin

The procedureAfriteSring outputs a string, i.e. a sequence of characters (edclosquotes). The
proceduré\riteLn inserts a line break in the output text. For further axglions we refer to chapters
22.3 and 22.4 of this book:

And this concludes the discussion of our first exampleasdtbeen kept quite informal. This is admissible
because the goal was to explain an existing program. Hmywerogramming is designing, creating new
programs. For this purpose, only a precise, formal gegammiof our tool is adequate. In the next chapter,
we introduce a formalism for the precise descriptioamfect, "legal" program texts. This formalism
makes it possible to determine in a rigorous manner whattveitten text meets the language's rules.

3. A Notation to Describe the Syntax of Oberon

A formal language is an infinite set of sequences of signtithe members of this set are called
sentences, and in the case of a programming languagestrdgsaces are programs. The symbols are
taken from a finite set called the vocabulary. Since gbe of programs is infinite, it cannot be
enumerated, but is instead defined by rules for their cdtigpuosSequences of symbols that are
composed according to these rules are said to be syatlctiorrect programs; the set of rules is the
syntax of the language.

Programs in a formal language then correspond to gramihatioarect sentences of spoken languages.
Every sentence has a structure and consists of digiarts, such as subject, object, and predicate.
Similarly, a program consists of parts, called syntaetitities, such as statements, expressions, or
declarations. If a construct A consists of B followeddyyi.e. the concatenation BC, then we call B and
C syntactic factors and describe A by the syntaotiméila

A = BC.

If, on the other hand, an A consists of a B or, altirely, of a C, we call B and C syntactic terms and
express A as

A =B]|C.
Parentheses may be used to group terms and factorsndteiworthy that here A, B, and C denote
syntactic entities of the formal language to be desdrilwvhereas the symbols =, | , parentheses, and the

period are symbols of the meta-notation describing syrita& latter are called meta-symbols, and the
meta-notation introduced here is called Extended BackusfNamalism (EBNF).

In addition to concatenation and choice, EBNF alsmalito express option and repetition. If a construct
A may be either a B or nothing (empty), this is expressed

A =[B].

and if an A consists of the concatenation of any nurabBs (including none), this is denoted by
A ={B}.

This is all there is to EBNF! A few examples showwhsets of sentences are defined by EBNF
formulas:

(AIB)(C|D) AC AD BC BD

A[B]C ABC AC
A{BA} A ABA ABABA ABABABA ...
{AIBIC C AC BC AAC ABC BBC BAC ...

Evidently, EBNF is itself a formal language. If it suits purpose, it must at least be able to describe
itself! In the following definition of EBNF in EBNRye use the following names for entities:

statement: a syntactic equation

expression: a list of alternative terms

term: a concatenation of factors

factor: a single syntactic entity or a parenthesizedessjon

The formal definition of EBNF is how given as follows:

syntax = {statement}.

statement = identifier "=" expression ".".

expression = term {"|" term}.

term = factor {factor}.

factor = identifier | string | "(" expression ")" | §xpression "]" | "{" expression "}".

Identifiers denote syntactic entities; strings are secgee of symbols taken from the defined language's
vocabulary. For the denotation of identifiers we adopt whidely used conventions for programming
languages, namely:

An identifier consists of a sequence of letters and digits, where the first character must be a letter. A
string consigts of any sequence of characters enclosed by quote marks (or apostrophes).

A formal statement of these rules in terms of EBBIFiven in the subsequent chapter.

4. Representation of Oberon Programs

The preceding chapter has introduced a formalism, by whicktrthetures of well-formed programs will
subsequently be defined. It defines, however, merely tag iw which programs are composed as
sequences of symbols, in contrast to sequences of chrarddtes "shortcoming" is quite intentional: the
representation of symbols (and thereby programs) irmstesf characters is considered too much
dependent on individual implementations for the general lgfvabstraction appropriate for a language
definition. The creation of an intermediate level opresentation by symbol sequences provides a useful
decoupling between language and ultimate program reprasanfilie latter depends on the available
character set. As a consequence, we need to postukste od rules governing the representation of
symbols as character sequences. The symbols of therObecabulary are divided into the following
classes:

identifiers, numbers, strings, operators and delimiterd camments.
The rules governing their representation in terms oftdredard ISO character set are the following:

1. Identifiers are sequences of letters and digits. The first charauist be a letter. Capital and lower-
case letters are considered as distinct.

identifier = letter {letter|digit}.
Examples of well-formed identifiers are

Alice likely jump BlackBird SR71
Examples of words which are no identifiers are

sound proof (blank space is not allowed)
sound-proof (neither is a hyphen)

2N (first character must be a letter)
Miller's (no apostrophe allowed)

Sometimes an identifier has to be qualified by anothettifikr; this is expressed by prefixing i with j
and a period (j.i); the combined identifier is calledualified identifier (abbreviated agqualident). Its
syntax is

qualident = {identifier "."} identifier.

2. Numbers are either integers or real numbers. The formedaneted by sequences of digits. Numbers
must not include any spaces. Real numbers contain malegbint and a fractional part. In addition, a
scale factor may be appended. It is specified by the Etéad an integer which is possibly preceded by
a sign. The E is pronounced as "times 10 to the pofiier o

Examples of well-formed numbers are
1981 1 325 5.1E3 4.0E-10

Examples of character sequences that are not recogsinenrders are

15 no comma may appear
1'000'000 neither may apostrophs
3.5En no letters allowed (except the E)

The exact rules for forming numbers are given by tHeviing syntax:

number = integer | real.

integer = digit {digit}.

real = digit {digit} "." {digit} [ScaleFactor].
ScaleFactor = "E" ["+"|"-"] digit {digit}.

Note: Integers are taken as octal numbers, if followedhbyletter B, or as hexadecimal numbers if
followed by the letter H.

3. Srings are sequences of any characters enclosed in quote riraidsler that the closing quote is
recognized unambiguously, the string itself evidently canaltain a quote mark. To allow strings with
quote marks, a string may be enclosed within apostropheadhef quote marks. In this case, however,
the string must not contain apostrophes.

string = " {character} "™ | ™" {character} "".

Examples of strings are

"no comment"
"Buck's Corner"
'he said "do not fret", and fired a shot'

4. Operators and ddimiters are either special characters or reserved words.eTl#ésr are written in
capital letters and must not be used as identifiers. éHisnit advantageous to memorize this short list of
words. The operators and delimiters composed of specialcthi@are

+ addition, set union

- subtraction, set difference

* multiplication, set intersection
/ division, symmetric set difference
= assignment

& logical AND

~ logical NOT

= equal

unequal

< less than

> greater than

<= less than or equal

>= greater than or equal

() parentheses

[] index brackets

{} set braces

* % comment brackets
n dereferencing operator
, - 1 . . | punctuation symbols

The reserved words are enumerated in the following fistr tneaning will be explained throughout the
subsequent chapters:

ARRAY BEGIN BY CASE
CONST DEFINITION DIV DO

ELSE ELSIF END FOR

IF IMPORT IN MOD
MODULE OF OR POINTER
PROCEDURE RECORD REPEAT RETURN
SET THEN TO TYPE
UNTIL VAR WHILE

It is customary to separate consecutive symbols by a spgae one or several blanks. However, this is
mandatory only in those cases where the lack of aggace would merge the two symbols into one. For
example, in "IF x =y THEN" spaces are necessary int fstbr and after y, but could be omitted around
the equal sign.

5. Comments may be inserted between any two symboksy @te arbitrary sequences of characters
enclosed in the comment brackets (* and *). Commentslkipped by compilers and serve as additional
information to the human reader. They may also sergghal instructions (options) to the compiler.

5. Statements and Expressions

The specification of an action is calledstatement. Statements can be interpreted (executed), and that
interpretation (execution) has an effect. The effeet transformation of the state of the computatioa, t
state being represented by the collective values of thegmigyvariables. The most elementary action is
the assignment of a value to a variable. The assignstegetment has the form

assignment = designator ":=" expression.
and its corresponding action consists of three partésrsequence:

1. Evaluate the designator designating a variable.
2. Evaluate the expression yielding a value.
3. Replace the value of the variable identified in 1.heyalue obtained in 2.

Simple examples of assignments are
i=1 X = y+z

Here i obtains the value 1, and x the sum of y arahd,the previous values are lost. Evidently, every
variable in an expression must previously have bedgresba value. Observe that the following pairs of
statements, executed in sequence, do not have the saate effe

=i+l)= 2%

ji=2% 0=+l
Assuming the initial value i = 0, the first pair yields 1, j = 2, whereas the second pair yields j = 0. If
we wish to exchange the values of variables i anejstatement sequence

=g =i
will not have the desired effect. We must introduce gteary value holder, say k, and specify the three
consecutive assignments

k:=i;i=jj=k

An expression is in general composed of several operands and opertdtomvaluation consists of
applying the operators to the operands in a prescribed sexjuemgeneral taking the operators from left
to right. The operands may be constants, or variatsdanctions. (The latter will be explained in a later
chapter.) The identification of a variable will, general, again require the evaluation of a designator.
Here we shall confine our presentation to simple téefadesignated by an identifier. Arithmetic

10

expressions (there exist other expressions too) involuabers, numeric variables, and arithmetic
operators. These include the basic operations of addiipnsubtraction (-), multiplication (*), and
division. They will be discussed in detail in the chamierbasic data types. Here it may suffice to
mention that the slash (/) is reserved for dividing nemhbers, and that for integers we use the operator
DIV which truncates the quotient.

An expression consists of consecutive terms. The esipres
TO+T1l+..+Tn

is equivalent to
(TO+T1) +..)+Tn

and is syntactically defined by the rules

SimpleExpression = ["+"|"-"] term {AddOperator term}.
AddOperator = "+ """ "OR".

Note: for the time being, the reader may considesyim¢actic entitiegxpression andSmpleExpression
as equivalent. Their difference and the operators OR, A0 NOT will be explained in the chapter on
the data type BOOLEAN.

Each term similarly consists of factors. The term
FO*F1*..*Fn

is equivalent to
(FO*F1)*..)*Fn

and is syntactically defined by the rules

term = factor {MulOperator factor}.
MulOperator = ™" | "/" | "DIV" | "MOD" | "&".

Each factor is either a constant, a variable, a fomcor an expression itself enclosed by parentheses.

Examples of (arithmetic) expressions are

2*%3+4%5 = (2*3)+(4*5) =26
15 DIV 4 * 4 = (15 DIV 4)*4 =12
15 DIV (4*4) =15DIV16 =0
2+3%4-5 =2+(3*4)-5 =9
6.25/1.25+15 =50+15 =6.5

The syntax of factors, implying that a factor maylftbe an expression, is evidently recursive. The
general form of designators will be explained later; litesaffices to know that an identifier denoting a
variable or a constant is a designator.

factor = number | string | set | designator [Actadeters] | "(" expression ")" | "~" factor.

The rules governing expressions are actually quite simptecamplicated expressions are rarely used.
Nevertheless, we must point out a few basic rules tieawell worth remembering.

1. Every variable in an expression must previously haea lassigned a value.

2. Two operators must never be written side by sideirstance a * -b is illegal and must be written as
a*(-b).

3. The multiplication sign must never be omitted whenudtiplication is required. For example, 2n is
illegal and must be written as 2*n.

4. MulOperators are binding more strongly than AddOperators.

5.When in doubt about evaluation rules (i.e. precedenagp@fators), use additional parentheses to
clarify. For example, a + b * ¢ may just as welMoétten as a+(b*c).

The assignment is but one of the possible forms oérsits. Other forms will be introduced in the
following chapters. We enumerate these forms by thewviiotlg syntactic definition

11

statement = [assignment | ProcedureCall |
WhileStatement | RepeatStatement | ForStatement |
IfStatement | ReturnStatement].

Several of these forms are structured statementsonge of their components may be statements again.
Hence, the definition of statement is, like that of egpi@ns, recursive.

The most basic structure is the sequence. A computati@rsequence of actions, where each action is
specified by a statement, and is executed after the preaatting is completed. This strict sequentiality
in time is an essential assumption of sequential pnagriag. If a statement S1 follows SO, then we
indicate this sequentiality by a semicolon

S0; S1

This statement separator (not terminator) indicates the action specified by SO is to be followed
immediately by the action corresponding to S1. A sequehstements is syntactically defined as

StatementSequence = statement {";" statement}.

The syntax of statements implies that a statement magist of no symbols at all. In this case, the
statement is said to be empty and evidently denogesttth action. This curiosity among statements has a
definite reason: it allows semicolons to be insertgquaces where they are actually superfluous, such as
at the end of a statement sequence.

6. Control Structures

It is a prime characteristic of computers that individugibas can be selected, repeated, or performed
conditionally depending on some previously computed resutiscélthe sequence of actions performed
is not always identical with the sequence of theirasponding statements. The sequence of actions is
determined by control structures indicating repetitionedtigin, or conditional execution of given
statements.

6.1 Repetitive Statements

The most common situation is the repetition of aest@&int or statement sequence under control of a
condition: the repetition continues as long as the cmdis met. This is expressed by the while
statement. Its syntax is

WhileStatement = "WHILE" expression "DO" Statemetfience "END".
and its corresponding action is

1. Evaluate the condition which takes the form of an espeyielding the value TRUE or FALSE,

2. If the value is TRUE, execute the statement sequerct¢han repeat with step 1; if the value is
FALSE, terminate.

The expression is of type BOOLEAN. This will be furtliéscussed in the chapter on data types. Here it
suffices to know that a simple comparison is a Boolegoression. An example was given in the
introductory example, where repetition terminates whentwo comparands have become equal. Further
examples involving while statements are:

1. Initially, let g = 0 and r = x; then count the numbktimes y can be subtracted from X, i.e. compute
the quotient g = x DIV y, and remainder r = x MOD yx #ind y are natural numbers.

WHILEr>=yDOr :=r-y; q:=q+1 END

2. Initially, let z = 1 and i = k; then multiply z k timéy x, i.e. compute z = X"k, if z and k are natural
numbers:

WHILE i >0 DO z :=z*x; i :=i-1 END
When dealing with repetitions, it is important to renbemthe following points:

1. During each repetition, progress must be made towardinmélee goal, namely "getting closer" to
satisfying the termination condition. An obvious corgllas that the condition must be somehow
affected from within the repeated computation. The folhgwistatements are either incorrect or
dependent on some critical precondition as stated.

12

WHILE i >0 DO
k = 2*k (*i is not changed*)
END
WHILE i # 0 DO
i=i-2 (*i must be even and positive*)
END
WHILE n #i DO
n:=n*;i:=i+l
END

2. If the condition is not satisfied initially, the &ent is vacuous, i.e. no action is performed.

3. In order to obtain a grasp of the effect of the itpet we need to establish a relationship that is
stable, called an invariant. In the division example abthis is the equation g*y + r = x holding each
time the repetition is started. In the exponentiation gtarit is z * X = ¥ which, together with the
termination condition i = 0 yields the desired result x.=

4. The repetition of identical computations should be adb{déhough a computer has infinite patience
and will not complain). A simple rule is to avoid expresasi within repetitive statements, in which no
variable changes its value. For example, the statement

WHILE i < 3*N DO tabli] := x + y*z + z*i; i := i+1 END
should be formulated more effectively as
n = 3*N; u:=x + y*z;
WHILE i <n DO tab[i] := u + z*; i := i+1 END
In addition to the while statement, there is the repdement, syntactically defined as
RepeatStatement = "REPEAT" StatementSequence "UNKbtr'ession.

The essential difference to the while statemeritdsthe termination condition is checked each timer aft
(instead of before) execution of the statement sequéysca. result, the sequence is executed at least
once. An advantage is that the condition may invobmables that are undefined when the repetition is
started.

REPEAT i :=i+5;j:=j+7; k:=i DIV jUNTIL k > 23
REPEAT r:=r-y;q:=gq+1 UNTILr<y

6.2 Conditional Statements
The conditional statement, also called if statemerst @ form

IfStatement = "IF" expression "THEN" StatementSequence
{"ELSIF" expression "THEN" StatementSequence}
['ELSE" StatementSequence]
"END".

The following example illustrates its general form.

IF R1 THEN S1
ELSIF R2 THEN S2
ELSIF R3 THEN S3
ELSE S4

END

The meaning is obvious from the wording. However, it nngstemembered that the expressions R1 ...
R3 are evaluated one after the other, and that asasone yields the value TRUE, its corresponding
statement sequence is executed, whereafter the IF statésconsidered as completed. No further
conditions are tested. Examples are:

IFX=0THENs:=0
ELSIFXx<OTHEN s :=-1

13

ELSEs =1
END

IF ODD(K) THEN z := z*x END
IFk>10 THEN k := k-10; d := 1 ELSE d := 0 END

The constructs discussed so far enable us to develop siffgple, complete programs as subsequently
described. The first example is an extension of our introdyetxample computing the greatest common
divisor ged of two natural numbers x and y. The extension cangisthe addition of two variables u and
v, and statements which lead to the computation ofethgt common multiple (Icm) of x and y. Tleen

and theged are related by the equation

lem(x,y) * ged(x,y) = x*y

As explained earlier, this and following examples willfbemulated as command procedures and are
assumed to be embedded in modBattern defined in Chap. 2 which imports modul@exts and
Oberon.

PROCEDUREgcdIcm®;

VAR X, Y, U, v. INTEGER; S: Texts.Scanner;

BEGIN Texts.OpenScanner(S, Oberon.Par.text, Oberon.Bar.po
Texts.Scan(S); x := S.i; Texts.WriteString(W, " "}; T exts.Writelnt(W, x, 6);
Texts.Scan(S); y := S.i; Texts.WriteString(W, ='Y; Texts.Writelnt(W, y, 6);
U:=x;v:=y,

WHILE x #y DO
(*gcd(x,y) = gcd(x0,y0), x*v + y*u = 2*x0*y0*)

IF x>y THEN
XI=X-y;u:=u+v

ELSE
YI=Yy-X;Vi=V+u

END

END ;

Texts.Writelnt(W, X, 6); Texts.Writelnt(W, (u+v) DI¥, 6); Texts.WriteLn(W);
Texts.Append(Oberon.Log, W.buf)
END gcdicm.

This example again shows the nesting of control fstras. The repetition expressed by a while
statement includes a conditional structure expressed hf statement, which in turn includes two
statement sequences, each consisting of two assignmbigtierarchical structure is made transparent
by appropriate indentation of the "inner" parts.

Another example demonstrating a hierarchical structurgoates the real number x raised to the power
i, where i is a non-negative integer.

PROCEDUREPower *;
VAR i: INTEGER,; X, z: REAL; S: Texts.Scanner;
BEGIN Texts.OpenScanner(S, Oberon.Par.text, Oberon.Bariexts.Scan(S);
WHILE S.class = Texts.Real DO
X := S.X; Texts.WriteString(W, " x ="); Texts.W&Real(W, X, 16);
Texts.Scan(S); i := S.i; Texts.WriteString(Wi ="); Texts.WriteInt(W, i, 4);

z:=1.0;
WHILE i >0 DO
(* z * x™ = x0MNi0 *)
z:=7"i:=i-1
END ;
Texts.WriteReal(W, z, 16); Texts.WriteLn(W); Testsan(S)
END ;
Texts.Append(Oberon.Log, W.buf)
END Power.

Here we subject the computation to yet another repetiiach time a result has been computed, another
value pair X, i is requested. This outermost repetiticrpigrolled by the relatiosclass = Texts.Real,

14

which indicates whether a real number x had actually bead. As an example, activation of the
command

M.Power 50 2 205 3.0 3~
will generate the results 25.0, 32.0, 27.0.

The straight-forward computation of a power by repeatedipticétion is, although obviously correct,
not the most economical. We now present a more dagatesi and more efficient solution. It is based on
the following consideration: The goal of the repetitisrto reach the value i = 0. This is done by
successively reducing i, while maintaining the invariantxz # x0°, where x0 and i0 denote the initial
values of x and i. A faster algorithm therefore must mydecreasing i in larger steps. The solution
given here halves i. But this is only possible, & even. Hence, if i is odd, it is first decremented by 1.
Of course, each change of i must be accompanied by atbegraction on z in order to maintain the
invariant. A detail: the subtraction of 1 from i is retpressed by an explicit statement, because it is
performed implicitly by the subsequent division by 2. Twater details are noteworthy: The function
ODD(i) is TRUE, if i is an odd number, FALSE otherwiseand z denote real values, as opposed to
integer values. Hence, they can represent fractioas,

PROCEDUREPower *;
VAR i: INTEGER,; X, z: REAL; S: Texts.Scanner;
BEGIN Texts.OpenScanner(S, Oberon.Par.text, Oberon.Bariexts.Scan(S);
WHILE S.class = Texts.Real DO
X := S.X; Texts.WriteString(W, " x ="); Texts.W&Real(W, X, 16);
Texts.Scan(S); i := S.i; Texts.WriteString(Wi ="); Texts.Writelnt(W, i, 4);
z:=1.0;
WHILE i >0 DO
(* z * x™ = x0Ni0 *)
IF ODD(i) THEN z := zZ*X END ;

X :=X*X;i:=iDIV 2
END ;
Texts.WriteReal(W, z, 16); Texts.WriteLn(W); Testsan(S)
END ;
Texts.Append(Oberon.Log, W.buf)
END Power.

The next sample command has a structure that is aldesgtical to the preceding program. It computes
the logarithm of a real number x whose value lies betwesmmd 2. The invariant in conjunction with the
termination condition (b = 0) implies the desired result suot,(X).

PROCEDURH. 0g2*;
VAR X, a, b, sum: REAL; S: Texts.Scanner;
BEGIN Texts.OpenScanner(S, Oberon.Par.text, Oberon.Bariexts.Scan(S);
WHILE S.class = Texts.Real DO
X := S.X; Texts.WriteReal(W, x, 15); (*1.0 <= R<0%)
a:=x; b:=1.0; sum:= 0.0;
REPEAT
(*log2(x) = sum + b*log2(a)*)
a:=a*a; b :=0.5*b;
IF a>=2.0 THEN
sum :=sum + b; a := 0.5*a
END
UNTIL b < 1.0E-7;
Texts.WriteReal(W, sum, 16); Texts.WriteLn(W)x#eScan(S)
END ;
Texts.Append(Oberon.Log, W.buf)
END Log2.

Normally, routines for computing standard mathematiagatfions need not be programmed in detalil,
because they are available from a collection of madsimilar to those for input and output. Such a
collection is, somewhat inappropriately, called adilr In the following example, again exhibiting the
use of a repetitive statement, we use routines for comptite cosine and the exponential function from

15

a library calledMath and generate a table of values for a damped osdillafigpically, the available
standard routines include the sin, cos, exp, In (logaritegn),(square root), and the arctan functions.

PROCEDUREOscillation*;
CONST dx = 0.19634953; (*pi/16*)
VAR i, n: INTEGER;
X, Yy, I REAL; S: Texts.Scanner;
BEGIN Texts.OpenScanner(S, Oberon.Par.text, Oberon.Bar.po
Texts.Scan(S); n := S.i; Texts.Writelnt(W, n, 6);
Texts.Scan(S); r := S.x; Texts.WriteReal(W, r, T®xts.WriteLn(W);
i:=0;x:=0.0;
REPEAT x :=x + dx; i ;= i+1;
y := Math.exp(-r*x) * Math.cos(x);
Texts.WriteReal(W, X, 15); Texts.WriteReal(W, y, ITB@xts.WriteLn(W)
UNTIL i >=n;
Texts.Append(Oberon.Log, W.buf)
END Oscillation.

7. Elementary Data Types

We have previously stated that all variables need Hardec This means that their names are introduced
in the heading of the program. In addition to introdgdhe name (and thereby enabling a compiler to
detect and indicate misspelled identifiers), declarations @ purpose of associating a data type with
each variable. This data type represents informationtahe variable which is permanent in contrast,
for example, to its value. This information may again aidlétecting inconsistencies in an erroneous
program, inconsistencies that are detectable by mspedtion of the program text without requiring its
interpretation.

The type of a variable determines its set of possifliges and the operations which may be applied to it.
Each variable has a single type that may be deduced tsrdeclaration. Each operator requires
operands of a specific type and produces a result of afispiggie. It is therefore visible from the
program text, whether or not a given operator is apgbdaba given variable.

Data types may be declared in the program. Such constriypies are usually based on composition of
basic types. There exist a number of most frequently, @ementary types that are basic to the language
and need not be declared. They are called standard typ@sliaoe introduced in this chapter, although
some have already appeared in previous examples.

In fact, not only variables have a type, but so do tams, functions, operands and (results of) operators.
In the case of a constant, the type is usually deduaibie the constant's notation, otherwise from its
explicit declaration.

First we describe the standard data types of Oberonhanebfter elaborate on the form of declarations
of variables and constants. Further kinds of data typetsleciarations are deferred to later chapters.
7.1 The Type INTEGER

This type represents the whole numbers, and any valugpef INTEGER is therefore an integer.
Operators applicable to integers include the basic aritbimgerations

+ addition

- subtraction

* multiplication

DIV division

MOD modulus (remainder)

Integer division is denoted by DIV. If we define the integotient and the modulus of x and y by
q=xDIVy, r=xMODy
then g and r are related by the equation x = g*y fd ey the constraint 0 <=r <y. For example

15DIV4 =3 15MOD4 = 3 15 = 3*4+3
-15DIV4 =-4 -15MOD4 = 1 15 = (-4)*4 +1

16

Sign inversion is denoted by the monadic minus signhEurtore, there exist the operators ABS(x) and
ODD(x), the former yielding the absolute value of x, titeelr the Boolean result "x is odd".

Every computer will restrict the set of values of typgEGER to a finite set of integers, usually the
interval -2"* ... 2*1-1, where N is a small integer, often 16 or 32, dependnthe number of bits a
computer uses to represent an integer. If an arithmeti@tope produces a result that lies outside that
interval, then overflow is said to have occured. Thepmater will give an appropriate indication and,
usually, terminate the computation. The programmer stenddre that overflows will not result during
execution of the program.

7.2 The TypeREAL

Values of type REAL are real numbers. The availaplerators are again the basic arithmetic operations
and ABS. Division is denoted by / (instead of DIV). Canss of type REAL are characterized by having
a decimal point and possibly a decimal scale factor. Ebegb real number denotations are

15 150 1.5E2 2.34E-2 0.0

The scale factor consists of the capital letter Eofoéd by an integer. It means that the preceding real
number is to be multiplied by 10 raised to the scale fattence

1.5E2 =150.0, 2.34E-2=0.0234

The important point to remember is that real valuesirdaeznally represented as pairs consisting of a
fractional number and a scale factor. This is cdfleating-point representation. Of course, both parts
consist of a finite number of digits. As a consequetioe,representation is inherently inexact, and
computations involving real values are inexact becaash eperation may be subject to truncation or
rounding.

The following program makes that inherent imprecisibrcamputations involving operands of type
REAL apparent. It computes the harmonic function

Hn)=1+12+1/3+...+1/n

in two different ways, namely once by summing terms fieft to right, once from right to left.
According to the rules of arithmetic, the two sums ougliet equal. However, if values are truncated (or
even rounded), the sums will differ for sufficiently largeThe correct way is evidently to start with the
small terms.

PROCEDUREHar monic*;
VAR i, n: INTEGER;
X, d, s1, s2: REAL; S: Texts.Scanner;
BEGIN Texts.OpenScanner(S, Oberon.Par.text, Oberon.Bariexts.Scan(S);
WHILE S.class = Texts.Int DO
n := S.i; Texts.WriteString(W, "n ="); Texts.itéint(W, n, 6);
s1:=0.0;d:=0.0;i:=0;
REPEAT
d:=d+ 1.0; INC(i);
sl :=sl1+ 1.0/d;
UNTIL i >=n;
Texts.WriteReal(W, s1, 16);
s2 :=0.0;
REPEAT
s2 :=s2+ 1.0/d;
d:=d- 1.0; DEC(i)
UNTILi=0;
Texts.WriteReal(W, s2, 16); Texts.WriteLn(W)xT&Scan(S)
END ;
Texts.Append(Oberon.Log, W.buf)
END Harmonic.

The major reason for strictly distinguishing betweeal mumbers and integers lies in the different
representation used internally. Hence, also the aritbrogerations are implemented by instructions

17

which are distinct for each type. Oberon postulatesdkpttessions with mixed operands always are of
type REAL.

A real number x is transformed into an integer by thadard function ENTIER(X). It yields the largest
integer not greater than x.

ENTIER(3.1416) = 3 ENTIER(-2.7) = -3 ENTIER(5.0) = 5

7.3 The TypeBOOLEAN

A BOOLEAN value is one of the two logical truth valudenoted by the standard identifiers TRUE and
FALSE. Boolean variables are usually denoted by iderdifighich are adjectives, the value TRUE
implying the presence, FALSE the absence of the ireticaroperty. A set of logical operators is
provided which, together with BOOLEAN variables, form BCEAN expressions. These operators are
& (and), OR, and ~ (not). Their results are explaineil&svs

p&q = "both p and q are TRUE"
pORq = "either p or g or both are TRUE"
~p = "pis FALSE"

The operators' exact definition, however, is slightlfedént, although the results are identical:

p&q IF p THEN q ELSE FALSE
p OR q IF p THEN TRUE ELSE q

This definition implies that the second operand need @etvbluated, if the result is already known from
the evaluation of the first operand. The notable prgparthis definition of Boolean connectives is that
their result may be well-defined even in cases wheresdiaond operand is undefined. As a consequence,
the order of the operands may be significant.

Sometimes it is possible to simplify Boolean expressignapplication of simple transformation rules. A
particularly useful rule is de Morgan's law stating the edglivaes

~p&~q = ~(pORQ)
~pOR ~q = ~(p &Q)

Relations produce a result of type BOOLEAN, i.e. TRiUthe relation is satisfied, FALSE if not. For
example

7 =12 FALSE
7 <12 TRUE
15 >= 16 FALSE

Relations are syntactically classified as expressicrs] the two comparands are so-called
SimpleExpressions (see also chapter on expressions aechents). The result of a comparison is of
type BOOLEAN and can be used in control structures sigclif, while, and repeat statements. The
symbol # stands for unequal.

expression = SimpleExpression [relation SimpleExpragsio
relation = "="|"#"|"<"|<=" "> ">="]IN".

It should be noted that, similar to arithmetic operattitere exists a precedence hierarchy among the
Boolean operators. ~ has the highest precedencefdb@ns &, then OR, and last are the relations. As
with arithmetic expressions, parentheses may be usdy toemake the association of operators explicit.
Examples of Boolean expressions are

X =Yy
x<=y)&(y<2)
(x>y) OR (y>=2)
~pORq

Note that a construct such as x<y & z<w isillega

The example above draws attention to the rule that theamge of an operator (including relational
operators) must be of the same type. The followiragiaels are therefore illegal:

18

1 TRUE
5 5.0
i+ pOR(q
Also incorrect is e.g. x <= y < z, which must be expaniigo (X <= y) & (y < z). However, the
following are correct Boolean expressions:

i+ < k-m
p OR q = (i<j)

A final hint: although "p = TRUE" is legal, it is cddsered poor style and better expressed as p.
Similarly, replace "p = FALSE" by "~p".

7.4 The TypeCHAR

Every computer system communicates with its environniensome input and output devices. They
read, write, or print elements taken from a fixed sathafracters. This set constitutes the value range of
the type CHAR. Unfortunately, different brands of congpsitmay use different character sets, which
makes communication between them (i.e. the exchang®mgfams and data) difficult and often tedious.
However, there exists an internationally standardisedhetSO set.

The ISO standard defines a set of 128 characters, 33 ioh valne so-called (non-printingontrol
characters. The remaining 95 elements are visible printing characghown in the following table. The
set is ordered, and each character has a fixed positiordioalonumber. For example, A is the 66th
character and has the ordinal number 65. The I1SO stardavdyer, leaves a few places open, and they
can be filled with different characters according to mai@esires to establish national standards. Most
widely used is the American standard, also called A$&nerican Standard Code for Information
Interchange). Here we tabulate the ASCII set. The ordimalber of a character is obtained by taking its
row humber and adding its column number. These numbersuatomarily given in hexadecimal form,
and we follow this habit here too. The first two colwemcontain the control characters; they are
customarily denoted by abbreviations hinting at their inténdeaning. However, this meaning is not
inherent in the character code, but only defined by iespnétation. At this point it suffices to remember
that these characters are (usually) not printable.

Table of ASCII characters

0 10 20 30 40 50 60 70
0 nul dle 0 @ P p
1 soh dcl ! 1 A Q a o}
2 Stx dc2 " 2 B R b r
3 etx dc3 # 3 C S c S
4 eot dc4 $ 4 D T d t
5 enq nak % 5 E U e u
6 ack syn & 6 F \% f v
7 bel etb ' 7 G W g w
8 bs can (8 H X h X
9 ht em) 9 I Y i y
A If sub * : J Z | z
B vt esc + ; K [k {
c ff fs , < L \ I |
D cr gs - = M] m }
E SO rs > N A n ~
F si us / ? @) 0 del

Constants of type CHAR are denoted by the characteosattlin quote marks or in apostrophes.
Character values can be assigned to variables of typ®RCHut these values cannot be used in
arithmetic operations. Arithmetic operators can be agdplhowever, to their ordinal numbers obtained
from the transfer function ORD(ch). Inversely theretger with the ordinal number n is obtained with
the transfer function CHR(n). These two complemerftangtions are related by the equations

CHR(ORD(ch))=ch and ORD(CHR(n))=n
for 0 <= n < 128. They permit to compute the numeric vedpeesented by the digit ch as

19

ORD(ch) - ORD("0")
and to compute the digit representing the numeric valge n a
CHR(n + ORD("0"))

These two formulas depend on the adjacency of the 10 dighg iISO character set, where ORD("0") =
48. They are typically used in routines converting sequenfceigits into numbers and vice-versa. The
following program piece reads digits and assigns thienddly represented number to a variable Xx.

X := 0; Texts.Read(R, ch);
WHILE ("0" <=ch) & (ch <="9") DO

X := 10*x + (ORD(ch) - ORD("0")); Texts.Read(R, ch)
END

Control characters are used for various purposes, mairdgritrol the functions of devices, but also to
delineate and structure text. An important role of cortnaracters is to specify the end of a line or of a
page of text. There is no universally accepted standaarthfs purpose. We shall denote the control
character signifying a line end by the identifier EObd®f line); its actual value depends on the system
used.

In order to be able to denote non-printable charscteberon uses their hexadecimal ordinal number
followed by the capital letter X. For example, ODX i thalue of type CHAR denoting the control
charactecr (carriage return, line end) with ordinal number 13.

7.5 The Type SET

The values which belong to the type SET are sets efj@ns between 0 and N-1, where N is a constant
defined by the computer system used. It is usually the congowterdlength or a small multiple of it,
typically 32. Constants of this type are denoted as Betsnples are

{2,3,5,7,11} {0} {8..15} {}

The notation m .. n is a shorthand for m, m+1n-1, n.

set = [qualident] "{" [element {"," element}] "}".

element = expression [".." expression].
Operations on sets are:

+ set union

- set difference

* set intersection

[/ symmetric set difference

Assuming that i denotes an element and u, v denote Betg operations are defined in terms of set
membership as

1. i IN (u+v) = (i IN u) OR (i IN v), i.e. the integéris in the union u+v, if either in u or in v (or in
both).

2. 1IN (u-v) = (i INu) AND NOT (i IN V), i.e. i isn the difference u-v, if it is in u, but not in v.

3. 1IN (u*v) = (i Inu) AND (i IN v), i.e. i is in thertersection u*v, if it is in both u and v.

4. iIN (uiv) = ([INu)#(INWV),ie.iisinth symmetric difference ulv, if it is in either u arv, but
not in both.

The membership operator IN is regarded as a relatiqmedator. The expression i IN u is of type
BOOLEAN. It is TRUE, if i is a member of the setSets are represented in computer systems as sets of
bits, i.e. by the characteristic function of the 3éte i'th bit of u, for example, is 1, if i is a memloé,

0 otherwise. Hence, the set operators are implemestiegjigal operations applied to the N members of
the set variable. They are therefore very efficemd their execution time is usually even less thanathat

an addition of integers.

8. Constant and Variable Declarations

20

It has been mentioned previously that all identifiersiusea program must be declared in the program's
heading, unless they are standard identifiers knovavémy program (or are imported from some other
module).

If an identifier is to denote a constant value, it muestiriiroduced by a constant declaration which
indicates the value for which the constant identstands. A constant declaration has the form

ConstantDeclaration = identifier "=" ConstExpression.
ConstExpression = expression

A ConstExpression is an expression containing constantys More precisely, its evaluation must be
possible by a mere textual scan without execution of tbgr@m A sequence of constant declarations is
preceded by the symbol CONST. Example:

CONST N = 16;
EOL = 0DX;
empty = {};
M = N-1;

Constants with explicit names aid in making a program réadptovided that the constants are given
suggestive names. If, e.g., the identifier N is usedausof its value throughout a program, a change of
that constant can be achieved by changing the prograrsiimgle place only, namely in the declaration
of N. This avoids the common mistake that some instantdhe constant, spread over the entire
program text, remain undetected and therefore are notagpdeading to inconsistencies.

A variable declaration looks similar to a constant aetlon. The place of the constant's value is taken
by the variable's type which, in a sense, can be regasithe variable's constant property. Instead of an
equal sign, a colon is used.

VariableDeclaration = IdentList ":" type.
IdentList = identifier {"," identifier}.

Variables of the same type may be listed in the sdewaration, and a sequence of declarations is
preceded by the symbol VAR. Example:

VAR, j, ki INTEGER,;
X, Y, z: REAL;
ch: CHAR

9. The Data Structure Array

So far, we have given each variable an individual nahiés is impractical, if many variables are
necessary that are treated in the same way and #ne esame type, such as, for example, if a table of
data is to be constructed. In this case, we wish to thigeentire set of data a hame and to denote
individual elements with an identifying number, a sdethindex. The data type is then said to be
structured - more precisely: array structured. In tilwWing example, the variabla consists of N
elements, each being of type INTEGER, and the indar@ge from 0 to N-1.

VAR a: ARRAY N OF INTEGER

An element is then designated by the array's idenfdlwed by its selecting index, e.g. ali], where i is
an expression whose value must lie within the index raspezified in the array's declaration.
Syntactically, a[i] is a designator, and the expressientie selector. If, for example, all N elements of
are to be given the value 0, this can be expressed centigridy a repetitive statement, where the index
is given a new value each time.

i:=0;
REPEAT a[i] := 0; INC(i)) UNTILi=N
INC(i) is synonymous with i := i+1. This example illsties a situation that occurs so frequently that

Oberon provides a special control structure which esga® it more concisely. It is called tfar
statement:

FORi:= 0 TO N-1 DO a[j] := 0 END

Its general form is

21

ForStatement =
"FOR" identifier ":=" expression "TQO" expression ['BYonstExpression] "DO"
StatementSequence
"END".

The expressions before and after the symbol TO ddfieeange through which the so-callemhtrol
variable (i) progresses. An optional parameter determines tirerimenting (decrementing) value. If it is
omitted, 1 is assumed as default value.

It is recommended that the for statement be used iplsicases only; in particular, no components of the
expressions determining the range must be affected by thetedmtatements, and, above all, the control
variable itself must not be changed by the repeated statenThe value of the control variable must be
considered as undefined after the for statement isrtated.

Some additional examples should demonstrate the useagf structures and the for statement. In the
first one, the sum of the N elements of amdy to be computed:

sum := 0;
FORi:=0TO N-1 DO sum := a[i] + sum END

In the second example, the minimum value is to be fourdiakso its index. The repetition's invariant is
min = minimum(a[0], ..., a[i-1]).

min ;= a[0]; k := 0;
FORi:=1TO N-1 DO

IF a[i] < min THEN k :=i; min := a[k] END
END

In the third example, we make use of the second totsmdrtay in ascending order:

FORi:=0TO N-2 DO
min := ali]; k :=1i;
FOR|:=iTO N-1 DO
IF afj] < min THEN k :=j; min := a[k] END
END;
alk] := a[i]; a[i] := min
END

The for statement is evidently appropriate, if all eédats within a given index range are to be processed.
It is inappropriate in most other cases. If, for examwiewish to find the index of an element equal to a
given value x, we have no advance knowledge how many eterhave to be inspected. Hence, the use
of a while (or repeat) statement is recommended. Tg@itim is known as linear search.

i:=0;

WHILE (i < N) & (a]i] # x) DO INC(i) END

From the negation of the continuation condition, Igipg de Morgan's law, we infer that upon
termination of the while statement the condition= {il) OR (afi] = x) holds. If the latter term is TRUE
the desired element is found and i is its index; if i sadla[i] equals x.

We draw attention to the fact that the terminationddtion is a composite one, and that it is possible to
simplify this condition by a common technique. Rememtit repetition must terminate, either if the

desired element is found, or if the array's end is ezhchhe "trick" now consists in marking the end by
a sentinel, namely the value x itself, which will auatitally stop the search. All that is required is the
addition of a dummy element a[N] at the array's endjregias sentinel:

a: ARRAY N+1 OF INTEGER;

a[N] :=x;i:=0;
WHILE a][i] # x DO INC(i) END

If upon termination i = N, no original element has the valuatherwise i is the desired index.

A more challenging problem is the search for a desirehemt with value x in an array that is ordered,
i.e. afi-1] <= a[i] for all i = 1 ... N-1. The bestchnique is the so-calldiinary search: inspect the
middle element, then apply the same method to eithelether right half. This is expressed by the
following piece of program, assuming N > 0. The repetignvariant is

22

alk]<x forallk=0...i-1 and alk]>xorfallk=j+1... N-1

i :=0;]j:=N-1; found := FALSE;

REPEAT mid := (i+j) DIV 2;
IF x < a[mid] THEN j := mid -1
ELSIF x > a[mid] THEN i := mid+1
ELSE found := TRUE

UNTIL (i > j) OR found

Because each step halves the interval in which x istss@r¢the number of needed comparisons is only
log,N. A somewhat more efficient version which avoidsabmposite termination condition is

i:=0;j:=N-1,
REPEAT mid := (i+j) DIV 2;
IF x <= a[mid] THEN j := mid-1 END;
IF x >=a[mid] THEN i := mid+1 END
UNTIL i > j;
IF i>j+1 THEN found ELSE not found END
An even more sophisticated version is given belowinggnious idea is not to terminate immediately
when the element is found, which is rare comparedemtimber of unsuccessful comparisons.
i=0;j:=N;
REPEAT mid := (i+j) DIV 2;
IF x < a[mid] THEN j := mid ELSE i := mid+1 END
UNTIL i >=j;
IFj<N) & (a[j] = x) THEN (*found*) ... END
This ends our list of examples of typical uses of sinraplays.

The elements of an array are all of the same typEthis type may again be an array (in fact, it may be
any structure, as will be seen later). An array ofya is called a multidimensional array roatrix,
because each index may be considered as spanning a dimensi@aitesian space. Examples of two-
dimensional arrays are

a: ARRAY N, N OF REAL
T: ARRAY M, N OF CHAR

These are actually abbreviations of the full forms

a: ARRAY N OF ARRAY N OF REAL
T: ARRAY M OF ARRAY N OF CHAR

The general syntax of an array type is
ArrayType = "ARRAY" ConstExpression {"," ConstExpressi} "OF" type.
where the expression denotes the length of the array.

The syntax of designators allows for a similar ablatéen as used in declarations, namely a]i, j] in
place of a]i][j]. The latter form expresses more diethat j is the selector on the array a[i]. Thatsy
for the array element designator is

designator = qualident {"[" ExpList "]"}.

ExpList = expression {"," expression}.

In uses of matrices, the for statement comes to itblodbm, particularly in numeric applications. The
canonical example is the multiplication of two matrjoebere each element of the product ¢c = a*b is
defined as

c[i, j1 =a[i, 0] * b[O, j] + a[i, 1] * b[1, j] + ... +a[i, K-1] * b[K-1, |]
Given the declarations

a: ARRAY M, K OF REAL;
b: ARRAY K, N OF REAL;
c: ARRAY M, N OF REAL

the multiplication algorithm consists of three nestedtigpes as follows:

23

FORi:=0TO M-1 DO
FOR|j:=01TO N-1 DO
sum := 0.0;
FOR Kk :=0TO K-1 DO
sum := a[i, K]*b[k, j] + sum
END;
c[i,j] ;= sum
END
END

In a second example we demonstrate the search of a warthbie, so-callethble search, where each
word is an array of characters. We assume the tabkclared by the T given in the example above, and
that x is given as

x: ARRAY N OF CHAR
Our solution employs the typical linear search

i :=0; found := FALSE;
WHILE ~found & (i < M) DO
found = T[i] = x;
INC(i)
END

If we define equality between two words x and y as X[ij[f for all j = 0 ... N-1, then the "inner"
search can be expressed as

j :=0; equal := TRUE;

WHILE equal & (j < N) DO
equal := TIi, j] = x[j]; INC(j)

END;

found := equal

This solution appears to be somewhat cumbersometr#tnisformable into a simpler form, if M > 0 and
N > 0. The complete table search is then expressible a
i:=0;
REPEAT j:=0;
REPEAT b := TIi, j] # x[j]; INC())
UNTIL b OR (j = N);
INC(i)
UNTIL ~b OR (i = M)

The resulb means "the word x has not been found".

We have now laid enough ground work to develop meaningfutegmograms and shall present three
examples, all of them involving arrays.

In the first example, the goal is to generate a ligiofers of 2, each line showing the values, 2nd 2
'. This task is quite simple, if the type REAL is used. phlagram then contains the core

d:=1;f:=1.0;
FORi:=1TON DO
d = 2*d; write(d); (*d=2%N %)
write(i);
f:=1/2.0; write(f) (*f=2"(-i) *)
END

However, our task shall be to generate exact resultsasitmany decimal digits as needed. For this
reason, we present both the whole number dan@ the fraction f ="2by arrays of digits, each in the
range 0 ... 9. For f we require N, for d only k¢ digits. Note that the doubling dfproceeds from right

to left, the halving of from left to right. The table of results is showeidw.

PROCEDURHBEPower sOf2*;

24

CONST M =11; N = 32; (*M ~ N*log(2) *)
VAR, j, k, exp, ¢, 1, t: INTEGER,;

d: ARRAY M OF INTEGER,;

f: ARRAY N OF INTEGER;

BEGIN d[0] :=1; k =1,
FOR exp :=1TO N-1 DO
(* compute d = 2”exp *) ¢ :=0; (*carry*)
FORi:=0TO k-1 DO

t:=2*d[i] + c;
IFt>=10 THEN d[i] :=t-10; c:=1 ELSE dfi} t; c := 0 END

END ;

IF c>0THEN d[k] := 1; INC(k) END ;

(*output d[k-1] ... d[O]*) i := M;

REPEAT DEC(i); Texts.Write(W, " ") UNTIL i =;k

REPEAT DEC(i); Texts.Write(W, CHR(d[i][+ORD("0))YUNTIL i = 0;

Texts.Writelnt(W, exp, 4);
(*compute and output f = 2(-exp) *)
Texts.WriteString(W, " 0."); r := 0; (*remaind
FOR|j:=1TO exp-1 DO

r:=10* + f{j]; f[j] :=r DIV 2;

r:=r MOD 2; Texts.Write(W, CHR(f[j]+ORD("}))

END ;
flexp] := 5; Texts.Write(W, "5"); Texts.WriteLn(W)

END ;
Texts.Append(Oberon.Log, W.buf)

END PowersOf2.

Output of program PowersOf2:

2 105

4 2025

8 3 0.125

16 4 0.0625

32 5 0.03125

64 6 0.015625

128 7 0.0078125

256 8 0.00390625

512 9 0.001953125

1024 10 0.0009765625

2048 11 0.00048828125

4096 12 0.000244140625

8192 13 0.0001220703125

16384 14 0.00006103515625

32768 15 0.000030517578125

65536 16 0.0000152587890625

131072 17 0.00000762939453125

262144 18 0.000003814697265625

524288 19 0.0000019073486328125

1048576 20 0.00000095367431640625

2097152 21 0.000000476837158203125

4194304 22 0.0000002384185791015625

8388608 23 0.00000011920928955078125
16777216 24 0.000000059604644775390625
33554432 25 0.0000000298023223876953125
67108864 26 0.00000001490116119384765625
134217728 27 0.000000007450580596923828125
268435456 28 0.0000000037252902984619140625
536870912 29 0.00000000186264514923095703125
1073741824 30 0.000000000931322574615478515625
2147483648 31 0.0000000004656612873077392578125
4294967296 32 0.00000000023283064365386962890625

Our second example is similar in nature. Its task etopute the fractions d = 1/i exactly. The difficulty
lies, of course, in the representation of those foastithat are infinite sequences of digits, e.g. 1/3 =
0.333.... Fortunately, all fractions have a repeatingpgeeind a reasonable and useful solution is to mark
the beginning of the period and to terminate at its end. Howedfind the beginning and the end of the

period? Let us first consider the algorithm for computiregdigits of the fraction.

25

Starting out witlrem = 1, we repeat multiplying by 10 and dividing the product Be integer quotient
is the next digit and the remainder is the new valuerof This is precisely the conventional method of
division, as illustrated by the following piece of progrand the example with i = 7:

1.000000 /7 = 0.142857

rem:=1,
REPEAT rem := 10 * rem; nextDigit := rem DIV i; remrem MOD i UNTIL ...

We know that the period has ended as soon as a remaind@rs which had been encountered
previously. Hence, our recipe is to remember all red@® and their indices. The latter designate the
place where the period had started. We denote these ihgizesnd give elements of x initial value 0. In
the above explained division by 7, the values of x are

X[1] =1, x[2] = 3, X[3] = 2, X[4] = 6, X[5] = 4, X[6] =5

PROCEDURHE-ractions*;
CONST Base = 10; N = 32;
VAR i, j, m, rem: INTEGER,;
d: ARRAY N OF INTEGER; (*digits*)
x: ARRAY N+1 OF INTEGER,; (*index*)
BEGIN
FORi:=2TO N DO
FOR|j:=0TOi-1 DO X[j] :=0END;
m :=0; rem := 1,
REPEAT m := m+1; x[rem] :=m;
rem := Base * rem; d[m] := rem DIV i; rem :=meMOD i
UNTIL x[rem] # O;
Texts.WriteInt(W, i, 6); Texts.WriteString(W, " "}.
FOR j:=1 TO x[rem]-1 DO Texts.Write(W, CHR(d[{PRD("0"))) END ;
Texts.Write(W, ");
FOR j := x[rem] TO m DO Texts.Write(W, CHR(d[j]+@R'0"))) END ;
Texts.WriteLn(W)
END ;
Texts.Append(Oberon.Log, W.buf)
END Fractions.

Output of program Fractions:

2 050

3 0.3

4 0.25'0

5 0.20

6 0.1'6

7 0.'142857

8 0.125'0

9 0.1

10 0.1'0

11 0.'09

12 0.08'3

13 0.'076923

14 0.0'714285

15 0.0'6

16 0.0625'0

17 0.'0588235294117647
18 0.05

19 0.'052631578947368421
20 0.05'0

21 0.'047619

22 0.0'45

23 0.'0434782608695652173913
24 0.041'6

26

25 0.04'0

26 0.0'384615

27 0.'037

28 0.03'571428

29 0.'0344827586206896551724137931
30 0.03

31 0.'032258064516129

32 0.03125'0

Our last example of a program computes a list of prime nignliés based on the idea of inspecting the
divisibility of successive integers. The tested integeghtained by incrementing alternatively by 2 and
4, thereby avoiding multiples of 2 and 3 ab initio. Divisipiheeds to be tested for prime divisors only,
which are obtained by storing previously computed results.

PROCEDUREPrimes*;
CONST N =252; M = 16; (*M ~ sqgrt(N)*)
LL = 10; (*no. of primes placed on a line*)
VAR, k, x: INTEGER,;
inc, lim, square, L: INTEGER;
prime: BOOLEAN;
P,V: ARRAY M+1 OF INTEGER,;
BEGINL :=0; x:=1;inc:=4;lim:=1; square := 9;
FORi:=3TO N DO
(* find next prime number p[i] *)
REPEAT x := X + inc; inc := 6 - inc;
IF square <= x THEN
INC(lim); V[lim] := square; square := P[lim+1P[lim+1]
END ;
k :=2; prime := TRUE;
WHILE prime & (k < lim) DO
INC(k);
IF V[K] < x THEN V[K] := VIK] + 2*P[K] END ;
prime := x # V[K]
END
UNTIL prime;
IFi<=MTHEN P[i]:=xEND;
Texts.Writelnt(W, X, 6); L := L+1;
IF L=LL THEN Texts.WriteLn(W); L := 0 END

END ;

Texts.Append(Oberon.Log, W.buf)
END Primes.

Output of program Primes:

5 7 11 13 17 19 23 29 31 37
41 43 47 53 59 61 67 71 73 79
83 89 97 101 103 107 109 113 127 131
137 139 149 151 157 163 167 173 179 181
191 193 197 199 211 223 227 229 233 239
241 251 257 263 269 271 277 281 283 293
307 311 313 317 331 337 347 349 353 359
367 373 379 383 389 397 401 409 419 421
431 433 439 443 449 457 461 463 467 479
487 491 499 503 509 521 523 541 547 557
563 569 571 577 587 593 599 601 607 613
617 619 631 641 643 647 653 659 661 673
677 683 691 701 709 719 727 733 739 743
751 757 761 769 773 787 797 809 811 821
823 827 829 839 853 857 859 863 877 881
883 887 907 911 919 929 937 941 947 953
967 971 977 983 991 997 1009 1013 1 019 1021
1031 1033 1039 1049 1051 1061 1063 1069 1 087 1091
1093 1097 1103 1109 1117 1123 1129 1151 1 153 1163
1171 1181 1187 1193 1201 1213 1217 1223 1 229 1231
1237 1249 1259 1277 1279 1283 1289 1291 1 297 1301
1303 1307 1319 1321 1327 1361 1367 1373 1 381 1399
1409 1423 1427 1429 1433 1439 1447 1451 1 453 1459

27

1471 1481 1483 1487 1489 1493 1499 1511 1 523 1531
1543 1549 1553 1559 1567 1571 1579 1583 1 597 1601

These examples show that arrays are a fundamentatfaaged in most programs. There exist hardly
any programs of relevance outside the classroom whicimaloemploy repetitions and arrays (or
analogous data structures).

28

Part 2

10. Procedures

Consider the task of processing a set of data consistambedder and a sequence of N similar individual
units. It might be generally described as

ReadHeader;

ProcessHeader;

WriteHeader;

FORi:=1TON DO
ReadUnit; ProcessUnit;
Write(i); WriteUnit

END

Clearly, the description of the original task has beeademin terms of subtasks, emphasizing the
dominant structure and supressing details. Of course,uthitasksReadHeader, ProcessHeader, etc.
must now be further described with all the necessargildetnstead of replacing these descriptive
English words with elaborate Oberon programs, we naangider these words as identifiers and define
the details of the subtasks by textually separate piecpsogfam, callecorocedures (or subroutines).
These definitions are callgmlocedure declarations, because they define the actions of the procedure and
give it a name. The identifiers in the main progranem@ig to these declarations are said to be
procedure calls, and their action is to invoke the procedure. Syrtaltyi the procedure call is a
statement.

Procedures play a fundamental role in program desigry didein displaying the algorithm's structure
and in decomposing a program into logically coherent uhits is particularly important in the case of
complex algorithms, i.e. of long programs. In the abovengia, it might be considered somewhat
extravagant to declare separate procedures instead of reebsitjtuting the refined program texts for
the identifiers. Nevertheless, the gain in claritpafgram structure often recommends the use of explicit
procedures even in such a simple case. But of course presdoecome particularly useful, if the same
procedure is to be invoked at several points of the anogr

A procedure declaration consists of the symbol PROCEDbllowed by the identifier (together they
form the procedure heading), followed by the symbol BE&iN the statements for which the procedure
identifier stands and which are therefore calledpiioeedure body. The declaration is terminated by the
symbol END and the repetition of the identifier. Thedatenables a compiler to detect mismatched
endings of statements and declarations. The general synpascefiure declarations will be given later.
A simple example is the following, which computes the sua]@f ... a[N-1].

PROCEDURE Add;
BEGIN sum :=0.0;

FORi:=0TO N-1 DO sum := a[i] + sum END
END Add

The procedure concept becomes even much more useful due éamlditional features that are coupled
with it, namely the concepts of parameters and of ikycaf names. Parameters make it possible to
invoke the same procedures at different points of thgrano applying the procedure to different values
and variables as determined at the point of the caltality of names and objects is a concept
considerably enhancing the procedure's role in stra¢fwiprogram and compartmentalizing its parts.
We shall first discuss the concept of locality.

Summarizing, we repeat the following essential points:

1.The procedure aids in exhibiting the inherent structfrea program and in decomposing a
programming task.

2. If a procedure is called from two or more pointsedtuces the length of the program and therefore the
programming task and the potential for programming erofurther economic advantage is the
reduction in the size of the compiled code.

11. The Concept of Locality

29

If we inspect the preceding example of proced\dd we notice that the role of the variable i iscilyi
confined to the procedure body. This inherent localityuld be expressed explicitly, and can be done by
declaring i inside the procedure declaration. i therelopibes a local variable.

PROCEDURE Add;

VAR i: INTEGER,;
BEGIN sum :=0.0;

FORi:=0TO N-1 DO sum := a[i] + sum END
END Add

In some sense, the procedure declaration assumes theffarseparate program. In fact, any declaration
possible in a program, such as constant-, type-, blarjisor procedure declaration, may also occur in a
procedure declaration. This implies that procedure declagtinay be nested and are defined
recursively.

It is good programming practice to declare objects lagalto confine the existence of an object to that
procedure in which it has meaning. The procedure, i.esahton of program text in which a hame is
declared, is called itscope. Since declarations can be nested, scopes areesitable. The possibility of
having objects local to some scope has several conseguéior example, the same name can be used to
denote different objects. In fact, this is a most usefulsequence, because a programmer is free to
choose local identifiers without knowledge of those éxisin the surrounding scope, as long as they do
not denote objects used in the local scope (in which caseulst obviously be aware of them anyhow).
This decoupling of knowledge about different program pansiicularly useful and perhaps even vital

in the case of large programs.

The rules of scope (validity of identifiers) are dtofes:

1. The scope of an identifier is the procedure in whickétdaration occurs, and all procedures enclosed
by that procedure, subject to rule 2.

2. If an identifier i declared in a procedure P is rededlan some inner procedure Q enclosed in P, then
procedure Q and all procedures enclosed in Q are excludedhfeossope of i declared in P.

3. The standard identifiers of Oberon are considered ttebkared in an imaginary scope enclosing the
program.

These rules may also be remembered by the algorithm irhwhécdeclaration of a given identifier i is
searched: First, search the declarations of the goed® in whose body i occurs; if the declaration of i
is not among them, continue the search in the procesureunding P; then repeat this same rule until
the declaration is encountered.

VAR a: INTEGER;

PROCEDURE P;
VAR b: INTEGER;

PROCEDURE Q;

VAR b, c: BOOLEAN;
BEGIN

(*here a, b (BOOLEAN), c are visible*)
END Q;

BEGIN
(*here a, b (INTEGER) are visible*)
END P

A consequence of the locality concept and of the ruleahatriable does not exist outside its scope is
that its value is lost when its declaring procedure limiteated. This implies that, when the same
procedure is later called again, this value is unknovae. Vialues of local variables are undefined when
the procedure is (re)entered. Hence, if a variable matain its value between two calls, it must be
declared outside the procedure. The "lifetime" of a Wéeias the time during which its declaring
procedure is active.

The use of local declarations has three significantradgas:

1. It makes clear that an object is confined to a phaee usually a small part of the entire program.

30

2.1t ensures that inadvertent use of a local object hgragparts of the program is detected by the
compiler.

3.1t enables the implementation to minimize storageabse a variable's storage is released when the
procedure to which the variable is local is terminafBois storage can then be reused for other
variables.

12. Parameters

Procedures may be given parameters. They are the atdeature that make procedures so useful.
Consider again the previous example of procedulce Very likely a program contains several arrays to
which the procedure should be applicable. Redefining itefmh such array would be cumbersome,
inelegant, and can be avoided by introducing its operangaseeter as follows.

PROCEDURE Add(VAR x: Vector);

VAR i: INTEGER,;
BEGIN sum :=0;

FOR i:=0TO N-1 DO sum := x[i] + sum END
END Add

The parameter x is introduced in the parameter list irptheedure heading. It thereby automatically
becomes a local object, in fact is a place-holdettferactual array that is specified in the procedure calls

Add(a); ... ; Add(b)

The arrays a and b are calladual parameters which are substituted for x, which is calléatmal
parameter. The formal parameter's specification must contaityjppe. This enables a compiler to check
whether or not an appropriate actual parameter is sdpplfe say that a and b, the actual parameters,
must be compatible with the formal parameter x. Ingk@&mple above, its type is Vector, presumably
declared in the environment Afld as

TYPE Vector = ARRAY N OF REAL;
VAR a, b: Vector

A better version of Add would include not only the artayt also the resuim as a parameter. We shall
later return to this example. But first we need explain tthete exist two kinds of formal parameters,
namely variable and value parameters. The former aractkezed by the symbol VAR, the latter by its
absence.

We conclude this chapter by giving the syntax of procedulamd¢ions and procedure calls:

ProcedureDeclaration = ProcedureHeading ";" block identifie
ProcedureHeading = "PROCEDURE" identifier [FormalPatansg
block = {declaration} ['BEGIN" StatementSequence] "END".
FormalParameters = "(" [FPSection {";" FPSectiof)}][":" qualident].
FPSection = ["VAR"] IdentList ":" FormalType.

FormalType = ["ARRAY" "OF"] qualident.

ProcedureCall = designator [ActualParameters].
ActualParameters = "(" [ExpList] ")".

Apart from the declaration of modules, we now have aetemuntered all forms of declarations.

declaration = "CONST" {ConstantDeclaration ";"} |
"TYPE" {TypeDeclaration ";"} |
"VAR" {VariableDeclaration ";"} |
ProcedureDeclaration ";".

12.1 Variable Parameters

As its hame indicates, the actual parameter correspgridia formal variable parameter (specified by
the symbol VAR) must be a variable. The formal idiartihen stands for that variable.

PROCEDURE exchange(VAR x, y: INTEGER);
VAR z: INTEGER,;

31

BEGINz =x;x:=y,y:=2
END exchange

The procedure calls
exchange(a, b); exchange(A[i], Ali+1])

then have the effect of the above three assignmentswtt appropriate substitutions made upon the
call. The following points should be remembered:

1. Variable parameters may serve to transmit a cordpasalt outside the procedure.

2. The formal parameter acts as a place-holder fasuhstituted actual parameter.

3. The actual parameter cannot be an expression, anefotlee not a constant either, even if no
assignment to its formal correspondent is made.

4.If the actual parameter involves indices, these watuated when the formal-actual substitution is
made.

5. The types of corresponding formal and actual parametest be the same.

12.2 Value Parameters

Value parameters serve to pass a value from the gadlole into the procedure and constitute the
predominant case of parameters. The corresponding actiamheter is an expression, of which a
variable or a constant are a particular and simple ¢aseformal value parameter must be considered as
a local variable of the indicated type. Upon call, #otual expression is evaluated and the result is
assigned to that local variable. As a consequencéoitimal parameter may later be assigned new values
without affecting any part of the expression. In a seasgial expression and formal parameter become
decoupled as soon as the procedure is entered. As an tikustnae formulate the previously shown
program to compute the power z =a% a procedure.

PROCEDURE ComputePower(VAR z: REAL; x: REAL; i: INTEBGE
BEGIN z :=1.0;
WHILE i > 0 DO
IF ODD(i) THEN z := z*x END;
X:=x*;i:=iDIV 2
END
END ComputePower

Possible calls are, for example

ComputePower(u, 2.5, 3) for u:=25
ComputePower(A[i], BJi], 2) for A= B?

Concerning value parameters, we must keep in mind that #iecformal parameter represents a local
variable, storage is needed for that variable. This bwwf concern, if its type is an array of many

elements. In this case, it is recommended to speciBriable parameter, even if this parameter is used
for the import of values only.

Note that in the example above z and x are declaredtinaisPSections, because "VAR z, x: REAL"
would classify x as a variable parameter too, makingossible to place a general expression in its
corresponding actual parameter place.

12.3 Open Array Parameters

If a formal parameter type denotes an array strudtsreprresponding actual parameter must be an array
of the identical type. This implies that it must haveradats of identical type and the same bounds of the
index range. Often this restriction is rather sevand, raore flexibility is highly desirable. It is provided
by the facility of the so-calledpen array which requires that the types of the elements of tthradband
actual arrays be the same, but leaves the index rarte fifrmal array open. In this case, arrays of any
size may be substituted as actual parameters. An opgnisagecified by the element type preceded by
"ARRAY OF". For example, a procedure declared as

PROCEDURE P(s: ARRAY OF CHAR)

allows calls with character arrays of arbitrarygém The actual length is obtained by calling the standard
function LEN(s).

32

13. Function Procedures

So far we have encountered two possibilities to passwdt from a procedure body to its calling place:
the result is either assigned to a non-local variabte a variable parameter. There exists a third ageth
the function procedure. It permits the use of the compteedit (as an intermediate value) in an
expression. The function procedure identifier stands tmnaputation as well as for the computed result.
The procedure declaration is characterized by the indicaif the type of the result following the
parameter list. As an example, we rephrase the power catigougiven above.

PROCEDURE power(x: REAL; i: INTEGER): REAL,;
VAR z: REAL;
BEGIN z :=1.0;
WHILE i > 0 DO
IF ODD(i) THEN z := z*x END;
X:=X*X;i:=i1DIV 2
END;
RETURN z
END power

Possible calls are

u = power(2.5, 3)
A[i] := power(BJi], 2)
u = x + power(y, i+1) / power(z, i-1)

The statement which passes the result consists ofytmdol RETURN followed by the expression
specifying the result. Return statements may occur\etraeplaces in the procedure body and cause
termination of its execution. It is good practice, howevbat a single return statement is placed
immediately preceding the closing symbol END.

Return statements may also be used within normal procedunebjch case no expression follows the
RETURN symbol. This facility may serve to signal undisigamination. Such a return statement is
implied in the end of every procedure.

Calls inside an expression are calfanction designators. Their syntax is the same as that of procedure
calls. However, a parameter list is mandatory, althdiugiay be empty.

ReturnStatement = "RETURN" [expression].

We now revisit the previous example of adding the elenwras array and formulate it as a function
procedure.

PROCEDURE sum(VAR a: Vector; n: INTEGER): REAL,;
VAR i: INTEGER,; s: REAL;

BEGIN s := 0.0;
FORi:=0TOnNn-1DO s:=afi]+sEND;
RETURN s

END sum

This procedure, as previously specified, sums the elenagdits.. a[n-1], where n is given as a value
parameter, and may be different from (but not larger Jhthe! number of elements N. A more elegant
solution specifiea as an open array, omitting the explicit indicationhef &rray's size.

PROCEDURE sum(VAR x: ARRAY OF REAL): REAL;
VAR i: INTEGER,; s: REAL;

BEGIN s := 0.0;
FORi:=0TOLEN(X)-1 DO s := x[i]+ SEND;
RETURN s

END sum

Obviously, procedures are capable of generating more tharesual by making assignments to several
variables. Only one value, however, can be returngdeasesult of a function. This value, moreover,
cannot be of a structured type. Therefore, the othedtsemust be passed to the caller via VAR
parameter or assignment to variables that are nat todhe function procedure. Consider for example

33

the following procedure which computes a primary result ehas the function's value and a secondary
result used to count the number of times the procedwadlésl.

PROCEDURE square(x: INTEGER): INTEGER,;
BEGIN INC(n); RETURN x*x
END square

There is nothing remarkable about this example as lonlgeasetondary result is used for its indicated
purpose. However, it might be misused as follows:

m ;= square(m) + n

Here the secondary result occurs as an argument a@xffression containing the function designator
itself. The consequence is that e.g. the values

square(m) +n and n + square(m)
differ, seemingly defying the basic law of commutatiafyaddition.

Assignments of values from within function proceduresa-local variables are calleifle-effects. The
programmer should be fully aware of their capability afdarcing unexpected results when the function
is used inappropriately. We summarize:

1. A function procedure specifies a result which is usedsaplace of call as an argument of an
expression.

2. The result of a function procedure cannot be structured.

3. If a function procedure generates secondary resuisssé#id to have side-effects. These must be used
with care. It is advisable to use a regular procedusteau, which passes its results via VAR
parameters.

4.We recommend to choose function identifiers which revens rather than verbs. The noun then
denotes the function's result. Boolean functions areoppptely labelled by an adjective. In contrast,
regular procedures should be designated by a verb desdfibingction.

14. Recursion

Procedures may not only be called, but can call procedhegsselves. Since any procedure that is
visible can be called, a procedure may call itselfis Belf-reactivation is calledecursion. Its use is
appropriate when an algorithm is recursively defined ianparticular when applied to a recursively
defined data structure.

Consider as an example the task of listing all possible ygations of n distinct objects a[0] ... a[n-1].
Calling this operatiofPermute(n), we can formulate its algorithm as follows:

First, keep a[n-1] in its place and generate all permutaitdd a[0] ... a[n-2] by callin@ermute(n-1), then
repeat the same process after having exchanged a[n-13[@jthContinue repeating for all valuesi=1
... -2, This recipe is formulated as a program aeval] using characters as permuted objects.

MODULE Permute;
IMPORT Texts, Oberon;
VAR a: ARRAY 20 OF CHAR,;
W: Texts.Writer;

PROCEDURE permute(k: INTEGER);
VAR i: INTEGER; t: CHAR,;
BEGIN
IF k = 0 THEN Texts.WriteString(W, a)
ELSE permute(k-1);
FORi:=0TOk-1 DO
t:=ai]; afi] := alk]; alk] :=t;
permute(k-1);
t:=ali]; afi] := alk]; alk] :=t
END

END
END permute;

34

PROCEDUREGO*; (*command®)
VAR n: INTEGER; S: Texts.Scanner;
BEGIN Texts.OpenScanner(S, Oberon.Par.text, Oberopd3sr Texts.Scan(S);
COPY(S.s,a); n:=0;
WHILE a[n] > 0X DO INC(n) END ;
permute(n-1);
Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf)
END Go;

BEGIN Texts.OpenWriter(W)
END Permute.

The data generated from the comm®edmute.Go ABC are
ABC BAC CBA BCA ACB CAB

Every chain of recursive calls must terminate at stime, and hence every recursive procedure must
place the recursive call within a conditional statemémtthe example given above, the recursion
terminates when the number of the objects to be pedmistel. (Concerning input and output
conventions, see Ch. 22.3 and 22.4).

The number of possible permutations can easily be defigen the algorithm's recursive definition. We

express this number appropriately as a function np(nkernGiv elements, there are n choices for the
element a[n-1], and with each fixed aJn-1] we obtain rij(permutations. Hence the total number
np(n) = n*np(n-1). Evidently np(1) = 1. The computation of np dsvrexpressible as a recursive

function procedure.

PROCEDURE np(n: INTEGER): INTEGER,;
BEGIN

IFn<=1THEN RETURN 1

ELSE RETURN n * np(n-1)

END
END np

We recognize np as the factorial function, defined as
f(n) = 1x2x3x ... xn
This formula suggests to program the algorithm using itepeinstead of recursion

PROCEDURE np(n: INTEGER): INTEGER,;
VAR p: INTEGER;

BEGIN p :=1;
WHILE n > 1 DO p = n*p; DEC(n) END ;
RETURN p

END np

This formulation will compute the result more efficignthan the recursive version. The reason is that
every call requires some "administrative" instructiomsose execution costs time. The instructions
representing repetition are less time-consuming. Althabghdifference may not be too relevant, it is
recommended to employ a repetitive formulation in placédefrecursive one, whenever this is easily
possible. It is always possible in principle; howevbkeg, repetitive version may complicate and obscure
the algorithm to such a degree that the advantages turdisaidvantages. For example, a repetitive form
of the procedure permute is much less simple and obvioushkarne shown above. To illustrate the
usefulness of recursion, two additional examples follow. Tiypically stem from problems whose
solution is naturally found and explained using recursion.

The first example belongs to the class of algorithms lwilniperate on data whose structure is also
defined recursively. The specific problem consists ofveding simple expressions into their
corresponding postfix form, i.e. a form in which the ofmréollows its operands. An expression shall
here be defined using EBNF as follows:

expression = term {("+"|"-") term}.
term = factor {("*"|"/") factor}.
factor = letter | "(" expression™)"|"[" expression."]"

35

Denoting terms as TO, T1, and factors as FO, Flrulles of conversion are

TO+T1 - TOTL+
TO-T1 - TOTL-
FO*F1 - FOF1*
FO/F1 - FOF1/
(E) - E
[E] - E

The following program truthfully mirrors the structure thie syntax of accepted expressions. As the
syntax is recursive, so is the program. This closgaming is the best guarantee for the program's
correctness. Note also that similarly repetitionttie syntax, expressed by the curly brackets, yields
repetition in the program, expressed by while statemé&hdsprocedure in this program calls itself
directly. Instead, recursion occurs indirectly by d oflexpression on term, which callsfactor, which
callsexpression. Indirect recursion is obviously much less visible thaadlirecursion.

This example also illustrates a case of local procediNasbly, factor is declared local tterm, and
term local toexpression, following the rule that objects should preferrably bdated local to the scope

in which they are used. This rule may not only be adés but even crucial, as demonstrated by the
variablesaddop (local to term) andnulop (local to factor). If these variables were declagkabally, the
program would fail. To find the explanation, we must Hetted rule that local variables exist (and are
given storage) during the time in which their procedsradtive. An immediate consequence is that in
the case of a recursive call, new incarnations ofldbal variables are created. Hence, there exist as
many as there are levels of recursion. This also imfilasa programmer must ensure that the depth of
recursion never becomes inordinately large.

MODULE Postfix;
IMPORT Texts, Oberon;

VAR ch: CHAR;
W: Texts.Writer; R: Texts.Reader;

PROCEDURE expression;
VAR addop: CHAR;

PROCEDURE term;
VAR mulop: CHAR,;

PROCEDURE factor;
BEGIN
IF ch ="(" THEN
Texts.Read(R, ch); expression;
WHILE ch # ")" DO Texts.Read(R, ch) END
ELSIF ch ="[" THEN
Texts.Read(R, ch); expression;
WHILE ch # "]" DO Texts.Read(R, ch) END
ELSE
WHILE (ch <"a") OR (ch > "z") DO Texts.Read(R, ¢t\D ;
Texts.Write(W, ch)
END ;
Texts.Read(R, ch)
END factor;

BEGIN (*term*) factor;
WHILE (ch ="*") OR (ch ="/") DO
mulop := ch; Texts.Read(R, ch); factor; Texts.Write(l\ijop)
END
END term;

BEGIN (*expression*) term;
WHILE (ch ="+") OR (ch ="-") DO
addop = ch; Texts.Read(R, ch); term; Texts.Write(W, gddo
END
END expression;

36

PROCEDUREPar se*;
BEGIN Texts.OpenReader(R, Oberon.Par.text, Oberon.Bxr.pexts.Read(R, ch);
WHILE ch # “~" DO
expression; Texts.WriteLn(W); Texts.Append(Oberon.Log,0fY,b
Texts.Read(R, ch)

END
END Parse;
BEGIN Texts.OpenWriter(W);
END Postfix.
A sample of data processed and generated by the conirosfid.Parse is shown below.
a+b ab+
a*b+c ab*c+
a+b*c abc*+
a*(b/[c-d]) abcd-/*

The next program example demonstrating recursion belantieetclass of problems that search for a
solution by trying and testing. A partial "solution" whiighonce "posted” may, after testing had shown
its invalidity, have to be retracted. This kind of appraadherefore also calldohcktracking. Recursion

is often very convenient for the formulation of sudgogthms.

Our specific example is supposed to find all possible placeaightjueens on a chess board in such a
fashion that none is checking any other piece, i.h Ba®, column, and diagonal must contain at most
one piece. The approach consists of trying to place angire column i, starting with i = 0, and,
proceeding to the right, assuming that each column tletheontains a correctly placed queen already.
If no place is free in column i, the next column tol#ft has to be reconsidered. The information
necessary to deduce whether or not a given squark feesti is represented by the three global variables
called row, d1, d2 such that

row[j] & di[i+j] & d2[N-1+i-j] = "the square in columnand row j is free"

Recursion occurs directly in procedung/Col. The auxiliary procedureR aceQueen andRemoveQueen
could in principle be declared local firyCol. However, there exists a single chess board only
(represented by row, d1, d2), and these procedures are agi@gpconsidered as belonging to these
global data, and hence not as local to (each incamafjdryCol.

MODULE Queens;
IMPORT Texts, Oberon;
CONST N =8; (*no. of rows and columns*)

VAR x: ARRAY N OF INTEGER;
(*x[i] = j means: “a queen is on field j in column i"*)
row: ARRAY N OF BOOLEAN,;
(*row[i] = "no queen on i-th row"*)
dl: ARRAY 2*N-1 OF BOOLEAN;
(*d1[i] = "no queen on i-th upleft to lowrighiagonal*)
d2: ARRAY 2*N-1 OF BOOLEAN;
(*d2[i] = "no queen on i-th lowleft to uprightadjonal*)
W: Texts.Writer;

PROCEDURE Clear;
VAR i: INTEGER;
BEGIN
FORi:=0TO N-1 DO row[i] := TRUE END ;
FORi:=0TO 2*(N-1) DO d1]i] := TRUE; d2[i] := TRUEND
END Clear;

PROCEDURE WriteSolution;
VAR i: INTEGER;

BEGIN
FORi:=0 TO N-1 DO Texts.Writelnt(W, x[i], 4ND ;
Texts.WriteLn(W)

37

END WriteSolution;

PROCEDURE PlaceQueen(i, j: INTEGER);
BEGIN

X[i] == j; row[i] := FALSE; d1[i+j] := FALSE; d2[N1+i-j] := FALSE
END PlaceQueen;

PROCEDURE RemoveQueen(i, j: INTEGER);
BEGIN

row[i] := TRUE; d1[i+j] := TRUE; d2[N-1+i-j]] := TRUE
END RemoveQueen;

PROCEDURE TryCol(i: INTEGERY);
VAR j: INTEGER;
BEGIN
FORj:=0TO N-1DO
IF row[j] & d1[i+j] & d2[N-1+i-j] THEN
PlaceQueen(i, j);
IF i < N-1 THEN TryCol(i+1) ELSE WriteSolutideéND ;
RemoveQueen(i, j)
END
END
END TryCol;

PROCEDURE Find*; (*command*)
BEGIN Clear; TryCol(0); Texts.Append(Oberon.Log, W)buf
END Find,;

BEGIN Texts.OpenWriter(W)
END Queens.

15. Type Declarations

Every variable declaration specifies the variablge tas its constant property. The type can be one of
the standard, primitive types, or it may be of a typdadted in the program itself. Type declarations have
the form

TypeDeclaration = identifier "=" type.

They are preceded by the symbol TYPE. Types are ékabsifto unstructured and structured types.

Each type essentially defines the set of values whigériable of this type may assume. A value of an

unstructured type is an atomic unit, whereas a valtroftured type has components (elements). For
example, the type INTEGER is unstructured; its elemergsatomic. It does not make sense, e.g. to
refer to the third bit of the value 13; the circumstatt@at a number may "have a third bit", or a second
digit, is a characteristic of its (internal) represéota which intentionally is to remain unknown.

In the following sections we shall show how to declgtractured types. We distinguish between various
structuring methods of which we have so far encounteredatitay only. In addition, there exists the

record type. A facility to introduce structures that vdypamically during program execution is based
on the concept of pointers and will be discussed in aakepeinapter.

type = qualident | ArrayType | RecordType | PointerT\gr®@¢edureType.

Before proceeding to the various kinds of types, we tiaein general, if a type T is declared by the
declaration

TYPE T = someType
and a variable t is declared as
VARE T
then these two declarations can always be merged insirttje declaration

VAR t: someType

38

However, in this case t's type has no explicit name andftre remains anonymous. Typically, record
types are given explicit names.

The concept of type is important, because it divides grand's set of variables into disjoint classes.
Inadvertent assignments among members of differensedasan therefore be detected by a mere
inspection of the program text without executing the mmag Given, for example, the declarations

VAR b: BOOLEAN; i: INTEGER; x: REAL

the assignment b =i is impossible, because the tfdeand i are incompatible. Two types are said to
be compatible, if they are declared as equal or satisfiain compatibility rules: If one type TO is
included in another type T1, then the assignment t1 :sadrnissible, but not t0 := t1. Type inclusion is
restricted to the standard numerical types. We notettyai is admisible, whereas i ;= x is not.

SHORTINTO INTEGERUO LONGINT O REAL [0 LONGREAL

16. Record Types

In an array all elements are of the same type. Inrasnto the array, the record structure offers the
possibility to declare a collection of elements as & even if the elements are of different types. The
following examples are typical cases where the recotidd appropriate choice of structuring method. A
date consists of three elements, hamely day, monthyeard A description of a person may consist of
the person's names, sex, identification nhumber, anddateh This is expressed by the following type
declarations

Date = RECORD day, month, year: INTEGER END

Person = RECORD
firstName, lastName: ARRAY 32 OF CHAR,;
male: BOOLEAN;
idno: INTEGER,;
birth: Date
END

The record structure makes it possible to refer eithahe entire collection of data or to individual
elements. Elements of a record are also cabedrd fields, and their names are call@dld identifiers.
This stems from the habit of looking at such data aadwr tables drawn on paper with individual fields
delineated as rectangles and labelled with field namesilaGito arrays, where we denote the i-th
element of an arrag by a[i], i.e. by the array identifier followed by an index, aenote the field f of a
recordr by r.f, i.e. by the record identifier followed by the field'anme. For example, given the
variables

dl, d2: Date;
pl, p2: Person;
student: ARRAY 100 OF Person

we can construct, for example, the following variablsigieators:

di.day
d2.month
pl.firstName
pl.birth

These examples show that fields may themselves be stdctimilarly, records may be elements of
array or record structures, i.e. there exists the Ipitissito construct hierarchies of structures. As a
consequence, selectors of elements can be sequencethovas by the following examples of
designators. The multi-dimensional array discussed inlthpter on arrays now appears as a particular
case of these structuring hierarchies.

pl.lastNamel[0]
p2.birth.year
student[23].idno
student[k].firstName[0]

39

At first sight the record may appear as a generalizeay,abecause it relaxes the restriction that all
elements be of the same type. However, in anothertasjmemore restrictive than the array: the selecto
of the element must be a fixed field identifier, whertasindex selecting an array element may be an
expression, i.e. a result of previous computations.

It is important to note that a record may assumerargitombinations of its field's values. Hence, in the
example of the type Date, a valday = 31 may coexist wittmonth = 2, although this is not an actual
date.

The syntax of a record declaration is defined as follows

RecordType = "RECORD" FieldListSequence "END".
FieldListSequence = FieldList {";" FieldList}.
FieldList = [IdentList ":" type].

and that of a designator is

designator = qualident {selector} .
selector = "."identifier | "[" ExpList "]" | "A"

Note: Oberon’s concept of recotgpe extension is not discussed in this book.

17. Dynamic Data Structures and Pointers

Array and record structures share the common propeatyhby are static. This implies that variables of
such a structure maintain the same structure during thewime of their existence. In many
applications, this is an intolerable restriction; thegquire data which do not only change their value, but
also their composition, size, and structure. Typical e@tesnare lists and trees that grow and shrink
dynamically. Instead of providing list and tree structueesollection that for some applications would
again not suffice, Oberon offers a basic tool to togsarbitrary structures. This is theinter type.

Every complex data structure ultimately consists of eles whose structure is static. Pointers, i.e.
values of pointer types, are themselves not structbredather are used to establish relationships among
those static elements, usually caltemtles. We also say that pointeligk elements opoint to elements.
Evidently, different pointer variables may point to geame element, hence providing the possibility to
compose arbitrarily complex structures, and at the same dpening many pitfalls for programming
mistakes that are difficult to pinpoint. Operating withrpgeis indeed requires utmost care.

Pointers in Oberon cannot point to arbitrary variabldése type of variable to which they point must be
specified in the pointer type's declaration, and the eoitype is said to bbound to the referenced
object's type. Example:

TYPE Node = POINTER TO NodeDescriptor
VAR pO0, p1: Node

Here Node (and thereby also variables pO and pl) are bound to theNoge®escriptor, i.e. they can
point to variables of type NodeDescriptor only. Theaggables, typically of record type, amet created

by the declaration of pO and p1. Instead, they are creatadt@ly anallocation procedure. In Oberon, it

is represented by a predefined operator called NEW. ftensent NEW(p0) then creates a (record)
variable of type NodeDescriptor and assigns a poieferring to that variable (i.e. a value of type Node)
to p0. The created variable is said to be dynamicatigted (allocated); it has no name, is anonymous,
and can be accessed only via a pointer using the dergfegeperator . The said variable is denoted by
the designator p0*. If the referenced variable i®obrd type with, say, fields x and y, then the fileds a
denoted, for example, by p0~.x, p1~.y. Since in this cage dtear that field selection applies to the
referenced record rather than to the pointer, the designaty be abbreviated into p0.x and pl.y.

PointerType = "POINTER" "TO" type.

What really makes pointers such a powerful tool is fhaumstance that they may point to variables
which themselves contain pointers. This reminds us ofepitges that call procedures and thereby
introduce recursion. In fact, pointers are the tool tplément recursively defined data structures (such
as lists and trees). The nature of the recursive ttatetugre is evident from the declaration of the type of
its elements.

40

Just as every recursion of procedure activation mustratenat some time, so must every recursion in
referencing terminate at some point. The role of tlstaifement to terminate procedural recursion is here
taken by the special pointer value NIL terminating refdrenpecursion. NIL points to no object. It is an
obvious consequence that a designator of the form p*, @Xxmust never be evaluated, if p = NIL. We
summarize the following essential points.

1. Every pointer type is bound to a type; its valuegpairters which point to variables of that type.
2. The referenced variables are anonymous and catcéssad via pointers only.

3.The referenced variables are dynamically creatednbgllacation procedure which assigns the
variable's pointer to p.

4.The pointer constant NIL belongs to every pointee @gpd points to no object.

5.The variable referenced by a pointer p is denoted byd#signator p”. In order for p* to be
meaningful, p must not have the value NIL.

6. Field designators of the form p”.x may be abbrevittgux.

Lists, also called linear lists or chains, are charactérine consisting of record typed nodes that each
have exactly one element being a pointer to a recofteafame type as itself. This implies recursion. A
list pointer declaration then assumes the characteigstic

List = POINTER TO ListDesc

ListDesc =
RECORD
key. INTEGER;
Data: ...
next: List
END

"Data" actually stands for any number of fields repnisg data pertaining to the listed no#iey is part

of these data; it is mentioned separately here becaigsguite common to associate with each element a
unique identifying key, and also because it will be used in guks¢ examples of operations on lists.
The essential ingredient here, however, is the field, so labelled because it evidently is the pointer to
the next element in the list. Direct recursion inadgfoe declarations is not permitted for the obvious
reason that there would be no evident termination. ddutaration given above cannot be abbreviated
into

List =
RECORD
key: INTEGER; next: List
END

Assume now that a list is accessible in a progranityifirst element, denoted by the pointer variable
first: List

The empty list is represented by first = NIL. A non-emfist is most conveniently constructed by
inserting new elements at its front. The followingigiesients are needed to insert one element (let p be
an auxiliary variable of typkist)

NEW(p); (* assign values to p.key and p.data *) p.nefirst first .= p

Having constructed a list by repeated insertion of nagesnay wish to search the list for a node with

key value equal to a given x. We evidently use a repetitimwhile statement is appropriate, because
we do not know the number of nodes (and hence repejiti@fiarehand. It is wise to include the case of
the empty list!

p = first;
WHILE (p # NIL) & (p.key # x) DO p := p.next ND ;
IF p # NIL THENfound END

We draw attention to the fact that here we make ugleeofule that the term b is not evaluated, if in the
expression a & b the factor a is found to be FALSEhis rule would not hold, the factor p.key # x
might be evaluated with p = NIL, which is illegal.

41

The second frequently encountered dynamic data structtine isee. It is characterized by its nodes
havingn pointer fields each, where n is tegree of the tree. The common and in some sense optimal
case is the binary tree with n = 2. Lists now apmesadegenerate trees of degree 1. The respective
declarations are

Tree = POINTER TO TreeNode;
TreeNode =
RECORD
key: INTEGER;
data: ...
left, right: Tree
END

The place of the variabferst in the case of lists is taken by a variable to be
root: Tree

with root = NIL denoting the empty tree. Trees are wmmly used to represent collections of data in

order of ascending key values, making retrieval very ieffic The following statements represent a

search in an ordered binary tree, whose similarith¢obinary search in an ordered array is remarkable.
Again, p is an auxiliary variable (of type Tree).

p := root;

WHILE (p # NIL) & (p.key # x) DO
IF p.key < x THEN p :=p.right
ELSE p :=p.left
END

END ;

IF p # NIL THENfound END

This example is a repetitive version of the tree $eakext we show the recursive version. It is, in
addition, extended such that a new node is created andethsdrthe appropriate place, whenever no
node with key value x exists.

PROCEDURE search(VAR p: Tree; x: INTEGER): Tree;
VAR q: Tree;
BEGIN
IF p # NIL THEN
IF p.key < x THEN
g := search (p.right, x)
ELSIF p.key > x THEN
g := search (p”.left, x)
ELSE
q:=p
END
ELSE (*not found, hence insert*)
NEW(q); g.key := x; q.left := NIL; q.right :=IN
END ;
RETURN ¢
END search

The call search(root, X) now stands for a search of x in the tree representttehvariableoot.

And this concludes our examples of operations on listdraed to illustrate pointer handling. Lists and
trees have nodes which are all of the same type. \A® dttention to the fact that the pointer facility
admits the construction of even more general data stasctonsisting of nodes of various types. Typical
for all these structures is that all nodes are declasetecord types. Hence, the record emerges as a
particularly useful data structure in conjunction with pamte

Creation of nodes is expressed by the standard procediMé Mhich is part of a system's storage

management. We assume that retrieval of storage is pedoautomatically by a so-called storage

reclamation mechanism, also calbgibage collector. It relies on the fact that records that are no longer
referenced by any pointer may be recollected, i.e. h@iage can be recycled.

42

18. Procedure Types

So far, we have regarded procedures exclusively as progrésnipa as texts that specify actions to be
performed on variables whose values are numbers, logitiges, characters, etc. However, we may take
the view that procedures themselves are objects #ratbe assigned to variables. In this light, a
procedure declaration appears as a special kind of consiEatation, the value of this constant being a
procedure. If we allow variables in addition to constaittsnust be possible to declare types whose
values are procedures. These are cgltededure types.

A procedure type declaration specifies the number andypes tof parameters and, if it is to be a
function procedure, the type of the result. For examptepeedure type with one REAL argument and a
result of the same type is declared by

Function = PROCEDURE (x: REAL): REAL

The mathematical functions of sine, cosine, squarg exgonential and logarithm are all of this type.
The general syntax is

ProcedureType ="PROCEDURE" [FormalTypeList].
FormalTypeList =
"(" [["VAR"] FormalType {"," ['"VAR"] FormalType}] ")" [":" identifier].

If we now declare a variabfe Function, the assignmerft:= Math.sin is possible. Subsequently the call
f(x) is equivalent toMath.sin(x).

It is now also possible to declare functions and guaces which themselves have functions and
procedures as parameters. For example, a function pmecedl integrate any function over a certain
interval can be expressed in the following way. It addsvtilues of the given parametric function ofver
the given interval a to b in n steps.

PROCEDURE integral (f: Function; a, b: REAL; n: INTERE REAL;
VAR i: INTEGER; sum, dx: REAL;

BEGIN dx := (b-a)/n; sum := 0;
FORi:=0TO n-1 DO sum :=f(a + i*dx + 0.5*dx) + suNE ;
RETURN sum * dx

END integral

The integrations of, for example, the sine functionr diie interval O tar, and that of the exponential
function from 0 to 1 are expressed simply as

integral (Math.sin, 0, 3.14159, 20)
integral (Math.exp, 0, 1, 20)

and they yield 2.0020 and 1.7181 respectively, which approgithatcorrect values 2*cos(0) and e — 1).

To conclude, we emphasize the restriction of Oberanpttegedures that are assigned to variables or are
passed as parameters, must not be declared local taherypoocedure. Neither can they be standard
procedures (such as ODD, INCL, etc.).

43

Part 3

19. Modules

Modules are the most important feature distinguishing @bémm its ancestor Pascal. We have
already encountered modules, simply because every progrmamadsiule. However, most systems are
not only a single module, but rather a set of sevemalules, each module containing declared objects
such as constants, variables, procedures, and typestigelared in a modules MO can be referenced
in another module M1, if they are explicitly made to be kmanvM1, i.e. if they arémported by M1.

In the examples of the preceding chapters, we haveatiypimported procedures for input and output
from modules containing collections of frequently used mhoes. These procedures are actually part
of our program, even if we have not programmed thenttagdare textually disjoint.

The key point is that modules can be kept in a progrédrat" and are automatically referenced when
a programmer's program is loaded and executed. Hence piosiible to prepare collections of
frequently used operations (such as for input and output}paagbid reprogramming them each time a
program needs such operations. Modern implementationsego ane step further and offer what is
called separate compilation. This signifies that such modules are not stored in togram library in
source form as Oberon texts, but rather in compiled.fahpon program loading, the compiled (main)
module is joined (linked) with the precompiled modules frohictv it imports objects. In this case, the
compiler must also have access to descriptions of theetsbpf the previously compiled, imported
modules, when the importing program is compiled. Thislifadiistinguishes separate compilation
from independent compilation as it exists in typical implementations of Fortraas€al, and assemblers.

Every subsidiary module may again import objects from otmedules. A program therefore
constitutes an entire hierarchy of modules. The meagram is said to be at the highest level, those
modules which do not import objects at all being atidlaest level. Usually, a programmer is not even
aware of this hierarchy, because his modules importtbjeom modules that he has not programmed
himself; therefore he is unaware of their imports anthefmodule hierarchy below them. In principle,
however, his program is the text written by himselferded with the texts of the imported modules.

These extensions are usually quite large (even if thet dingorts consist of a few output procedures
only). In principle, the indirect imports constitutestientireenvironment or operating system. In a
single-user computer system, there is virtually no needafy parts that are neither directly nor
indirectly imported by the main program. However, somelutes, such as the basic input/output and
file system, may be required by all programs and thexdfecome de facto resident and may therefore
be regarded as the operating system.

The principal motivation behind the partitioning ofpeogram into modules is - beside the use of
modules provided by other programmers - the establishnfeat lierarchy of abstractions. For
example, in the previously encountered cases of imporfed/output procedures, we merely wish to
have them available, but do not need to know - or ratbanot wish to bother to learn - how these
procedures function in detail. To abstract means to "takay" from the essentials and thereby to
ignore certain details. Each module constitutes an atistrad we regard it from "the outside". We
even wish to go one step further: we wish not only terignhe details of its innards, but to hide them.
The primary reason for this wish is that if the innards protected from outside access, we can
guarantee their correct functioning, thereby being ablintio the area of error search in the case of a
malfunctioning program.

The second, but not less important reason is to magesiible to change (improve) the innards of
imported modules without having to change (and/or recomihiee)mporting modules. This effective

decoupling of modules is indispensible for the developmerargélprograms, in particular, if modules
are developed by different people, and if we regard the opersystgm as the low section of a

program's module hierarchy. Without decoupling, any changeroection in an operating system or in
library modules would become virtually impossible.

A direct consequence of this need for decoupling is thessigégefor a textual separation of the
essentials from the details. The essentials of a maghal the properties of objects that are importable
into other modules; the details are those parts thabde hidden and protected. In Oberon, objects to
be visible in other modules are specially marked. Thek msaan asterisk following the identifier in its
declaration.

44

An importer of a module needs to know the properties oktlobgects only which are exported by the
imported module. It is customary and convenient to proaidextract of the module containing those
relevant declarations only. We call it tlefinition of a module. The definition forms a contract
between the client (importer) and the designer of a neodiuils therefore also called thaerface of the
module. The implementation part remains the propertyhef hodule's designer. As long as the
designer alters details without affecting the definitioe need not report his activity to the clients sf hi
module. Modules are compiled separately, and are theretieel compilation units.

Concluding this introduction to the module concept, we postullaat adequate implementations
provide full type compatibility checking between objedtajependent of whether these objects are
declared in the same or in different modules, i.e. leeking mechanism of the compiler functions also
across module boundaries. However, the programmer musterdlaat this checking provides no
absolute safeguard against mistakes. After all, it coscrmal, syntactic aspects only; it does not
cover the semantics. It would not detect, for instartoe,réplacement of the algorithm for the sine
function by that of the cosine function. However, it must be regarded as the duty of a compiler to
protect programmers against malicious "colleagues".

20. Definitions and Implementations

A definition or interface specifies those propertiesaofodule which are relevant to its clients
(importers, users). It consists of the declarationshef exported identifiers. We will here consider
definitions and implementations as disjoint texts. HoweineOberon there is only one text, namely the
module, in which the exported objects are explicitly markedatbwasterisk). The definition may here
be considered as an extract of the module text.

Variables declared in a definition are global in theseehat they exist during the entire lifetime of the
program, although they are visible and accessible ionthose modules (clients) which import the
module of their declaration. In other modules they renmaiisible. Such variables are typically state
variables. But in general, export of variables shoulduded rarely, and if so, preferrably imported
variables should be read only.

In definitions, procedures are specified by their headordg. A heading specifies the procedure’s
parameters, i.e. their types, and in the case of fungtiocedures the result type. This information
constitutes the proceduresignature.

If a type is declared in a definition module, the full detaf its declaration are visible in importing
modules. In the case of a record type, the definitpmtifies only those fields, which are visisble by
clients.

The following simple example exhibits the essential dataristics of modules, although typically
modules are considerably larger pieces of program and woaténger list of declarations. This
example exports two procedurgst andget, adding data to and fetching data from a buffer wich
hidden. Effectively, the buffer can only be accessed tirahgse two procedures; it is therefore
possible to guarantee the buffer's proper functioniagsequential access without loss of elements.

DEFINITION Buffer;
VAR nonempty, nonfull: BOOLEAN,;
PROCEDURE put(x: INTEGER);
PROCEDURE get(VAR x: INTEGER);
END Buffer.

This definition part contains all the information abth# buffer that a client is supposed to know. The
details of its operation, its realization, are corgdiin the corresponding implementation.

MODULE Buffer; (*cyclic buffer of integers®)
CONST N =100;
VAR nonempty*, nonfull*: BOOLEAN;
in, out, n: INTEGER,;
buf: ARRAY N OF INTEGER,;

PROCEDURBput*(x: INTEGER):;
BEGIN
IF n < N THEN

45

buf[in] ;= x; in := (in+1) MOD N;
INC(n); nonfull := n < N; nonempty := TRUE
END
END put;

PROCEDURHKjet*(VAR x: INTEGER);
BEGIN
IFn>0THEN
X := buf[out]; out := (out+1) MOD N;
DEC(n); nonempty := n > 0; nonfull := TRUE
END
END get;

BEGIN (*initialize*) n :=0; in :=0; out := 0;
nonempty := FALSE; nonfull := TRUE
END Buffer.

The definition is the relevant extract from the modagted here, implementing a fifo (first in first out)
queue. This fact, however, is not evident from the défimialone; normally the semantics are
mentioned in the form of a comment or other documentaionh comments will usually explain what
the module performs, but not how this is achieved. Thexefdifferent implementations may be
provided for the same definition. The differences majynlithe details of the mechanism; for example,
the buffer might be represented as a linked list insbéad array (allocating buffer portions as needed,
hence not limiting the buffer's size). Or, the diffezes may even lie in the semantics. The following
program implements a stack (i.e. a lifo queue) instead fif6 ajueue, nevertheless fitting the same
definition part. Any change in a module's semantics ssitedes corresponding adjustments in the
module's clients, and must therefore be made with utoaost

MODULE Buffer; (*stack of integers*)
CONST N =100;
VAR n: INTEGER;
nonempty*, nonfull*; BOOLEAN,;
buf: ARRAY N OF INTEGER,;

PROCEDURBput*(x: INTEGER);

BEGIN
IFn<NTHEN
buf[n] := x; INC(n); nonfull :=n < N; noneryp.= TRUE
END
END put;
PROCEDURH)et*(VAR x: INTEGER);
BEGIN
IFn>0THEN
DEC(n); x := buf[n]; nonempty := n > 0; nonfutl TRUE
END
END get;

BEGIN n := 0; nonempty := FALSE; nonfull := TRUE
END Buffer.

Evidently, nonempty is the precondition foget, andnonfull is the precondition gbut. This concludes
this introductory example.

The syntax of modules and definitions is

Definition =
"DEFINITION" identifier ";" {import} {declaration}
"END" identifier "." .

declaration = "CONST" {ConstantDeclaration ";"} |
"TYPE" {identifier ['="type] ";"} |
"VAR" {VariableDeclaration ";"} |
ProcedureHeading ";".

46

Module = "MODULE" identifier ;" ['[MPORT" IdList} block identifier.

The import list names the modules which are imported. dfient module M1 is a client of MO, i.e.
imports MO, then the objects exported from MO, aaly, are referenced by qualified identifiers of the
form M.x, for example M0.a, MO.b. This facility permitsitnport different objects with the same name
from different modules and to avoid conflicts of namean&ard identifiers are automatically imported
into all modules.

The possibility to publicize a module in the form of @sfinition and at the same time to retain its
operational details hidden in its implementation spetifina is particularly convenient for the
establishment of program libraries. Such collectiongarfdard routines belong to every programming
environment. They typically include routines for inpaotiautput operations, for file handling, and for
the computation of mathematical functions. Althoughraghexists no rigid standard for Oberon, the
modulesFiles and Texts can be considered as standard modules available imgliérmentations of
Oberon (see Ch. 22). Here we present the definitiommmfdule Math as a first example, featuring
standard mathematical functions:.

DEFINITION Math;
PROCEDURE sqrt(x: REAL): REAL;
PROCEDURE exp(x: REAL): REAL;
PROCEDURE In(x: REAL): REAL;
PROCEDURE sin(x: REAL): REAL,;
PROCEDURE cos(x: REAL): REAL;
PROCEDURE arctan(x: REAL): REAL,;
PROCEDURE real(x: INTEGER): REAL;
PROCEDURE entier(x: REAL): INTEGER;

END Math.

21. Program Decomposition into M odules

The quality of a program has many aspects and is an efrsiperty. A user of a program may judge it
according to its efficiency, reliability, or conveni of user dialog. Whereas efficiency can be
expressed in terms of numbers, convenience of usagdé eatnatter of personal judgement, and all
too often a program's usage is called convenient asa®itgs conventional. An engineer of a program
may judge its quality according to its clarity and perspjcuitgain rather elusive and subjective
properties. However, if a property cannot be expressesirstof precise numbers, this is no reason for
classifying it as irrelevant. In fact, program clarisyenormously important, and to demonstrate the
correctness of a program is ultimately a matterooivincing a person that the program is trustworthy.
How can we approach this goal? After all, complicatefisaisually do inherently require complex
algorithms, and this implies a myriad of details. Anddbsails are the jungle in which the devil hides.

The only salvation lies in structure. A program mustdeeomposed into partitions which can be
considered one at a time without too much regard for ¢éhgining parts. At the lowest level the
elements of the structure are statements, at thdewet procedures, and at the highest level modules.
In parallel with program structuring proceeds the strireguof data into arrays, records, etc. at the
lower levels, and through association of variables pititedures and modules at the higher levels. The
essence of programming is finding the right (or at leastpropriate) structure, and the experienced
programmer is the person who has the intuition to firat the stage of initial conception instead of
during a gradual process of improvements and modificatioets the programmer who has the courage
to restructure when a better solution emerges isrstiith better off than the one who resigns and
elaborates a program on the basis of a clearly inateegtracture, for this leads to those products that
no one else, and ultimately not even the originator élinean "understand".

Even if there does not exist a recipe to determineofitamal structure of a program, there have
emerged some criteria for guidance in the process offingbod and avoiding bad structure. A basic
rule is that decomposition should be such that the ctionedbetween partitions are simple or "thin".
A perhaps oversimplifying criterion for the thicknessaofonnection - also calledterface - between
two parts is the number of items that take part in pec8ically, the interface of two modules is
sketched in terms of the module's import lists, and a meéauthe interface's thickness is the number
of imported items. Hence, we must find a modularizatiorckvinhakes the import lists short. Naturally,
it is difficult to find an optimum, for, the import listgould be shortest, i.e. they would disappear if the
entire program were collapsed into a single module:alglendesirable solution.

47

The distinctive property of the module as the largest tstring unit is its capability to hide details and
thereby to establish a new level of abstraction. Thipestyg is used in several forms; we can
distinguish between the following cases:

1. The module separates two kinds of data representatibooatains the collection of procedures that
perform the data conversion between the two levdis. typical example is a module for conversion
of numbers from their abstract, atomic representatitmsequences of decimal digits and vice-versa.
Such modules contain no data of their own, they aredlpipackages of procedures.

2.The essence of a module is a set of data. It hidedeth#és of the data representation by granting
access to these data through calls of its exported presedaty. An example of this case is a
module which contains a data set storing individual stemganized in a way that items are found
quickly. Another is a module whose hidden data set is la stiwre; it hides the peculiar details
necessary to operate the disk drive.

3. The module exports a data type and exports its associzeations. Typically, in Oberon such a
module exports one or several types in opaque mode (soesetese are also called private types).
It thereby hides the details of the data type's struetutealso the details of the operations. By hiding
them, it is possible to guarantee the validity of postdlateariant properties of each variable of such
a private type. The difference to modules of class thas here variables of the private types are
declared in the client modules, whereas in class 2 motluesariable is itself hidden. Typical
examples are the queue and stack types, and perhaps the messfilicuch data abstraction is the
sequential file, also known asstaecam.

This classification is not absolute. It cannot begalse all kinds share the common goal of hiding
details. Nevertheless, we can formulate a few rilasgerve as guidelines in the design of modules:

1. Keep the number of imported modules small.
2. Keep the number of imported modules in definitions avealler.

3. Export of variables should be considered as the exceptidnimported variables should be treated
as "read-only" objects.

We conclude this chapter with an example that essenfizltyinto category 3. Let our stated goal be
the design of a cross reference generator for Ohgnagrams. More precisely, the program's purpose is
to read a text and to generate (1) a listing of the text added line numbers and (2) a table of all
encountered words (identifiers) in alphabetical ordech esith a list of the numbers of the lines in
which the word occurs. Moreover, comments and stringscalbe skipped (i.e. their words are not to be
listed), and Oberon key symbols are not to be listéeeit

We quickly recognize the task as being divisible intogtenning of the source text (eliminating the
parts that are to be skipped and ignored), and the recaxthgubsequent tabulating of the words. The
first part is conveniently performed by the main programdule, the latter by a subsidiary module
which hides the data set and makes it accessible thtaughrocedurestnsert (i.e. include a word)
andList (i.e. generate the requested table). A third module i@ tsgenerate the representation of
numbers as sequences of decimal digits. The three gmingiodules involved are called XREF,
TableHandler, and Texts.

We begin by presenting the main program XREF that scarsotiree text. A binary search is used to
recognize key words. The data set is of the fygae, imported from th&ableHandler.

DEFINITION TableHandler;
CONST WordLength;
TYPE Word;
PROCEDURE Init (VAR w: Word);

PROCEDURE Insert(VAR s: ARRAY OF CHAR; In: INTEGEVAR w: Word);
(*enter pair s, In in structuire w *)

PROCEDURE List(w: Word)
END TableHandler.

MODULE XREF;
IMPORT Texts, Oberon, TableHandler;
CONST N =32; (* No. of keywords *)

VAR Ino: INTEGER; (*current line number*)
Tab: TableHandler.Word;
W: Texts.Writer;
key: ARRAY N, 10 OF CHAR; (*table of key words*)

PROCEDURE heading;
BEGIN INC(Ino); Texts.Writelnt(W, Ino, 5); Texts.V¥e(W, " ")
END heading;

PROCEDUREScan*; (*command®)
VAR beg, end, time: LONGINT;
k, m, |, r: INTEGER,;
ch: CHAR,;
id: ARRAY TableHandler.WordLength OF CHAR,;
T: Texts.Text; R: Texts.Reader;

PROCEDURE copy;
BEGIN Texts.Write(W, ch); Texts.Read(R, ch);
END copy;

BEGIN TableHandler.Init(Tab);
Oberon.GetSelection(T, beg, end, time);
IF time >= 0 THEN
Ino := 0; heading;
Texts.OpenReader(R, T, beg); Texts.Read(R, ch);
REPEAT
IF (CAP(ch) >="A") & (CAP(ch) <= "Z") THEN*ord*)
k:=0;
REPEAT id[K] := ch; INC(k); copy
UNTIL ~(("A" <= CAP(ch)) & (CAP(ch) <= "Z"OR ("a" <= ch) & (ch <="z"));
id[K] := OX;
[:=0; r:=N; (*binary search for key word*)
REPEAT m := (I+r) DIV 2;
IF key[m] <id THEN | :=m+1 ELSEr := nN\D ;
UNTIL | >=r;
IF (r = N) OR (id # key[r]) THEN TableHandlersert(id, Ino, Tab) END
ELSIF (ch >="0") & (ch <="9") THEN (*number*)
REPEAT copy UNTIL ~("0" <= ch) & (ch <="9")
ELSIF ch ="(" THEN copy;
IF ch =""THEN (*skip comment*)
REPEAT
REPEAT
IF ch = ODX THEN copy; heading ELSE c&gyD
UNTIL ch =",

copy
UNTIL ch =")";

copy
END
ELSIF ch = 22X THEN (*string*)
REPEAT copy UNTIL ch =",
copy
ELSIF ch = ODX THEN (*end of line*)
copy; heading
ELSE copy
END
UNTIL R.eot;
Texts.WriteLn(W); Texts.Append(Oberon.Log, W.buf);
TableHandler.List(Tab)
END
END Scan;

49

BEGIN Texts.OpenWriter(W);

key[0] := "AND"; key[1] := RRAY"; key[2] := "BEGIN;
key[3] = BOOLEAN key[4] := key[5] := CASE;
key[7] .= "CONST"; key[7] := key[8] :=

key[9] .= "ELSE"; key[10] := ELSIF"; key[11] := END";
key[12] := "FOR"; key[13] :="IF"; key[14] := "IMPORT";
key[15] := "IN"; key[16] := "MOD"; key[17] := MODULE";
key[18] := NOT key[19] := "OF"; key[20] :=

key[21] := POINTER key[22] := "PROCEDURE"; key[23] RECORD";
key[24] = REPEAT key[25] := "RETURN"; key[26] := "THEN
key[27] := key[28] .= "TYPE"; key[29] := "UNTIL";
key[30] := VAR; key[31] := "WHILE"

END XREF.

Next we present the table handler. As seen from itgitlefi part, it exports the private tyjable and

its operationgnsert andList. Notably the structure of the tables, and therehy this access and search
algorithms remain hidden. The two most likely choicestleeorganizations of binary trees and of a
hash table. Here we opt for the former. The exampthasefore a further illustration of the use of
pointers and dynamic data structures. The module contaprecedure to search and insert a tree
element, and a procedure that traverses the tree doretiuired tabulation (see also the Chapter on
dynamic data structures). Each tree node is a recaditu fields for the key, the left and right
descendants, and (the head of) a list of the line numberther form of representation might be
chosen, for example a balanced tree, and such a neenimplaion might be provided without clients
being aware of the change, because modules can be conspipedately. This is the key of

modularization and constructing large systems. It reguliewever, that the modules’ interfaces are
wisely chosen.

MODULE TableHandler;
IMPORT Texts, Oberon;
CONST WordLength* = 32;

TYPE Item = POINTER TO RECORD
num: INTEGER; next: ltem
END ;

Word* = POINTER TO RECORD
key: ARRAY WordLength OF CHAR;

first: Item; (*list head*)
left, right: Word
END ;

VAR W: Texts.Writer;

PROCEDURH nit*(VAR w: Word);
BEGIN w := NIL
END Init;

PROCEDURHnNsert*(VAR s: ARRAY OF CHAR,; Ino: INTEGER; VAR w: Word);
(*search node with name s*)
VAR wO0: Word; t: Item;
BEGIN
IF w = NIL THEN (*insert new word*)
NEW(w0); COPY(s, w0.key); wO.left := NIL; wO.rigket NIL;
NEW(t); t.num := Ino; t.next := NIL; wO.first t=w := w0
ELSIF s < w.key THEN Insert(s, Ino, w.left)
ELSIF s > w.key THEN Insert(s, Ino, w.right)
ELSE NEW(1); t.num ;= Ino; t.next := w.first; wdit ;= t
END
END Insert;

PROCEDURE write(w: Word);
VAR t: Item;

50

BEGIN Texts.WriteString(W, w.key); t := w.first;
REPEAT Texts.Writelnt(W, t.num, 5); t := t.next UNT = NIL;
Texts.WriteLn(W)

END write;

PROCEDURH.ist*(w: Word);

BEGIN
IF w# NIL THEN List(w.left); write(w); List(w.ight) END ;
Texts.Append(Oberon.Log, W.buf)

END List;

BEGIN Texts.OpenWriter(W)
END TableHandler.

22. The Concept of a Sequence

22.1. About input and output

The usefulness and the success of high-level programmimgudges rests on the principle of
abstraction, the hiding of details that pertain to thepmaer which is used to execute the program
rather than to the algorithm expressed by the programdadimain that has most persistently relied on
abstraction is that of input and output operations. Thieat surprising, because input and output
inherently involve the activation of devices that pegipheral to the computer, and whose structure,
function, and operation differ strongly among various kindsl@ands. Many programming languages
have typically incorporated statements for readingvenitithg data in sequential form without reference
to specific devices or storage media. Such an abstraw@®many advantages, but there exist always
applications where some property of some device is totibeed that is poorly, if at all, available
through the standard statements of the language. Also, ggnesalsually costly, and consequently
operations that are conveniently implemented for somecelevnay be inefficient if applied to other
devices. Hence, there also exists a genuine desirekm tnaasparent the properties of some devices for
applications that require their efficient utilizationnlification and generalization by suppression of
details is then in direct conflict with the desire i@nsparency for efficient use.

In Oberon this intrinsic dilemma has been resolved ratiter circumvented - by not including any
statements for input and output at all. This extreme approsas made acceptable because of two
facilities. First, there exists the module structutevédhg the construction of a hierarchy of (library)
modules representing various levels of abstraction.rée@beron permits the expression of computer
specific operations, such as communication with peripheterfaces. These operations are typically
contained in modules at the lowest level of this hanarand are therefore counted among the so-
called low-levedl facilities. A program wishing to ignore the details of device hiagdlimports
procedures from the standard modules at the higher lefrdlsis hierarchy. When desiring utmost
efficiency or requiring access to specific properties pédcefic devices, one either uses low-level
modules, so-calledevice drivers, or uses the primitives themselves. In the latteecthe programmer
pays the price of intransportability, for his progsarefer directly to particulars of either his computer
or its operating system.

It is impossible to present in this context any opertiof devices at the low levels of the module
hierarchy, because there exists a wide variety of swdhede We restrict the following material to the
presentation of two typical modules used in performing consealtiinput and output operations.
Module Texts we have already encountered in examples in preceding chapiter main concept to be
presented is thile, data considered asquences of elements of the same type. For this purpose, we
present the definition of modukéles.

We must generally distinguish between legible and illegipbut and output. Legible input and output
serves to communicate between the computer and itsMestly the data elements are characters i.e.
values of type CHAR; the exception is graphical input and outmgdible data are input through
keyboards, scanners, etc. Legible output is generated by digpidyprinters. lllegible input and output
is made from and to so-callgdripheral storage media, such as disks and tapes, but also may originate
from sensors - e.g. in laboratories or drawing officand to devices that are controlled by computers,
such as plotters, factory assembly lines, trafficaiggrand networks. Data for illegible input and output
can be of any type, and need not be of type CHAR.

51

The vast majority of input and output operations of bothlelyible and illegible variety is appropriately
considered asequential. Their data are of a structure that does not exist basic data structuring
method in Oberon, such as the array or the record. Seggibave the following characteristics:

1. All elements are of the same type.

2. The number of elements is not known a priori. Tégence is therefore (a simple case of) a dynamic
structure. The number of elements is called¢hgth of the sequence.

3. A sequence can be modified only by appending elemertssaatd. Appending an element is called
writing.

4.0nly a single element of a stream is visible (sgitde) at any one time. Accessing this element is
calledreading, and the sequence is read by advancing from one eléotbet next.

In passing we state that the sequence as described abpeehaps the most successful case of data
abstraction encountered. It is certainly more widelydube actual practice than the often quoted
examples of stacks and queues. The language Pascal had iritlahethg its basic data structuring
methods along with arrays, records, and sets.

Before proceeding with the postulation and explanation afules for handling sequences, which we
will call files andtexts, we wish to point out an important separation of funcgierformed for legible
input and output. On the one hand, there is the actuedpwat of data to and from the computer. This
involves the activation and sensing of the state ep#ripheral device, be it a keyboard, a display, or a
printer. On the other hand, there is the functiortrahsforming the representation of data. If, for
example, the value of an expression of type INTEGER tsettransmitted to a display, the computer-
internal representation must be transformed into thisnddcepresentation as a sequence of digits. The
display device then translates the character repaant(usually consisting of 8 bits for each
character) into a pattern of visible dots or lineswiver, the former translation can be considered as
device independent, and is therefore a prime candidategaration from device specific operations. It
can be performed by the same routines without regard whetheequence is to be stored on a disk or
to be made visible on a display.

A third class of functions that can well be separatechfphysical data transfer and from conversion of
data representation, pertains to devices associatedmtk than a single sequence, the primary
example being a disk store. We refer to the operatioakanfating storage space and associating names
with individual texts or files. Considering that texts arnesfiare dynamic structures, storage allocation
is of considerable complexity. The naming of individudé¢sfiand in particular the management of
directories (in order to quickly locate individual files)another task requiring an elaborate mechanism.
Both storage allocation and directory management artatiks of individual service modules. There
seem to exist as many ways to manage these tasksagitist operating systems. And this is precisely
where diversity transcends the many levels of input amplub operations. We therefore strictly adhere
to and confine ourselves to the abstract notionsafcpence.

22.2. Filesand Riders

Elements of a sequence cannot be identified by an indéxfaes case of arrays, nor by a field name, as
in the case of a record. Elements are instead accesseduly one, advancing strictly sequentially. This
notion itself implies the postulation of an access maisha In the Oberon modulEles, we call it
Rider. A rider is a data structure, an object, which caplaeed on a file at a given position, and then
be used to write or read single elements. Hence, médleedefines not only one, but two data types:
File andRider. The former stands for the data, the latter foraperations performed. It now follows,
that several riders may be positioned on the sameafild,be moved independently. Not the file has a
reading or writing position, but each rider. Normaligwever, one rider only is used for a file.

DEFINITION Files,
TYPE File;
Rider = RECORD eof: BOOLEAN; res: LONGINT END ;

PROCEDURE Old (hame: ARRAY OF CHAR): File;
PROCEDURE New (name: ARRAY OF CHAR): File;
PROCEDURE Register (f: File);

PROCEDURE Close (f: File);

PROCEDURE Purge (f: File);

52

PROCEDURE Length (f: File): LONGINT;
PROCEDURE GetDate (f: File; VAR t, d: LONGINT);

PROCEDURE Set (VAR r: Rider; f: File; pos: LONGINT);
PROCEDURE Pos (VAR r: Rider): LONGINT;

PROCEDURE Base (VAR r: Rider): File;

PROCEDURE Read (VAR r: Rider; VAR ch: CHAR);
PROCEDURE ReadInt (VAR R: Rider; VAR x: INTEGER);
PROCEDURE ReadLInt (VAR R: Rider; VAR x: LONGINT);
PROCEDURE ReadReal (VAR R: Rider; VAR x: REAL);
PROCEDURE ReadLReal (VAR R: Rider; VAR x: LONGREAL);
PROCEDURE ReadString (VAR R: Rider; VAR x: ARRAY @HAR);

PROCEDURE Write (VAR r: Rider; ch: CHAR);
PROCEDURE Writelnt (VAR R: Rider; x: INTEGER);
PROCEDURE WriteLInt (VAR R: Rider; x: LONGINT);
PROCEDURE WriteReal (VAR R: Rider; x: REAL);
PROCEDURE WriteLReal (VAR R: Rider; x: LONGREAL);
PROCEDURE WriteString (VAR R: Rider; x: ARRAY OF Q@IR);

PROCEDURE Delete (name: ARRAY OF CHAR; VAR res: R3ER);
PROCEDURE Rename (old, new: ARRAY OF CHAR; VAR rid$TEGER);
END Files.

The procedures are listed in four groups. The first grqugoades on files, the second and the third on
riders for reading and writing respectively, and the fowr the filedirectory only. We assume that
files are stored on a persistent medium, such as aatiaglisk or flash-rom, and that all files are listed
in a directory with names.

In the first group, procedur®ld yields the file listed in the directory by the spedfieame.New
generates a new (empty) file with specified name. Acegistration in the directory is performed by
procedureRegister, typically after the entire file had been genera@dse terminates the writing of a
file (flushing buffers), and it is implied iRegister. GetDate yields the date and time of a file’s creation.

In the second grouEet places a rider on a file at a specified position (betw@ and the length of the
file). Pos indicates the rider’'s current position, aBdse the file on which it is placed. The Read
procedures read a specified type of data element (cowsistione or several bytes) without any
transformation of representation. They advance the loigléihhe appropriate amount. A string is assumed
to be terminated by a 0X character.

In the third group, procedures operate similarly for gdimgrgwriting) a file. Note that the rider must
not necessarily be positioned at the end of thedlteough this is the normal, prevalent case.

We are now in a position to show, how files are tgfhycwritten and read in Oberon. Let us assume the
declarations

f: Files.File; r: Files.Rider

First, the empty file is created, then a rider is ested with it, then we assume it is generated
sequentially (here in a whyile-loop), and finally (andianally) it is registered in the directory.

f .= Files.New(“MyFile™); Files.Set(r, f, 0);
WHILE more DO compute(next); Files.Write(r, next) END ;
Files.Register(f)

The file can thereafter be read by the following patt€irst, the file with specified name is associated
with variable f. Then a rider is placed at the sththe file, and then advanced by reading.

f .= Files.Old(“MyFile"); Files.Set(r, f, 0);
WHILE ~r.eof DO Files.Read(f, next); process(next) END

Note that the rider indicates that tyel of the file had been reached after the first unsuccessful attempt
of reading.

22.3. Texts, Readersand Writers

53

Texts, basically, are sequences of characters. In thexo® System, however, texts have some
additional properties. As they can be displayed and prititegi,must carry properties which determine
their style and appearance. In particulafpit is specified. This is a style, the patterns by which
characters are represented. Subsequences of chaicatertext may have their individual fonts.
Furthermore, Oberon texts specify color and verticakedff(allowing for negative offset for
subscripting, and positive offset for superscriptingkt$are typically subjected to complicated editing
operations, which require a flexible, internal data @sentation. Therefore Texts in Oberon differ
substantiall from Files in many respect. However, @irtassence they are also sequences, and the basic
operations strongly resemble those of files.

Our special interest in texts is justified by the facatthumans communicate with computers mostly
via texts, be they typed on a keyboard or displayed onearscAs a consequence, reading and writing
of texts usually includes a change of data representatioexgorple, integers will have to be changed
into sequences of decimal digits on output, and the mgadi integers requires the reading of a
sequence of digits and the computation of the represenitggl Wdese conversions are included in the
read/write procedures of modulexts, which we have used in many examples in preceding dalsapte
The following is its definition, which evidently resemblthat ofFiles. In place of the single type
Rider we find the two typeReader andWiter.

DEFINITION Texts;
IMPORT Files, Fonts;
CONST replace = 0; insert = 1; delete = 2;
Inval = 0; Name = 1; String = 2; Int = 3; Real = 4ng®eal = 5; Char = 6;
TYPE Text = POINTER TO RECORD
len: LONGINT
END ;
Buffer;
Reader = RECORD
eot: BOOLEAN;
fnt: Fonts.Font;
col, voff: SHORTINT
END ;

Scanner = RECORD (Reader)

nextCh: CHAR;

line, class: INTEGER;

i: LONGINT;

X: REAL;

y: LONGREAL,

c: CHAR;

len: SHORTINT;

s: ARRAY 32 OF CHAR;
END ;

Writer = RECORD

buf: Buffer;

fnt: Fonts.Font;

col, voff: SHORTINT;
END ;

PROCEDURE Open(t: Text; name: ARRAY OF CHAR);
PROCEDURE Delete(t: Text; beg, end: LONGINT);
PROCEDURE Insert(t: Text; pos: LONGINT; b: Buffer);
PROCEDURE Append(t: Text; b: Buffer);
PROCEDURE ChangelLooks
(T: Text; beg, end: LONGINT; sel: SET; fnt: Fonts.Famdl, voff: SHORTINT);

PROCEDURE OpenReader (VAR r: Reader; t: Text; pos: LN
PROCEDURE Read (VAR r: Reader; VAR ch: CHAR);
PROCEDURE Pos (VAR r: Reader): LONGINT;

54

PROCEDURE OpenScanner (VAR S: Scanner; t: Text; pOBIGINT);
PROCEDURE Scan (VAR S: Scanner);

PROCEDURE OpenWriter (VAR w: Writer);

PROCEDURE SetFont (VAR w: Writer; fnt: Fonts.Font);
PROCEDURE SetColor (VAR w: Writer; col: SHORTINT));
PROCEDURE SetOffset (VAR w: Writer; voff: SHORTINT
PROCEDURE Write (VAR w: Writer; ch: CHAR);

PROCEDURE WriteLn (VAR w: Writer);

PROCEDURE WriteString (VAR w: Writer; s: ARRAY OEHAR);
PROCEDURE Writelnt (VAR w: Writer; X, n: LONGINT);
PROCEDURE WriteHex (VAR w: Writer; X: LONGINT);
PROCEDURE WriteReal (VAR w: Writer; x: REAL; n: N EGER);
PROCEDURE WriteRealFix (VAR w: Writer; x: REAL; n, NTEGER);
PROCEDURE WriteLongReal (VAR w: Writer; x: LONGREAh; INTEGER);
PROCEDURE WriteDate (VAR w: Writer; t, d: LONGINT);

PROCEDURE Load (VAR r: Files.Rider; t: Text);
PROCEDURE Store (VAR r: Files.Rider; t: Text)
END Texts.

Procedur@penWriter uses as defaults a standard font, black color, andoffeet.

Simple, sequential reading and writing of a text now follow platterns of reading and writing a file.
Let us assume the following declarations of variables:

T: Texts.Text;
R: Texts.Reader;
W: Texts.Writer;

NEW(T); Texts.Open(T, “MyName”); Texts.OpenReader(RO)T, Texts.Read(R, ch);
WHILE ~R.eot DOprocess(ch); Texts.Read(R, ch) END

NEW(T); Texts.Open(T, “MyName”); Texts.OpenWriter(W);ngeate(ch)
WHILE more DO Texts.Write(W, ch)generate(ch) END ;
Texts.Append(T, W.buf)

Note that the Oberon paradigm is to write a texta iece of text, first into a buffer, and thereafter
insert or append it to a text. This is done for reasuinsfficiency, because the possibly needed
rendering of the text, for example on a display, caddme once upon insertion of the buffered piece of
text rather than after generating each character.

Very often one wants to read a text consisting of a sequidritems which are not all of the same type,
such as numbers, strings, names, etc. When using procedading items of a fixed type, the
programmer must know the exact sequence in which theugitems will appear in the text. Typically
one does not know, and even if a specific order is spdgcifiistakes may occur. So one should like to
have available a reading mechanism that reads itemg artéree, but lets the program determine what
type of item was read, and take further steps accordifphg facility is provided in the Oberon text
module by the machanism callsthnning. In place of aReader we use &canner. Procedurescan(S)
then reads the next item. Its kind can be determinethdpecting the fieldSclass, and its value
accordingly is given bg.i in the case an integer was re&a,if a real number was reafis if a name

or a string was read. This scheme has proven to beusektl because of its flexibility. It defines the
following syntax for texts to be scanned. Blanks anddimés serve to separate consecutive items.

item = name | integer | real | longreal | string | S|ttt

name = letter {letter | digit}.

integer = [sign] digit {digit} | digit {digit | hexdig} ,H"

hexdig = A LB .CY LD LE] LF

sign = -1

real = [sign] digit {digit} ,..“ digit {digit} [,E" [sig n] digit {digit}].

longreal [sign] digit {digit} ,.“ digit {digit} ,D* [sign] digit {digit}.

55

A string is any sequence of any characters (except qutel)sed in quotes. Special characters are are
all characters except letters, digits, and the quot&. mar

22.4. Standard Input and Output

In order to simplify the description of input and output oftdein simple cases, the Oberon system
introduces some conventions and global variables. Wethial source of input and sink of output
standard input and output.

Standard output sink is the texg defined as global variable in mod@beron. Given a global writer
W, the text, previously written by Write procedures itite writer’'s buffer (W.buf) is sent to the
displayedLog text by the statement

Texts.Append(Oberon.Log, W.buf)

The standard input is often assumed to be the text folpthia command which invoked execution of
a given procedure. This input text is identified by thdalde Par in moduleOberon. It is considered
as parameter of the invoked command, and it is typicalig by the scanning mechanism described
above. The necessary statements are:

Texts.OpenScanner(S, Oberon.Par.text, Oberon.Par.pa$3; Jean(S)

The first item thus read may be the first item ofdlsired text, or it may be the name of the text file to
be scanned, or something else, according to the spedoifiatthe individual command. The following
conventions have established themselves for the déisigrod input texts. Assume that the command
(procedure) name is followed by

- an identifier (possibly qualified). Then this is the nashthe input text (input file),
- an asterisk (*). Then the marked viewer (window) corstétie input text,

- an @ symbol. Then the most recent text selectidmei®éginning of the input text,
- an arrow (*). Then the most recent selection dertbtefile name of the input text.

These conventions are expressed by the following fumptiocedure yielding the designated input text:

PROCEDURE This*(): Texts.Text;
VAR beg, end, time: LONGINT;
S: Texts.Scanner; T: Texts.Text; v: Viewers.Viewer;
BEGIN Texts.OpenScanner(S, Oberon.Par.text, Oberon.Bariexts.Scan(S);
IF S.class = Texts.Char THEN
IF S.c="*"THEN (*input in marked viewer*)
v := Oberon.MarkedViewer();
IF (v.dsc # NIL) & (v.dsc.next IS TextFrames.FramEeEN
T := v.dsc.next(TextFrames.Frame).text; beg := 0
END
ELSIF S.c ="@" THEN (*input starts at selection*)
Oberon.GetSelection(T, beg, end, time);
IF time <O THEN T := NIL END
ELSIF S.c =" THEN (*selection is the file naMe
Oberon.GetSelection(T, beg, end, time);
IF time >= 0 THEN (*there is a selection*)
Texts.OpenScanner(S, Oberon.Par.text, Oberon.PafMeas3. Scan(S);
IF S.class = Texts.Name THEN (*input is namedile
NEW(T); Texts.Open(T, S.s); pos :=0
END
END
END
ELSIF S.class = Texts.Name THEN (*input is named file*)
NEW(T); Texts.Open(T, S.s); pos :=0
END ;
RETURN T
END This;

56

Let us assume that this function procedure is defined ddule Oberon, together with the global
variable pos, indicating the position in the text where input is tarts The following program for
copying a text may serve as a pattern for selectingniiet according to the conventions postulated
above.

MODULE ProgramPattern;
IMPORT Texts, Oberon;
VAR W: Texts.Writer; (*global writer*)

PROCEDURE copy(VAR R: Texts.Reader);

VAR ch: CHAR;
BEGIN Texts.Read(R, ch);

WHILE ~R.eot DO Texts.Write(W, ch); Texts.Read(R, END
END copy

PROCEDURE SomeCommand?;
VAR R: Texts.Reader; (*local reader*)

BEGIN Texts.OpenReader(R, Oberon.This.text, Oberom&sr
copy(R, W); Texts.Append(Oberon.Log, W.buf)

END SomeCommand,;

BEGIN Texts.OpenWriter(W)
END ProgramPattern.

Module Oberon can be considered as the core of the Oberon systerim@@ismall number of global
resources. These include the previously encountered dubgutand the recordPar, specifying the
viewer, frame, and text in which the activated commaes] Bnd hence providing access to its input
parameters. Here we show only an excerpt of the defimifionodule Oberon:

TYPE ParList = POINTER TO RECORD
vwr: Viewers.Viewer;
frame: Display.Frame;
text: Texts.Text;
pos: LONGINT;
END ;

VAR Log: Texts.Text;
Par: ParList;

PROCEDURE Time (): LONGINT;

PROCEDURE AllocateUserViewer (DX: INTEGER; VAR X; WTEGER);
PROCEDURE AllocateSystemViewer (DX: INTEGER; VAR X; INTEGER);
(*provide coordinates X and Y for a new viewer to becated*)

PROCEDURE GetSelection (VAR text: Texts.Text; VAR beugl, time: LONGINT);

To conclude this introduction to Oberon conventions abopiti and output, we show how a new
viewer (window) is opened, and how the output text is dickdhto this text viewer. Optimal
positioning of the new viewer is achieved by procedbiveron.AllocateViewer, with the specified set
of standard, frequently needed commands in the title bar.

PROCEDURE OpenViewer(T: Texts.Text);
VAR V: MenuViewers.Viewer; X, Y: INTEGER,;
BEGIN Oberon.AllocateUserViewer(Oberon.Mouse. X, X; Y
V := MenuViewers.New(TextFrames.NewMenu(
"Name", "System.Close System.Copy System.GEmwit.Search Edit.Store"),
TextFrames.NewText(T, 0), TextFrames.menuH, X, Y)

END OpenViewer;

57

Part 4

23. Object-oriented Programming

23.1. Theorigins of object-oriented programming

The term object-oriented programming (OOP) originatemlrad 1975. It expressed a shift in the
paradigm of programming. In the conventional, procedpragramming style thalgorithm stands in
the foreground of the programmer’s concerns, the algorith@nating on a set of data. In the object-
oriented view thalata stand in the foreground, the data on which algorithmspplkeed, and which are
grouped into what is now called ahject.

Programming is a notoriously difficult task, and the rhpiidcreasing power of modern computers made
the situation worse. The tasks to be modeled and sokednte more and more complicated. Their
complexity often surpassed the capabilities of the humiad. In this situation, it is not surprising that
the demand for better tools, for a new discipline, deempanaceas became urgent and ardent. The new
paradigm of object-oriented programming was thereforeongdd, as their proponents raised hopes for
an easier approach to complex problems. Partly, theges were exaggerated, partly the essence of
OOP was driven to unwise extremes for the sake of unitpctiine. For example, even simple integers
were to be regarded as objects in the new sense. Whdhigdnew sense”?

Before we try to answer this question, we should pointtoatt the notion, but not the term OOP was
introduced at least 10 years earlier. In 1965 the languagel&Sivas introduced as a variant of Algol
adapted to and extended for the needs of simulation ofisygfeverned by discrete events. (What later
became objects were then called elements). A well-kreoxample of such a system was a supermarket.
Here customers, merchandise, cashiers, personnel, sheviss were all modeled as objects, and they
formed classes. For modeling such systems, this wasbtfieus approach. Only ten years later, under
the leadership of Smalltalk, was the new viewpointredd to other applications. Of foremost interest
were operating systems, where resource pools, processodews, texts and devices became regarded
as autonomous agents. Graphics editors were anothablsuépplication. They are used to handle
various figures such as lines, circles, rectanglapsel, text captions, each forming their own class.

In these examples, the objects constitute almost amtom® entities, in the simulated models as well as
the operating systems. They not only feature attricanesproperties common to all members of their

class, but also a common behavior represented bgiassbprocedures. These are typically activated by
a “higher power” such as a scheduler in the case of dimueor a human being in the case of an

operating system or a graphics editor. Both data andegures together constitute and characterize
objects.

The designers of Smalltalk clearly wished to presenbniyta new language, but also a new paradigm,
a new approach to programming. To be effective and womg in this endeavor, they provided also a
new terminology to underscore a different quality of programgmin this effort, record-structured
variables becamebjects, their associated procedures becamathods, a data type becamechkass, and
calling a procedure is now termsehding a message to an object. This is denoted as

object.method (message)

In Simula, the ancestor of OOP, there was not afsetethods to be invoked by messages, but rather a
single coroutine representing the algorithmic behavidghefsimulated object, which was regarded as
continuously alive. We may now consider the parts batwmeakpoints as methods, although the
analogy is somewhat lacking. For example, a customedreostipermarket would be characterized by
first entering the scene, picking up a cart, wandering alomghelves, picking up merchandise, passing
a cashier, and finally returning the cart and leavireydbene. Objects (customers) would emerge (be
allocated), proceed, and leave (be deallocated). Heypieally a dynamic data structure, a linked list, is
used to represent the set of currently involved objects.

It now seems that OOP merely provides (or dictates®)ffarent view of familiar programming
concepts, but does not require any additional featureslamguage, except perhaps some notational
conventions. The same old contents in a new form?egulestly, we will investigate this question.

23.2. Type extensions and inhomogeneous data structures

58

Let us consider a simple, rudimentary line drawing editas. typical for many applications in so far as
it operates on a set of objects. In this case, thectsbpare straight lines, rectangles, circles, ellipsss
captions, and others. These objects are typically repegb@s a linked list, to which it is easy to add
and delete new instances.

However, using a statically typed language, we immediatetpunter a difficulty. Declaring each of the

figures by its own record type, we are prevented from fognai single list. Declaring a separate list for

each type of figure appears as artificial and cumbersomé¢h®aother hand, integrating all figure types

into a single declaration appears as equally contortdccambersome: First, a discrimination field is

necessary, subsequently giving rise to various IF statem®acond, a single declaration will contain

record fields that pertain to only a few, but not tbfiglure types. Whatever one chooses to do, the
solution remains unsatisfactory.

We therefore introduce a new feature in the languageoBbéris calledtype extension. Basically, in
our example, we declarebase type calledFigure, and then a derived type for each individual kind of
figure, here called.ine, Rectangle, Circle, etc. The key is that each instance of these subigpaso
considered as of its base tygigure. Such declarations of derived types have the form:

RecordType = “RECORD” “(* Typeldentifier “)” FieldLiStequence "END".

The type identifier specifies the base type of the rdexived record type, which thereby becomes a
subtype. Evidently, it now becomes possible to defitteeshierarchies of types. Consider our example:

TYPE Figure = POINTER TO FigureDesc;

FigureDesc = RECORD (*this is the base type*)
X, ¥, W, h: INTEGER; (*coordinates, width and heighbbfect*)
next: Figure (*next in list of figures*)

END ;

RectangleDesc = RECORD (FigureDesc) lw: INTEGER END ;
CircleDesc = RECORD (FigureDesc) radius: INTEGER END ;
EllipseDesc = RECORD (FigureDesc) a, b: INTEGER END ;
CaptionDesc = RECORD (FigureDesc) cap: ARRAY 32 OF INER&ND ;
LineDesc = RECORD (FigureDesc) END

Accordingly, a descriptor of a rectangle consists offidds X, y, w, h, and Iw (line width), the one for a
circle of the fields x, y, w, h, radius, the one forddlipse of x, y, w, h, a, b, and the one for a text
caption of x, y, w, h, cap. The derived types retainfialds of the base type. In object-oriented
terminology, they are said taherit the properties of the base. We will not adopt thitrmpomorphic
term.

We call the derived typesxtended types, because they extend the base type with addipoogerties.

In object-oriented terminology, the base type is cadledbstract type, on which theconcrete types, the
extended types, rest. All of them are compatible allo thieir base type. Therefore, it is possible to link
them into a single list through the base type’s fiedet, and therefore to build data structures that
contain elements of different types, thatinhomogeneous structures. For many applications, this is an
important and necessary requirement.

When, for example, traversing such an inhomogeneoug lisgyi be necessary to determine the type of
each encountered object. It is only known that everyahérim the list is of typd-igure, but now we
wish to determine the subtype of an individual elements Ehpossible through the new facility of the
typetest, which is classified as a Boolean expression, asdhi®form (syntax)

expression = variable “IS” identifier.

Assume a variablp of type Figure, then the traversal of a list and the discriminatediegtjbn of a
drawing procedure can be expressed as follows:

WHILE p # NIL DO
IF p IS Line THEN DrawLine(p)
ELSIF p IS Circle THEN DrawCircle(p)

59

END ;
p = p.next
END

We will discover in the next section that there is altyua better, shorter way of expressing this action.

The type test is a necessary feature, because Obesateviated from the dogma of strictly static data
typing. Note, however, that the actual type T of a Wéeialeclared to be of base type TO can only be a
subtype of TO. AFigure can be d.ine, Circle, etc., but not, for example, an integer. Type tests are
therefore not needed for most data accesses. Furtreryme tests can be implemented very efficiently.

In addition to the type test, Oberon also offers thesiwant oftype guard, which has the form of a
selector in variable designators.

designator = qualident {"." ident | "[" ExpList "]" | "ualident ")" | "A" }.
Consider the example of the designator
p(Circle).radius

The simple designatgr.radius would not be acceptable, becapsis of typeFigure, which does not
feature a fieldradius. With the type guard, the programmer can ascertainirihais case is also of
type Circle, in which case the fieldadius is indeed applicable. Wheregsis of base typd-igure,
p(Circle) is of typeCircle. Of course, it must be assumed that the programmer h#es snee that his
claim is correct, and the system will have to chehbletiver this is indeed so (at run time). The type guard
in a sense resembles an array index, where a systentheg& whether the actual index lies within the
specified array bounds.

23.3. Methods

It has already been remarked that objects are chaescterot only by their attributes (data), but also by
their behavior, by their procedures. Just as attributmg differ among various subtypes, so may their
behavior. Therefore, it is sensible to associateptocedures directly with individual objects or atfeas
their subtypes. In strongly object-oriented languagedgtdshieved by letting class declarations specify
associated procedure declarations. In Oberon, we ugeismnailable and refrain from introducing new
features. We simply add to a record’s data fields othkisfithat represent procedures, that is, are of
procedure types. We redefine our example of the type Figuoerdingly. Let us assume the two
operations of drawing and marking figures.

FigureDesc = RECORD
X, ¥, W, h: INTEGER,;
draw: PROCEDURE (f: Figure);
mark: PROCEDURE (f: Figure; on: BOOLEAN);
next: Figure (*next in list of figures*)
END ;

Whereas in strictly object-oriented languages methodswat@matically associated with every object
upon its creation, in Oberon this must be achieved byaxpBsignments. Such initial assignments are
calledingtallations (of procedures). For example:

VAR c: Circle;
NEW(c); c.x := ; c.draw := DrawCircle; c.markMarkCircle; ...

The call of a method, i.e. of an object-bound procedsiexpressed as in the following example:
c.mark(c, TRUE)

The association of type-specific procedures to every ohgxtthe substantial advantage that subclass-
discriminating conditional statements can be avoided. éxample, the above call automatically
activates the appropriatdarkCircle procedure without having to execute a sequence of if statem
distinguishing between lines, circles, rectangles etés Tontributes to efficiency. The drawing of all
objects in a list is now expressed quite simply as

WHILE p # NIL DO p.draw(p); p := p.next END

and in each call automatically the appropriate drawinggaure is activated.

60

23.4. Handlersand M essages

In Part 3 of this text, the importance of proper decomiposi{modularization) of systems was
emphasized. A module restricts the visibility of declaragiand incorporates the concept of information
hiding. In object-oriented languages a type definition, i.elags declaration, assumes the role of a
module, also in the sense of unit of separate compilatio@beron, we prefer to keep the constructs
expressing information hiding, and those for type andgqutaore definition separated and independent.
Hence, every module may contain one or several typeitigfs, and perhaps none at all.

Nevertheless, considering a data type and its operatos lagical unit, and to hide details of
implementation, are old and proven techniques manifeshénconcept of the abstract data type.
Particularly for complex objects it is highly desiralkat the various subtypes can be defined and
implemented by separate teams of programmers, and thispgeybars after the definition of the basis
was completed and had been published or distributed. It isliesto be able to define every derived
type in its own module. This demand also holds for lgses, with operators applying to the set of
objects (in contrast to individual objects) defined ia base module, as well as for those defining the
derived type in client modules. Among such operations waiorethe so-calletiroadcast, the traversal

of the objects’ data structure (list, tree) with apgiaaof a method to every element. Declarations of
such broadcasts are thus inherently confined to thenhadele.

Now it may happen that a subtype introduces its speciécabjons, including some that are not shared

by other subtypes. Obviously, it is desirable that alesd operations can be broadcast with the
respective procedure defined in the base module, evea ifdWv operators were introduced years after

the base had been established. The base, howevert ¢gniebanged nor accessed, because in the
meantime it might have been distributed to many custanitaw can this dilemma be resolved?

The solution lies in replacing the set of methods by aesipgicedure, which discriminates between the
various methods. Such a single procedure we cadindler. It has only two parameters: The object to
which it is applied, and an identification of the opematwith its actual parameters. The second
parameter has the form of a record, and we callmessage. For such a message type to be capable of
denoting any operation, even those to be introduceceifutire, the same feature is used as for adding
new types derived from old oneBype extension. Let us explain this solution by our example of the
graphics editor.

First, the declaration of the base type now becomes

FigureDesc = RECORD
X, ¥, W, h: INTEGER; (*coordinates, width and heighbbfect*)
handle: Handler;
next: Figure (*next in list of figures*)

END ;

with the procedure typdandler being defined as
Handler = PROCEDURE (f: Figure; VAR msg: Message)
and the new typMessage by the (extensible) null record
Message = RECORD END

If certain operations applying to all objects are alreldgwn at the time of defining the base type
(which is usually the case), the respective messagdygab)are directly declared, as for example:

DrawMsg = RECORD (Message) END ;
MarkMsg = RECORD (Message) on: BOOLEAN END ;
MoveMsg = RECORD (Message) dx, dy: INTEGER END ;

As an aside, we note that the record fisdgt need not be exported from the base module, thus keeping
the structure of the set of objects (list, tree) asdjterations, such as traversal, hidden and flexible. A
broadcast can now be specified as follows:

PROCEDUREBroadcast(VAR msg: Message);
VAR f: Figure;

BEGIN f:=root; (*root is a global variable in tiase module*)
WHILE f # NIL DO f.handle(f, msg); f := f.next END

61

END Broadcast

Whenever a concrete figure type is introduced, this wpically be done in a new client module
importing the base modukégures. In addition to the new subtype, for examigéetangle, its associated
handler is declared following the pattern shown below. Hhisdler is installed in the fielldandle of
every object of typ&ectangle.

PROCEDUREHandle(f: Figure; VAR msg: Message);
VAR r: Rectangle;
BEGIN r := f(Rectangle);
IF msg IS DrawMsg THEN (*draw rectangle r*)
ELSIF msg IS MarkMsg THEN MarkRectangle(r, msg(MarkMag).
ELSIF msg IS MoveMsg THEN
INC(r.x, msg(MoveMsg).x); INC(r.y, msg(MoveMsg).y)
ELSIF ...
END
END Handle

The statement for moving a single object f by displacesméX and dY is now somewhat complicated:
VAR msg: MoveMsg;
msg.dx := dX; msg.dy := dY; f.handle(f, msg)

However, we must keep in mind that mostly messages ardaebjects indirectly, that is, when the
recipient is not known by the sender. A good examplesidtoadcast:

msg.dx := dX; msg.dy := dY; Broadcast(msg)

The particular flexibility of this technique using handlersd anessages — sometimes identified as
polymorphism — as well as its extensibility stems from the fdwitt“unknown” messages are simply
ignored. They “fall through” the cascade of if — elsiftataents in the handlers of objects to which the
message does not apply.

Let us, for example, add a new module, Bhgkers, to our editor system. It contains the declaration of
the derived typeBlinker (BlinkerDesc). Let it require a new method, causingdhject to blink in a
certain rhythm. We represent it by the (derived) mesBliggMsg. Then the call of the handler of any
other object in the global object list, through whiclbraadcast will propagate, will have no effect,
because the case

ELSIF msg IS BlinkMsg THEN ...

does not exist in the handler. The technique using handler@ange@s optimal, unlimited extensibility of
existing systems by merely adding new modules on top of atingkhierarchy.

We summarise the technique as follows:

1. Anobject is represented by a pointer to a record. The recotdrésaa single, procedural field called
handle. The procedure assigned to handle is calldhraller. It features two parameters. The first
designates the object to which the handler is applieds&bend identifies the operation to be selected.
Itis a VAR parameter with record structure, and itaiet] amessage.

2. The handler defines the behavior of an object. tialked with a message which is typically of an
extension of typ®Message specific to the object type on hand.

3. The message parameter specifies the action to be bgkes (sub)type. Its record fields constitute the
parameters of the action. Their number and types aodisfie the particular message type and action.

4. The handler consists of a single if — elsif cascadpe Tgsts discriminate between the various
message subtypes and thereby actions.

5. Assigning the handler to an object is callestiallation.
6. An action is initiated by first setting up the messagkthensending the message to the object.

7. Messages may teoadcast to all objects of a heterogeneous data structure wittrmwledge of the
nature of the structure. Inapplicable messages willgitve ignored.

62

This concludes our brief introduction to the object-oednparadigm of programming. We realize that
almost no language features had to be added to Oberon to silppgart from the already present
facilities of records and of procedural types, only thdonoof type extension is both necessary and
crucial. It allows to construct hierarchies of types amduild inhomogeneous data structures. As a
consequence of abandoning the rule of strictly stapinty the introduction of dynamic type tests
became necessary. The further facility of the typedjisamerely one of convenience.

The procedural style of programming, which is most appatpin many applications, and the object-
oriented style can co-exist in Oberon quite happily. & @hooses to program in the conventional,
procedural style, one can ignore the object-orienteitities, and they do not get in one’s way.

Appendix
1. The Syntax of Oberon

ident = letter {letter | digit}.

number = integer | real.

integer = digit {digit} | digit {hexDigit} "H" .

real = digit {digit} "." {digit} [ScaleFactor].
ScaleFactor = ("E" | "D") ["+" | "-"] digit {digit}.
hexDigit = digit | "A" | "B"|"C"|"D"|"E" | "E

digit = "0"|"1"|"2"|"3"|"4"|"5" | "6" | "7" | "8]"9".
CharConstant = """ character """ | digit {hexDigit} "X".
string = " {character} """ .

qualident = [ident "."] ident.

identdef = ident ["*"].

TypeDeclaration = identdef "=" type.

type = qualident | ArrayType | RecordType | PointgellyProcedureType.
ArrayType = ARRAY length {"," length} OF type.

length = ConstExpression.

RecordType = RECORD ["(" BaseType ")"] FieldListSeque&dD.
BaseType = qualident.

FieldListSequence = FieldList {";" FieldList}.

FieldList = [IdentList ":" type].

IdentList = identdef {"," identdef}.

PointerType = POINTER TO type.

ProcedureType = PROCEDURE [FormalParameters].

VariableDeclaration = IdentList ":" type.
designator = qualident {"." ident | "[" ExpList "]" | "ualident ")" | "A" }.

ExpList = expression {"," expression}.
expression = SimpleExpression [relation SimpleExpragsio

relation = "="|"#" | "<"|"<="|">" | ">=" NI | IS.
SimpleExpression = ["+"|"-"] term {AddOperator term}.
AddOperator = "+"|"-"| OR.

term = factor {MulOperator factor}.
MulOperator = ™" |"/" | DIV | MOD | "&" .
factor = number | CharConstant | string | NILt | se
designator [ActualParameters] | "(" expression)" [faetor.

set = "{" [element {"," element}] "}".

element = expression [".." expression].
ActualParameters = "(" [ExpList])" .

statement = [assignment | ProcedureCall |
IfStatement | CaseStatement | WhileStatement | Repeat@nt |
LoopStatement | WithStatement | EXIT | RETURN [expoeddi
assignment = designator ":=" expression.
ProcedureCall = designator [ActualParameters].
IfStatement = IF expression THEN StatementSequence
{ELSIF expression THEN StatementSequence}
[ELSE StatementSequence]
END.

CaseStatement = CASE expression OF case {'" ¢Bt&§E StatementSequence] END.

Case = [CaselLabelList ":" StatementSequence].
CaselabelList = CaselLabels {"," CaseLabels}.

Caselabels = ConstExpression [".." ConstExpression]
WhileStatement = WHILE expression DO StatementSeguEND.
LoopStatement = LOOP StatementSequence END.

WithStatement = WITH qualident ™" qualident DO Statat&equence END .

63

64

ProcedureDeclaration = ProcedureHeading ";" ProcedureBedy.i
ProcedureHeading = PROCEDURE identdef [FormalParasjeter
ProcedureBody = DeclarationSequence [BEGIN Stateraguthce] END.
ForwardDeclaration = PROCEDURE """ identdef [Fornzsaiineters].
FormalParameters = "(" [FPSection {";" FPSectio)}][":" qualident].
FPSection = [VAR]ident {","ident}":" FormalType.

FormalType = {ARRAY OF} qualident.

DeclarationSequence = {CONST {ConstantDeclaratiop|";"
TYPE {TypeDeclaration ";"} | VAR {VariableDeclaratio";"}}
{ProcedureDeclaration ";" | ForwardDeclaration ";"}.

Module = MODULE ident";" [ImportList] Declaration§aence
[BEGIN StatementSequence] END ident "." .

ImportList = IMPORT import {"," import} ";" .

Import = ident [":=" ident].

2. Symbols and K eywords

+ = ARRAY IS TO

- A BEGIN LOOP TYPE
* = CASE MOD UNTIL
/ # CONST MODULE VAR
~ < DIV NIL WHILE
& > DO OF WITH
. <= ELSE OR

, >= ELSIF POINTER

; END PROCEDURE

| : EXIT RECORD

() IF REPEAT

[] IMPORT RETURN

{ } IN THEN

3. Standard Data Types

CHAR, BOOLEAN, SHORTINT (8 hits)
INTEGER (16 or 32 hits)
LONGINT, REAL, SET (32 bits)
LONGREAL (64 bits)

4. Standard Functions and Procedures

Name

ABS(x)
ODD(x)
CAP(X)
ASH(x, n)
LEN(v, n)
LEN(v)
ORD(x)
CHR(X)
SHORT(x)

LONG(x)

Argument type

numeric
integer type
CHAR
integer types
v: array type
v: array type
CHAR
INTEGER

LONGINT
INTEGER
LONGREAL

SHORTINT

Result type

type of x
BOOLEAN
CHAR
LONGINT
LONGINT
LONGINT
INTEGER
CHAR

INTEGER
SHORTINT
REAL

INTEGER

absolute value

XxXMOD2=1
corresponding capital letter

x X'2(arithmetic shift)

length of v in dimsion n

length of v in dimena 0
ordinal number of character x
character with ordinal number x
identity (truncation possible!

identity

ENTIER(X)
INC(v, n)
INC(v)
DEC(v, n)
DEC(v)
INCL(v, n)
EXCL(v, n)
COPY(X, V)
NEW(v)
HALT(x)

INTEGER LONGINT
REAL LONGREAL
real type LONGINT

integer types

integer types

integer types

integer types

v: SET; n: integer type
v: SET; n: integer type
X: character arry, string
pointer type
integer constant

65

largest integer not graeter

Vi=vV+n
vi=v+1l
V:i=v-n
vi=v-1

v:i=v+{n}
v:=v-{n}
V=X

allocate v*

terminate computation

