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Introduction

This monogram is written with the graduate student in mirftd in mind to write a short, crisp book that
would introduce my students to the basic ideas and concepisid many body physics. At the same time,
| felt very strongly that | should like to share my excitemauith this field, for without feeling the thrill of
entering uncharted territory, | do not think one has the watitin to learn and to make the passage from
learning to research.

Traditionally, as physicists we ask “what are the microscdgwvs of nature ?”, often proceeding with the
brash certainty that once revealed, these laws will havie prafound beauty and symmetry, that the proper-
ties of the universe at large will be self-evident. This basiilosophy can be traced from the earliest atomistic
philosophies of Democritus, to the most modern quests ty goiantum mechanics and gravity.

The dreams and aspirations of many body physics interwimatibmistic approach with a complimentary
philosophy- that olemergent phenomen@rom this view, fundamentally new kinds of phenomena emerg
within complex assemblies of particles which can not becigdted from ara priori knowledge of the mi-
croscopic laws of nature. Many body physics aspires to &gtk from the microscopic laws, new principles
that govern the macroscopic realm, asking

What new principles and laws emerge as we make the journeytfrermicroscopic to the macroscopic?

This is a comparatively new scientific philosophy. Darwirswlae perhaps the first to seek an understand-
ing of emergent laws of nature. Following in his footsteps/tBnann was probably the first physicist to
appreciate the need to understand how emergent principdmked to microscopic physics, From Boltz-
mann’s biography[1], we learn that he was strongly influenaed inspired by Darwin. In more modern
times, a strong advocate of this philosophy has been Philgeeson, who first introduced the phrase “emer-
gent phenomenon” into physics[2]. In an influential artielgitled “More is diterent” written in 1967,[2]
P.W. Anderson captured the philosophy of emergence, \gritin

“The behavior of large and complex aggregations of elemsnparticles, it turns out, is not to be under-
stood in terms of a simple extrapolation of the propertiea ééw particles. Instead, at each level
of complexity entirely new properties appear, and the usteding of the new behaviors requires
research which | think is as fundamental in its nature as amgd

P. W. Anderson from “More is Dierent” , 1967.

In an ideal world, | would hope that from this short course ryknowledge of many body techniques
will grow hand-in-hand with an appreciation of the motivatiphilsophy. In many ways, this dual track
is essential, for often, one needs both inspiration andvissrto steer one lightly through the formalism,
without getting bogged down in mathematical quagmires.

| have tried in the course of the book to mention aspects ohistery of the field. We often forget that
act of discovering the laws of nature is a very human and vasgipnate one. Indeed, the act of creativity in
physics research is very similar to the artistic procesm&imes, scientific and artistic revolution even go
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hand in hand - for the desire for change and revolution oftesses between art and sciences[3]. | think it
is important for students to gain a feeling of this passidnit the science, and for this reason | have often
included a few words about the people and the history beliiaddeas that appear in this text. There are
unfortunately, very few texts that tell the history of marmdy physics. Pais’ book “Inward Bound” has some
important chapters on the early stages of many body phyifesy additional references are included at the
end of this chapter[4, 5, 6, 7]

There are several texts that can be used as reference bgudksaltel with this monogram, of which a few
deserve special mention. The student reading this bookwesit! to consult standard references on condensed
matter and statistical mechanics. Amongst the variouseetes let me recommend “Statistical Physics Part
II” by Landau and Pitaevksii[8]. For a conceptual undemindf the to Anderson’s classic “Basic Notions
in Condensed Matter Physics”[9]. For an up-to-date petspeon Solid State physics from a many body
physics perspective, may | refer you to “Advanced Solide&SRitysics” by Philip Phillips [10]. Amongst the
classic references to many body physics let me also menAiGD"[11], Methods of Quantum Field Theory
by Abrikosov, Gork’ov and Dzyaloshinski. This is the texattdrove the quantum many body revolution
of the sixties and seventies, yet it is still very relevarday if rather terse. Other many body texts which
introduce the reader to the Green function approach to mady physics include “Many Particle Physics”
by G. Mahan[12], notable for the large number of problemsrogigdes, “Green Functions for “Green’s func-
tions for Solid State Physics” by Doniach and Sondheimérgh8l the very light introduction to the subject
“Feynman diagrams in Solid State Physics” by Richard M&{itL#]. Amongst the more recent treatments, let
me note Alexei Tsvelik's “Quantum Field Theory” in Condedddatter Physics”[15], provides a wonderful
introduction to many of the more modern approaches to ca®tematter physics, including an introduction
to bosonization and conformal field theory. As a referendfécearly developments of many body physics,
| recommend “The Many Body Problem”, by David Pines[16], ethcontains a compilation of the classic
early papers in the field. Lastly, let me recommend the readeumerous excellent online reference sources,
in addition to the online physics archive hifprXiv.org, let me mention writing include online lecturetes
on many body theory by Ben Simon and Alexander Atlund[17] keature notes on Solid State Physics and
Many Body Theory by Chetan Nayak[18].

Here is a brief summary of what we will cover:

1 Scales and complexity, where we discuss the gulf of timel€Rgth-scale (L), particle number (N) and
complexity that separates the microscopic from the maopisc

2 Second Quantization. Where make the passage from the watiefu, to the field operator, and introduce
the excitation concept.

3 Introducing the fundamental correlator of quantum fields:Green’s functions. Here we develop the tool
of Feynman diagrams for visualizing and calculating mangyborocesses.

4 Finite temperature and imaginary time. By replacding- 7, e ™"t — 7, we will see how to extend

quantum field theory to finite temperature, where we will findttthere is an intimate link between fluctu-

ations and dissipation.

The disordered metal. Second quantized treatment of wel@drdered metals: the Drude metal, and the

derivation of “Ohm’s law” from first principles.

Opening the door to Path Integrals, linking the partitiondtion and S-matrix to an integral over all

possible time-evolved paths of the many-body sys@ma. fp ATH e S/,

The concept of broken symmetry and generalized rigidgyllastrated by superconductivity and pairing.

A brief introduction to the physics of local moment systems

[5)]

(2]

o ~

2
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Finally, some notes on the conventions used in this bools Aok uses standard Sl notation, which means
abandoning some of the notational elegance of cgs unitshimgs the book into line with international
standards. Following a convention followed in the early ®as texts on physics and many body physics, and
by Mahan’s many body physics[12], | use the convention thaicharge on the electron is

e=-1602---x 107*°C (1.1)

In other wordse = —|ef denotes the magnituded the sign of the electron charge. This convention minimizes
the number of minus signs required. With this notation, tieenfftonian of an electron in a magnetic field is
given by
(p-eAy

H= m ot eV (1.2)
whereA is the vector potential and the electric potential. The magnitude of the electron ohasglenoted
by |e| in formulae, such as the electron cyclotron frequengy= ‘%B. Following a tradition started in the
Landau and Lifschitz series, the book uses the notation

F=E-TS-uN (1.3)

for the “Landau Free energy” - the Grand Canonical versidhefraditional Helmholtz Free energg{TS),
for simplicity, this quantity will be refered to as the Fraeeegy. One of the more fliicult choices in the book
concerns the notation for the density of states of a FermiGadeal with the dierent conventions used in
Fermi liquid theory, in superconductivity and in local mamghysics | have adopted the notation

N(0) = 2N(0)

to denote the total density of states at the Fermi energyrenkgD) is the density of states per spin. The
alternate notatioMN(0) = p is used in Chapters 15 and 16, in keeping with traditionahtiah in the Kondo
effect.
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Scales and Complexity

We do infact know the microscopic physics that governs allatse chemistry, materials and possibly life
itself. In principle, all can be determined from the manytjoée wavefunction

WX, %o .. X, 1), (2.1)
which in turn, is governed by the Satlinger equation[1, 2], written out for identical partisles
2, oW
—E;Vj+;V(%—Yj)+2U(Yj) ¥ =i (2.2)

[ Schibdinger, 1926]

There are of course many details that | have omitted- forims, if we're dealing with electrons th&f{x)
is the Coulomb interaction potential,

& 1
V= g @3)
ande = —|¢ is the charge on the electron. In an electromagnetic field wstrfgauge” the derivatives

V - V—i(e/h)A, U(X) = U(X) + ed(X), whereA is the vector potential and(X) is the electric potential.
Also, to be complete, we must discuss spin, the antisymnuétiy under particle exchange and if we want
to be complete, we can not treat the background nucleii dioiséay, and we must their locations into the
wavefunction. With these provisos, we have every reasoelieve that this is the equation that governs the
microsopic behavior of materials.

Unfortunately this knowledge is only the beginning. Why? &8ese at the most pragmatic level, we are
defeated by the sheer complexity of the problem. Even the dasolving the Schidinger equation for
modest multi-electron atoms proves insurmountable witthald approximations. The problem facing the
condensed matter physicist, with systems involving®Xioms, is qualitatively more severe. The amount
of storage required for numerical solution of Schrodinggunagion grows exponentially with the number
of particles, so with a macroscopic number of interactingiglas this becomes far more than a technical
problem- it becomes one of principléndeed, we believe that the gulf between the microscopit the
macroscopic is something qualitative and fundamental, sohnso that new types of property emerge in
macroscopic systems that we can not anticipate a priori lygusrute-force analyses of the Sédinger
equation.

The “Hitchhiker’s guide to the Galaxy” [3] describes a supemputer called “Deep Thought” that after
millions of years spent calculating ‘the answer to the wtienquestion of life and the universe’, reveals it
to be 42. Adams’ cruel parody of reductionism holds a cersaimy in physics today. Our "forty two”, is
Schroedinger's many body equation: a set of relations thase complexity grows so rapidly that we can'’t
trace its full consequences to macroscopic scales. All & finovided we wish to understand the workings
of isolated atoms or molecules up to sizes of about a nanonbetsbetween the nanometer and the micron,

bk . pdf

Chapter 2. ©Piers Coleman 2011

wonderful things start to occur that severely challengeundgerstanding. Physicists, have coined the term
“emergence” from evolutionary biology to describe thesergimena(4, 5, 6, 7, ].

The pressure of a gas is an example of emergence: it's a cateeproperty of large numbers of particles
which can not be anticipated from the behavior of one partadbne. Although Newton’s laws of motion
account for the pressure in a gas, a hundred and eighty ylepsed before Maxwell developed the statistical
description of atoms needed to understand pressure.

Let us dwell a little more on this gulf of complexity that sepiges the microscopic from the macroscopic.
We can try to describe this gulf using four main catagoriesoale:

o T.Time 10°.

e L.Length 1G.

o N. Number of particles. 8
e C Complexity.

2.1 Time scales

We can make an estimate of the characteristic quantum tiale bg using the uncertainty principlerAE ~
7, so that

h h
T eV T 1079
Although we know the physics on this timescale, in our mazwp& world, the the characteristic timescale
~ 1s, so that

At ~ 10 %, (2.4)

ATmacro - 1015 (2 5)

A'I'Quantum

To link quantum, and macroscopic timescales, we must makemdomparable with an extrapolation from
the the timescale of a heart-beat to the age of the univei8éil(ion yrs ~ 1017 s.)

2.2 L: Length scales

April 29, 2012

An approximate measure for the characteristic length seale quantum world is the de Broglie wavelength
of an electron in a hydrogen atom,

LQuan(um“’ 1(rl°m, (2.6)
so
Luacroscopic 3 @7
LQuantum

At the beginning of the 20th century, the leading philosopsteysicist Mach argued to Boltzmann that the
atomic hypothesis was metaphysical as one could neveragrezsmachine with the resolution to image any-
thing so small. Today, this incredible gulf of scale can §oba spanned by scanning tunneling microscopes,
able to resolve electronic details on the surface of masaniah sub-Angstrom resolution.
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Matter wave

Fig. 2.1 The typical size of a de Broglie wave is 10-1°m, to be compared with a typical scale

1cm of a macroscopic crystal.

2.3 N: particle number
|

To visualize the number of particles in a single mole of sambse, it is worth reflecting that a crystal con-
taining a mole of atoms occupies a cube of roughdytl From the quantum perspective, this is a cube with
approximately 100million atoms along each edge. Avagaduosber

Niacroscopic= 6 % 107% ~ (100 million)* (2.8)

a number which is placed in perspective by reflecting thahtivaber of atoms in a grain of sand is roughly
comparable with the number of sand-grains in a 1 mile beaokicl however that we are used to dealing
with inert beaches, where there is no interference betweendnstituent particles.

2.4 C: Complexity and Emergence.

Real materials are like macroscopic atomvhere the quantum interference amongst the constituetitiea
gives rise to a range of complexity and diversity that causds the largest gulf of all. We can attempt to
quantify the "complexity” axis by considering the numberabdms per unit cell of a crystal. Whereas there
are roughly 100 stable elements, there are roughly’ $8ble binary compounds. The number of stable
tertiary compounds is conservatively estimated at mone 118, of which still only a tiny fraction have been

7
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explored experimentally. At each step, the range of dityeiscreases, and there is reason to believe that at
each level of complexity, new types of phenomenon begin tergm

But it is really the confluence of length and time scale, pathumber and complexity that provides
the canvas on which emergent properties develop. Whileickssatter develops new forms of behavior
on large scales, the potential for quantum matter to devetoprgent properties is far more startling. For
instance, similar atoms of niobium and gold, when scaleduhe micron-scale, form crystals with dramat-
ically different properties. Electrons roam free across gold crystafaing the conducting fluid that gives it
lustrous metallic properties. Up to about 30 nanometeesetls little to distinguish copper and niobium, but
beyond this scale, the electrons in niobium pair up into ‘@oairs” . By the time we reach the scale of a
micron, these pairs congregate by the billions into a paidensate transforming the crystal into an entirely
new metallic state: a superconductor, which conducts withesistance, excludes magnetic fields and has
the ability to levitate magnets.

Niobium is elemental superconductor, with a transition geratureT, =9.2K that is pretty typical of
conventional “low temperature” superconductors. When expmntalists began to explore the properties of
quaternary compounds in the 1980s, they came across thdetetypunexpected phenomenon of high tem-
perature superconductivity. Even today, two decades fesearch has only begun to explore the vast universe
of quaternary compounds, and the pace of discovery hasaekesied. In the two years preceeding publica-
tion of this book, physicists have discovered a new familyrafi-based high temperature superconductors,
and I'd like to think that before this book goes out of prinamy more families will have come to light.

Superconductivity is only a beginning. It is first of all, grone of a large number of broken symmetry
states that can develop in “hard” quantum matter. But inrab$ies of softer, organic molecules, a tenth of a
micron is already enough for the emergence of life. Selfegnmg microbes little more than 200 nanometers
in size have been recently been discovered. While we mokessrunderstand the principles that govern the
superconductor, we do not yet understand those that gdveremtergence of life on roughly the same spatial
scale[8].



9 2.4. C: COMPLEXITY AND EMERGENCE.

No. inequivalent 1 2 3 4

20
womsanicoi S ALy Complexity

Nb MgB:z CeColns YbBa:CusO7  Simplest Biological
9K SC 35}_( sC Heavy Fermion SC 95K SC Molecules
Fe Si0
Ferromagnet i
g Semiconductor LaOFeAs
He-4 55K SC
Superfluid
102 104 1068 108 # different types
Elements Binary Tertiary  Quaternary compound
Condensed matter of increasing complexity. As the number of inequivalent atoms per
“unit cell” grows, the complexity of the material and the potential for new types of
behavior grows.
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Quantum Fields

3.1 Overview

At the heart of quantum many body theory lies the concept®fjilantum field. Like a classical fie#{x),
a quantum field is a continuous function of position, exagptiow, this variable is an operata(x). Like
all other quantum variables, the quantum field is in genemstr@ngly fluctuating degree of freedom that
only becomes sharp in certain special eigenstates; itgifumis to add or subtract particles to the system.
The appearance of particles or “quanta” of enelfgy 7w is perhaps the greatest single distinction between
quantum, and classical fields.

This astonishing feature of quantum fields was first recaghtzy Einstein, who in 1905 and 1907 made
the proposal that the fundamental excitations of contisunadia - the electromagnetic field and crystalline
matter in particular, are carried by quanta[l, 2, 3, 4], eitlergy

E = hw.

Einstein made this bold leap in two stages - first by showirag Banck’s theory of black-body radiation
could be re-interpreted in terms of photons[1, 2], and ore Jegter generalizing the idea to the vibrations
inside matter[3] which, he reasoned must also be made upyfimave packets of sound that we now call
“phonons”. From his phonon hypothesis Einstein was ablexplain the strong temperature dependence
of the specific heat in Diamond - a complete mystery from as@tas standpoint. Yet despite these early
successes, it took a further two decades before the maghohguantum mechanics gave Einstein’s ideas a
concrete mathematical formulation.

Quantum fields are intimately related to the idea of secorhtization. First quantization permits us to
make the jump from the classical world, to the simplest quansystems. The classical momentum and
position variables are replaced by operators, such as

E — ino,

p— p=-indx, 3.1
whilst the Poisson bracket which relates canonical congugariables is now replaced by the quantum
commutator[5, 6]:

[x, p] =i 3.2)
The commutator is the key to first quantization, and it is tbe-nommuting property that leads to quantum

fluctuations and the Heisenberg uncertainty principlee @@mples). Second quantization permits us to take
the next step, extending quantum mechanics to

e Macroscopic numbers of particles.
o Develop an “excitation” or “quasiparticle” descriptionthie low energy physics.
o Describe the dynamical response and internal correlatiblasge systems.
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Quantum string.

Fig. 3.1 Contrasting a classical, and a quantum string.
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o To describe collective behavior and broken symmetry phasssitions.

In its simplest form, second quantization elevates clas$ields to the status of operators. The simplest
example is the quantization of a classical string, as showiig. 3.1. Classically, the string is described by
a smooth fields(x) which measures the displacement from equilibrium, plesdabnjugate fieldr(x) which
measures the transverse momentum per unit length. Theceleldamiltonian is

H:fdx

whereT is the tension in the string and the mass per unit length. In this case, second-quantizétion
accomplished by imposing the canonical commutation wtati

[6(). 7(Y)] = in6(x -y),

In this respect, second-quantization is néfefient to conventional quantization, except that the degoée
freedom are defined continuously throughout space. The basihod | have just described works for de-
scribing collective fields, such as sound vibrations, ordleetromagnetic field, but we also need to know
how to develop the field theory of identical particles, suslaa electron gas in a metal, or a fluid of identical
Helium atoms.

For particle fields, the process of second-quantizationasensubtle, for here we the underlying fields
have no strict classical counterpart. Historically, thetfsteps to dealing with such many particle systems
were made in atomic physics. In 1925 Pauli proposed his farf@xclusion principle”[7] to account for the
diversity of chemistry, and the observation that atomicsjaecould be understood only if one assumed there

TR A 33)

Canonical commutation relation 3.4)
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Carbon without
Exclusion principle

Carbon with
Exclusion principle

Fig. 3.2 Without the exclusion principle, all electrons would occupy the same atomic orbital.

There would be no chemistry, no life.

was no more than one electron per quantum state. (Fig. 3.969ah later, Dirac and Fermi examined the
consequences of this principle for a gas of particles, wioclay we refer to as “fermions”. Dirac realized
that the two fundamental varieties of particle- fermionsl &osons could be related to the parity of the
many-particle wavefunction under particle exchange[8]

W(particle at A, particle at By €®¥(particle at B, particle at A) (3.5)

If one exchanges the particles twice, the total phas#9s If we are to avoid a many-valued wavefunction,
then we must have

f9=1=¢%= il{ bospns (3.6)
fermions

The choice o® = 1 leads to a wavefunction which is completely antisymmairider particle exchange,
which immediately prevents more than one particle in a giygantum state-

In 1927, Jordan and Klein realized that to cast physics of myrbady system into a more compact form,
one needs to introduce an operator for the particle itbelffield operator. With their innovation, it proves
possible to unshackle ourselves from the many body wavemcThe particle field

g(x) (3.7)

operator can be very loosely regarded as a quantizatioreadrte-body Schrodinger wavefunction. Jordan
and Klein[9] proposed that the particle field, and its complenjugate are conjugate variables. With this
insight, the second-quantization of bosons is achievedtrpducing a non-zero commutator between the
particle field, and its complex conjugate. The new quantulddithat emerge play the role of creating, and

1 In dimensions below three, it is possible to have wavefunstimith several Reimann sheets, which gives rise to the comfep
fractional statistics and “anyons”.

13
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destroying particles (see below)

(.4 M) = 6(x-y)

Y(X), v (%)
A
1 ptcle wavefunction

¥(x), 4" (xBosons (3.8)

S——
destructiorycreation operator
For fermions, the existence of an antisymmetric wavefanctmeans that particle fields mustticommute
i.e

Y(uy) = —v (Y9, (3.9)

a point first noted by Jordan, and then developed by Jordaméger[10]. The simplest example of anti-
commuting operators, is provided by the Pauli matrices: meenaw going to have to get used to a whole

continuum of such operators! Jordan and Wigner realizettiigasecond-quantization of fermions requires
that the the non-trivial commutator between conjugatei@erfields must be replaced by an anticommutator

W(X), 0 (X) {y(x), '/’T W)} =d(x-y)

1 ptcle wavefunction

J(x),d" (xFermions (3.10)
NG/
destructior/creation operator

The operatiorja, b} = ab+badenotes the anticommutator. Remarkably, just as bosog&ighderives from
commutators, fermionic physics derives from an algebrani€ammutators.

How real is a quantum field and what is its physical signifieghto begin to to get a feeling of its meaning,
let us look at some key properties. The transformation fraaefunction, to operator also extends to more
directly observable quantities. Consider for example elleetron probability density(x) = ¢*(X)y(x) of a
one-particle wavefunctiop(x). By elevating the wavefunction to the status of a field ofmerave obtain

p(¥) = WO — 53 = &' (d(x), (3.11)

which is the densityoperatorfor a many body system. Loosely speaking, the squared matgnivf the
quantum field represents the density of particles

Another aspect of the quantum field we have to understands igliationship to the many-body wave-
function. This link depends on a new concept, the “vacuunfiisTinique state, denoted ) is devoid of
particles, and for this reason it is the only state for whindre is no amplitude to destroy a particle so

¥(¥)I0) = 0.

We shall see that as a consequence of the canonical algebraeation operatdir' (x) increments the number
of particles by onecreatinga particle aix, so that

The vacuum (3.12)

x1) = ' (x1)[0) (3.13)
is a single particle at;,
X1, . %) = () - - 7 (%)I0) (3.14)
is theN-particle state with particles located»t. .. xy and
Ol = Ol ) - ()] = <O (x) - () (3.15)

is its conjugate “bra” vector. The wavefunction ofldrparticle statelN) is given by the overlap afxs, . .. X|
with [N):

Y(Xa, . Xn) = (X, XNIND = (O (X)) - ¢ (Xn)IN) (3.16)
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1 particle 3 particles

Vacuum

Fig. 3.3 Action of creation operator on vacuum to create (i) a one particle and (i) a three

particle state

So many body wavefunctions correspond to matrix elementseofluantum fields. From this link we can
see that the exchange symmetry under particle exchangedlgilinked to the exchange algebra of the field
operators. For Bosons and Fermions respectively, we have

O (%) (K1) - - - IN) = 20 (Kes)r(Xe) - .. IN) (3.17)
(where+ refers to Bosons:to fermions), so that
WX (Xei1) = £ (X)W (%) (3.18)

From this we see that Bosonic operators commute, but feimaperators musanticommuteThus it is the
exchange symmetry of identical quantum particles thaatistthe commuting, or anticommuting algebra of
the associated quantum fields.

Unlike a classical field, quantum fields are in a state of @mdtuctuation. This applies to both collective
fields, as in the example of the string in Fig. 3.1, and to quanfiuids. Just as the commutator between
position and momentum gives rise to the uncertainty priecifx, p] = i — AxAp>1, the canonical
commutation, or anticommutation relations give rise torailsir relation between the amplitude and phase
of the quantum field. Under certain conditions the fluctusiof a quantum field can be eliminated, and in
these extreme limits, the quantum field begins to take ongililnclassical existence. In a bose superfluid for
example, the quantum field becomes a sharp variable, andmreally ascribe a meaning to the expectation
of the quantum field

W) = Vpse’ (3.19)
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whereps measures the density of particles in the superfluid condenaée shall see that there is a completely
parallel uncertainty relation between the phase and deofsguantum fields,

ANAGZ 1 (3.20)

whereé is the average phase of a condensate Mdritie number of particles it contains. Whéhis truly
macroscopic, the uncertainty in the phase may be madeailyitsmall, so that in a Bose superfluid, the
phase becomes ficiently well defined that it becomes possible to observefietence phenomenon! Sim-
ilar situations arise inside a Laser, where the phase ofldatremagnetic field becomes well-defined, or a
superconductor, where the phase of the electrons in theeosate becomes well defined.

In the next two chapters we shall go back and see how all tleeseres appear systematically in the context
of “free field theory”. We shall begin with collective bosorfields, which behave as a dense ensemble of
coupled Harmonic oscillators. In the next chapter, we simalVe to conserved particles, and see how the
exchange symmetry of the wavefunction leads to the comipataand anticommutation algebra of bose
and Fermi fields. We shall see how this information enable® eempletely solve the properties of a non-
interacting Bose, or Fermi fluid.

Itis the non-commuting properties of quantum fields thategete their intrinsic §raininess Because of
this, quantum fields, though nominally continuous degrééeeedom, can always be decomposed in terms
of a discrete particular content. The action of a collediigkel involves the creation of a wavepacket centered
atx by both the creation, and destruction of quanta, schentigtica

5% = Z [ boson creation,+ 3.21)
K

momentum k

boson destructio ik
momentum -k ’

Examples of such quanta, include quanta of sound, or phorosquanta of radiation, or photons. In a
similar way, the action of a particle creation operator t#e@ wavepacket of particlesxatschematically,

ACEDY
k

When the underlying particles develop coherence, the guoafigld begins to behave classically. It is the
ability of quantum fields to describe continuous classiedidvioranddiscrete particulate behavior in a uni-
fied way that makes them so very special.

(3.22)

particle creation ik
momentum k ’

Example By considering the positivity of the quantit(1)’ A(1)), whereA = X+ iip andJ is a real
number, prove the Heisenberg uncertainty relaiochp > 2.

Example How does the uncertainty principle prevent the collapse of the Hydragen. Is the uncer-
tainty principle enough to explain the stability of matter?

3.2 Collective Quantum Fields
|

Here, we will begin to familiarize ourselves with quantumdgby developing the field theory of a free,
bosonic field. It is important to realize that a bosonic quanfield is fundamentally nothing more than a set

16
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0D

Fig. 3.4 Family of zero, one and three-dimensional Harmonic crystals.

of linearly coupled oscillators, and in particular, so lagthe system is linear, the modes of oscillation can
always be decomposed into a linear sum of independent nonodés. Each normal mode is nothing more
than a simple harmonic oscillator, which provides the bhsittling block for bosonic field theories.

Our basic strategy for quantizing collective, bosonic figlthus consists of two basic parts. First, we
must reduce the Hamiltonian to its normal modes. For tréinslally invariant systems, this is just a matter
of Fourier transforming the field, and its conjugate mome8t&cond, we then quantize the normal mode
Hamiltonian as a sum of independent Harmonic oscillators.

H(g.m) ___FT1__ Normal Co-ords “~®*@-0) = Zhwq(nq +1) (3.23)
a

The first part of this procedure is essentially identicalfoth quantum, and classical oscillators. The second-
stage is nothing more than the quantization of a single Haimascillator. Consider the family of lattices
shown in Figure 3.4. We shall start with a single oscillatbome site. We shall then graduate to one and
higher dimensional chain of oscillators, as shown in Fig 3.4

17
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3.3 Harmonic oscillator: a zero-dimensional field theory

Although the Schrodinger approach is most widely used indirantization, it is the Heisenberg approach[11,
5] that opens the door to second-quantization. In the@thger approach, one solves the wave-equation
-1%92 1

m + émzxz)llfn = Enn (3.24)

from which one finds the energy levels are evenly spaceddicepto
En=(n+ %)hw, (3.25)

wherew is the frequency of the oscillator.

The door to second-quantization is opened by re-intermyeliese evenly spaced energy levels in terms of
“quanta”, each of energiw. The nth excited state corresponds to the addition of n qutarthe ground-state.
We shall now see how we can put mathematical meat on thesesvsgrohtroducing an operatoa®™ that
creates these quanta, so that the n-th excited state imebtay actingh times on the ground-state with the
creation operator.

l n
In) = ﬁ(a*) (0). (3.26)

Let us now see how this works. The Hamiltonian for this probievolves conjugate position and momentum
operators as follows

o= G dmots | @3.27)
[xpl = in,

In the ground-state, the particle in the Harmonic potentialergoes zero-point motion, with an uncertainty
in position and momentump and Ax which satisfyAxAp ~ #. Since the zero-point kinetic and potential
energies are equalp?/2m = mw?Ax?/2, S0

AX = ,/l Ap = Vmwh (3.28)
mw

define the scale of zero-point motion. It is useful to defimaatisionless position and momentum variables
by factoring out the scale of zero-point motion

X - P
&= X p: = Ap (3.29)
One quickly verifies thatq, p;] = i are still canonically conjugate, and that now
hw
H= ?[gz + pﬁ]. (3.30)
Next, introduce the “creation” and “annihilation” opereto
.01 ’ .
a' = —(&-ips)s “creation operator”
\:{é (3
a=—(&+ipe), “annihilation operator” 3.31
\&(s‘ Pe) p (3.31)
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Since p,a’] = (& pe] = [p:. €]) = 1, these operators satisfy the algebra

[aa=[a"a] = 0
canonical commutation rules (3.32)
[aa] = 1
Itis this algebra which lies at the heart of bosonic physiesbling us to interpret the creation and annihila-
tion operators as the objects which add, and remove quarthration to and from the system.

To follow the trail further, we rewrite the Hamiltonian inrtes of a anda’. Since¢ = (a + a’)/ V2,
p: = (a—a')/ V2i, the core of the Hamiltonian can be rewritten as

g+pi=aa+ad (3.33)
Butaa' = a'a+ 1, from the commutation rules, so that
B 1
H = hwla’a + é]. (3.34)

This has a beautifully simple interpretation. The secomchtis just the zero-point enerdsy = 7iw/2 The
first term contains the “number operator”
A=a'a

"number operator” (3.35)

which counts the number of vibrational quanta added to thargf state. Each of these quanta carries energy
hw.
To see this, we need to introduce the concept of the vacuuimedeas the unique state such that
a0y = 0. (3.36)
From (12.133), this state is clearly an eigenstatkl pfvith energyE = 7iw/2. We now assert that the state

1 .
IN) = ——@)"[0) (3.37)
N

wherely is a normalization constant, contaiNsquanta.
To verify thatri counts the number of bosons, we use the commutation algelstzotv that fi;a’] = a'
and [i,a] = —a, or
fa =a'(h+1)

fa=a(f-1) (3.38)

which means that whea' or a act on a state, they respectively add, or remove one quanteneogy.

Suppose that
AIN) = N|N) (3.39)
for someN, then from (3.38),
A afN)y = a' (A + 1)[N) = (N + 1) a'|N)y (3.40)

so thata’|N) = |N + 1) containsN + 1 quanta. Since (3.39) holds fbr = 0, it holds for allN. To complete
the discussion, let us fixy by noting that from the definition dN),

2 2

(3.41)
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n quanta
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lllustrating the excitation picture for a single harmonic oscillator.
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but sinceaa’ = A+ 1, (N - 1jaa’[N — 1) = N(N - 1|N — 1) = N. Comparing these two expressions, it follows
thatin/An-1 = VN, and sincelp = 1, Ay = VNI
Summarizing the discussion

H = ho+3)
i o= aa “number operator” (3.42)
Ny = ﬁ(aT)N\O) N-Boson state

Using these results, we can quickly learn many things alleuijiantum fields anda’. Let us look at a
few examples. First, we can transform all time dependerara fhe states to the operators by moving to a
Heisenberg representation, writing

a(t) = éht/igg /i Heisenberg representation (3.43)

This transformation preserves the canonical commutatgebaa, and the form dfi. The equation of motion
of a(t) is given by

da i .
i g[H,a(t)] = —iwa(t) (3.44)
so that the Heisenberg operators are given by
a(t) = e—iu;ta
al(t) = e“ta’ (3.45)

Using these results, we can decompose the original momeantdndisplacement operators as follows

K(t) = AxE(t) = %(a(t) +a(t) = ,I%(ae’i“‘ +a'dh)

Pt = App(t) = —i \/@(ae*i“1 —a'd
2

0

(3.46)
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Notice how the displacement operator- a priori a continwauible, has the action of creating and destroying
discrete quanta.
We can use this result to compute the correlation functidtiseodisplacement.

wherep, = e#&/Z is the Boltzman distribution, witf = 1/ksT, andkg is Boltzmann’s constant. Let
us now apply this to our problem, where

A=n=a'a (3.54)
is the number operator. In this case,
Example 1. Calculate the autocorrelation functi@ft — t') = 2(0|{x(t). x(t')}|0) and the “response” Ay = Z(e"‘E" JZ)(nlfAlny = % Z ne#En (3.55)
functionR(t — t') = (i/7){0[[x(t), x(t")]|0) in the ground-state of the quantum Harmonic oscillator. n n

. . . . To normalize the distribution, we must h =1, so that
SolutionWe may expand the correlation function and response function as follows 3R P

1 Z= Z e (3.56)
S(ts - t2) = S(0X(t2)X(t2) + X(t2) X(t2)I0) ™
R(ts — t2) = (i/m)<0IX(te)X(tz) — X(t2)X(t1)[0) (3-47) Finally, sinceE, = fiw(n + 1),
But we may expand(t) as given in (3.46). The only term which survives in the ground-siatéhe i o
term proportional t@a', so that _ 2n€ 2n _ Yhe'n _
(fy==""—— = = A= fhw. (3:57)
i >, el 3) Y€
, _ 10y @ iw(ti—t2)
OXOX(T)I0) 2mw<0|aa w3 (CL8) The sum in the denominator is a geometric series
Now using (3.47) we obtain
>en= S (3.58)
1 7 ) ) 1-ed
=(0l{x(t), x(t")}|0) = =— codw(t - t')] “Correlation function” n
2 2mw N
- 1 . X and the numerator is given by
—i(O[x(t), x(t")]|0) = e~ sinw(t —t')] "Response function” .
a e
. __ 9 ~An _
o \We shall later see th&(t —t") gives the response of the ground-state to an applied f(ttg so that Z TS En T (1-e)? (3.59)
at a timet, the displacement is given by " "
q so that
(X(t)) = f R(t — t')F(t')dt (3.49) _r 1
L. (ny o1 P 1 (3.60)
which is the famous Bose-Einstein distribution function.
Remarkably, the response function is identical with a classical Harmeniliator.
Example 2. Calculate the number of quanta present in a Harmonic oscillator with dbasiic
frequencyw, at temperaturé .
To calculate the expectation value of any operator at temperatuse need to consider an ensemble . .
of systems in dierent quantum statg¢®) = > c,In). The expectation value of operataiin state|'¥) 3.4 CO”eCtIVE mOdeS- phonons
is then -]

A = (H¥) = ) crenmAIny (3.50)
(0 We now extend the discussion of the last section from zeragteeh dimensions. Let us go back to the lattice
In a position basis, this would be shown in Fig 3.4 . To simplify our discussion, let imaginetthtieach site there is a single elastic degree of

A ) . freedom. For simplicity, let us imagine we are discussirgltimgitundinal displacement of an atom along a
= %; Cmc"fdw’“(x)A(x)w"‘(x) CED one-dimensional chain that runs in the x-direction. Forjtieatom,
But now we have to average over the typical st@fein the ensemble, which gives Xj = X‘J) + ;. (3.61)
A =" CemAIN) = 3" e mAIn) (3:52) If x; is the conjugate momentum ig, then the two variables must satisfy canonical commutatitations
mn mn
wherepmn = GG, is the “density matrix”. If the ensemble is in equilibrium with an incoherent hath, [¢i, mj] = ihdij. (3.62)
at temperaturd, quantum statistical mechanics asserts that there are no residualqoinasations . . . . - . . . .
between the dierent energy levels, which acquires a Boltzmann distribution Notice how variables at fierent sites are fully independent. We'll imagine that oue-diimensional lattice
—TE =R 3.53) hasN; sites, and we shall make life easier by working with peridibandary conditions, so that.n, = ¢;
(e o : andr; = 7j,n,. Suppose nearest neighbors are connected by a “springhithwase, the total total energy
21 22

bk.pdf  April 29, 2012 15



(©2011 Piers Coleman Chapter 3.

is then a sum of kinetic and potential energy

2
R s mw?
i
H= Z ?T]Jr 2 (¢ *¢J+1)2 (363)
J=1Ns
wheremis the mass of an atom.
Now the great simplifying feature of this model, is that tiigtossessegranslational symmetryso that
under the translation

Tj = Wi,

¢ = P (3.64)

the Hamiltonian and commutation relations remain unchdnifieve shrink the size of the lattice to zero, this
symmetry will become a continuous translational symméthne generator of these translations is thestal
momentumoperator, which must therefore commute with the HamiltonBecause of this symmetry, it
makes sense to transform to operators that are diagonalrimemtom space, so we'll Fourier transform all
fields as follows:

=Ly daR
¢ VN Zq R Yo R = ja. (3.65)
To= 0 2q€Mmg,

The periodic boundary conditions; = ¢;.n,, 7j = 7j.n, Mean that the values gfentering in this sum must
satisfyqL = 27n, whereL = Nga is the length of the chain and n is an integer, thus

=20 (el (3.66)
Notice thatq € [0, 2r/a] defines the range af. As in any periodic structure, the crystal momentum is only
defined modulo a reciprocal lattice vector, which in thisecss2r/a, so thatq + % = ¢, (you may verify
that @ + %)Rj = gR; + 2rm, which is why we restrich € [1, Ng]). The functionsx%Nfe‘qu = (jlg) form a
complete orthogonal basis, so that in particular

L 1 i(aqr
D1l = 5 5 TIR = (qg) = dqq-
]

ST

orthogonality (3.67)
is one ifq = ¢, but zero otherwise (see exercise 3.2). This result is inselgruseful, and we shall use it
time and time again. Using the orthogonality relation, we caeck that the inverse transformations are

¢q = ﬁ T e g,

nq= ‘/le q e Rig; (3.68)

Notice that sincep; andr; are Hermitian operators, it follows thatq = ¢_q andzx’q = 7_q. Using the
orthogonality, we can verify the transformed commutatielations are

[

1 RY
(6079 = - 2, €T g7 ]
[

in o )
N Z DR = ifiggq (3.69)
]
We shall now see thaty and¢, are quantized version of “normal co-ordinates” which briing Hamilto-
nian back into the standard Harmonic oscillator form. Tooktteat the Hamiltonian is truly diagonal in these

variables we
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1 expandp; andz; in terms of their Fourier components,

2 regroup the sums so that the summation over momenta is autbiele,

3 Eliminate all but one summation over momentum by carryiuigtioe internal sum over site variables. This
will involve terms likeNg? 3, €@ %R = 54, which constraing/ = —q and eliminates the sum ovf.

With a bit of practice, these steps can be carried out vergkipuiln transforming the potential energy, it is
useful to rewrite it in the form
mw?
V= TZ%W] ~ 01 = 9j-0) (370)
The term in brackets can be Fourier transformed as follows:
42 sin?(qa/2)=w2

1 —_—— )
2(26) ~ 1o~ #1-2) = —= 3 | wP[2 — 8 — €] x g &
‘U(¢J Pi+1 ¢|1) qu[ ] q

1 2 ;
= — E g €N, 3.71
N & Wq Pq ( )

where we have definedﬁ = 4w sir?(ga/2). Inserting this into (3.70), we obtain
Saq

e ———
m _ i(—a
V= > ;“3 P-qbq Nslzjle'(q il

mog
=D, 5 d-ada 372
q
Carrying out the same procedure on the kinetic energy, waimbt
1 mw?
H= Zq: (%”qﬂ—q + %‘ﬁq‘ﬁ—q] (3.73)

which expresses the Hamiltonian in terms of “normal co-watks”,¢q andzq. So far, all of the transfor-
mations we have preserved the ordering of the operators$,is@o surprise that the quantum and classical
expressions for the Hamiltonian in terms of normal co-catks are formally identical.

Now before we go on, it is perhaps useful to note that at0, wq = 0, so that there is no contribution to
the potential energy from ttge= 0 mode, which corresponds to a uniform translation of theesystem. To
separate the uniform motion from the oscillatory modes itseful to split the) = 0 part of the Hamiltonian
off from the remainder,

Hewm
1 1 mwi
q
H= fn”g + Z (%nqn,q + Tqbng,q]
q#0

where the first term is just the center of mass energy.
The next step merely repeats the procedure carried outéasitiyle harmonic oscillator. We define a set
of conjugate creation and annihilation operators

3 = (et mnma)

Mwgy

} i (2 3] = 5[0 10 - [r0b-0l| =000 (374)
alq = 2 ($-0 = g, -a)
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Note that the second expression &y is obtained by taking the complex conjugateagfand remembering
that¢'q = ¢_q andn’q = m_q, since the underlying fields are real.
The inversion of these expressions is

e al g
$a = | +ag)
Notice how the Fourier component of the field at waveveqteither destroys a phonon of momentgror

creates a phonon of momenturg. Both have reduce the total momentumdyy
From these expressions, it follows that

Tq

(3.75)

Mwglt
Tqll-q = 2q (8 qaq+8ga’q ~ @' qa'q ~ 8gaq)
Bab_q = 2T]wq(a",q&q +agalq+a’_qa’q +agaq) (3.76)
Adding the two terms inside the Hamiltonian then gives
1 N N
H=Hew+ Z:hwq(a‘qaq +aga’y), (3.77)
qz0

or using the commutation relations,

H = Hew + Z hwg(@gaq + 1) (3.78)
q#0 2

Since each set @, anda’ 4 obey canonical commutation relations, we can immediatiggtify ng = a’qaq as
the number operator for quanta in the g-th momentum stateaRebly, the system of coupled oscillators can
be reduced to a sum of independent Harmonic oscillators, efiaracteristic frequenayg, energyiwy and
momentun. Each normal mode of the original classical system cormedpto particular phonon excitation.

We can immediately generalize all of our results from a singhrmonic oscillator. For example, the
general state of the system will now be an eigenstate of thagrthoccupancies,

1_[ (a'g)™
i V!
where the vacuum is the unique state that is annihilatedlinf tie a,. In this state, the occupation numbers

nq are diagonal, so this is an energy eigenstate with energy

E=FE,+ Z Nghwg (3.80)
q

0) (3.79)

) = Ing,, N, N = [ [ Ing) =
®

whereE, = % Y.qhwq is the zero-point energy.
Remarks

e The quantized displacements of a crystal are called phoi@uentized fluctuations of magnetization in a
magnet are “magnons”.

e We can easily transform to a Heisenberg representatiorreabenag(t) = aqe"‘“n‘.

e We can expand the local field entirely in terms of phononsnt/$8.75), we obtain

1 )
(1) = —— qR;
#5(t) N Eq bq€
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L=14 Wy = 2sin(qa/2

2000 P -

P eeo—
= =
W, 2nL —eo0o0oo—
—-0—0-0-000—
0 q 21t /a
lllustrating the excitation picture for a chain of coupled oscillators, length L=14.

April 29, 2012

1 n
= dou(® + ; \ /—meq [aq(®) +a"_q(t)] €97 (3.81)

wheregey = N{ Xj ¢; is the center of mass displacement.

e The transverse displacements of the atoms can be readilydedt by simply upgrading the displacement
and momentung; andz; to vectors. For “springs”, the energies associated withstrarse and longi-
tudinal displacements are not the same because ffieess associated with transverse displacements
depends on the tension. Nevertheless, the Hamiltonian rhédeatical form for the one longitudinal
and two transverse modes, provided one insertfferdnt stifness for the transverse modes. The initial
Hamiltonian is then simply a sum over three degenerate igatansa € [1, 3]

=2 2

A=13 <IN

2 mw?
L > . ($ja— ¢J+1/l)2 (382)

2m

wherew? = w? for the longitudinal mode, an@? , = T/a, whereT is the tension in the spring, for the

two transverse modes. By applying the same procedure threk tmodes, the final Hamiltonian then

becomes
1
H= T y 2).
4:21:3; wa(a il 2)

wherewy = 2w,sin(ga/2). Of course, in more realistic crystal structures, thergiee of the three
modes will no longer be degenerate.

e We can generalize all of this discussion to a 2 or 3 dimensismaare lattice, by noting that the orthogo-
nality relation becomes

NGt Z gleaRi 5. (3.83)
i
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where now,
9= (iiz...ip)

andR; is a site on the lattice. The general form for the potentiargnis slightly more complicated, but
one can still cast the final Hamiltonian in terms of a sum owagltudinal and transverse modes.

e The zero-point energl, = % Yqliwq is very important irHe — 4 andHe - 3 crystals, where the lightness
of the atoms gives rise to such large phonon frequenciestteatrystalline phase is unstable and melts
at ambient pressure under the influence of quantum zero paition. The resulting “quantum fluids”
exhibit the remarkable property of superfluidity.

(3.84)

3.5 The Thermodynamic Limit L — oo

In the last section, we examined a system of coupled osmifiain a finite lattice. By restricting a system to a
finite lattice, we impose a restriction on theaximiumwavelength, and hence, the excitation spectrum. This
is known as an “infra-red” cutff. When we takd. — oo, the allowed momentum states become closer and
closer together, and we now have a continuum in momentunespac

What happens to the various momentum summations in the tligmmaamic limit,L — «o? When the al-
lowed momenta become arbitrarily close together, the eisgummations over momentum must be replaced
by continuous integrals. For each dimension, the incremembmentum appearing inside the discrete sum-
mations is

(3.85)

) thaﬂ_% = 1. Thus in one dimension, the summation over the discreteesaifq can be formally rewritten

as
Aq
Z{.H]:L;Z{...]

aj

(3.86)

whereq; = 27(% and] € [1,Ns]. When we takel — oo, g becomes a continuous variates [0, 27/a],
wherea = L/Ns is the lattice spacing, so that the summation can now beceglay a continuous integral:

Zn/adq
Zq:{...]—mfo S

Similarly, in in D-dimensions, we can regard the D-dimensiosum over momentum as a sum over tiny
hypercubes, each of volume

(3.87)

s D
(ag° = & (3.88)

so thatLD% =1land

Z{...}:LDZ(Aq)D{.N}HLDf & (3.89)

e i (2nP o<q<2r/a (27)°
where the integral is over a hypercube in momentum spack sides of length 2/a.
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Fig. 3.7 lllustrating the grid of allowed momenta for a three-dimensional crystal of dimensions

2012

L3. In the limit L — o, the grid becomes a continuum, with (L/27)® points per unit
volume of momentum space.

Once the momentum sums become continuous, we need to cHengermalization of our states. By
convention, we now normalize our plane wave basis per ufitwe, writing

(XIk) — dkx (3.90)
In a finite volume, this means that the orthogonality conditin these plane waves is
(k'Iky = f dPxd®KI* = | Bgy o, (3.91)

wheredy_i- is the discrete delta function on the grid of allowed wavéwes In the thermodynamic limit, this
becomes

f dPxd®* ) = (27)PsP (k — k') (3.92)
so that the continuum limit of the discrete delta-functisigiven by
LP6 — (2m)P6P(k — k") (3.93)

Example 4.Re-express the Hamiltoniah of a simplified three-dimensional Harmonic crystal in terms
of phonon number operators and calculate the zero-point energyewh

2 mw?
H=) oo+ D 2@ =)
]

}a=(%9.9 2
whereg; = ¢(x;) andr; = n(x;) denote canonically conjugate (scalar) displacement, and momenta at
site j, anda = (X, Y, 2) denotes the unit vector separating nearest neigbor atoms.

(3.94)
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Solution First we must Fourier transform the co-ordinates and the HarmoniajiteThe potential
can be re-written as

~ 1
V= E ;Vi—J¢l¢i (3-95)
where
Ve=mwd ' (268 = R a = Oria) (3.96)
a=(3.2)

The Fourier transform of this expression is

Vo= Vee R
R
=mw ) (2-e'4e-din)
a=(3.2)
= mw? Z [2 - cosga)] (3.97)

I=xy.z
so that writingVq = m(wq)?, it follows that the normal mode frequency are given by
wq = 2wo[sin?(0xa/2) + sir(aya/2) + sinz(qza/Z)]% (3.98)

Fourier transforming the fields
4= Z%é“*
VN
Mj= — » M€ 3.99
j ms; . (3.99)

whereq = (i, j, k) are the discrete momenta of a cubic crystal of voluriewith periodic boundary
conditions, we find

Defining the creation and annihilation operator

H= Z[”“”“‘ ng¢q¢_q] (3.100)
\/7 (¢q +

J 2(¢q — ——-q), (3.101)
we reduce the Hamiltonian to its standard form

H = fwg(ng + %) (3.102)
q

whereriy = bf4by is the phonon number operator.
In the ground-statey, = 0, so that the zero-point energy is

hawqg d®q hwq
E, = i ==Y o (3.103)
whereV = L. Substituting fokw,, we obtain
22 .
E=V[] f 9 ST > sif(aa/2)
1=13 1=13
= Nyfiwols (3.104)
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where

d®u !
| :f = | sirf(u) = 119 3.105
3 0<uy,Up,ug<m ”3 Jﬁ;{ﬁ ( )

andN; is the number of sites.

Remarks

o The zero point energy per unit cell of the crystakis,(1s/7%), a finite number.
o Were we to take the “continuum limit", taking the lattice separation to zero, them@int energy
would diverge, due to the profusion of ultraviolet modes.

3.6 Continuum Limit: a— 0
|

In contrast to the thermodynamic limit, when we take the icontm limit we remove the discrete character
of the problem, allowing fluctuations of arbitrarily smalhwelength, and hence arbitrarily large energy. For a
discrete system with periodic boundary conditions, the etoim in any one direction can not exceeqda@

By takingato zero, we remove the ultra-violet cuffdn momentum.

As a simple example, we shall consider a one-dimensioriagsfFhe important lesson that we shall learn,
is that both the discrete model, and the continuum model tawesame long-wavelength physics. Their
behavior will only diter on very short distances, at high frequencies and shoestiffhis is a very simple
example of the concept of renormalization. Provided werterésted in low energy properties, the details of
the string at short-distances- whether it is discrete, atinaous don’t matter.

Of course, in many respects, the continuum model is morsfgiaty and elegant. We shall see however, that
we always have to be careful in going to the continuum limétzdwuse this introduces quantum fluctuations
on arbitrarily short length scales. These fluctuations tafféct the low energy excitations, but they do mean
that the zero-point fluctuations of the field become arhigréarge.

Let us start out with a discrete string, as shown in fig 3.8 9Reall displacements, the Hamiltonian for this
discrete string is identical to that of the last section, ascan see by the following argument. If a string is
made up of point particles of mass m, separated by a distanveigh a tensile forcél acting between them,
then for small transverse displacemepisthe link between th¢ th andj + 1th particle is expanded by an
amountAs; = (¢; — ¢j41)?/2a, raising the potential energy by an amoiits;. The Hamiltonian is then

; T
H_.; lZm + 520 m)] (3.106)

which reverts to (3.63) with the replacemdhia — mw?.
To take the continuum limit, we let — 0, preserving = m/a. In this limit, we may replace

a — dx,
x-S
G0 w000 (3.107)
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T X

Fig. 3.8 lllustrating a (a) discrete and a (b) continuous string. By taking the length between

units in the string to zero, maintaining the density per unit length and the tension, we
arrive at the continuum limit.

Making the replacement

wj/a— n(X;) (3.108)
we obtain
_ T w6024 L (02
H= fdx[z(vxd)) +2pn(X) (3.109)
On the discrete lattice, the commutation relations
[600). 7(X))] = ihd(x; - X)), (3.110)

Wherefi()q -Xj) = a’léij. In the limita — 0, S()q - X;j) behaves as a Dirac delta function, so that in this limit,

[6(x), 7(Y)] = ih(x - y)

Unfortunately, the delta function in this expression imed arbitrarily high spatial frequencies, and if we
work with it as it is, we will encounter “ultraviolet” diveences. To regulate these divergences we will need
to introduce a cut5. One way to do this is to start in momentum space, using thenteal commutation
relation

(3.111)

[0, 7] = i x (alq) = if x 215(a - ) (3.112)
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Now were we to writep(x) = f%éqxrﬁq and the corresponding expression #¢x), we recover the unreg-
ulated commutation algebra (3.111). Instead, to regukaentld high-momentum physics, we introduce a
small exponential convergence factor into the Fourierstiam, definingthe real-space fields by

dq - dq .
d(X) = fg%éqxe lal/2, a(x) = fgﬂqeque /2, (3.113)
If we now repeat the calculation of the commutation relative find
dqdd 2nin6(g-qf)
[¢(x), n(y)] = fWe'(qH’*) [pq, 7_q] € 2094190
. dq X oo . 0 o
=in | —=gax)de = % lf e (e-i=x)q +f e(sﬂ(x—x))qj
f (2n) A R
“Oe(x—X)"
in 1 1 ) €
o E_i(X—X’)+e+i(x—x’)]:'hx;(m)’ (3.114)

showing that the removal of the ultra-violet modes smeargi#ita function into a Lorentzian of finite width
€.

Now it is just a question of repeating the same steps of theéaion, but for the continuous fielgg and
7q- When we transform the Hamiltonian, we obtain

_ (darmerq PG -elal
”-fz[ 2 2 Yat-al®

where nowwg = clgl, andc = /T/p is the velocity of the phonons. Notice how this has almosttya
the same form as the the discrete lattice, but now the higmentum modes are cufdy the exponential
factor, rather than the finite size of the Brillouin zone. Defg the creation and annihilation operator by the

relations
= 2 [ ' ]
¢q = 9 +a g

(3.115)

. | hpw, N
7q= -y Uag—a'_q] (3.116)
we find that the creation and annihilation operators satisfy
[ag, '] = 276(q ~ ). (3.117)
We may now rewrite the Hamiltonian as
* dqhwg t v
H= - 5. 5 @3+ aqa g al (3.118)
If we re-order the Boson operators, we obtain
*d = 1
——
H= f Shaq(al g + 210(0) )e 2 (3.119)

The first terms corresponds to the excitations of string veececognize the last term as the zero-point energy
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of the string. Had we been less ambitious, and started oufioite but long lattice , the term 25(0) would
be replaced by, which is merely the statement that the zero-point energlesanith the length,

_ dq —dq _ Lhc
Ezp = Lfghqq\e =5 (3.120)

is the total zero-point energy. Once we remove the momenturoft; the momentum sum is unbounded and
the zero-point energy per unit length becomes infinite inciitinuum limit. It often proves convenient to
remove this nasty infinity by introducing the conceptiebrmal ordering’ If we take any operatok, then we
denote its normal ordered count-part by the symbbl.: The operator A : is the same a8, excepting that
all the creation operators have been ordered to the leftl of #he annihilation operators. All commutators
associated with the ordering are neglected, so that thealamiered Hamiltonian is

~dq. .
“H= f thwqa’qaq, (wq = clal) (3.121)

measures the excitation energy above the ground-state.
Finally, let us look at the displacement of the string. Thiglien co-ordinate space are given by

000 = [ 53\ grla) + ol oleve 107 (3.122)

where, as in the case of the Harmonic oscillator
ag(t) = age™!,  alq(t) = age, (3.123)
Note:
e The generalization of the “quantum string” to higher dinmiens is written
(| T o2, 1 2
H= fd X[Z(V¢) +2p:r(x)
[6(9. ()] = ins%(x ). (3.124)
Sometimes, it is useful to rescapéx) — ¢(X)/ v, 7(X) = n(x) 4/p, so that
H= f d'x[(cVe)*+(x)?]
[¢(¥).7(y)] = Ihéd(x y)- (3.125)

In two dimensions, this describes a fluctuating quantum nmang
e In particle physics, the “massive” version of the above nhodgtten as

cfeppe s e

wherec is the speed of light, is called the “Klein-Gordon Hamiltani. In this model, the elementary
quanta have enerdy, = +/(icq)? + (mc)2. This also corresponds to a string where a uniform displace-
ment¢ costs an energy proportional na'¢?.
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Example 5. Calculate the the equal-time ground-state correlation function
1
S0 = 5¢06(x) ~ #(0))°(0). (8.127)
for a one-dimensional string.

Solution:Let us begin by rewriting
S(X) = (0l(¢(0)* - $(x)¢(0))I0) (3.128)

where we have used translational and inversion symmetry to refln@)?0) = (0/¢(0)?0)y and
(0lp(x)¢(0)I0) = (0lp(0)¢(x)|0).-

When we expan@(x) and¢(0) in terms of creation and annihilation operators, only the terms of the
form (Ojaga’ ¢ 0) = (Ol[ag, a'_¢]10) = (21)5(q — q') will survive. Let us write this out explicitly:

dqdd n

(@0 2pc ol
dq ,‘q‘( 1-¢e%
= 2c f ] )

S(X) =

(Olfag + & gl[a-q +a'¢]I0)(1 ~ e¥)e ™

2
7(7)[4 e +") (3.129)
where to obtain the last step, we first calculate
s in dq_jox—qil
ChT [ Shevssang
dq g-le-ixiq _ f A9 jetigq
I
h 1
__47rpC[€—IX_ €+ix 27rpclm(e—ix) CES0)
and then then integrate the answenonoting thatS(0) = 0 to get
I * 1 T €—ix T €+ %2
S0 = ool | 0 = ZTpcRem( . ) et ( = ) (3.131)

Remarks

e Were we to send the cutfiee — 0, the fluctuations at a given distancéiverge logarithmically with
e: this is because the number of short-wavelength (ultra-violet) fluctuatiecsmes unbounded.

o We could have also obtained this result by working with a discrete stringtedmya — 0 at the
end of the calculation. Had we done this, we would have found that

S() = zlm Zq:(l - eiqx) (3.132)

Wq

which has the same long-wavelength behavior.
e Had we repeated this calculation B dimensions, the integral ovey becomes a d-dimensional
integral. In this case,

1- e'qx 1
S(¥) ~ f dD W) e (3.133)

In higher dimensions, the phase space for number of short-wavkléngtuations grows ag®,
which leads to stronger fluctuations at short-distances.
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Exercises

Exercise 3.1 In 1906, in what is arguably the first paper in theoreticaldmrsed matter physics[3] Albert
Einstein postulated that vibrational excitations of adealie quantized with energyw, just like the
photons in the vacuum. Repeat his calculation for diamoaltutate the energf(T) of one mole of
simple harmonic oscillators with characteristic frequenat temperatur@ and show that the specific
heat capacity is

dE hw
T)= — =RF|-—
&M= (kBT)
where
X/2 2

sinh(x/2)]
andR = Naykg the product of Avagadro’s numbéa, and Boltzmann's constatg. Plot C(T) and
show that it deviates from Dulong an Petit's l&@y = (R/2) per quadratic degree of freedom at tem-
perature§ << fiw/Kg.

Exercise 3.2 Consdier the orthogonality relation in equation (3.67)

T
DXl = 5 D €@ = G
i ST

F(x) :(

(3.134)

whereq, = nZ, q= n% = nN%a are the discrete wavevectoids = L/a is the number of sites in the
chain anda is the lattice spacing. By substitutifi®) = ja and treating this expression as a geometric
series, show that

1 sinf[t(tn—-m)] _

1 .
E i = E (Gh-amR; — =
i (Ol j)jlan) = Ne i ¢ I = Nssin[N{(n—m)] = Onm

thereby proving orthogonality.
Exercise 3.3 For the Harmonic oscillatdrl = ziw[a’a + %], we know that

M = n(w) = (3.135)

1
efho — 1’
whereg = 1/(ksT) andi = a’a is the number operator. In the ground-state, using the w@msat
of motion for the creation and annihilation operators, wevedd that the zero-point fluctuations in
position were described by the correlation function

1 7
é({x(t), x(0)) = e coswt. (3.136)

Generalize this result to finite temperatures. You shoulditirat there are two terms in the correlation
function. Pleasaive them a physical interpretation.
Exercise 3.4 (a) Show that ifais a canonical bose operator, the canonical transformation

b=ua+va,
b' = ua' +va (3.137)
(whereu andv are real), preserves the canonical commutation relatiposjdedu? — v2 = 1.
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(b) Using the results of (a), diagonalize the Hamiltonian

+ i
H=w(@a+ é) + EA(a‘a‘ + aa), (3.138)
by transforming it into the fornH = &(b'b + %). Find @, u andv in terms ofw andA. What happens
whenA = w?

(c) The Hamiltonian in (b) has a boson pairing term. Show thefground-state dfi can be written
as coherent condensate of paired bosons, given by

|6> _ e—a(a’a*) 0.

Calculate the value af in terms ofu andv. (Hint: |0) is the vacuum fob, i.ebl0) = (ua+ va')[0) = 0.
Calculate the commutator §d, e @] by expanding the exponential as a power series. Find a value
of a that guarantees thatannihilates the vacuutb). )

Exercise 3.5 (Harder) Find the classical normal mode frequencies anthalbco-ordinates for the one
dimensional chain with Hamiltonian

2
H=) 2% + 01002 (3.139)
where at even sitesp; = mand at odd sitesyj,1 = M. Please sketch the dispersion curves.
(i) What is the gap in the excitation spectrum?
(iii)Write the diagonalized Hamiltonian in second quantiZerm and discuss how you might arrive
at your final answer. You will now need two types of creatioemaor.

Exercise 3.6 (Harder) According to the “Lindeman” criterion, a crystaélts when the rms displacement
of its atoms exceeds a third of the average separation ofohesaConsider a three dimensional crystal
with separatiora, atoms of mass and a nearest neigbor quadratic interactioa "‘“‘Tz(cﬁR - <I3R+a)2.

(i) Estimate the amplitude of zero point fluctuations usimg tincertainty principle, to show that if

h

e (3.140)

where{ is a dimensionless number of order one, the crystal will betabie, even at absolute zero,
and will melt due to zero-point fluctuations. (Hint... whabwid the answer be for a simple harmonic
oscillator?)

(i) Calculate{; in the above model. If you like, to start out, imagine that #tems only move in
one direction, so thab is a scalar displacement at the site with equilibrium posiR. Calculate the
rms zero-point displacement of an atoy0|®(x)?|0). Now generalize your result to take account of
the fluctuations in three orthogonal directions.

(iii)Supposefiw/ks = 300K, and the atom is a Helium atom. Assuming thais independent of
atom separatiom, estimate the critical atomic separatianat which the solid becomes unstable to
quantum fluctuations. Note that in practieels dependent om, and rises rapidly at short distances,
with w ~ a™, wherea > 2. Is the solid stable foa < a. or fora > a.?

Exercise 3.7 (Harder) Find the transformation that diagonalizes the aman

H =" {h@iaa + Ho) + J(a'iaa + Ho) (3.141)
j

where the ith site is located & = aj. You may find it helpful to (i) transform to momentum space,
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writing aj = ﬁ Yq &9Riay and (ii) carrying out a canonical transformation of the fdumn= ugaq +
Vg@'_q, whereu? — v2 = 1. What happens wheh = J,?

Exercise 3.8 (Harder) This problem sketches the proof that the displacgrof the quantum Harmonic
oscillator, originally in its ground-state (in the distgoatst), is given by

(X)) = fo "R - V) f ), (3.142)

where )
R(E=1) = (X0 XO)1I0) (3.143)

is the “response function” anx(t) is the position operator in the Heisenberg representatidty. A
more detailed discussion can be found in chapter 10.

An applied forcef (t) introduces an additional forcing term to the harmonic ltestoir Hamiltonian
H(t) = Ho + V(t) = Ho - f(H)% (3.144)

whereHp = hw(@a'a + %) is the unperturbed Hamiltonian. To compute the displacernéthe Har-

monic oscillator, it is convenient to work in the “interamti representation”, which is the Heisenberg

representation foro. In this representation, the time-evolution of the wavefion is due to the force

term. The wavefunction of the harmonic oscillator in theeration representatiag (t)) is related to

the Schrodinger statés(t)) by the relatiorjy (t)) = €"oY|ys(t)).

1 By using the equation of motion for the Schrodinger sitadgws(t)) = (Ho + V(1))lvs(t)), show that
the time evolution of the wavefunction in the interactiopnesentation is

iddy (1) = Vi (1) = =T QRO 1)),

whereV (t) = eHot/ny(t)e-Hot/h = _x(t) f(t) is the force term in the interaction representation.
2 Show that ifiy(t)) = |0y att = —co, then the leading order solution to the above equation ofanot
is then

(3.145)

i (8)) = 10y + % ft dt’ f(t')X(t')[0y + O(f?), (3.146)

so that

Lot
W1 = <0l —%[ dt' f(t)OI() + O(?). (3.147)

3 Using the results just derived expand the expectationev@h(t)|x(t)l(t)) to linear order inf,
obtaining the above cited result.
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Conserved Particles

The method we have just examined is fine for “collective etmns” of a medium, but it does not make it
self-evident how we should proceed for systems of consguaetitles: particles with mass, such as a gas of
Helium-4 atoms, or an electron gas inside a metal. Now we staln to discuss conserved particles.

First quantized quantum mechanicandeal with many body physics, through the introduction of aayna
particle wavefunction. This is the approach favored in fieddch as quantum chemistry, where the number
of electrons is large, but not macroscopic. The quantum &tgnapproach revolves around the many-body
wavefunction. ForN particles, this a function of I8 variables and\ spins. The Hamiltonian is then an
operator expressed in terms of these co-ordinates:

¥ — (X, X2 .. XN, 1)

+%ZV(><@ - %)) 4.2)

i<j

hz
H— Z [_ﬁvf +U(x))
J

With a few famous exceptions this method is cumbersome, laadiied to macroscopically large systems.
The most notable exceptions occur in low dimensional prablevhere wavefunctions of macroscopically
large ensembles of interacting particles have been oltaixamples include

e Bethe Ansatz solutions to interacting one dimensional,ianmlirity problems[1, 2, 3, 4].

e Laughlin’s wavefunction for interacting electrons in higlagnetic fields, at commensurate filling factors[5,
6].

Second-quantization provides a general way of approachangy body systems in which the wavefunction
plays a minor role. As we mentioned in chapter 3, the essefihwecond-quantization is a process of raising
the Schodinger wavefunction to the level of an operator which §iascertain “canonical commutation” or
“canonical anticommutation” algebras”. In first quantiz#g/sics physical properties of a quantum patrticle,
such as its density, Kinetic energy, potential energy camXpessed in terms of the one-particle wave-
function. Second quantization elevates each of these itjeartb the status of an operator by replacing the
one-particle wavefuncion by its corresponding field opmrat

vy o Uk
one particle wavefunction Field operat and Quantization @.2)
ow".v) - OU.)

For example, Born’s famous expression for the one-partfmiebability) density becems an operator as fol-
lows:

P = WP — A = " (i (x), (4.3)
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so that the potential energy associated with an externahiat is

V= f d*xUX)H(X). (4.4)

Similarly, the Kinetic energy in first-quantization

2
T ol = [ |- 5o @5)
becomes the operator
7= [aii|- v i 4.6)
B 2m ’ '
Finally
H= fd3xJ/"(x) —%Vz + U(x)]a//(x) + %fd3xd3>(V(x— X) : pOYP(X) 4.7)

is the complete many-body Hamiltonian in second-quantiaed. HereV(x — X') is the interaction potential
between the particles, and the symbol “:” reflects the faat tnder of the operators counts. “: ...:" is the
normal ordering operator denotes that all creation opesdtetween the two colons must be ordered to lie to
the left of all destruction operators.

4.1 Commutation and Anticommutation Algebras

April 29, 2012

In 1928, Jordan and Wigner[7] proposed that the microschigid operators describing identical particles
divide up into two types. These are axioms of quantum fieldrheFor identical bosons, field operators
satisfy a commutation algebra, whereas for Fermions, thibdijgerators satisfy aanticommutatioralgebra.
Since we will be dealing with many of their properties in plefait useful to introduce a unified notation for
commutators and anticommutators as follows

{a,b} =ab+ba=[ab].,
[a,b] =ab-ba=[ab]-, (4.8)
so that
[a,b], =ab+ba 4.9)
We shall adopt the-/— subscript notation in this chapter, while we are discusbitl) fermions and bosons

together.
The algebra of field operators is then

W@).v@). = [v' (2. v (D 0

Fermiony Bosons (4.10)

[w(@).¢" ().

When spin is involved, 1= (x,01) andd(1 — 2) = 6O (x; — X2)d,,0,- We shall motivate these axioms
in two ways: (i) by showing, in the case of Bosons, that theyanatural result of trying to quantize the
one-particle wavefunction. ; (ii) by showing that they le¢adhe first quantized formulation of many-body
physics, naturally building the particle exchange stassnto the mathematical framework.

s(1-2)
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Table. 5.1. First and Second Quantization treatment of coresved particles. one-particle state. If we time evolve the system we can biegihink of the single-particle wavefunction as

if itis a classical variable.
First Quantization Second Quantization Let us briefly recall one-particle quantum mechanics. Iffheticle is in a statéy), then we can always
expand the state in terms of a complete b§ajg, as follows:

Wavefn— Field

() = () W(x) o
Operator W)= 3 = 3 Imun (4.12)
Commutator kpl=in (%), 4 (X)]= = $°(x = X) " " A
so thatyn(t)[2 = pa(t) gives the probability of being in state Now applying Schrodinger's equatioid|y) =
. 2 R PN inoy) gives
Density p(X) = ()l (X)) = v (X)(¥) _
inin(®) = D (MIHIMYm(t)
. . -~ m
Arbitrary Basis W = (Ay) 75 ihn)/;(t) __ Z<m|H|n)lp;,(t) 4.12)
Change of Basis (S = Z(EAU) a5 = 3 (800 Now if we write the ground-state energy as a functional oftihgt), we get
Orthogonality (A7) = S Wy vls = Sar v = M) = ; Ymdn(mMHIN) (4.13)
5 ~ , N we see that the equations of motion can be written in Hamédtoform
One ptcle Energy Ly X w*(x)(—é’—m + U(X))w(x)
- OH(y,y*) . OH
A Ym = Thau (C.fq:a—p)
Interaction icj V(% = X)) V= %fxx V(X—=X):p(X)p(X) : _ 0H(¢Tw*) ] 9H
iy, = o (cfp= —a—q) (4.14)
= 1 S V(@)C €l o-qCk O o
so we can identify
Many Body - - i) = {Gn, 4.15
Wavefunction R{GRCRR ) O (X4a) - - - h(%n)I0) {¢m, iy} = (O, Pn} (4.15)

] as the canonical position and momentum co-ordinates.

Schivdinger Eqn (S H, + Ziej Vi) ¥ = in'¥ [HO + [ p)V(X = Q)]i(X) = iTujr(x) But suppose we don't have a macroscopic humber of particlasingle state. In this case, the amplitudes
¥n(t) are expected to undergo quantum fluctuations. Let us exawiirat happens if we “second-quantize”
these variables, making the replacement

Table 5.1 summarizes the main points of second-quantiziat we shall now discuss in detail. (o Pl = iGnm = iA[Yn, ¢ ) (4.16)

or

4.1.1 Heuristic Derivation for Bosons

[n,gm] = ['//A;‘n,w.rm] =0,

The name second-quantization derives from the notion thatrhody physics can be obtained by quantizing N (4.17)
the one-particle wavefunction. Philosophically, this &tricky, for surely, the wavefunction is already a Wng'ml = Onm

quantum object? Let us imagine however, a thought expetiméren we prepare a huge number of non-
interacting particles, prepared in such a way that they kie precisely the same quantum state. The fea-
sibility of this does not worry us here, but note that it catuatly be done for a large ensemble of bosons, H= Z 3w (MHI (4.18)
by condensing them into a single quantum state. In this eistance, every single particle lies in the same i

In terms of these operators, our second quantized Hamaltdmecomes

41 42
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If we now use this to calculate the time-evolution of the quanfields we obtain

i —Omjt
=gy = [H, wil = D (mHID [ i, ] (4.19)
ml
Eliminating the sum ovem, we obtain
—ihdu; == ) (iHI
|

=ihd' = A, whi] = ) w AHI), (4.20)

|

where the complex conjugated expression gives the timeutool of ;. Remarkably, the equations of
motion of the operators match the time evolution of the oagigle amplitudes. But now we have operators,
we have all the new physics associated with quantum fluctustf the particle fields.

4.2 What about Fermions?
|

Remarkably, as Jordan and Wigner first realized, we recosemigely the same time-evolution if second-
quantize the operators using anticommutators[7], ratfem tommutators, and it this is what gives rise to
fermions and the exclusion principle. But for fermions, vee mot dfer a heuristic argument, because they
don’t condense: as far as we know, there is no situation irchvinidividual fermi field operators behave
semi-classically (although of course, in a superconduptars of fermions that behave semi-classically).

In fact, all of the operations we carried out above work elguaéll with either canonical commutation or
canonicalanticomutatiorrelations:

[Yn. Ym] [¥ n ¥ mls =0,

‘ (4.21)
[‘/’n»WTmli = Onm

where thet refers to fermionfosons respectively.
To evaluate the equation of motion of the field operators, @edrto know the commutato[ ). Using
the relation
[ab,c] = a[b, c]. *[a.c].b (4.22)
we may verify that
0 A
—_——
W i il = ¢ mlvn il 9 m gl v
= —Smith (4.23)
so that
—Omji

=idw; = (A, wil = D (mHID [ i, ]
ml

43

bk . pdf

April 29, 2012

Chapter 4. ©Piers Coleman 2011

== > (jHIw (4.24)
|

independently of whether we use an anticommuting, or conmypaigebra.
Let us now go on, and look at some general properties of segoadtized operators that hold for both
bosons and fermions.

4.3 Field operators in different bases
|

Let us first check that our results don’'t depend on the ontiefmbasis we use. To do this, we must confirm
that the commutation or anticommutation algebra of bosaerfermions is basis independent. Suppose we
have two bases of one-particle states:{thg basis, and a neWs)} basis, where

W)= Inve = ) I9as (4.25)
r S
where(§y) = as, {rly) = ¢. Introducing the completeness relatios T, |r){r| into the first expression,
we obtain
as Vs
,—:\ ~ ——
@) = En (4.26)
r

If this is how the one-particle states transform betweenttiebases, then we must use the same unitary
transformation to relate the field operators that destrofigbes in the two bases

8= ) (&N (4.27)
r
The commutation algebra of the new operators is how
Sim
SN I S
(8,8 pl. = ) (&) [, o (mip) (4.28)
I,m

This is just the pre- and post-multiplication of a unit ofieraby the unitary matrixXJs = (§l) and its
conjugatel " mp = (MP). The final result, is unity, as expected:

(85, &"pl. = D (ENAIP) = (3P) = 65p (4.29)

In other words, the canonical commutation algebra is preseby unitary transformations of basis.
A basis of particular importance, is the position basis. ®he-particle wavefunction can always be de-
composed in a discrete basis, as follows

) = WD) = D X (4.30)

where(xin) = ¢n(x) is the wavefunction of the nth state. We now define the cpmeding destruction
operator

909 = Y (i (4.31)
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which defines the field operator in real space. Using commésteof the one-particle eigenstat%idelxxxl,
we can expand the orthogonality relatiém, = (njm) as

1= dPxix)(x

—_
Snm = (Nl 1 |m>=dex<n|x><x|m>.

By integrating (4.31) ovex with (n|x), we can then invert this equation to obtain

un= [[@xmu0o. o= [ P 0iny @.32)
You can see by now, that so far as transformation laws arescoed, ~ (n| andy/(x) ~ (x| transforms like
“bra” vectors, whilst their conjugates transform like “ét

By moving to a real-space representation, we have tradedliscaete basis, for a continuous basis. The

corresponding “unit” operator appearing in the commutatifgebra now becomes a delta-function.
+ 6”"‘;
WO 0 W = ) IMY) [, ¢l
nm

= D) (nly) = (xy)

= 6g(x -y) (4.33)

where we have assumed a three-dimensional system.
Another basis of importance, is the basis provided by thepamtcle energy eigenstates. In this basis
(I[H|m) = E;6im, so the Hamiltonian becomes diagonal

H= Z Ewl = Z Eify
T

The Hamiltonian of the non-interacting many-body systemsttivides up into a set of individual compo-
nents, each one describing the energy associated with tdupaicy of a given one-particle eigenstate. The
eigenstates of the many-body Hamiltonian are thus labéletie occupancy of thith one-patrticle state. Of
course, in a real-space basis the Hamiltonian becomes raorglicated. Formally, if we transform this back
to the real-space basis, we find that

(4.34)

H= f dPxdP Xy " (X)(XHIX Y (X') (4.35)
For free particles in space, the one-particle Hamiltongan i
2
(XHIX) :[ e U(x)]o‘D(x— ¥) (4.36)
2m
so that the Hamiltonian becomes
D,/ T hz 2
H= fd Xy (x)[ -5V U(x)]w(x) (4.37)

which despite its formidable appearance, is just a a tram&d version of the diagonalized Hamiltonian
(4.34).
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Example 4.1: By integrating by parts, taking care with the treatment of surface termgy gfat the

second quantized expression Hamiltonian (4.37) can be re-written iortime f
2

H= f de(;—mlvw(x)|2+ U(x)|l//(x)|2), (4.38)

where we have taken a notational liberty common in field theory, denfSting)[? = V' (x) - V(%)

andly(3” = v ()y(x).
Solution: Let us concentrate on the kinetic energy term in the Hamiltonian, writinrgT + U, where

T= f &3 (%) (-%vz) o). (4.39)
Integrating this term by parts we can split it into a “bulk” and a “surfacerhteas follows:
Ts
T= iz f dPxVy T (X) - Vip(x) + i f d®xV - (y (Vi (x). (4.40)
2m 2m
Using the divergence theorem, we can rewrite the total derivative asacs integral
Ts = -% f S - (' ()Vu(x) (4.41)

Now it is tempting to just drop this term as a surface term that “vanishes aityfifiHowever, here
we are dealing with operators, so this brash step requires a little contempiafimre we take it for
granted. One way to deal with this term is to use periodic boundary conditiottss case there really
are no boundaries, or more strictly speaking, opposite boundarieelc@pds + deS = 0), so the
surface term is zero. But suppose we had used hard wall bounaladitions, what then?
Well, in this case, we can decompose the field operators in terms of theaotiele eigenstates of the
cavity. Remembering that under change of bagés), ~ (x| andy(x) ~ |x) behave as bras and kets
respectively, we write

@n() ()

—= o G
YO) =D M v, w09 =Dt <
n n
Substituting these expressions ifit (4.41), the surface term becomes
Ts= Ztﬁr{‘/’in#’/m
nm
s n? =
B3 | 45 6109%0n(0) (8.42)

Provided,(x) = 0 on the surface, it follows that the matrix elemetfts= 0 so thaffs = 0.
Thus whether we use hard-wall or periodic boundary conditions, welaap the surface contribution
to the Kinetic energy in (4.40), enabling us to write

T= h—zfd[’xﬁ X1
" 2m v

and when we add in the potential term, we obtain (4.38).
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4.4 Fields as particle creation and annihilation operators. From this expression, we are immediately led to identify

-] +
p(X) = ¢ (X)X (4.52)
By analogy with collective fields, we now interpret the qugnb, = i as the number number operator, as the density operator. Furthermore, since
counting the number of particles in the one-particle dtafée total particle number operator is then [o(y) w(X)] = F[¢' (). w(X)] £ ¥(y) = —63(X - V) (y). (4.53)
N = Z A (4.43) we can we can identify(X) as the operator which annihilates a particle.at
|
Using relation (4.22), it is easy to verify that for both féams and bosons, Example 4.2: Usina the resuilt (4 53) that if
[Nl = [Pny] = —vr, NGy = [Lefi] = o (4.44)
In other wordsNy ™, =y (N + 1) so thaty’| adds a particle to stateSimilarly, sinceNy; = v (N — 1), g N = fy{ﬂ &y(9)
destroysa particle from staté (4.54)
There is however a vital and essentidfeiience between bosons and fermions. For bosons, the nuber o measures the number of particles in some regiothat
particlesn, in thelth state is unbounded, but for fermions, since 400, (xeR)
vl ={ % G (455)
(4.45) 0 (x¢R)

B 1 . B
!,’/’|2 = E{Alf‘h A

the amplitude to add more than one particle to a given staaééwiays zeroWe can never add more than
one particle to a given state: in otherwords, éxelusion principldollows from the algebra! The occupation
number bases for bosons and fermions are given by

By localizing regionR aroundx, use this to prove that(x,) annihilates a particle at positiog.

Solution: By directly commutingNg with ¥(x), we obtain

. —¥(¥), (xeR)
Ng, ¥(X)] = f (X)) = —f 53(x — = {
(N v 9] = | 1o 0] == | 0=y b xeR)
Supposéng) is a state with a definite numbeg of particles insideR. If the regionR is centered around
Xo, then it follows that

Ny = [ ('%‘ |0y, (n=0,1,2...) bosons A a
" (4.46) Nry/(Xo)Ing) = ¥/(Xo)(Ng — L)Ing) = (ng — 1) (Xo)Ing)
nLno...ny = )™ @™oy, (nr=0,1) fermions contains one less particle. In this way, we see if{zg annihilates a particle from inside regi@) no
matter how small that region is made, proving thét) annihilates a particle at positiog.
A specific example for fermions, is
123456 + + - +
1101101) = ' a3y "110) (4.47) Example 4.3: Supposeby destroys a boson in a cubic box of side lenbtivhereq = 2(i, j, k) is

which contains particles in the 1st, 3rd, 4th and 6th onéigdeistates. Notice how therderin which we add
the particles fiects the sign of the wavefunction, so exchanging particksd6 gives

the momentum of the boson. Express the field operators in real spacshaw they satisfy canonical
commutation relations. Write down the Hamiltonian in both bases.

Solution The field operators in momentum space satifyli’y] = dqy. We may expand the field
operator in real space as follows

W' aoy'ay10) = ey ayay'110) = -1 101101) (4.48)
W e 110y = —yew ey "110) = : Y09 = D (Rdhby (4.56)
By contrast, a bosonic state is symmetric, for example N !
ow
| 805241) = o0 ) (W VU W 10 (4.49) A = e @57
VA121518! EE :
To get further insight, let us transform the number opertatar real-space basis by writing is the one-particle wavefunction of a boson with momentiir€alculating the commutator between
the fields in real space, we obtain
D (x—
R Kt WAC) S0 (4.50) L
B Yz o ' RO = 3 RDAD b be] = Y RN
ad q
so that A = é 3 = 5% - g). (4.58)
R= [ /(900 (51) 7

a7
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The last two steps could have been carried out by noting¥had)(q = 1, so that §(%).u'()] =
Xy = 6%(x -~ y).

The Hamiltonian for the bosons in a box is
2
H = _;Lm f P (V) (4.59)

We now Fourier transform this, writing

1
w’r(x) - m Z gid xbtq
q

1
VAU = ~ 5 p, g (4.60)
q
Substituting into the Hamiltonian, we obtain
L.
—_——
H= é > &byby f XX = 3 ebigby, (4.61)
q.q q
where
2P
G = (W) (4.62)

is the one-particle energy.

4.5 The vacuum and the many body wavefunction
|

We are now in a position to build up the many-body wavefumcti®nce again, of fundamental importance
here, is the notion of the vacuum, the unique si@tevhich is annihilated by all field operators. If we work
in the position basis, we can add a particle at site make the one-particle state

1) = ¢ (x)[0), (4.63)
Notice that the overlap between two one-particle states is
XXy = Oy ()10 (4.64)

By using the (anti) commutation algebra to move the creatjperator in the above expression to the right-
hand side, where it annihilates the vacuum, we obtain

6O(x-x)
Ol (u" (x)[0) = Ol[w (), ¥ (X)].10) = 6P (x — x). (4.65)
We can equally well add many particles, forming tigoarticle state:
%1, %2 .. Xn) = T () - - o () (%) 10) (4.66)
Now the corresponding “bra” state is given by
X Xz Xl = (Ol (xa)e(Xe) . ¢(Xn) (4.67)
49
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The wavefunction of the N-particle statg(t) is the overlap with this state

Ws (X1, X, - - XN, 1) = (X, X X[ s (1) = O () (X2) - . . w(xn)IP's (1)) (4.68)

Remarks

¢ In the above expression, the time-dependence of the wastEanlies in the ket vectop¥(t)). We can

alternatively write the wavefunction in terms of the timepeéndent Heisenberg field operato(s, t) =
eht/hy,(x)e MU and the stationary Heisenberg ket vedy) = €M/ ws(t)) as follows

W(X1, Xo, - X 1) = (Ol (X, DY (X, 1) - o (X, 1) (4.69)

e The commutatiofanticommutation algebra guarantees that the symmetryiofidvefunction under par-

ticle exchange is positive for bosons, and negative for ii@ns) so that if we permute the particles,
(12...N) = (P1P;...Py)

OO )W (x,) ... (e IWs (1)) = (F1)F O (xa)p (%) - ..y (xn)IF() (4.70)

whereP is the number of pairwise permutations involved in making permutation. Notice that for
fermions, this hard-wires the Pauli Exclusion principléoithe formalism, and guarantees a node at
locations where any two position (and spin) co-ordinatésaide.

Example Two spinless fermions are added to a cubic box with sides of lengthmomentum states
ki andk,, forming the state

[¥) = [k1,kz) = €', €'y, [0) (4.71)
Calculate the two-particle wavefunction
W(X1, %) = (X1, Xo|'P) (4.72)
SolutionWritten out explicitly, the wavefunction is
(X2, %) = (O (Xa)¥(%2)C Tk, €k 10) (4.73)

To evaluate this quantity, we commute the two destruction operators to theuigihthey annihilate
the vacuum. Each time a destruction operator passes a creation apgeag@Enerate a “contraction”
term

53(x-y)

W(x), ¢} = f Ay (w(x). ¥ (KYIK) = (xk) = L2 (4.74)
Carrying out this procedure, we generate a sum of pairwise contracésriollows:

O (Xa) (%) C ki, C iy [0) = (XalK1)(XalK2) — (Xa[K2)(XolK1)
_ | (xalk1)  (xalkz)

(Xolk1)  (XalK2)
— Li;[é(h*ﬁh X2) _ é(kl’xz+k2‘xl)]
Note: the determinantal expression for the two particle wavefunction ig@nge of a “Slater deter-
minant”. The N dimensional generalization can be used to define the uventifn of the corresponding
N particle state.
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4.6 Interactions
|

Second-quantization is easily extended to incorporatraations. Classically, the interaction potential en-
ergy between particles is given by

V= %fd3xd3x’v(x - X)p(X)p(X) (4.75)
so we might expect that the corresponding second-quargigeession is
%fd%(d’)(V(x— X)p(X)p(X) (4.76)

This is wrong because we have not been careful about the ordering oftoprédvere we to use (4.76), then
a one-particle state would interact with itself! We requfrat the action of the potential on the vacuum, or a
one-particle state, gives zero

V|0) = VIx) = 0 4.77)

To guarantee this, we need to be careful that we “normalrbttie field operators, by permuting them so
that all destruction operators are on the right-hand-#tl@dditional terms that are generated by permuting
the operators are dropped, but the signs associated wiffetheutation process are preserved. We denote the
normal ordering process by two semi-colons. Thus

Sp(¥)p() 1 =T QY (YY) :

=7 10 (0 M) =1 ¢ (Y W (Yu ) : (4.79)
and the correct expression for the interaction potentitiés
V= % fd3xd3x’v(x— X) : p(YP(X) :
-3 3 [ VO X0 6005 (90009 @79
where we have written a more general expression for fields sgina, g € +1/2.
Example. Show that the action of the operatdon the many body state;, ... xy) is given by
VIX1, X, ... Xn) = ZV()q — X))I%0, X, - - - XD (4.80)
i<
Solution: To prove this, we first prove the intermediate result
[V, (0] = f dPYV(x -y ()p(y)- (4.81)

This result can be obtained by expanding out the commutator as follows:
Sy=Xuy' )£y =X)u(y)
0= [ V=)0 O ) 0.9 )
=0 ()y )

e e
=005 [ Vo £ 5 [ V- 08w 00w
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= f V(x =)y (x)o). (4.82)
y
where the lower sign choice is for fermions.
We now calculate
Ve, ... xw) = V' () . .. (x0)[0) (4.83)

by commutingV successively to the right until it annihilates with the vacuum. At each steggener-
ate a “remainder term”. When we commute it past the the “jth” creationadpewe obtain

h/—\ ~
P (@n)... Vii(z;) ... 91 (21)[0) = ¥i(an) .. VI (e;)V ... ¥ (@1)[0) +R; (4.84)
where the remainder is
R; = f Ay ) - VY = X)u ()P0 - - ¥ (x2)I0) (4.85)

Next, usingo(Y)y' (%) = ¢ (x)o(y) + ¥ (x)s(y— %), we commute the density operator to the right until
it annihilates the vacuum. The remainder terms generated by this parestsgen

-1

Rj = ) V6= x)0 (%) -0 () ... 0 (%) ... ¢ (%1)I0)

T
e

= V(X = Xj)I X1, X2 - . . Xn)- (4.86)
i=1
Our final answer is the sum of the remaindgs
W) W ()0 = Y R
2N
= ZV()Q — X)IXes Xa - - - X)- (4.87)

i<j

In other words, the stafg; ... xy) is an eigenstate of the interaction operator, with eigenvalue given by
the classical interaction potential energy.

To get another insight into the interaction, we shall nowriit in the momentum basis. This is very
useful in translationally invariant systems, where moraents conserved in collisions. Let us imagine we
are treating fermions, with spin. The transformation to amantum basis is then

Yo(X) = ka(ré(k'x),
K
Vo) = [ e, (4.89)
k
where{Cye, C'ior} = (27)36%(k — k’)é,.~ are canonical fermion operators in momentum space and we hav

used the short-hand notatio
f f d27'1k
k ( ) ’
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k1+q704 kQ_Q76

ko, B

kl,Oé

Fig. 4.1 Scattering of two particles, showing transfer of momentum. g.

We shall also Fourier transform the interaction

V(x-X) = f V(q)ed &), (4.90)
q

When we substitute these expressions into the interactiemeed to regroup the Fourier terms so that the

momentum integrals are on the outside, and the spatialraigegre on the inside. Doing this, we obtain

~ 1 -
V= 5 Zﬂ V(@) X €k C ka0 Ckro Ckyor» XSpatial integrals (4.91)
oo’ 1234
where the spatial integrals take the form
f dBxdx gikerdxgkeks-ax" — (97185 (k, — kg — )6 (k3 — ko + ), (4.92)

which impose momentum conservation at each scattering.evsing the spatial integrals to eliminate the
integrals oveks andkg, the final result is

~ 1 .
V= 3 Zf V(q)c{kﬁqac‘quﬂckzﬁcklw
kika.q

op

(4.93)

In other words, when the particles scatter at positioasadx’, momentum is conserved. Particle 1 comes in
with momentumk,, and transfers momentumto particle 2. Particle 2 comes in with momentlm and
thereby gains momentum

particle 1 Ky
particle 2 ko

- k1+q

- kp—g (4.94)

as illustrated in Fig. 4.1. The matrix element associateth Wiis scattering process is merely the Fourier

transform of the potentiaf(q).
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Example 4.4: Particles interact via a delta-function interactig(x) = Ua®6®(x). Write down the
second-quantized interaction in a momentum space representation.
Solution: The Fourier transform of the interaction is

V(q) = f d*xuas(x)e > = ua® (4.95)
so the interaction in momentum space is
N SES
V= Z - f [N LB Y (4.96)
& k1. k2.q
Example 4.5: A set of fermions interact via a screened Coulomb (Yukawa) potential
Ar
V() = A‘;r 4.97)
Write down the interaction in momentum space.
Solution: The interaction in momentum space is given by
~ 1
V=33 [ Vo wumin (4.98)
o p VK k2
where
Ar
V(@) = f dsxA%e-‘q-x (4.99)

To carry out this integral, we use Polar co-ordinates with the z-axis aligiwty the directiorq.
Writing g - X = gr cosf, thend®x = r2d¢d cosd — 2xrd cos#, so that

1 1
V() = f 4rr2drv(r) 3 f dcosg e cos” (4.100)
=1
(erix)=2g
so that for an arbitrary spherically symmetric potential
V() = f 47rr2drV(r)(—SI(:?r) (4.101)
0
In this case,
_ ﬂ-\ & il _ _4A
V(q) = g jo‘ dre™" sin(gr) = Fr (4.102)
Notice that the Coulomb interaction,
V(r) (4.103)

" dneor’

is the infinite range limit of the Yukawa potential, with= 0, A = €/4re,, so that for the Coulomb
interaction,
&
V() = ——.
(@ o

Example 4.6: If one transforms to a new one particle basis, writi(g) = Y. ®s(X)cs, Show that the
interaction becomes

(4.104)

.1
V=3 Z C11C7 menCo(IMIV]pn)

imnp

(4.105)
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where
(miVjpry = f D[ DH(IP(X)(X)V (X~ X) (4.106)

is the matrix element of the interaction between the two particle stateand|pn).

4.7 Equivalence with the Many Body Schr  6dinger Equation
|

In this section, we establish that our second-quantizediaerof the many body Hamiltonian is indeed
equivalent to the many-body Schroedinger equation. Letarswith the Hamiltonian for an interacting gas
of charged patrticles,

Ho %

H=3, f wfz"[—% S - e+ 5 f V=) 09500 -

(4.107)

Wherefx = fd3x, and by convention, we work in the Grand Canonical ensensblgtracting the termN
from the Schadinger HamiltoniarHs, H = Hs — uN. For a Coulomb interaction

, &

V(x=X) = Treax— x| (4.108)
but the interaction might take other forms, such as the bard-interaction between neutral atoms in liquid
He-3 and He-4.

The Heisenberg equation of motion of the field operator is
W2y W, (4.109)

Using the relations

Wo (X, ¥ " (X)Oxtho ()] = 6(r(r 6%(x = X)Oxb (%),
Y (9. p(a)e0R)] = 1 [ (X). pOa)]p(2) < + 2 pO) [ (X, p(X2)] -
53(X1 = X)W (X) + 6> (%2 = () (¥)

we can see that the comutators of the one- and two-particte phthe Hamiltonian with the field operator
are

22
o0, Hol = -5+ U0 = o)
0oV = [ XV = 00009

The final equation of motion of the field operator thus resembl one-particle Schrodinger equation.

in%e —’;—V £UO) - o + f XV~ (X W ()

(4.110)

(4.111)
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If we now apply this to the many body wavefunction, we obtain

L 0P(L2,.. 0w(1)
'ET in le“N<0|.//(1)

-

" Z f XV = X)OD) .. p W) - (N

~y(N)I¥)

+U) - ¥

By commuting the density operator to the left, until it anlates with the vacuum, we find that

QWD) PO () . W (NI = )" 63X = X)OW(D)... v

I<j

(N)[w) (4.112)

so that the final expression for the time evolution of the mamyy wavefunction is precisely the same as we
obtain in a first quantized approach.

m‘L\P [Zw%Zv‘,]

I<j

(4.113)

Our second-quantized approach has the advantage thdtlg buthe exchange statistics, and it does not need
to make an explicit reference to the many body wavefunction.

4.8 Identical Conserved Particles in Thermal Equilibrium
I —

4.8.1 Generalities

By quantizing the particle field, we have been led to a versfauantum mechanics with a vastly expanded
Hilbert space which includes the vacuum and all possiblestaith an arbitrary number of particles. An
exactly parallel development occurs in statistical thedymamics, in making the passage from a canonical, to
a grand canonical ensemble, where systems are considdvedrt@quilibrium with a heat and particle bath.
Not surprisingly then, second quantization provides a tieduwvay of treating a grand canonical ensemble
of identical particles.

When we come to treat conserved particles in thermal equitibrwe have to take into the account the
conservation of two independent quantities

e Energy.E
e Particle numbeN

Statistical mechanics usually begins with an ensemblessitidal systems of definite particle number and en-
ergyE andN respectively. (More precisely, particle number and engyigyg in the narrow ranges\, N+dN]

and [E, E + dE], respectively). Such an ensemble is called a “microcas@rénsemble”. This is a confus-
ing name, because it suggests something “small”, yet tjlpi@microcanonical ensemble is an ensemble
of identical, macroscopic systems that play the role of & hath[8, 9, 10, 11]. The ergodic hypothesis of
statistical mechanics assumes that in such an ensemkédecabible quantum states within this narrow band
of allowed energies and particle number are equally prebgeljuala priori probability).
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Heat/Particle bath

E — E)

@ Heat Exchange N — N)\

Small system

Particle and

Fig. 4.2 lllustrating equilibrium between a small system and a large heat bath. Inset illustrates

how the number of states with energy E,, particle number N, is proportional to the
density of states in the big system.

Now suppose we divide the system into two parts - a vast “heti’land a tiny sub-system, exchanging
energy and particles, as shown in Fig. 4.2 until they readhta sf thermal equilibrium. In the vast heat and
particle bath, the energy levels are so close togetherthtgform a continuum. The density of states per unit
energy and particle number is taken toW€E’, N’), whereE’ is the energy antl’ the number of particles
in the bath. When the system is in a quantum sttevith energyE,, particle numbeN,, the large system
has energf’ = E — E,, particle numbeN’ = N — N,.

Assuming equak prioriprobability, the probability that the small system is intsta) is proportional to
the number of state#/(E, N) of the heat bath with enerdy — E, and particle numbeX — N,,

P(Ea. NY) o W(E — E,, N — N,) = @WEELN-N), (4.114)

Now following Boltzmann, we can tentatively identify/(E, N) with the entropyS(E, N) of the heat bath,
(see exercise 4.4) according to the famous formula

Sg(E. N) = kg In W(E, N) (4.115)

where we have included the subsciiipto delineate the heat bath. It follows that

P(E4, N,) < exp éSB(E —-E.LN-Ny (4.116)
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Now E, andN, are tiny perturbations to the total energy and particle remu the heat bath, so we may
approximateS(E — E,, N — N,) by a linear expansion,
B 8Sg 8Sg
Sg(E - E;,N - N,) = Sg(E,N) — E; 3E N FINIREE (4.117)

Now according to thermodynamictE = TdS + udN whereT andy are the temperature and chemical
potential, respectively, so thdBg = %dE— £dN, allowing us to identify

19Sg _dnwW 1

ks OE ~ OE  keT

19Sg _dnW _ u _

ks ON ~ ON  keT
These are the Lagrange multipliers associated with theecgation of energy and particle numbe®nce
we have made this expansion, it follows that the probatiitige in statel) is

=0,
—upB. (4.118)

B = %e—ma—w», (4.119)

where the normalizing partition function &= 3, , e #(E#N),
To recast statistical mechanics in the language of many buelyry, we need to rewrite the above expres-
sion in terms of operators. Let us begin with the partitionciion, which we may rewrite as

2= et

A
= Zme*ﬁ(“*ﬂ“) 1) = Tr[ePH-#9], (4.120)
A

Although we started with the eigenstates of energy andqi@miumber, the invariance of the trace under
unitary transformations ensures that this final expressiardependent of the many body basis.

Next, we cast the expectation val(®) in a basis-independent form. Suppose the quantity A, repted
by the operatod, is diagonal in the basis of energy eigenstatgsthen the expectation value #fin the
ensemble is

(A = Z paAAY = Tr[pA]. (4.121)
A

Here we have elevated the probability distributjprnto an operator- the Boltzmann density matrix:

p= 0Pyl = Z TP (4.122)
A

This derivation of (4.121) assumed thatould be simultaneously diagonalized with the energy amtigha
number. However, quantum statistical mechanics, makesthieal assertion that (4.121) holds for all quan-
tum operatordA representing observablesjen when the operatdk does not commute witd or N, and is
thus not diagonal in the energy and particle number basis.

1 Incidentally, if you are uncomfortable with the use of claasthermodynamics to identify these quantities in terms ofeheperature
and chemical potential, you may regard these assignmentstasitenpending calculations of physical properties thawaus to
definitively identify them in terms of temperature and chempmtential.
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4.8.2 ldentification of the Free energy: Key Thermodynamic Propert ies

There are a number of key thermodynamic quantities of gnéextast: the enerdsy, the particle numbeN, the
entropyS and the Free enerdy = E — ST— uN. One of the key relations from elementary thermodynamics
is that

dE = TdS— udN - PdV (4.123)
By puttingF = E-TS—-uN, dF = dE-dTS-SdT- udN - Ndy, one can also derive
dF = -SdT- Ndu — PdV (4.124)

a relationship of great importance.
The energy and particle number can be easily written in thguage of second-quantization as

E = Tr{Hp],
N = Tr[Np], (4.125)

but what about the entropy? From statistical mechanics,neevkhat the general expression for the entropy
is given by

S=-ks . pilnp, (4.126)
P

Now since the diagonal elements of the density matrixpareve can rewrite this expression as
S = —kgTr[pIng] (4.127)

If we substitute Ip™= —g(H — uN) — In Z into this expression, we obtain

S= %Tr[)(H — uN) + kgIlnZ

= %(E — uN) + kgInZ (4.128)
i.e—kgTInZ = E — ST— uN, from which we identify
F = —kgTInZ (4.129)

as the Free energy. Summarizing these key relationshipsgeither, we have
Thermodynamic Relations
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F = —kgTInZ, Free energy
Z = Trert0 Partition function
R e BH-uN) ) ]
hp= —F Density Matrix
N = TNl =-% Particle number
S = —kgTrfpIng] = -5& Entropy
— s

P = -% Pressure

E-uN = Tr(H-uN)p], = -25Z Energy

April 29,

Notice how, in this way, all the key thermodynamic propexti@an be written as appropriate derivatives of
Free energy.

Example 4.7: (i) Enumerate the energy eigenstates of a single fermion Hamiltonian.
H = Ec'c (4.130)

where{c, ¢’} = 1, {c, ¢} = {c!, ¢’} = 0.
(ii) Calculate the number of fermions at temperafiire
Solution (i) The states of this problem are the vacuum state and the one-particle state

|0) Eo = 0O
m=ci). & = E (4.131)
(i) The number of fermions at temperaturds given by
(fy = Tr[ph] (4.132)
whererf= c'c,
p = et 7 (4.133)
is the density matrix, and where
Z = Tr[e PN (4.134)
is the “partition function”. For this problem, we can write out the matricedieitly.
o 1 0 ~ |0 O
efH = 0 efEn|s fi= [0 1] (4.135)
so that
Z=1+ePEN (4.136)
and
Tr[he?M] = ePEX (4.137)
The final result is thus
e AEH) 1
) (4.138)

T 1refEw T PEM41
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which is the famous Fermi-Dirac function for the number of fermions itagesof energyE, chemical
potentialyu.

4.8.3 Independent Particles

In a system of independent particles with many energy le¥elach energy level can be regarded as an
independent member of a microcanonical ensemble. Forpthityis because the Hamiltonian is a sum of
independent Hamiltonians

H—-uN = Z(Eﬁ — )M (4.139)
P

so that the partition function is then a product of the indiidl partition functions:
7= Tr[l_[ g PEN] (4.140)
1@

and since the trace of an (exterior) product of matricesgisakto the product of their individual traces,
(Tr[e = I1a ),

z=]|merEm =[]z, (4.141)
a a
Since
1 + e BEI-#) Fermions
Z,= { 14 P 4 g®E 4 | = (1-ePE)Ll Bosons (4.142)

The corresponding Free energy is given by

fermions

=F B(Er—1)

F = kT Z In[l+e 1. { bosons (4.143)
The occupancy of thith level is independent of all the other levels, and given by
Ay =Triph] = T(| 0]
®
— ~ 1
=[ [ Trlpd xTripin] = FEPII (4.144)

A#l
where ) refers to Fermions and-§ to bosons.
In the next chapter, we shall examine the consequencess# te&tionships.

Exercises
|

Exercise 4.1 In this questiorc;” andc; are fermion creation and annihilation operators and thestare
fermion states. Use the convention
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111111000..) = cs'csfesf s’ e flvacuum.
1 Evaluatecs'csCaCs'c3111111000. ).
2 Write|1101100100..) in terms of excitations about the “filled Fermi s¢4111100000..) . Inter-
pret your answer in terms of electron and hole excitations.
3 Find(yINjy) wherely) = Al100) + B|111000, N = ¥ ¢i'ci.
Exercise 4.2 1 (a) Consider two fermionsy anda,. Show that the Boguilubov transformation

¢ =Uua +va
¢’y = —vay +ua, (4.145)

whereu andv are real, preserves the canonical anti-commutation o@lgif u? + v2 = 1.
2 Use this result to show that the Hamiltonian

H = e(aa; — apay’) + A(a’1a’, + H.c.) (4.146)
can be diagonalized in the form
H = Ve2 + A2(c'1c; + cTo0p — 1) (4.147)

3 What is the ground-state energy of this Hamiltonian?
4 Write out the ground-state wavefunction in terms of the ingijoperatorsc;™ and ¢, and their
corresponding vacuui), (c12/0) = 0).
Exercise 4.3 Consider a system of fermions or bosons, created by the i) interacting under the
potential

[y, (r <R),
V() = { o >R, (4.148)

1 Write the interaction in second quantized form.

2 Switch to the momentum basis, wheie) = %Cke‘k". Verify that [cx, ¢ ] = (27)26®)(k —k’)
and write the interaction in this new basis. Please sketetidim of the interaction in momentum
space.

Exercise 4.4 1 Show that for a general system of conserved particles atichépotential, the total parti-
cle number in thermal equilibrium can be written as

N = —3F /o (4.149)
where
F = —kgTInZ
Z = Tr[e AH-+N) (4.150)

2 Apply this to a single bosonic energy level, where
H-uN = (e -p)a'a (4.151)

andd' creates either a Fermion, or a boson, to show that
B 1
Toghlem) — 1
Why doesu have to be negative positive for bosons?

0) (4.152)
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Exercise 4.5 (Equivalence of the microcanonical and Gibb’s ensemblekafge systems.)
In a microcanonical ensemble, the density matrix can bendiye
A 1 - -
pm = W6(E — H)5(N - N)
whereE andN are the energy and particle number respectively, while
W = W(E, N) = Tr[6(E - H)&(N - N)]
is the “density of states” at enerd@y, particle numbeN. This normalizing quantity plays a role similar
to the partition function in the Gibb’s ensemble.
1 By rewriting the delta functions inside the above trii¢@s an inverse Laplace transforms, such as
. o+ico dﬁ R
sty = [ B
C-F= o
and evaluating the resulting integrals at the saddle péithisointegrand, show that for a large system
W is related to the entropy by Boltzmann'’s relation
S(E,N) = kg InW(E, N).
2 Using your results, show that in a large system, the expeotaalue of an operator is the same for
corresponding Gibb’s and microcanonical ensembles, namel
(A) = Tr{owAl = TrpsAl

wheregy = Z-le#H#N|,_, . is the Boltzmann density matrix evaluated at the saddletpoin
values ofB andpo,
dlnwW ,0InW
Po="5g  Ho=hooN
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Simple Examples of

Second-quantization

In this section, we give three examples of the applicatiosezfond quantization, mainly to non-interacting
systems.

5.1 Jordan Wigner Transformation

A*“non-interacting” gas of Fermions is still highly corrédal: the exclusion principle introduces a “hard-core”
interaction between fermions in the same quantum states fEaiture is exploited in the Jordan -Wigner
representation of spins. A classical spin is represented Wgctor pointing in a specific direction. Such a
representation is fine for quantum spins with extremelydagjn S, but once the spin S becomes small, spins
behave as very new kinds of object. Now their spin becomesatgm variable, subject to its own zero-point
motions. Furthermore, the spectrum of excitations becatisesete or grainy.

Quantum spins are notoriouslyfiiicult objects to deal with in many-body physics, because theyot
behave as canonical fermions or bosons. In one dimensioe\u@wit turns out that spins witB = 1/2
actually behave like fermions. We shall show this by writifig quantum spin/2 Heisenberg chain as
an interacting one dimensional gas of fermions, and we sttallally solve the limiting case of the one-
dimensional spin+2 x-y model.

Jordan and Wigner observed[1] that the down and up stateinfjesspin can be thought of as an empty
or singly occupied fermion state, (Fig. 5.1.) enabling thtermake the mapping

ImH="f10, [L=10). (5.1)

An explicit representation of the spin raising and loweripgrators is then

. |0 1
o =
St=f _[O 0]
__._|0 0O
s_f=14 (5.2)
The z component of the spin operator can be written
1 _ _ip 1
Su= 5[ D=1 = 1715 (53)

We can also reconstruct the transverse spin operators,
S
Sy = 21(S +87) = 21(f + f),
= —(St-S)= = T
Sy = 5 (s*-9) 2i(f f), (5.4)
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nf=1

Showing how the “up” and “down” states of a spin-1/2 can be treated as a one

2012

particle state which is either full, or empty.

The explicit matrix representation of these operators mikaear that they satisfy the same algebra
[Sa, Sp] = i€ancSe- (5.5)

Curiously, due to a hidden supersymmetry, they also sadisfygnti-commuting algebra
1 1
{Sa, Sp} = Z{U'as op} = é‘sabv (5.6)

and in this way, the Pauli spin operators provided Jordanvdigder with an elementary model of a fermion.

Unfortunately the represeentation needs to be modifieeiktts more than one spin, for independent spin
operators commute, but independent fermions anticomndotelan and Wigner discovered a way to fix up
this difficulty in one dimension by attaching a phase factor calledrantg' to the fermions[1]. For a chain of
spins in one dimension, the Jordan Wigner representatitmea$pin operator at sitgis defined as

Sf=flé (5.7)
where the phase operaipy contains the sum over all fermion occupancies at sites ttethef j,

?j =7anj (5.8)

5

The operatoéél is known as a “string operator”.
The complete transformation is then

s = -4
SHEE i@ 2 1 Jordan Wigner transformation (5.9)
ST = fie—inz‘,‘(J n

(Notice€™ = e is a Hermitian operator so that overall sign of the phas@faatan be reversed without
changing the spin operator.) In words:

Spin= Fermionx string.
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The important property of the string, is thatabticommutesvith any fermion operator to the left of its
free end. To see this, note first that is that the opetbranticommutesvith the fermion operatofj. This
follows becausd; reducesn; from unity to zero, so thaf; €™ = —f; wherea™ f; = f;. from which it
follows that

(€™ fj} = ™Mfj+ f™ = - ;=0 (5.10)
and similarly, from the conjugate of this expressiet™, f7;} = 0. Now the phase fact@™ at any other

sitel # j commutes withf; and fi'*, so that the string operateii’f anticommutes with all fermions at all sites
| to the “left” of j, | < |:

(€4, 1) =0, (<i
whilst commuting with fermions at all other siteg |,

€, 1 =0, (=j.

We now can verify that the transverse spin operators safigfycorrect commutation algebra. Suppose
j <k, then€?i commutes with fermions at sifeandk so that
[, 5] = (10, 1] = 1D, D]

But (7 antcommutes with botfi{” ande* so it commutes with their produd{”*], and hence

180,80 e [ 17, §Ne] = 0. (5.11)

So we see that by multiplying a fermion by the string operatds transformed into a boson.
As an example of the application of this method, we shall nasewubs the one-dimensional Heisenberg
model

H=-3)[S/S}, +S/8,,1-3 ) sist, (5.12)
]
In real magnetic systems, local moments can interact viaf@gnetic, or antiferromagnetic interactions.
Ferromagnetic interactions generally arise as a resultioé¢t exchange” in which the Coulomb repulsion
energy is lowered when electrons are in a triplet state, Usscthe wavefunction is then spatially antisym-
metric. Antiferromagnetic interactions are generallydurced by the mechanism of “double exchange”, in
which electrons on neighbouring sites that form singleasi(fparallel spin”) lower their energy through vir-
tual virtual quantum fluctuations into high energy statesliich they occupy the same orbital. Here we have
written the model as if the interactions are ferromagnetic.
For convenience, the model can be rewritten as

H= (5.13)

[S;.1S] + Hel -3, ) S8,
]

_J
2
To fermionize the first term, we note that all terms in thengfsi cancel, except foréf™ which has no fiect,
J J J N
> >'si,8; = > > fald™ = > Dl (5.14)
i i i

so that the transverse component of the interaction indac¢éspping” term in the fermionized Hamilto-
nian. Notice that the string terms would enter if the spiriiattion involved next-nearest neighbors. The
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z-component of the Hamiltonian becomes
1 1
422 7,87 = 422(% -3 -3) (5.15)
i i

Notice how the Ferromagnetic interaction means that spimibns attract one-another. The transformed
Hamiltonian is then

J
H=-3 DU afi+ £ ) + 3 )= 3, > ninpa. (5.16)
i i i
Interestingly enough, the pure x-y model has no interadgom in it, so this this case can be mapped onto a
non-interacting fermion problem, a discovery made by L&thulz and Mattis in 1961[2].
To write out the fermionized Hamiltonian in its most compfietn, let us transform to momentum space,
writing

1 '
fi = 5 R (5.17)
! N ;

wheres', creates a spin excitation in momentum space, with momektimthis case, the one-particle terms

become
JZZ nj = JZZ SrkSK.
i K
Néie

J § J cika |, kay ot Cik-K)R
- Z(f jafy+HE) = —o0 Z(e + kayg ksk,Ze J
] K ]

=-J Z coska)s' (S« (5.18)
K
The anisotropic Heisenberg Hamiltonian can thus be written
H= Zwks*ksk— JZZ ninjs1 (5.19)
k i
where
wy = (J, — Jcoska) (5.20)

defines a magnon excitation energy. We can also cast thedsé&on in momentum space, by noticing that
the interaction is a function af- j which is—J,/2 fori — j = +1, but zero otherwise. The Fourier transform
of this short-range interaction \&(q) = —J, cosga, so that Fourier transforming the interaction term gives
- t J oo
H= Zk: WS kSk — N—S ksz;qcosqa) S'k-qS k+qSk Sk- (5.21)

This transformation holds for both the ferromagnet andemtmagnet. In the former case, the fermionic spin
excitations correspond to the magnons of the ferromagnehd latter case, the fermionic spin excitations
are often called “spinons”.

To see what this Hamiltonian means, let us first neglect ttegdstions. This is a reasonable thing to do in
the limiting cases of (i) the Heisenberg Ferromagdgt J and (i) the x-y model, =0 .
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Heisenberg Ferromagnet

2J

Goldstone

m
W ode

—7/a 0 k 7/a
Fig. 5.2 Excitation spectrum of the one dimensional Heisenberg Ferromagnet.

e Heisenberg Ferromagnét = J
In this case, the spectrum

wy = 2] sirf(ka/2) (5.22)

is always positive, so that there are no magnons presentimrbund-state. The ground-state thus
contains no magnons, and can be written

0) =111l .. (5.23)

corresponding to a state with a spontaneous magnetizitien-Ns/2.

Curiously, sinceuk—o = 0, it costs no energy to add a magnon of arbitrarily long weveth. This is an
example of a Goldstone mode, and the reason it arises, isigetlae spontaneous magnetization could
actually point in any direction. Suppose we want to rotagrtragnetization through an infinitesimal
angledd about the x axis, then the new state is given by

by = €% || 6>
=\u.”>+i§Zs;\u“,>+0(592) (5.24)
]

The change in the wavefunction is proportional to the state
Storl L.y = ) f€“l0)
i
=310y = YNss'ieol0) (5.25)
i
In otherwords, the action of adding a single magnoq at0, rotates the magnetization infinitesimally
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upwards. Rotating the magnetization should cost no enarglthis is the reason why the= 0 magnon
is a zero energy excitation.

x-y Ferromagnet

J :
particle:
Wi,
holes
0 m/2a% o —7/2a
] g
.
. ;' N i
" S Occupieq
. . states
_ J LN
—7/a 0 /a
k

Fig. 5.3 Excitation spectrum of the one dimensional x-y Ferromagnet, showing how the
negative energy states are filled, the negative energy dispersion curve is “folded over”
to describe the positive hole excitation energy.

e x-y FerromagnetAs J, is reduced fromJ, the spectrum develops a negative part, and magnon states wi
negative energy will become occupied. For the purg model, wherel, = 0, the interaction identically
vanishes, and the excitation spectrum of the magnons is giyey = —J coskaas sketched in Fig. 5.3.
All the negative energy fermion states wjkh< x/2a are occupied, so the ground-state is given by

o= [] so (5.26)

ki<r/2a

The band of magnon states is thus precisely half-filled, ab th
1
(Sz) = (nf - 5) =0 (5.27)

so that remarkably, there is no ground-state magnetizaiienmay interpret this loss of ground-state
magnetization as a consequence of the growth of quantunfleptoations in going from the Heisen-
berg, to the x-y ferromagnet.

Excitations of the ground-state can be made, either by gdalimagnon at wavevectojg > r/2a,
or by annihilating a magnon at wavevecttkis< x/2a, to form a “hole”. The energy to form a hole is
—w. To represent the hole excitations, we make a “particle‘hohnsformation for the occupied states,
writing

- { S (KK > 7/2a), (5.28)

sk, (Kl < 7/2a)
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These are the “physical” excitation operators. Sigge, = 1 — 'k, the Hamiltonian of the pure x-y
ferromagnet can be written

1

Hy= > J kal(5' & — = 5.29

s Zk: | coskal(S'ksc - 5) (5.29)

Notice that unlike the pure Ferromagnet, the magnon ei@itapectrum is now linear. The ground-state
energy is evidently

1
Eg = -3 Z J| coska
K

/22 K
-2 d—J coska) = —ﬂ.

5 ) an - (5.30)

But if there is no magnetization, why are there zero-energgmon modes at = +r/a? Although there

is no true long-range order, it turns out that the spin-dati@ns in the x-y model display power-law
correlations with an infinite spin correlation length, gexted by the gapless magnons in the vicinity of
q=+n/a

5.2 The Hubbard Model

In real electronic systems, such as a metallic crystal atdight it might appear to be a task of hopeless
complexity to model the behavior of the electron fluid. Foettely, even in complex systems, at low energies
only a certain subset of the electronic degrees of freedemsited. This philosophy is closely tied up with
the idea of renormalization- the idea that the high energyeskes of freedom in a system can be successively
eliminated or “integrated out” to reveal afffective Hamiltonian that describes the important low energy
physics. One such model, which has enjoyed great succetfg ldubbard model, first introduced in the
early sixties by Hubbard, Gutzwiller and Kanamori[3, 4, 5].

Suppose we have a lattice of atoms where electrons are dloeasized in atomic orbitals at each site. In
this case, we can use a basis of atomic orbitals. The opavatoh creates a particle at sijés

c'iy = fd3x®(x -R)¢ (X (5.31)
where®(x) is the wavefunction of a particle in the localized atomibital. In this basis, the Hamiltonian
governing the motion, and interactions between the pagican be written quite generally as
. L 1 o
H= %(MHD\])C,U% + 5 l;p(lm|V|pn>c'\[,c'Wcm/cp(, (5.32)

where(i|Holj) is the one-particle matrix element between state=l j, and(Im|V|pn) is the interaction matrix
element between two-particle stafies) and|pn).

Let us suppose that the energy of an electron in this statelighis orbital is highly localized, then the
amplitude for it to tunnel or “hop” between sites will decagpenentially with distance between sites, and
to a good approximation, we can eliminate all but the neareighbor hopping. In this case, the one-particle
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lllustrating the Hubbard Model. When two electrons of opposite spin occupy a single

atom, this gives rise to a Coulomb repulsion energy U. The amplitude to hop from site
to site in the crystal is t.

matrix elements which govern the motion of electrons betvwsites are then
e j=i

(jIH@Jiy ={ —t i, jnearest neighbors
0 otherwise

(5.33)

The hopping matrix element between neigboring states witlegally be given by an overlap integral of the
wavefunctions with the negative crystalline potentiall &or this reason, it is taken to be be negative. Now
the matrix element of the interaction between electronsfigrent sites will be given by
(mivjpry = f O ()R IPF(X)P(XIV (X~ X). (5.34)
XX
but in practice, if the states are well localized, this wil lominated by the onsite interaction between two
electrons in a single orbital, so that we may approximate

_JU I=p=m=n
(mVipry = { 0 otherwise (5.35)
In this situation, the interaction term in (5.32) simplifies
U
5 2. it irCirCir = U 3 nipny, (5.36)

J.oo’ ]

where the exclusion principle:J?(, = 0) means that the interaction term vanishes untess are opposite
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spins. The Hubbard model can be thus be written
H =t > [C jarCio + Hocl+ € ) clioCir + U Y gy, (5.37)
jao jor ]

wheren;, = c'j,Cj, represents the number of electrons of spiat site j. For completeness, let us rewrite
this in momentum space, putting

1 jik-R

Ciy = o @RI (5.38)
Y
whereupon
_ F u F F
H= Z &C'ko Ok + - Z C'k-q1C k+q1 CkrL Okt (5.39)
Ko S qkk’
Hubbard model
where

&= ) (i +RilHolje™
1
= —2t(cosky + cosky + cosk;) + € (5.40)
is recognized as the kinetic energy of the electron exoitatiwhich results from theicoherenthopping
motion from site to site. We see that the Hubbard model dessi band of electrons with kinetic eneegy

and a momentum independent “point” interaction of stretgthetween particles of opposite spin.
Remark

Chapter 5. ©Piers Coleman 2011

FERMIONS BOSONS

Fermi Surface

Kk ke K

Fig. 5.5 Contrasting the ground-states of non-interacting Fermions and non-interacting

Bosons. Fermions form a degenerate Fermi gas, with all one-particle states below the
Fermi energy individually occupied. Bosons form a Bose Einstein condensate, with a
macroscopic number of bosons in the zero momentum state.

e This model has played a central part in the theory of magmetisetal-insulator transitions, and most
recently, in the description of electron motion in high tergiure superconductors. With the exception
of one dimensional physics, we do not, as yet have a compteterstanding of the physics that this
model can give rise to. One prediction of the Hubbard modéthvis established, is that under certain
circumstance, if interactions become too large the elasttiecome localized to form what is called
“Mott insulator”. This typically occurs when the interamtis are large and the number of electrons per

however, we shall content ourselves with looking at a fewhefground-state properties of non-interacting
gases of identical particles.

In practice, quantumfects will influence a fluid of identical particles at the poirttere their characteristic
wavelength is comparable with the separation betweencfestiAt a temperatur€ the rms momentum of
particles is given b)szMS = 3mikgT, so that characteristic de Broglie wavelength is given by

site is close to one. What is very unclear at the present tsnehat happens to the Mott insulator when At = _h = _h (5.41)
it is doped, and there are many who believe that a completerstahding of the doped Mott insulator ,péMS VamieT
will enable us to understand high temperature supercoivityct
so that whenly ~ p~%/3, the characteristic temperature is of order
h2p2/3
. . . . O KeT* ~ (5.42)
5.3 Non-interacting particles in thermal equilibrium 2m

-] Below this temperature, identical particles start to ifeer with one-another, and a quantum-mechanical
treatment of the fluid becomes necessary. In a Fermi fluidusion statistics tends to keep particles apart,
enhancing the pressure, whereas for a Bose fluid, the ctadataotion of particles in the condensate tends to

lower the pressure, ultimately causing it to vanish at theeBBinstein condensation temperature. In electron

Before we start to consider the physics of the interactimplem, let us go back and look at the ground-state
properties of free particles. What is not commonly recoghiethat the ground-state of non-interacting, but
identical particles is in fact, a highly correlatathny body state. For this reason, the non-interacting gtoun fluids inside materials, this characteristic temperatsréwio orders of magnitude larger than room tem-
state has a robustness that does not exist in its classigalerpart. In the next chapter, we shall embody some perature, which makes the electricity one of the most driengaiamples of quantum physics in everyday
of these thoughts in by considering the action of turningfeninteractions adiabatically. For the moment phenomena!
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5.3.1 Fluid of non-interacting Fermions

The thermodynamics of a fluid of fermions leads to the concépt “degenerate Fermi liquid”, and it is
important in a wide range of physical situations, such as

e The ground-state and excitations of metals.
e The low energy physics of liquid Helium 3.
e The degenerate Fermi gas of neutrons, electrons and prhiainiges within a neutron star.

The basic physics of each of these cases, can to a first apptian be described by a fluid of non-interacting
Fermions, with Hamiltonian

H=Hs-uN= Z(Ek = 1)CkoCror (5.43)
Following the general discussion of the last section, tlezfenergy of such a fluid of fermions is is described
by a single Free energy functional

F=—kgT )" In[1+ &)
ke
= —2kgTV f In[1 + &) (5.44)
k

where we have taken the thermodnamic limit, replacihg — 2V fk By differentiatingF with respect to
volume, temperature and chemical potential, we can imntegliderive the pressure, entropy and particle
density of this fluid. Let us however, begin with a more phgkiiscussion.

In thermal equilibrium the number of fermions in a state witbmentunp = 7k is

e = f(Ex - ) (5.45)

where
1
fx)= ——
* X+ 1
is the Fermi-Dirac function. At low temperatures, this ftios resembles a step, with a jump in occupancy
spread over an energy range of orlgf around the chemical potential. At absolute z&(g) — 6(—x), so
that the occupancy of each state is given by

N = 6(u — Ex)

is a step function with an abrupt change in occupation whernu, corresponding to the fact that states with
Ex < u, are completely occupied, and states above this energyrarg/eThe zero-temperature value of the
chemical potential is often called the “Fermi energy”. Inmmrentum space, the occupied states form a sphere,
whose radius in momentum spageg,is often refered to as the Fermi momentum.

The ground-state corresponds to a state where all fermadesstvith momenturk < kg are occupied:

Wo =[] cl0)

|k|<ke, o

(5.46)

(5.47)

(5.48)

Excitations above this ground-state are produced by théiaaaf particles at energies above the Fermi
wavevector, or the creation dfolesbeneath the Fermi wavevector. To describe these excisatwoe make
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the following particle-holgrransformation

C%k
i -
A'ke =

7 { SgNE)C k-

(k> kg) particle

(k> ke) hole (5:49)

Beneath the Fermi surface, we must replagck, — 1 — a'k,ax,, SO that in terms of particle and hole
excitations, the Hamiltonian can be re-written

H =N = > (B - plakodis + Fy (5.50)
ko
where respectively,
Fo= > Ee-m=2v fk (-, (5.51)
ki<

|K|<kge.o

is the ground-state Free energy, aaoandN are the ground-state energy and particle number Notice that

e To create a hole with momentuknand spino-, we must destroy a fermion with momenturk and spin
—o. (The additional multiplying factor of- in the hole definition is a technical feature, required so tha
the particle and holes have the same spin operators.)

¢ The excitation energy of a particle or hole is givendjy= |Ex — ul, corresponding to “reflecting” the
excitation spectrum of the negative energy fermions atimiFermi energy.

The ground-state density of a Fermi gas is given by the voloftiee Fermi surface, as follows

1 : d®k 2
== Yt =2 [ === ==V, 52
9= Yt fk« o = o (5.52)
where
4 4r\ (2mee |2
Vs = gké = (Eﬂ) (#) (5.53)

is the volume of the Fermi surface. The relationship betwberdensity of particles, the Fermi wavevector
and the Fermi energy is thus

N\ 1 1 (2mee\*?
<V> =32 = Q( h;) (5.54)
In an electron gas, where the characteristic density/ ~ 10?°m-3 the characteristic Fermi energy is of
order BV ~ 10,000K. In other words, the characteristic energy of an electrawgsorders of magnitude
larger than would be expected classically. This is a stackdramatic consequence of the exchange inter-
ference between identical particles, and it is one of thatgearly triumphs of quantum mechanics to have
understood this basic piece of physics.

Let us briefly look at finite temperatures. Here, bffetientiating the Free energy with respect to volume
and chemical potential, we obtain

_OF

P=-w

F ookt f In[1 + e#E]
v k
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aF
N=—a=2fkf(5k—y) (5.55)

The second equatiarefineghe chemical potential in terms of the particle density avamgtemperature. The
first equation shows that, apart from a minus sign, the pressisimply the Free energy density. These two
equations can be solved parametrically as a function of @& potential. At high temperatures the pressure
reverts to the ideal gas laRV = NkgT, but at low temperatures, the pressure is determined byehaiF
energy

P=2 Wk:(p -EJ)l = %5,: (5.56)
The final result is obtained by noting that the first term iis #pression ig(N/V). The first term contains an
integral overd®k ~ k?dk — k2 /3, whereas the second term contains an integral Bygtk ~ k*dk — k2 /5,

so the second term ig/8 of the first term. Not surprisingly, this quantity is badligghe density of fermions
times the Fermi energy- a pressure that is hundreds of tiavger than the classical pressure in a room
temperature electron gas.
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Remarks

o Atfirst sight, it might seem very doubtful as to whether thmagkable features of the degenerate Fermi gas
would survive once interactions are present. In particolae would be tempted to wonder whether the
Fermi surface would be blurred out by particle-particlerattions. Remarkably, for modest repulsive
interactions, the Fermi surface is believed to be stablaénmedsions bigger than one. This is because
electrons at the Fermi surface have no phase space forrsutEhis is the basis of LandauRermi
liquid Theoryof interacting Fermions.

¢ Inaremarkable result, due to Luttinger and Ward, the jumbénoccupancy at the Fermi wavevectpr
remains finite, although reduced from uniB( < 1) , in interacting Fermi liquids.

5.3.2 Fluid of Bosons: Bose Einstein Condensation

Bose Einstein condensation was predicted in 1924- the méauf Einstein extending Bose’s new calcula-
tions on the statistics of a gas of identical bosons. Howévers not until seventy years later- in 1995, that
the groups of Cornell and Wieman[6] and independently th&etterle[7], succeeded in cooling a low den-
sity gas of atoms - initially rubidium and sodium atoms - tigh the Bose Einstein transition temperature.
The closely related phenomenon of superfluidity was firseplesl in the late 30’s by Donald Misener and
Jack Allen working in Toronto and Cambridge[8] and Piotr Kzpin Moscow([9]. Superfluidity results from
a kind of Bose-Einstein condensation, in a dense quantum, fiuiere interactions between the particles
become important. In the modern context, ultra cold, ulifate gases of alkali atoms are contained inside a
magnetic atom trap, in which the Zeeman energy of the atgpirs;adigned with the magnetic field, confines
them to the region of highest field[10]. Lasers are used toqmiea small quantity of atoms inside a mag-
netic trap using a method known as “Doppler cooling”, in whibe tiny “blue shift” of the laser light seen
by atoms moving towards a laser causes them to selectivelyrlalphotons, which are then re-emitted in a
random direction, a process which gradually slows them doegucing their average temperature. Doppler
pre-cooling cools the atoms to about 10-AB0The second stage involves “Evaporative cooling”, a pssce
in which the most energetic atoms are allowed to evaporat@fotne well while systematically lowering
the height of the well. As the well-height drops, the temperaof the gas plumits down to the nano-Kelvin
range required to produce Bose-Einstein condensationgioniHiquid formation) in these gases (see Fig.
5.6).

To understand the phenomenon of BEC, conside the densigsaffgoosons, which at a finite temperature
takes almost precisely the same form as for fermions

1
o= fkeﬂ(m) —~ (5.57)

where we have written the expression for spinless bosonvspaksl be the case for a gas of liquid Helium-4,

or ultra-dilute Potassium atoms, for instance. But there vghole world of physics in the innocent minus

sign in the denominator! Whereas for fermions, the chemiotgtial is positive, the chemical potential for

bosons is negative. For a gas at fixed volume , the above eipng$.57) thus defines the chemical potential
u(T). By changing variables, writing

12k? m
X = BEk :ﬁﬁ’ (ﬁ?)dx: kdk
®k  4ankedk 1 [ m\¥?
@r " @F Ve (i) veox ©-59)
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Fig. 5.6 lllustrating evaporative cooling in an atom trap. (a) Atoms are held within a magnetic
potential. (b) As the height of the potential well is dropped, the most energetic atoms
“evaporate” from the well, progressively reducing the temperature. (c) A Bose Einstein
condensate, with a finite fraction of the gas in a single momentum state, forms when
the temperature drops blow the condensation temperature.
we can rewrite the Boson density in the form
2 o 1
= — dXVX—"— 5.59
o vm%fo Vi (559)
where
B 2h2 \ 2
=== 5.60
=) (5.60)

is a convenient definition of the thermal de Broglie wavetirlg order to maintain a fixed density, as one
lowers the temperature, the chemical potent{@l) must rise. At a certain temperature, the chemical potentia
becomes zergy(T, = 0) = N/V At this temperature,

5 \3
At 2 1 3
—] =— dxv/x ={(z)=261 5.61
(T) - & [ oxvrgg - (561)
wherea = p~%3 is the interparticle spacing. The corresponding tempegatu
hZ
keTo = 3.31| — 5.62
oo =331 1) (562
is the Bose-Einsteinondensation temperature.
Below this temperature, the number of Bosons inkhe0 state becomes macroscopic, i.e.
Neo= g = No(T) (5.63)
becomes a finite fraction of the total particle number. SiNg@) is macroscopic, it follows that
u 1
- 5.64
kT No(T) (5:64)
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is infinitesimally close to zero. For this reason, we mustéeful to split df thek = 0 contribution to the
particle density, writing

N = No(T) + ) (5.65)
k#0
andthentaking the thermodynamic limit of the second term. For thesitg, this gives
N 1
p=y =po(T)+ ﬁiw(Ek) - (5.66)

The the second term is proportional;te—3 o T2, Since the first term vanishes &t= T, it follows that
below the Bose Einstein condensation temperature, thétgefid®osons in the condensate is thus given by

(5.67)

po(T) =p|lf (TIO)M

Remarks

e The Bose Einstein Condensation is an elementary exampleedand-order phase transition.

e Bose Einstein condensation is an example of a broken symiplefise transition. It turns out that the same
phenomenon survives in a more robust form, if repulsiverautgons between the Bosons are present.
In the interacting Bose Einstein Condensate, the field opegdx) for the bosons actually acquires a
macroscopic expectation value

W0)) = Vpee*® (5.69)

In a non-interacting Bose condensate, the plgsg lacks rigidity, and does not have a well-defined
meaning. In an interacting condensate, the plgseis uniform, and gradients of the phase result in a
superflonof particles- a flow of atoms which is completely free fromoasity.

Example 5.1: In a laser-cooled atom trap, atoms are localized in a region of spacethtioe:Zeeman

energy of interaction between the atomic spin and the external field. A=ttiefianges direction, the
“up” and “down” spin atoms adiabatically evolve their orientations to remamlfel with the magnetic

field, and the trapping potential of the “up” spin atoms is determined by tlyninale of the Zeeman
energyV(x) = gusJB(x), which has a parabolic form

V() = g w2 + 0ty + w22
Show that the fraction of bosons condensed in the atom trap is now gjven b
No(D) _, (T Y
N Tee)

Solution: In the atom trap, one particle states of the atoms are Harmonic oscillatorstétenergy
Eimn = i(lwx + Mwy + Nw,) (Where the constant has been omitted). In this case, the numbetiofgsar
in the trap is given by

1
N= Z PEimn — 1
Lmn

The summation over the single-particle quantum numbers can be caht@ea integral over energy,
provided the condensate fraction is split the sum, so that

1 1
3 gy =N+ KECE =
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whereN;y is the number of atoms in the condensate and
pE)= Y. 8(E-Em)
Imn, (Eymn#0)

is the density of states. By converting this sum to an integral we obtain

o(E) = f dIdmd(E - Einr)

_ (dEdEdE,
B hwyhwyho,

1 € Ex E2
= Gor Jy 95 f, 9=z

The quadratic dependence of this function on energy replaces theesgod dependence of the cor-
responding quantity for free Bosons. The number of particles outsédeahdensate is proportional to
TS,

6(Ex+ Ey+ E;— E)

(& = (wywyw)"?)

23
1 e T \F
J et = e [ 71 ()
whereks Tge = h(N/Zs)*3, so that the condensate fraction is now given by

P/nk:BTU [

Fermi Liquid

10

Bose Einstein Condensate

. \ .

10 1t

1 !
Tse S5 T/T,

Fig. 5.7 Pressure dependence in a Fermi or Bose gas, where temperature is measured in
units of kgTo = 72/m& Showing P/nkg
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Example 5.2: Using the results of the previous section, show that the ideal gas law is etbbfithe
interference between identical particles, so that

P = nksT7*(u/keT) (5.69)

wheren is the number density of particles*(z) = g*(2)/h*(2) and

g2 = if dxvxin[1 + e *?]

0
1
() —

h*(2) = f: Vg (5.70)
where the upper sign refers to fermions, the bottom to bosons. Sketdepeadence of pressure on
temperature for a gas of identical bosons and a gas of identical fesmidmthe same density.

Solution: Let us begin by deriving an explicit expression for the Free energyfafe gas of fermions,
or bosons. We start with

F =%(2S+1)ksTV f In[1 + e#E) (5.71)
k
whereS is the spin of the particle. Making the change of variables,
12k?
d3kx ) ﬂE; ) ﬁﬂ’
=—— Vxdx (5.72)

@pR " Bk
whereldr = /27h2/(mksT) is the rescaled Thermal de Broglie wavelength, we obtain
Vv 2
F=%(2S+ 1ksT =5 — f dxyXin[1 + e 4] (5.73)
A3 \r

Taking the derivative with respect to volume, and chemical potential, @irothe following results
for the Pressure and the particle density.

=& kel 2 o)
P= =0 =+(2S +1) = ﬁfdxﬁln[lte i
_ OF _(2S+1) 2 1
i f XV (5.74)

Dividing the pressure by the density, we obtain the quoted result for taégds.
To plot these results, it is convenient to rewrite the temperature ancupeeaghe form

T = To[h* ()] 2°
P _ 9w
nkeTo — [=(uB)]**"

wherekgT, = % permitting both the pressure and the temperature to be plotted parametially
function ofuB. Fig 5.7 shows the results of such a plot.

(5.75)
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Exercises
e

Exercise 5.1 1 Use the Jordan Wigner transformation to show that the omemsional anisotropic XY
model

H=- Z[Jlsx(j)sx(i +1)+ BSy(1)Sy(j + 1] (5.76)
i

can be written as
H = = > [t(d" jad + H.0) + A" a0 + H.O)] (5.77)
j

wheret = 2(J; + J) andA = (J; - Jy).
2 Calculate the excitation spectrum for this model and $kgtur results. Comment specifically on
the two cases; = J, andJ, = 0.

Fig. 5.8 Phase diagram of transverse field Ising model. See problem 5.3

Exercise 5.2 The 1D transverse field Ising model provides the simplestngka of a “quantum phase
transition”: a phase transition induced by quantum zeratgootion (Fig.5.8). This model is written

H=-3)" S{i)Sii+1)-h " Su(i).
i i

whereS; is the z-component of a spiry4, while the the magnetic field acts in the transverse (x)
direction. ( For convenience, one can assume periodic yrmnditions, withN; sites, so thaj =
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Ns+ 1= j=0.)Ath = 0, the model describes a 1D Ising model, with long-rangefeagnetic order
associated with a two fold degenerate ferromagnetic gretate,
[¥1) =1
or
) =T1loll2) ... ] Ing-

A finite transverse field mixes “up” and “down” states, andifdinitely largeh, the system has a single
ground-state, with the spins all pointing in thelirection,

[ 1) +1 lj))
[¥-) = (7 .

In other words, there is thus a quantum phase transition-aagtransition driven by quantum fluc-
tuations, between these the doubly degenerate ferromagsetallh and a singly degenerate state
polarized in the x direction at large h.

1 By rotating the above model so that the magnetic field adiserx direction and the Ising interac-
tion acts on the spins in thedirection, the transverse field Ising model can be re-writte

H=-3)"Sx(i)Sx(i+1)-h) Sy
7 i

2 Use the Jordan Wigner transformation to show that the fatinéd version of this Hamiltonian can
be written

J
H :sz:(f,—fﬂ)(fj+1+ fml)—hzj:ffjf,-. (5.78)

3 Writing fj = \/% T de R, whereR; = aj, show thatH can be rewritten in momentum space as

H= Z [l — d i) + i(AdTd" k- d k)] (5.79)
ke[0,zr/a]
where the sum ovek = N%a(l,z...Ns/z) € [0,%] is restricted to half the Brillouin zone, while
& = —3 coska— handA, = 3 sinka.
4 Using the results of Ex 4.2, show that the spectrum of thetatians are described by “Dirac
fermions” with a dispersion

Ec= e +A2= \23nsiré(ka) + (h— J/22
so that gap in the excitation spectrum closels ath, = 2J. What is the significance of this field?

Exercise 5.3 Consider the non-interacting Hubbard model for next neareighbor hopping on a two
dimensional lattice

H-uN=-t Z [CTjJ,é[erg +H.c] —[JZ ij[,Cj(r

ja=xy.o jo

wheren;, = ¢'j,Cj, represents the number of electrons of spin compoment:1/2 at sitej.
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1

4

Show that the dispersion of the electrons in the absenagefictions is given by
s(l?) = —2t(coskya + coskya) — u

whereais the distance between sites, dnd (kx, ky) is the wavevector.
Derive the relation between the number of electrons pensiand the area of the Fermi surface.
Sketch the Fermi surface when

1 ne<1.
2 “halffilling” wheren, = 1

The corresponding interacting Hubbard model, with arrétigon termUn;n; at each site describes
a class of material called “Mott insulators”, which inclsdée mother compounds for high temper-
ature superconductors. What feature of the Fermi surfacal&filing makes the non-interacting
ground-state unstable to spin density wave formation aadévelopment of a gap around the Fermi
surface ?

Derive the dispersion for the case when, in the one-partiemiltonian there is an additional next-
nearest neighbor hopping matrix element of strength a¢hesdiagonal-t’. (Hint: use the Fourier
transform oft(R), given byi(l?) = Zﬁt(ﬁ)e"‘m). How does this fiect the dispersion at half filling?

Fig. 5.9 Honeycomb structure of graphene. See Problem 5.3

(5.9). The vertices of each unit cell form a triangular tatof side lengtha, located at positions

ri = ma+nb, wherea = a(%ﬂr 17} andb = a( 37 - 1f) are the lattice vectors. There are two atoms

per unit cell, labelled “A” and “B”. In a simplified model of gphene, electrons can occupyrbitals
at either theA or theB sites, with a tight-binding hopping matrix elemetitbetween neighboring sites.

1

Construct a tight-binding model for graphene. For sinigyliggnore the spin of the electron. Suppose
the creation operator for an electron in ther B orbital in the “i"th cell isy7a(r;). Show that the
tight-binding Hamiltonian can be written in the form

H=—t > {[w'e(r) + w'e(ri — @) + st = b)| wa(rs) + Hoc) + (e = 1) D (nai) + (i)
j i
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wheree is the energy of a localized orbital.
By transforming to momentum space, writing

1 . .
yhar) = —= > cliue™"
)= R ; 1

andNs is the number of unit cells in the crystal, show that the Heamiln can be written

. —u Ak
H =D ) & (ii)

(1=AB)

where
A(K) = —t(1+ €42 + &kP)
with energy eigenstates
(k) = £|AK)| + (e - p)-
Show thatA(k) = 0 at two points in the Brillouin zone wheke-a= -k - b = J_r%, given by
k =K
whereK = &7,

By expanding aroun# = +K + p, showing that whem is small,Ap.x = +=E(py + ipx), Where

?at is a “renormalized” speed of light. By defining a spinor foe tivo cones

Ypr = (CP+K B)’ Up = ( Cp-KA )’

Co+KA —Cp-ks

&=

show that the low energy Hamiltonian can be written as a Décaation

H= > 0@ xp)+(e-mD ¥

pA=+

where¢ is a Pauli pseudo-spin matrix acting in the two-componehtagtice space, so that when
e — p = 0, the excitation spectrum is defined by two Dirac cones W({h) = +Ep.
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Green’s Functions

Ultimately, we are interested in more than just free systaifssshould like to understand what happens to
our system as we dial up the interaction strength from zerits full value. We also want to know response
of our complex system to external perturbations, such aseatremagnetic field. We have to recognize that
we can not, in general expect to diagonalize the problemtefést. We do not even need interactions to
make the problem complex: a case in interest is a disordeegdl mvhere we our interest in averaging over
typically disordered configurations introduceeets reminiscent of interactions, and can even lead to new
kinds of physics, such as electron localization. We needesgemeral way of examinining the change of the
system in response to theseets even though we can’t diagonalize the Hamiltonian.

External Fields

Interactions

ek

Randomness

N
o R

N

Fig. 6.1 “Dialing up the interaction”. Motivating the need to be able to treat perturbations to a

non-interacting Hamiltonian by dialing up the strength of the perturbation.

In general then, we will be considering problems where weothice new terms to a non-interaction
Hamiltonian, represented hy. The additional term might be due to
e External electromagnetic fields, which modify the Kinetieegy in the Hamiltonian as follows
" 72 e \2
LR v N (v - |—A) 6.1
am’ T\ 'h @1
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o Interactions between particles.
~ 1 .
0= 3 [ ddes @' @u@u) ©2)
e Arandom potential
V= f d1v(1)p(1) (6.3)

whereV(x) is a random function of position.

One of the things we would like to do, is to examine what happehen the change in the Hamiltonian to
small enough to be considered a perturbation. Even if time ¢éinterest is not small, we can still try to make
it small by writing

H = Ho+ AV (6.4)

This is a useful excercise, for it enables us to consider figeteof adiabatically dialing up the strength of
the additional term in the Hamiltonian from zero, to its fudllue, as illustrated in fig6.1. This is a dangerous
procedure, but sometimes it really works. Life is intemggtbecause in macroscopic systems the perturbation
of interest often leads to an instability. This can somesimecur for arbitrarily smalll. Othertimes, when
the instability occurs when the strength of the new termlreasome critical valug.. When this happens,
the ground-state can change. If the change is a continuajgteen the point where the instability develops
is a Quantum Critical Pointa point of great interest. Beyond this point, for- A, if we are lucky, we can
find some new startingl;, = Ho + AH, V' =V -AH. If H; is a good description of the ground-state, then we
can once again apply this adiabatic procedure, writing,

H=H,+ 1V (6.5)

If a phase transition occurs, thetj will in all probability have display a spontaneobsoken symmetryThe
region of Hamiltonian space wheke~ H/ describes a new phase of the system, ldfi closely associated
with the notion of a “fixed point” Hamiltonian.

All of this discussion motivates us developing a generalysbative approach to many body systems, and
this rapidly leads us into the realm of Green’s functions Beghman diagrams. A Green’s function describes
the elementary correlations and responses of a systernfagydiagrams are a way of graphically displaying
the scattering processes that result from a perturbation.

6.1 Interaction representation

Up until the present, we have known two representations ahtum theory- the Schdinger representa-
tion, where it is the wavefunction that evolves, and the efgierg, were the operators evolve and the states
are stationary. We are interested in observable quantii@e than wavefunctions, and so we aspire to the
Heisenberg representation. In practice however, we always to know what happens if we change the
Hamiltonian a little. If we changél, to H, + V, but we stick to the Heisenberg representationHgr then

we are now using the “interaction” representation.

Table. 5.1. Representations .
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Representation States Operators
Schrodinger Change rapidly Os- operators constant
iZlws®) = Hiws(t)
Heisenberg Constant Evolve
1958 = [H.0u(0)]
Interaction States change slowly Evolve according-g
H=Ho+V iy (1) = Vi (1) =129 = [Ho, 0y (V)]

Let us now examine the interaction representation in gredgtail. In the discussion that follows, we
simplify the notation by taking taking = 1. We begin by writing the Hamiltonian as two paHs= H, + V.
States and operators in this representation are defined as

Wiy = € lys(t),

Removes rapid state evolution dueHg (6.6)
o] (t) - e|Hutose—|Hot
The evolution of the wavefunction is thus
@) = U®(0),
(6.7)
U(t) - elHole—lHt

or more generally,
W (®) = St V) (),
S(t) = UMU'(t) (6.8)
The time evolution ofJ(t) can be derived as follows

U (aEM g (get
.E_.( - )e +i (Tt )

= eMol(—H, + H)e ™Mt

= [ Ve U
=ViQu® (6.9)
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so that Suppose we divide the time interva.[t;], wheret, > t; into N identical segments of periatt = (t; —
t1)/N, where the time at the midpoint of tmt¢h segment i, = t1 + (N — 2)At. The S-matrix can be written
L 0S(to, t1) - ; SO 2
e V(t2)S(tz, ta) (6.10) as a product of S-matrices over each intermediate time segaeefollows:
where from now on, all operators are implicitly assumed tinktae interaction representation. S(tz,t2) = S(tz, tn — §)S(tn-1 + & ther — ) ... St + £, ty) (6.13)

Now we should like to exponentiate this time-evolution ggqra but unfortunately, the operatdf(t) is
not constant, and furthermoré(t) at one time, does not commute wif(t’) at another time. To overcome
this difficulty, Schwinger invented a device called the “time-omdgroperator”. S(t+ 4 t- 4 = eVOA 4 O(1/N?) (6.14)

ProvidedN is large, then over the short time intervetl we can approximate

so that we can write
Time ordering operator Suppose{O(t;), Ox(t2) ... On(tn)} is a set of operators at féerent times

{ti.t>.... tu}. If P is the permutation that orders the times, so that> ts, ... tp,, then if the opera- S(to, ta) = eV VnIst g VAL O(1/N) (6.15)

tors are entirely bosonic, containing an even number of fermionic tperthe time ordering operator . . . . )

is defined as Using the time-ordering operator, this can be written

T[O1(t)Ox(t) ... Ou(ti)] = O, (te, )0 (tr,) .- Opy (tny) (611) M vat
For later use, we note that if the operator set contains fermionic opgratanposed of an odd number Slta.t) = T[I_I e+ O(1/N) (6.16)
of fermionic operators, then =1
T[Fa(t)Fa(t) . . - Fu(tn)] = (~1)°Fp, (to,)Fr, (tp,) . . . Fry (thy) (6.12) The beauty of the time-ordering operator, is that even thod@) and A(t’) don’'t commute, we can treat

whereP is the number of pairwise permutations of fermions involved in the time imgl@rocess. them as commuting operators so long as we always time-drear.tThis means that we can write

T[eA(li)eA(Tz)] - T[eA(‘l)*'A(‘z)] (6.17)

) because in each time-ordered term in the Taylor expansienpever have to commute operators, so the
t2 < J ‘ N=5 < J ‘ N—= © algebra is the same as for regular complex numbers. Withirtbis we can write,

e .
4.\’\ S(to, t1) = Limnoe T[e™ Zi VAT (6.18)
5 1 Sid - o o
/\'/g The limiting value of this time-ordered exponential is w&it as
Ty + Sdc Y
)C/ S(ta,ty) = T[exp{—if V(t)dt}], Time-ordered exponential (6.19)
t
+ S
13 b cb This is the famous time-ordered exponential of the intéwaaepresentation.
Remarks
T2 I Sba e The time-ordered exponential is intimately related to Fegn’s notion of the path integral. The time-
a evolution operatoB(t; + At/2,t; — At/2) = S(t;) across each segment of time is a matrix that takes one
from stater to statef. The total time evolution operator is just a matrix produgtroeach intermediate
T 17T Sai é. time segment. Thus the amplitude to go from statetimet; to statef at timet; is given by
. 2 Siltat)= Y. Stpultn)-. Spp(t)Spi(ts) (6.20)

1 ‘ i > ‘ i > path=(p....pn, )

Each term in this sum is the amplitude to go along the pathabést
Fig. 6.2 Each contribution to the time-ordered exponential corresponds to the amplitude to

follow a particular path in state space. The S-matrix is given by the limit of the process pathi —» fri—pi—p—..pyva—f (6.21)
where the number of time segments is sent to infinity. The limit where the number of segments goes to infinity is & ptegral.
o1 92
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e One can formally expand the time-ordered exponential asv@pseries, writing,

S
S(ta.ty) = Z o I dty ... dtyT[V(t) ... V(t)] (6.22)

n=0,c0
Thenth term in this expansion can be simply interpreted as the amdglito go from the initial, to the
final state, scattering times df the perturbatiorV. This form of the S-matrix is very useful in making
a perturbation expansion. By explicitly time-ordering the th term, one obtaina! identical terms, so

that
. t
St = Y ¢ [ it V() V() 6.23)
n=0,c0 s {th>ta1>t)
This form for the S-matrix is obtained by iterating the edquabf motion,
to
S(ta, ty) = 1—i f dtV(t)S(t, ty) (6.24)
t

which provides an alternative derivation of the time-oedkeexponential.

6.1.1 Driven Harmonic Oscillator

To illustrate the concept of the time-ordered exponenti@,shall show how it is possible to evaluate the
S-matrix for a driven harmonic oscillator, whefe= H, + V(t),

w(b’b+ %)
b + biz(t)

Ho
V(1)

(6.25)

Here the forcing terms are written in their most general fozft) and Z(t) are forces which “create” and
“annihilate” quanta respectively. A conventional forcetlire HamiltonianH = H, — f(t)X gives rise to a
particular case, whergt) = z(t) = (l/me)% f(t). We shall show that if the forcing terms are zero in the
distant past and distant future and the system is initialthe ground-state, the amplitude to stay in this state
is

Sz :<0|Te’ifjvdﬁ‘)b(‘)*“’z<‘)]|0>:exp[—i f dtdt ZG(t - t)z(t)| . (6.26)

whereG(t - t') = —if(t — t')e 1) is our first example of a one particle “Green’s function”. Thmportance
of this result, is that we have a precise algebraic resulttferresponse of the ground-state to an arbitrary
force term. Once we know the response to an arbitrary foregam, as we shall see, deduce the n-th ordered
moments, or correlation functions of the Bose fields.
Proof: To demonstrate this result, we need to evaluate the timeendxponential
T
(0T exp[—i f df{Zt)b(t) + b (H)z(t)] | 10) (6.27)
-

whereb(t) = bé“! andbf(t) = bfé“!. To evaluate this integral, we divide up the interval (t;,t) into N
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segments, € (t; — At/2, tj + At;) of width At = 27/N and write down the discretized time-ordered exponential
as

Sy = AN AT L eMA (6.28)
where we have used the short-hand notation,
A = ~iZlt)bltr)At,
A'r = ib'(t)z(t)At (6.29)

To evaluate the ground-state expectation of this exposente need to “normal” order the exponential,
bringing the terms involving annihilation operat@ to the right-hand side of the expression. To do this ,
we use the resit

&b = dediiliz (6.30)
and the related result that follows by equatefiyf = &+¢,
g = Peididl, (6.31)

These results hold if;3] commutes with»'and. We use these relations to sepaﬂheAT' - et g AAT2
and commute the™ to the right, past terms of the foret”'s, eve”'s = eA'se~eAA'd, We observe that
in our case,

A A%s] = Atzztr)ﬁts)eiiwnﬁ&)

is a c-number, so we can use the above theorem. We first nomthed each term in the product, writing
N AT = g Argh e A2 g0 that

Sy = e AN | g A g TIAAT2

(6.32)

(6.33)
Now we move the general tereft to the right-hand side, picking up the residual commutaatoeg the way
to obtain

Su:

Ty o 1
Sn=e B e A expl- ) TALA(L - Sor)].

r=s

(6.34)

where thes,s term is present because by Eq. (6.33), we get half a commutdtenr = s. The vacuum
expectation value of the first term is unity, so that

S(tz.t) = im exf - D AL )2 (1 - %ars)]

s<r
T
- exp[— f dtdt Aty - t’)e"“'("")z(t’)], (6.35)
-

where thej,s term contributes a term of ordat ﬁz dtjz(t)|? O(At) to the exponent that vanishes in the limit
1 To prove this result considei(x) = eief, Differentiatingf (x), we obtain%; = e (@ +/3)e>¢‘. Now if [&, 3] commutes withr"and

B, then ", 3] = n[a, Bla™2, so that the commutatoef?, 3] = X[&, 8], It thus follows 1hal% =@ - /33 X[&.f]) f(x). We can

integrate this expression to obtaitx) = expx(@ + ) + L22[[)/,/3]]. Settingx = 1 then givese® = e**Pezl®4 If we interchanger

andg, we obtaind’e? = &*#e 31341 Combining the two expressiorese® = el

94

51



©2011 Piers Coleman

Chapter 6.

At — 0. So placing3(t — t’) = —if(t — t’')e “t-1),
Sﬁzn):exq—hfvdeZOGO—wﬁdﬂ

Finally, taking the limits of the integral to infinityr(— ), we obtain the quoted result.
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Fig. 6.3 Probability p(T) for an oscillator to remain in its ground-state after exposure to an
electric field for time T, illustrated for the case V/hw = 1.

Example 6.1: A charged particle of chargg massmis in the ground-state of a harmonic potential of
characteristic frequenay. Show that after exposure to an electric figldor a timeT, the probability
it remains in the ground-state is given by

p = exp[—4g® sirf(wT/2)] (6.37)
where the coupling constant
V N
2 _ Vspring
g=—"= (6.38)

is the ratio between the potential enelying = G2E?/(2mw?) stored in a classical spring stretched by
a forceqE and the quantum of enerdiw.
Solution: The probabilityp = |S(T, 0)]%, to remain in the ground-state is the square of the amplitude

S(T,0) = (g et b Vo), (6:39)
Notice, that since we explicitly re-introducéd# 1, we must now use
% E —%(t)x(t) (6.40)

in the time-ordered exponential, wheit) is the electric field. Writingx = 1lﬁ(b +b), we can
recastV in terms of boson creation and annihilation operatorg@g7 = Z(t)b(t) + bf (t)z(t), where,

20 = 2) = 1\ 5o GE() =~ 260 (6.41)

HereV = % is the potential energy of the spring in a constant fleldsing the relationship derived
in (6.36), we deduce that

S(T,0)=¢e™
where the phase term

.
A= f dtdeZt)G(: - L))
(]
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andG(t) = —ie “'4(t) is the Green function. Carrying out the integral, we obtain

.
A_—l—f dtf dre et |V—wf dt_i[l—e’i“"]
hoJo iw

VT 2V iwT/2 wT
h + —€ sin— >
_ VT[, sin@T)| 2V _ ,(wT
= 7[1 oT ] i 5 () (C22)

The real part of A contains a term that grows linearly in tiReA~ —VT/% giving rise to uniform
growth in the phase o8(T) ~ €"T/%|S(T, O)| that we recognize as a consequence of the shift in the
ground-state energy of the oscillaty — % — V in the applied field. The imaginary part determines
the probability to remain in the ground- state, which is given by

= |S(T,0) = ™A = exp(—— sir? & )

demonstrating the oscillatory amplitude to remain in the ground-state (Fig. 6.3

6.1.2 Wick’s theorem and Generating Functionals

The time-ordered exponential in the generating function

Sz =<0|Te’if:§d‘[f(‘)b(‘)*b“‘”“)]lO)=exp[—i f dtdtZG(t - t)z(t)| . (6.43)

is an example of a “functional”: a quantity containing onevare arguments that are functions (in this case,

Z(t) andz(t)). With this result we can examine how the ground-stateaedp to an arbitrary external force.
The quantityG(t — t’) which determines the response of the ground-state to thed@(t) andz(t), is called

the “one particle Green'’s function”, defined by the relation
G(t - t') = —i(OTh(t)b' (t')[0). (6.44)

We may confirm this relation by expanding both sides of (6td3)rst order inzandz The left hand side
gives

1+ (—i)2fdtdt’Zt)(0|Tb(t)b*(t’)\O)z(t’) +0Z,2) (6.45)
whereas the right-hand side gives
1-i fdtdt’ﬂt)G(t -t)zt') + O(Z, 2) (6.46)

Comparing the cdécients, we confirm (6.44).

Order by order irzandz, the relationships between the left-hand and right-hashel sf the expansion (6.43
) of the generating function&[z Z] provide an expansion for all the higher-order correlafiamctions of the
harmonic oscillator in terms of the elementary Green’s fiomcG(t — t'), an expansion known as “Wick’s
Theorem”. From the left-hand side of (6.43), we see that @auhwe diferentiate the generating functional
we bring we bring down operatohgl) andb’ (1) inside the Green’ function according to the relation

- b(1), - b(1). (6.47)

)
"2
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where we have used the short-hand 1, 1’ = t’. For example,
i 6S _ (0SK1)0)
Sl (080

so if there is a force present, the boson field develops anceadpen value, which in the original oscillator

corresponds to a state with a finite displacement or momerifume differentiate this expression again and
set the source terms to zero we get the two-particle Greengibn,

= (b(1)) = f dIG(1- 1)), (6.48)

izﬁ . = (OTh(1)b' (1)|0) = iG(1 - 1') (6.49)
If we take a 2n-th order derivative, we obtain the n-part@teen’s function
'2"62( 1/)5;(5;”3@;]@)57 = = (OITB(). .. (b () ... b"(1)[0) (6.50)
We define the quantity
G(,...n1...n) = ( iHoT b(l) b(n)bf(n')...bf(1')|0)
"S[z4 (6.51)

mm

as the n-particle Green’s function. Now we can obtain an esja for this quantity by dierentiating the
right-hand side of (6.43 ). After the firstdifferentiations we get

L R . ~
[ mfs[zz]xfgdﬂ;(s zs)

Now there aren! permutationsP of the z(s'), so that when we carry out the remaininglifferentiations,
ultimately setting the source terms to zero, we obtain

in 'S ,
ol ; [Tst-P)

62()...6z(n)oz(n). .
Pp). Comparing relations (6.51 ) and (6.53

(6.52)

(6.53)

whereP; is ther-th component of the permutatidh= (P1P...
), we obtain

(6.54)

G(l,..,n;l’.,.n’):ZﬂG(r—P’
P r

Wick's theorem.

It is a remarkable property of non-interacting systems, tifia n-particle Green'’s functions are determined
entirely in terms of the one-particle Green functions. Ir5§ each destruction event at tife= r is paired

up with a corresponding creation event at tithe= P;. The connection between these two events is often
called a “contraction”, denoted as follows

]

(=i O[T ... b(r) ... B (B ..

98

|#) =G(r—P)x (-)"OT...[0) (6.55)
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Notice that since particles are conserved, we can only acrércreation operator with a destruction operator.
According to Wick’s theorem, the expansion of the n-pagti@reen function in (6.50) is carried out as a sum
over all possible contractions, denoted as follows

G(1...M) = ) G(1- PPG(2-Py)...G(r - P)...
L

—

= 2 (- MGITHHER) - br) B B (P B (R g (659)

Physically, this result follows from the identical naturfetioe bosonic quanta or particles. When we take the
n particles out at times; ... tn, there is no way to know in which order we are taking them otie et
amplitude is the sum of all possible ways of taking out theiglas- This is the meaning of the sum over
permutationd®.

Finally, notice that generating functional result can beegelized to an arbitrary number of oscillators by
replacing ¢ 2) — (z, %), whereupon

[0 exp

i I ) difz (b (1) + br*(t)zr(t)]} 0)

= exp[—i f : dtdtZ ()Grs(t - t’)zs(t’)] (6.57)

where nowG,s(t—t') = —i(0[T by (t)b’s(t")|0) = —is;s0(t—t')e ' (-*) and summation over repeated indices is
implied. This provides the general basis for Wick’s theor@ime concept of a generating functional can also
be generalized to Fermions, with the proviso that now we msetreplacez z) by anticommuting numbers
(n,1), a point we return to later.

6.2 Green’s Functions
|

Green’s functions are the elementary response functiomsne@iny body system. The one particle Green's
function is defined as
Gur(t—t) = =i Ty’ v (t)Ig) (6.58)
where|g) is the many body ground-staig,(t) is the field in the Heisenberg representation and
Yty () (t>t)

OO syomo €0+

Bosons (6.59)
Fermions
defines the time-ordering for fermions and bosons. Diagtiaaily, this quantity is represented as follows

Gut-t)= M - Kt (6.60)
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Quite often, we shall be dealing with translationally inaat systems, wherg denotes the momentum and
spin of the particlel = po-. If spin is a good quantum number, (no magnetic field, no spbitinteractions),
then

Gk (t =) = 8por 0 Gk, t = 1) (6.61)
is diagonal, (where in the continuum limdig — (27)°6® (k — k)). In this case, we denote
Gk, t =) = =iPIT U (O ko (V)I) = t ——— +—t (6:62)
We can also define Green'’s function in co-ordinate space,
G(x =X, 1) = =@ Ty (. ' (X, 1)1 (6.63)
which we denote diagramatically, by

G(x —x',t) = (x,t) - x,t) (6.64)

By writing ¢,(x.t) = [ vx-€*¥, we see that the co-ordinate-space Green's function istfiesEourier
transform of the momentum-space Green’s function:

S Gk A1)
N - st st —————
GO X.0) = [ e ST 00 O10)
k.k
dgk jk-(x=x")
= @G(k't)é (6.65)
Itis also often convenient to Fourier transform in time, Isatt
. ‘
G(k,t) :f Z‘”G(k,w)e"““ (6.66)

The quantity

Gk, w) = f diG(k, gt
. ko

(6.67)

is known as the propagator. We can then relate the Greercsiduarin co-ordinate space to its propagator, as
follows
d®kdw

@ G(K, w)elkX)-et=t)] (6.68)

KT (X W (X, 1)) =

6.2.1 Green'’s function for free Fermions

As a first example, let us calculate the Green’s function ofgetierate Fermi liquid of non-interacting
Fermions in its ground-state. We shall take the heat-bathdocount, using a Heisenberg representation
where the heat-bath contribution to the energy is subtiemtey, so that

H=Ho—uN =" ac’ioCor (6.69)
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is the Hamiltonian used in the Heisenberg representatidreas % — 1. We will frequently reserve use
of “c” for the creation operator of fermions in momentum spathe ground-state for a fluid of fermions is

given by
w= ] cwlo
olk|<ks

(6.70)

In the Heisenberg representatiafy, () = €%'c’y,, ¢ (t) = e*!c,,.. For forward time propagation, it is
only possible to add a fermion above the Fermi energy, and

(Bleka OCT e (©)D) = oo S €U ICC il

= 80 S (1= M) 1) (6.71)

wheren, = 6(|kg| — K[). For backward time propagators, it is only possible tomgsa fermion, creating a
hole, below the Fermi energy

(B o (1) O)19) = O S i) (6.72)
so that
G(k, 1) = —i[(L — n)6(t) — neo(-t)]e ' (6.73)
can be expanded as
—ifk_k €'t (t>0) “electrons”
G(k,t) = (6.74)

Ok -est  (t<0) “holes”: electrons moving backwards in time

This unification of hole and electron excitations in a sirfgliection is one of the great utilities of the time-
ordered Green’s functiof.
Next, let us calculate the Fourier transform of the Greamgfion. This is given by

cnvgnce factor
00 . —_——~—
Gk, w) = —i f dtde-at gl [é)k_kpe(t)—élk;_ké)(—t)]

. Ok—ke O ] 1
=- - - - = . 6.75
I[(S—I(w—ek) S+ i(w— &) W — €& + 16k ( )
wheresy = sign(k— kg). The free fermion propagator is then
1 k, @
Gk,w)= ——— = ‘- 6.76,
( w) w — € + 10k ( )

2 According to an aprocryphal story, the relativistic coupget of this notion, that positrons are electrons tramglbhackwards in time,
was invented by Richard Feynman while a graduate studentwf\Mheeler at Princeton. Wheeler was strict, allowing his gasel
students precisely half an hour of discussion a week, empiayichess clock as a timer at the meeting. Wheeler treated Feyranan
differently and when the alloted time was up, he stopped the clutlaanounced that the session was over. At their second meetin
Feynman apparently arrived with his own clock, and at the didechalf hour, Feynman stopped his own clock to announcehibat
advisor, Wheeler's time was up. During this meeting they disedshe physics of positrons and Feynman came up with the idea th
that a positron was an electron travelling backwards in tintethat there might only be one electron in the whole univehseading
backwards and forwards in time. To mark the discovery, at tind theeting Dick Feynman arrived with a modified clock which he
had fixed to start at 30 minutes and run backwards to zero!
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The Green’s function contains both static, and dynamicrinfdion about the motion of particles in the
many-body system. For example, we can use it to calculatéehsity of particles in a Fermi gas

GO = D W o) = = D (AT (% 0 (. 0))
= Ji(2S + 1)G(X, 0 )heco 6.77)

whereS is the spin of the fermion. We can also use it to calculate timetic energy density, which is given
as follows

#2V2
2m

R 2
O =~ S W 007200000 = X S T 6,0 (X, 01

x-x'=0

=i(2S+1) %G(X, 0) (6.78)

x=0

Example 6.2: By relating the particle density and kinetic energy density to one-particlenGrienc-
tion to the particle density, calculate the particle and kinetic energy densitytiflpain a degenerate
Fermi liquid.

Solution: We begin by writing(3(x)) = —i(2S + 1)G(0, 0-). Writing this out explicitly we obtain

~ k[ fdo ,, 1
W”‘(Zs*l)fwl 2 e

where the convergence factor appears because we are evaluatBrgéms function at a small negative
time —5. We have explicitly separated out the frequency and momentum integraspoles of the
propagator are ab = ¢ — i6 if k > kg, but atw = ¢ + i6 if k < kg, as illustrated in Fig. 6.4.
The convergence factor means that we can calculate the complex Intsimg Cauchy’s theorem by
completing the contour in the upper half complex plane, where the integlianciway exponentially.
The pole in the integral will only pick up those poles associated with states lie¢ofermi energy, so

(6.79)

that
dw ;s 1
2% ooetioe Oke-ki (6.80)
and hence
d*k Ve
=(2S+1 —— =(2S+1)— 6.81
p=Gsed) [ o -essnghs (6.8)
In a similar way, the kinetic energy density is written
d*k n2k? dw . 1
(00 =25+ 1’f @ 2m [ 20 w—ect i

d*k nk2 3
=(2S+1) Jk;kF @ 2m = g&p (6.82)

6.2.2 Green'’s function for free Bosons

As a second example, let us examine the Green’s function aé @fjnon-interacting bosons, described by

. 1
H =" wglbqbg + 5l (6.83)
q
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or

D(q,v) = Bose propagator (6.88)

(ke k)

Z:8k+| 6

h 2wq
2Mmuwgq | V2 = (wq — 10)2 |’

Remarks

/ e Note that the bose propagator has two poles at+(w — is). You can think of the bose propagator as a
XXX X XXX X X X X X sum of two terms, one involving a boson emission, that prafesgforwardsn time from the emitter, a
second involving boson absorption that propagates baclsiratime from the absorber,

emission absorption
h 1 1
D(q.v) =

. Smen | v = — =t — (6.89)
7 :Sk _ |6 Mwg [ v — (wq —16)  —v — (wq — 16)

e We shall shortly see that amplitude to absorb and emit bospmsopagating fermions is directly related
(k> kF ) to the Boson propagator. For example, when there is an iteneof the form

Hin = 9 f P (p(0) (6.90)

Fig. 6.4 Showing how the path of integration in (6.80) picks up the pole contributions from the

The exchange of virtual bosons between particles givesaisetardednteractions,
occupied states beneath the Fermi surface. 5
V(g t-t) = %D(q,t—t’), (6.91)

where physical field operator is related to a sum of creatfuhannihilation operators: whereby a passing fermion produces a the potential chantfeeienvironment which lasts a charac-

_ dax teristic timeAt ~ 1/w, wherew, is the characteristic value afy. From the Fourier transform of this
¢ = fq¢q expression, you can see that the time average of this iti@naproportional taD(q, v = 0) = —# is
h N negative: i.e. the virtual exchange of a spinless bosonatesian attractive interaction. )
$a = 4 W[bq = (6.84)

Since there are no bosons present in the ground-state, bestrction operators annihilate the ground-state . .
|¢). The only terms contributing to the Green function are then 6.3 Adiabatic concept
-]
—i{IT by()bq(0)g) = —iat)e ",

—i{gITH _(t)b_q(0)lp) = —ie(~t)e“", (6.85) The adiabatic concept is one of the most valuable conceptsainy body theory. What does it mean to
understand a many body problem when we can never, excepe imdist special cases, expect to solve the

sothat problem exactly? The adiabatic concept provides an answtbig question.
D(q, t) = —i{ple(q, )(~q, 1)) = _iilg(t)e*'wq‘ + 0(-t)d!] (6.86) Suppose we are interested in a many body problem with HamditcH, with ground-staté¥g) which
2mwg we can not solve exactly. Instead we can often solve a simglifersion of the many body Hamiltonié
If we Fourier transform this quantity, we obtain the bosoopgrator, where the ground-stat®#,) has the samsymmetryas|¥g). Suppose we start in the ground-stpitg), and

. now slowly evolve the Hamiltonian fro, to H, i.e, if V = H — H,, we imagine that the state time-evolves
D(q,v) = f dte 1 p(q, 1) according to the Hamiltonian
T 1 1 H(t) = Ho + AWV
= o [5 i —wg) 5110 o) 6.87) Aty = el (6.92)
103 104
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H=H & V
Adiabaticity: Phase transition:

A

c

Level repulsion k

lIJ4 E ' States which cross
'-Ié , | have different symmetries
0 U B
2 ‘ ;
Y % |
1] , |
v Wy Y
9 \f\ g 3
lpg T
1
0 1 0 A 1
C
A A
Fig. 6.5 lllustrating the evolution of the Hilbert space as the Hamiltonian is adiabatically

evolved. In the first case, the ground-state can be adiabatically evolved all the way to
A= 1. In the second case, a phase transition occurs at 1 = A¢, where a previously
excited state, with a different symmetry to the ground-state crosses below the
ground-state.

wheres is arbitrarily small.

As we adiabatically evolve the system, the ground-state excited states will evolve, as shown in Fig.
6.5. In such an evolution process, the energy levels wilcglty show “energy level repulsion”. If any two
levels get too close together, matrix elements betweenvtbestates will cause them to repel one-another.
However, it is possible for states offfiirent symmetry to cross, because selection rules prevemt fitom
mixing. Sometimes, such an adiabatic evolution will leatiéwel crossing”, whereby at = 1. when some
excited state), with different symmetry to the ground-state, crosses to a lower giteag the ground-state.
Such a situation leads to “spontaneous symmetry breakigimple example is when a Ferromagnetic
ground-state becomes stabilized by interactions.

In general however, if there is no symmetry changing phasesition as the interactiov is turned on, the
procedure of adiabatic evolution, can be used to turn orfautions”, and to evolve the ground-state from
Fyto Py

These ideas play a central role in the development of petior theory and Feynman diagrams. They
are however also of immense qualitative importance, forpiingsics of adiabatically related ground-states
is equivalent. Adiabatic evolution defines an equivalenesscof ground-states with the same qualitative
physics. The adiabatic principle was first employed withagrsuccess in the fifties. Murray Gell-Mann
and Francis Low used it to prove their famous relation ligkimon-interacting, and interacting Green's
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functions[1]. Later in the fifties, Landau[2, 3, 4] used thiadatic idea in a brilliantly qualitative fashion, to
formulate his theory of interacting Fermi liquids, which examine in detail in the next chapter.

6.3.1 Gell-Mann Low Theorem

Suppose we gradually turn on, and later, gradually tdifao interactiorV so that
V() = ev(0) (6.93)

acquires its full magnetitude at® and vanishes in the distant past and in the far-future. Thetityra = e *
sets the characteristic “switch-on time” for the procesdiahaticity requires that we ultimately let— 0,
sending the switch-on time to infinitys, — co. When we start out at= —oo, the ground-state is- ), and
the interaction and Heisenberg representations cointfisée now evolve to the present in the Heisenberg
representation, the states do not evolve, so the groutelistanchanged

g = | = o), (6.94)

and all the interesting physics of the interact\is encoded in the the operators. We would like to calculate
the correlation or Green’s functions of a set of observalsigbe fully interacting system. The Gell-Mann
Low theorem enables us to relate the Green’s function ofrttezacting system to the Green'’s functions of
the non-interacting system et —co. The key result is

@ITAt)B(t) . Rt = (+oo[T S[eo, o] Alt)B(t2) . R(t)| = ol
S[oo, —o0] = Texp[-i f V(t’)dt’] (6.95)

where the subscrig and| indicate that the operators, and states are to be evaluatbd Heisenberg and
interaction representations, respectively. The gtai®) = S(co, —o0)| — c0) corresponds to the ground-state,
in the interaction representation in the distant futuradibaticity holds, then the process of slowly turning
on, and then turning fd the interaction, will return the system to its original statip to a phase, so that
| + o0) = €%9] — o0). We can then write?? = (—co|oo), S0 that so that

oo = 62| = =L 6.96
(ool = €000l = oo (6.96)
and the Gell-Mann Low formula becomes
—oo|T [0, —co] A(t1)B(t2) . . . R(t;)| — oo
(T ABLE)... R = IS8 M =) 6.97)

Remarks:

e With the Gell-Mann Low relation, we relate the Green’s fuoctof a set of complex operators in an
interacting system, to a Green'’s function of a set of simplerators multiplied by the S-matrix.

e The Gell-Mann Low relation is the starting point for the Feyan diagram expansion of Green'’s functions.
When we expand the S-matrix as a power-seriég,irach term in the expansion can be written as an
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integral over Green’s functions of the non-interactinghpeon. Each of these terms corresponds to a
particular Feynman diagram.

¢ When we expand the vacuum expectation value of the S-matexwill see that this leads to “Linked
Cluster” diagrams.

Proof: To prove this result, leU(t) = S(t,—c0) be the time-evolution operator for the interaction repre-
sentation. Since the interaction, and Heisenberg staieside att = —co, and|y) does not evolve with
time,

[ (1)) = UOlyn) (6.98)

SinceU () Au(®)lvn) = Al (1) = A(t)U(t)lvn), the relation between operators in the two representations
must be

An(t) = UTOA (U (6.99)
Supposé; >t > t3...t, then using this relation we may write

S(ty,tz) S(tr-1.t)
(BIA(t) ... R(tr)Igdn = (—oolU T (ta) A (t2) U(t)U T (t2) ... U(tr—)U T (&) Ri(t U ()] — o0)

where we have identifiep)y = | — o). Now S(t1, ;) = U(t;)U'(tp) is the operator that time evolves the
states of the interaction representation, so we may retiét@bove result as

s (!vl-*m) S(tr,—e0)
(OIA(ta) . .. R(t:)I0)n = (=oo] U™ (t2) Ai(t1)S(ts,t2) ... S(tr-1, tr)Ri(tr) U(tr) | = o)

where we have replacdd(t) — S(t, —c0). Now S(co, t;)S(t3, —o0)| — c0) = |eo) and sinceS is a unitary
matrix, S’ (co, t1)S(eo, t1) = 1, so multiplying both sides b$ (o, t;), S(ty, —o0)] — 00) = S¥(co, t3)|c0) and by
taking its complex conjugate,

(=00|S*(ty, —00) = (c0|S(c0, 1) (6.100)

Inserting this into the above expression gives,

(OlA(t1) - . . R(t) 10y = (+00[S(e0, 1) Ay (11)5(5({1,'[)2) <o S(tr-1, 1R (t)S(tr, —00)| — 00)

= (+00|T S(00, t1)S(t1, t2) . .. S(tr, —c0) Ai(ta) . .. Ri(tr)| — o)

where we have used the time-ordering operator to separatee8-matrix terms from the operators. Finally,
since we assumetg > t, > ... t;, we can write,

(GIT[ARL) ... Rt)]I)n = (+00|T[S(o0, —00) A (t1) By (t2) . . . R (t:)]] — o0) (6.101)
Although we proved this expression for a particular timdewing, it is clear that if we permute the operators
the time-ordering will always act to time-order both sidasd thus this expression holds for an arbitary

time-ordering of operators.
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6.3.2 Generating Function for Free fermions

The generating function derived for the harmonic oscilatm be generalized to free fermions by the use of
“anticommuting” or Grassman numbeysndn. The simplest model is

H = ecc }
V(@O = o) +c On)
The corresponding generating functional is given by

(6.102)

st = oiT exp(-1 [ anftoet) + ¢ 0] - exp[fi | autiee-nw
Gt~ 1) = —i@T O X)) (6.103)

where|g) is the ground-state for the non-interacting Hamiltoniaa.pFove this result, we use the same
method as used for the harmonic oscillator. As before we spltheS matrix into N discrete time-slices,
writing
Sy = AN e AT e (6.104)
where
A = 7(t;)(~ice 0)At,
AT = () (icTé)At. (6.105)

The next step requires a little care, for wher: 0, [¢) = c'|0) is the vacuum for holeb = ¢', rather than
particles, so that in this case we need to “anti-normal drttherS matrix. Carrying out the ordering process,
we obtain

e L Argli A exp{— ZraslAr A.;‘s](l - %65)] (e>0)
e he LA el T A AL - 160)]  (€<0)

When we take the expectation val#Sy|¢), the first term in these expressions gives unity. Calcuettie
commutators, in the exponent, we obtain

[A AT = AP e, cp(t)] e
= AE(t,){c, ¢ in(tg)e '
= A7t )(ts)] e, (6.107)

Sy = (6.106)

( Notice how the anticommuting property of the Grassmanatdeisn(t;)n(ts) = —n(ts)n(tr) means that we
can convert a commutator oA, A] into an anticommutatofc, ¢'}.) Next, that taking the limitN — co, we
obtain
exp[— f dtdtn(t)e(t — t’)q(t')e“‘(“")] (e >0)
Sl = (6.108)

exp fw drde’n(r)o(t — l)n(‘r’)e"‘("”] (e<0)
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By introducing the Green function,
G(t) = -i [(L - F(e)o(t) - F()o(-1)]e™
we can compactly combine these two results into the final form
Slto,ty) = exp{—i f dtdt G (t - t’)n(t’)]. (6.109)

A more heuristic derivation however, is to recognize thaivdéives of the generating functional bring down
Fermi operators inside the time-ordered exponential,

.6 ~ N
I@M)ITS 16y = (QITSC). .. 1)
i——(ITS...1p) = (HTSAY)... 6.110
I6n(t) (¢l [§) =<oITSAL)...|1p) ( )
where$ = T exp|-i [ dt (37(t)c(t') + ¢ (t)n(t'))| so that inside the expectation value,

S8
|@ =c'(t)
|% = c(t), (6.111)

and

sinsS _ ITS(@)SIg)
on(1) (@ISIp)
whereS = T exp[—i fV(t')dt’J. Here, we have used the Gell-Mann Low theorem to identifycfhetient
above as the expectation value &¢1) in the presence of the source termsf&eentiating one more time,

InS[n.nl _ T 1)SI9) _ (AT o2)SI9) ST (1)SIp)

i = (c'(1). (6.112)

2
O on(2)on(1) (41SI¢) (#ISIe) (#ISIe)

= (T2)c! (1)) - (e (1)

= (Téc(2)s5¢ (1)). (6.113)

This quantity describes the variance in the fluctuatiocid(2) = c(2) — (cV(2)) of the fermion field
about their average value. When the source teyraadz are introduced, they induce a finite (Grassman)
expectation value of the fieldg(1)) and(c’(1)) but the absence of interactions between the modes mean
they won’t change the amplitude of fluctuations about thermsa that

262 InS[in] B i
(i) W =(Td1)c (2»‘,7' =0 = iIG(1-2),
and we can then deduce that
InS[n, 7] = -i fdleﬁ(Z)G(Z - 1)n(1). (6.114)

There is no constant term, becagse 1 when the source terms are removed, and we arrive back 88)6.1
The generalization of the generating functional to a gaseofiffons with many one-particle states is just a
question of including an appropriate sum over one-partiidées, i.e
H = Yiachic }

VO = e + ol Qm (6:119)
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The corresponding Generating functional is given by

SOr. = (oIt exptfi [aYawew+ cf(l)m(l)] )
a

= exp

-1y [ awene.a- 2)m<2)}
a
Gi(1-2) = -iT e, (1), (20) (6.116)

Example 6.3: Show using the generating function, that in the presence of a source term

@) = f d26,(1- 22 6117)

Solution: Taking the (functional) derivative of (6.116) with respectto from the left-hand side of
(6.116), we obtain

ISLml _ i s ey(ay expl i f dtV(t)]|¢) (6.118)
om(1)
so that
SISzl i oS[mal  AITc(@)exp[-i [div(D)]ie)
— = — — = = (Ca(1)). 6.119
"Ton@  Siinl on@® | (aT exp[-i [ dtv(D)] o) e (5
Now taking the logarithm of the right-hand side of (6.116), we obtain
iinsil = Y, | 2.~ 2n(2) (6.120)
a
so that 7
PSR f d2G,(1- 2m(2) (6.121)
om(7)
Combining (6.119) with (6.121) we obtain the final result
(1) = f d2G,(1 - 2)m4(2) (6.122)

6.3.3 The Spectral Representation

In the non-interacting Fermi liquid, we saw that the propgagaontained a single pole, at = . What
happens to the propagator when we turn on the interactioastafkably it retains its same general analytic
structure, excepting that now, the single pole divides afilethora of poles, each one corresponding to an
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excitation energy for adding, or removing a particle frora ¢fliound-state. The general result, is that

IMa(K)I?
k = —_— 12
Gk, w) ;w_mm (6.123)
whered, = dsign(e;) and the total pole strength
DMk =1 (6.124)
A

is unchanged. Notice how the positive energy poles of theGfenction are below the real axisat- id,
while the negative energy poles are below the real axisepreg) the pole structure of the non-interacting
Green’s function.

If the ground-state is aN particle state, then the stdt® is either anN + 1, or N — 1 particle state. The
poles of the Green function are given by related to the etoit@nergies, — Eg > 0 according to

() €IN+1))

[ Ei-Eg>0
a={ S k<o (WeN-1) ° (6.129)
and the corresponding matrix elements are
Actkolg), (11 € IN+1)),
Ma(k) = (6.126)

(AlCkel),

Notice that the excitation energigs — E > 0 are always positive, sq > 0 measures the energy to add and
electron, whileg, < 0 measures-1x the energy to create a hole state.

In practice, the poles in the interacting Green functiorr bito a continuum of excitation energies, with
an infinitesimal separation. To deal with this situation, deéine a quantity known as the spectral function,
given by the imaginary part of the Green'’s function,

(1) € IN-1)).

Ak, w) = %ImG(k, w —i6), Spectral Function (6.127)

By shifting the frequencyv by a small imaginary part which is taken to zero at the end efddculation,
overriding thes, in (6.123), all the poles 06(k, w — i5) are moved above the real axis. Using Cauchy’s
principle part equation, /Ix — i6) = P(1/x) + ind(x), whereP denotes the principal part, we can use the
spectral representation (6.123) to write

Ak, @) = D IM(K)Po(w - &)
a

= Z[\(ﬂ|ctk(r|¢>\29(w) + (llck,r|¢>|29(—w)]5(lw\ - (Ex-Ey) (6.128)
a
where now, the normalization of the pole-strengths meaats th
f AK, w)dw = Z IMa(K)I? = 1 (6.129)
- a

Since the excitation energies are positiég,— E5 > 0 from (6.125) it follows that; is positive for electron
states and negative for hole states, so

Ak, w) = 8(w)pe(k, ) + O(-w)pn(K, —w) (6.130)
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where
pe(@) = D KAIC ko l®)6(w - (Ey - Eg)) (w>0) (6.131)
a
and
prlw) = Z KAlekolp)Po(w = (Eg = E2)) (w>0) (6.132)
a

are the spectral functions for adding or holes of energy the system respectively. To a good approximation,
in high energy spectroscopyen(k, w) is directly proportional to the cross-section for addingyemoving
an electron of energl| to the material. Photoemission and inverse photoemissiparegnents can, in this
way, be used to directly measure the spectral function etmleic systems.

To derive this spectral decomposition, we suppose that veevkhe complete Hilbert space of energy
eigenstate$l1)}. By injecting the completeness relatidhl1)(1| = 1 between the creation and annihilation
operators in the Green’s function, we can expand it as fallow

Gk, 1) = _i[(d"ck(r(t)c%kvr(0)|¢>g(t) = (9" ko (0o Blp)O(-1)

=1 =1

= =i [ @l T €' 018 - (GI6'r O T e V11O
a

By using energy eigenstates, we are able to write

(Bleke O = (Pl cre ™ 1A) = (gloe )G EN
(Acko ()1 = (Al cr ey = (ko |p)yeEE

Notice that the first term involves adding a particle of motnenk, spinco, so that the statgd) = [N+ 1; ko)

is an energy eigenstate with+ 1 particles, momenturk and spiro-. Similarly, in the second matrix element,
a particle of momenturk, spino has beersubtractedso thail) = [N — 1;-k — o). We can thus write the
Green’s function in the form:

Glk.t) = i Z[\<ﬂ|c*kg|a>>\Ze*'ﬁfEa)‘e(t) = [Alorlo)Pe GomEdg-p)|,
A

(6.133)

where we have simplified the expression by writ{gtp,|1) = (AIck,1¢)* and{A|c,1p) = (BIci ko |2)*. This
has precisely the same structure as a non-interacting Grieeiction, except thage — E, — Eq in the first
term, andec — Eg — E, in the second term. We can use this observation to carry eutdarier transform,
whereapon
(AT ko)
G(k,w) = — +
k) ZA:[M—(EJ— Eg) +i0

which is the formal expansion of (6.123).
To show that the total pole-strength is unchanged by intierss; we expand the sum over pole strengths,
and then use completeness again, as follows
DUMOR = 3 KAC ko B + KAGkoI)P
a a o o
—_—— ¥ + —_——
= Z<¢|Ckn [ €k lé) + (PIC"ker [ANA Ckorlp)
a

[(Alc )
w-(Eg—Ey—io

112

60



©2011 Piers Coleman

Chapter 6.

=1

e
= (@l{Ckr, C'kr} 16) = (6.134)

Example 6.4: Using the spectral decomposition, show that the momentum distributiotidaria the
ground-state of a translationally invariant system of fermions is giveimtagral over the “filled” states

D (o) = (@S +1) f dwAK, )

Solution: Let us first write the occupancy in terms of the one-particle Green'stitum evaluated at
timet = 0"

(M) = (BINks|9) = ~i X ~i{IT 6 (07)C ko (O)lg) = ~IG (K, 07),
Now using the spectral representation, (6.134),

(N = -IG(K,07) = Z [KAlckolp)P = Z IMa(K)P0(-€2)
since|M, (k)2 = [(Alc.9)I? for €, < 0. This is just the sum over the negative energy part of the spectral

function. Now sinceA(k, w) = ¥, IM,(K)[?6(w — €,), it follows that at absolute zero,
0(—€1)

———
fa dak,) = 3 M) f dws(w - €) = )" IMi(K)Fo(-€).
- a - a

so that
0
S =@s+1) [ Laka.
Example 6.5: Show that the zero temperature Green’s function can be written in terthe 8pectral

function as follows:
G(k,w):f TA(k ,€).

Solution: Introduce the relationship4 [ ded(e - (E, — Eg)) and 1= [ ded(e + (E, — Eg)) into (6.134)
to obtain
G(k,w) = fde

N

Now in the first terme > 0, while in the second terna,< Onn, enabling us to rewrite this expression as

<716 2ol ote - B~ Ep)

= Z Kok 8Poe + (E. - Eg)). (6.135)

Alk.e)
i
Gk.w) = f e Z [IKA1C" ks 0970(e) + Kalcks I)P0(~€)] o(1el = (E. ~ Eg)).

giving the quoted result.
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6.4 Many particle Green’s functions
|

The n-particle Green'’s function determines the amplitwdafparticles to go from one starting configuration
to another:

initial particle positions  final particle positions
e meas,

G ——
{1,2...n"} — {L,2...n} (6.136)
where 1 = (X',t’), etc and 1= (x,t), etc. The n-particle Green'’s function is defined as
GL2,..m1.2,...n) = (=) Ty@Ww(). .. wmy (7). ..y (1))
and represented diagramatically as
G(L2,...n1,2,...n) =
(6.137)

In systems without interactions, the n-body Green’s fuorctan always be decomposed in terms of the
one-body Green'’s function, a result known as “Wick's thesteThis is because particles propagate without
scattering & one-another. Suppose a particle which ends upcatmes from locatio®;, whereP is the r-th
element of a permutatioR of (1, 2,...n). The amplitude for this process is

G(r-Py) (6.138)
and the overall amplitude for all n-particles to go from ldeas P; to positionsr is then
PG(L-P)G(2-P,)...G(n-P,) (6.139)

where{ = + for bosons ¢) and fermions (-) angb is the number of pairwise permutations required to make
the permutatiorP. This prefactor arises because for fermions, every timexebange two of them, we pick
up a minus sign in the amplitude. Wick’s theorem states thesiphlly reasonable result that the n-body
Green’s function of a non-interacting system is given bysi of all such amplitudes:

G.2... =[] e -p)

r=1n

n.2,.. (6.140)

For example, the two-body Green'’s function is given by

G(1.27,2) = G(1.1)G(2.2) + G(1.2)G(2. 1)
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The process of identifying pairs of initial, and final staiteshe n-particle Green'’s function is often referred
to as a “contraction”. When we contraction two field operafoside a Green’s function, we associate an
amplitude with the contraction as follows

O ..w(1)...97(2).. ]]0) — (OIT(1)y"(2)]|0) =iG(1 - 2)

]

O wt(2) .. 9(). . JJ0) — (OITRT(2)v(1))|0) = £iG(1 - 2)

Each product of Green’s functions in the Wick-expansionhef propagator is a particular “contraction” of
the n-body Green’s function, thus

1
(=)™ OIT[(1)(2) ... ¢(n) ... T (P) ... T (PY) ... 4T (P})]|0)
=PG(1- PG~ Py)...G(n - P}) (6.141)

where nowP is just the number of times the contraction lines cross-omheer. Wick's theorem then states
that the n-body Green'’s function is given by the sum over adigible contractions

)M T y(Lp(2)...p' (M)Ig) =

1]
(=)™OIT[ (1)(2) ... 9p(n) ... T (P3) .. T (PY) ... 4" (P,)]]0)

All contractions

Example 6.6: Show how the expansion of the generating functional in the absence wfdtites can
be used to derive Wick’s theorem.

Exercises
|

Exercise 6.1 A particle withS = 1/2 is placed in a large magnetic fiel= (B, cos(st), B; sin(wt), Bo),
whereB, >> B;.
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(a) Treating the oscillating part of the Hamiltonian as theeiiaction, write down the Sabdinger
equation in the interaction representation.

(b) FindU(t) = Tex;{—iH.m(t')dt'] by whatever method proves most convenient.
(c) If the particle starts out at tinte= 0 in the stateS, = —%, what is the probability it is in this state at

time t?
Exercise 6.2 (Optional derivation of bosonic generating functionalgnSider the forced Harmonic oscil-
lator
H(t) = wb'b + Z{t)b + b z(t) (6.142)
wherez(t) andz(t) are arbitrary, independent functions of time. ConsiderSkmatrix
S[z.7] = (0]TS(c0, —0)[0) = (OT exp(—i f dt{Z(t)b(t) + b(t) z(t)] | (0), (6.143)

whereﬁ(t) denotesh in the interaction representation. Consider changing tinetfon z(t) by an in-
finitesimal amount

At) > ) + ARL)S(E — to), (6.144)

The quantity
im ASlzZ _4S[z7
Alte)=0  AZ(to) 5Z(to)
is called the “functional derivative” @& with respect t@. Using the Gell-Man Lowe formulay(t)|bly(t)) =

(0T $(e0.—c0)b(1)0) ing i ;
OTS(—)0, Prove the following identity

i6InS[z. 2/s7(t) = b(t) = (b(t)) = WO (1)) (6.145)
(ii) Use the equation of motion to show that
%B(t) = ([H(. b)) = ~i[eb(®) + V).
(iii) Solve the above dferential equation to show that
b(t) = f : G(t — t')Z(t') (6.146)

whereG(t — t') = —i(0T[b(t)b (")]|0) is the free Green’s function for the harmonic oscillator.
(iv) Use (iii) and (i) together to obtain the fundamentalules

S[z 7] = exp. (6.147)

4 f " dtdt NG - t)At)

Exercise 6.3 (Harder problem for extra credit).
Consider a harmonic oscillator with chargeso that an applied field changes the Hamiltortiar>
Ho—eE(t)X, wherexis the displacement arig(t) the field. Let the system initially be in its ground-state,
and suppose a constant electric fielis applied for a timel .
(i) Rewrite the Hamiltonian in the form of a forced Harmongcdlator

H(t) = wb'b + Zt)b + biz(t) (6.148)
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and show that

we (T>t>0)
0 (otherwise) ’

-7~ ©149 References

deriving an explicit expression farin terms of the fieldg, massm, and frequencw of the oscillator.
(i) Use the explicit form ofS(z 2)

S[z7 = exp[—i f dtdtZG(t - t)(t)) (6.150)

whereG(t - t') = —i(OT[b(t)bf(t')]|0) is the free bosonic Green-function, to calculate the priibab
p(T) that the system is still in the ground-state after timd>lease express your result in termspfo
andT. Sketch the form ofy(T) and comment on your result.

[1] M. Gell-Mann & F. Low, Bound states in quantum field theoBhys Rewvol. 84, pp. 350 (Appendix),
1951.

[2] L.D.Landau,The Theory of a Fermi Liquidl. Exptl. Theoret. Phys. (USSRYI. 3, pp. 920-925, 1957.

[3] L.D.Landau, Oscillations in a Fermi Liquid, Exptl. Theoret. Phys. (USSR¥I. 5, pp. 101-108, 1957.

[4] L.D. Landau, On the Theory of the Fermi Liquid, Exptl. Theoret. Phys. (USSRpI. 8, pp. 70-74,
1959.

118
117

bk.pdf  April 29, 2012 63



119

Landau Fermi Liquid Theory

7.1 Introduction

One of the remarkable features of a Fermi fluid, is its robessdragainst perturbation. In a typical electron
fluid inside metals, the Coulomb energy is comparable wighelectron kinetic energy, constituting a major
perturbation to the electron motions. Yet remarkably, the-imteracting model of the Fermi gas reproduces
many qualitative features of metallic behavior, such as B-aefined Fermi surface, a linear specific heat
capacity, and a temperature-independent paramagnetiepitslity. Such “Landau Fermi liquid behavior”
appears in many contexts - in metals at low temperature$ieircore of neutron stars, in liquid Helium-3
and most recently, it has become possible to create Fermid#iquith tunable interactions in atom traps. As
we shall see, our understanding of Landau Fermi liquidstimately linked with the idea of adiabaticity
introduced in the last chapter.

In the 1950’s, physicists on both sides of the Iron curtaindeed the curious robustness of Fermi liquid
physics against interactions. In Princeton New JerseyjdDBoehm and David Pines, carried out the first
quantization of the interacting electron fluid, proposihgttthe &ects of long-range interactions are ab-
sorbed by a canonical transformation that separates tliggans into a high frequency plasmon and a low
frequency fluid of renormalized electrons[1]. On the otliée ®f the world, Lev Landau at the Kapitza Low
Temperature Institute in Moscow, came to the conclusion ttiea robustness of the Fermi liquid is linked
with the idea of adiabaticity and the Fermi exclusion prhef2].

At first sight, the possibility that an almost free Fermi flunight survive the #ect of interactions seems
hopeless. With interactions, a moving fermion decays byttergiarbitrary numbers of low-energy particle-
hole pairs, so how can it ever form a stable particle-liketexion? Landau realized that a fermion outside
the Fermi surface can not scatter into an occupied momertate lselow the Fermi surface, so the closer it
is to the Fermi surface, the smaller the phase space awftatdecay. We will see that as a consequence, the
inelastic scattering rate grows quadratically with ex@taenergye and temperature

7€) « (€2 + 7°T2). (7.2)

In this way, particles at the Fermi energy develop an infilifiééime. Landau named these long-lived excita-
tions “quasi-particles”. “Landau Fermi liquid theory”[2, 4, 5] describes the collective physics of a fluid of
these quasiparticles.

It was a set of experiments on liquid Helium-3Hg), half a world away from Moscow, that helped to
crystallize Landau’s ideas. In the aftermath of the SecomdldWVar, the availability of isotopically pure
3He as a byproduct of the Manhattan project, made it possibtehéofirst time, to experimentally study this
model Fermi liquid. The first measurements were carried &einiversity in North Carolina, by Fairbank,
Ard and Walters. [6]. While Helium-4 atoms are bosons, atohtse@much rarer isotopéje— 3 are spin-12
fermions. These atoms contain a neutron and two proton®inuhbleus, neutralized by two orbital electrons
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in a singlet state, forming a composite, neutral fermitte is a much much simpler quantum fluid than the
electron fluid of metals:

« without a crystal lattice, liquidHe is isotropic and enjoys the full translational and Gallilegmmetries
of the vacuum.

o SHeatoms are neutral, interacting via short-range interastiavoiding the complications of a long-range
Coulomb interaction in metals.

Prior to Landau’s theory, the only available theory of a degate Fermi liquid was Sommerfeld’s model
for non-interacting Fermions. A key property of the norenaicting Fermi-liquid, is the presence of a large,
finite density of single-particle excitations at the Ferméggy, given by

(@0p? dp|  _mp: 72

=2 = 3.
NO) (2n1)3 dep p=pr m2h3

where we use a script/(0) to delineate the total density of states from the dertfistates per spif(0) =
N(0)/2. The argument ol (0)(e) is the energy = E — u measured relative to the chemical potentialA
magnetic field splits the “up” and “down” Fermi surfacesfshg their energy by an amouriouB, where
o =+1andyu = %% is half the product of the Bohr magneton for the fermion arelgkactor associated
with its spin. The number of “up” and “down fermions is theyethanged by an amouatN; = —6N; =
%N(O)(,UFB), inducing a net magnetizatidvl = yB where,

x = pe(Ny = N,)/B = iEN(0) (7.3)
is the “Pauli paramagnetic susceptibility”. For electroms- 2 andug = ug = %] is the Bohr magneton, so
the Pauli susceptibility of a free electron gagisv(0).

In a degenerate Fermi liquid, the energy is given by

1
&M = EM ~uN = D g1 (7.4)
o=+1/2
Here, we use the notatigh = E — ;N to denote the energy measured in the grand-canonical efes€eThie
variation of this quantity at low temperatures (where toeoitf, the chemical potential is constant ) depends
only on the free-particle density of states at the Fermigne(0). The low temperature specific heat

d& . d 1
Cy = a7 N(O)de“CTT (ﬁ)

/3 =y
——

vt a2 a0
= NOWT [ dxt s = TN O T (7.5)

is linear in temperature. Since both the specific heat, aadrthgnetic susceptibility are proportional to
the density of states, the ratio of these two quantilés= y/y, often called the Wilson ratio or “Stoner
enhancement factor”, is set purely by the size of the magnatiment:

2
_X _g(HE
w=2 3(”kB) (7.6)

Fairbank, Ard and Walters’ experiment confirmed the Paulapegnetism of liquid in Helium-3, but the

1 Note: In the discussion that follows, we shall normalize all extee properties per unit volume, thus the density of staiée) the
specific hea€y, or the magnetizatioM, will all refer to those quantities, per unit volume.
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measured Wilson ratio is about ten times larger than prediby Sommerfeld theory. Landau’s explanation
of these results is based on the idea that one can track theatiewoof the properties of the Fermi liquid
by adiabatically switching on the interactions. He consadea hypothetical gas of non-interacting Helium
atoms with no forces of repulsion between for which Somnié'sfenodel would certainly hold. Suppose
the interactions are now turned on slowly. Landau arguetdsinae the fermions near the Fermi surface had
nowhere to scatter to, the low-lying excitations of the Fdiquid would evolve adiabatically, in the sense
discussed in the last chapter, so that that each quantuenddttite fully-interacting liquid Helium-3, would
be inprecise one-to-one correspondence with the states of daizetd “non-interacting” Fermi-liquid4]

7.2 The Quasiparticle Concept
|

The “quasiparticle” concept is a triumph of Landau’s Ferigpilid theory, for it enables us to continue using
the idea of an independent particle, even in the presendeonfgsinteractions; it also provides a framework
for understanding the robustness of the Fermi surface wabiteunting for the féects of interactions.

A quasiparticle is the adiabatic evolution of the non-iat¢ing fermion into an interacting environment.
The conserved quantum numbers of this excitation: its spuhits “charge” and its momentum are un-
changed but Landau reasoned that that its dynamical piepgttie &ective magnetic moment and mass of
the quasiparticle would be “ renormalized” to new valgesndm’ respectively. Subsequent measurements
on3Hel6, 5] revealed that the quasiparticle mass and enhancedetiagnomenty* are approximately

m" = (2.8)Me),
(@) = 330 er)- (7.7)

These “renormalizations” of the quasiparticle mass andnegg moment are elegantly accounted for in
Landau Fermi liquid theory in terms of a small set of “Landaugmeters” which characterize the interaction,
as we now shall see.

Let us label the momentum of each particle in the original-imeracting Fermi liquid byp and spin
componentr = +1/2. The number of fermions momentugnspin componentr, ny,, is either one, or zero.
The complete quantum state of the non-interacting systéabéled by these occupancies. We write

¥ =101y Npyerys ) (7.8)

In the ground-statey, all states with momenturp less than the Fermi momentum are occupied, all states
above the Fermi surface are empty
no— 1
=1 0

Landau argued, that if one turned on the interactions iefinilowly, then this state would evolve smoothly
into the ground-state of the interacting Fermi liquid. Tisian example of the adiabatic evolution encountered
in the previous chapter. For the adiabatic evolution to witmi Fermi liquid ground-state has to remain stable.
This is a condition that certainly fails when the system wgdes a phase transition into another ground-state,
a situation that may occur at a certain critical interacstrength. However, up to this critical value, the
adiabatic evolution of the ground-state can take place.efeegy of the final ground-state is unknown, but
we can call itE.

(P < pr) 7.9)

Ground- state¥, (otherwise p> pe)
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quasi-particle

particle

hié

| —
INTERACTIONS

hole

quasi-hole

(a) Fermi Liquid (b) Landau Fermi Liquid

Fig. 7.1 In the non-interacting Fermi liquid (a), a stable particle can be created anywhere

April 29, 2012

outside the Fermi surface, a stable hole excitation anywhere inside the Fermi surface.
(b) When the interactions are turned on adiabatically, particle excitations near the
Fermi surface adiabatically evolve into “quasiparticles”, with the same charge, spin
and momentum. Quasiparticles and quasi-holes are only well defined near the Fermi
surface of the Landau Fermi Liquid.

Suppose we now add a fermion above the Fermi surface of thmaristate. We can repeat the the adia-
batic switch-on of the interactions, but it is a delicateqadure for an excited state, because away from the
Fermi surface, an electron can decay by emitting low-enpagticle-hole pairs which disipates its energy in
an irreversible fashion. To avoid this irreversibilityetlifetime of the particlee must be longer than the adia-
batic “switch-on” timera = e~ encountered in (6.93), and since this time becomes infititet adiabaticity
is only possible for excitations that lie on the Fermi suefagherere is infinite. A practical Landau Fermi
liquid theory requires that we consider excitations that affinite distance away from the Fermi surface,
and when we do this, we tacitly ignore the finite lifetime oé thuasiparticles. By doing so, we introduce
an error of orderg!/ep,. This error can be made arbitrarily small, provided we festur attention to small
perturbations to the ground-state.

Adiabatic evolution conserves the momentum of the quatgpastate, which will then evolve smoothly
into a final state that we can label as:

e = { L
=) 0

122

(p< prandp = po, o = 07)

uasi— particle : ¥, -
Q P Poco (otherwise)

(7.10)
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This state has total momentupg where|p,| > pr and an energ¥(p,) > E, larger than the ground-state.
Itis called a “quasiparticle-state” because it behavednost every respect like a single particle. Notice in
particular, that the the Fermi surface momentois preservedby the adiabatic introduction of interactions.
Unlike free particles however, the Landau quasiparticlerily a well-defined concept close to the Fermi
surface. Far from the Fermi surface, quasiparticles devaltifetime, and once the lifetime is comparable
with the quasiparticle excitation energy, the quasipkertioncept loses its meaning.

The energy required to create a single quasiparticle, is

EY = E(po) - Eo (7.11)

where the superscript (0) denotes a single excitation inatigence of any other quasiparticles. We shall
mainly work in the Grand canonical ensemble, usihg E — xN in place of the absolute energy, wheres

the chemical potential, enabling us to explore the vaneatibthe energy at constant particle numberThe
corresponding quasiparticle excitation energy is then

& = EY — i = &(po) - &o. (7.12)

Notice, that sincgpo| > pe, this energy is positive.
In a similar way, we can also define a “quasi-hole” state, ifcvla quasiparticle is removed the Fermi sea,

1
M =1 g

where the bar is used to denote the hole and i< pr is beneath the Fermi surface. The energy of this
state isE(po) = Eo — Ep,, Since we have removed a particle. Now the change in partigieber isAN = -1,
so the the excitation energy of a single quasi-hole, medsorihe Grand Canonical ensemble, is then

(p < pe except wherp = po, o = o)

(otherwise) (7.13)

Quasi- hole : ¥,

0= EQ =D, (7.14)

i.e the energy to create a quasihole is the negative of tlresmonding quasiparticle energy. Of course,
when|po| < pr, 6, < 0 so that the quasihole excitation ene@po is always positive, as required for a
stable ground-state. In this way, the energy to create alltplasor quasiparticle is always given k|,
independently of whethey, is above, or below the Fermi surface.

The quasiparticle concept would be of limited value if it viiasited to individual excitations. At a finite
temperature, a dilute gas of these particles is excitednartiue Fermi surface and these particles interact.
How can the particle concept survive once one has a finiteitgleafexcitations? Landau’s appreciation of a
very subtle point enabled him to answer this question. Hizeshthat since the phase space for quasiparticle
scattering vanishes quadratically with the quasipargclergy, it follows that the quasiparticle occupancy at
a given momentum on the Fermi surface becomes a constarg afidgkion. In this way, the Landau Fermi
liquid is characterized by ainfinite set of conserved quantities,., so that on the Fermi surface,

[H,np] = 0. (p €FS) (7.15)
It follows that the only residual scattering that remaindtua Fermi surface iforwardscattering, i.e
(P1,P2) = (P1— 0, P2+ Q) (g = 0 on Fermi surface.) (7.16)

The challenge is to develop a theory that describes the FregyeF[{n,,}] and the slow long distance
hydrodynamics of these conserved quantities.
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Example 7.1: Supposé¥o) = [Tjp<pr.r ¢'p-[0) is the ground-state of a non-interacting Fermi liquid,
wherec’,, creates a “bare” fermion. By considering the process of adiabaticatjntyion the inter-
action, time-evolving the one-particle stafg,,|FS) from the distant past to the present< 0) in
the interaction representation, write down an expression for the grstaelwavefunctiof) and the
quasiparticle creation operator of the fully interacting system.

Solution: The time-evolution operator from the distant past in the interaction repesm is

U= Texp[—i f; v (t)dt] (7.17)

whereV (t) is the interaction operator, written in the interaction representation. If wiegshrticle to
the filled Fermi sea, and adiabatically time evolve from the distant past tadsert, we obtain

QPafps 1)
. *;—’R
CpoWo) — UC 5o} = (UcprUT) UIWo) . (7.18)
If the adiabatic evolution avoids a quantum phase transition, then
|¢) = UIFS) (7.19)
is the ground-state of the fully interacting system. In this case, we may iiaterp
a'p, = (Uc'p,U") (7.20)

as the “quasiparticle creation operator”. Note that if we try to rewrite thiscobjeerms of the original
creation operatot',, it involves combinations of one fermion with particle-hole pairs. See seét®
for a more detailed discussion.

7.3 The Neutral Fermi liquid
|

These physical considerations led Landau to conclude ligaenergy of a gas of quasiparticles could be
expressed as a functional of the quasiparticles occupmngie Following Landau, we shall develop the
Fermi liquid concept using an idealized “neutral” Landaufidiquid, like He—3, in which the quasiparticles
move in free space, interacting isotropically via a shangeainteraction, forming a neutral fluid.

If the density of quasiparticles is low, it isficient to expand the energy in the small deviations in particl
numbersng, = np(,—ng,fl from equilibrium. This leads to the Landau energy functl@@n,.}) = E({nps}) —
uN, where

1
0
E=8Ey+ pg(r (E,(]() — 1) + 5 i pé’r 3 foorpro ONpedNpor + ... (7.21)

The first order coféicient

o0&
©=EQ =2

= 7.22
F (722)

describes the excitation energy of an isolated quasiparfRrovided we can ignore spin-orbit interactions,
then the total magnetic moment is a conserved quantity, sonthgnetic moments of the quasiparticles are
preserved by interactions. In this cag@, = € — our B, whereyr is the un-renormalized magnetic moment
of an isolated fermion.
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The quasiparticle energy can be expanded linearly in mamenear the Fermi surface
E = ve(p— pe) + 1, (7.23)

wherevg is the Fermi velocity at the Fermi energfp), whereu® is the chemical potential in the ground-state.
The quasiparticleféective massn' is then defined in terms of as

4e©@
Ve = 57‘;) - % (7.24)
p=pr
We can use this mass to define a quasiparticle density ofstate
4rp?dp p° dp
£\ _ _ 0y _ _ 0y hald
N (e) = 22’)“6(6 =2 o) se—e) = o act (7.25)
Using (7.24), it follows that
ey M PE
N*(0) = T (7.26)

In this way, the fective massn* determines the density of states at the Fermi energy: |dfgetiee masses
lead to large densities of states.
The second-order céiicients
526

2 (7.27)
Moo |5y,

fpmmr' =
o =0

describe the interactions between quasiparticles at tmaifseirface. These partial derivatives are evaluated
in the presence of an otherwisfozen” Fermi seawhere all other quasiparticle occupancies are fixed.
Landau was able to show that in an isotropic Fermi liquid,ghasiparticle massi* is related to the dipolar
component of these interactions, as we shall shortly detraias The Landau interaction can be regarded
as an interaction operator that acts on a the thin shell dipatticle states near the Fermi surfaceylf =

¥’ potpe is the quasiparticle occupancy, wherg,, is the quasiparticle creation operator, then one is tempted
to write

1 A
Hi~ 3 Z foopro oo P (7.28)
pop’o
Written this way, we see that the Landau interaction term ifoaward scattering amplitude”between
quasiparticles whose initial and final momenta are unché@rgeractice, one has to allow for slowly varying

quasiparticle densities,-(x), writing

1 a o
Hi~ g [ @Y o G0 0

pop'c’

(7.29)

wheren,,(x) is the local quasiparticle density. Using the Fourier sfarmed density operatan, (q) =
U p-qrar¥psqjar = f, €79 np.(X), a more correct formulation of the Landau interaction is

H|:% Z

pop’o’.ql<A

foorpro (@)D (A) o (=) (7.30)

whereA is a cutdf that restricts the momentum transfer to values smaller tharthickness of the shell
of quasiparticles. The Landau dheients for the neutral Fermi liquid are then the zero mommnlimit

forpor = Tpopor (@ = 0). The existence of such a limit requires that the inteoachias a finite range, so that
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the its Fourier transform af = 0 is well-defined. This requirement is met in neutral Feripuids, however
the Coulomb interaction does not meet this requirement.ekbension of Landau’s Fermi liquid concept to
charged Fermi liquids requires that we separate out therfange part of the Coulomb interaction - a point
that will be returned to later.

Interactions mean that quasiparticle energies are semgdichanges in the quasiparticle occupancies.
Suppose the quasiparticle occupancies deviate from thendrstate as followsp, — np, + dny,. The
corresponding change in the total energy is then

68
Nper

=€pr = Epr —p = E[(J?T) + Z foopr.o 0N« (7.31)
po’
The second-term is change in the quasiparticle energy éulhyg the polarization of the Fermi sea.

To determine thermodynamic properties of the Landau Feiquid we also need to know the entropy
of the fluid. Fortunately, when we turn on interactions adtaally, the entropy is invariant, so that it must

maintain the dependence on particle occupancies that inite non-interacting system, i.e.
S = ~Kg ) [Ny NNy + (1 = Mg, )IN(L = )]
p.o

The full thermodynamics are determined by the the Free grferg & - TS = E — uN — TS, which is the
sum of (7.21) and (7.32).

(7.32)

1
F(tnpe}) = Solw) + Z f;(nc<)r)6nprr + 3 Z Toopror ONporONp o
po p.p’ oo’
+ kgT Z[np(,lnnpu + (1= npe)In(L = npyr)] (7.33)
p.o
Free energy of Landau Fermi Liquid.
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Table. 8.1 Key Properties of the Fermi Liquid .

PROPERTY NON-INTERACTING LANDAU FERMI LIQUID
Fermi momentum Pr unchanged
Density of particles ng unchanged
Density of states N(©) = 5% N*(0) = ”2,,
Effective mass m m =m(1+F})

Specific heat Cd#cient

Cv=1T = ZIZN(0) y = ZKEN*(0)
Spin susceptibility Xs = 12 N/(0) Xs =12 Q’;(F?
Charge Susceptibility xc = N(0) Xc = ﬁ,(:os)

Sound (r << 1)

Collective modes - Zero soundt >> 1)

Table 8.1 summarizes the key properties of the Landau Fegnidl

7.3.1 Landau Parameters

The power of the Landau Fermi liquid theory lies in its abilio parameterize the interactions in terms
of a small number of multipole parameters called “Landalapeaters”. These parameters describe how
the original non-interacting Fermi liquid theory is renaiimed by the feedbackflect of interactions on
quasiparticle energies.

In a Landau Fermi liquid in which spin is conserved, the iat¢ion is invariant under spin rotations and
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can in general be written in the fortn
foopor = fop + fap o (7.35)

The spin-dependent part of the interaction is the magnetigponent of the quasiparticle interaction.

In practice, we are only interested in quasiparticles wigmall excitation energy, so we only need to know
the values offSa near the Fermi surface, permitting us to pet pep, p’ = pep’, wherep andp’ are the
unit vectors on the Fermi surface. In an isotropic Landaurfréquid, the physics is invariant under spatial
rotations, so that interactions on the Fermi surface onpedd on the relative angtebetweer) andp’. We
write

fop = f5%(coso), (cos9 =p-p). (7.36)

We convert the interaction to a dimensionless function bytiplying it with the quasiparticle density of
statesN*(0):
F3%(cosd) = N*(0)f%%(cosb) (7.37)

These functions can now be expanded as a multipole expainsierms of Legendre polynomials

FS3(cosh) = Z(z + 1)FS2P|(cosh). (7.38)
1=0
The codficientsF? andF? are the Landau parametefie spin-symmetric componerf§ parameterize the
non-magnetic part of the interaction while the spin-amtigyetricF? define the magnetic component of the
interaction. These parameters determine how distortiérikeothe Fermi surface are fed-back to modify
quasiparticle energies.
We can invert (7.38 ) using the orthogonality relatg)‘rﬁ}1 dc R(c)Py (c) = (21 + 1) Loy,

1
=3 f e F(OPI(O) = (FH(Q)P(@)a. (7.39)

where(...), denotes an average over solid angle. It is useful to rewrigeangular average as an average
over the Fermi surface. To do this we note that sing& d(ec) = N*(0), the functiongZs; 6(ek) behaves as
a normalized “projector” onto the Fermi surface, so that

= (F(Q)P|(Q))es = N*(O) Z Fop Pi(costh )6 (ep ), (7.40)
and sincer 3%, = N*(0)f;7.,
=2 Z 152 Py (coStp )6 (e )- (7.41)
P

This form is very convenient for later calculations.
2 To see that this result follows from spin rotation invarianwe need to recognize that the quasiparticle occupangies/e have
considered are actually the diagonal elements of a quaisigaiensity matrixp,s. With this modification, the interaction becomes
a matrix fouppr,, Whose most general rotationally invariant form is
foapiprym = T3P P )0apbyy + T3P, P )Fap - Ty (7.34)

The diagonal components of this interaction recover theteesfi(7.35)
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po- Uy

po

fpg'7p’g" = V(q = 0) - V(p - pl)ao'o"

Fig. 7.2 Feynman diagrams for leading order contributions to the Landau parameter for an
interaction V(). Wavy line represents the interaction between quasiparticles.

Example 7.2: Use first order perturbation theory to calculate the Landau interactiameders for a
fluid of fermions with a weak interaction described by

1 g
H= Z Epnps + 3 E V(0)Cp-q0C pr o7 Cpro Cpor
po

pop'a’.q

whereE, is the energy of the non-interacting Fermi gégg) = f%e"q "V(r) is the Fourier transform
of the interaction potentia¥/(r) and1 << 1 is a very small coupling constant. Hint: use first order
perturbation theory il to compute the energy of a state

¥ = Mooy s Npporgs -+ ) (7.42)

to leading order in the interaction strengthand then readfthe terms quadratic iny,.. Solution:

To leading order in, the total energy is given b = (¥|H|¥), or

A -

E=) Ephp, + 5 D VIDCHIC b4 C o G Coo ¥ (7.43)
[ pop’o’.q

The matrix element¥|c’y_q-C'yr 1o Gy Coo[¥) N the interaction term vanishes unless the two quasi-

particle state annihilated by the two destruction operators has an overlap witivahparticle state
created by the two creation operators, i.e.

(HICT 50 C a0 Cpr ol ¥) = (P = 0, 05 P’ + 0, 07D, 07 P07 )M T
= (= <s,,_q,p,5‘,_,,,)n,,ﬁn,W (7.44)

where the second term occurs when the outgoing state is the “exchahgk& incoming two-

quasiparticle state.

Inserting (7.44) into (7.43), we obtain

P
DiEebr+ 5 D V()= V(P = ) Iy, (7.45)
po pop’a’
enabling us to readfbthe Landau interaction as
forpror = AV(A = 0) = V(P ~ P)or] + O(L). (7.46)
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It follows that the symmetric and antisymmetric parts of the interaction petenare
1
T =AV(@=0)- SV(p-p)] + O(?)

fop = f%V(p - )+ O(). (7.47)

Note that

e The Landau interaction is only well-definedv{q = 0) is finite, which implies that the interaction is
short-ranged.

e The second term in the interaction corresponds to the “exchange” dfaeeparticles. For a repul-

sive interaction, this gives rise to aitractivef?®. We can represent the interaction term by the
Feynman diagrams shown in (***).

7.3.2 Equilibrium distribution of quasiparticles

Remarkably, despite interactions, the Landau Fermi liguégerves the equilibrium Fermi-Dirac momentum
distribution. The key idea here is that in thermal equilibri the free energy (7.33) is stationary with respect
to small changeény, in quasiparticle occupancies, so that

N

(7.48)

oF = Z Nper [epur + kBTIn(l

)J +0@Npe?) = 0.
po

po
Stationarity of the Free energyf = 0 enforces the thermodynamic identity = 6& — T6S = 0, ord& =
TdS. This requires that the linear déieient of 6n, in (7.48) is zero, which implies that the quasiparticle
occupancy

= flep) (7.49)

_1
o +1
is determined by Fermi-Dirac distribution function of itseggy. There is a subtlety here however, for the
quantityep, contains the feedbackfect of interactions, as given in (7.31)

0
€po = E[,(J(y)' + Z foopr o Mprer .

po

Npr =

(7.50)

Let us first consider the low temperature behavior in theratesef a field. In this case, as the temperature
is lowered, the density of thermally excited quasiparsickéll go to zero, and in this limit, the quasiparticle
distribution function is asymptotically given by

Nper = F(e?). (7.51)

In the ground-state this becomes a step funatigir—o = 0(~e\) = 0(u — EL), as expected.
To obtain the specific heat, we must calculatgdT = d& = 3, e,g?,)ﬁnp(,. At low temperaturesing, =

(0)
e 41, 50 that
af (i) (0
Cv :Z 5,5‘2[67;' SN (O)f:wdee( ap)’

(7.52)

aT
po

where, as in (7.5) the summation is replaced by an intege the density of states near the Fermi surface.
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Apart from the renormalization of the energies, this is [&ly the same result obtained in (7.5), leading to

”2 2
Cv=»yT. v= TkBN*(O) (7.53)

7.4 Feedback effects of interactions
|

One can visualize the Landau Fermi liquid as a deformablerspliike a large water droplet in zero gravity.
The Fermi sphere changes shape when the density or magieetiahthe fluid is modified, or if a current
flows. These deformations act back on the quasiparticletheiaandau interactions, to change the quasipar-
ticle energies. These feedbadkeets are a generalization of the idea of a Weiss field in m&meWhen the
feedback is positive, it can lead to instabilities, suchhasdevelopment of magnetism. A Fermi surface can
also oscillate collectively about its equilibrium shapealconventional gas, density oscillations can not take
place without collisions. In a Landau Fermi liquid, we willlisee that the interactions play a non-trivial
role that gives rise to “collisionless” collective oscfitans of the Fermi surface called “zero sound” (literally
zero-collision sound), that are absent in the free Fernfirgas

To examine the feedbackects of interactions, let us suppose an external potentifild is applied to
induce a polarization of the Fermi surface, as illustrateBig. 7.3. There are various kinds of external field
we can consider - a simple change in the chemical potential

SeS, = —Op, (7.54)
which will induce an isotropic enlargement of the Fermi aod, the application of a magnetic field,
bep, = —opEB. (7.55)

which induces a spin polarization. We can also consider pipdication of a vector potential which couples
to the quasiparticle current
ep

Sepr = A", (7.56)
in a translationally invariant system. Notice how, in eatlthese cases, the applied field couples to a con-
served quantity (the particle number, the spin and the pt)irevhich is unchanged by interactions. This
means that the energy associated with the application oéxteznal field is unchanged by interactions for
any quasiparticle configuratidm,,}, which guarantees that the coupling to the external fieldéstical to

that of non-interacting particles. This is the reason ferappearance of the unrenormalized mass in (7.56).

For each of these cases, there will of course be a feedIfiek ef the interactions that we now calculate.
From (7.31) the change in the quasiparticle energy will nomtain two terms - one due to direct coupling
to the external field, the other derived from the induced fimddéion én, of the Fermi surface

Sepr = e + Z foupro oMo (7.57)
po

In this case, the equilibrium quasiparticle occupanciesire

Npor = F(e + 66pr) = F(6) + £ (6™)Sepor- (7.58)
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As the temperature is lowered to zero, the derivative of teeri function evolves into a delta function
—f’(e) ~ 4(€), so that the quasiparticle occupancy is given by

nf) SNper
(0) (0)
Moo = 0(=€y ") + [~6(€p " )O€po] - (7.59)

Moy = —6(5,50’)65[,‘, represents the polarization of the Fermi surface, whichfeéld back into the interaction
(7.57) as follows

0]
O€pr = 65{)0) + Z fp(rp’(r’6np'rr'~
o

Moo = —6(6)56pr

The resulting shift in the quasiparticle energies must gwisfy the self-consistency relation:
Sepr = beft = > Toopro (6 S6prc (7.60)
po’
This feedback process preserves the symmetry of the ekpartarbation, but its strength in a given symme-
try channel depends on the corresponding Landau parariiates, isotropic charge and spin polarizations
of the Fermi surface shown in Fig 7.3(a) and Fig 7.3(b) arebi@ck via the isotropic charge and magnetic
Landau parameters; and F§. When the quasiparticle fluid is set into motion at velodifythis induces a
dipolar polarization of the Fermi surface, shown in (Fig &B, which is fed-back via the dipolar Landau
parametef . This process is responsible for the renormalization okffective mass.
Consider a change in the quasiparticle potential that hastacplar multipole symmetry, so that the “bare”
change in quasiparticle energy is

Sy = Yim(P) (7.61)
whereYy, is a spherical harmonic. The renormalized response of thsiparticle energy given by (7.60)
must have the same symmetry, but will have fiedent magnitudég:

6Ep(r = t\Ylm(ﬁ)- (7.62)

When this is fed back through the interaction, according t6Q9, it produces an additional shift in the
quasiparticle energy of given by, forpodNye = —FF1iYim(P) (see exercise below), so that the total
change in the energy is given by, = (v — Ft))Yim(P). Comparing this result with (7.62), we see that

= (v — Fft). (7.63)
This is the symmetry resolved version of (7.60). Consedygnt

Vi

VS TR

(7.64)

We may interpret; as the scattering t-matrix associated with the potewtidf F® > 0 is repulsive, nega-
tive feedback occurs which causes the response to be sapgréghis is normally the case in the isotropic

3 Note: in Landau’s original formulation[2], the Landau paraene were defined without the normalizing factar42) in (7.72). With
such a normalization thig are a factor of B+ 1 larger and one must replagg — ﬁFf in (7.64)
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(a) e tions grow to the point wherg§ = -1, the Fermi surface becomes unstable to the formation afrstapeous
_LAdu spin polarization: this is called a “Stoner” instabilityydresults in ferromagnetism.

L]
F(] Example 7.3: Calculate the response of the quasiparticle energy to a charge, or $mizgton with
a specific multipole symmetry.

/ 1 Consider a spin-independent polarization of the Fermi surface ébtive
du Mo = —tYim(P) X ()
~TEtAsurB whereYn(p) is a spherical harmonic. Show that the resulting shift in quasipartickgiesds given
L\ upB by

u Sepr = —tFF Yim(P)-
FO 2 Determine the corresponding result for a magnetic polarization of timei Barface of the form
Oy = ot Yim(P) X (")

Solution:
According to (7.31), the change in quasiparticle energy due to the patiarizof the Fermi surface is
given by
6 = ) Torpt.or 0Tt (7.67)
F-5 e
aj Substitutingsnp, = —t Yim(p) X 6(e”), then
S ==t ), Forgr o Yim(B) X 6(). (7.68)
b

Decomposing the interaction into its magnetic and non-magnetic compofygpts = f5(p - p’) +
oo’ f3(p - p’), only the non-magnetic survives the spin summation, so that

Fig. 7.3 lllustrating the polarization of the Fermi surface by (a) a change in chemical potential to A A

g the pol  Fer by ( ) ge in che p: _ S = 1 X 22 50 - ') Yim(D') X 5(e). (7.69)
produce a isotropic charge polarization (b) application of a magnetic field to produce a spin T o
polarization and (c) the dipolar polarization of the Fermi surface that accompanies a current of

- ‘ o ) Replacing the summation over momentum by an angular average ovesrthedtirface
quasiparticles. The Landau parameter governing each polarization is indicated on the right

. dQy
hand side. 23" 5(el?) > N*(0) f s (7.70)
5
channel, where repulsive interactions tend to supprespdfeizability of the Fermi surface. By contrast, we obtain
if £S i ive i i iti S dQs . ., ~
if FS <0, correspond'lhg to an attractive interaction, po:snnmitmck enhances the response. Indeefs; if Sepr = —ti X N‘(O)f ) Y {50 - B)Yim(@)
drops down to the critical valuE® = —1, an instability will occur and the Landau Fermi surfacedrees A0 a
unstable to a deformation - a process called a “Pomerandhstality. =-t f T;Fs(ﬁ ) Yim(®) (7.71)
A similar calculation can be carried out for a spin-polatia of the Fermi surface, where the shift in the . o . o
. icl . Now we can expand the interaction in terms of Legendre polynomials, vaaichin turn be decom-

quasiparticle energies are posed into spherical harmonics

56;(3?2 = aVYim(P). Sepr = Tt Vim(P) (7.65) FS(cosf) = Z(2| +DFFP(P-P) = 4"2 FYim(B) Vi (D) (7.72)

| I.m
Now, the spin-dependent polarization of the Fermi surfaeel$ back via the spin-dependent Landau param- When we substitute this into (7.70) we may use the orthogonality of the sphesicnonics to obtain
eters so that s
11 m
= M (7.66) s o (7 0
R : 6 == 3 Fi¥ear®) [ 60 Y (0 Vi)
I"nv
= —t;F} Yim(P). (7.73)

The isotropic responsé € 0) corresponds to a simple spin polarization of the Fernfaser If spin interac-
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For a spin-dependent polarizatiaim,, = —t,aa'Yum(fl)zS(e,(,o’) it is the magnetic part of the interaction
that contributes. We can generalize the above result to obtain

S€pr = ot X F Yim(P). (7.74)

7.4.1 Renormalization of Paramagnetism and Compressibility by
interactions

The simplest polarization response functions of a LandanHgjuid are its “charge” and spin susceptibility.
_ 16N _ 1M
Vo TV
whereV is the volume. Here, we use the term “charge” density to reféhe density response function of
the neutral Fermi liquid. These responses involve an ipatrpolarization of the Fermi surface. In a neutral
fluid, the bulk modulus = —V% is directly related to the charge susceptibility per uniluwoe, x = E
wheren = N/V is the particle density. Thus a smaller “charge” susceljiiinplies a stifer fluid. *

When we change the apply a chemical potential or a magnetit, tieé “bare” quasiparticle energies
respond isotropically.

Xc (7.75)

66l = 6ES) — 6 = ~oueB - 6. (7.76)
Feedback via the interactions renormalizes the resportse édll quasiparticle energy
O€pr = =0 AsFB — AcOpt. (7.77)
Since these are isotropic responses, the feedback is fittetsthrough thé = 0 Landau parameters
1
=17 F3
Ac = o (7.78)
CT1+Fy :

When we apply a pure chemical potential shift, the resultihngnge in quasiparticle number & =
AN*(0)u, so the “charge” susceptibility is given by
N*(0)
1+F§
Typically, repulsive interactions causg > 0, reducing the charge susceptibility, making the fluidffet.

In 3He, F5 = 10.8 at low pressures, which is roughly ten timesfetithan expected, based on its density of
states.

A reverse phenomenon occurs to the spin response of Landanilepiids. In a magnetic field, the change
in the number of up and down quasiparticlesns = —én; = %N*(O)p,: B. The resulting change in magneti-
zation is6M = ug(6n; —ony) = /lspf:N‘(O)B, so the spin susceptibility is
HEN"(0)

1+F3°

Xxe=AN"(0) = (7.79)

Xs = AEN(0) = (7.80)

4 In a fluid, where-9F/dV = P, the extensive nature of the Free energy guaranteesthat-PV, so that the Gibbs free energy
G = F+PV = 0vanishes. BulG = -SdT-Ndu+VdP= 0, so in the ground-stafédu = VdPand hence = -V %\N =-N %‘,'N,

_ . . . . du _ N2 du _ n _ _ n?
buty = u(N/V) is a function of particle density alone, so thatl gy TV ANy T ve wheren = N/V. It follows thatx = Y
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There are a number of interesting points to be made here:

e The “Wilson” ratio, defined as the ratio betwegg/y in the interacting and non-interacting system, is
given by
X
(¢)_ 1

W= = . (7.81)

In the context of ferromagnetism, this quantity is oftereredd to as the “Stoner enhancement factor” In
Landau Fermi liquids with strong ferromagnetic exchangeractions between fermioris] is negative,
enhancing the Pauli susceptibility. This is the origin a¢ #nhancement of the Pauli susceptibility in
liquid He — 3, whereW ~ 4. In palladium metaPd, W = 10 is even more substantially enhanced[8].

e When a Landau Fermi liquid is tuned to the point whEfe— -1, y — oo leading to a ferromagnetic
instability. This instability is called a “Stoner instaibjl’: it is an example of a ferromagnetic quantum
critical point - a point where quantum zero-point fluctuatiof the magnetization develop an infinite
range correlations in space and time. At such a point, thed#itatio will diverge.

7.4.2 Mass renormalization

Using this formulation of the interacting Fermi gas, Landeas able to link the renormalization of quasi-
particle mass to the dipole component of the interactféhsAs the fermion moves through the medium, the
backflow of the surrounding fluid enhances iffeetive mass according to the relation

m = m(1+F5). (7.82)

Another way to understand quasiparticle mass renormalizas to consider the current carried by a quasi-
particle. Whether we are dealing with neutral, or physiceligrged quasiparticles, the total number of par-
ticles is conserved and we can ascribe a particle curren¢émive = pg/m* to each quasiparticle. We can
rewrite this current in the form

backflow
FS
_Pe_ PE _PE(_ T
VES i m m (l+ Ff) (7.83)

—_
bare current

The first term is the bare current associated with the origiadicle, whereas the second term is backflow of
the surrounding Fermi sea (Fig. 7.4 ).
“Mass renormalization” increases the density of statesifi(0) = ",‘r—'} — N*0) = "‘;EF, i.e it has the

effect of compressing the the spacing between the fermion grevgls, which increases the number of
quasi-particles that are excited at a given temperatureféagtarm*/m: this enhances the linear specific heat.

m
Gy = —-Cv (7.84)

whereCy is the Sommerfeld value for the specific heat capacity. Erpntally, the specific heat of Helium-3
is enhanced by a factor of&, from which we know thatn* ~ 3m.

Landau’s original derivation depends on the use of Galiiiesariance. Here we use an equivalent deriva-
tion, based on the observation that backflow is a feedbaglons® to the dipolar distortion of the Fermi
surface which develops in the presence of a current. Thislesas to calculate the mass renormalization in

136

2012 72



(©2011 Piers Coleman Chapter 7.

3k

Backflow

-2 (i)

Fig. 7.4 Backflow in the Landau Fermi liquid. The particle current in the absence of backflow is

Fi \p

p Sl
- Backflow of the Fermi liquid introduces a reverse current — (Tpf) o

an analogous fashion to the renormalization of the spineqigility and compressibility, carried out in (7.4)
and (7.4.1), except that now we must introduce the conjuiglteto current - that is, a vector potential.

To this end, we imagine that each quasiparticle carries aeroad charge = 1, and that the flow of
quasiparticles is coupled to a “fictitious” vector potehtid = Ay. The microscopic Hamiltonian in the
presence of the vector potential is then given by

HIAN] =)' fd&%nw;(x) [(-iY = AN ] e () + ¥ (7.85)

whereV contains the translationally invariant interactions. is@that éfect ofAy is to change the momen-
tum of each particle by-Ay, so thatH[An] is in fact, the Hamiltonian transformed into Gallileaneednce
frame moving at speed = Ay/m. Landau’s original derivation did infact use the Gallileeguivalence of
the Fermi liquid to compute the mass renormalization.

Since the vector potentidy is coupled to a conserved quantity - the momentum, we canitrizathe
same way as a chemical potential or magnetic field. The ligearinAy in the total energy isH = —Ay - %
whereP is the conserved total momentum operator. For a non-irtierasystem the change in the total
energy for a small vector potential at fixed particle occuiesn,, is

6E:(6H>:—%<

P
An=-— — - AN)Npor- 7.86,
N ;(m N)Mp, ( )
Provided the momentum is conserved, this is also the chanthe ienergy of thénteractingFermi liquid, at
fixed quasiparticle occupancy, i.e. without backflow. Irstiviay, we see that turning on the vector potential

changes

eé?) — e,(,?z + 65&?,) (7.87)
where
6@ = _P Ay = CAPE cos. (7.88)
PP m m

Here,d is the angle between the vector potential and the quasifgartiomentum. Thus the vector potential
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introduces alipolar potentiabround the Fermi surface. Notice how the conservation of emom guaran-
tees it is thebare massn” that enters intael).

Now when we take account of the feedbaéleet caused by the redistribution of quasiparticles in raspo
to this potential, the quasiparticle energy becoffgsa = %. Here, the replacement pf— p—gAyn =
p — Ay is guaranteed because the quasiparticle carries the samserged charge = 1 as the original
particles. In this way, we see that in theesenceof backflow, the change in quasiparticle energy

Sep = —% Ay = —AN% cosé. (7.89)

involves the renormalized mass.

Since the vector potential induces a dipolar perturbatidhe Fermi surface, using the results from section
(7.4), we conclude that backflow feedbadkeets involve the spin symmetric= 1 Landau ParameteF,]
(7.64),

1
Sepr = (T':i) el (7.90)

Inserting (7.88) and (7.89) into this relation, we obtain
m 1

mo1sFS (7.91)

orm’ =m(1+ F3).
Note that:

e The Landau mass renormalization formula relies on the cwasen of particle current when the inter-
actions are adiabatically turned on. In a crystal latti¢doaigh crystal momentum is still conserved,
particle current is not conserved and at present, there isxawn way of writing down an expression
for 65,5,?) anddep,- in terms of crystal momentum, that would permit derivatiba mass renormalization
formula for electrons in a crystal.

e SinceF; = N*(0)f? involves the renormalized density of state$(0) = m;rzp‘, the renormalized mass*
actually appears on both sides of (7.82). If we use (7.39 gugite F} = %’N(O)fs, whereN(0) = ",‘7?
is the unrenormalized density of states, then we can sotvefin terms ofmto obtain:

. m
m = T(O)ff (7.92)
This expression predicts that — co atN(0)f7 = 1, i.e that the quasiparticle density of states and hence
the specific heat cdicient will diverge if the interactions become too strongisTjossibility was first
anticipated by Neville Mott, who predicted that in preseotkrge interactions, fermions will localize,

a phenomonon now called a “Mott transition”.

There are numerous examples of “heavy electron” systemshwité close to such a localization transi-
tion, in whichmi/me >> 1. Quasiparticle masses in excess of ¥0Bave been observed via specific heat
measurements. In practice, the transition where the massgéss is usually associated with the develop-
ment of some other sort of order, such as antiferromagnetisrolidification. Since the phase transition
occurs at zero temperature, in the absence of thermal flimtsait is an example of a “quantum phase
transition”. Such mass divergences have been observedarietyof diferent contexts in charged electron
systems, but they have also been observed as a second-oatéum phase transition, in the solidification of
two-dimensional liquid Helium-3 Mott transition.
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7.4.3 Quasiparticle scattering amplitudes

In 8.3 we introduced the quasiparticle interactidgsy~ as the variation of the quasiparticle eneegy with
respect to changes in the quasiparticle occupangy,., under the condition that the rest of the Fermi sea
stays in its ground-state

O€por

— 7.93
s (7.93)

forpror =

1
-~ |rsp. 'E3(H . B
- N*(O)[ (B -p') + oo’ F3(p - p)
The quantityf, .~ can be regarded as a bare forward scattering amplitude eetthe quasiparticles. It
proves very useful to define the corresponding quantitiesrwiermi sea is allowed to respond to the original
change in quasiparticle occupancies, as follows:

_ 06 1 e o, Ad(A A
Qopo = Sy N*(O)[A (- p)+od' AP p)]

(7.94)

Microscopically, the quantities,.~ correspond to the t-matrix for forward-scattering of thasjparticles.
These amplitudes can decoupled in precisely the same wag &sihdau interaction (7.72),

A*(cosf) = Z(ZI + 1)A?Py(cos)

T
=47 )" A im(B)Yin (), (@ =(sa) (7.95)
I,m
These two sets of parameters are also governed by the fdeebects of interactions:
PR ( ) (7.96)
= — « =S, a) .
1+F

The derivation of this relation follows closely the derieat of relations (7.64) and (7.66); we now repeat the
derivation by solving the “Bethe Salpeter” integral eqoatihat links the scattering amplitudes. The change
in the quasiparticle energy is

S€pr = Tpopor Ny + Z
PR o)

P . 7.97
po.p’ P

where the second term is the induced polarization of the Feurface (7.59 )My = —8(\)06p o, SO

that
Sepr = Torpror Oy = D Torprordlel Voo (7.98)
pra”
SubstitutingSep, = 8popo SNy then dividing through byn, -, we obtain
Qpopor = fp(r,p’(r' - Z fp(r,p”(r”5(55(3(/)/))31)”(r’p’rr'- (799)

po”

This integral equation for the scattering amplitudes isranfof Bethe-Saltpeter equation relating the bare
scattering amplitudé to the t-matrix described bg.
Now near the Fermi surface, we can decompose the scatteriplitades using (7.93) and (7.94), while
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Fig. 7.5 Showing the geometry associated with quasiparticle scattering 1+ 2 — 3+ 4. The

momentum transfered in this process is g = |ps — p1| = 2pg Sin6/2sing/2. P = p; + p2
is the total incoming momentum. Landau parameters determine “forward scattering”
processes in which ¢ = 0.

oy

7 SO that this equation

replacing the momentum summation by an angular integgal— %N*(O)fde"
becomes

P Py AR o o paar

KEB)=F (0P - [ EFG 5N D) (7.100)

If we decomposé andT in terms of spherical harmonics using (7.72) and (7.95) énsxcond term, we
obtain
A o ey s
[ om0 -

1 Smnt /(47)

e
dQg
=@ Y FAYn®) [ 6 e (6) Vi )

Impm an

= (4m) D FEAYm(B)Yim() = D (21 + DFT AP - )
Im |

(7.101)

Extracting coéiicients of the Legendre Polynomials in (7.100), then giégs- F{* — F*A? from which the
result
o_ _F
A= 1+Ff

(e=sa) (7.102)
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follows. The quasiparticle processes described by thesttesng amplitudes involve no momentum transfer
between the quasiparticles. Geometrically, scatterimggsses in whicly = 0 correspond to a situation
where the momenta of incoming and outgoing quasiparti@es the same plane. Scattering processes which
involve situations where the plane defined by the outgoinmerda is tipped through an anglevith respect

to the incoming momenta, as shown in Fig. 7.5 involve a finitemmantum transfeq = 2pg| sing/2 sing/2|.
Provided this momentum transfer is very small compared thiéhFermi momentum, i.¢ << 1 then one
can extend the t-matrix equation as follows

Fi(a)

() = ———— . 7.1
AQ = g (@<<pr) (7.103)
It is important to realize however, that Landau Fermi ligthidory is however, only really reliable for those

processes whekg~ 0 is small.

7.5 Collective modes
|

The most common collective mode of a fluid or a gas is “souna@hv@ntional sound results from colli-
sions amongst particles which redistribute momentum withé fluid - as such, sound is a “low-frequency”
phenomenon that operates at frequencies much smallerttdypical quasiparticule scattering raté, i.e
w << 771 or wr << 1. One of the startling predictions of Landau Fermi liquiddty, is the existence of a
collionless collective mode that operates at high fregigsner >> 1, “zero sound”. Zero sound is associ-
ated with collective oscillations of the Fermi surface arabies not involve collisions. Whereas conventional
sound travels at a speed below the Fermi velocity, zerogs@ffsupersonic” traveling at speeds in excess of
the Fermi velocity. Historically, the observation of zesound in liquid He-3 clinched Landau Fermi liquid,
firmly establishing it as a foundation of fermionic many-pqzhysics.

Let us now contrast “zero ” and “first” sound. Conventionaliiso is associated with oscillations in the
density of a fluid, and hydrodynamics tells us that

2 K K

w==

S (7.104)

wherep = mnis the density of the fluid and = —V% is the bulk modulus. From our previous discussion,
K= E andyc = N*(0)/(1 + Fg), so the velocity of first sound in a Fermi liquid is given by

2 n n S
= = __(1+F 7.105
Myc mN*(O)( o ( )
Replacingn = ng’ N*(0) = P, andm = m'/(1 + F$) we obtain
2 F s s
@ = L3 (L+F)L+F (7.106)

In the non-interacting limity; = v/ V3 is smaller than the Fermi velocity.

To understand of zero-sound we need to consider variatiorthe quasiparticle distribution function
np(x, ). Provided that the characteristic frequencyand wavevectoq of these fluctuations are much re-
spectively smaller than the Fermi energy<< e and the Fermi wave-vectar << kg respectively, then
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fluctuations in the quasiparticle occupancy can be treateu-slassically, and this leads to a Boltzmann
equation

D
or = o] (7.107)
where
Dnpe  ONps . .
P = P X Vlpe + P - Vphpo (7.108)

Dt ot
is the total rate of change of the quasiparticle occupamgyx, t), taking into account the movement of
quasiparticles through phase spdcis.the collision rate. In a semi-classical treatment, the oé change of
momentum and position are determined from Hamilton’s éqnap = —Vye, andx = Ve, so that

Dnp,  dnp,
bt = gt Vee Vo = Vxpo - Vol (7.109)
We now consider small fluctuations of the Fermi surface défine
no(x. 1) = f() + €3 tqy, (7.110)

whereay,, is the amplitude of the fluctuations. Now the terms contiitmito the total rate of changeny, /Dt
are of ordelO(wsn), whereas the collision teriin] ~ O(r~*6n) is of order the collision rate™. In the high
frequency limit,wr >> 1 the collision terms can then be neglected, leading to thisicoless Boltzmann
equation:
OMNp,-
ot
For small periodic oscillations in the Fermi surface, thstfiwo terms in (7.111) can be written

+ Vpép - Vo = Vxpo - Vphpo = 0. (7.111)

an, .
% + Vp&p - Vo = —i(w = VE - Q)ap, €9
O

In the last term of (7.111), the position dependence of tiEsigarticle energies derives from interactions

fop(r = Zf fprr,p’(r’Van'.o"
o P

(7.112)

— i S [ o (7.113)
ReplacingV,ny, = %vp, the collisionless Boltzmann equation becomes:
df
(@ = Ve - Dape + Ve 0~ Z | foowrapr =0 (7.114)

For a mode propagating at speedus ugq. If we express/r.q = Veqcost), and write the mode velocity as
a factorstimes the Fermi velocity) = s\, then this becomes

df
(s— cosfp)aps + COSH, (_E) Z j,; fpopo@p o =0

We see that the fluctuations in occupancy associated withcaszeind modegp, = 7-(P) (—g) are pro-
portional to the energy derivative of the Fermi functiondahus confined to within an energy scaleof

(7.115)
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the Fermi surface. The functiop.(p) describes the distribution around the Fermi surface, hisdftinction
satisfies the self-consistent relation

_costp
00 = ey 2 | G Foowe ) (7116)
For spin-independent zero-sound waves, the right-haredsity involvesrF* and can be written
€osY, do, .,
n(p) = Lo | =R () (7.117)

(s—costp) Ar

To illustrate the solution of this equation, consider theecarhere the interaction is entirely isotropic and
spin-independent, so that the only non-vanishing Landaarpeter isF3. In this case, the angular function
is spin-independent and given by

B cosp)
n(®) = Asf cosf) (7.118)
whereA is a constant. Substituting this form into the integral eigum we obtain the following formula for
S=U/VE,
tdcog co9 s s+1
A= L 7 s cog 0" AFO[ In( — 1)J (7.119)
so that
s+1 1
= I 1=—. 7.12
2 (s 1) Fs ( &

For larges, the function on the I.h.s. behaves vanishes asymptatiaall/(3s%), and since the r.h.s. vanishes
at large interactionk=3, it follows that for large interaction strength the zerarsd velocity is much greater

thanvg,
s
U=SW =V 3 (F§>>1).

For small interaction strengts,— 1, and the zero-sound velocity approaches the Fermi vglocit

Experimentally, zero sound has been observed through etyari methods. Low frequency zero sound
couples directly to vibrations at the wall of the fluid, anchdze detected directly as a propagating density
mode. Zero sound can also be probed at higher frequencieg osiutron and X-ray scattering. Neutron
scattering experiments find that at high frequencies, the geund mode enters back into the particle-hole
continuum, where, as a damped excitation, it acquires atfominimum similar to collective modes in
bosonic 4-He.

(7.121)

7.6 Charged Fermi Liquids: Landau-Silin theory

One of the most useful extensions of the Landau Fermi ligo@bty is to charged Fermi liquids, which
underpins our understanding of electrons in metals. ClaFgemi liquids present an additional challenge,
because of the long-range Coulomb interaction. The exdardfiLandau Fermi liquid theory to incorporate
the long-range part of the Coulomb interaction was origynalade by Silin[9, 10]. In neutral Fermi liquids,
the existence of well-defined Landau interaction pararsetepends on a short-range interactit{a) with
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a well-defined zero momentum limit— O (see also example 8.2). Yet the long-range Coulomb interact
V() = fqz is singular ag) — 0. Charged quasipatrticles act as sources for an electenpakwhich satisfy

Gauss'’ law
e
- ONper (X
50; b (X)

The fieldEp = —V¢p that this produces polarizes the surrounding quasiperticid to form a“polariza-
tion cloud”around the quasiparticle which screens its charge, soltkeatet interaction between screened
quasiparticles has a finite range. Nevertheless, this gosebtle technical problem for screening requires a
collective quasiparticle response, yet the Fermi liquigriactions are determined by variation of the quasi-
particle energy in response to a change in quasiparticlepaoy against an otherwise frozen (and hence
unpolarized) Fermi sea:

Vgp = Polarization field (7.122)

S €po (X)

0] (7.123)

fpope (X, X) =
Ny =0

In a frozen Fermi sea, the quasiparticle interaction must the unscreened at large distances, forcing it to
be singular as| — 0.

The solution to this problem was proposed by Silin in 195%n$iroposed splitting the electric potential
¢ produced by charged particles into two parts: a long ranagesidal polarization fieldp considered above,
and a short-range, fluctuating quantum component

B(X) = ¢p(X) + 5pq(X) (7.124)

The quantum component is driven by the virtual creation ettbn hole pairs around a charged particle.
These processes involve momentum transfer of order theilReomentumpe, are hence localized to within

a short distance of order the quasiparticle de Broglie vemgthA ~ h/pg around the quasiparticle. Silin
proposed that these virtual fluctuations in the electrieptial introduce a second, short-range component
to the quasiparticle interactions. Silin’s theory isotatee polarization field as a separate term, so that the
quasiparticle energy is written

o) = &7 +@pp() + 3" oo oMy (X) (7.125)
po’
In momentum space, the change in the quasiparticle eneggyes by
(7.126)

S6pr(0) = 89p(A) + ) T My ()
b
However, Gauss’ law implies thap(q) = % Yo ONpo(4). Combining these results together, we see that

Sepor(q) = Z (;qz + ﬂ)mp’rr')énp’o"((]) (7.127)

o

In other words, theféective interaction takes the form (see Fig. 7.6)
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Long range interaction
from polarization field
—_—
forprar (0) = o7 forpro (7.128)
—_—
Short-range residual inter-
action

[

Interactions of a charged Fermi liquid. The short-range part of the interaction results
from quantum fluctuations of the polarization field (see exercise 8.?7). The long range
component of the interaction derives from the induced polarization field around the
quasiparticle.

There are a number of points to emphasize about Silin’s $heor

e When the interaction is decomposed in terms of (q-depentdantjau parameters, the singular interaction
only enters into thé = 0, spin symmetric component; all the other components atermdéened by
fpopov, SO that

N (0)
o 2

S+ FP
pov 1o+ Fy

Fi(a) = (7.129)
andF? = F2.

e The Landau-Silin theory can be derived in a Feynman diagoamdlism. In such an approach, the short-
range part of the interaction is associated with multipkgtseing df the Coulomb interaction.

e The short-range interactidbpr is a quantum phenomenadfistinct from classical “Thomas-Fermi” screen-
ing of the quasiparticle chargahich result from the polarizingfiects of the long-range,/? compo-
nent of the interaction.
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To illustrate this last point, let us calculate the lineapense of the quasiparticle densip(q) = xc(q)du(q)
to a slowly varying chemical potential(x) = 6u(q)€*, wherey.(q) is the charge susceptibility. In a neutral
Fermi liquid, forq << pg, the long-wavelength density response is determineg.fy) ~ yn, where

_ N0
Xn= 77 = (7.130)
as found in eq. (7.79). In the charged Fermi liquid, we replg— F3(q) = "’22]’(;2(0’ + lfg, which gives

(@) = N*(0) _ Xn __ Xn
c - * ~ - -
1+(EEO4 Ry 1+5 1+ S

(7.131)

wherex? = ;%)(n defines a “Thomas Fermi” screening lengith = «~*. At large momenta >> « (distances
x << Itg), the response is exactly that of the neutral fluid, but aflsmamentaq << «, (distancex >> It¢),
the charge density response is heavily suppressed.

Historically, the Landau Silin approach changed the wayhofking about metal physics. In early many
body theory of the electron gas, the singular nature of theld@ob interaction was a primary focus, and
many body physics in the 1950s was in essence the study ofuqugrlasmas. With Landau Silin theory,
the long-range Coulomb interaction becomes a secondamestt because this component of the interaction
is unrenormalized and can be added in later as an afterthdTigis is a major change in philosophy which
shifts our interest to the short-range components of thaipaticle interactions. In essence, the Landau
Silin observation liberates us from the singular aspects®oulomb interaction, and enables us to treat the
physics of strongly correlated electrons as a close coropaniother neutral Fermi systems.

Example 7.4: Calculate the scattering t-matrix in Landau-Silin theory to display the screefiigf
of the long range interaction.

Solution:

If we introduce a small modulation in the quaisparticle occupancy at momepl, while “freezing”
the rest of the Fermi sea, then the change in the quasiparticle energip&lvilip a modulation given
by

de(@) = fi5p (A)any (@) (7.132)

where f;p, = (% + f;sp) is the spin symmetric part of the interaction. (For convenience we tem-
porarily drop the spin indices from the subscripts). If we now allow thesipaaticle sea to polarize in

response to the this change in energy, the change in quasiparticle enveitbiake the form
565(a) = &, (@)ony (a)

wherea® is the screened quasiparticle interaction to be calculated. At low momentan isotropic
system, bothf anda can be expanded in spherical harmonics, as in (7.72), by writing

5@ = 3G POCCIACH

(7.133)

%019 = 575y 2 A ENG(E) (7.134)

For very smallg, we can solve for the relationship betweghand F? using the methods of section
(7.4.3), which gives

Fi(q)
1+ Fi(a)

A@Q) = (7.135)
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But from (7.129), they dependence only enters into the 0 component of the spin-symmetric scat-
tering, whereo(q) = % + F so that

EN0) |, [ ~
) = o2 TFo  RIQ+F)

" A;(nemrau (7.136)

+Fo CETH)

whereAgeutal = gés is thel = 0 scattering t-matrix of the equivalent neutral Fermi liquid. Since all
0

other components are unchanged by the long-range Coulomb interact@miows that the interaction

t-matrix of the charged Fermiliquid is a sum of the original neutral interacfitus a screened Coulomb

correction:

(neutra)

1
Bpopo(d) = m w + o (7.137)

Note how the residual “Coulomb” part of the t-matrix is heavily supprdsdmenlfg becomes large.

7.7 Inelastic Quasiparticle Scattering
|

7.7.1 Heuristic derivation.

In this section we show how the Pauli exclusion principleiténthe phase for scattering of quasiparticles in
a Landau Fermi liquid, giving rise to a scattering rate wituadratic dependence on excitation energy and
temperature

% o [+ 22T, (7.138)

The dominant decay mode of a quasipatrticle is into threeigadiles. There are also higher order processes
that involve a quasiparticle decaying into a quasipartateln particle-hole pairs:

2n

2n+1

We'll see that the phase space for these higher order decaggses vanishes with a high power of the
energy & €2™1), allowing us to neglect them relative to the leading precasow temperature and energy.
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For our discussion, we will denote a hole in the quasipartitatej asf denoting the quasihole energy by

€ = —¢; > 0. By the Golden Rule, the rate of decay imtparticle-hole pairs is

2 = . -
Tonsa(er) ~ W Z la(1;2,3,....2n+ 2)%[er — (B2 + €3 + &+ - - + €ns2)] (7.139)

23.2n+2

E.e3->0
Wherea(l;z 3,...2n + 1) is the amplitude for the scattering processe, ... e ... denote the energies
of the outgoing quasiholes ang, es . . . e2n41, €2n:2 denote the energies of the outgoing quasiparticles. The
energies of the final state quasi- particles and holes museabositive, while also summing up to give
the initial energy. When the incoming particle is close tofleemi energye and the all final state energies
e > & > 0 must also lie close to the Fermi energy, so so we can refddey an appropriate Fermi surface
average

(eoniP) = ) 1a(1;2.3,...2n+ 2)?6(&) ... 6(eana). (7.140)
23..2n+2
to obtain®
2n 5 00 5 . EZn
Ionia(€) ~ —(lagnaal?y | d&...dens10[e — (&2 + ... €nr1)] o o (7.141)
h b (2n)!

In this way, the phase space for decay into 2 1 quasiparticles vanishes a&'. This means that near
the Fermi surface, quasiparticle decay is dominated by éeaylinto two quasi-particles and a quasihole,
denoted byl — 2+ 3+ 4 as illustrated in Fig. (7.7).

(a) 4 (b) £, e
3
O €4
! 2 €5
-
2

Decay of a quasiparticle into two quasiparticles and a quasihole. (a) Scattering
process. (b) Energies of final states.

The decay rate for this process is given by

27T 2
I(e) = S-laa) 5 (7.142)

5 Formally this is done by inserting 12" [ ded(a) into (7.139),
6 This last integral can be done by regarding ¢hes the diferences:; = sj — sj_1 between an ordered set of co-ordinasgs 1 >
S+ > s Wheresy = 0, so that

Son+1
e e, o N S+ 1 S EZH
[ dansite-larar el = [ denaste-snn) [ den.. [Cds = S
0 W 0 o 0 (2n)!
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On dimensional grounds, we expect the averaged squareix mlaiment to scale a$as|?) ~ g wherew is

a dimensionless measure of the strength of the scattedribatl” ~ e

hoe”

7.7.2 Detailed calculation of three body decay process

We now present a more detailed calculation of quasipardietay, deriving a result that was first obtained by
Abrikosov and Khalatnikov in 1957[3]. The amplitude to pucé an outgoing hole in stafsis equal to the
amplitude to absorb an incoming particle in stateo we denote

al—>2+3+4) =all+2— 3+4)=a(1,23,4) (7.143)
Using Fermi’s golden rule, the net scattering rate intoestas given by
2+3+451 152 +3+4
2n 2
1] = 57 )" 123, 2: 34|~ nanena( = no) - a1~ )2 - 1)
34
x (271)%6®(py + P2 — P3 — Pa) 6er + €2 — €3 — €4) (7.144)

Wherez = f (z‘fh‘;a denotes a sum over final state momenta, and the delta fusdtigoose the conservation

of momzentum and energy, respectively. The terms insidedhare brackets determine thepriori proba-
bilities for the scattering process. For scattering inatest, the initial states must be occupied and the final
state must be empty, so tlepriori probability is (1- ny)ngns x (1 — ny), where (1- ny) is the probability
that the quasihole stais occupied anahsn, is the probability thaB and4 are occupied, while (% n;)
is the probability that the final quasiparticle states empty. The second term in the brackets describes the
scattering out of statg, and can be understood in a similar way.

In thermal equilibrium, the scattering rate vanishﬁrém] = 0 and for small deviations from equilibrium,
we may expand the collision integral to linear ordersip, = n, — niY), identifying the coéicient as the
quasiparticle decay rate as follow$n,] = —I'6ny + O(rSng), wherel’ = —%, or

2r .
r-= 2;|a(1, 2:34)°|np(L - Me)(L - ) + (1= narsne

x (211)%(ey + €2 — €3 — €a)0D(py + P2 — P3 — Pa).

The occupation factors in the square brackets impose thaigatistics. These terms are easiest to under-
stand at absolute zero, whatg = 6(—¢p) restrictsg, < 0 and 1- ny = 6(ep) restrictse, > 0. The first term
n,(1 - n3)(1 — ng) enforces the constraint that the excitation energigses, e, > 0 are all positive. (Recall
that thee; refer to quasiparticle energies, se; = ¢; is the excitation energy of the outgoing hole in sﬁl)e
At absolute zero, the second termH{fi;)nzn, is zero unless the excitation energies are negative, anshemn
whene > 0. Now the delta functio(e; + e, — €3 — €4) enforces energy conservation, + e3 + & = €.
Together with the requirement that the scattered quagifeaenergies are positive, this term forces all three
excitation|e, 3 4| energies to be smaller thanin this way, we see that for smaillthe final quasiparticle states
must lie very close to the Fermi momentum.

With this understanding, at low tempertures, we can replaeéntegrals over three dimensional momen-
tum by the product of an energy and an angular integral owvedirection of the momenta on the Fermi

surface:
N*(0) [ dQpy ,
2~ [5Ex [ae.
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This factorization between the energy and momentum degifdesedom is a hallmark of the Landau Fermi
liquid. Using it, we can factorize (7.145) into two parts

angular average energy phase space integral
—_——

2
r=20 (af)  x{ml-ng-ng+@-mnen) (7.147)
e
where
N*(0)\* [ dQpdQzdQ O
(las?) = (%) f %m,z: 3 4)P(r1)%6 P pe (i + iy — i — )] (7.148)
is the angular average and
(... >52)531a = fdfzd53d546(51 + € —€3— 54)[4 . J (7149)

is the energy phase space integral. At absolute zero, thenamf of the phase space integral restricts the final
states to have positive excitation energies, gi@f]gas obtained from (7.141) for= 1. At finite temperature
(see example), thermal broadening leads to an additioredrgtic temperature dependence to the phase
space integral

1
€34 2

To calculate the average squared matrix element, it is coereto first ignore the spin of the quasiparticle.
To evaluate the angular integral, we need to consider thengey of the scattering process near the Fermi
surface, which is illustrated in Fig. (7.5). At low tempenags, all initial and final momenta lie on the Fermi
surface |pj| = pe. The total momentum in the particle-particle channdPis p; + p2. Suppose the angle
betweerp; andp; is 6, so that each of these momenta subtends an @hgheith P as shown in Fig. 7.5, then
|P| = 2pg sing/2. Now since the total momentum is conseneg;ps = P also, so thalps+pal = 2pg sind/2,
which means that; andp, also subtend an anghg2 with P. However, in general, the planes definedohy
andps4 are not the same, and we denote the angle between thgmlbyeneral, the scattering amplitude
a(0, ¢) will be a function of the two angleg,and¢. In this way, we can parameterize the scattering amplitude
by a(b, ¢).

A detailed evaluation of the angular integtfas|?) (see example 8.4), leads to the result

(mad-ma)(L - o)+ (- nonene) = 5 (¢ + (nkeT)?) (7.150)

o 1 SN0\ [0, 9)P
(38" = 5 x ( Zor ) <2COSQ/2 N (7.151)
where
la@. ¢)P\ _ [ dcossdg (la(, ¢)I*
<2cos<)/2>g:f 4n (20059/2) (7.152)

denotes a weighted, normalized angular average of theescattrate over the Fermi surface. For identical

spinless particles, the final states with scattering apgleds +x are are indistinguishable, and the pre-factor

of one half is introduced into (7.151) to take into accourtdlercounting that occurs when we integrate from

¢=0to¢g = 2r.

7 The first term in the phase space integral corresponds toetteydl— 2+ 3+ 4 of a quasiparticle, while the second term describes
the regeneration of quasiparticles via the reverse prdzes3 + 4 — 1. The classic treatment of the quasiparticle decay given by

Abrikosov and Khaltnikov[3, 11], reproduced in Pines andziees and in Mahan, only includes the first process, whichditres
an additional factor A1 + e#4) into this expression.
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The complete scattering rate for a spinless quasipartidkeein given by

o [31a0.9)7\ (N0} (€ + (nkgT)?
7 <2cose/2>9”( 2pr ) X( 2 )
Let us now consider how this answer changes when we reirtstpin of the quasiparticles. In this case,
we must sum over the two spin orientations of quasiparticleofresponding the case where the spin of 1
and 2 are either parallef{;) or antiparallel £;). When the spins of the two quasiparticles are parallel they
are indistinguishable and we must keep the facto%,diut when the spins are antiparallel, the particles are
distinguishable and this factor is omitted. So to take antofispin, we must replace

r= (7.153)

1 1
5180, ) — Slas(6,9)F + lag, (6, )P (7.154)
in (7.153). Following the original convention of Abrikosaewnd Khalatnikov [3], we denote
2r 1
2 (0. 00+ Firs @) = 2000.6), (7159)
Applying these substutions to (7.153), and writikg(0) = m"* pe /(7%%°), we obtain
(m)® [ Wo.¢) 2 2
Ir= —_— ks T 7.156
8 | 2002, X (€ + (AkeT)) (7.156)

This result was originally obtained by Abrikosov and Khalkov in 1957[3]. An alternative way to rewrite
this expression is identify the normalized scattering atungesA*(0)aqs(6, ¢) = Awp(6. ) = Aqp(q) with the
dimensionless t-matrix introduced in section (7.4.3).nfrithis we see that the average matrix elements can
be written in terms of a dimensionless parameter

1A, (6, )% + 2101 (6, ¢)|2>
o

7.157
2cos9/2 ( )

W = <
In many strongly interacting systema,is close to unity. Using this notation, the scattering rat@%6) can
be written in the form

(lagl®)

_2r W2 \[ €2 + (nkgT)?
r= 7 g | (7159

Apart from the factor of 16 in the denominator, this is whatguessed on dimensional grounds.
There are two important regimes of behaviour to note:

o |l << nkgT: T o T2, Near the Fermi surface, quasiparticles are thermallytestcivith aT? scattering
rate that is independent of energy.

o |g| >> nkgT: T o eg. For higher energy quasiparticles, the scattering rateigglctically dependent on
energy.

Example 7.5: Calculate the angular average of the scattering amplitude

N*(0)\* [ dQ,dQ,dQ
(w)=(7) [

a(1, 2; 3, 4)(2rh)*6 P pr (Ay + iy — fis — Ag)] (7.159)
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Fig. 7.8 Co-ordinate system used to calculate the angular average of the scattering amplitude.
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in the dominant quasiparticle decay processes.

Solution: We first replac@®[ p (A; + A — Az — Ag)] — p%&“’"[ﬁl + f, — Az — Ay], so that
2

2 N0 ; @)A1 + Ao — fia — A . 2
(lasl?) = = f dQ,dQ3dQ,6 A, + Az — Az — Adlla(L, 2; 3 4)| (7.160)
To carry out the angular integral, we use polar co-ordinatesifor (6, ¢,), N3 = (6, ¢3) andfiy =
(04, ¢4), (as illustrated in Fig. 7.8), whereandg, are the polar angles of; relative ton,, 654 are the
angles betweefs, and the direction of the total momentufy while ¢5 is the azimuthal angle af;
measured relative to the plane definedipyandn, andg, is azimuthal angle afi, measured relative to
the common plane df; andP. The delta function in the integral will forag andfy, to lie in a place,
so that ultimately, we only need to know the dependence of the amphftid#;) on 6 andgs.

Taking the z-axis to lie alon§ and choosing the y axis to lie aloiyx fi, then in this co-ordinate
systemfi; +fi, = (0,0, 2 cosd/2), iz = (sinés, 0, coss) andiis = (Sinés COSea, SiNs Singa, COSH), SO
that
Az + Ay — Ay — Ay
= (Siné3 + SiNf4 COSp4, SNG4 SiN4, COSY3 + COSH — 2 COSP/2))

Factorizing the three dimensional delta function intaxitg andz components gives

6@[(Ay + Ay — Az - Ag)]
= §[sinf; + sinf, coSg4]S[Sin 4 Sind4]5[cOSH3 + cOSHs — 2 cos/2)]

Integrating ovedQ, = sind,dd,d¢, forces¢, = m andé, = 63 (note thatp, = O satisfies the second
delta function, but this then requires that &n= — siné, which is not possible wheés, € [0, x1]).
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Resolving the delta functions around these points, we may write

S[Sinés + Sind, CoSp,]d[SiNGs Sings] = s = 04) 8(¢a —m)
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Now to carry out this integral, we need to distort the contour into the upgectmplex plane. The
function ¥/ sinh( + i6)zT has poles at = in/T — ig, so the distorted contour wraps around the poles
with n > 0. The cube of this function, has both triple and simple poles at these logafiorevaluate

Cosfls  sinb, the residues of these poles, we expand sirih to third order inse = (- i) about the poles, to obtain
When we carry out the integral ovef), = sinf,dé,d¢4, we then obtain Ty
o 1 sinhanT = (-1)"2Téa (1 + %6(12) +...
fdQA‘S(S)[nl + 1, — iz — Aglla(d, ¢3) = @5[2 Cosf; — 2 cosg/2)]la(6 ¢)l* s
3

So that near the poles,
Integrating ovedQ; = désd cosd; imposedl; = 6/2, so that P

dgs 2
Zcow)2 [a(®, ¢a)I

The azimuthal angle, of fi, aboutn; does not enter into the integral, so we may integrate over this
angle, and write the measwl€, = 2rd cosd. The complete angular integral is then

dgsd cosd
2c0s9/2
Substituting this result into (7.160 ), the complete angular average is then

(smmrr) =5 (1~ 550
N (,,T,z)

f QA0 1y + iy — g — Adla(8, o)l = i
— iy
== (6a3 %0

The complete contour integral becomes

< | [ da 1 1 (aT)? | e
b= 2 éﬁ{(a—%")a 20-F }é

1

f d0,00500,6 A + Ay — s — Aullald, d:)F = 20 f (6, ¢)F.

o\ _ 2 N'(O) )3 dcosids [a(d, ¢)* N fde 1 [E @T .
{loa) == ( 2nr 4r 2082 2V PrmieTylzt 2 |°
where we have relabelleg as¢. Notice (i) th?t the weighted angular average is normalized, so that if _ [52 . (;rT)Z] i(—l)“e‘"f” _ 1 [sj N (nT)z]
[a(8, )l = [a? is constant(|as|?) = 7% (%} |al?, and that (ii) since the denominator in the average 2 2 |l 1+elT|2 2

vanishes fo® = =, the angular average contributing to the quasiparticle decay is weighteddmowa
large angle scattering events in which the outgoing quasiparticles havsisppmmenta; = —ps.
This feature is closely connected with the Cooper pair instability discusseldaptér 14.

Example 7.6: Compute the energy phase space integral

Finally, addingly(e, T) + l1(=¢, T) finally gives
(e, T) = %[52 +(xT)?
I(e,T) = f dedesdesd(e + € — e — €)[M2(1 — N3)(1 — ny) + (1 — np)ngny],

7.7.3 Kadowaki Woods Ratio and “Local Fermi Liquids”

wheren; = f(g) = 1/(€* + 1) denotes the Fermi function evaluated at energy

Solution: As a first step, we make a change of variable> —e,, so that the integral becomes Heuristic Discussion

I(e,T) = I dexdesdesd(e — (€ + € + €))[ (1 — N2)(1 — N3)(1 — Ng) + MaNgy ] One of the direct symptoms of Landau Fermi liquid behavioa imetal is al'? temperature dependence of

« resistivi low temperatures:
= f de,desdesd(e — (&2 + € + €))[MoMans + {€ & —€}] esistivity at low temperatures
. e o(T) = po + ATZ. (7.161)

Next, we rewrite the delta function as a Fourier transfaf(r) = f%"e‘“x, so thatl (e, T) = l1(e, T) +

(e, T), where Herepy is the “residual resistivity” due to the scattering of eteas df impurities. The quadratic temperature
1(-€T),

dependence in the resistivity is a direct reflection of thadyatic scattering raté « T2 expected in Landau
Fermi liquids. Evidence that this term is directly relatedefectron-electron scattering is provided by a
remarkable scaling relation between theodficient of the resistivity and the square of the zero tempegatu
linear codficient of the specific hegt= Cy/T|r-o.

(e T) = % f dade,desdes @@ e [nngn,].

By carrying out a contour integral around the poles of the Fermi fundt{g) atz = izT(2n + 1) in the
lower half plane, we may deduce

o . A
fw dee @0 (¢) = 2niT Z e (@ionT(@nl) _ T ? = a ~ 1x10°uQecm(K moymJy (7.162)

o sinh@ + i6)xT’

The ratioA/y? is called the “Kadowaki Woods” ratio, and the quoted valugesponds to resistivity mea-
sured in unitsuQcm and the specific heat diieient per mole of material is measured in units/mal/K?2.

In a large large class of intermetallic metals called “healgctron metals”, in which the quasiparticle
mass renormalization is particularly large, the Kadowakiods ratio is found to be approximately constant

@ = 1x 10%uQcm(K moymJy (Fig. 7.9).

where a small imaginary part has been added to guarantee convergence. This enables us to carry
out the energy integrals in(e, T), obtaining

hen= [ %Q(WY
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Showing the Kadowaki Woods ratio for a wide range of intermetallic “heavy electron”
materials after Tsujii et al [12]

To understand Kadowaki Woods scaling, we need to keep tifduvoA andy depend on the Fermi energy.
In the last section, we found that the electron-electrottedag rate is set by the Fermi energy* ~ T?/e.
If we insert this into the Drude scattering formula, for thesistivity p = m'*/(n€?7), sincem* « 1/er, we
deduce thap ~ (T?/€2), i.e A« 1/€Z. By contrast, the specific heat ¢beienty o m* o 1/eg, is inversely
proportional to the Fermi energy, so that

2 1 A
Ac|=]|, y o — = — ~ constant
€F €F A

(7.163)

In strongly correlated metals, the Fermi energy varies fedhto meVscales, so thé codficient can vary
over eight orders of magnitude. This strong dependenéeonf the Fermi energy of the Landau Fermi liquid
is cancelled by?.

Estimate of the Kadowaki Woods Ratio

To obtain an estimate of the diieientA, it is useful to regard a metal as a stack &f Ryers of separation
a, so thatp = app = a/oap, Whereoyp is the dimensionless conductivity per layer. If we use thader
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formula for the conductivity in two dimensiorsp = néz/m, puttingn = 2x k2 /(2r)?, i/t = T, we obtain

Po=129kO
h r
p-a () (5) (159
In the last section, we found thBt= 2r(w/4)?(rkgT)?/er. Putting this together then gives
W\2 (ks T \?
p=@on(y) ( 2 ) (7.165)
&

(The prefactolpg is sometimes called the “unitary resistance”, and cornedpdo the resistivity of a metal
in which the scattering rate is of order the Fermi energy. éf puta ~ 1 — 4A, po ~ 13kQ, we obtain
3on ~ 100— 50QuQcm) It follows that

A~ @ (3 ()

whereTr = er/kg is the Fermi temperature.
2|
Now using (7.53) the specific heat dheient per unit volume iy = $72kAN*(0) =

(7.166)

2

Ek: n, wheren is the
212

number of electrons per unit volume, thus the specific hegficnt per electron is simplye = ”zf and the

specific heat per mole of electronsgyig = %nZR%, whereR = kgNay is the Gas constaniay is Avagadro’s

number. So if there ame; electrons per unit cell,
2 7R (ne)?

M 2 Tg (7.167)
giving
A W2\ (po a
r= 5~ (E)(ﬁ)x o (7.168)
If we takepg = 13x 10°%uQ, R = 8.3 x 10°mJ/mol/K andw?/(4x) ~ 1, to obtain
@~2x108x ("’E[:';]) uQem(K moymJy (7.169)
8

giving a number of the right order of magnitude. Kadowaki aldods found thatr ~ 10-5uQ cm(K
mol/mJ¥ in a wide range of intermetallic heavy fermion compoundstramsition metal compounds ~
0.4 x 10-°uQem(K moyJy has a smaller value, related to the higher carrier density.

Local Fermi Liquids

A fascinating aspect of this estimate, is that we needed tto/fif4r) ~ 1 to get an answer comparable with
measurements. The tendencywof 1 is a feature of a broad class of “strong correlated” mefdthough
Landau Theory does not give us information on the detailegikan dependence of the scattering amplitude
A6, ), we can make a great deal of progress by assuming that titersugt-matrix is local. This is infact,

a reasonable assumption in systems where the importano@buihteractions lie within core states of an
atom, as in transition metal and rare earth atoms. In this,cas

a0 (0,¢) = @ + oo’ (7.170)

156

82



(©2011 Piers Coleman Chapter 7.

is approximately independent of the quasiparticle momanthmomentum transfer. This is the “local” ap-
proximation to the Landau Fermi liquid. When “up” quasipelgs scatter, the antisymmetry of scattering
amplitudes under particle exchange guaranteesahéd, ¢) = —a;1(6, ¢ + n). But if a is independent of
scattering amplitude, then it follows that, = a°+ a = 0, so that

2o (0.9) = (1 - 00). (7.171)

in a “Local” Landau Fermi liquid.
Now we can relate the,, = A, /N*© to the dimensionless scattering amplitudes introduceédtian
(7.4.3)). By (7.79), the charge susceptibility is given by

Xe = N*(0)x (Tng) = N*(0)x (17 %) = N*(0) x (1- A

In strongly interacting electron systems the density diestés highly renormalized, so that*(0) >> N(0),
but the charge susceptibility is basically dieated by interactions, given by = N(0) << N*(0). This
implies thatA§ ~ 1. so thata® = 1/N*(0), which in turn implies that the dimensionless rationtroduced
last section is close tor = 1.

(7.172)

7.8 Microscopic basis of Fermi liquid Theory
|

Although Landau’s Fermi liquid theory is a phenomenolobibaory, based on physical arguments, it trans-
lates naturally into the language of diagramatic many bbepty. The Landau school played a major role
in the adaptation of Feynman diagramatic approaches to mady physics. However, Feynman diagrams
do not appear until the third of Landau’s three papers on Fikgoid theory[13]. The classic microscopic
treatments of Fermi liquid theory are based on the analysisany body perturbation theory to infinite order
carried out in the late 1950's and early 1960’s.

Galitski[14], in the Soviet Union, gave the first first forratibn of Landau’s theory in terms of diagra-
matic many body theory. Shortly thereafter Luttinger, Wand Nozieres developed the detailed diagramatic
many body framework for Landau Fermi liquid theory by anadgsthe analytic properties of inifinite order
perturbation theory[15, 16]. Here we end with a brief disiois of some of the key results of these analyses.

From the outset, it was understood that the Landau Fermidligualways potentially unstable to su-
perconductivity. By the late 1960’s it also became that thetdau Fermi liquid theory does not apply in
one-dimensional conductors, where the phase space sugieguments used to support the idea of the Lan-
dau quasiparticle no longer apply. In one dimension, thedaamuasiparticle becomes unstable, breaking
up into collective modes that independently carry spin amatge degrees of freedom. We call such a fluid
a “Luttinger liquid”. However, with this exception, few gstioned the robustness of Landau Fermi liquid
theory until the 1980s. In 1986, the discovery of high temapee superconductors, led to a resurgence of
interest in this topic, for in the normal state, these mateican not be easily understood in terms of Landau
Fermi liquid theory. For example, these materials displéipear resistivity up to high temperatures that at
this time remains an unsolved mystery. This has led to theudggtion that in two or three dimensions, Lan-
dau Fermi liquid theory might break down into a higher dinienal analog of the one-dimensional Luttinger
liquid. two or even three dimensional metals. In the wakénisfinterest, the Landau Fermi liquid theory was
re-examined from the perspective of the “renormalizatiosug” [17, 18] The conclusion of these analyses
is that unlike one dimension, Fermi liquids are not gendyieastable in two and higher dimensions. While
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this does not rule the possibility of new kinds of metallitibeior, the Landau Fermi liquid theory continues
to provide the bedrock for our understanding of basic métaiwo or three dimensions.

As we discussed in the last chapter, the process of adiabgatiswitching on” interactions can be under-
stood as a unitary transformation of the original stateb@fton-interacting Fermi sea. Thus the ground state
and the one-quasiparticle state are given by

[¢) = U[¥o),

ko) = Ulkor) (7.173)

where|¥o) is the filled Fermi sea of the non-interacting system, laila momentum very close to the Fermi
surface. In fact, using the results of (6.1), we can wdtas a time-ordered exponential

U= T[exp{—i [ i V(t)dt}],

whereV is the interaction, written in the interaction represeintatNow sincelke) = ¢, [Wo), wherec'y,
is the particle creation operator for the non-interactiragytonian, it follows that

(7.174)

. a'ys
ko) = Uch,U" [g) (7.175)
so that the “quasiparticle creation operator” is given by
'y = Uch, U™ (7.176)

From this line of reasoning, we can see that the operatorctieates the one-quasiparticle state is nothing
more than the original creation bare creation operatotatilyi time-evolved from the distant past to the
present in the interaction representation.

While this formal procedure can always be carried out, theterce of the Landau Fermi liquid requires
that in the thermodynamic limit, the resulting state pressi finite overlap with the state formed by additing
a bare particle to the ground-state, i.e.

Z = Kkoolc ko l#)? > 0

This overlap is called the “wavefunction renormalizatimmstant”, and so long as this quantity is finite on
the Fermi surface, the Landau Fermi liquid is alive and well.

In general, near the Fermi energy, the electron creatioretgewill have an expansion as a sum of states
containing one, three, five and any odd-number of quasgbadind hole states, each with the same total spin,
charge and momentum of the initial bare particle.

wavefunction renormalization (7.177)

Cho = VZi@'ko + Z AKaoa, K33 K202, K)a gy @ kgorgpery + - - - (7.178)

ka+ka=ko+k
There are three important consequences that follow frosrésult:

e Sharp Quasiparticle peak in the spectral function.
When a particle is added to the ground-state, it excites areanh of state$1), with energy distri-
bution described by the spectral function (7.112),

Ak, w) = I—lrImG(k, w-id) = Z IM25(w — €)). (7.179)
P
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where the squared amplitugd,[> = [{A|c’y|¢)[?. In a Landau Fermi liquid, the spectral function retains
a sharp “quasiparticle pole” at the Fermi energy. If we spfithe 2 = ko~ contribution to the summation

in (7.179) we then get
qp peak continuum
LS by

1 .
Alk.w) = ZIMG(K. & ~i6) = Zro(w ~ &) + Z IM25(w — €) -
Azko

(7.180)

@) (b) .

Iy o e

Ak, w)

Ak,w)

€k

€
Ak, w)

(@) In a non-interacting Fermi system, the spectral function is a sharp delta function at
w = &. (b) In an interacting Fermi liquid for k # kg, the quasiparticle forms a
broadened peak of width 'y at wy. If k = kg, this peak becomes infinitely sharp,
corresponding to a long-lived quasiparticle on the Fermi surface. The weight in the
quasiparticle peak is Zx ~ m/m, where m* is the effective mass.

e Sudden jump in the momentum distribution.
In a non-interacting Fermi liquid, the particle momenturstdbution function exhibits a sharp Fermi
distribution function which is preserved by theasiparticlesn a Landau Fermi liquid theory

(l(Peor)qpley = O(u — Ex)

where herer,)qp = &'voCko is the quasiparticle occupancy. Remarkably, part of thisgsurvives
interactions. To see thidfect, we write the momentum distribution function of the jwdes as

(7.181)

0
<ﬁw>:<¢manww>:kf dwA(k, w) (7.182)

where we have used the results of (6.3.3) to relate the frartienber to the integral over the spectral
function below the Fermi energy. When we insert (7.180) ihts éxpression, the contribution from the
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quasiparticle peak vanisheif > 0, but gives a contributio®y if e < 0, so that

(Pir) = ZkO(—ec) + smooth background (7.183)

This is a wonderful illustration of the organizing power bétPauli exclusion principle. One might have
expected interactions to have the sarfiea as temperature which smears the Fermi distribution by an
amount of ordekgT. Although interactions do smear the momentum distribytilea jump continues to
survive in reduced form so long as the Landau Fermi liquidtadt.
Ae T i i
(@) ny Aeld (®) n, Scale of Interaction Energies
1 1

ke K

Fig. 7.11 (a) In a non-interacting Fermi liquid, a temperature T that is smaller than the Fermi
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energy, slightly “blurs” the Fermi surface; (b) In a Landau Fermi liquid, the exclusion
principle stabilizes the jump in occupancy at the Fermi surface, even though the bare
interaction energy is far greater th