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1 Introduction

This monogram is written with the graduate student in mind. Ihad in mind to write a short, crisp book that
would introduce my students to the basic ideas and concepts behind many body physics. At the same time,
I felt very strongly that I should like to share my excitementwith this field, for without feeling the thrill of
entering uncharted territory, I do not think one has the motivation to learn and to make the passage from
learning to research.
Traditionally, as physicists we ask “what are the microscopic laws of nature ?”, often proceeding with the
brash certainty that once revealed, these laws will have such profound beauty and symmetry, that the proper-
ties of the universe at large will be self-evident. This basic philosophy can be traced from the earliest atomistic
philosophies of Democritus, to the most modern quests to unify quantum mechanics and gravity.

The dreams and aspirations of many body physics interwine the atomistic approach with a complimentary
philosophy- that ofemergent phenomena. From this view, fundamentally new kinds of phenomena emerge
within complex assemblies of particles which can not be anticipated from aǹa priori knowledge of the mi-
croscopic laws of nature. Many body physics aspires to synthesize from the microscopic laws, new principles
that govern the macroscopic realm, asking

What new principles and laws emerge as we make the journey fromthe microscopic to the macroscopic?

This is a comparatively new scientific philosophy. Darwin was the perhaps the first to seek an understand-
ing of emergent laws of nature. Following in his footsteps, Boltzmann was probably the first physicist to
appreciate the need to understand how emergent principles are linked to microscopic physics, From Boltz-
mann’s biography[1], we learn that he was strongly influenced and inspired by Darwin. In more modern
times, a strong advocate of this philosophy has been Philip Anderson, who first introduced the phrase “emer-
gent phenomenon” into physics[2]. In an influential articleentitled “More is different” written in 1967,[2]
P.W. Anderson captured the philosophy of emergence, writing

“The behavior of large and complex aggregations of elementary particles, it turns out, is not to be under-
stood in terms of a simple extrapolation of the properties ofa few particles. Instead, at each level
of complexity entirely new properties appear, and the understanding of the new behaviors requires
research which I think is as fundamental in its nature as any other.”

P. W. Anderson from “More is Different” , 1967.

In an ideal world, I would hope that from this short course your knowledge of many body techniques
will grow hand-in-hand with an appreciation of the motivating philsophy. In many ways, this dual track
is essential, for often, one needs both inspiration and overview to steer one lightly through the formalism,
without getting bogged down in mathematical quagmires.

I have tried in the course of the book to mention aspects of thehistory of the field. We often forget that
act of discovering the laws of nature is a very human and very passionate one. Indeed, the act of creativity in
physics research is very similar to the artistic process. Sometimes, scientific and artistic revolution even go
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hand in hand - for the desire for change and revolution often crosses between art and sciences[3]. I think it
is important for students to gain a feeling of this passion behind the science, and for this reason I have often
included a few words about the people and the history behind the ideas that appear in this text. There are
unfortunately, very few texts that tell the history of many body physics. Pais’ book “Inward Bound” has some
important chapters on the early stages of many body physics.A few additional references are included at the
end of this chapter[4, 5, 6, 7]

There are several texts that can be used as reference books inparallel with this monogram, of which a few
deserve special mention. The student reading this book willneed to consult standard references on condensed
matter and statistical mechanics. Amongst the various references let me recommend “Statistical Physics Part
II” by Landau and Pitaevksii[8]. For a conceptual underpining of the to Anderson’s classic “Basic Notions
in Condensed Matter Physics”[9]. For an up-to-date perspective on Solid State physics from a many body
physics perspective, may I refer you to “Advanced Solid State Physics” by Philip Phillips [10]. Amongst the
classic references to many body physics let me also mention “AGD”[11], Methods of Quantum Field Theory
by Abrikosov, Gork’ov and Dzyaloshinski. This is the text that drove the quantum many body revolution
of the sixties and seventies, yet it is still very relevant today, if rather terse. Other many body texts which
introduce the reader to the Green function approach to many body physics include “Many Particle Physics”
by G. Mahan[12], notable for the large number of problems he provides, “Green Functions for “Green’s func-
tions for Solid State Physics” by Doniach and Sondheimer[13] and the very light introduction to the subject
“Feynman diagrams in Solid State Physics” by Richard Mattuck[14]. Amongst the more recent treatments, let
me note Alexei Tsvelik’s “Quantum Field Theory” in Condensed Matter Physics”[15], provides a wonderful
introduction to many of the more modern approaches to condensed matter physics, including an introduction
to bosonization and conformal field theory. As a reference tothe early developments of many body physics,
I recommend “The Many Body Problem”, by David Pines[16], which contains a compilation of the classic
early papers in the field. Lastly, let me recommend the readerto numerous excellent online reference sources,
in addition to the online physics archive http://arXiv.org, let me mention writing include online lecture notes
on many body theory by Ben Simon and Alexander Atlund[17] andlecture notes on Solid State Physics and
Many Body Theory by Chetan Nayak[18].

Here is a brief summary of what we will cover:

1 Scales and complexity, where we discuss the gulf of time (T), length-scale (L), particle number (N) and
complexity that separates the microscopic from the macroscopic.

2 Second Quantization. Where make the passage from the wavefunction, to the field operator, and introduce
the excitation concept.

3 Introducing the fundamental correlator of quantum fields:the Green’s functions. Here we develop the tool
of Feynman diagrams for visualizing and calculating many body processes.

4 Finite temperature and imaginary time. By replacingit −→ τ, e−iHt −→ e−Tτ, we will see how to extend
quantum field theory to finite temperature, where we will find that there is an intimate link between fluctu-
ations and dissipation.

5 The disordered metal. Second quantized treatment of weakly disordered metals: the Drude metal, and the
derivation of “Ohm’s law” from first principles.

6 Opening the door to Path Integrals, linking the partition function and S-matrix to an integral over all
possible time-evolved paths of the many-body system.Z =

∫
PAT H

e−S/~.

7 The concept of broken symmetry and generalized rigidity, as illustrated by superconductivity and pairing.

8 A brief introduction to the physics of local moment systems
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Finally, some notes on the conventions used in this book. This book uses standard SI notation, which means
abandoning some of the notational elegance of cgs units, butbrings the book into line with international
standards. Following a convention followed in the early Russian texts on physics and many body physics, and
by Mahan’s many body physics[12], I use the convention that the charge on the electron is

e= −1.602· · · × 10−19C (1.1)

In other wordse= −|e| denotes the magnitudeand the sign of the electron charge. This convention minimizes
the number of minus signs required. With this notation, the Hamiltonian of an electron in a magnetic field is
given by

H =
(p − eA)2

2m
+ eV (1.2)

whereA is the vector potential andV the electric potential. The magnitude of the electron charge is denoted
by |e| in formulae, such as the electron cyclotron frequencyωc =

|e|B
m . Following a tradition started in the

Landau and Lifschitz series, the book uses the notation

F = E − TS− µN (1.3)

for the “Landau Free energy” - the Grand Canonical version ofthe traditional Helmholtz Free energy (E−TS),
for simplicity, this quantity will be refered to as the Free energy. One of the more difficult choices in the book
concerns the notation for the density of states of a Fermi gas. To deal with the different conventions used in
Fermi liquid theory, in superconductivity and in local moment physics I have adopted the notation

N(0) ≡ 2N(0)

to denote the total density of states at the Fermi energy, where N(0) is the density of states per spin. The
alternate notationN(0) ≡ ρ is used in Chapters 15 and 16, in keeping with traditional notation in the Kondo
effect.
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2 Scales and Complexity

We do infact know the microscopic physics that governs all metals, chemistry, materials and possibly life
itself. In principle, all can be determined from the many-particle wavefunction

Ψ(~x1, ~x2 . . . ~xN, t), (2.1)

which in turn, is governed by the Schödinger equation[1, 2], written out for identical particles as

− ~

2

2m

N∑

j=1

∇2
j +

∑

i< j

V(~xi − ~x j) +
∑

j

U(~x j)


Ψ = i~

∂Ψ

∂t
(2.2)

[ Schr̈odinger, 1926]

There are of course many details that I have omitted- for instance, if we’re dealing with electrons thenV(x)
is the Coulomb interaction potential,

V(~x) =
e2

4πǫo

1
|~x| , (2.3)

and e = −|e| is the charge on the electron. In an electromagnetic field we must “gauge” the derivatives
∇ → ∇ − i(e/~)A, U(x) → U(x) + eΦ(~x), where~A is the vector potential andΦ(~x) is the electric potential.
Also, to be complete, we must discuss spin, the antisymmetryof Ψ under particle exchange and if we want
to be complete, we can not treat the background nucleii as stationary, and we must their locations into the
wavefunction. With these provisos, we have every reason to believe that this is the equation that governs the
microsopic behavior of materials.

Unfortunately this knowledge is only the beginning. Why? Because at the most pragmatic level, we are
defeated by the sheer complexity of the problem. Even the task of solving the Schr̈odinger equation for
modest multi-electron atoms proves insurmountable without bold approximations. The problem facing the
condensed matter physicist, with systems involving 1023 atoms, is qualitatively more severe. The amount
of storage required for numerical solution of Schrodinger equation grows exponentially with the number
of particles, so with a macroscopic number of interacting particles this becomes far more than a technical
problem- it becomes one of principle. Indeed, we believe that the gulf between the microscopic and the
macroscopic is something qualitative and fundamental, so much so that new types of property emerge in
macroscopic systems that we can not anticipate a priori by using brute-force analyses of the Schrödinger
equation.

The “Hitchhiker’s guide to the Galaxy” [3] describes a supercomputer called “Deep Thought” that after
millions of years spent calculating ‘the answer to the ultimate question of life and the universe’, reveals it
to be 42. Adams’ cruel parody of reductionism holds a certainsway in physics today. Our ”forty two”, is
Schroedinger’s many body equation: a set of relations that whose complexity grows so rapidly that we can’t
trace its full consequences to macroscopic scales. All is fine, provided we wish to understand the workings
of isolated atoms or molecules up to sizes of about a nanometer, but between the nanometer and the micron,

5
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wonderful things start to occur that severely challenge ourunderstanding. Physicists, have coined the term
“emergence” from evolutionary biology to describe these phenomena[4, 5, 6, 7, ].

The pressure of a gas is an example of emergence: it’s a co-operative property of large numbers of particles
which can not be anticipated from the behavior of one particle alone. Although Newton’s laws of motion
account for the pressure in a gas, a hundred and eighty years elapsed before Maxwell developed the statistical
description of atoms needed to understand pressure.

Let us dwell a little more on this gulf of complexity that separates the microscopic from the macroscopic.
We can try to describe this gulf using four main catagories ofscale:

• T. Time 1015.
• L. Length 107.
• N. Number of particles. 1022

• C Complexity.

2.1 Time scales

We can make an estimate of the characteristic quantum time scale by using the uncertainty principle∆τ∆E ∼
~, so that

∆τ ∼ ~

[1eV]
∼ ~

10−19J
∼ 10−15s, (2.4)

Although we know the physics on this timescale, in our macroscopic world, the the characteristic timescale
∼ 1s, so that

∆τMacro

∆τQuantum
∼ 1015. (2.5)

To link quantum, and macroscopic timescales, we must make a leap comparable with an extrapolation from
the the timescale of a heart-beat to the age of the universe. (10billion yrs ∼ 1017 s.)

2.2 L: Length scales

An approximate measure for the characteristic length scalein the quantum world is the de Broglie wavelength
of an electron in a hydrogen atom,

LQuantum∼ 10−10m, (2.6)

so
LMacroscopic

LQuantum
∼ 108 (2.7)

At the beginning of the 20th century, the leading philosopher physicist Mach argued to Boltzmann that the
atomic hypothesis was metaphysical as one could never envisage a machine with the resolution to image any-
thing so small. Today, this incredible gulf of scale can today be spanned by scanning tunneling microscopes,
able to resolve electronic details on the surface of materials with sub-Angstrom resolution.

6
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tFig. 2.1 The typical size of a de Broglie wave is 10−10m, to be compared with a typical scale
1cm of a macroscopic crystal.

2.3 N: particle number

To visualize the number of particles in a single mole of substance, it is worth reflecting that a crystal con-
taining a mole of atoms occupies a cube of roughly 1cm3. From the quantum perspective, this is a cube with
approximately 100million atoms along each edge. Avagadrosnumber

NMacroscopic= 6× 1023 ∼ (100 million)3 (2.8)

a number which is placed in perspective by reflecting that thenumber of atoms in a grain of sand is roughly
comparable with the number of sand-grains in a 1 mile beach. Notice however that we are used to dealing
with inert beaches, where there is no interference between the constituent particles.

2.4 C: Complexity and Emergence.

Real materials are like macroscopic atoms, where the quantum interference amongst the constituent particles
gives rise to a range of complexity and diversity that constitutes the largest gulf of all. We can attempt to
quantify the ”complexity” axis by considering the number ofatoms per unit cell of a crystal. Whereas there
are roughly 100 stable elements, there are roughly 1002 stable binary compounds. The number of stable
tertiary compounds is conservatively estimated at more than 106, of which still only a tiny fraction have been

7
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explored experimentally. At each step, the range of diversity increases, and there is reason to believe that at
each level of complexity, new types of phenomenon begin to emerge.

But it is really the confluence of length and time scale, particle number and complexity that provides
the canvas on which emergent properties develop. While classical matter develops new forms of behavior
on large scales, the potential for quantum matter to developemergent properties is far more startling. For
instance, similar atoms of niobium and gold, when scaled up to the micron-scale, form crystals with dramat-
ically different properties. Electrons roam free across gold crystals, forming the conducting fluid that gives it
lustrous metallic properties. Up to about 30 nanometers, there is little to distinguish copper and niobium, but
beyond this scale, the electrons in niobium pair up into “Cooper pairs” . By the time we reach the scale of a
micron, these pairs congregate by the billions into a pair condensate transforming the crystal into an entirely
new metallic state: a superconductor, which conducts without resistance, excludes magnetic fields and has
the ability to levitate magnets.

Niobium is elemental superconductor, with a transition temperatureTc =9.2K that is pretty typical of
conventional “low temperature” superconductors. When experimentalists began to explore the properties of
quaternary compounds in the 1980s, they came across the completely unexpected phenomenon of high tem-
perature superconductivity. Even today, two decades later, research has only begun to explore the vast universe
of quaternary compounds, and the pace of discovery has not slackened. In the two years preceeding publica-
tion of this book, physicists have discovered a new family ofiron-based high temperature superconductors,
and I’d like to think that before this book goes out of print, many more families will have come to light.

Superconductivity is only a beginning. It is first of all, only one of a large number of broken symmetry
states that can develop in “hard” quantum matter. But in assemblies of softer, organic molecules, a tenth of a
micron is already enough for the emergence of life. Self-sustaining microbes little more than 200 nanometers
in size have been recently been discovered. While we more-or-less understand the principles that govern the
superconductor, we do not yet understand those that govern the emergence of life on roughly the same spatial
scale[8].

8
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9 2.4. C: COMPLEXITY AND EMERGENCE.

tFig. 2.2 Condensed matter of increasing complexity. As the number of inequivalent atoms per
“unit cell” grows, the complexity of the material and the potential for new types of
behavior grows.
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3 Quantum Fields

3.1 Overview

At the heart of quantum many body theory lies the concept of the quantum field. Like a classical fieldφ(x),
a quantum field is a continuous function of position, excepting now, this variable is an operatorφ̂(x). Like
all other quantum variables, the quantum field is in general astrongly fluctuating degree of freedom that
only becomes sharp in certain special eigenstates; its function is to add or subtract particles to the system.
The appearance of particles or “quanta” of energyE = ~ω is perhaps the greatest single distinction between
quantum, and classical fields.

This astonishing feature of quantum fields was first recognized by Einstein, who in 1905 and 1907 made
the proposal that the fundamental excitations of continuous media - the electromagnetic field and crystalline
matter in particular, are carried by quanta[1, 2, 3, 4], withenergy

E = ~ω.

Einstein made this bold leap in two stages - first by showing that Planck’s theory of black-body radiation
could be re-interpreted in terms of photons[1, 2], and one year later generalizing the idea to the vibrations
inside matter[3] which, he reasoned must also be made up of tiny wave packets of sound that we now call
“phonons”. From his phonon hypothesis Einstein was able to explain the strong temperature dependence
of the specific heat in Diamond - a complete mystery from a classical standpoint. Yet despite these early
successes, it took a further two decades before the machinery of quantum mechanics gave Einstein’s ideas a
concrete mathematical formulation.

Quantum fields are intimately related to the idea of second quantization. First quantization permits us to
make the jump from the classical world, to the simplest quantum systems. The classical momentum and
position variables are replaced by operators, such as

E→ i~∂t,

p→ p̂ = −i~∂x, (3.1)

whilst the Poisson bracket which relates canonical conjugate variables is now replaced by the quantum
commutator[5, 6]:

[x, p] = i~. (3.2)

The commutator is the key to first quantization, and it is the non-commuting property that leads to quantum
fluctuations and the Heisenberg uncertainty principle. (See examples). Second quantization permits us to take
the next step, extending quantum mechanics to

• Macroscopic numbers of particles.
• Develop an “excitation” or “quasiparticle” description ofthe low energy physics.
• Describe the dynamical response and internal correlationsof large systems.

11
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Classical string.

Quantum string.

φ(  )x

π(  )x

φ(  )x

xπ(  )

tFig. 3.1 Contrasting a classical, and a quantum string.

• To describe collective behavior and broken symmetry phase transitions.

In its simplest form, second quantization elevates classical fields to the status of operators. The simplest
example is the quantization of a classical string, as shown in Fig. 3.1. Classically, the string is described by
a smooth fieldφ(x) which measures the displacement from equilibrium, plus the conjugate fieldπ(x) which
measures the transverse momentum per unit length. The classical Hamiltonian is

H =
∫

dx

[
T
2
(∇xφ(x)

)2
+

1
2ρ
π(x)2

]
(3.3)

whereT is the tension in the string andρ the mass per unit length. In this case, second-quantizationis
accomplished by imposing the canonical commutation relations

[φ(x), π(y)] = i~δ(x− y), Canonical commutation relation (3.4)

In this respect, second-quantization is no different to conventional quantization, except that the degrees of
freedom are defined continuously throughout space. The basic method I have just described works for de-
scribing collective fields, such as sound vibrations, or theelectromagnetic field, but we also need to know
how to develop the field theory of identical particles, such as an electron gas in a metal, or a fluid of identical
Helium atoms.

For particle fields, the process of second-quantization is more subtle, for here we the underlying fields
have no strict classical counterpart. Historically, the first steps to dealing with such many particle systems
were made in atomic physics. In 1925 Pauli proposed his famous “exclusion principle”[7] to account for the
diversity of chemistry, and the observation that atomic spectra could be understood only if one assumed there
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Carbon withCarbon without
Exclusion principleExclusion principle

tFig. 3.2 Without the exclusion principle, all electrons would occupy the same atomic orbital.
There would be no chemistry, no life.

was no more than one electron per quantum state. (Fig. 3.2.) Ayear later, Dirac and Fermi examined the
consequences of this principle for a gas of particles, whichtoday we refer to as “fermions”. Dirac realized
that the two fundamental varieties of particle- fermions and bosons could be related to the parity of the
many-particle wavefunction under particle exchange[8]

Ψ(particle at A, particle at B)= eiΘΨ(particle at B, particle at A) (3.5)

If one exchanges the particles twice, the total phase ise2iΘ. If we are to avoid a many-valued wavefunction,
then we must have

e2iΘ = 1⇒ eiΘ = ±1

{
bosons

fermions
(3.6)

The choice ofeiΘ = 1 leads to a wavefunction which is completely antisymmetricunder particle exchange,
which immediately prevents more than one particle in a givenquantum state.1

In 1927, Jordan and Klein realized that to cast physics of a many body system into a more compact form,
one needs to introduce an operator for the particle itself-the field operator. With their innovation, it proves
possible to unshackle ourselves from the many body wavefunction. The particle field

ψ̂(x) (3.7)

operator can be very loosely regarded as a quantization of the one-body Schrodinger wavefunction. Jordan
and Klein[9] proposed that the particle field, and its complex conjugate are conjugate variables. With this
insight, the second-quantization of bosons is achieved by introducing a non-zero commutator between the
particle field, and its complex conjugate. The new quantum fields that emerge play the role of creating, and

1 In dimensions below three, it is possible to have wavefunctions with several Reimann sheets, which gives rise to the concept of
fractional statistics and “anyons”.
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destroying particles (see below)

ψ(x), ψ∗(x)︸       ︷︷       ︸
1 ptcle wavefunction

[ψ(x), ψ†(y)] = δ(x− y)
−→ ψ̂(x), ψ̂†(x)︸       ︷︷       ︸

destruction/creation operator

Bosons (3.8)

For fermions, the existence of an antisymmetric wavefunction, means that particle fields mustanticommute,
i.e

ψ(x)ψ(y) = −ψ(y)ψ(x), (3.9)

a point first noted by Jordan, and then developed by Jordan andWigner[10]. The simplest example of anti-
commuting operators, is provided by the Pauli matrices: we are now going to have to get used to a whole
continuum of such operators! Jordan and Wigner realized that the second-quantization of fermions requires
that the the non-trivial commutator between conjugate particle fields must be replaced by an anticommutator

ψ(x), ψ∗(x)︸       ︷︷       ︸
1 ptcle wavefunction

{ψ(x), ψ†(y)} = δ(x− y)
−→ ψ̂(x), ψ̂†(x)︸       ︷︷       ︸

destruction/creation operator

Fermions. (3.10)

The operation{a, b} = ab+badenotes the anticommutator. Remarkably, just as bosonic physics derives from
commutators, fermionic physics derives from an algebra of anticommutators.

How real is a quantum field and what is its physical significance? To begin to to get a feeling of its meaning,
let us look at some key properties. The transformation from wavefunction, to operator also extends to more
directly observable quantities. Consider for example, theelectron probability densityρ(x) = ψ∗(x)ψ(x) of a
one-particle wavefunctionψ(x). By elevating the wavefunction to the status of a field operator, we obtain

ρ(x) = |ψ(x)|2 −→ ρ̂(x) = ψ̂†(x)ψ̂(x), (3.11)

which is the densityoperatorfor a many body system. Loosely speaking, the squared magnitude of the
quantum field represents the density of particles

Another aspect of the quantum field we have to understand, is its relationship to the many-body wave-
function. This link depends on a new concept, the “vacuum”. This unique state, denoted by|0〉 is devoid of
particles, and for this reason it is the only state for which there is no amplitude to destroy a particle so

ψ(x)|0〉 = 0. The vacuum (3.12)

We shall see that as a consequence of the canonical algebra, the creation operator̂ψ†(x) increments the number
of particles by one,creatinga particle atx, so that

|x1〉 = ψ†(x1)|0〉 (3.13)

is a single particle atx1,

|x1, . . . xN〉 = ψ†(xN) . . . ψ†(x1)|0〉 (3.14)

is theN-particle state with particles located atx1 . . . xN and

〈x1, . . . xN| = 〈0|[ψ†(xN) . . . ψ†(x1)]† = 〈0|ψ(x1) . . . ψ(xN) (3.15)

is its conjugate “bra” vector. The wavefunction of anN particle state,|N〉 is given by the overlap of〈x1, . . . xN|
with |N〉:

ψ(x1, . . . xN) = 〈x1, . . . xN|N〉 = 〈0|ψ(x1) . . . ψ(xN)|N〉 (3.16)
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tFig. 3.3 Action of creation operator on vacuum to create (i) a one particle and (ii) a three
particle state

So many body wavefunctions correspond to matrix elements ofthe quantum fields. From this link we can
see that the exchange symmetry under particle exchange is directly linked to the exchange algebra of the field
operators. For Bosons and Fermions respectively, we have

〈0| . . . ψ(xr )ψ(xr+1) . . . |N〉 = ±〈0| . . . ψ(xr+1)ψ(xr ) . . . |N〉 (3.17)

(where+ refers to Bosons,−to fermions), so that

ψ(xr )ψ(xr+1) = ±ψ(xr+1)ψ(xr ) (3.18)

From this we see that Bosonic operators commute, but fermionic operators mustanticommute. Thus it is the
exchange symmetry of identical quantum particles that dictates the commuting, or anticommuting algebra of
the associated quantum fields.

Unlike a classical field, quantum fields are in a state of constant fluctuation. This applies to both collective
fields, as in the example of the string in Fig. 3.1, and to quantum fluids. Just as the commutator between
position and momentum gives rise to the uncertainty principle: [x, p] = i~ −→ ∆x∆p>˜~, the canonical
commutation, or anticommutation relations give rise to a similar relation between the amplitude and phase
of the quantum field. Under certain conditions the fluctuations of a quantum field can be eliminated, and in
these extreme limits, the quantum field begins to take on a tangible classical existence. In a bose superfluid for
example, the quantum field becomes a sharp variable, and we can really ascribe a meaning to the expectation
of the quantum field

〈ψ(x)〉 = √ρse
iθ (3.19)

15

Chapter 3. c©Piers Coleman 2011

whereρs measures the density of particles in the superfluid condensate. We shall see that there is a completely
parallel uncertainty relation between the phase and density of quantum fields,

∆N∆θ >
˜

1 (3.20)

whereθ is the average phase of a condensate andN the number of particles it contains. WhenN is truly
macroscopic, the uncertainty in the phase may be made arbitrarily small, so that in a Bose superfluid, the
phase becomes sufficiently well defined that it becomes possible to observe interference phenomenon! Sim-
ilar situations arise inside a Laser, where the phase of the electromagnetic field becomes well-defined, or a
superconductor, where the phase of the electrons in the condensate becomes well defined.

In the next two chapters we shall go back and see how all these features appear systematically in the context
of “free field theory”. We shall begin with collective bosonic fields, which behave as a dense ensemble of
coupled Harmonic oscillators. In the next chapter, we shallmove to conserved particles, and see how the
exchange symmetry of the wavefunction leads to the commutation, and anticommutation algebra of bose
and Fermi fields. We shall see how this information enables usto completely solve the properties of a non-
interacting Bose, or Fermi fluid.

It is the non-commuting properties of quantum fields that generate their intrinsic “graininess”. Because of
this, quantum fields, though nominally continuous degrees of freedom, can always be decomposed in terms
of a discrete particular content. The action of a collectivefield involves the creation of a wavepacket centered
at x by both the creation, and destruction of quanta, schematically,

φ(x) =
∑

k

[
boson creation,
momentum -k

+
boson destruction
momentum k

]
e−ik·x, (3.21)

Examples of such quanta, include quanta of sound, or phonons, and quanta of radiation, or photons. In a
similar way, the action of a particle creation operator creates a wavepacket of particles atx, schematically,

ψ†(x) =
∑

k

[
particle creation
momentum k

]
e−ik·x. (3.22)

When the underlying particles develop coherence, the quantum field begins to behave classically. It is the
ability of quantum fields to describe continuous classical behavioranddiscrete particulate behavior in a uni-
fied way that makes them so very special.

Example. By considering the positivity of the quantity〈A(λ)†A(λ)〉, whereÂ = x̂+ iλp andλ is a real

number, prove the Heisenberg uncertainty relation∆x∆p ≥ ~2 .
Example. How does the uncertainty principle prevent the collapse of the Hydrogenatom. Is the uncer-
tainty principle enough to explain the stability of matter?

3.2 Collective Quantum Fields

Here, we will begin to familiarize ourselves with quantum fields by developing the field theory of a free,
bosonic field. It is important to realize that a bosonic quantum field is fundamentally nothing more than a set
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tFig. 3.4 Family of zero, one and three-dimensional Harmonic crystals.

of linearly coupled oscillators, and in particular, so longas the system is linear, the modes of oscillation can
always be decomposed into a linear sum of independent normalmodes. Each normal mode is nothing more
than a simple harmonic oscillator, which provides the basicbuilding block for bosonic field theories.

Our basic strategy for quantizing collective, bosonic fields, thus consists of two basic parts. First, we
must reduce the Hamiltonian to its normal modes. For translationally invariant systems, this is just a matter
of Fourier transforming the field, and its conjugate momenta. Second, we then quantize the normal mode
Hamiltonian as a sum of independent Harmonic oscillators.

H(φ, π) [F.T.] −→ Normal Co-ords φq∼(aq+a†−q)
−→ H =

∑

q

~ωq(nq +
1
2) (3.23)

The first part of this procedure is essentially identical forboth quantum, and classical oscillators. The second-
stage is nothing more than the quantization of a single Harmonic oscillator. Consider the family of lattices
shown in Figure 3.4. We shall start with a single oscillator at one site. We shall then graduate to one and
higher dimensional chain of oscillators, as shown in Fig 3.4.
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3.3 Harmonic oscillator: a zero-dimensional field theory

Although the Schrodinger approach is most widely used in first quantization, it is the Heisenberg approach[11,
5] that opens the door to second-quantization. In the Schrödinger approach, one solves the wave-equation

(−~2∂2
x

2m
+

1
2

mω2x2

)
ψn = Enψn (3.24)

from which one finds the energy levels are evenly spaced, according to

En = (n+
1
2

)~ω, (3.25)

whereω is the frequency of the oscillator.
The door to second-quantization is opened by re-interpreting these evenly spaced energy levels in terms of

“quanta”, each of energy~ω. The nth excited state corresponds to the addition of n quanta to the ground-state.
We shall now see how we can put mathematical meat on these words by introducing an operator “a†” that
creates these quanta, so that the n-th excited state is obtained by actingn times on the ground-state with the
creation operator.

|n〉 = 1
√

n!
(a†)n|0〉. (3.26)

Let us now see how this works. The Hamiltonian for this problem involves conjugate position and momentum
operators as follows

H =
p2

2m +
1
2mω2x2

[x, p] = i~,

 . (3.27)

In the ground-state, the particle in the Harmonic potentialundergoes zero-point motion, with an uncertainty
in position and momentum∆p and∆x which satisfy∆x∆p ∼ ~. Since the zero-point kinetic and potential
energies are equal,∆p2/2m= mω2∆x2/2, so

∆x =

√
~

mω
, ∆p =

√
mω~ (3.28)

define the scale of zero-point motion. It is useful to define dimensionless position and momentum variables
by factoring out the scale of zero-point motion

ξ =
x
∆x

, pξ =
p
∆p

. (3.29)

One quickly verifies that [ξ, pξ] = i are still canonically conjugate, and that now

H =
~ω

2

[
ξ2 + p2

ξ

]
. (3.30)

Next, introduce the “creation” and “annihilation” operators

a† =
1
√

2
(ξ − ipξ), “creation operator”

a =
1
√

2
(ξ + ipξ), “annihilation operator”. (3.31)
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Since [a,a†] = −i
2

(
[ξ, pξ] − [pξ, ξ]

)
= 1, these operators satisfy the algebra

[a,a] = [a†,a†] = 0

[a,a†] = 1.


canonical commutation rules (3.32)

It is this algebra which lies at the heart of bosonic physics,enabling us to interpret the creation and annihila-
tion operators as the objects which add, and remove quanta ofvibration to and from the system.

To follow the trail further, we rewrite the Hamiltonian in terms of a and a†. Sinceξ = (a + a†)/
√

2,
pξ = (a− a†)/

√
2i, the core of the Hamiltonian can be rewritten as

ξ2 + p2
ξ = a†a+ aa† (3.33)

But aa† = a†a+ 1, from the commutation rules, so that

H = ~ω[a†a+
1
2

]. (3.34)

This has a beautifully simple interpretation. The second term is just the zero-point energyE0 = ~ω/2 The
first term contains the “number operator”

n̂ = a†a, ”number operator” (3.35)

which counts the number of vibrational quanta added to the ground state. Each of these quanta carries energy
~ω.

To see this, we need to introduce the concept of the vacuum, defined as the unique state such that

a|0〉 = 0. (3.36)

From (12.133), this state is clearly an eigenstate ofH, with energyE = ~ω/2. We now assert that the state

|N〉 = 1
λN

(a†)N|0〉 (3.37)

whereλN is a normalization constant, containsN quanta.
To verify thatn̂ counts the number of bosons, we use the commutation algebra to show that [ˆn,a†] = a†

and [n̂,a] = −a, or

n̂a† = a†(n̂+ 1)
n̂a= a(n̂− 1) (3.38)

which means that whena† or a act on a state, they respectively add, or remove one quantum of energy.
Suppose that

n̂|N〉 = N|N〉 (3.39)

for someN, then from (3.38),

n̂ a†|N〉 = a†(n̂+ 1)|N〉 = (N + 1) a†|N〉 (3.40)

so thata†|N〉 ≡ |N + 1〉 containsN + 1 quanta. Since (3.39) holds forN = 0, it holds for allN. To complete
the discussion, let us fixλN by noting that from the definition of|N〉,

〈N − 1|aa†|N − 1〉 =
(
λN

λN−1

)2

〈N|N〉 =
(
λN

λN−1

)2

, (3.41)
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hω

n quanta

tFig. 3.5 Illustrating the excitation picture for a single harmonic oscillator.

but sinceaa† = n̂+ 1, 〈N− 1|aa†|N− 1〉 = N〈N− 1|N− 1〉 = N. Comparing these two expressions, it follows
thatλN/λN−1 =

√
N, and sinceλ0 = 1, λN =

√
N!.

Summarizing the discussion

H = ~ω(n̂+ 1
2)

n̂ = a†a, “number operator”

|N〉 = 1√
N!

(a†)N|0〉 N-Boson state

(3.42)

Using these results, we can quickly learn many things about the quantum fieldsa anda†. Let us look at a
few examples. First, we can transform all time dependence from the states to the operators by moving to a
Heisenberg representation, writing

a(t) = eiHt/~ae−iHt/~ Heisenberg representation (3.43)

This transformation preserves the canonical commutation algebra, and the form ofH. The equation of motion
of a(t) is given by

da
dt
=

i
~

[H,a(t)] = −iωa(t) (3.44)

so that the Heisenberg operators are given by

a(t) = e−iωta,
a†(t) = eiωta† (3.45)

Using these results, we can decompose the original momentumand displacement operators as follows

x̂(t) = ∆xξ(t) =
∆x
√

2

(
a(t) + a†(t)

)
=

√
~

2mω
(
ae−iωt + a†eiωt)

p̂(t) = ∆ppξ(t) = −i

√
m~ω

2
(
ae−iωt − a†eiωt) (3.46)
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Notice how the displacement operator- a priori a continuousvariable, has the action of creating and destroying
discrete quanta.

We can use this result to compute the correlation functions of the displacement.

Example 1. Calculate the autocorrelation functionS(t − t′) = 1
2〈0|{x(t), x(t′)}|0〉 and the “response”

functionR(t − t′) = (i/~)〈0|[x(t), x(t′)]|0〉 in the ground-state of the quantum Harmonic oscillator.

SolutionWe may expand the correlation function and response function as follows

S(t1 − t2) =
1
2
〈0|x(t1)x(t2) + x(t2)x(t1)|0〉

R(t1 − t2) = (i/~)〈0|x(t1)x(t2) − x(t2)x(t1)|0〉 (3.47)

But we may expandx(t) as given in (3.46). The only term which survives in the ground-state,is the
term proportional toaa†, so that

〈0|x(t)x(t′)|0〉 = ~

2mω
〈0|aa†|0〉e−iω(t1−t2) (3.48)

Now using (3.47) we obtain

1
2
〈0|{x(t), x(t′)}|0〉 = ~

2mω
cos

[
ω(t − t′)

]
“Correlation function”

−i〈0|[x(t), x(t′)]|0〉 = 1
mω

sin
[
ω(t − t′)

]
”Response function”

• We shall later see thatR(t− t′) gives the response of the ground-state to an applied forceF(t′), so that
at a timet, the displacement is given by

〈x(t)〉 =
∫ t

−∞
R(t − t′)F(t′)dt′ (3.49)

Remarkably, the response function is identical with a classical Harmonic oscillator.

Example 2. Calculate the number of quanta present in a Harmonic oscillator with characteristic
frequencyω, at temperatureT.

To calculate the expectation value of any operator at temperatureT, we need to consider an ensemble
of systems in different quantum states|Ψ〉 = ∑

n cn|n〉. The expectation value of operatorÂ in state|Ψ〉
is then

〈Â〉 = 〈Ψ|Ψ〉 =
∑

m,n

c∗mcn〈m|Â|n〉 (3.50)

In a position basis, this would be

〈Â〉 =
∑

m,n

c∗mcn

∫
dxψ∗m(x)A(x)ψm(x) (3.51)

But now we have to average over the typical state|Ψ〉 in the ensemble, which gives

〈Â〉 =
∑

m,n

c∗mcn〈m|Â|n〉 =
∑

m,n

ρmn〈m|Â|n〉 (3.52)

whereρmn = c∗mcn is the “density matrix”. If the ensemble is in equilibrium with an incoherent heat bath,
at temperatureT, quantum statistical mechanics asserts that there are no residual phasecorrelations
between the different energy levels, which acquires a Boltzmann distribution

ρmn = c∗mcn = pnδn,m (3.53)
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wherepn = e−βEn/Z is the Boltzman distribution, withβ = 1/kBT, andkB is Boltzmann’s constant. Let
us now apply this to our problem, where

Â = n̂ = a†a (3.54)

is the number operator. In this case,

〈n̂〉 =
∑

n

(e−βEn/Z)〈n|n̂|n〉 = 1
Z

∑

n

ne−βEn (3.55)

To normalize the distribution, we must have
∑

n pn = 1, so that

Z =
∑

n

e−βEn (3.56)

Finally, sinceEn = ~ω(n+ 1
2),

〈n̂〉 =
∑

n e−β~ω(n+ 1
2 )n

∑
n e−β~ω(n+ 1

2 )
=

∑
n e−λnn∑
n e−λn

, λ = β~ω. (3.57)

The sum in the denominator is a geometric series
∑

n

e−λn =
1

1− e−λ
, (3.58)

and the numerator is given by

∑

n

e−λnn = − ∂

∂λ

∑

n

e−λn =
e−λ

(1− e−λ)2
(3.59)

so that

〈n̂〉 = 1
eλ − 1

=
1

eβ~ω − 1
(3.60)

which is the famous Bose-Einstein distribution function.

3.4 Collective modes: phonons

We now extend the discussion of the last section from zero to higher dimensions. Let us go back to the lattice
shown in Fig 3.4 . To simplify our discussion, let imagine that at each site there is a single elastic degree of
freedom. For simplicity, let us imagine we are discussing the longitundinal displacement of an atom along a
one-dimensional chain that runs in the x-direction. For thej-th atom,

x j = x0
j + φ j . (3.61)

If π j is the conjugate momentum tox j , then the two variables must satisfy canonical commutationrelations

[φi , π j ] = i~δi j . (3.62)

Notice how variables at different sites are fully independent. We’ll imagine that our one-dimensional lattice
hasNs sites, and we shall make life easier by working with periodicboundary conditions, so thatφ j+Ns ≡ φ j

andπ j ≡ π j+Ns. Suppose nearest neighbors are connected by a “spring”, in which case, the total total energy
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is then a sum of kinetic and potential energy

Ĥ =
∑

j=1,Ns


π2

j

2m
+

mω2

2
(φ j − φ j+1)2

 (3.63)

wherem is the mass of an atom.
Now the great simplifying feature of this model, is that thatit possessestranslational symmetry, so that

under the translation

π j → π j+1, φ j → φ j+1 (3.64)

the Hamiltonian and commutation relations remain unchanged. If we shrink the size of the lattice to zero, this
symmetry will become a continuous translational symmetry.The generator of these translations is thecrystal
momentumoperator, which must therefore commute with the Hamiltonian. Because of this symmetry, it
makes sense to transform to operators that are diagonal in momentum space, so we’ll Fourier transform all
fields as follows:

φ j =
1√
Ns

∑
q eiqRjφq,

π j =
1√
Ns

∑
q eiqRjπq,

 Rj = ja. (3.65)

The periodic boundary conditions,φ j = φ j+Ns, π j = π j+Ns mean that the values ofq entering in this sum must
satisfyqL = 2πn, whereL = Nsa is the length of the chain and n is an integer, thus

q =
2π
L

n, (n ∈ [1,Ns]) (3.66)

Notice thatq ∈ [0, 2π/a] defines the range ofq. As in any periodic structure, the crystal momentum is only
defined modulo a reciprocal lattice vector, which in this case is 2π/a, so thatq + 2π

a ≡ q, (you may verify
that (q + 2π

a )Rj = qRj + 2πm, which is why we restrictn ∈ [1,Ns]). The functions 1√
Ns

eiqRj ≡ 〈 j|q〉 form a
complete orthogonal basis, so that in particular

∑

j

〈q′| j〉〈 j|q〉 ≡ 1
Ns

∑

j

ei(q−q′)Rj = 〈q′|q〉 ≡ δq,q′ . orthogonality (3.67)

is one if q = q′, but zero otherwise (see exercise 3.2). This result is immensely useful, and we shall use it
time and time again. Using the orthogonality relation, we can check that the inverse transformations are

φq =
1√
Ns

∑
j e−iqRjφ j

πq =
1√
Ns

∑
q e−iqRjπ j (3.68)

Notice that sinceφ j andπ j are Hermitian operators, it follows thatφ†q = φ−q andπ†q = π−q. Using the
orthogonality, we can verify the transformed commutation relations are

[φ−q, πq′ ] =
1
Ns

∑

i, j

ei(qRi−q′Rj )

i~δi j︷ ︸︸ ︷
[φi , π j ]

=
i~
Ns

∑

j

ei(q−q′)Rj = i~δqq′ (3.69)

We shall now see thatπq andφq are quantized version of “normal co-ordinates” which bringthe Hamilto-
nian back into the standard Harmonic oscillator form. To check that the Hamiltonian is truly diagonal in these
variables we
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1 expandφ j andπ j in terms of their Fourier components,
2 regroup the sums so that the summation over momenta is on theoutside,
3 Eliminate all but one summation over momentum by carrying out the internal sum over site variables. This

will involve terms likeN−1
s

∑
j ei(q+q′)Rj = δq+q′ , which constrainsq′ = −q and eliminates the sum overq′.

With a bit of practice, these steps can be carried out very quickly. In transforming the potential energy, it is
useful to rewrite it in the form

V =
mω2

2

∑

j

φ j(2φ j − φ j+1 − φ j−1). (3.70)

The term in brackets can be Fourier transformed as follows:

ω2(2φ j − φ j+1 − φ j−1) =
1
√

Ns

∑

q

4ω2 sin2(qa/2)≡ω2
q︷                  ︸︸                  ︷

ω2[2 − eiqa − e−iqa] × φq eiqRj

≡ 1
√

Ns

∑

q

ω2
q φq eiqRj , (3.71)

where we have definedω2
q = 4ω sin2(qa/2). Inserting this into (3.70), we obtain

V =
m
2

∑

q,q′
ω2

q φ−q′φq

δq,q′︷              ︸︸              ︷
N−1

s

∑

j

ei(q−q′)Rj

=
∑

q

mω2
q

2
φ−qφq. (3.72)

Carrying out the same procedure on the kinetic energy, we obtain

H =
∑

q


1

2m
πqπ−q +

mω2
q

2
φqφ−q

 (3.73)

which expresses the Hamiltonian in terms of “normal co-ordinates”,φq andπq. So far, all of the transfor-
mations we have preserved the ordering of the operators, so it is no surprise that the quantum and classical
expressions for the Hamiltonian in terms of normal co-ordinates are formally identical.

Now before we go on, it is perhaps useful to note that atq = 0,ωq = 0, so that there is no contribution to
the potential energy from theq = 0 mode, which corresponds to a uniform translation of the entire system. To
separate the uniform motion from the oscillatory modes, it is useful to split theq = 0 part of the Hamiltonian
off from the remainder,

H =

HCM︷︸︸︷
1

2m
π2

0+
∑

q,0


1

2m
πqπ−q +

mω2
q

2
φqφ−q



where the first term is just the center of mass energy.
The next step merely repeats the procedure carried out for the single harmonic oscillator. We define a set

of conjugate creation and annihilation operators

aq =

√
mωq

2~

(
φq +

i
mωq

πq
)

a†q =

√
mωq

2~

(
φ−q − i

mωq
π−q

)


[aq, a†q′ ] = −i

2~

[
[φq, π−q′ ] − [πq, φ−q′ ]

]
= δq,q′ (3.74)
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Note that the second expression fora†q is obtained by taking the complex conjugate ofaq, and remembering
thatφ†q = φ−q andπ†q = π−q, since the underlying fields are real.

The inversion of these expressions is

πq = −i
√

mωq~

2

(
aq − a†−q

)

φa =

√
~

2mωq

(
aq + a†−q

)


(3.75)

Notice how the Fourier component of the field at wavevectorq either destroys a phonon of momentumq or
creates a phonon of momentum−q. Both have reduce the total momentum byq.

From these expressions, it follows that

πqπ−q =
mωq~

2
(
a†−qa−q + aqa†q − a†−qa†q − aqa−q

)

φqφ−q =
~

2mωq

(
a†−qa−q + aqa†q + a†−qa†q + aqa−q

)
(3.76)

Adding the two terms inside the Hamiltonian then gives

H = HCM +
1
2

∑

q,0

~ωq
(
a†qaq + aqa†q

)
, (3.77)

or using the commutation relations,

H = HCM +
∑

q,0

~ωq
(
a†qaq +

1
2
)

(3.78)

Since each set ofaq anda†q obey canonical commutation relations, we can immediately identifynq = a†qaq as
the number operator for quanta in the q-th momentum state. Remarkably, the system of coupled oscillators can
be reduced to a sum of independent Harmonic oscillators, with characteristic frequencyωq, energy~ωq and
momentumq. Each normal mode of the original classical system corresponds to particular phonon excitation.

We can immediately generalize all of our results from a single Harmonic oscillator. For example, the
general state of the system will now be an eigenstate of the phonon occupancies,

|Ψ〉 = |nq1, nq2 . . . nqN〉 =
∏

⊗
|nqi 〉 =


∏

i

(a†qi )
nqi

√
nqi !

 |0〉 (3.79)

where the vacuum is the unique state that is annihilated by all of theaq. In this state, the occupation numbers
nq are diagonal, so this is an energy eigenstate with energy

E = Eo +
∑

q

nq~ωq (3.80)

whereEo =
1
2

∑
q ~ωq is the zero-point energy.

Remarks

• The quantized displacements of a crystal are called phonons. Quantized fluctuations of magnetization in a
magnet are “magnons”.

• We can easily transform to a Heisenberg representation, whereaponaq(t) = aqe−iωqt.
• We can expand the local field entirely in terms of phonons. Using (3.75), we obtain

φ j(t) =
1
√

Ns

∑

q

φqeiqRj
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q

2   /a

sin(q a/2)ω   =   2ω 

ω

πq0

2ω
qL=14

2π/L

tFig. 3.6 Illustrating the excitation picture for a chain of coupled oscillators, length L=14.

= φCM(t) +
1
√

Ns

∑

q,0

√
~

2mωq

[
aq(t) + a†−q(t)

]
eiqRj . (3.81)

whereφCM =
1
Ns

∑
j φ j is the center of mass displacement.

• The transverse displacements of the atoms can be readily included by simply upgrading the displacement
and momentumφ j andπ j to vectors. For “springs”, the energies associated with transverse and longi-
tudinal displacements are not the same because the stiffness associated with transverse displacements
depends on the tension. Nevertheless, the Hamiltonian has an identical form for the one longitudinal
and two transverse modes, provided one inserts a different stiffness for the transverse modes. The initial
Hamiltonian is then simply a sum over three degenerate polarizationsλ ∈ [1,3]

Ĥ =
∑

λ=1,3

∑

j=1,Ns


π2

jλ

2m
+

mω2
λ

2
(φ jλ − φ j+1λ)

2

 (3.82)

whereω2
1 = ω

2 for the longitudinal mode, andω2
2,3 = T/a, whereT is the tension in the spring, for the

two transverse modes. By applying the same procedure to all three modes, the final Hamiltonian then
becomes

H =
∑

λ=1,3

∑

q

~ωqλ
(
a†qλaqλ +

1
2
)
.

whereωqλ = 2ωλsin(qa/2). Of course, in more realistic crystal structures, the energies of the three
modes will no longer be degenerate.

• We can generalize all of this discussion to a 2 or 3 dimensional square lattice, by noting that the orthogo-
nality relation becomes

N−1
s

∑

j

e−i(q−q′)·R j = δq−q′ (3.83)
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where now,

q =
2π
L

(i i , i2 . . . iD) (3.84)

andRj is a site on the lattice. The general form for the potential energy is slightly more complicated, but
one can still cast the final Hamiltonian in terms of a sum over longitudinal and transverse modes.

• The zero-point energyEo =
1
2

∑
q ~ωq is very important inHe− 4 andHe− 3 crystals, where the lightness

of the atoms gives rise to such large phonon frequencies thatthe crystalline phase is unstable and melts
at ambient pressure under the influence of quantum zero pointmotion. The resulting “quantum fluids”
exhibit the remarkable property of superfluidity.

3.5 The Thermodynamic Limit L→ ∞

In the last section, we examined a system of coupled oscillators on a finite lattice. By restricting a system to a
finite lattice, we impose a restriction on themaximiumwavelength, and hence, the excitation spectrum. This
is known as an “infra-red” cut-off. When we takeL → ∞, the allowed momentum states become closer and
closer together, and we now have a continuum in momentum space.

What happens to the various momentum summations in the thermodynamic limit,L → ∞? When the al-
lowed momenta become arbitrarily close together, the discrete summations over momentum must be replaced
by continuous integrals. For each dimension, the incrementin momentum appearing inside the discrete sum-
mations is

∆q =
2π
L

(3.85)

so thatL∆q
2π = 1. Thus in one dimension, the summation over the discrete values ofq can be formally rewritten

as
∑

q j

{. . . } = L
∑

q j

∆q
2π
{. . . } (3.86)

whereq j = 2π j
L , and j ∈ [1,Ns]. When we takeL → ∞, q becomes a continuous variableq ∈ [0,2π/a],

wherea = L/Ns is the lattice spacing, so that the summation can now be replaced by a continuous integral:

∑

q

{. . . } −→L
∫ 2π/a

0

dq
2π
{. . . } (3.87)

Similarly, in in D-dimensions, we can regard the D-dimensional sum over momentum as a sum over tiny
hypercubes, each of volume

(∆q)D =
(2π)D

LD
(3.88)

so thatLD (∆q)D

(2π)D = 1 and

∑

q

{. . . } = LD
∑

q

(∆q)D

(2π)D
{. . . } −→LD

∫

0<qi<2π/a

dDq
(2π)D

{. . . } (3.89)

where the integral is over a hypercube in momentum space, with sides of length 2π/a.
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qx

qz

2π/L

qy

tFig. 3.7 Illustrating the grid of allowed momenta for a three-dimensional crystal of dimensions
L3. In the limit L→ ∞, the grid becomes a continuum, with (L/2π)3 points per unit
volume of momentum space.

Once the momentum sums become continuous, we need to change the normalization of our states. By
convention, we now normalize our plane wave basis per unit volume, writing

〈x|k〉 −→ eik·x (3.90)

In a finite volume, this means that the orthogonality condition on these plane waves is

〈k′|k〉 =
∫

dDxei(k−k′)·x = LDδk−k′ , (3.91)

whereδk−k′ is the discrete delta function on the grid of allowed wavevectors. In the thermodynamic limit, this
becomes ∫

dDxei(k−k′)·x = (2π)DδD(k − k′) (3.92)

so that the continuum limit of the discrete delta-function is given by

LDδkk ′ −→ (2π)DδD(k − k′) (3.93)

Example 4.Re-express the Hamiltonian̂H of a simplified three-dimensional Harmonic crystal in terms
of phonon number operators and calculate the zero-point energy, where

H =
∑

j

π2
j

2m
+

∑

j,a=(x̂,ŷ,ẑ)

mω2
o

2
(Φ j − Φ j+a)

2 (3.94)

whereφ j ≡ φ(xj) andπ j ≡ π(xj) denote canonically conjugate (scalar) displacement, and momenta at
site j, andâ = (x̂, ŷ, ẑ) denotes the unit vector separating nearest neigbor atoms.
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Solution First we must Fourier transform the co-ordinates and the Harmonic potential. The potential
can be re-written as

V̂ =
1
2

∑

i, j

Vi− jφiφ j (3.95)

where

VR = mω2
o

∑

a=(x̂,ŷ,ẑ)

(2δR − δR−a − δR+a) (3.96)

The Fourier transform of this expression is

Vq =
∑

R

VRe−iq·R

= mω2
o

∑

a=(x̂,ŷ,ẑ)

(2− e−iq·a − eiq·a)

= mω2
o

∑

l=x,y,z

[2 − cos(qla)] (3.97)

so that writingVq = m(ωq)2, it follows that the normal mode frequency are given by

ωq = 2ωo[sin2(qxa/2)+ sin2(qya/2)+ sin2(qza/2)]
1
2 (3.98)

Fourier transforming the fields

φ j =
1
√

Ns

∑

q

φqeiq·x

π j =
1
√

Ns

∑

q

πqeiq·x (3.99)

whereq = 2π
L (i, j, k) are the discrete momenta of a cubic crystal of volumeL3, with periodic boundary

conditions, we find

H =
∑

q

[πqπ−q

2m
+

mω2
q

2
φqφ−q

]
(3.100)

Defining the creation and annihilation operator

bq =

√
mωq

2~
(
φq +

i
mωq

πq
)
, b†q =

√
mωq

2~
(
φ−q −

i
mωq

π−q
)
, (3.101)

we reduce the Hamiltonian to its standard form

H =
∑

q

~ωq
(
n̂q +

1
2
)

(3.102)

wheren̂q = b†qbq is the phonon number operator.
In the ground-state,nq = 0, so that the zero-point energy is

Eo =
∑

q

~ωq

2
−→ V

∫
d3q

(2π)3

~ωq

2
(3.103)

whereV = L3. Substituting forωq, we obtain

Eo = V
∏

l=1,3

∫ 2π/a

0

dql

2π
~ωo

√∑

l=1,3

sin2(qla/2)

= Ns~ωoI3 (3.104)
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where

I3 =

∫

0<u1,u2,u3<π

d3u
π3

√∑

l=1,3

sin2(ul) = 1.19 (3.105)

andNs is the number of sites.

Remarks

• The zero point energy per unit cell of the crystal is~ωo(I3/π
3), a finite number.

• Were we to take the “continuum limit”, taking the lattice separation to zero, the zero-point energy
would diverge, due to the profusion of ultraviolet modes.

3.6 Continuum Limit: a→ 0

In contrast to the thermodynamic limit, when we take the continuum limit we remove the discrete character
of the problem, allowing fluctuations of arbitrarily small wavelength, and hence arbitrarily large energy. For a
discrete system with periodic boundary conditions, the momentum in any one direction can not exceed 2π/a.
By takinga to zero, we remove the ultra-violet cut-off in momentum.

As a simple example, we shall consider a one-dimensional string. The important lesson that we shall learn,
is that both the discrete model, and the continuum model havethe same long-wavelength physics. Their
behavior will only differ on very short distances, at high frequencies and short times. This is a very simple
example of the concept of renormalization. Provided we are interested in low energy properties, the details of
the string at short-distances- whether it is discrete, or continuous don’t matter.

Of course, in many respects, the continuum model is more satisfying and elegant. We shall see however, that
we always have to be careful in going to the continuum limit, because this introduces quantum fluctuations
on arbitrarily short length scales. These fluctuations don’t affect the low energy excitations, but they do mean
that the zero-point fluctuations of the field become arbitrarily large.

Let us start out with a discrete string, as shown in fig 3.8. Forsmall displacements, the Hamiltonian for this
discrete string is identical to that of the last section, as we can see by the following argument. If a string is
made up of point particles of mass m, separated by a distancea, with a tensile forceT acting between them,
then for small transverse displacementsφ j , the link between thej th and j + 1th particle is expanded by an
amount∆sj = (φ j − φ j+1)2/2a, raising the potential energy by an amountT∆sj . The Hamiltonian is then

Ĥ =
∑

j=1,Ns


π2

j

2m
+

T
2a

(φ j − φ j+1)2

 (3.106)

which reverts to (3.63) with the replacementT/a→ mω2.
To take the continuum limit, we leta→ 0, preservingρ = m/a. In this limit, we may replace

a
∑

j

→
∫

dx,

(φ j − φ j+1)2

a2
→ (∇xφ(x))2, (3.107)
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x

Continuum limit  a    0

π(x)
(x)φ

πja

T

T

T

T

φj

j

tFig. 3.8 Illustrating a (a) discrete and a (b) continuous string. By taking the length between
units in the string to zero, maintaining the density per unit length and the tension, we
arrive at the continuum limit.

Making the replacement

π j/a→ π(x j) (3.108)

we obtain

H =
∫

dx

[
T
2
(∇xφ

)2
+

1
2ρ
π(x)2

]
(3.109)

On the discrete lattice, the commutation relations

[φ(xi), π(x j)] = i~δ̃(xi − x j), (3.110)

whereδ̃(xi − x j) = a−1δi j . In the limit a→ 0, δ̃(xi − x j) behaves as a Dirac delta function, so that in this limit,

[φ(x), π̃(y)] = i~δ(x− y) (3.111)

Unfortunately, the delta function in this expression involves arbitrarily high spatial frequencies, and if we
work with it as it is, we will encounter “ultraviolet” divergences. To regulate these divergences we will need
to introduce a cut-off. One way to do this is to start in momentum space, using the canonical commutation
relation

[φq, π−q′ ] = i~ × 〈q|q′〉 = i~ × 2πδ(q− q′) (3.112)
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Now were we to writeφ(x) =
∫

dq
2πeiqxφq and the corresponding expression forπ(x), we recover the unreg-

ulated commutation algebra (3.111). Instead, to regulate the wild high-momentum physics, we introduce a
small exponential convergence factor into the Fourier transform,definingthe real-space fields by

φ(x) =
∫

dq
2π
φqeiqxe−ǫ|q|/2, π(x) =

∫
dq
2π
πqeiqxe−ǫ|q|/2. (3.113)

If we now repeat the calculation of the commutation relation, we find

[φ(x), π(y)] =
∫

dqdq′

(2π)2
ei(qx−q′x′)

2πi~δ(q−q′)︷    ︸︸    ︷
[φq, π−q′ ] e−

ǫ
2 (|q|+|q′ |)

= i~
∫

dq
(2π)

eiq(x−x′)−|q|ǫ = i~ ×
[∫ ∞

0
e−(ǫ−i(x−x′))q +

∫ 0

−∞
e(ǫ+i(x−x′))q

]

=
i~
2π

[
1

ǫ − i(x− x′)
+

1
ǫ + i(x− x′)

]
= i~ ×

“δǫ(x− x′)′′︷                 ︸︸                 ︷
1
π

(
ǫ

ǫ2 + (x− x′)2

)
, (3.114)

showing that the removal of the ultra-violet modes smears the delta function into a Lorentzian of finite width
ǫ.

Now it is just a question of repeating the same steps of the last section, but for the continuous fieldsφq and
πq. When we transform the Hamiltonian, we obtain

H =
∫

dq
2π

[πqπ−q

2ρ
+
ρω2

q

2
φqφ−q

]
e−ǫ|q| (3.115)

where nowωq = c|q|, andc =
√

T/ρ is the velocity of the phonons. Notice how this has almost exactly
the same form as the the discrete lattice, but now the high-momentum modes are cutoff by the exponential
factor, rather than the finite size of the Brillouin zone. Defining the creation and annihilation operator by the
relations

φq =

√
~

2ρωq
[aq + a†−q]

πq = −i

√
~ρωq

2
[aq − a†−q] (3.116)

we find that the creation and annihilation operators satisfy

[aq,a
†

q′ ] = 2πδ(q− q′). (3.117)

We may now rewrite the Hamiltonian as

H =
∫ ∞

−∞

dq
2π

~ωq

2
(
a†qaq + a−qa†−q

)
e−ǫ|q| (3.118)

If we re-order the Boson operators, we obtain

H =
∫ ∞

∞

dq
2π
~ωq

(
a†qaq +

“L′′︷ ︸︸ ︷
2πδ(0)

1
2
)
e−|ǫq|/2 (3.119)

The first terms corresponds to the excitations of string, andwe recognize the last term as the zero-point energy

32



bk.pdf April 29, 2012 21

c©2011 Piers Coleman Chapter 3.

of the string. Had we been less ambitious, and started out on afinite, but long lattice , the term 2πδ(0) would
be replaced byL, which is merely the statement that the zero-point energy scales with the length,

EZP = L
∫

dq
2π
~c|q|e−ǫ|q| = L~c

2πǫ2
(3.120)

is the total zero-point energy. Once we remove the momentum cut-off, the momentum sum is unbounded and
the zero-point energy per unit length becomes infinite in thecontinuum limit. It often proves convenient to
remove this nasty infinity by introducing the concept of“normal ordering”. If we take any operatorA, then we
denote its normal ordered count-part by the symbol :A :. The operator :A : is the same asA, excepting that
all the creation operators have been ordered to the left of all of the annihilation operators. All commutators
associated with the ordering are neglected, so that the normal ordered Hamiltonian is

: H :=
∫ ∞

−∞

dq
2π
~ωqa†qaq, (ωq = c|q|) (3.121)

measures the excitation energy above the ground-state.
Finally, let us look at the displacement of the string. The fields in co-ordinate space are given by

φ(x, t) =
∫

dq
2π

√
~

2ρωq

[
aq(t) + a†−q(t)

]
eiqxe−ǫ|q|/2 (3.122)

where, as in the case of the Harmonic oscillator

aq(t) = aqe−iωqt, a†q(t) = aqeiωqt, (3.123)

Note:

• The generalization of the “quantum string” to higher dimensions is written

H =
∫

ddx

[
T
2
(∇φ)2

+
1
2ρ
π(x)2

]

[φ(x), π(y)] = i~δd(x− y). (3.124)

Sometimes, it is useful to rescaleφ(x)→ φ(x)/
√
ρ, π(x)→ π(x)

√
ρ, so that

H =
1
2

∫
ddx

[(
c∇φ)2

+π(x)2
]

[φ(x), π̃(y)] = i~δd(x− y). (3.125)

In two dimensions, this describes a fluctuating quantum membrane.

• In particle physics, the “massive” version of the above model, written as

H =
1
2

∫
ddx

[
φ

(
−c2∇2 +

(mc2

~

)2
)
φ + π2

]
(3.126)

wherec is the speed of light, is called the “Klein-Gordon Hamiltonian”. In this model, the elementary
quanta have energyEq =

√
(~cq)2 + (mc2)2. This also corresponds to a string where a uniform displace-

mentφ costs an energy proportional tom2φ2.
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Example 5.Calculate the the equal-time ground-state correlation function

S(x) =
1
2
〈0|(φ(x) − φ(0))2|0〉. (3.127)

for a one-dimensional string.

Solution:Let us begin by rewriting

S(x) = 〈0|(φ(0)2 − φ(x)φ(0))|0〉 (3.128)

where we have used translational and inversion symmetry to replace〈0|φ(x)2|0〉 = 〈0|φ(0)2|0〉 and
〈0|φ(x)φ(0)|0〉 = 〈0|φ(0)φ(x)|0〉.
When we expandφ(x) andφ(0) in terms of creation and annihilation operators, only the terms of the
form 〈0|aqa†−q′ |o〉 = 〈0|[aq,a†−q′ ]|o〉 = (2π)δ(q− q′) will survive. Let us write this out explicitly:

S(x) =
∫

dqdq′

(2π)2

~

2ρc
√
|q||q′|

〈0|[aq + a†−q][a−q′ + a†q′ ]|0〉(1− eiqx)e−|q|ǫ

=
~

2ρc

∫
dq
2π

e−|q|ǫ
(1− eiqx

|q|

)

=

(
~

ρc

) [
1
4π

ln
( ǫ2 + x2

ǫ2

)]
(3.129)

where to obtain the last step, we first calculate

dS
dx
= − i~

2ρc

∫
dq
2π

eiqx−q|ǫ |sgn(q)

= − i~
2ρc

[∫ ∞

0

dq
2π

e−[ǫ−ix]q −
∫ 0

−∞

dq
2π

e[ǫ+ix]q

]

= − i~
4πρc

[
1

ǫ − ix
− 1
ǫ + ix

]
= − ~

2πρc
Im

(
1

ǫ − ix

)
(3.130)

and then then integrate the answer onx, noting thatS(0) = 0 to get

S(x) =
~

2πρc
Im

∫ x

0

1
ǫ − ix′

dx′ =
~

2πρc
Re ln

(
ǫ − ix
ǫ

)
=
~

4πρc
ln

(
ǫ2 + x2

ǫ2

)
. (3.131)

Remarks

• Were we to send the cut-off ǫ → 0, the fluctuations at a given distancex diverge logarithmically with
ǫ: this is because the number of short-wavelength (ultra-violet) fluctuationsbecomes unbounded.

• We could have also obtained this result by working with a discrete string, andtakinga → 0 at the
end of the calculation. Had we done this, we would have found that

S(x) =
~

2m

∑

q

(1− eiqx

ωq

)
(3.132)

which has the same long-wavelength behavior.
• Had we repeated this calculation inD dimensions, the integral overq becomes a d-dimensional

integral. In this case,

S(x) ∼
∫

dDq
(1− eiqx

|q|

)
∼ 1

xD−1
(3.133)

In higher dimensions, the phase space for number of short-wavelength fluctuations grows asqD,
which leads to stronger fluctuations at short-distances.
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Exercises

Exercise 3.1 In 1906, in what is arguably the first paper in theoretical condensed matter physics[3] Albert
Einstein postulated that vibrational excitations of a solid are quantized with energy~ω, just like the
photons in the vacuum. Repeat his calculation for diamond: calculate the energyE(T) of one mole of
simple harmonic oscillators with characteristic frequency ω at temperatureT and show that the specific
heat capacity is

CV(T) =
dE
dT
= RF

(
~ω

kBT

)

where

F(x) =

(
x/2

sinh(x/2)

)2

.

andR = NAVkB the product of Avagadro’s numberNAV and Boltzmann’s constantkB. Plot C(T) and
show that it deviates from Dulong an Petit’s lawCV = (R/2) per quadratic degree of freedom at tem-
peraturesT << ~ω/kB.

Exercise 3.2 Consdier the orthogonality relation in equation (3.67)
∑

j

〈qm| j〉〈 j|qn〉 ≡
1
Ns

∑

j

ei(qn−qm)Rj = δnm, (3.134)

whereqn = n2π
L , q = n2π

L = n 2π
Nsa

are the discrete wavevectors,Ns = L/a is the number of sites in the
chain anda is the lattice spacing. By substitutingRj = ja and treating this expression as a geometric
series, show that

∑

j

〈qm| j〉〈 j|qn〉 ≡
1
Ns

∑

j

ei(qn−qm)Rj =
1
Ns

sin[π(n−m)]
sin[ πNs

(n−m)]
≡ δnm

thereby proving orthogonality.
Exercise 3.3 For the Harmonic oscillatorH = ~ω[a†a+ 1

2], we know that

〈n̂〉 = n(ω) =
1

eβ~ω − 1
, (3.135)

whereβ = 1/(kBT) and n̂ = a†a is the number operator. In the ground-state, using the equations
of motion for the creation and annihilation operators, we showed that the zero-point fluctuations in
position were described by the correlation function

1
2
〈{x(t), x(0)}〉 = ~

2mω
cosωt. (3.136)

Generalize this result to finite temperatures. You should find that there are two terms in the correlation
function.Pleasegive them a physical interpretation.

Exercise 3.4 (a) Show that ifa is a canonical bose operator, the canonical transformation

b = ua+ va†,
b† = ua† + va, (3.137)

(whereu andv are real), preserves the canonical commutation relations,providedu2 − v2 = 1.
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(b) Using the results of (a), diagonalize the Hamiltonian

H = ω(a†a+
1
2

) +
1
2
∆(a†a† + aa), (3.138)

by transforming it into the formH = ω̃(b†b+ 1
2). Find ω̃, u andv in terms ofω and∆. What happens

when∆ = ω?
(c) The Hamiltonian in (b) has a boson pairing term. Show thatthe ground-state ofH can be written

as coherent condensate of paired bosons, given by

|0̃〉 = e−α(a†a†)|0〉.

Calculate the value ofα in terms ofu andv. (Hint: |0̃〉 is the vacuum forb, i.eb|0̃〉 = (ua+ va†)|0̃〉 = 0.
Calculate the commutator of[a,e−αa†a† ] by expanding the exponential as a power series. Find a value
of α that guarantees thatb annihilates the vacuum|0̃〉. )

Exercise 3.5 (Harder) Find the classical normal mode frequencies and normal co-ordinates for the one
dimensional chain with Hamiltonian

H =
∑

j


p2

j

2mj
+

k
2

(φ j − φ j−1)2

 (3.139)

where at even sitesm2 j = m and at odd sitesm2 j+1 = M. Please sketch the dispersion curves.
(ii) What is the gap in the excitation spectrum?
(iii)Write the diagonalized Hamiltonian in second quantized form and discuss how you might arrive

at your final answer. You will now need two types of creation operator.
Exercise 3.6 (Harder) According to the “Lindeman” criterion, a crystal melts when the rms displacement

of its atoms exceeds a third of the average separation of the atoms. Consider a three dimensional crystal
with separationa, atoms of massm and a nearest neigbor quadratic interactionV = mω2

2 (~ΦR − ~ΦR+a)2.
(i) Estimate the amplitude of zero point fluctuations using the uncertainty principle, to show that if

~

mωa2
> ζc (3.140)

whereζc is a dimensionless number of order one, the crystal will be unstable, even at absolute zero,
and will melt due to zero-point fluctuations. (Hint... what would the answer be for a simple harmonic
oscillator?)

(ii) Calculateζc in the above model. If you like, to start out, imagine that theatoms only move in
one direction, so thatΦ is a scalar displacement at the site with equilibrium position R. Calculate the
rms zero-point displacement of an atom

√
〈0|Φ(x)2|0〉. Now generalize your result to take account of

the fluctuations in three orthogonal directions.
(iii)Suppose~ω/kB = 300K, and the atom is a Helium atom. Assuming thatω is independent of

atom separationa, estimate the critical atomic separationac at which the solid becomes unstable to
quantum fluctuations. Note that in practiceω is dependent ona, and rises rapidly at short distances,
with ω ∼ a−α, whereα > 2. Is the solid stable fora < ac or for a > ac?

Exercise 3.7 (Harder) Find the transformation that diagonalizes the Hamiltonian

H =
∑

j

{
J1(a† i+1ai + H.c) + J2(a† i+1a† i + H.c)

}
(3.141)

where the ith site is located atRj = a j. You may find it helpful to (i) transform to momentum space,
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writing a j =
1

N1/2

∑
q eiqRj aq and (ii) carrying out a canonical transformation of the formbq = uqaq +

vqa†−q, whereu2 − v2 = 1. What happens whenJ1 = J2?
Exercise 3.8 (Harder) This problem sketches the proof that the displacement of the quantum Harmonic

oscillator, originally in its ground-state (in the distantpast), is given by

〈x(t)〉 =
∫ ∞

0
R(t − t′) f (t′)dt′, (3.142)

where

R(t − t′) =
i
~
〈0|[x(t), x(t′)]|0〉 (3.143)

is the “response function” andx(t) is the position operator in the Heisenberg representationof H0. A
more detailed discussion can be found in chapter 10.

An applied forcef (t) introduces an additional forcing term to the harmonic oscillator Hamiltonian

Ĥ(t) = H0 + V(t) = Ĥ0 − f (t)x̂, (3.144)

whereH0 = ~ω(a†a + 1
2) is the unperturbed Hamiltonian. To compute the displacement of the Har-

monic oscillator, it is convenient to work in the “interaction representation”, which is the Heisenberg
representation forH0. In this representation, the time-evolution of the wavefunction is due to the force
term. The wavefunction of the harmonic oscillator in the interation representation|ψI (t)〉 is related to
the Schrodinger state|ψS(t)〉 by the relation|ψI (t)〉 = eiH0t/~|ψS(t)〉.
1 By using the equation of motion for the Schrodinger statei~∂t |ψS(t)〉 = (H0+V(t))|ψS(t)〉, show that

the time evolution of the wavefunction in the interaction representation is

i~∂t |ψI (t)〉 = VI (t)|ψI (t)〉 = − f (t)x̂(t)|ψI (t)〉, (3.145)

whereVI (t) = eiH0t/~V̂(t)e−iH0t/~ = −x(t) f (t) is the force term in the interaction representation.
2 Show that if|ψ(t)〉 = |0〉 at t = −∞, then the leading order solution to the above equation of motion

is then

|ψI (t)〉 = |0〉 +
i
~

∫ t

−∞
dt′ f (t′)x̂(t′)|0〉 +O( f 2), (3.146)

so that

〈ψI (t)| = 〈0| −
i
~

∫ t

−∞
dt′ f (t′)〈0|x̂(t′) +O( f 2). (3.147)

3 Using the results just derived expand the expectation value 〈ψI (t)|x(t)|ψI (t)〉 to linear order inf ,
obtaining the above cited result.
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4 Conserved Particles

The method we have just examined is fine for “collective excitations” of a medium, but it does not make it
self-evident how we should proceed for systems of conservedparticles: particles with mass, such as a gas of
Helium-4 atoms, or an electron gas inside a metal. Now we shall return to discuss conserved particles.
First quantized quantum mechanicscandeal with many body physics, through the introduction of a many
particle wavefunction. This is the approach favored in fields such as quantum chemistry, where the number
of electrons is large, but not macroscopic. The quantum chemistry approach revolves around the many-body
wavefunction. ForN particles, this a function of 3N variables andN spins. The Hamiltonian is then an
operator expressed in terms of these co-ordinates:

ψ −→ ψ(x1, x2 . . . xN, t)

H −→
∑

j

[
− ~

2

2m
∇2

j + U(x j)

]
+

1
2

∑

i< j

V(xi − x j) (4.1)

With a few famous exceptions this method is cumbersome, and ill-suited to macroscopically large systems.
The most notable exceptions occur in low dimensional problems, where wavefunctions of macroscopically
large ensembles of interacting particles have been obtained. Examples include

• Bethe Ansatz solutions to interacting one dimensional, andimpurity problems[1, 2, 3, 4].

• Laughlin’s wavefunction for interacting electrons in highmagnetic fields, at commensurate filling factors[5,
6].

Second-quantization provides a general way of approachingmany body systems in which the wavefunction
plays a minor role. As we mentioned in chapter 3, the essence of second-quantization is a process of raising
the Schr̈odinger wavefunction to the level of an operator which satisfies certain “canonical commutation” or
“canonical anticommutation” algebras”. In first quantizedphysics physical properties of a quantum particle,
such as its density, Kinetic energy, potential energy can beexpressed in terms of the one-particle wave-
function. Second quantization elevates each of these quantities to the status of an operator by replacing the
one-particle wavefuncion by its corresponding field operator:

ψ(x, t) −→ ψ̂(x, t)
one particle wavefunction Field operator

O(ψ∗, ψ) −→ Ô(ψ̂†, ψ̂)


2nd Quantization (4.2)

For example, Born’s famous expression for the one-particle(probability) density becems an operator as fol-
lows:

ρ(x) = |ψ(x)|2 −→ ρ̂(x) = ψ̂†(x)ψ̂(x), (4.3)
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so that the potential energy associated with an external potential is

V̂ =
∫

d3xU(x)ρ̂(x). (4.4)

Similarly, the Kinetic energy in first-quantization

T[ψ∗, ψ] =
∫

d3xψ∗(x)

[
− ~

2

2m
∇2

]
ψ(x) (4.5)

becomes the operator

T̂ =
∫

d3xψ̂†(x)

[
− ~

2

2m
∇2

]
ψ̂(x). (4.6)

Finally

H =
∫

d3xψ̂†(x)

[
− ~

2

2m
∇2 + U(x)

]
ψ(x) +

1
2

∫
d3xd3x′V(x− x′) : ρ̂(x)ρ̂(x′) : (4.7)

is the complete many-body Hamiltonian in second-quantizedform. HereV(x− x′) is the interaction potential
between the particles, and the symbol “:” reflects the fact that order of the operators counts. “: . . . :” is the
normal ordering operator denotes that all creation operators between the two colons must be ordered to lie to
the left of all destruction operators.

4.1 Commutation and Anticommutation Algebras

In 1928, Jordan and Wigner[7] proposed that the microscopicfield operators describing identical particles
divide up into two types. These are axioms of quantum field theory. For identical bosons, field operators
satisfy a commutation algebra, whereas for Fermions, the field operators satisfy ananticommutationalgebra.
Since we will be dealing with many of their properties in parallel, it useful to introduce a unified notation for
commutators and anticommutators as follows

{a,b} = ab+ ba≡ [a,b]+ ,
[a,b] = ab− ba≡ [a,b]− , (4.8)

so that

[a,b]± = ab± ba. (4.9)

We shall adopt the+/− subscript notation in this chapter, while we are discussingboth fermions and bosons
together.

The algebra of field operators is then

[ψ(1), ψ(2)]± = [ψ†(2), ψ†(1)]± = 0

[ψ(1), ψ†(2)]± = δ(1− 2)


Fermions/ Bosons (4.10)

When spin is involved, 1≡ (x1, σ1) and δ(1 − 2) = δ(D)(x1 − x2)δσ1σ2. We shall motivate these axioms
in two ways: (i) by showing, in the case of Bosons, that they are a natural result of trying to quantize the
one-particle wavefunction. ; (ii) by showing that they leadto the first quantized formulation of many-body
physics, naturally building the particle exchange statistics into the mathematical framework.
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Table. 5.1. First and Second Quantization treatment of conserved particles.

First Quantization Second Quantization

Wavefn−→ Field
Operator

ψ(x) = 〈x|ψ〉 ψ̂(x)

Commutator [x, p] = i~ [ψ̂(x), ψ̂†(x′)]∓ = δD(x− x′)

Density ρ(x) = |ψ(x)|2 ρ̂(x) = ψ̂†(x)ψ̂(x)

Arbitrary Basis ψλ = 〈λ|ψ〉 ψ̂λ

Change of Basis 〈s̃|ψ〉 = ∑
λ〈s̃|λ〉〈λ|ψ〉 âs =

∑
λ〈s̃|λ〉ψ̂λ

Orthogonality 〈λ|λ′〉 = δλλ′ [ψλ, ψ†λ′ ]∓ = δλλ′

One ptcle Energy p2

2m + U
∫

x
ψ̂†(x)

(
− ~2

2m + U(x)
)
ψ̂(x)

Interaction
∑

i< j V(xi − x j) V̂ = 1
2

∫
x,x′

V(x− x′) : ρ̂(x)ρ̂(x′) :

= 1
2

∑
V(q)c†k+qc†k′−qck′ck

Many Body
Wavefunction

Ψ(x1, x2 . . . xN) 〈0|ψ̂(x1) . . . ψ̂(xN)|0〉

Schr̈odinger Eqn
(∑Hi +

∑
i< j Vi j

)
Ψ = i~Ψ̇

[H (0) +
∫

x′
ρ̂(x′)V(x′ − x)

]
ψ̂(x) = i~ψ̇(x)

Table 5.1 summarizes the main points of second-quantization that we shall now discuss in detail.

4.1.1 Heuristic Derivation for Bosons

The name second-quantization derives from the notion that many body physics can be obtained by quantizing
the one-particle wavefunction. Philosophically, this is very tricky, for surely, the wavefunction is already a
quantum object? Let us imagine however, a thought experiment, when we prepare a huge number of non-
interacting particles, prepared in such a way that they are all in precisely the same quantum state. The fea-
sibility of this does not worry us here, but note that it can actually be done for a large ensemble of bosons,
by condensing them into a single quantum state. In this circumstance, every single particle lies in the same
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one-particle state. If we time evolve the system we can beginto think of the single-particle wavefunction as
if it is a classical variable.

Let us briefly recall one-particle quantum mechanics. If theparticle is in a state|ψ〉, then we can always
expand the state in terms of a complete basis{|n〉}, as follows:

|ψ(t)〉 =
∑

n

|n〉
ψn(t)︷  ︸︸  ︷
〈n|ψ(t)〉 =

∑

n

|n〉ψn(t) (4.11)

so that|ψn(t)|2 = pn(t) gives the probability of being in staten. Now applying Schrodinger’s equation,Ĥ|ψ〉 =
i~∂t |ψ〉 gives

i~ψ̇n(t) =
∑

m

〈n|H|m〉ψm(t)

i~ψ̇∗n(t) = −
∑

m

〈m|H|n〉ψ∗m(t) (4.12)

Now if we write the ground-state energy as a functional of thebm(t), we get

H(ψ, ψ∗) = 〈H〉 =
∑

m,n

ψ∗mψn〈m|H|n〉 (4.13)

we see that the equations of motion can be written in Hamiltonian form

ψ̇m =
∂H(ψ, ψ∗)

i~∂ψ∗m
, (c.f q̇ =

∂H
∂p

)

i~ψ̇∗m = −
∂H(ψ, ψ∗)
∂ψm

, (c.f ṗ = −∂H
∂q

) (4.14)

so we can identify

{ψn, i~ψ
∗
n} ≡ {qn, pn} (4.15)

as the canonical position and momentum co-ordinates.
But suppose we don’t have a macroscopic number of particles in a single state. In this case, the amplitudes

ψn(t) are expected to undergo quantum fluctuations. Let us examine what happens if we “second-quantize”
these variables, making the replacement

[qn, pm] = i~δnm = i~[ψn, ψ
†

m] (4.16)

or

[ψn, ψm] = [ψ†n, ψ†m] = 0,

[ψn, ψ
†

m] = δnm

(4.17)

In terms of these operators, our second quantized Hamiltonian becomes

H =
∑

m,l

ψ̂†mψ̂l〈m|H|l〉 (4.18)
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If we now use this to calculate the time-evolution of the quantum fields we obtain

−i~∂tψ j = [Ĥ, ψ j ] =
∑

m,l

〈m|H|l〉

−δm jψl︷       ︸︸       ︷
[ψ†mψl , ψ j ] (4.19)

Eliminating the sum overm, we obtain

−i~∂tψ j = −
∑

l

〈 j|H|l〉ψl

−i~∂tψ
†

j = [Ĥ, ψ† j ] =
∑

l

ψ† l〈l|H| j〉, (4.20)

where the complex conjugated expression gives the time evolution of ψ† l . Remarkably, the equations of
motion of the operators match the time evolution of the one-particle amplitudes. But now we have operators,
we have all the new physics associated with quantum fluctuations of the particle fields.

4.2 What about Fermions?

Remarkably, as Jordan and Wigner first realized, we recover precisely the same time-evolution if second-
quantize the operators using anticommutators[7], rather than commutators, and it this is what gives rise to
fermions and the exclusion principle. But for fermions, we can not offer a heuristic argument, because they
don’t condense: as far as we know, there is no situation in which individual fermi field operators behave
semi-classically (although of course, in a superconductor, pairs of fermions that behave semi-classically).

In fact, all of the operations we carried out above work equally well with either canonical commutation or
canonicalanticomutationrelations:

[ψn, ψm]± = [ψ†n, ψ†m]± = 0,

[ψn, ψ
†

m]± = δnm

(4.21)

where the± refers to fermions/bosons respectively.
To evaluate the equation of motion of the field operators, we need to know the commutator [H, ψn]. Using

the relation

[ab, c] = a[b, c]± ∓ [a, c]±b (4.22)

we may verify that

[ψ†mψl , ψ j ] = ψ
†

m[

0︷︸︸︷
ψl , ψ j ]±

−δm j︷        ︸︸        ︷
∓[ψ†m, ψ j ]± ψl

= −δm jψl (4.23)

so that

−i~∂tψ j = [Ĥ, ψ j ] =
∑

m,l

〈m|H|l〉

−δm jψl︷       ︸︸       ︷
[ψ†mψl , ψ j ]
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= −
∑

l

〈 j|H|l〉ψl (4.24)

independently of whether we use an anticommuting, or commuting algebra.
Let us now go on, and look at some general properties of second-quantized operators that hold for both

bosons and fermions.

4.3 Field operators in different bases

Let us first check that our results don’t depend on the one-particle basis we use. To do this, we must confirm
that the commutation or anticommutation algebra of bosons or fermions is basis independent. Suppose we
have two bases of one-particle states: the{|r〉} basis, and a new{|s̃〉} basis, where

|ψ〉 =
∑

r

|r〉ψr =
∑

s

|s̃〉as (4.25)

where〈s̃|ψ〉 = as, 〈r |ψ〉 = ψr . Introducing the completeness relation 1=
∑

r |r〉〈r | into the first expression,
we obtain

as︷︸︸︷
〈s̃|ψ〉 =

∑

r

〈s̃|r〉
ψs︷︸︸︷
〈r |ψ〉 (4.26)

If this is how the one-particle states transform between thetwo bases, then we must use the same unitary
transformation to relate the field operators that destroy particles in the two bases

âs =
∑

r

〈s̃|r〉ψ̂r (4.27)

The commutation algebra of the new operators is now

[âs, â
†

p]± =
∑

l,m

〈s̃|l〉
δlm︷      ︸︸      ︷

[ψ̂l , ψ̂
†

m]±〈m|p̃〉 (4.28)

This is just the pre- and post-multiplication of a unit operator by the unitary matrixUsl = 〈s̃|l〉 and its
conjugateU†mp = 〈m|p̃〉. The final result, is unity, as expected:

[âs, â
†

p]± =
∑

r

〈s̃|r〉〈r |p̃〉 = 〈s̃|p̃〉 = δsp (4.29)

In other words, the canonical commutation algebra is preserved by unitary transformations of basis.
A basis of particular importance, is the position basis. Theone-particle wavefunction can always be de-

composed in a discrete basis, as follows

ψ(x) = 〈x|ψ(t)〉 =
∑

n

〈x|n〉ψn (4.30)

where 〈x|n〉 = φn(x) is the wavefunction of the nth state. We now define the corresponding destruction
operator

ψ̂(x) =
∑

n

〈x|n〉ψ̂n (4.31)
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which defines the field operator in real space. Using completeness of the one-particle eigenstates 1=
∫

dDx|x〉〈x|,
we can expand the orthogonality relationδnm = 〈n|m〉 as

δnm = 〈n|

1=
∫

dD x|x〉〈x|︷︸︸︷
1̂ |m〉 =

∫
dDx〈n|x〉〈x|m〉.

By integrating (4.31) overx with 〈n|x〉, we can then invert this equation to obtain

ψn =

∫
dDx〈n|x〉ψ(x), ψ†n =

∫
dDxψ†(x)〈x|n〉 (4.32)

You can see by now, that so far as transformation laws are concerned,ψn ∼ 〈n| andψ(x) ∼ 〈x| transforms like
“bra” vectors, whilst their conjugates transform like “kets”.

By moving to a real-space representation, we have traded in adiscrete basis, for a continuous basis. The
corresponding “unit” operator appearing in the commutation algebra now becomes a delta-function.

[ψ(x), ψ†(y)]± =
∑

n,m

〈x|n〉〈m|y〉
δnm︷       ︸︸       ︷

[ψn, ψ
†

m]±

=
∑

n

〈x|n〉〈n|y〉 = 〈x|y〉

= δ3(x− y) (4.33)

where we have assumed a three-dimensional system.
Another basis of importance, is the basis provided by the one-particle energy eigenstates. In this basis

〈l|H|m〉 = Elδlm, so the Hamiltonian becomes diagonal

H =
∑

l

Elψ
†

lψl =
∑

El n̂l (4.34)

The Hamiltonian of the non-interacting many-body system thus divides up into a set of individual compo-
nents, each one describing the energy associated with the occupancy of a given one-particle eigenstate. The
eigenstates of the many-body Hamiltonian are thus labelledby the occupancy of thelth one-particle state. Of
course, in a real-space basis the Hamiltonian becomes more complicated. Formally, if we transform this back
to the real-space basis, we find that

H =
∫

dDxdDx′ψ†(x)〈x|H|x′〉ψ(x′) (4.35)

For free particles in space, the one-particle Hamiltonian is

〈x|H|x′〉 =
[
− ~

2

2m
∇2 + U(x)

]
δD(x− x′) (4.36)

so that the Hamiltonian becomes

H =
∫

dDxψ†(x)
[
− ~

2

2m
∇2 + U(x)

]
ψ(x) (4.37)

which despite its formidable appearance, is just a a transformed version of the diagonalized Hamiltonian
(4.34).

45

Chapter 4. c©Piers Coleman 2011

Example 4.1: By integrating by parts, taking care with the treatment of surface terms, show that the
second quantized expression Hamiltonian (4.37) can be re-written in the form

H =
∫

dDx

(
~

2

2m
|∇ψ(x)|2 + U(x)|ψ(x)|2

)
, (4.38)

where we have taken a notational liberty common in field theory, denoting|∇ψ(x)|2 ≡ ~∇ψ†(x) · ~∇ψ(x)
and|ψ(x)|2 ≡ ψ†(x)ψ(x).
Solution: Let us concentrate on the kinetic energy term in the Hamiltonian, writingH = T +U, where

T =
∫

dDxψ†(x)

(
− ~

2

2m
∇2

)
ψ(x). (4.39)

Integrating this term by parts we can split it into a “bulk” and a “surface” term, as follows:

T = − ~
2

2m

∫
dDx~∇ψ†(x) · ~∇ψ(x) +

~
2

2m

TS︷                         ︸︸                         ︷∫
dDx~∇ ·

(
ψ†(x)~∇ψ(x)

)
. (4.40)

Using the divergence theorem, we can rewrite the total derivative as a surface integral

TS = −
~

2

2m

∫
d~S ·

(
ψ†(x)~∇ψ(x)

)
(4.41)

Now it is tempting to just drop this term as a surface term that “vanishes at infinity”. However, here
we are dealing with operators, so this brash step requires a little contemplationbefore we take it for
granted. One way to deal with this term is to use periodic boundary conditions. In this case there really
are no boundaries, or more strictly speaking, opposite boundaries cancel (

∫
R

dS +
∫

L
dS = 0), so the

surface term is zero. But suppose we had used hard wall boundary conditions, what then?
Well, in this case, we can decompose the field operators in terms of the one-particle eigenstates of the
cavity. Remembering that under change of bases,ψ(x) ∼ 〈x| andψ†(x) ∼ |x〉 behave as bras and kets
respectively, we write

ψ(x) =
∑

n

φn(x)︷︸︸︷
〈x|n〉 ψn, ψ†(x) =

∑

n

ψ†n

φ∗n(x)︷︸︸︷
〈n|x〉 .

Substituting these expressions intoTS (4.41), the surface term becomes

TS =
∑

n,m

t(S)
nmψ

†
nψm

tSnm = −
~

2

2m

∫
d~S · φ∗n(x)~∇φm(x) (4.42)

Providedφn(x) = 0 on the surface, it follows that the matrix elementstSnm = 0 so thatT̂S = 0.
Thus whether we use hard-wall or periodic boundary conditions, we can drop the surface contribution
to the Kinetic energy in (4.40), enabling us to write

T =
~

2

2m

∫
dDx|~∇ψ(x)|2

and when we add in the potential term, we obtain (4.38).
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4.4 Fields as particle creation and annihilation operators.

By analogy with collective fields, we now interpret the quantity n̂l = ψ
†

lψl as the number number operator,
counting the number of particles in the one-particle statel. The total particle number operator is then

N =
∑

l

ψ† lψl (4.43)

Using relation (4.22), it is easy to verify that for both fermions and bosons,

[N̂, ψl ] = [n̂l , ψl ] = −ψl , [N̂, ψ† l ] = [n̂l , ψ
†

l ] = ψ
†

l . (4.44)

In other words,N̂ψ† l = ψ† l(N̂ + 1) so thatψ† l adds a particle to statel. Similarly, sinceN̂ψl = ψl(N̂ − 1), ψl

destroysa particle from statel.
There is however a vital and essential difference between bosons and fermions. For bosons, the number of

particlesnl in the lth state is unbounded, but for fermions, since

ψ†
2
l =

1
2
{ψ† l , ψ† l} = 0 (4.45)

the amplitude to add more than one particle to a given state isalways zero. We can never add more than
one particle to a given state: in otherwords, theexclusion principlefollows from the algebra! The occupation
number bases for bosons and fermions are given by

|n1,n2 . . . nl . . .〉 =
∏

l
(ψ† l )nl√

nl !
|0〉, (nr = 0,1,2 . . . ) bosons

|n1,n2 . . .nr〉 = (ψ†r )nr . . . (ψ†1)n1 |0〉, (nr = 0,1) fermions

(4.46)

A specific example for fermions, is

|
1

1
2

0
3

1
4

1
5

0
6

1〉 = ψ†6ψ†4ψ†3ψ†1|0〉 (4.47)

which contains particles in the 1st, 3rd, 4th and 6th one-particle states. Notice how theorderin which we add
the particles affects the sign of the wavefunction, so exchanging particles 4and 6 gives

ψ†4ψ
†

6ψ
†

3ψ
†

1|0〉 = −ψ†6ψ†4ψ†3ψ†1|0〉 = −|
1

1
2

0
3

1
4

1
5

0
6

1〉 (4.48)

By contrast, a bosonic state is symmetric, for example

|
1

8
2

0
3

5
4

2
5

4
6

1〉 =
1

√
4!2!5!8!

ψ†6(ψ†5)4(ψ†4)2(ψ†3)5(ψ†1)8|0〉 (4.49)

To get further insight, let us transform the number operatorto a real-space basis by writing

N̂ =
∫

dDxdDy
∑

l

ψ†(x)

δD(x−y)︷   ︸︸   ︷
〈x|l〉〈l|y〉ψ(y) (4.50)

so that

N̂ =
∫

dDxψ†(x)ψ(x) (4.51)
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From this expression, we are immediately led to identify

ρ(x) = ψ†(x)ψ(x) (4.52)

as the density operator. Furthermore, since

[ρ(y), ψ(x)] = ∓[ψ†(y), ψ(x)] ± ψ(y) = −δ3(x− y)ψ(y). (4.53)

we can we can identifyψ(x) as the operator which annihilates a particle atx.

Example 4.2: Using the result (4.53) that if

N̂R =
∫

y∈R
d3yρ(~y)

(4.54)

measures the number of particles in some regionR, that

[N̂R, ψ(x)] =

{
−ψ(x), (x ∈ R)

0 (x < R) (4.55)

By localizing regionR aroundx0, use this to prove thatψ(x0) annihilates a particle at positionx0.
Solution: By directly commutingN̂R with ψ(x), we obtain

[N̂R, ψ(x)] =
∫

y∈R
[ρ(y), ψ(x)] = −

∫

y∈R
δ3(x− y)ψ(y) =

{
−ψ(x), (x ∈ R)

0 (x < R)

Suppose|nR〉 is a state with a definite numbernR of particles insideR. If the regionR is centered around
x0, then it follows that

N̂Rψ(x0)|nR〉 = ψ(x0)(N̂R − 1)|nR〉 = (nR − 1)ψ(x0)|nR〉

contains one less particle. In this way, we see thatψ(x) annihilates a particle from inside regionR, no
matter how small that region is made, proving thatψ(x) annihilates a particle at positionx0.

Example 4.3: Supposeb~q destroys a boson in a cubic box of side lengthL,where~q = 2π
L (i, j, k) is

the momentum of the boson. Express the field operators in real space, and show they satisfy canonical
commutation relations. Write down the Hamiltonian in both bases.
Solution The field operators in momentum space satisfy [b~q,b†~q′ ] = δ~q~q′ . We may expand the field
operator in real space as follows

ψ(x) =
∑

q

〈~x|~q〉b~q (4.56)

Now

〈~x|~q〉 = 1
L3/2

ei~q·~x (4.57)

is the one-particle wavefunction of a boson with momentum~q. Calculating the commutator between
the fields in real space, we obtain

[ψ(~x), ψ†(~y)] =
∑

~q,~q′
〈~x|~q〉〈~q′|~y〉

δ~q~q′︷    ︸︸    ︷
[b~q,b

†
~q′ ] =

∑

~q

〈~x|~q〉〈~q|~y〉

=
1
L3

∑

q

ei~q·(~x−~y) = δ(3)(~x− ~y). (4.58)
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The last two steps could have been carried out by noting that
∑

q |q〉〈q| = 1, so that [ψ(~x), ψ†(~y)] =
〈x|y〉 = δ3(x− y).
The Hamiltonian for the bosons in a box is

H = − ~
2

2m

∫
d3xψ†(x)∇2ψ(x) (4.59)

We now Fourier transform this, writing

ψ†(x) =
1

L3/2

∑

q

e−i~q·~xb†q

∇2ψ(x) = − 1
L3/2

∑

q

q2ei~q·~xbq (4.60)

Substituting into the Hamiltonian, we obtain

H =
1
L3

∑

q, q′
ǫqb†q′bq

∫
d3x

L3δq−q′︷ ︸︸ ︷
eiq−q′ ·x =

∑

q

ǫqb†qbq, (4.61)

where

ǫq =

(
~

2q2

2m

)
. (4.62)

is the one-particle energy.

4.5 The vacuum and the many body wavefunction

We are now in a position to build up the many-body wavefunction. Once again, of fundamental importance
here, is the notion of the vacuum, the unique state|0〉 which is annihilated by all field operators. If we work
in the position basis, we can add a particle at sitex to make the one-particle state

|x〉 = ψ†(x)|0〉, (4.63)

Notice that the overlap between two one-particle states is

〈x|x′〉 = 〈0|ψ(x)ψ†(x′)|0〉. (4.64)

By using the (anti) commutation algebra to move the creationoperator in the above expression to the right-
hand side, where it annihilates the vacuum, we obtain

〈0|ψ(x)ψ†(x′)|0〉 = 〈0|
δ(3)(x−x′)︷           ︸︸           ︷

[ψ(x), ψ†(x′)]±|0〉 = δ(3)(x− x′). (4.65)

We can equally well add many particles, forming theN-particle state:

|x1, x2 . . . xN〉 = ψ†(xN) . . . ψ†(x2)ψ†(x1)|0〉 (4.66)

Now the corresponding “bra” state is given by

〈x1, x2 . . . xN| = 〈0|ψ(x1)ψ(x2) . . . ψ(xN) (4.67)
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The wavefunction of the N-particle stateΨS(t) is the overlap with this state

ΨS(x1, x2, . . . xN, t) = 〈x1, x2 . . . xN|ΨS(t)〉 = 〈0|ψ(x1)ψ(x2) . . . ψ(xN)|ΨS(t)〉 (4.68)

Remarks

• In the above expression, the time-dependence of the wavefunction lies in the ket vector|Ψ(t)〉. We can
alternatively write the wavefunction in terms of the time-dependent Heisenberg field operatorsψ(x, t) =
eiHt/~ψ(x)e−iHt/~ and the stationary Heisenberg ket vector|ΨH〉 = eiHt/~|ΨS(t)〉 as follows

Ψ(x1, x2, . . . xN, t) = 〈0|ψ(x1, t)ψ(x2, t) . . . ψ(xN, t)|ΨH〉. (4.69)

• The commutation/anticommutation algebra guarantees that the symmetry of this wavefunction under par-
ticle exchange is positive for bosons, and negative for fermions, so that if we permute the particles,
(12. . .N)→ (P1P2 . . .PN)

〈0|ψ(xP1)ψ(xP2) . . . ψ(xPN )|ΨS(t)〉 = (∓1)P〈0|ψ(x1)ψ(x2) . . . ψ(xN)|Ψ(t)〉 (4.70)

whereP is the number of pairwise permutations involved in making the permutation. Notice that for
fermions, this hard-wires the Pauli Exclusion principle into the formalism, and guarantees a node at
locations where any two position (and spin) co-ordinates coincide.

Example Two spinless fermions are added to a cubic box with sides of lengthL, in momentum states
k1 andk2, forming the state

|Ψ〉 = |k1, k2〉 = c†k2c†k1 |0〉 (4.71)

Calculate the two-particle wavefunction

Ψ(x1, x2) = 〈x1, x2|Ψ〉 (4.72)

SolutionWritten out explicitly, the wavefunction is

Ψ(x1, x2) = 〈0|ψ(x1)ψ(x2)c
†

k2c†k1 |0〉 (4.73)

To evaluate this quantity, we commute the two destruction operators to the right,until they annihilate
the vacuum. Each time a destruction operator passes a creation operator, we generate a “contraction”
term

{ψ(x), c†k} =
∫

d3y

δ3(x−y)︷         ︸︸         ︷
{ψ(x), ψ†(y)}〈y|k〉 = 〈x|k〉 = L−3/2eik·x (4.74)

Carrying out this procedure, we generate a sum of pairwise contractions, as follows:

〈0|ψ(x1)ψ(x2)c
†

k2c†k1 |0〉 = 〈x1|k1〉〈x2|k2〉 − 〈x1|k2〉〈x2|k1〉
=

∣∣∣∣∣
〈x1|k1〉 〈x1|k2〉
〈x2|k1〉 〈x2|k2〉

∣∣∣∣∣

=
1
L3

[
ei(k1·x1+k2·x2) − ei(k1·x2+k2·x1)

]

Note: the determinantal expression for the two particle wavefunction is an example of a “Slater deter-
minant”. The N dimensional generalization can be used to define the wavefunction of the corresponding
N particle state.
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4.6 Interactions

Second-quantization is easily extended to incorporate interactions. Classically, the interaction potential en-
ergy between particles is given by

V =
1
2

∫
d3xd3x′V(x− x′)ρ(x)ρ(x′) (4.75)

so we might expect that the corresponding second-quantizedexpression is

1
2

∫
d3xd3x′V(x− x′)ρ̂(x)ρ̂(x′) (4.76)

This is wrong, because we have not been careful about the ordering of operators. Were we to use (4.76), then
a one-particle state would interact with itself! We requirethat the action of the potential on the vacuum, or a
one-particle state, gives zero

V̂|0〉 = V̂|x〉 = 0 (4.77)

To guarantee this, we need to be careful that we “normal-order” the field operators, by permuting them so
that all destruction operators are on the right-hand-side.All additional terms that are generated by permuting
the operators are dropped, but the signs associated with thepermutation process are preserved. We denote the
normal ordering process by two semi-colons. Thus

: ρ(x)ρ(y) : = : ψ†(x)ψ(x)ψ†(y)ψ(y) :
= ∓ : ψ†(x)ψ†(y)ψ(x)ψ(y) :=: ψ†(y)ψ†(x)ψ(x)ψ(y) : (4.78)

and the correct expression for the interaction potential isthen

V =
1
2

∫
d3xd3x′V(x− x′) : ρ̂(x)ρ̂(x′) :

=
∑

α,β

1
2

∫
d3xd3x′V(x− x′)ψα

†(y)ψβ
†(x)ψβ(x)ψα(y) (4.79)

where we have written a more general expression for fields with spinα, β ∈ ±1/2.

Example. Show that the action of the operatorV on the many body state|x1, . . . xN〉 is given by

V̂|x1, x2, . . . xN〉 =
∑

i< j

V(xi − xj)|x1, x2, . . . xN〉 (4.80)

Solution: To prove this, we first prove the intermediate result

[V̂, ψ†(x)] =
∫

d3yV(x− y)ψ†(x)ρ(y). (4.81)

This result can be obtained by expanding out the commutator as follows:

[V̂, ψ†(x)] =
1
2

∫

y,y′
V(y− y′)ψ†(y)ψ†(y′)

δ(y−x)ψ(y′)±δ(y′−x)ψ(y)︷                ︸︸                ︷
[ψ(y′)ψ(y), ψ†(x)]

= ψ†(x)
1
2

∫

y′
V(x− y′)ρ(y′) ± 1

2

∫

y
V(y− x)

±ψ†(x)ψ†(y)︷      ︸︸      ︷
ψ†(y)ψ†(x)ψ(y)
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=

∫

y
V(x− y)ψ†(x)ρ(y), (4.82)

where the lower sign choice is for fermions.
We now calculate

V̂|x1, . . . xN〉 = V̂ψ†(xN) . . . ψ†(x1)|0〉 (4.83)

by commutingV̂ successively to the right until it annihilates with the vacuum. At each stage,we gener-
ate a “remainder term”. When we commute it past the the “jth” creation operator we obtain

(4.84)

where the remainder is

R j =

∫
d3yψ†(xN) . . .V(y− xj)ψ

†(xj)ρ(y) . . . ψ†(x1)|0〉 (4.85)

Next, usingρ(y)ψ†(xi) = ψ†(xi)ρ(y)+ψ†(xi)δ(y− xi), we commute the density operator to the right until
it annihilates the vacuum. The remainder terms generated by this processare then

R j =

j−1∑

i=1

V(xi − xj)ψ
†(xN) . . . ψ†(xj) . . . ψ

†(xi) . . . ψ
†(x1)|0〉

=

j−1∑

i=1

V(xi − xj)|x1, x2 . . . xN〉. (4.86)

Our final answer is the sum of the remaindersR j :

V̂ψ†(xN) . . . ψ†(x1)|0〉 =
∑

j=2,N

R j

=
∑

i< j

V(xi − xj)|x1, x2 . . . xN〉. (4.87)

In other words, the state|x1 . . . xN〉 is an eigenstate of the interaction operator, with eigenvalue given by
the classical interaction potential energy.

To get another insight into the interaction, we shall now rewrite it in the momentum basis. This is very
useful in translationally invariant systems, where momentum is conserved in collisions. Let us imagine we
are treating fermions, with spin. The transformation to a momentum basis is then

ψσ(x) =
∫

k
ckσei(k·x),

ψ†σ(x) =
∫

k
c†kσe−i(k·x), (4.88)

where{ckσ, c†k′σ′ } = (2π)3δ3(k − k′)δσσ′ are canonical fermion operators in momentum space and we have
used the short-hand notation

∫

k
=

∫
d3k

(2π)3
. (4.89)
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k1, α

k2 − q, β

k2, β

k1 + q, α

V (q)

q

tFig. 4.1 Scattering of two particles, showing transfer of momentum. q.

We shall also Fourier transform the interaction

V(x− x′) =
∫

q
V(q)eiq·(x−x′). (4.90)

When we substitute these expressions into the interaction, we need to regroup the Fourier terms so that the
momentum integrals are on the outside, and the spatial integrals are on the inside. Doing this, we obtain

V̂ =
1
2

∑

σσ′

∫

k1,2,3,4

V(q) × c†k4σc†k3σ′ck2σ′ck1σ,×spatial integrals (4.91)

where the spatial integrals take the form
∫

d3xd3x′ei(k1−k4+q)·xei(k2−k3−q)·x′ = (2π)6δ(3)(k4 − k1 − q)δ(3)(k3 − k2 + q), (4.92)

which impose momentum conservation at each scattering event. Using the spatial integrals to eliminate the
integrals overk3 andk4, the final result is

V̂ =
1
2

∑

α,β

∫

k1,k2,q
V(q)c†k1+qαc†k2−qβck2βck1α. (4.93)

In other words, when the particles scatter at positionsx andx′, momentum is conserved. Particle 1 comes in
with momentumk1, and transfers momentumq to particle 2. Particle 2 comes in with momentumk2, and
thereby gains momentumq:

particle 1 k1 −→ k1 + q
particle 2 k2 −→ k2 − q

(4.94)

as illustrated in Fig. 4.1. The matrix element associated with this scattering process is merely the Fourier
transform of the potentialV(q).
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Example 4.4: Particles interact via a delta-function interactionV(x) = Ua3δ(3)(x). Write down the
second-quantized interaction in a momentum space representation.
Solution: The Fourier transform of the interaction is

V(q) =
∫

d3xUa3δ(x)e−iq·x = Ua3 (4.95)

so the interaction in momentum space is

V̂ =
∑

α, β

Ua3

2

∫

k1, k2,q
c†k1−qαc†k2+qβck2βck1α (4.96)

Example 4.5: A set of fermions interact via a screened Coulomb (Yukawa) potential

V(r) =
Ae−λr

r
(4.97)

Write down the interaction in momentum space.
Solution: The interaction in momentum space is given by

V̂ =
1
2

∑

α, β

∫

k1, k2,q
V(q)c†k1+qαc†k2−qβck2βck1α (4.98)

where

V(q) =
∫

d3x
Ae−λr

r
e−iq·x (4.99)

To carry out this integral, we use Polar co-ordinates with the z-axis alignedalong the direction̂q.
Writing q · x = qr cosθ, thend3x = r2dφdcosθ → 2πr2dcosθ, so that

V(q) =
∫

4πr2drV(r)
1
2

∫ 1

−1
dcosθ

︸          ︷︷          ︸
〈e−iq·x〉= sinqr

qr

e−iqr cosθ (4.100)

so that for an arbitrary spherically symmetric potential

V(q) =
∫ ∞

0
4πr2drV(r)

(
sinqr

qr

)
(4.101)

In this case,

V(q) =
4πA

q

∫ ∞

0
dre−λr sin(qr) =

4πA
q2 + λ2

, (4.102)

Notice that the Coulomb interaction,

V(r) =
e2

4πǫ0r
, (4.103)

is the infinite range limit of the Yukawa potential, withλ = 0, A = e2/4πǫo, so that for the Coulomb
interaction,

V(q) =
e2

q2ǫo
. (4.104)

Example 4.6: If one transforms to a new one particle basis, writingψ(x) =
∑

sΦs(x)cs, show that the
interaction becomes

V̂ =
1
2

∑

lmnp

c† lc
†

mcncp〈lm|V|pn〉 (4.105)
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where

〈lm|V|pn〉 =
∫

x,x′
Φ∗l (x)Φp(x)Φ∗m(x′)Φ∗n(x

′)V(x− x′) (4.106)

is the matrix element of the interaction between the two particle states|lm〉 and|pn〉.

4.7 Equivalence with the Many Body Schr ödinger Equation

In this section, we establish that our second-quantized version of the many body Hamiltonian is indeed
equivalent to the many-body Schroedinger equation. Let us start with the Hamiltonian for an interacting gas
of charged particles,

H =

Ho︷                                           ︸︸                                           ︷
∑

σ

∫

x
ψσ
†
[
−~

2∇2

2m
+ U(x) − µ

]
ψσ(x)+

V̂︷                                ︸︸                                ︷
1
2

∫

x,x′
V(x− x′) : ρ̂(x)ρ̂(x′) : . (4.107)

where
∫

x
≡

∫
d3x, and by convention, we work in the Grand Canonical ensemble,subtracting the termµN

from the Schr̈odinger HamiltonianHS, H = HS − µN. For a Coulomb interaction

V(x− x′) =
e2

4πǫo|x− x′| (4.108)

but the interaction might take other forms, such as the hard-core interaction between neutral atoms in liquid
He-3 and He-4.

The Heisenberg equation of motion of the field operator is

i~
∂ψσ

∂t
= [ψσ,H]. (4.109)

Using the relations

[ψσ(x), ψσ′
†(x′)Ox′ψσ′ (x

′)] = δσσ′δ
3(x− x′)Oxψσ(x),

: [ψσ(x), ρ(x1)ρ(x2)] : = : [ψσ(x), ρ(x1)]ρ(x2) : + : ρ(x1)[ψσ(x), ρ(x2)] :
= δ3(x1 − x)ρ(x2)ψσ(x) + δ3(x2 − x)ρ(x1)ψσ(x)

we can see that the comutators of the one- and two-particle parts of the Hamiltonian with the field operator
are

[ψσ(x),Ho] =
[
−~

2∇2

2m
+ U(x) − µ

]
ψσ(x)

[ψσ(x),V] =
∫

d3x′V(x′ − x)ρ(x′)ψσ(x) (4.110)

The final equation of motion of the field operator thus resembles a one-particle Schrodinger equation.

i~
∂ψσ

∂t
=

[
−~

2∇2

2m
+ U(x) − µ

]
ψσ(x) +

∫
d3x′V(x′ − x)ρ(x′)ψσ(x) (4.111)
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If we now apply this to the many body wavefunction, we obtain

i~
∂Ψ(1,2, . . .N)

∂t
= i~

∑

j=1,N

〈0|ψ(1) . . .
∂ψ( j)
∂t

. . . ψ(N)|Ψ〉

=
∑

j

[
−
~

2∇2
j

2m
+ U(x j) − µ

]
Ψ

+
∑

j

∫
d3x′V(x′ − x j)〈0|ψ(1) . . . ρ(x′)ψσ(x j) . . . ψ(N)|Ψ〉

By commuting the density operator to the left, until it annihilates with the vacuum, we find that

〈0|ψ(1) . . . ρ(x′)ψσ(x j) . . . ψ(N)|Ψ〉 =
∑

l< j

δ3(x′ − xl)〈0|ψ(1) . . . ψ(N)|Ψ〉 (4.112)

so that the final expression for the time evolution of the manybody wavefunction is precisely the same as we
obtain in a first quantized approach.

i~
∂Ψ

∂t
=


∑

j

H (o)
j +

∑

l< j

Vl j

Ψ (4.113)

Our second-quantized approach has the advantage that it builds in the exchange statistics, and it does not need
to make an explicit reference to the many body wavefunction.

4.8 Identical Conserved Particles in Thermal Equilibrium

4.8.1 Generalities

By quantizing the particle field, we have been led to a versionof quantum mechanics with a vastly expanded
Hilbert space which includes the vacuum and all possible states with an arbitrary number of particles. An
exactly parallel development occurs in statistical thermodynamics, in making the passage from a canonical, to
a grand canonical ensemble, where systems are considered tobe in equilibrium with a heat and particle bath.
Not surprisingly then, second quantization provides a beautiful way of treating a grand canonical ensemble
of identical particles.

When we come to treat conserved particles in thermal equilibrium, we have to take into the account the
conservation of two independent quantities

• Energy.E
• Particle number.N

Statistical mechanics usually begins with an ensemble of identical systems of definite particle number and en-
ergyE andN respectively. (More precisely, particle number and energylying in the narrow ranges [N,N+dN]
and [E,E + dE], respectively). Such an ensemble is called a “microcanonical ensemble”. This is a confus-
ing name, because it suggests something “small”, yet typically, a microcanonical ensemble is an ensemble
of identical, macroscopic systems that play the role of a heat bath[8, 9, 10, 11]. The ergodic hypothesis of
statistical mechanics assumes that in such an ensemble, allaccesible quantum states within this narrow band
of allowed energies and particle number are equally probable (“equalà priori probability”).
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tFig. 4.2 Illustrating equilibrium between a small system and a large heat bath. Inset illustrates
how the number of states with energy Eλ, particle number Nλ is proportional to the
density of states in the big system.

Now suppose we divide the system into two parts - a vast “heat bath” and a tiny sub-system, exchanging
energy and particles, as shown in Fig. 4.2 until they reach a state of thermal equilibrium. In the vast heat and
particle bath, the energy levels are so close together, thatthey form a continuum. The density of states per unit
energy and particle number is taken to beW(E′,N′), whereE′ is the energy andN′ the number of particles
in the bath. When the system is in a quantum state|λ〉 with energyEλ, particle numberNλ, the large system
has energyE′ = E − Eλ, particle numberN′ = N − Nλ.

Assuming equal̀a priori probability, the probability that the small system is in state |λ〉 is proportional to
the number of statesW(E,N) of the heat bath with energyE − Eλ and particle numberN − Nλ,

p(Eλ,Nλ) ∝W(E − Eλ,N − Nλ) = elnW(E−Eλ,N−Nλ). (4.114)

Now following Boltzmann, we can tentatively identifyW(E,N) with the entropyS(E,N) of the heat bath,
(see exercise 4.4) according to the famous formula

SB(E,N) = kB ln W(E,N) (4.115)

where we have included the subscriptB to delineate the heat bath. It follows that

p(Eλ,Nλ) ∝ exp

[
1
kB

SB(E − Eλ,N − Nλ)

]
(4.116)
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Now Eλ andNλ are tiny perturbations to the total energy and particle number of the heat bath, so we may
approximateS(E − Eλ,N − Nλ) by a linear expansion,

SB(E − Eλ,N − Nλ) = SB(E,N) − Eλ
∂SB

∂E
− Nλ

∂SB

∂N
+ . . . . (4.117)

Now according to thermodynamicsdE = TdS + µdN whereT andµ are the temperature and chemical
potential, respectively, so thatdSB =

1
T dE− µ

T dN, allowing us to identify

1
kB

∂SB

∂E
=
∂lnW
∂E

=
1

kBT
≡ β,

1
kB

∂SB

∂N
=
∂lnW
∂N

= − µ

kBT
≡ −µβ. (4.118)

These are the Lagrange multipliers associated with the conservation of energy and particle number1. Once
we have made this expansion, it follows that the probabilityto be in state|λ〉 is

pλ =
1
Z

e−β(Eλ−µNλ), (4.119)

where the normalizing partition function isZ =
∑
λ e−β(Eλ−µNλ).

To recast statistical mechanics in the language of many bodytheory, we need to rewrite the above expres-
sion in terms of operators. Let us begin with the partition function, which we may rewrite as

Z =
∑

λ

e−β(Eλ−µNλ)

=
∑

λ

〈λ|e−β(Ĥ−µN̂)|λ〉 = Tr[e−β(Ĥ−µN̂)]. (4.120)

Although we started with the eigenstates of energy and particle number, the invariance of the trace under
unitary transformations ensures that this final expressionis independent of the many body basis.

Next, we cast the expectation value〈Â〉 in a basis-independent form. Suppose the quantity A, represented
by the operatorÂ, is diagonal in the basis of energy eigenstates|λ〉, then the expectation value ofA in the
ensemble is

〈A〉 =
∑

λ

pλ〈λ|Â|λ〉 = Tr[ρ̂Â]. (4.121)

Here we have elevated the probability distributionpλ to an operator- the Boltzmann density matrix:

ρ̂ =
∑

λ

|λ〉pλ〈λ| = Z−1e−β(Ĥ−µN̂) (4.122)

This derivation of (4.121) assumed thatÂ could be simultaneously diagonalized with the energy and particle
number. However, quantum statistical mechanics, makes theradical assertion that (4.121) holds for all quan-
tum operatorsÂ representing observables,even when the operator̂A does not commute witĥH or N̂, and is
thus not diagonal in the energy and particle number basis.

1 Incidentally, if you are uncomfortable with the use of classical thermodynamics to identify these quantities in terms of thetemperature
and chemical potential, you may regard these assignments as tentative, pending calculations of physical properties that allow us to
definitively identify them in terms of temperature and chemicalpotential.

58



bk.pdf April 29, 2012 34

c©2011 Piers Coleman Chapter 4.

4.8.2 Identification of the Free energy: Key Thermodynamic Propert ies

There are a number of key thermodynamic quantities of great interest: the energyE, the particle numberN, the
entropyS and the Free energyF = E−S T− µN. One of the key relations from elementary thermodynamics
is that

dE = TdS− µdN− PdV (4.123)

By puttingF = E − TS− µN, dF = dE− dTS− S dT− µdN− Ndµ, one can also derive

dF = −S dT− Ndµ − PdV (4.124)

a relationship of great importance.
The energy and particle number can be easily written in the language of second-quantization as

E = Tr[Ĥρ̂],
N = Tr[N̂ρ̂], (4.125)

but what about the entropy? From statistical mechanics, we know that the general expression for the entropy
is given by

S = −kB

∑

λ

pλlnpλ (4.126)

Now since the diagonal elements of the density matrix arepλ, we can rewrite this expression as

S = −kBTr[ρ̂lnρ̂] (4.127)

If we substitute lnˆρ = −β(Ĥ − µN̂) − ln Z into this expression, we obtain

S =
1
T

Trρ̂(H − µN) + kBlnZ

=
1
T

(E − µN) + kBlnZ (4.128)

i.e−kBTlnZ = E − S T− µN, from which we identify

F = −kBTlnZ (4.129)

as the Free energy. Summarizing these key relationships alltogether, we have
Thermodynamic Relations
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F = −kBTlnZ, Free energy

Z = Tr[e−β(Ĥ−µN̂)], Partition function

ρ̂ =
e−β(Ĥ−µN̂)

Z
, Density Matrix

N = Tr[N̂ρ̂] = − ∂F
∂µ

Particle number

S = −kBTr[ρ̂lnρ̂] = − ∂F
∂T Entropy

P = − ∂F
∂V , Pressure

E − µN = Tr[(Ĥ − µN̂)ρ̂],= − ∂ ln Z
∂β

Energy

Notice how, in this way, all the key thermodynamic properties can be written as appropriate derivatives of
Free energy.

Example 4.7: (i) Enumerate the energy eigenstates of a single fermion Hamiltonian.

H = Ec†c (4.130)

where{c, c†} = 1, {c, c} = {c†, c†} = 0.
(ii) Calculate the number of fermions at temperatureT.
Solution (i) The states of this problem are the vacuum state and the one-particle state

|0〉 E0 = 0,
|1〉 = c†|0〉, E1 = E. (4.131)

(ii) The number of fermions at temperatureT is given by

〈n̂〉 = Tr[ρ̂n̂] (4.132)

wheren̂ = c†c,

ρ = e−β(Ĥ−µN̂)/Z (4.133)

is the density matrix, and where

Z = Tr[e−β(H−µN)] (4.134)

is the “partition function”. For this problem, we can write out the matrices explicitly.

e−βH =

[
1 0
0 e−β(E−µ)

]
, n̂ =

[
0 0
0 1

]
(4.135)

so that

Z = 1+ e−β(E−µ) (4.136)

and

Tr[n̂e−βH ] = e−β(E−µ) (4.137)

The final result is thus

〈n̂〉 = e−β(E−µ)

1+ e−β(E−µ)
=

1
eβ(E−µ) + 1

(4.138)
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which is the famous Fermi-Dirac function for the number of fermions in a state of energyE, chemical
potentialµ.

4.8.3 Independent Particles

In a system of independent particles with many energy levels, Eλ each energy level can be regarded as an
independent member of a microcanonical ensemble. Formally, this is because the Hamiltonian is a sum of
independent Hamiltonians

H − µN =
∑

λ

(Eλ − µ)n̂λ (4.139)

so that the partition function is then a product of the individual partition functions:

Z = Tr[
∏

λ ⊗
e−β(Eλ−µ)n̂λ ] (4.140)

and since the trace of an (exterior) product of matrices, is equal to the product of their individual traces,
(Tr

∏
λ⊗ =

∏
λ Tr),

Z =
∏

λ

Tr[e−β(Eλ−µ)n̂λ ] =
∏

λ

Zλ (4.141)

Since

Zλ =

{
1+ e−β(Eλ−µ) Fermions

1+ e−β(Eλ−µ) + e−2β(Eλ−µ) + . . . = (1− e−β(Eλ−µ))−1 Bosons
(4.142)

The corresponding Free energy is given by

F = ∓kBT
∑

λ

ln[1 ± e−β(Eλ−µ)],

{
f ermions
bosons

(4.143)

The occupancy of thel th level is independent of all the other levels, and given by

〈n̂l〉 = Tr[ρ̂n̂l ] = Tr[(
∏

⊗
ρ̂λ)n̂l ]

=
∏

λ,l

=1︷︸︸︷
Tr[ρλ] ×Tr[ρl n̂l ] =

1
eβ(El−µ) ± 1

(4.144)

where (+) refers to Fermions and (−) to bosons.
In the next chapter, we shall examine the consequences of these relationships.

Exercises

Exercise 4.1 In this questionci
† andci are fermion creation and annihilation operators and the states are

fermion states. Use the convention
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|11111000. . .〉 = c5
†c4
†c3
†c2
†c1
†|vacuum〉.

1 Evaluatec3
†c6c4c6

†c3|111111000. . .〉.
2 Write |1101100100. . .〉 in terms of excitations about the “filled Fermi sea”|1111100000. . .〉 . Inter-

pret your answer in terms of electron and hole excitations.
3 Find〈ψ|N̂|ψ〉 where|ψ〉 = A|100〉 + B|111000〉, N̂ =

∑
i ci
†ci .

Exercise 4.2 1 (a) Consider two fermions,a1 anda2. Show that the Boguilubov transformation

c1 = ua1 + va†2
c†2 = −va1 + ua†2 (4.145)

whereu andv are real, preserves the canonical anti-commutation relations ifu2 + v2 = 1.
2 Use this result to show that the Hamiltonian

H = ǫ(a†1a1 − a2a2
†) + ∆(a†1a†2 + H.c.) (4.146)

can be diagonalized in the form

H =
√
ǫ2 + ∆2(c†1c1 + c†2c2 − 1) (4.147)

3 What is the ground-state energy of this Hamiltonian?
4 Write out the ground-state wavefunction in terms of the original operatorsc1

† and c2
† and their

corresponding vacuum|0〉, (c1,2|0〉 = 0).
Exercise 4.3 Consider a system of fermions or bosons, created by the fieldψ†(r ) interacting under the

potential

V(r) =

{
U, (r < R),
0, (r > R),

(4.148)

1 Write the interaction in second quantized form.
2 Switch to the momentum basis, whereψ(r ) =

∫
d3k

(2π)3 ckeik·r . Verify that [ck , c†k′ ]± = (2π)3δ(3)(k−k′)
and write the interaction in this new basis. Please sketch the form of the interaction in momentum
space.

Exercise 4.4 1 Show that for a general system of conserved particles at chemical potential, the total parti-
cle number in thermal equilibrium can be written as

N = −∂F/∂µ (4.149)

where

F = −kBTlnZ
Z = Tr[e−β(Ĥ−µN)]. (4.150)

2 Apply this to a single bosonic energy level, where

H − µN = (ǫ − µ)a†a (4.151)

andâ† creates either a Fermion, or a boson, to show that

〈n̂〉 = 1
eβ(ǫ−µ) − 1

(4.152)

Why doesµ have to be negative positive for bosons?
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Exercise 4.5 (Equivalence of the microcanonical and Gibb’s ensembles for large systems.)
In a microcanonical ensemble, the density matrix can be given by

ρ̂M =
1
W
δ(E − Ĥ)δ(N − N̂)

whereE andN are the energy and particle number respectively, while

W ≡W(E,N) = Tr
[
δ(E − Ĥ)δ(N − N̂)

]

is the “density of states” at energyE, particle numberN. This normalizing quantity plays a role similar
to the partition function in the Gibb’s ensemble.

1 By rewriting the delta functions inside the above traceW as an inverse Laplace transforms, such as

δ(x− Ĥ) =
∫ β0+i∞

β0−i∞

dβ
2πi

e−β(x−Ĥ),

and evaluating the resulting integrals at the saddle point of the integrand, show that for a large system
W is related to the entropy by Boltzmann’s relation

S(E,N) = kB ln W(E,N).

2 Using your results, show that in a large system, the expectation value of an operator is the same for
corresponding Gibb’s and microcanonical ensembles, namely

〈A〉 = Tr[ρM Â] = Tr[ρBÂ]

where ρ̂B = Z−1e−β(H−µN̂)|β=β0,µ=µ0 is the Boltzmann density matrix evaluated at the saddle point
values ofβ0 andµ0,

β0 =
∂ ln W
∂E

, µ0 = β
−1
0
∂ ln W
∂N

.
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5
Simple Examples of
Second-quantization

In this section, we give three examples of the application ofsecond quantization, mainly to non-interacting
systems.

5.1 Jordan Wigner Transformation

A “non-interacting” gas of Fermions is still highly correlated: the exclusion principle introduces a “hard-core”
interaction between fermions in the same quantum state. This feature is exploited in the Jordan -Wigner
representation of spins. A classical spin is represented bya vector pointing in a specific direction. Such a
representation is fine for quantum spins with extremely large spin S, but once the spin S becomes small, spins
behave as very new kinds of object. Now their spin becomes a quantum variable, subject to its own zero-point
motions. Furthermore, the spectrum of excitations becomesdiscrete or grainy.

Quantum spins are notoriously difficult objects to deal with in many-body physics, because theydo not
behave as canonical fermions or bosons. In one dimension however, it turns out that spins withS = 1/2
actually behave like fermions. We shall show this by writingthe quantum spin-1/2 Heisenberg chain as
an interacting one dimensional gas of fermions, and we shallactually solve the limiting case of the one-
dimensional spin-1/2 x-y model.

Jordan and Wigner observed[1] that the down and up state of a single spin can be thought of as an empty
or singly occupied fermion state, (Fig. 5.1.) enabling themto make the mapping

| ↑〉 ≡ f †|0〉, | ↓〉 ≡ |0〉. (5.1)

.
An explicit representation of the spin raising and loweringoperators is then

S+ = f † =

[
0 1
0 0

]

S− = f ≡
[
0 0
1 0

]
(5.2)

The z component of the spin operator can be written

Sz =
1
2

[
| ↑〉〈↑ | − | ↓〉〈↓ |

]
≡ f † f − 1

2
(5.3)

We can also reconstruct the transverse spin operators,

Sx =
1
2

(S+ + S−) =
1
2

( f † + f ),

Sy =
1
2i

(S+ − S−) =
1
2i

( f † − f ), (5.4)
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f

µBB

S=1/2

f

n  = 1

n  = 0

tFig. 5.1 Showing how the “up” and “down” states of a spin-1/2 can be treated as a one
particle state which is either full, or empty.

The explicit matrix representation of these operators makes it clear that they satisfy the same algebra

[Sa,Sb] = iǫabcSc. (5.5)

Curiously, due to a hidden supersymmetry, they also satisfyan anti-commuting algebra

{Sa,Sb} =
1
4
{σa, σb} =

1
2
δab, (5.6)

and in this way, the Pauli spin operators provided Jordan andWigner with an elementary model of a fermion.
Unfortunately the represeentation needs to be modified if there is more than one spin, for independent spin

operators commute, but independent fermions anticommute!Jordan and Wigner discovered a way to fix up
this difficulty in one dimension by attaching a phase factor called a “string” to the fermions[1]. For a chain of
spins in one dimension, the Jordan Wigner representation ofthe spin operator at sitej is defined as

S+j = f j
†eiφ j (5.7)

where the phase operatorφ j contains the sum over all fermion occupancies at sites to theleft of j,

φ j = π
∑

l< j

n j (5.8)

The operatoreiφ̂ j is known as a “string operator”.
The complete transformation is then

Sz
j = f † j f j − 1

2 ,

S+j = f † jeiπ
∑

l< j nl ,

S−j = f je−iπ
∑

l< j nl


Jordan Wigner transformation (5.9)

(Noticeeiπn j = e−iπn j is a Hermitian operator so that overall sign of the phase factors can be reversed without
changing the spin operator.) In words:

Spin= Fermion× string.
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The important property of the string, is that itanticommuteswith any fermion operator to the left of its
free end. To see this, note first that is that the operatoreiπn j anticommuteswith the fermion operatorf j . This
follows becausef j reducesn j from unity to zero, so thatf j eiπn j = − f j whereaseiπn j f j = f j . from which it
follows that

{eiπn j , f j} = eiπn j f j + f eiπn j = f j − f j = 0 (5.10)

and similarly, from the conjugate of this expression{eiπn j , f † j} = 0. Now the phase factoreiπnl at any other
site l , j commutes withf j and f †j , so that the string operatoreiφ̂ j anticommutes with all fermions at all sites
l to the “left” of j, l < j:

{eiφ j , f (†)
l } = 0, (l < j)

whilst commuting with fermions at all other sitesl ≥ j,

[eiφ j , f (†)
l ] = 0, (l ≥ j).

We now can verify that the transverse spin operators satisfythe correct commutation algebra. Suppose
j < k, theneiφ j commutes with fermions at sitej andk so that

[S(±)
j ,S(±)

k ] = [ f (†)
j eiφ j , f (†)

k eiφk] = eiφ j [ f (†)
j , f (†)

k eiφk]

But f (†)
j antcommutes with bothf (†)

k andeiπφk so it commutes with their productf (†)
k eiφk], and hence

[S(±)
j ,S(±)

k ] ∝ [ f (†)
j , f (†)

k eiφk] = 0. (5.11)

So we see that by multiplying a fermion by the string operator, it is transformed into a boson.
As an example of the application of this method, we shall now discuss the one-dimensional Heisenberg

model

H = −J
∑

[Sx
j S

x
j+1 + Sy

jS
y
j+1] − Jz

∑

j

Sz
jS

z
j+1 (5.12)

In real magnetic systems, local moments can interact via ferromagnetic, or antiferromagnetic interactions.
Ferromagnetic interactions generally arise as a result of “direct exchange” in which the Coulomb repulsion
energy is lowered when electrons are in a triplet state, because the wavefunction is then spatially antisym-
metric. Antiferromagnetic interactions are generally produced by the mechanism of “double exchange”, in
which electrons on neighbouring sites that form singlets (“antiparallel spin”) lower their energy through vir-
tual virtual quantum fluctuations into high energy states inwhich they occupy the same orbital. Here we have
written the model as if the interactions are ferromagnetic.

For convenience, the model can be rewritten as

H = − J
2

∑
[S+j+1S−j + H.c] − Jz

∑

j

Sz
jS

z
j+1 (5.13)

To fermionize the first term, we note that all terms in the strings cancel, except for aeiπn j which has no effect,

J
2

∑

j

S+j+1S−j =
J
2

∑

j

f j+1
†eiπn j f j =

J
2

∑

j

f j+1
† f j (5.14)

so that the transverse component of the interaction inducesa “hopping” term in the fermionized Hamilto-
nian. Notice that the string terms would enter if the spin interaction involved next-nearest neighbors. The
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z-component of the Hamiltonian becomes

−Jz

∑

j

Sz
j+1Sz

j = −Jz

∑

j

(n j+1 −
1
2

)(n j −
1
2

) (5.15)

Notice how the Ferromagnetic interaction means that spin-fermions attract one-another. The transformed
Hamiltonian is then

H = − J
2

∑

j

( f † j+1 f j + f † j f j+1) + Jz

∑

j

n j − Jz

∑

j

n jn j+1. (5.16)

Interestingly enough, the pure x-y model has no interactionterm in it, so this this case can be mapped onto a
non-interacting fermion problem, a discovery made by Lieb,Schulz and Mattis in 1961[2].

To write out the fermionized Hamiltonian in its most compactform, let us transform to momentum space,
writing

f j =
1
√

N

∑

k

ske
ikRj (5.17)

wheres†k creates a spin excitation in momentum space, with momentumk. In this case, the one-particle terms
become

Jz

∑

j

n j = Jz

∑

k

s†ksk.

− J
2

∑

j

( f † j+1 f j + H.c) = − J
2N

∑

k

(e−ika + eika)s†ksk′

Nδkk′︷         ︸︸         ︷∑

j

e−i(k−k′)Rj

= −J
∑

k

cos(ka)s†ksk. (5.18)

The anisotropic Heisenberg Hamiltonian can thus be written

H =
∑

k

ωks†ksk − Jz

∑

j

n jn j+1 (5.19)

where

ωk = (Jz − J coska) (5.20)

defines a magnon excitation energy. We can also cast the second-term in momentum space, by noticing that
the interaction is a function ofi − j which is−Jz/2 for i − j = ±1, but zero otherwise. The Fourier transform
of this short-range interaction isV(q) = −Jz cosqa, so that Fourier transforming the interaction term gives

H =
∑

k

ωks†ksk −
Jz

Ns

∑

k,k′,q

cos(qa) s†k−qs†k′+qsk′sk. (5.21)

This transformation holds for both the ferromagnet and antiferromagnet. In the former case, the fermionic spin
excitations correspond to the magnons of the ferromagnet. In the latter case, the fermionic spin excitations
are often called “spinons”.

To see what this Hamiltonian means, let us first neglect the interactions. This is a reasonable thing to do in
the limiting cases of (i) the Heisenberg Ferromagnet,Jz = J and (ii) the x-y modelJz = 0 .
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Heisenberg Ferromagnet

0 k

k

mode
Goldstone

−π/a π/a

2J

ωk

tFig. 5.2 Excitation spectrum of the one dimensional Heisenberg Ferromagnet.

• Heisenberg Ferromagnet.Jz = J

In this case, the spectrum

ωk = 2J sin2(ka/2) (5.22)

is always positive, so that there are no magnons present in the ground-state. The ground-state thus
contains no magnons, and can be written

|0〉 = | ↓↓↓ . . .〉 (5.23)

corresponding to a state with a spontaneous magnetizationM = −Ns/2.
Curiously, sinceωk=0 = 0, it costs no energy to add a magnon of arbitrarily long wavelength. This is an

example of a Goldstone mode, and the reason it arises, is because the spontaneous magnetization could
actually point in any direction. Suppose we want to rotate the magnetization through an infinitesimal
angleδθ about the x axis, then the new state is given by

|ψ〉′ = eiδθSx | ↓↓ . . .〉
= | ↓↓ . . .〉 + i

δθ

2

∑

j

S+j | ↓↓ . . .〉 +O(δθ2) (5.24)

The change in the wavefunction is proportional to the state

S+TOT| ↓↓ . . . 〉 ≡
∑

j

f j
†eiφ j |0〉

=
∑

j

f j
†|0〉 =

√
Nss

†
k=0|0〉 (5.25)

In otherwords, the action of adding a single magnon atq = 0, rotates the magnetization infinitesimally
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upwards. Rotating the magnetization should cost no energy,and this is the reason why thek = 0 magnon
is a zero energy excitation.

x−y Ferromagnet

particles

states
Occupied

holes

J

−π/a π/a0
−J

ωk

0

k

π/2a −π/2a

tFig. 5.3 Excitation spectrum of the one dimensional x-y Ferromagnet, showing how the
negative energy states are filled, the negative energy dispersion curve is “folded over”
to describe the positive hole excitation energy.

• x-y Ferromagnet.As Jz is reduced fromJ, the spectrum develops a negative part, and magnon states with
negative energy will become occupied. For the purex−y model, whereJz = 0, the interaction identically
vanishes, and the excitation spectrum of the magnons is given byωk = −J coskaas sketched in Fig. 5.3.
All the negative energy fermion states with|k| < π/2a are occupied, so the ground-state is given by

|Ψg〉 =
∏

|k|<π/2a

s†k|0〉 (5.26)

The band of magnon states is thus precisely half-filled, so that

〈Sz〉 = 〈nf −
1
2
〉 = 0 (5.27)

so that remarkably, there is no ground-state magnetization. We may interpret this loss of ground-state
magnetization as a consequence of the growth of quantum spinfluctuations in going from the Heisen-
berg, to the x-y ferromagnet.

Excitations of the ground-state can be made, either by adding a magnon at wavevectors|k| > π/2a,
or by annihilating a magnon at wavevectors|k| < π/2a, to form a “hole”. The energy to form a hole is
−ωk. To represent the hole excitations, we make a “particle-hole” transformation for the occupied states,
writing

s̃k =

{
sk, (|k| > π/2a),

s†−k, (|k| < π/2a)
(5.28)
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These are the “physical” excitation operators. Sinces†ksk = 1− sks†k, the Hamiltonian of the pure x-y
ferromagnet can be written

Hxy =
∑

k

J| coska|(s̃†ks̃k −
1
2

) (5.29)

Notice that unlike the pure Ferromagnet, the magnon excitation spectrum is now linear. The ground-state
energy is evidently

Eg = −
1
2

∑

k

J| coska|

= −a
2

∫ π/2a

−π/2a

dk
2π

J cos(ka) = − J
π
. (5.30)

But if there is no magnetization, why are there zero-energy magnon modes atq = ±π/a? Although there
is no true long-range order, it turns out that the spin-correlations in the x-y model display power-law
correlations with an infinite spin correlation length, generated by the gapless magnons in the vicinity of
q = ±π/a.

5.2 The Hubbard Model

In real electronic systems, such as a metallic crystal at first sight it might appear to be a task of hopeless
complexity to model the behavior of the electron fluid. Fortunately, even in complex systems, at low energies
only a certain subset of the electronic degrees of freedom are excited. This philosophy is closely tied up with
the idea of renormalization- the idea that the high energy degrees of freedom in a system can be successively
eliminated or “integrated out” to reveal an effective Hamiltonian that describes the important low energy
physics. One such model, which has enjoyed great success, isthe Hubbard model, first introduced in the
early sixties by Hubbard, Gutzwiller and Kanamori[3, 4, 5].

Suppose we have a lattice of atoms where electrons are almostlocalized in atomic orbitals at each site. In
this case, we can use a basis of atomic orbitals. The operatorwhich creates a particle at sitej is

c† jσ =

∫
d3xΦ(x − R j)ψ

†(x)σ (5.31)

whereΦ(x) is the wavefunction of a particle in the localized atomic orbital. In this basis, the Hamiltonian
governing the motion, and interactions between the particles can be written quite generally as

H =
∑

i, j

〈i|Ho| j〉c† iσc jσ +
1
2

∑

lmnp

〈lm|V|pn〉c† lσc†mσ′cnσ′cpσ (5.32)

where〈i|Ho| j〉 is the one-particle matrix element between statesi and j, and〈lm|V|pn〉 is the interaction matrix
element between two-particle states|lm〉 and|pn〉.

Let us suppose that the energy of an electron in this state isǫ. If this orbital is highly localized, then the
amplitude for it to tunnel or “hop” between sites will decay exponentially with distance between sites, and
to a good approximation, we can eliminate all but the nearestneighbor hopping. In this case, the one-particle
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E

U

U

U
2E + Uψ(  )

t

r
V(r)

E

r

tFig. 5.4 Illustrating the Hubbard Model. When two electrons of opposite spin occupy a single
atom, this gives rise to a Coulomb repulsion energy U. The amplitude to hop from site
to site in the crystal is t.

matrix elements which govern the motion of electrons between sites are then

〈 j|H(o)|i〉 =



ǫ j = i
−t i, j nearest neighbors
0 otherwise

(5.33)

The hopping matrix element between neigboring states will generally be given by an overlap integral of the
wavefunctions with the negative crystalline potential, and for this reason, it is taken to be be negative. Now
the matrix element of the interaction between electrons at different sites will be given by

〈lm|V|pn〉 =
∫

x,x′
Φ∗l (x)Φp(x)Φ∗m(x′)Φ∗n(x′)V(x− x′), (5.34)

but in practice, if the states are well localized, this will be dominated by the onsite interaction between two
electrons in a single orbital, so that we may approximate

〈lm|V|pn〉 =
{

U l = p = m= n
0 otherwise

(5.35)

In this situation, the interaction term in (5.32) simplifiesto

U
2

∑

j,σσ′
c† jσc† jσ′c jσ′c jσ = U

∑

j

n j↑n j↓, (5.36)

where the exclusion principle (c2
jσ = 0) means that the interaction term vanishes unlessσ σ′ are opposite
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spins. The Hubbard model can be thus be written

H = −t
∑

j,â,σ

[c† j+âσc jσ + H.c] + ǫ
∑

jσ

c† jσc jσ + U
∑

j

n j↑n j↓, (5.37)

wheren jσ = c† jσc jσ represents the number of electrons of spinσ at site j. For completeness, let us rewrite
this in momentum space, putting

c jσ =
1
√

Ns

∑

k

ckσeik·R j (5.38)

whereupon

H =
∑

kσ

ǫkc†kσckσ +
U
Ns

∑

q,k,k′
c†k−q↑c

†
k′+q↓ck′↓ck↑ (5.39)

Hubbard model

where

ǫk =
∑

i

〈 j + Ri |Ho| j〉eik·Ri

= −2t(coskx + cosky + coskz) + ǫ (5.40)

is recognized as the kinetic energy of the electron excitations which results from theircoherenthopping
motion from site to site. We see that the Hubbard model describes a band of electrons with kinetic energyǫk ,
and a momentum independent “point” interaction of strengthU between particles of opposite spin.
Remark

• This model has played a central part in the theory of magnetism, metal-insulator transitions, and most
recently, in the description of electron motion in high temperature superconductors. With the exception
of one dimensional physics, we do not, as yet have a complete understanding of the physics that this
model can give rise to. One prediction of the Hubbard model which is established, is that under certain
circumstance, if interactions become too large the electrons become localized to form what is called
“Mott insulator”. This typically occurs when the interactions are large and the number of electrons per
site is close to one. What is very unclear at the present time, is what happens to the Mott insulator when
it is doped, and there are many who believe that a complete understanding of the doped Mott insulator
will enable us to understand high temperature superconductivity.

5.3 Non-interacting particles in thermal equilibrium

Before we start to consider the physics of the interacting problem, let us go back and look at the ground-state
properties of free particles. What is not commonly recognized, is that the ground-state of non-interacting, but
identical particles is in fact, a highly correlatedmany body state. For this reason, the non-interacting ground-
state has a robustness that does not exist in its classical counterpart. In the next chapter, we shall embody some
of these thoughts in by considering the action of turning on the interactions adiabatically. For the moment

73

Chapter 5. c©Piers Coleman 2011

k

n

k

kn k

z

xk

yk

kz

k

k

k

FERMIONS

Fermi Surface

y

kF

x

ykF

Condensate

BOSONS

tFig. 5.5 Contrasting the ground-states of non-interacting Fermions and non-interacting
Bosons. Fermions form a degenerate Fermi gas, with all one-particle states below the
Fermi energy individually occupied. Bosons form a Bose Einstein condensate, with a
macroscopic number of bosons in the zero momentum state.

however, we shall content ourselves with looking at a few of the ground-state properties of non-interacting
gases of identical particles.

In practice, quantum effects will influence a fluid of identical particles at the pointwhere their characteristic
wavelength is comparable with the separation between particles. At a temperatureT the rms momentum of
particles is given byp2

RMS = 3mkBT, so that characteristic de Broglie wavelength is given by

λT =
h√
p2

RMS

=
h

√
3mkBT

(5.41)

so that whenλT ∼ ρ−1/3, the characteristic temperature is of order

kBT∗ ∼ ~
2ρ2/3

2m
(5.42)

Below this temperature, identical particles start to interfere with one-another, and a quantum-mechanical
treatment of the fluid becomes necessary. In a Fermi fluid, exclusion statistics tends to keep particles apart,
enhancing the pressure, whereas for a Bose fluid, the correlated motion of particles in the condensate tends to
lower the pressure, ultimately causing it to vanish at the Bose Einstein condensation temperature. In electron
fluids inside materials, this characteristic temperature is two orders of magnitude larger than room tem-
perature, which makes the electricity one of the most dramatic examples of quantum physics in everyday
phenomena!
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5.3.1 Fluid of non-interacting Fermions

The thermodynamics of a fluid of fermions leads to the conceptof a “degenerate Fermi liquid”, and it is
important in a wide range of physical situations, such as

• The ground-state and excitations of metals.
• The low energy physics of liquid Helium 3.
• The degenerate Fermi gas of neutrons, electrons and protonsthat lies within a neutron star.

The basic physics of each of these cases, can to a first approximation be described by a fluid of non-interacting
Fermions, with Hamiltonian

H = HS − µN =
∑

σ

(Ek − µ)c†kσckσ (5.43)

Following the general discussion of the last section, the Free energy of such a fluid of fermions is is described
by a single Free energy functional

F = −kBT
∑

kσ

ln[1 + e−β(Ek−µ)]

= −2kBTV
∫

k
ln[1 + e−β(Ek−µ)] (5.44)

where we have taken the thermodnamic limit, replacing
∑

kσ → 2V
∫

k
. By differentiatingF with respect to

volume, temperature and chemical potential, we can immediately derive the pressure, entropy and particle
density of this fluid. Let us however, begin with a more physical discussion.

In thermal equilibrium the number of fermions in a state withmomentump = ~k is

nk = f (Ek − µ) (5.45)

where

f (x) =
1

eβx + 1
(5.46)

is the Fermi-Dirac function. At low temperatures, this function resembles a step, with a jump in occupancy
spread over an energy range of orderkBT around the chemical potential. At absolute zerof (x) → θ(−x), so
that the occupancy of each state is given by

nk = θ(µ − Ek) (5.47)

is a step function with an abrupt change in occupation whenǫ = µ, corresponding to the fact that states with
Ek < µ, are completely occupied, and states above this energy are empty. The zero-temperature value of the
chemical potential is often called the “Fermi energy”. In momentum space, the occupied states form a sphere,
whose radius in momentum space,kF is often refered to as the Fermi momentum.

The ground-state corresponds to a state where all fermion states with momentumk < kF are occupied:

|ψg〉 =
∏

|k|<kF , σ

c†kσ|0〉 (5.48)

Excitations above this ground-state are produced by the addition of particles at energies above the Fermi
wavevector, or the creation ofholesbeneath the Fermi wavevector. To describe these excitations, we make
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the followingparticle-holetransformation

a†kσ =

{
c†kσ (k > kF) particle

sgn(σ)c−k−σ (k > kF) hole
(5.49)

Beneath the Fermi surface, we must replacec†kσckσ → 1 − a†kσakσ, so that in terms of particle and hole
excitations, the Hamiltonian can be re-written

H − µN =
∑

kσ

|(Ek − µ)|a†kσakσ + Fg (5.50)

where respectively,

Fg =
∑

|k|<kF ,σ

(Ek − µ) = 2V
∫

|k|<kF

(Ek − µ), (5.51)

is the ground-state Free energy, andEg andN are the ground-state energy and particle number Notice that

• To create a hole with momentumk and spinσ, we must destroy a fermion with momentum−k and spin
−σ. (The additional multiplying factor ofσ in the hole definition is a technical feature, required so that
the particle and holes have the same spin operators.)

• The excitation energy of a particle or hole is given byǫ∗k = |Ek − µ|, corresponding to “reflecting” the
excitation spectrum of the negative energy fermions about the Fermi energy.

The ground-state density of a Fermi gas is given by the volumeof the Fermi surface, as follows

〈ρ̂〉 = 1
V

∑

kσ

〈c†kσckσ〉 = 2
∫

k<kF

d3k
2π
=

2
(2π)3

VFS (5.52)

where

VFS =
4π
3

k3
F =

(
4π
3

) (
2mǫF

~2

)3/2

(5.53)

is the volume of the Fermi surface. The relationship betweenthe density of particles, the Fermi wavevector
and the Fermi energy is thus

〈
N̂
V

〉
=

1
3π2

k3
F =

1
3π2

(
2mǫF

~2

)3/2

(5.54)

In an electron gas, where the characteristic density isN/V ∼ 1029m−3 the characteristic Fermi energy is of
order 1eV ∼ 10,000K. In other words, the characteristic energy of an electron istwo orders of magnitude
larger than would be expected classically. This is a stark and dramatic consequence of the exchange inter-
ference between identical particles, and it is one of the great early triumphs of quantum mechanics to have
understood this basic piece of physics.

Let us briefly look at finite temperatures. Here, by differentiating the Free energy with respect to volume
and chemical potential, we obtain

P = −∂F
∂V
=
−F
V
= 2kBT

∫

k
ln[1 + e−β(Ek−µ)]
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N = −∂F
∂µ
= 2

∫

k
f (Ek − µ) (5.55)

The second equationdefinesthe chemical potential in terms of the particle density at a given temperature. The
first equation shows that, apart from a minus sign, the pressure is simply the Free energy density. These two
equations can be solved parametrically as a function of chemical potential. At high temperatures the pressure
reverts to the ideal gas lawPV = NkBT, but at low temperatures, the pressure is determined by the Fermi
energy

P = 2
∫

|k|<kF

(µ − Ek)| = 2N
5V

ǫF (5.56)

The final result is obtained by noting that the first term in this expression isµ(N/V). The first term contains an
integral overd3k ∼ k2dk→ k3

F/3, whereas the second term contains an integral overEkd3k ∼ k4dk→ k5
F/5,

so the second term is 3/5 of the first term. Not surprisingly, this quantity is basically the density of fermions
times the Fermi energy- a pressure that is hundreds of times larger than the classical pressure in a room
temperature electron gas.
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Remarks

• At first sight, it might seem very doubtful as to whether the remarkable features of the degenerate Fermi gas
would survive once interactions are present. In particular, one would be tempted to wonder whether the
Fermi surface would be blurred out by particle-particle interactions. Remarkably, for modest repulsive
interactions, the Fermi surface is believed to be stable in dimensions bigger than one. This is because
electrons at the Fermi surface have no phase space for scattering. This is the basis of Landau’sFermi
liquid Theoryof interacting Fermions.

• In a remarkable result, due to Luttinger and Ward, the jump inthe occupancy at the Fermi wavevectorZkF

remains finite, although reduced from unity (ZkF < 1) , in interacting Fermi liquids.

5.3.2 Fluid of Bosons: Bose Einstein Condensation

Bose Einstein condensation was predicted in 1924- the outcome of Einstein extending Bose’s new calcula-
tions on the statistics of a gas of identical bosons. However, it was not until seventy years later- in 1995, that
the groups of Cornell and Wieman[6] and independently that of Ketterle[7], succeeded in cooling a low den-
sity gas of atoms - initially rubidium and sodium atoms - through the Bose Einstein transition temperature.
The closely related phenomenon of superfluidity was first observed in the late 30’s by Donald Misener and
Jack Allen working in Toronto and Cambridge[8] and Piotr Kapitza in Moscow[9]. Superfluidity results from
a kind of Bose-Einstein condensation, in a dense quantum fluid, where interactions between the particles
become important. In the modern context, ultra cold, ultra-dilute gases of alkali atoms are contained inside a
magnetic atom trap, in which the Zeeman energy of the atoms, spin-aligned with the magnetic field, confines
them to the region of highest field[10]. Lasers are used to precool a small quantity of atoms inside a mag-
netic trap using a method known as “Doppler cooling”, in which the tiny “blue shift” of the laser light seen
by atoms moving towards a laser causes them to selectively absorb photons, which are then re-emitted in a
random direction, a process which gradually slows them down, reducing their average temperature. Doppler
pre-cooling cools the atoms to about 10-100µK. The second stage involves “Evaporative cooling”, a process
in which the most energetic atoms are allowed to evaporate out of the well while systematically lowering
the height of the well. As the well-height drops, the temperature of the gas plumits down to the nano-Kelvin
range required to produce Bose-Einstein condensation (or Fermi liquid formation) in these gases (see Fig.
5.6).

To understand the phenomenon of BEC, conside the density of gas of bosons, which at a finite temperature
takes almost precisely the same form as for fermions

ρ =

∫

k

1
eβ(Ek−µ) − 1

(5.57)

where we have written the expression for spinless bosons, aswould be the case for a gas of liquid Helium-4,
or ultra-dilute Potassium atoms, for instance. But there isa whole world of physics in the innocent minus
sign in the denominator! Whereas for fermions, the chemical potential is positive, the chemical potential for
bosons is negative. For a gas at fixed volume , the above expression (5.57) thus defines the chemical potential
µ(T). By changing variables, writing

x = βEk = β
~

2k2

2m
,

(
m
β~2

)
dx= kdk

d3k
(2π)3

→ 4πk2dk
(2π)3

=
1
√

2π2

(
m
β~2

)3/2 √
xdx (5.58)
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(b)(a) (c)

tFig. 5.6 Illustrating evaporative cooling in an atom trap. (a) Atoms are held within a magnetic
potential. (b) As the height of the potential well is dropped, the most energetic atoms
“evaporate” from the well, progressively reducing the temperature. (c) A Bose Einstein
condensate, with a finite fraction of the gas in a single momentum state, forms when
the temperature drops blow the condensation temperature.

we can rewrite the Boson density in the form

ρ =
2
√
πλ̃3

T

∫ ∞

0
dx
√

x
1

ex−βµ − 1
(5.59)

where

λ̃T =

(
2π~2

mkBT

)1/2

(5.60)

is a convenient definition of the thermal de Broglie wavelength In order to maintain a fixed density, as one
lowers the temperature, the chemical potentialµ(T) must rise. At a certain temperature, the chemical potential
becomes zero,ρ(T, µ = 0) = N/V At this temperature,

(
λ̃T

a

)3

=
2
√
π

∫ ∞

0
dx
√

x
1

ex − 1
= ζ(

3
2

) = 2.61 (5.61)

wherea = ρ−1/3 is the interparticle spacing. The corresponding temperature

kBTo = 3.31

(
~

2

ma2

)
(5.62)

is the Bose-Einsteincondensation temperature.
Below this temperature, the number of Bosons in thek = 0 state becomes macroscopic, i.e.

nǫ=0 =
1

e−βµ − 1
= No(T) (5.63)

becomes a finite fraction of the total particle number. SinceNo(T) is macroscopic, it follows that

µ

kBT
= − 1

No(T)
(5.64)
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is infinitesimally close to zero. For this reason, we must be careful to split off thek = 0 contribution to the
particle density, writing

N = No(T) +
∑

k,0

nk (5.65)

andthentaking the thermodynamic limit of the second term. For the density, this gives

ρ =
N
V
= ρ0(T) +

∫

k

1
eβ(Ek ) − 1

(5.66)

The the second term is proportional toλ̃T−3 ∝ T3/2. Since the first term vanishes atT = To, it follows that
below the Bose Einstein condensation temperature, the density of bosons in the condensate is thus given by

ρo(T) = ρ

1−
(

T
To

)3/2 (5.67)

Remarks

• The Bose Einstein Condensation is an elementary example of asecond-order phase transition.
• Bose Einstein condensation is an example of a broken symmetry phase transition. It turns out that the same

phenomenon survives in a more robust form, if repulsive interactions between the Bosons are present.
In the interacting Bose Einstein Condensate, the field operator ψ(x) for the bosons actually acquires a
macroscopic expectation value

〈ψ(x)〉 = √ρoeiφ(x) (5.68)

In a non-interacting Bose condensate, the phaseφ(x) lacks rigidity, and does not have a well-defined
meaning. In an interacting condensate, the phaseφ(x) is uniform, and gradients of the phase result in a
superflowof particles- a flow of atoms which is completely free from viscosity.

Example 5.1: In a laser-cooled atom trap, atoms are localized in a region of space through the Zeeman
energy of interaction between the atomic spin and the external field. As the field changes direction, the
“up” and “down” spin atoms adiabatically evolve their orientations to remain parallel with the magnetic
field, and the trapping potential of the “up” spin atoms is determined by the magnitude of the Zeeman
energyV(x) = gµBJB(x), which has a parabolic form

V(x) =
m
2

[
ω2

xx2 + ω2
yy

2 + ω2
zz

2
]

Show that the fraction of bosons condensed in the atom trap is now given by

N0(T)
N
= 1−

(
T

TBE

)3

.

Solution: In the atom trap, one particle states of the atoms are Harmonic oscillator stateswith energy
Elmn = ~(lωx +mωy + nωz) (where the constant has been omitted). In this case, the number of particles
in the trap is given by

N =
∑

l,m,n

1
eβElmn − 1

The summation over the single-particle quantum numbers can be converted to an integral over energy,
provided the condensate fraction is split off the sum, so that

∑

lmn

1
eβElmn − 1

= N0(T) +
∫

dEρ(E)
1

eβE − 1
,
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whereN0 is the number of atoms in the condensate and

ρ(E) =
∑

lmn, (Elmn,0)

δ(E − Elmn)

is the density of states. By converting this sum to an integral we obtain

ρ(E) =
∫

dldmdnδ(E − Elmn)

=

∫
dExdEydEz

~ωx~ωy~ωz
δ(Ex + Ey + Ez − E)

=
1

(~ω̃)3

∫ E

0
dEx

∫ Ex

0
dEy =

E2

2(~ω̃)3
. (ω̃ = (ωxωyωz)

1/3)

The quadratic dependence of this function on energy replaces the square-root dependence of the cor-
responding quantity for free Bosons. The number of particles outside the condensate is proportional to
T3,

∫
dEρ(E)

1
eβE − 1

=
T3

2(~ω̃)3

2ζ3︷         ︸︸         ︷∫
dx

x2

ex − 1
= N

(
T

TBE

)3

wherekBTBE = ~ω̃(N/ζ3)1/3, so that the condensate fraction is now given by

N0(T)
N
= 1−

(
T

TBE

)3

.
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tFig. 5.7 Pressure dependence in a Fermi or Bose gas, where temperature is measured in
units of kBT0 = ~

2/ma2 Showing P/nkB
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Example 5.2: Using the results of the previous section, show that the ideal gas law is modified by the
interference between identical particles, so that

P = nkBTF ±(µ/kBT) (5.69)

wheren is the number density of particles,F ±(z) = g±(z)/h±(z) and

g±(z) = ±
∫ ∞

0
dx
√

xln[1 ± e−(x−z)]

h±(z) =
∫ ∞

0
dx
√

x
1

e(x−z) ± 1
(5.70)

where the upper sign refers to fermions, the bottom to bosons. Sketch thedependence of pressure on
temperature for a gas of identical bosons and a gas of identical fermions with the same density.
Solution: Let us begin by deriving an explicit expression for the Free energy ofa free gas of fermions,
or bosons. We start with

F = ∓(2S + 1)kBTV
∫

k
ln[1 ± e−β(Ek−µ)] (5.71)

whereS is the spin of the particle. Making the change of variables,

x = βEk = β
~

2k2

2m
,

d3k
(2π)3

→ 2

λ̃3
T

√
π

√
xdx (5.72)

whereλ̃T =
√

2π~2/(mkBT) is the rescaled Thermal de Broglie wavelength, we obtain

F = ∓(2S + 1)kBT
V

λ̃3
T

2
√
π

∫
dx
√

xln[1 ± e−(x+µβ)] (5.73)

Taking the derivative with respect to volume, and chemical potential, we obtain the following results
for the Pressure and the particle density.

P = −∂F
∂V
= ±(2S + 1)

kBT

λ̃3
T

2
√
π

∫
dx
√

xln[1 ± e−(x−µβ)]

n = − ∂F
V∂µ

=
(2S + 1)

λ̃3
T

2
√
π

∫
dx
√

x
1

e(x−µβ) ± 1
(5.74)

Dividing the pressure by the density, we obtain the quoted result for the ideal gas.
To plot these results, it is convenient to rewrite the temperature and pressure in the form

T = To[h
±(µβ)]−2/3

P
nkBT0

=
g±(µβ)

[h±(µβ)]5/3
, (5.75)

wherekBTo =
~

2

ma2 , permitting both the pressure and the temperature to be plotted parametricallyas a
function ofµβ. Fig 5.7 shows the results of such a plot.
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Exercises

Exercise 5.1 1 Use the Jordan Wigner transformation to show that the one dimensional anisotropic XY
model

H = −
∑

j

[J1Sx( j)Sx( j + 1)+ J2Sy( j)Sy( j + 1)] (5.76)

can be written as

H = −
∑

j

[t(d† j+1d j + H.c)+ ∆(d† j+1d† j + H.c)] (5.77)

wheret = 1
4(J1 + J2) and∆ = 1

4(J2 − J1).
2 Calculate the excitation spectrum for this model and sketch your results. Comment specifically on

the two casesJ1 = J2 andJ2 = 0.

tFig. 5.8 Phase diagram of transverse field Ising model. See problem 5.3

Exercise 5.2 The 1D transverse field Ising model provides the simplest example of a “quantum phase
transition”: a phase transition induced by quantum zero point motion (Fig.5.8). This model is written

H = −J
∑

j

Sz( j)Sz( j + 1)− h
∑

j

Sx( j),

whereSz is the z-component of a spin 1/2, while the the magnetic fieldh acts in the transverse (x)
direction. ( For convenience, one can assume periodic boundary conditions, withNs sites, so thatj =
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Ns + 1 ≡ j = 0.) At h = 0, the model describes a 1D Ising model, with long-range ferromagnetic order
associated with a two fold degenerate ferromagnetic groundstate,

|Ψ↑〉 = |

or

|Ψ↓〉 = | ↓1〉| ↓2〉 . . . | ↓Ns〉.

A finite transverse field mixes “up” and “down” states, and forinfinitely largeh, the system has a single
ground-state, with the spins all pointing in thex direction,

|Ψ→〉 =
∏

j=1,Ns

( | ↑ j〉 + | ↓ j〉√
2

)
.

In other words, there is thus a quantum phase transition- a phase transition driven by quantum fluc-
tuations, between these the doubly degenerate ferromagnetat smallh and a singly degenerate state
polarized in the x direction at large h.

1 By rotating the above model so that the magnetic field acts inthe+x direction and the Ising interac-
tion acts on the spins in thex direction, the transverse field Ising model can be re-written as

H = −J
∑

j

Sx( j)Sx( j + 1)− h
∑

j

Sz( j),

2 Use the Jordan Wigner transformation to show that the fermionized version of this Hamiltonian can
be written

H =
J
4

∑

j

( f j − f † j)( f j+1 + f † j+1) − h
∑

j

f † j f j . (5.78)

3 Writing f j =
1√
Ns

∑
k dkeikRj , whereRj = a j, show thatH can be rewritten in momentum space as

H =
∑

k∈[0,π/a]

[
ǫk(d

†
kdk − d−kd

†
k) + i(∆d†kd

†
−k − d−kdk)

]
(5.79)

where the sum overk = 2π
Nsa

(1,2 . . .Ns/2) ∈ [0, πa ] is restricted to half the Brillouin zone, while

ǫk = − J
2 coska− h and∆k =

J
2 sinka.

4 Using the results of Ex 4.2, show that the spectrum of the excitations are described by “Dirac
fermions” with a dispersion

Ek =

√
ǫ2

k + ∆
2
k =

√
2Jhsin2(ka) + (h− J/2)2

so that gap in the excitation spectrum closes ath = hc = 2J. What is the significance of this field?

Exercise 5.3 Consider the non-interacting Hubbard model for next nearest neighbor hopping on a two
dimensional lattice

H − µN = −t
∑

j,â=x̂,ŷ,σ

[c† j+âσc jσ + H.c] − µ
∑

jσ

c† jσc jσ

wheren jσ = c† jσc jσ represents the number of electrons of spin componentσ = ±1/2 at sitej.
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1 Show that the dispersion of the electrons in the absence of interactions is given by

ǫ(~k) = −2t(coskxa+ coskya) − µ

wherea is the distance between sites, and~k = (kx, ky) is the wavevector.
2 Derive the relation between the number of electrons per sitene and the area of the Fermi surface.
3 Sketch the Fermi surface when

1 ne < 1.
2 “half filling” where ne = 1

4 The corresponding interacting Hubbard model, with an interaction termUn↑n↓ at each site describes
a class of material called “Mott insulators”, which includes the mother compounds for high temper-
ature superconductors. What feature of the Fermi surface at half-filling makes the non-interacting
ground-state unstable to spin density wave formation and the development of a gap around the Fermi
surface ?

5 Derive the dispersion for the case when, in the one-particle Hamiltonian there is an additional next-
nearest neighbor hopping matrix element of strength acrossthe diagonal,−t′. (Hint: use the Fourier
transform oft(R), given byt(~k) =

∑
~R t(~R)e−i~k·~R). How does this affect the dispersion at half filling?

tFig. 5.9 Honeycomb structure of graphene. See Problem 5.3

(5.9). The vertices of each unit cell form a triangular lattice of side lengtha, located at positions

r i = ma+ nb, wherea = a
( √

3
2 î + 1

2 ĵ
)

andb = a
( √

3
2 î − 1

2 ĵ
)

are the lattice vectors. There are two atoms

per unit cell, labelled “A” and “B”. In a simplified model of graphene, electrons can occupyπ orbitals
at either theA or theB sites, with a tight-binding hopping matrix element−t between neighboring sites.

1 Construct a tight-binding model for graphene. For simplicity, ignore the spin of the electron. Suppose
the creation operator for an electron in theA or B orbital in the “i”th cell isψ†A(r i). Show that the
tight-binding Hamiltonian can be written in the form

H = −t
∑

j

{[
ψ†B(r i) + ψ

†
B(r i − a) + ψ†B(r i − b)

]
ψA(r i) + H.c

}
+ (ǫ − µ)

∑

i

(nA(i) + nB(i))
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whereǫ is the energy of a localized orbital.
2 By transforming to momentum space, writing

ψ†λ(r j) =
1
√

Ns

∑

k

c†kλe
−ik·r j (λ = A, B)

andNs is the number of unit cells in the crystal, show that the Hamiltonian can be written

H =
∑

k

(
c†kB, c

†
kA

) [ǫ − µ ∆(k)
∆∗(k) ǫ − µ

] (
ckB

ckA

)

where

∆(k) = −t(1+ eik·a + eik·b)

with energy eigenstates

ǫ(k) = ±|∆(k)| + (ǫ − µ).

3 Show that∆(k) = 0 at two points in the Brillouin zone wherek · a = −k · b = ± 2π
3 , given by

k = ±K

whereK = 4π
3a ĵ .

4 By expanding aroundk = ±K + p, showing that whenp is small,∆p±K = ±c̃(py ± ipx), where

c̃ =
√

3
2 at is a “renormalized” speed of light. By defining a spinor for the two cones

ψp+ =

(
cp+K B

cp+KA

)
, ψp− =

(
cp−KA

−cp−K B

)
,

show that the low energy Hamiltonian can be written as a Diracequation

H =
∑

pλ=±
ψ†pλ

(
(~σ × p) + (ǫ − µ)1

)
ψpλ

where~σ is a Pauli pseudo-spin matrix acting in the two-component sublattice space, so that when
ǫ − µ = 0, the excitation spectrum is defined by two Dirac cones withE(p) = ±c̃p.
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6 Green’s Functions

Ultimately, we are interested in more than just free systems. We should like to understand what happens to
our system as we dial up the interaction strength from zero, to its full value. We also want to know response
of our complex system to external perturbations, such as an electromagnetic field. We have to recognize that
we can not, in general expect to diagonalize the problem of interest. We do not even need interactions to
make the problem complex: a case in interest is a disordered metal, where we our interest in averaging over
typically disordered configurations introduces effects reminiscent of interactions, and can even lead to new
kinds of physics, such as electron localization. We need some general way of examinining the change of the
system in response to these effects even though we can’t diagonalize the Hamiltonian.

�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������

0.6

1.0

0

0.4

0.2

0.8

Transition.

Danger !
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External Fields

H = H  +    V

λ

Interactions

ο λRandomness

tFig. 6.1 “Dialing up the interaction”. Motivating the need to be able to treat perturbations to a
non-interacting Hamiltonian by dialing up the strength of the perturbation.

In general then, we will be considering problems where we introduce new terms to a non-interaction
Hamiltonian, represented byV. The additional term might be due to

• External electromagnetic fields, which modify the Kinetic energy in the Hamiltonian as follows

− ~
2

2m
∇2→ − ~

2

2m

(
∇ − i

e
~

A
)2

(6.1)
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• Interactions between particles.

V̂ =
1
2

∫
d1d2ψ†(1)ψ†(2)ψ(2)ψ(1) (6.2)

• A random potential

V̂ =
∫

d1V(1)ρ(1) (6.3)

whereV(x) is a random function of position.

One of the things we would like to do, is to examine what happens when the change in the Hamiltonian to
small enough to be considered a perturbation. Even if the term of interest is not small, we can still try to make
it small by writing

H = Ho + λV̂ (6.4)

This is a useful excercise, for it enables us to consider the effect of adiabatically dialing up the strength of
the additional term in the Hamiltonian from zero, to its fullvalue, as illustrated in fig6.1. This is a dangerous
procedure, but sometimes it really works. Life is interesting, because in macroscopic systems the perturbation
of interest often leads to an instability. This can sometimes occur for arbitrarily smallλ. Othertimes, when
the instability occurs when the strength of the new term reaches some critical valueλc. When this happens,
the ground-state can change. If the change is a continuous one, then the point where the instability develops
is aQuantum Critical Point, a point of great interest. Beyond this point, forλ > λc, if we are lucky, we can
find some new startingH′o = Ho+∆H, V̂′ = V̂ −∆H. If H′o is a good description of the ground-state, then we
can once again apply this adiabatic procedure, writing,

H = H′o + λ
′V̂′ (6.5)

If a phase transition occurs, thenH′o will in all probability have display a spontaneousbroken symmetry. The
region of Hamiltonian space whereH ∼ H′o describes a new phase of the system, andH′o is closely associated
with the notion of a “fixed point” Hamiltonian.

All of this discussion motivates us developing a general perturbative approach to many body systems, and
this rapidly leads us into the realm of Green’s functions andFeynman diagrams. A Green’s function describes
the elementary correlations and responses of a system. Feynman diagrams are a way of graphically displaying
the scattering processes that result from a perturbation.

6.1 Interaction representation

Up until the present, we have known two representations of quantum theory- the Schrödinger representa-
tion, where it is the wavefunction that evolves, and the Heisenberg, were the operators evolve and the states
are stationary. We are interested in observable quantitiesmore than wavefunctions, and so we aspire to the
Heisenberg representation. In practice however, we alwayswant to know what happens if we change the
Hamiltonian a little. If we changeHo to Ho + V, but we stick to the Heisenberg representation forHo, then
we are now using the “interaction” representation.

Table. 5.1. Representations .
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Representation States Operators

Schrödinger Change rapidly Os- operators constant

i ∂
∂t |ψS(t)〉 = H|ψS(t)〉

Heisenberg Constant Evolve

−i ∂OH (t)
∂t = [H,OH(t)]

Interaction States change slowly Evolve according toHo

H = Ho + V i ∂
∂t |ψI (t)〉 = VI (t)|ψI (t)〉 −i ∂OI (t)

∂t = [Ho,OI (t)]

Let us now examine the interaction representation in greater detail. In the discussion that follows, we
simplify the notation by taking taking~ = 1. We begin by writing the Hamiltonian as two partsH = Ho + V.
States and operators in this representation are defined as

|ψI (t)〉 = eiHot |ψS(t)〉,

OI (t) = eiHotOSe−iHot


Removes rapid state evolution due toHo (6.6)

The evolution of the wavefunction is thus

|ψI (t)〉 = U(t)|ψI (0)〉,

U(t) = eiHote−iHt

 (6.7)

or more generally,

|ψI (t)〉 = S(t, t′)|ψI (t
′)〉,

S(t) = U(t)U†(t′) (6.8)

The time evolution ofU(t) can be derived as follows

i
∂U
∂t
= i

(
∂eiHot

∂t

)
e−iHt + ieiHot

(
∂e−iHt

∂t

)

= eiHot(−Ho + H)e−iHt

= [eiHotVe−iHot]U(t)

= VI (t)U(t) (6.9)
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so that

i
∂S(t2, t1)
∂t1

= V(t2)S(t2, t1) (6.10)

where from now on, all operators are implicitly assumed to bein the interaction representation.
Now we should like to exponentiate this time-evolution equation, but unfortunately, the operatorV(t) is

not constant, and furthermore,V(t) at one time, does not commute withV(t′) at another time. To overcome
this difficulty, Schwinger invented a device called the “time-ordering operator”.

Time ordering operator Suppose{O1(t1),O2(t2) . . .ON(tN)} is a set of operators at different times
{t1, t2 . . . tN}. If P is the permutation that orders the times, so thattP1 > tP2 . . . tPN , then if the opera-
tors are entirely bosonic, containing an even number of fermionic operators,the time ordering operator
is defined as

T
[
O1(t1)O2(t2) . . .ON(tN)

]
= OP1(tP1)OP2(tP2) . . .OPN (tPN ) (6.11)

For later use, we note that if the operator set contains fermionic operators, composed of an odd number
of fermionic operators, then

T
[
F1(t1)F2(t2) . . . FN(tN)

]
= (−1)PFP1(tP1)FP2(tP2) . . . FPN (tPN ) (6.12)

whereP is the number of pairwise permutations of fermions involved in the time ordering process.
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S

a

b

c

d

j N 8

tFig. 6.2 Each contribution to the time-ordered exponential corresponds to the amplitude to
follow a particular path in state space. The S-matrix is given by the limit of the process
where the number of time segments is sent to infinity.
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Suppose we divide the time interval [t1, t2], wheret2 > t1 into N identical segments of period∆t = (t2 −
t1)/N, where the time at the midpoint of thenth segment istn = t1 + (n− 1

2)∆t. The S-matrix can be written
as a product of S-matrices over each intermediate time segment, as follows:

S(t2, t1) = S(t2, tN − ∆t
2 )S(tN−1 +

∆t
2 , tN−1 − ∆t

2 ) . . .S(t1 + ∆t
2 , t1) (6.13)

ProvidedN is large, then over the short time interval∆t, we can approximate

S(t + ∆t
2 , t −

∆t
2 ) = e−iV(t)∆t +O(1/N2) (6.14)

so that we can write

S(t2, t1) = e−iV(tN)∆te−iV(tN−1)∆t . . . e−iV(t1)∆t +O(1/N) (6.15)

Using the time-ordering operator, this can be written

S(t2, t1) = T
[ N∏

j=1

e−iV(t j )∆t] +O(1/N) (6.16)

The beauty of the time-ordering operator, is that even though A(t1) andA(t′) don’t commute, we can treat
them as commuting operators so long as we always time-order them. This means that we can write

T[eA(t1)eA(t2)] = T[eA(t1)+A(t2)] (6.17)

because in each time-ordered term in the Taylor expansion, we never have to commute operators, so the
algebra is the same as for regular complex numbers. With thistrick, we can write,

S(t2, t1) = LimN→∞T
[
e−i

∑
j V(t j )∆t] (6.18)

The limiting value of this time-ordered exponential is written as

S(t2, t1) = T
[
exp

{
−i

∫ t2

t1

V(t)dt

}]
, Time-ordered exponential (6.19)

This is the famous time-ordered exponential of the interaction representation.
Remarks

• The time-ordered exponential is intimately related to Feynman’s notion of the path integral. The time-
evolution operatorS(t j +∆t/2, t j −∆t/2) = S f r (t j) across each segment of time is a matrix that takes one
from stater to statef . The total time evolution operator is just a matrix product over each intermediate
time segment. Thus the amplitude to go from statei at timet1 to statef at timet2 is given by

S f i(t2, t2) =
∑

path={p1,...pN1 }

S f ,pN−1(tN) . . .Sp2p1(t2)Sp1i(t1) (6.20)

Each term in this sum is the amplitude to go along the path of states

pathi → f : i → p1→ p2→ . . . pN−1 → f . (6.21)

The limit where the number of segments goes to infinity is a path integral.

92



bk.pdf April 29, 2012 51

c©2011 Piers Coleman Chapter 6.

• One can formally expand the time-ordered exponential as a power series, writing,

S(t2, t1) =
∑

n=0,∞

(−i)n

n!

∫ t2

t1

dt1 . . . dtnT[V(t1) . . .V(tn)] (6.22)

Thenth term in this expansion can be simply interpreted as the amplitude to go from the initial, to the
final state, scatteringn times off the perturbationV. This form of the S-matrix is very useful in making
a perturbation expansion. By explicitly time-ordering then− th term, one obtainsn! identical terms, so
that

S(t2, t1) =
∑

n=0,∞
(−i)n

∫ t2

t1, {tn>tn−1···>t1}
dt1 . . .dtnV(tn) . . .V(t1) (6.23)

This form for the S-matrix is obtained by iterating the equation of motion,

S(t2, t1) = 1− i
∫ t2

t1

dtV(t)S(t, t1) (6.24)

which provides an alternative derivation of the time-ordered exponential.

6.1.1 Driven Harmonic Oscillator

To illustrate the concept of the time-ordered exponential,we shall show how it is possible to evaluate the
S-matrix for a driven harmonic oscillator, whereH = Ho + V(t),

Ho = ω(b†b+
1
2

)

V(t) = z̄(t)b+ b†z(t)


(6.25)

Here the forcing terms are written in their most general form. z(t) and z̄(t) are forces which “create” and
“annihilate” quanta respectively. A conventional force inthe Hamiltonian,H = Ho − f (t)x̂ gives rise to a
particular case, where ¯z(t) = z(t) = (1/2mω)

1
2 f (t). We shall show that if the forcing terms are zero in the

distant past and distant future and the system is initially in the ground-state, the amplitude to stay in this state
is

S[z̄, z] = 〈0|Te−i
∫ ∞
−∞ dt[z̄(t)b(t)+b†(t)z(t)] |0〉 = exp

[
−i

∫ ∞

−∞
dtdt′z̄(t)G(t − t′)z(t′)

]
. (6.26)

whereG(t − t′) = −iθ(t − t′)e−iω(t−t′) is our first example of a one particle “Green’s function”. Theimportance
of this result, is that we have a precise algebraic result forthe response of the ground-state to an arbitrary
force term. Once we know the response to an arbitrary force, we can, as we shall see, deduce the n-th ordered
moments, or correlation functions of the Bose fields.

Proof: To demonstrate this result, we need to evaluate the time ordered exponential

〈 0 |T exp

[
−i

∫ τ

−τ
dt[z̄(t)b(t) + b†(t)z(t)]

]
|0〉 (6.27)

whereb(t) = beiωt andb†(t) = b†eiωt. To evaluate this integral, we divide up the intervalt ∈ (t1, t2) into N
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segments,t ∈ (t j −∆t/2, t j +∆t j) of width∆t = 2τ/N and write down the discretized time-ordered exponential
as

SN = eAN−A†N × . . .eAr−A† r × . . . eA1−A†1 (6.28)

where we have used the short-hand notation,

Ar = −iz̄(tr )b(tr )∆t,
A†r = ib†(tr )z(tr )∆t (6.29)

To evaluate the ground-state expectation of this exponential, we need to “normal” order the exponential,
bringing the terms involving annihilation operatorseAr to the right-hand side of the expression. To do this ,
we use the result1

eα̂+β̂ = eβ̂eα̂e[α̂,β̂]/2 (6.30)

and the related result that follows by equatingeα̂+β̂ = eβ̂+α̂,

eα̂eβ̂ = eβ̂eα̂e[α̂,β̂] . (6.31)

These results hold if [ ˆα, β̂] commutes with ˆα andβ̂. We use these relations to separateeAr−A† r → e−A† r eAr e−[Ar ,A† r ]/2

and commute theeAr to the right, past terms of the forme−A† s, eAr e−A† s = e−A† seAr e−[Ar ,A† s] . We observe that
in our case,

[Ar ,A
†

s] = ∆t2z̄(tr )z(ts)e
−iω(tr−ts) (6.32)

is a c-number, so we can use the above theorem. We first normal order each term in the product, writing
eAr−A†r = e−A† r eAr e−[Ar ,A†r ]/2 so that

SN = e−A†NeAN . . . e−A†1eA1e−
∑

r [Ar ,A† r ]/2 (6.33)

Now we move the general termeAr to the right-hand side, picking up the residual commutatorsalong the way
to obtain

SN =

:SN:︷         ︸︸         ︷
e−

∑
r A† r e

∑
r Ar exp

[−
∑

r≥s

[Ar ,A
†

s](1 −
1
2
δrs)

]
, (6.34)

where theδrs term is present because by Eq. (6.33), we get half a commutator when r = s. The vacuum
expectation value of the first term is unity, so that

S(t2, t1) = lim
∆t→0

exp
[
−

∑

s≤r

∆t2z̄(tr )z(ts)e
−iω(tr−ts)(1− 1

2
δrs)

]

= exp
[
−

∫ τ

−τ
dtdt′z̄(t)θ(t − t′)e−iω(t−t′)z(t′)

]
, (6.35)

where theδrs term contributes a term of order∆t
∫ t2

t1
dt|z(t)|2 O(∆t) to the exponent that vanishes in the limit

1 To prove this result considerf (x) = exα̂exβ̂. Differentiatingf (x), we obtaind f
dx = exα̂(α̂ + β̂)exβ̂. Now if [α̂, β̂] commutes with ˆα and

β̂, then [α̂n, β̂] = n[α̂, β̂]α̂n−1, so that the commutator [exα̂, β̂] = x[α̂, β̂]exα̂. It thus follows thatd f
dx = (α̂ + β̂ + x[α̂, β̂]) f (x). We can

integrate this expression to obtainf (x) = exp[x(α̂ + β̂) + x2

2 [α̂, β̂]]. Settingx = 1 then giveseα̂eβ̂ = eα̂+β̂e
1
2 [α̂,β̂] . If we interchangeα

andβ, we obtaineβ̂eα̂ = eα̂+β̂e−
1
2 [α̂,β̂] . Combining the two expressions,eαeβ = eβeαe[α,β] .
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∆t → 0. So placingG(t − t′) = −iθ(t − t′)e−iω(t−t′),

S(t2, t1) = exp
[
−i

∫ τ

−τ
dtdt′z̄(t)G(t − t′)z(t′)

]
(6.36)

Finally, taking the limits of the integral to infinity, (τ→ ∞), we obtain the quoted result.
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tFig. 6.3 Probability p(T) for an oscillator to remain in its ground-state after exposure to an
electric field for time T, illustrated for the case V/~ω = 1.

Example 6.1: A charged particle of chargeq, massm is in the ground-state of a harmonic potential of
characteristic frequencyω. Show that after exposure to an electric fieldE for a timeT, the probability
it remains in the ground-state is given by

p = exp
[−4g2 sin2(ωT/2)] (6.37)

where the coupling constant

g2 =
Vspring

~ω
(6.38)

is the ratio between the potential energyVspring = q2E2/(2mω2) stored in a classical spring stretched by
a forceqE and the quantum of energy~ω.
Solution: The probabilityp = |S(T,0)|2, to remain in the ground-state is the square of the amplitude

S(T,0) = 〈φ|Te−
i
~

∫ T
0 V(t)dt|φ〉. (6.39)

Notice, that since we explicitly re-introduced~ , 1, we must now use

V(t)
~
= −qE(t)

~
x(t) (6.40)

in the time-ordered exponential, whereE(t) is the electric field. Writingx =
√

~

2mω (b + b†), we can

recastV in terms of boson creation and annihilation operators asV(t)/~ = z̄(t)b(t) + b†(t)z(t), where,

z(t) = z̄(t) = −1
~

√
~

2mω
qE(t) = −

√
Vω
~
θ(t). (6.41)

HereV = q2E2

2mω2 is the potential energy of the spring in a constant fieldE Using the relationship derived
in (6.36), we deduce that

S(T,0) = e−iA

where the phase term

A =
∫ T

0
dt1dt2z̄(t1)G(t1 − t2)z(t2)
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andG(t) = −ie−iωtθ(t) is the Green function. Carrying out the integral, we obtain

A = −i
Vω
~

∫ T

0
dt

∫ t

0
dt′e−iω(t−t′) = −i

Vω
~

∫ T

0
dt

1
iω

[1 − e−iωt]

= −VT
~
+

2V
~ω

e−iωT/2 sin
ωT
2

= −VT
~

[
1− sin(ωT)

ωT

]
− i

2V
~ω

sin2
(
ωT
2

)
. (6.42)

The real part of A contains a term that grows linearly in time,ReA∼ −VT/~ giving rise to uniform
growth in the phase ofS(T) ∼ eiVT/~|S(T,0)| that we recognize as a consequence of the shift in the
ground-state energy of the oscillatorEg → ~ω

2 − V in the applied field. The imaginary part determines
the probability to remain in the ground-state, which is given by

p = |S(T,0)|2 = e2Im[A] = exp

(
−4V
~ω

sin2 ωT
2

)
.

demonstrating the oscillatory amplitude to remain in the ground-state (Fig. 6.3).

6.1.2 Wick’s theorem and Generating Functionals

The time-ordered exponential in the generating function

S[z̄, z] = 〈0|Te−i
∫ ∞
−∞ dt[z̄(t)b(t)+b†(t)z(t)] |0〉 = exp

[
−i

∫ ∞

−∞
dtdt′z̄(t)G(t − t′)z(t′)

]
. (6.43)

is an example of a “functional”: a quantity containing one ormore arguments that are functions (in this case,
z(t) andz̄(t)). With this result we can examine how the ground-state responds to an arbitrary external force.
The quantityG(t − t′) which determines the response of the ground-state to the forces,z(t) andz̄(t), is called
the “one particle Green’s function”, defined by the relation

G(t − t′) = −i〈0|Tb(t)b†(t′)|0〉. (6.44)

We may confirm this relation by expanding both sides of (6.43)to first order inz̄ andz. The left hand side
gives

1+ (−i)2
∫

dtdt′z̄(t)〈0|Tb(t)b†(t′)|0〉.z(t′) +O(z̄2, z2) (6.45)

whereas the right-hand side gives

1− i
∫

dtdt′z̄(t)G(t − t′)z(t′) +O(z̄2, z2) (6.46)

Comparing the coefficients, we confirm (6.44).
Order by order inzandz̄, the relationships between the left-hand and right-hand side of the expansion (6.43

) of the generating functionalS[z̄, z] provide an expansion for all the higher-order correlationfunctions of the
harmonic oscillator in terms of the elementary Green’s function G(t − t′), an expansion known as “Wick’s
Theorem”. From the left-hand side of (6.43), we see that eachtime we differentiate the generating functional
we bring we bring down operatorsb(1) andb†(1′) inside the Green’ function according to the relation

i
δ

δz̄(1)
→ b̂(1), i

δ

δz(1′)
→ b̂(1′). (6.47)
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where we have used the short-hand 1≡ t, 1′ ≡ t′. For example,

i
S

δS
δz̄(1)

=
〈0|Ŝ b(1)|0〉
〈0|Ŝ|0〉

= 〈b(1)〉 =
∫

d1′G(1− 1′)z(1′), (6.48)

so if there is a force present, the boson field develops an expectation value, which in the original oscillator
corresponds to a state with a finite displacement or momentum. If we differentiate this expression again and
set the source terms to zero we get the two-particle Green’s function,

i2
δ2S

δz(1′)δz̄(1)

∣∣∣∣∣∣
z̄, z=0

= 〈0|Tb(1)b†(1′)|0〉 = iG(1− 1′) (6.49)

If we take a 2n-th order derivative, we obtain the n-particleGreen’s function

i2n δ2nS[z̄, z]
δz(1′)δz(2′) . . . δz̄(2)δz̄(1)

∣∣∣∣∣∣
z̄, z=0

= 〈0|Tb(1) . . . b(n)b†(n′) . . . b†(1′)|0〉 (6.50)

We define the quantity

G(1, . . . n; 1′ . . . n′) = (−i)n〈0|Tb(1) . . . b(n)b†(n′) . . . b†(1′)|0〉
= in

δ2nS[z̄, z]
δz(1′)δz(2′) . . . δz̄(2)δz̄(1)

∣∣∣∣∣∣
z̄, z=0

(6.51)

as the n-particle Green’s function. Now we can obtain an expansion for this quantity by differentiating the
right-hand side of (6.43 ). After the firstn differentiations we get

in
δnS

δz̄(n) . . . δz̄(1)
= S[z̄, z] ×

∫ n∏

s=1

ds′G(s− s′)z(s′) (6.52)

Now there aren! permutationsP of the z(s′), so that when we carry out the remainingn differentiations,
ultimately setting the source terms to zero, we obtain

in
δ2nS

δz(1′) . . . δz(n′)δz̄(n) . . . δz̄(1)
=

∑

P

∏
G(r − P

′

r ) (6.53)

wherePr is ther-th component of the permutationP = (P1P2 . . .Pn). Comparing relations (6.51 ) and (6.53
), we obtain

G(1, . . . n; 1′ . . . n′) =
∑

P

∏

r

G(r − P′r ), (6.54)

Wick’s theorem.

It is a remarkable property of non-interacting systems, that the n-particle Green’s functions are determined
entirely in terms of the one-particle Green functions. In (6.54) each destruction event at timetr ≡ r is paired
up with a corresponding creation event at timet′Pr

≡ P′r . The connection between these two events is often
called a “contraction”, denoted as follows(�i)nh�jT : : : b(r) : : : by(P 0r) : : : j�i = G(r − P′r ) × (−i)n−1〈0|T . . . |0〉 (6.55)
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Notice that since particles are conserved, we can only contract a creation operator with a destruction operator.
According to Wick’s theorem, the expansion of the n-particle Green function in (6.50) is carried out as a sum
over all possible contractions, denoted as follows

G(1 . . . n′) =
∑

P

G(1− P′1)G(2− P′2) . . .G(r − P′r ) . . .

=
∑

P
(�i)nh�jTb(1)b(2) : : : b(r) : : : by(P 0r) : : : by(P 01) : : : by(P 02) : : : j�i... ... ...

(6.56)

Physically, this result follows from the identical nature of the bosonic quanta or particles. When we take the
n particles out at timest1 . . . tn, there is no way to know in which order we are taking them out. The net
amplitude is the sum of all possible ways of taking out the particles- This is the meaning of the sum over
permutationsP.

Finally, notice that generating functional result can be generalized to an arbitrary number of oscillators by
replacing (z, z̄)→ (zr , z̄r ), whereupon

〈0|T exp

[
−i

∫ ∞

−∞
dt[z̄r (t)br (t) + br

†(t)zr (t)]

]
|0〉

= exp

[
−i

∫ ∞

−∞
dtdt′z̄r (t)Grs(t − t′)zs(t

′)

]
(6.57)

where now,Grs(t−t′) = −i〈0|Tbr (t)b†s(t′)|0〉 = −iδrsθ(t−t′)e−iωr (t−t′), and summation over repeated indices is
implied. This provides the general basis for Wick’s theorem. The concept of a generating functional can also
be generalized to Fermions, with the proviso that now we mustuse replace (z, z̄) by anticommuting numbers
(η, η̄), a point we return to later.

6.2 Green’s Functions

Green’s functions are the elementary response functions ofa many body system. The one particle Green’s
function is defined as

Gλλ′(t − t′) = −i〈φ|Tψλ(t)ψ†λ′(t′)|φ〉 (6.58)

where|φ〉 is the many body ground-state,ψλ(t) is the field in the Heisenberg representation and

Tψλ(t)ψ
†
λ′(t
′) =



ψλ(t)ψ†λ′(t′) (t > t′)

±ψ†λ′(t′)ψλ(t) (t < t′) ±
{

Bosons
Fermions

(6.59)

defines the time-ordering for fermions and bosons. Diagramatically, this quantity is represented as follows

Gλλ′(t − t′) = λ,t ’λ, t’
(6.60)
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Quite often, we shall be dealing with translationally invariant systems, whereλ denotes the momentum and
spin of the particleλ ≡ pσ. If spin is a good quantum number, (no magnetic field, no spin-orbit interactions),
then

Gkσ,k′σ′ (t − t′) = δσσ′δkk ′G(k, t − t′) (6.61)

is diagonal, ( where in the continuum limit,δkk ′ → (2π)Dδ(D)(k − k′)). In this case, we denote

G(k, t − t′) = −i〈φ|Tψkσ(t)ψ†kσ(t′)|φ〉 = t’ t
k

(6.62)

We can also define Green’s function in co-ordinate space,

G(x − x′, t) = −i〈φ|Tψσ(x, t)ψ†σ(x′, t′)|φ〉 (6.63)

which we denote diagramatically, by

G(x − x′, t) = (x,t) (x’,t’) (6.64)

By writing ψσ(x, t) =
∫

k
ψkσei(k·x), we see that the co-ordinate-space Green’s function is justthe Fourier

transform of the momentum-space Green’s function:

G(x − x′, t) =
∫

k,k′
ei(k·x−k′·x′)

δkk ′G(k,t−t′)︷                         ︸︸                         ︷
−i〈φ|Tψkσ(t)ψ†k′σ(0)|φ〉

=

∫
d3k

(2π)3
G(k, t)eik·(x−x′) (6.65)

It is also often convenient to Fourier transform in time, so that

G(k, t) =
∫ ∞

−∞

dω
2π

G(k, ω)e−iωt (6.66)

The quantity

G(k, ω) =
∫ ∞

−∞
dtG(k, t)eiωt

=
k,ω

(6.67)

is known as the propagator. We can then relate the Green’s function in co-ordinate space to its propagator, as
follows

−i〈φ|Tψσ(x, t)ψ†σ(x′, t′)|φ〉 =
∫

d3kdω
(2π)4

G(k, ω)ei[(k·(x−x′)−ω(t−t′)] (6.68)

6.2.1 Green’s function for free Fermions

As a first example, let us calculate the Green’s function of a degenerate Fermi liquid of non-interacting
Fermions in its ground-state. We shall take the heat-bath into account, using a Heisenberg representation
where the heat-bath contribution to the energy is subtracted away, so that

H = Ĥo − µN =
∑

σ

ǫkc†kσckσ. (6.69)
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is the Hamiltonian used in the Heisenberg representation and ǫk = ~
2k2

2m − µ. We will frequently reserve use
of “c” for the creation operator of fermions in momentum space. The ground-state for a fluid of fermions is
given by

|φ〉 =
∏

σ|k|<kf

c†kσ|0〉 (6.70)

In the Heisenberg representation,c†kσ(t) = eiǫk tc†kσ, ckσ(t) = e−iǫk tckσ. For forward time propagation, it is
only possible to add a fermion above the Fermi energy, and

〈φ|ckσ(t)c†k′σ′ (t
′)|φ〉 = δσσ′δkk ′e

−iǫk (t−t′)〈φ|ckσc†kσ|φ〉
= δσσ′δkk ′(1− nk)e−iǫk (t−t′) (6.71)

wherenk = θ(|kF | − |k|). For backward time propagators, it is only possible to destroy a fermion, creating a
hole, below the Fermi energy

〈φ|c†k′σ′ (t′)ckσ(t)|φ〉 = δσσ′δkk ′nke−iǫk (t−t′) (6.72)

so that

G(k, t) = −i[(1 − nk)θ(t) − nkθ(−t)]e−iǫk t (6.73)

can be expanded as

G(k, t) =



−iθ|k|−|kF |e
−iǫk t (t > 0) “electrons”

iθ|kF |−|k|e
−iǫk t (t < 0) “holes” : electrons moving backwards in time

(6.74)

This unification of hole and electron excitations in a singlefunction is one of the great utilities of the time-
ordered Green’s function.2

Next, let us calculate the Fourier transform of the Green’s function. This is given by

G(k, ω) = −i
∫ ∞

−∞
dtei(ω−ǫk )t

cnvgnce factor︷︸︸︷
e−|t|δ

[
θk−kFθ(t) − θkF−kθ(−t)

]

= −i
[ θk−kF

δ − i(ω − ǫk)
− θkF−k

δ + i(ω − ǫk)

]
=

1
ω − ǫk + iδk

(6.75)

whereδk = sign(k− kF). The free fermion propagator is then

G(k, ω) =
1

ω − ǫk + iδk
=

k,ω
(6.76)

2 According to an aprocryphal story, the relativistic counterpart of this notion, that positrons are electrons travelling backwards in time,
was invented by Richard Feynman while a graduate student of John Wheeler at Princeton. Wheeler was strict, allowing his graduate
students precisely half an hour of discussion a week, employing a chess clock as a timer at the meeting. Wheeler treated Feynmanno
differently and when the alloted time was up, he stopped the clock and announced that the session was over. At their second meeting,
Feynman apparently arrived with his own clock, and at the end of the half hour, Feynman stopped his own clock to announce thathis
advisor, Wheeler’s time was up. During this meeting they discussed the physics of positrons and Feynman came up with the idea that
that a positron was an electron travelling backwards in time and that there might only be one electron in the whole universe,threading
backwards and forwards in time. To mark the discovery, at the third meeting Dick Feynman arrived with a modified clock which he
had fixed to start at 30 minutes and run backwards to zero!
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The Green’s function contains both static, and dynamic information about the motion of particles in the
many-body system. For example, we can use it to calculate thedensity of particles in a Fermi gas

〈ρ̂(x)〉 =
∑

σ

〈ψ†σψσ〉 = −
∑

σ

〈φ|Tψσ(x,0−)ψ†σ(x,0)|φ〉

= −i(2S + 1)G(x,0−)|x=0 (6.77)

whereS is the spin of the fermion. We can also use it to calculate the Kinetic energy density, which is given
as follows

〈T̂(x)〉 = − ~
2

2m

∑

σ

〈ψ†σ(x)∇2
xψσ(x)〉 = ~

2∇2
x

2m

∑

σ

〈φ|Tψσ(x,0−)ψ†σ(~x′,0)|φ〉
∣∣∣∣∣∣∣
x−x′=0

= i(2S + 1)
~

2∇2

2m
G(x,0−)

∣∣∣∣∣∣
x=0

(6.78)

Example 6.2: By relating the particle density and kinetic energy density to one-particle Green’s func-
tion to the particle density, calculate the particle and kinetic energy density of particles in a degenerate
Fermi liquid.
Solution: We begin by writing〈ρ̂(x)〉 = −i(2S + 1)G(~0,0−). Writing this out explicitly we obtain

〈ρ(x)〉 = (2S + 1)
∫

d3k
(2π)3

[∫
dω
2πi

eiωδ 1
ω − ǫk + iδk

]
(6.79)

where the convergence factor appears because we are evaluating theGreen’s function at a small negative
time −δ. We have explicitly separated out the frequency and momentum integrals.The poles of the
propagator are atω = ǫk − iδ if k > kF , but atω = ǫk + iδ if k < kF , as illustrated in Fig. 6.4.
The convergence factor means that we can calculate the complex integral using Cauchy’s theorem by
completing the contour in the upper half complex plane, where the integranddies away exponentially.
The pole in the integral will only pick up those poles associated with states belowthe Fermi energy, so
that

∫
dω
2πi

eiωδ 1
ω − ǫk + iδk

= θkF−|k| (6.80)

and hence

ρ = (2S + 1)
∫

k<kF

d3k
(2π)3

= (2S + 1)
VF

(2π)3
(6.81)

In a similar way, the kinetic energy density is written

〈T(x)〉 = (2S + 1)
∫

d3k
(2π)3

~
2k2

2m

[∫
dω
2πi

eiωδ 1
ω − ǫk + iδk

]

= (2S + 1)
∫

k<kF

d3k
(2π)3

~
2k2

2m
=

3
5
ǫFρ (6.82)

6.2.2 Green’s function for free Bosons

As a second example, let us examine the Green’s function of a gas of non-interacting bosons, described by

H =
∑

q

ωq[b†qbq +
1
2

] (6.83)
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F
(k< k   )

F
(k> k   )

k

εkz =     - i δ

z=      i ε  +  δ

tFig. 6.4 Showing how the path of integration in (6.80) picks up the pole contributions from the
occupied states beneath the Fermi surface.

where physical field operator is related to a sum of creation and annihilation operators:

φ(x) =
∫

q
φqeiq·x

φq =

√
~

2mωq
[bq + b†−q] (6.84)

Since there are no bosons present in the ground-state, bosondestruction operators annihilate the ground-state
|φ〉. The only terms contributing to the Green function are then

−i〈φ|Tbq(t)b†q(0)|φ〉 = −iθ(t)e−iωqt,

−i〈φ|Tb†−q(t)b−q(0)|φ〉 = −iθ(−t)eiωqt, (6.85)

so that

D(q, t) = −i〈φ|φ(q, t)φ(−q, t)|φ〉 = −i
~

2mωq

[
θ(t)e−iωqt + θ(−t)eiωqt] (6.86)

If we Fourier transform this quantity, we obtain the boson propgator,

D(q, ν) =
∫ ∞

−∞
dte−δ|t|+iνtD(q, t)

= −i
~

2mωq

[
1

δ − i(ν − ωq)
+

1
δ + i(ν − ωq)

]
(6.87)
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or

D(q, ν) =
~

2mωq

[
2ωq

ν2 − (ωq − iδ)2

]
, Bose propagator (6.88)

Remarks:

• Note that the bose propagator has two poles atν = ±(ω − iδ). You can think of the bose propagator as a
sum of two terms, one involving a boson emission, that propagates forwardsin time from the emitter, a
second involving boson absorption that propagates backwardsin time from the absorber,

D(q, ν) =
~

2mωq



emission︷          ︸︸          ︷
1

ν − (ωq − iδ)
+

absorption︷             ︸︸             ︷
1

−ν − (ωq − iδ)


(6.89)

• We shall shortly see that amplitude to absorb and emit bosonsby propagating fermions is directly related
to the Boson propagator. For example, when there is an interaction of the form

Hint = g
∫

d3xφ(x)ρ(x) (6.90)

The exchange of virtual bosons between particles gives riseto retardedinteractions,

V(q, t − t′) =
g2

~
D(q, t − t′), (6.91)

whereby a passing fermion produces a the potential change inthe environment which lasts a charac-
teristic time∆t ∼ 1/ωo whereωo is the characteristic value ofωq. From the Fourier transform of this
expression, you can see that the time average of this interaction, proportional toD(q, ν = 0) = − ~

mω2
q

is

negative: i.e. the virtual exchange of a spinless boson mediates an attractive interaction.

6.3 Adiabatic concept

The adiabatic concept is one of the most valuable concepts inmany body theory. What does it mean to
understand a many body problem when we can never, except in the most special cases, expect to solve the
problem exactly? The adiabatic concept provides an answer to this question.

Suppose we are interested in a many body problem with Hamiltonian H, with ground-state|Ψg〉 which
we can not solve exactly. Instead we can often solve a simplified version of the many body HamiltonianHo

where the ground-state|Ψ̃g〉 has the samesymmetryas |Ψg〉. Suppose we start in the ground-state|Ψ̃g〉, and
now slowly evolve the Hamiltonian fromHo to H, i.e, if V̂ = H − Ho, we imagine that the state time-evolves
according to the Hamiltonian

H(t) = Ho + λ(t)V
λ(t) = e−|t|δ (6.92)
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Phase transition:Adiabaticity:

οH = H  +    V

tFig. 6.5 Illustrating the evolution of the Hilbert space as the Hamiltonian is adiabatically
evolved. In the first case, the ground-state can be adiabatically evolved all the way to
λ = 1. In the second case, a phase transition occurs at λ = λc, where a previously
excited state, with a different symmetry to the ground-state crosses below the
ground-state.

whereδ is arbitrarily small.
As we adiabatically evolve the system, the ground-state, and excited states will evolve, as shown in Fig.

6.5. In such an evolution process, the energy levels will typically show “energy level repulsion”. If any two
levels get too close together, matrix elements between the two states will cause them to repel one-another.
However, it is possible for states of different symmetry to cross, because selection rules prevent them from
mixing. Sometimes, such an adiabatic evolution will lead to“level crossing”, whereby atλ = λc when some
excited stateψr with different symmetry to the ground-state, crosses to a lower energy than the ground-state.
Such a situation leads to “spontaneous symmetry breaking”.A simple example is when a Ferromagnetic
ground-state becomes stabilized by interactions.

In general however, if there is no symmetry changing phase transition as the interactionV is turned on, the
procedure of adiabatic evolution, can be used to turn on “interactions”, and to evolve the ground-state from
Ψ̃g toΨg.

These ideas play a central role in the development of perturbation theory and Feynman diagrams. They
are however also of immense qualitative importance, for thephysics of adiabatically related ground-states
is equivalent. Adiabatic evolution defines an equivalence class of ground-states with the same qualitative
physics. The adiabatic principle was first employed with great success in the fifties. Murray Gell-Mann
and Francis Low used it to prove their famous relation linking non-interacting, and interacting Green’s
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functions[1]. Later in the fifties, Landau[2, 3, 4] used the adiabatic idea in a brilliantly qualitative fashion, to
formulate his theory of interacting Fermi liquids, which weexamine in detail in the next chapter.

6.3.1 Gell-Mann Low Theorem

Suppose we gradually turn on, and later, gradually turn off an interactionV so that

V(t) = e−ǫ|t|V(0) (6.93)

acquires its full magnetitude at t=0 and vanishes in the distant past and in the far-future. The quantityτA = ǫ
−1

sets the characteristic “switch-on time” for the process. Adiabaticity requires that we ultimately letǫ → 0,
sending the switch-on time to infinityτA → ∞. When we start out att = −∞, the ground-state is| − ∞〉, and
the interaction and Heisenberg representations coincide.If we now evolve to the present in the Heisenberg
representation, the states do not evolve, so the ground-state is unchanged

|φ〉H ≡ | − ∞〉, (6.94)

and all the interesting physics of the interactionV is encoded in the the operators. We would like to calculate
the correlation or Green’s functions of a set of observablesin the fully interacting system. The Gell-Mann
Low theorem enables us to relate the Green’s function of the interacting system to the Green’s functions of
the non-interacting system att = −∞. The key result is

〈φ|T A(t1)B(t2) . . .R(tr )|φ〉H = 〈+∞|TS[∞,−∞]A(t1)B(t2) . . .R(tr )| − ∞〉I
S[∞,−∞] = T exp

[
−i

∫ ∞

−∞
V(t′)dt′

]
(6.95)

where the subscriptH andI indicate that the operators, and states are to be evaluated in the Heisenberg and
interaction representations, respectively. The state| +∞〉 = S(∞,−∞)| − ∞〉 corresponds to the ground-state,
in the interaction representation in the distant future. Ifadiabaticity holds, then the process of slowly turning
on, and then turning off the interaction, will return the system to its original state, up to a phase, so that
| +∞〉 = e2iδ| − ∞〉. We can then writee2iδ = 〈−∞|∞〉, so that so that

〈+∞| = e−2iδ〈−∞| = 〈−∞|
〈−∞| +∞〉 (6.96)

and the Gell-Mann Low formula becomes

〈φ|T A(t1)B(t2) . . .R(tr )|φ〉H =
〈−∞|TS[∞,−∞]A(t1)B(t2) . . .R(tr )| − ∞〉I

〈−∞|S[∞,−∞]| − ∞〉 (6.97)

Remarks:

• With the Gell-Mann Low relation, we relate the Green’s function of a set of complex operators in an
interacting system, to a Green’s function of a set of simple operators multiplied by the S-matrix.

• The Gell-Mann Low relation is the starting point for the Feynman diagram expansion of Green’s functions.
When we expand the S-matrix as a power-series inV, each term in the expansion can be written as an
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integral over Green’s functions of the non-interacting problem. Each of these terms corresponds to a
particular Feynman diagram.

• When we expand the vacuum expectation value of the S-matrix, we will see that this leads to “Linked
Cluster” diagrams.

Proof: To prove this result, letU(t) = S(t,−∞) be the time-evolution operator for the interaction repre-
sentation. Since the interaction, and Heisenberg states coincide att = −∞, and |ψH〉 does not evolve with
time,

|ψI (t)〉 = U(t)|ψH〉 (6.98)

SinceU(t)AH(t)|ψH〉 = AI (t)|ψI (t)〉 = AI (t)U(t)|ψH〉, the relation between operators in the two representations
must be

AH(t) = U†(t)AI (t)U(t) (6.99)

Supposet1 > t2 > t3 . . . tr , then using this relation we may write

〈φ|A(t1) . . .R(tr )|φ〉H = 〈−∞|U†(t1)AI (t1)

S(t1,t2)︷        ︸︸        ︷
U(t1)U†(t2) . . .

S(tr−1,tr )︷          ︸︸          ︷
U(tr−1)U†(tr ) RI (tr )U(tr )| − ∞〉

where we have identified|φ〉H ≡ | − ∞〉. Now S(t1, t2) = U(t1)U†(t2) is the operator that time evolves the
states of the interaction representation, so we may rewritethe above result as

〈0|A(t1) . . .R(tr )|0〉H = 〈−∞|
S†(t1,−∞)︷︸︸︷
U†(t1) AI (t1)S(t1, t2) . . .S(tr−1, tr )RI (tr )

S(tr ,−∞)︷︸︸︷
U(tr ) | − ∞〉

where we have replacedU(t) → S(t,−∞). Now S(∞, t1)S(t1,−∞)| − ∞〉 = |∞〉 and sinceS is a unitary
matrix,S†(∞, t1)S(∞, t1) = 1, so multiplying both sides byS†(∞, t1), S(t1,−∞)| −∞〉 = S†(∞, t1)|∞〉 and by
taking its complex conjugate,

〈−∞|S†(t1,−∞) = 〈∞|S(∞, t1) (6.100)

Inserting this into the above expression gives,

〈0|A(t1) . . .R(tr )|0〉H = 〈+∞|S(∞, t1)AI (t1)S(t1, t2) . . .S(tr−1, tr )RI (tr )S(tr ,−∞)| − ∞〉

= 〈+∞|T
S(∞,−∞)︷                                ︸︸                                ︷

S(∞, t1)S(t1, t2) . . .S(tr ,−∞) AI (t1) . . .RI (tr )| − ∞〉

where we have used the time-ordering operator to separate out the S-matrix terms from the operators. Finally,
since we assumedt1 > t2 > . . . tr , we can write,

〈φ|T[
A(t1) . . .R(tr )

]|φ〉H = 〈+∞|T
[
S(∞,−∞)AI (t1)BI (t2) . . .RI (tr )

]| − ∞〉 (6.101)

Although we proved this expression for a particular time-ordering, it is clear that if we permute the operators
the time-ordering will always act to time-order both sides,and thus this expression holds for an arbitary
time-ordering of operators.
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6.3.2 Generating Function for Free fermions

The generating function derived for the harmonic oscillator can be generalized to free fermions by the use of
“anticommuting” or Grassman numbersη andη. The simplest model is

H = ǫc†c
V(t) = η̄(t)c(t) + c†(t)η(t)

}
(6.102)

The corresponding generating functional is given by

S[η̄, η] = 〈φ|T exp

(
−i

∫ ∞

−∞
dt

[
η̄(t)c(t) + c†(t)η(t)

])
|φ〉 = exp

[
−i

∫ ∞

−∞
dtdt′η̄(t)G(t − t′)η(t′)

]

G(t − t′) = −i〈φ|Tc(t)c†(t′)|φ〉 (6.103)

where |φ〉 is the ground-state for the non-interacting Hamiltonian. To prove this result, we use the same
method as used for the harmonic oscillator. As before we split up theS matrix into N discrete time-slices,
writing

SN = eAN−A†N × . . .eAr−A† r × . . . eA1−A†1 (6.104)

where

Ar = η̄(tr )(−ice−iǫtr )∆t,
A†r = η(tr )(ic

†eiǫtr )∆t. (6.105)

The next step requires a little care, for whenǫ < 0, |φ〉 = c†|0〉 is the vacuum for holesh = c†, rather than
particles, so that in this case we need to “anti-normal order” the S matrix. Carrying out the ordering process,
we obtain

SN =



e−
∑

r A† r e
∑

r Ar exp
[
−∑

r≥s[Ar ,A†s](1 − 1
2δrs)

]
(ǫ > 0)

e
∑

r Ar e−
∑

r A† r exp
[∑

r≤s[Ar ,A†s](1 − 1
2δrs)

]
(ǫ < 0)

(6.106)

When we take the expectation value〈φ|SN|φ〉, the first term in these expressions gives unity. Calculating the
commutators, in the exponent, we obtain

[Ar ,A
†

s] = ∆t2[η̄(tr )c, c
†η(ts)]e

−iǫ(tr−ts)

= ∆t2η̄(tr ){c, c†}η(ts)e
−iǫ(tr−ts)

= ∆t2η̄(tr )η(ts)]e
−iǫ(tr−ts). (6.107)

( Notice how the anticommuting property of the Grassman variables ¯η(tr )η(ts) = −η(ts)η̄(tr ) means that we
can convert a commutator of [Ar ,As] into an anticommutator{c, c†}.) Next, that taking the limitN → ∞, we
obtain

S[η̄, η] =



exp

[
−

∫ ∞

−∞
dtdt′η̄(t)θ(t − t′)η(t′)e−iǫ(t−t′)

]
(ǫ > 0)

exp

[∫ ∞

−∞
dτdτ′η̄(τ)θ(t′ − t)η(τ′)e−iǫ(t−t′)

]
(ǫ < 0)

(6.108)
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By introducing the Green function,

G(t) = −i
[
(1− f (ǫ))θ(t) − f (ǫ))θ(−t)

]
e−iǫt

we can compactly combine these two results into the final form

S(t2, t1) = exp
[
−i

∫ ∞

−∞
dtdt′η̄(t)G(t − t′)η(t′)

]
. (6.109)

A more heuristic derivation however, is to recognize that derivatives of the generating functional bring down
Fermi operators inside the time-ordered exponential,

i
δ

δη(t)
〈φ|TŜ . . . |φ〉 = 〈φ|TŜ c†(t) . . . |φ〉

i
δ

δη̄(t)
〈φ|TŜ . . . |φ〉 = 〈φ|TŜ c(t) . . . |φ〉 (6.110)

whereŜ = T exp
[
−i

∫
dt′

(
η̄(t′)c(t′) + c†(t′)η(t′)

)]
so that inside the expectation value,

i
δ

δη(t)
≡ c†(t)

i
δ

δη̄(t)
≡ c(t), (6.111)

and

i
δ ln S
δη(1)

=
〈φ|Tc†(1)Ŝ|φ〉
〈φ|Ŝ|φ〉

≡ 〈c†(1)〉, (6.112)

whereŜ = T exp
[
−i

∫
V(t′)dt′

]
. Here, we have used the Gell-Mann Low theorem to identify thequotient

above as the expectation value forc†(1) in the presence of the source terms. Differentiating one more time,

(i)2δ
2 ln S[η̄, η]
δη̄(2)δη(1)

=
〈φ|Tc(2)c†(1)Ŝ|φ〉

〈φ|Ŝ|φ〉
− 〈φ|Tc(2)Ŝ|φ〉

〈φ|Ŝ|φ〉
〈φ|Tc†(1)Ŝ|φ〉
〈φ|Ŝ|φ〉

= 〈Tc(2)c†(1)〉 − 〈c(2)〉〈c†(1)〉
= 〈Tδc(2)δc†(1)〉. (6.113)

This quantity describes the variance in the fluctuationsδc(†)(2) ≡ c(†)(2) − 〈c(†)(2)〉 of the fermion field
about their average value. When the source termsη and η̄ are introduced, they induce a finite (Grassman)
expectation value of the fields〈c(1)〉 and 〈c†(1)〉 but the absence of interactions between the modes mean
they won’t change the amplitude of fluctuations about the mean, so that

(i)2δ
2 ln S[η̄, η]
δη̄(2)δη(1)

= 〈Tc(1)c†(2)〉
∣∣∣
η, η̄=0

= iG(1− 2),

and we can then deduce that

ln S[η̄, η] = −i
∫

d1d2η̄(2)G(2− 1)η(1). (6.114)

There is no constant term, becauseS = 1 when the source terms are removed, and we arrive back at (6.103).
The generalization of the generating functional to a gas of Fermions with many one-particle states is just a

question of including an appropriate sum over one-particlestates, i.e

H =
∑
λ ǫλc

†
λcλ

V(t) =
∑
λ η̄λ(t)cλ(t) + cλ†(t)ηλ(t)

}
(6.115)
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The corresponding Generating functional is given by

S[η̄, η] = 〈φ|T exp

−i
∫

d1
∑

λ

η̄λ(1)cλ(1)+ cλ
†(1)ηλ(1)

 |φ〉

= exp

−i
∑

λ

∫
d1d2η̄λ(1)Gλ(1− 2)ηλ(2)



Gλ(1− 2) = −i〈φ|Tcλ(1)c†λ(2)|φ〉 (6.116)

Example 6.3: Show using the generating function, that in the presence of a source term,

〈cλ(1)〉 =
∫

d2Gλ(1− 2)ηλ(2). (6.117)

Solution: Taking the (functional) derivative of (6.116) with respect toηλ, from the left-hand side of
(6.116), we obtain

δS[η̄, η]
δη̄λ(1)

= −i〈φ|Tcλ(1) exp

[
−i

∫
dtV(t)

]
|φ〉 (6.118)

so that

i
δ ln S[η̄, η]
δη̄λ(1)

=
i

S[η̄, η]
δS[η̄, η]
δη̄λ(1)

=
〈φ|Tcλ(1) exp

[
−i

∫
dtV(t)

]
|φ〉

〈φ|T exp
[
−i

∫
dtV(t)

]
|φ〉

= 〈cλ(1)〉. (6.119)

Now taking the logarithm of the right-hand side of (6.116), we obtain

i ln S[η̄, η] =
∑

λ

∫
d1d2η̄λ(1)Gλ(1− 2)ηλ(2) (6.120)

so that

i
δ ln S[η̄, η]
δη̄λ(τ)

=

∫
d2Gλ(1− 2)ηλ(2) (6.121)

Combining (6.119) with (6.121) we obtain the final result

〈cλ(1)〉 =
∫

d2Gλ(1− 2)ηλ(2) (6.122)

6.3.3 The Spectral Representation

In the non-interacting Fermi liquid, we saw that the propagator contained a single pole, atω = ǫk . What
happens to the propagator when we turn on the interactions? Remarkably it retains its same general analytic
structure, excepting that now, the single pole divides intoa plethora of poles, each one corresponding to an
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excitation energy for adding, or removing a particle from the ground-state. The general result, is that

G(k, ω) =
∑

λ

|Mλ(k)|2
ω − ǫλ + iδλ

(6.123)

whereδλ = δsign(ǫλ) and the total pole strength
∑

λ

|Mλ(k)|2 = 1 (6.124)

is unchanged. Notice how the positive energy poles of the Green function are below the real axis atǫλ − iδ,
while the negative energy poles are below the real axis, preserving the pole structure of the non-interacting
Green’s function.

If the ground-state is anN particle state, then the state|λ〉 is either anN + 1, or N − 1 particle state. The
poles of the Green function are given by related to the excitation energiesEλ − Eg > 0 according to

ǫλ =

{
Eλ − Eg > 0 (|λ〉 ∈ |N + 1〉)
−1× (Eλ − Eg) < 0 (|λ〉 ∈ |N − 1〉) , (6.125)

and the corresponding matrix elements are

Mλ(k) =



〈λ|c†kσ|φ〉, (|λ〉 ∈ |N + 1〉),

〈λ|ckσ|φ〉, (|λ〉 ∈ |N − 1〉).
(6.126)

Notice that the excitation energiesEλ − Eg > 0 are always positive, soǫλ > 0 measures the energy to add and
electron, whileǫλ < 0 measures−1× the energy to create a hole state.

In practice, the poles in the interacting Green function blur into a continuum of excitation energies, with
an infinitesimal separation. To deal with this situation, wedefine a quantity known as the spectral function,
given by the imaginary part of the Green’s function,

A(k, ω) =
1
π

ImG(k, ω − iδ), Spectral Function (6.127)

By shifting the frequencyω by a small imaginary part which is taken to zero at the end of the calculation,
overriding theδλ in (6.123), all the poles ofG(k, ω − iδ) are moved above the real axis. Using Cauchy’s
principle part equation, 1/(x − iδ) = P(1/x) + iπδ(x), whereP denotes the principal part, we can use the
spectral representation (6.123) to write

A(k, ω) =
∑

λ

|Mλ(k)|2δ(ω − ǫλ)

=
∑

λ

[
|〈λ|c†kσ|φ〉|2θ(ω) + 〈λ|ckσ|φ〉|2θ(−ω)

]
δ(|ω| − (Eλ − Eg)) (6.128)

where now, the normalization of the pole-strengths means that
∫ ∞

−∞
A(k, ω)dω =

∑

λ

|Mλ(k)|2 = 1 (6.129)

Since the excitation energies are positive,Eλ − Eg > 0 from (6.125) it follows thatǫλ is positive for electron
states and negative for hole states, so

A(k, ω) = θ(ω)ρe(k, ω) + θ(−ω)ρh(k,−ω) (6.130)
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where

ρe(ω) =
∑

λ

|〈λ|c†kσ|φ〉|2δ(ω − (Eλ − Eg)) (ω > 0) (6.131)

and

ρh(ω) =
∑

λ

|〈λ|ckσ|φ〉|2δ(ω − (Eg − Eλ)) (ω > 0) (6.132)

are the spectral functions for adding or holes of energyω to the system respectively. To a good approximation,
in high energy spectroscopy,ρe,h(k, ω) is directly proportional to the cross-section for adding,or removing
an electron of energy|ω| to the material. Photoemission and inverse photoemission experiments can, in this
way, be used to directly measure the spectral function of electronic systems.

To derive this spectral decomposition, we suppose that we know the complete Hilbert space of energy
eigenstates{|λ〉}. By injecting the completeness relation

∑ |λ〉〈λ| = 1 between the creation and annihilation
operators in the Green’s function, we can expand it as follows

G(k, t) = −i
[
〈φ|ckσ(t)c†kσ(0)|φ〉θ(t) − 〈φ|c†kσ(0)ckσ(t)|φ〉θ(−t)

]

= −i
∑

λ

[
〈φ|ckσ(t)

=1︷︸︸︷
|λ〉〈λ| c†kσ(0)|φ〉θ(t) − 〈φ|c†kσ(0)

=1︷︸︸︷
|λ〉〈λ| ckσ(t)|φ〉θ(−t)

]

By using energy eigenstates, we are able to write

〈φ|ckσ(t)|λ〉 = 〈φ|eiHtckσe−iHt |λ〉 = 〈φ|ckσ|λ〉ei(Eg−Eλ)t

〈λ|ckσ(t)|φ〉 = 〈λ|eiHtckσe−iHt |φ〉 = 〈λ|ckσ|φ〉ei(Eλ−Eg)t (6.133)

Notice that the first term involves adding a particle of momentumk, spinσ, so that the state|λ〉 = |N+1;kσ〉
is an energy eigenstate withN+1 particles, momentumk and spinσ. Similarly, in the second matrix element,
a particle of momentumk, spinσ has beensubtracted, so that|λ〉 = |N − 1;−k − σ〉. We can thus write the
Green’s function in the form:

G(k, t) = −i
∑

λ

[
|〈λ|c†kσ|φ〉|2e−i(Eλ−Eg)tθ(t) − |〈λ|ckσ|φ〉|2e−i(Eg−Eλ)tθ(−t)

]
,

where we have simplified the expression by writing〈φ|ckσ|λ〉 = 〈λ|c†kσ|φ〉∗ and〈λ|ckσ|φ〉 = 〈φ|c†kσ|λ〉∗. This
has precisely the same structure as a non-interacting Green’s function, except thatǫk → Eλ − Eg in the first
term, andǫk → Eg − Eλ in the second term. We can use this observation to carry out the Fourier transform,
whereapon

G(k, ω) =
∑

λ

[
|〈λ|c†kσ|φ〉|2

ω − (Eλ − Eg) + iδ
+

|〈λ|ckσ|φ〉|2
ω − (Eg − Eλ) − iδ

]

which is the formal expansion of (6.123).
To show that the total pole-strength is unchanged by interactions, we expand the sum over pole strengths,

and then use completeness again, as follows
∑

λ

|Mλ(k)|2 =
∑

λ

|〈λ|c†kσ|φ〉|2 + |〈λ|ckσ|φ〉|2

=
∑

λ

〈φ|ckσ

=1︷︸︸︷
|λ〉〈λ| c†kσ|φ〉 + 〈φ|c†kσ

=1︷︸︸︷
|λ〉〈λ| ckσ|φ〉
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= 〈φ|
=1︷      ︸︸      ︷

{ckσ, c
†

kσ} |φ〉 = 1 (6.134)

Example 6.4: Using the spectral decomposition, show that the momentum distribution function in the
ground-state of a translationally invariant system of fermions is given theintegral over the “filled” states

∑

σ

〈c†kσckσ〉 = (2S + 1)
∫ 0

−∞
dωA(k, ω)

Solution: Let us first write the occupancy in terms of the one-particle Green’s function evaluated at
time t = 0−

〈nkσ〉 = 〈φ|nkσ|φ〉 = −i × −i〈φ|Tckσ(0−)c†kσ(0)|φ〉 = −iG(k,0−),

Now using the spectral representation, (6.134),

〈nkσ〉 = −iG(k,0−) =
∑

λ

|〈λ|ckσ|φ〉|2 =
∑

λ

|Mλ(k)|2θ(−ǫλ)

since|Mλ(k)|2 = |〈λ|ckσ|φ〉|2 for ǫλ < 0. This is just the sum over the negative energy part of the spectral
function. Now sinceA(k, ω) =

∑
λ |Mλ(k)|2δ(ω − ǫλ), it follows that at absolute zero,

∫ 0

−∞
dω(k, ω) =

∑

λ

|Mλ(k)|2

θ(−ǫλ)︷               ︸︸               ︷∫ 0

−∞
dωδ(ω − ǫλ) =

∑

λ

|Mλ(k)|2θ(−ǫλ).

so that
∑

σ

〈nkσ〉 = (2S + 1)
∫ 0

−∞

dω
π

A(k, ω).

Example 6.5: Show that the zero temperature Green’s function can be written in terms ofthe Spectral
function as follows:

G(k, ω) =
∫

dǫ
1

ω − ǫ(1− iδ)
A(k, ǫ).

Solution: Introduce the relationship 1=
∫

dǫδ(ǫ − (Eλ −Eg)) and 1=
∫

dǫδ(ǫ + (Eλ −Eg)) into (6.134)
to obtain

G(k, ω) =
∫

dǫ
1

ω − ǫ + iδ

∑

λ

|〈λ|c†kσ|φ〉|2δ(ǫ − (Eλ − Eg))

+

∫
dǫ

1
ω − ǫ − iδ

∑

λ

|〈λ|ckσ|φ〉|2δ(ǫ + (Eλ − Eg)). (6.135)

Now in the first term,ǫ > 0, while in the second term,ǫ < 0nn, enabling us to rewrite this expression as

G(k, ω) =
∫

dǫ
1

ω − ǫ(1− iδ)

A(k,ǫ)︷                                                                        ︸︸                                                                        ︷∑

λ

[
|〈λ|c†kσ|φ〉|2θ(ǫ) + |〈λ|ckσ|φ〉|2θ(−ǫ)

]
δ(|ǫ | − (Eλ − Eg)) .

giving the quoted result.
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6.4 Many particle Green’s functions

The n-particle Green’s function determines the amplitude for n-particles to go from one starting configuration
to another:

initial particle positions︷         ︸︸         ︷
{1′,2′ . . . n′} G−→

final particle positions︷     ︸︸     ︷
{1,2 . . . n} (6.136)

where 1′ ≡ (x′, t′),etc. and 1≡ (x, t),etc.. The n-particle Green’s function is defined as

G(1,2, . . . n; 1′,2′, . . . n′) = (−i)n〈φ|Tψ(1)ψ(2) . . . ψ(n)ψ†(n′) . . . ψ†(1′)|φ〉

and represented diagramatically as

G(1,2, . . . n; 1′,2′, . . . n′) = 2

1 1’

n n’

2’
G

(6.137)

In systems without interactions, the n-body Green’s function can always be decomposed in terms of the
one-body Green’s function, a result known as “Wick’s theorem”. This is because particles propagate without
scattering off one-another. Suppose a particle which ends up atr comes from locationP′r , wherePr is the r-th
element of a permutationP of (1,2, . . . n). The amplitude for this process is

G(r − P′r ) (6.138)

and the overall amplitude for all n-particles to go from locationsP′r to positionsr is then

ζpG(1− P′1)G(2− P′2) . . .G(n− P′n) (6.139)

whereζ = ± for bosons (+) and fermions (-) andp is the number of pairwise permutations required to make
the permutationP. This prefactor arises because for fermions, every time we exchange two of them, we pick
up a minus sign in the amplitude. Wick’s theorem states the physically reasonable result that the n-body
Green’s function of a non-interacting system is given by thesum of all such amplitudes:

G(1,2, . . . n; 1′,2′, . . . n′) =
∑

ζP
∏

r=1,n

G(r − P′r ) (6.140)

For example, the two-body Green’s function is given by

G(1,21′,2′) = G(1,1′)G(2,2′) ±G(1,2′)G(2,1′)
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1

2

1’

2’

G =

2 2’

1’1
±

1 1’

2 2’

The process of identifying pairs of initial, and final statesin the n-particle Green’s function is often referred
to as a “contraction”. When we contraction two field operatorsinside a Green’s function, we associate an
amplitude with the contraction as follows

〈0|T [. . . ψ(1) . . . ψ†(2) . . .]|0〉 −→ 〈0|T [ψ(1)ψ†(2)]|0〉 = iG(1 − 2)

〈0|T [. . . ψ†(2) . . . ψ(1) . . .]|0〉 −→ 〈0|T [ψ†(2)ψ(1)]|0〉 = ±iG(1 − 2)

Each product of Green’s functions in the Wick-expansion of the propagator is a particular “contraction” of
the n-body Green’s function, thus(�i)nh0jT [ (1) (2) : : :  (n) : : :  y(P02) : : :  y(P01) : : :  y(P0n)℄j0i

= ζPG(1− P′1)G(2− P′2) . . .G(n − P′n) (6.141)

where nowP is just the number of times the contraction lines cross-one another. Wick’s theorem then states
that the n-body Green’s function is given by the sum over all possible contractions

(−i)n〈φ| T ψ(1)ψ(2) . . . ψ†(n′)|φ〉 =

∑

All contractions
(�i)nh0jT [ (1) (2) : : :  (n) : : :  y(P02) : : :  y(P01) : : :  y(P0n)℄j0i

Example 6.6: Show how the expansion of the generating functional in the absence of interactions can
be used to derive Wick’s theorem.

Exercises

Exercise 6.1 A particle withS = 1/2 is placed in a large magnetic field~B = (B1 cos(ωt), B1 sin(ωt), Bo),
whereBo >> B1.

115

Chapter 6. c©Piers Coleman 2011

(a) Treating the oscillating part of the Hamiltonian as the interaction, write down the Schrödinger
equation in the interaction representation.

(b) FindU(t) = T exp
[
−iH int(t′)dt′

]
by whatever method proves most convenient.

(c) If the particle starts out at timet = 0 in the stateSz = − 1
2, what is the probability it is in this state at

time t ?
Exercise 6.2 (Optional derivation of bosonic generating functional.) Consider the forced Harmonic oscil-

lator

H(t) = ωb†b+ z̄(t)b+ b†z(t) (6.142)

wherez(t) andz̄(t) are arbitrary, independent functions of time. Consider the S-matrix

S[z, z̄] = 〈0|TŜ(∞,−∞)|0〉 = 〈0|T exp

(
−i

∫ ∞

−∞
dt[z̄(t)b(t) + b̄(t)†z(t)]

)
|0〉, (6.143)

whereb̂(t) denoteŝb in the interaction representation. Consider changing the function z̄(t) by an in-
finitesimal amount

z̄(t)→ z̄(t) + ∆z̄(to)δ(t − to), (6.144)

The quantity

lim
∆z̄(to)→0

∆S[z, z̄]
∆z̄(to)

=
δS[z, z̄]
δz̄(to)

is called the “functional derivative” ofS with respect to ¯z. Using the Gell-Man Lowe formula〈ψ(t)|b|ψ(t)〉 =
〈0|TŜ(∞,−∞)b(t)|0〉
〈0|TŜ(∞,−∞)|0〉 prove the following identity

iδlnS[z, z̄]/δz̄(t) ≡ b̃(t) = 〈b̂(t)〉 = 〈ψ(t)|b̂|ψ(t)〉. (6.145)

(ii) Use the equation of motion to show that

∂

∂t
b̃(t) = i〈[H(t), b̂(t)]〉 = −i[ǫb̃(t) + z(t)].

(iii) Solve the above differential equation to show that

b̃(t) =
∫ ∞

−∞
G(t − t′)z(t′) (6.146)

whereG(t − t′) = −i〈0|T[b(t)b†(t′)]|0〉 is the free Green’s function for the harmonic oscillator.
(iv) Use (iii) and (i) together to obtain the fundamental result

S[z, z̄] = exp

[
−i

∫ ∞

−∞
dtdt′z̄(t)G(t − t′)z(t′)

]
(6.147)

Exercise 6.3 (Harder problem for extra credit).
Consider a harmonic oscillator with chargee, so that an applied field changes the HamiltonianH →

Ho−eE(t)x̂, wherex is the displacement andE(t) the field. Let the system initially be in its ground-state,
and suppose a constant electric fieldE is applied for a timeT.
(i) Rewrite the Hamiltonian in the form of a forced Harmonic oscillator

H(t) = ωb†b+ z̄(t)b+ b†z(t) (6.148)
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and show that

z(t) = z̄(t) =

{
ωα (T > t > 0)

0 (otherwise)
, (6.149)

deriving an explicit expression forα in terms of the fieldE, massm, and frequencyω of the oscillator.
(ii) Use the explicit form ofS(z̄, z)

S[z, z̄] = exp

[
−i

∫ ∞

−∞
dtdt′z̄(t)G(t − t′)z(t′)

]
(6.150)

whereG(t − t′) = −i〈0|T[b(t)b†(t′)]|0〉 is the free bosonic Green-function, to calculate the probability
p(T) that the system is still in the ground-state after timeT. Please express your result in terms ofα, ω
andT. Sketch the form ofp(T) and comment on your result.
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7 Landau Fermi Liquid Theory

7.1 Introduction

One of the remarkable features of a Fermi fluid, is its robustness against perturbation. In a typical electron
fluid inside metals, the Coulomb energy is comparable with the electron kinetic energy, constituting a major
perturbation to the electron motions. Yet remarkably, the non-interacting model of the Fermi gas reproduces
many qualitative features of metallic behavior, such as a well-defined Fermi surface, a linear specific heat
capacity, and a temperature-independent paramagnetic susceptibility. Such “Landau Fermi liquid behavior”
appears in many contexts - in metals at low temperatures, in the core of neutron stars, in liquid Helium-3
and most recently, it has become possible to create Fermi liquids with tunable interactions in atom traps. As
we shall see, our understanding of Landau Fermi liquids is intimately linked with the idea of adiabaticity
introduced in the last chapter.

In the 1950’s, physicists on both sides of the Iron curtain pondered the curious robustness of Fermi liquid
physics against interactions. In Princeton New Jersey, David Bohm and David Pines, carried out the first
quantization of the interacting electron fluid, proposing that the effects of long-range interactions are ab-
sorbed by a canonical transformation that separates the excitations into a high frequency plasmon and a low
frequency fluid of renormalized electrons[1]. On the other side of the world, Lev Landau at the Kapitza Low
Temperature Institute in Moscow, came to the conclusion that the robustness of the Fermi liquid is linked
with the idea of adiabaticity and the Fermi exclusion principle[2].

At first sight, the possibility that an almost free Fermi fluidmight survive the effect of interactions seems
hopeless. With interactions, a moving fermion decays by emitting arbitrary numbers of low-energy particle-
hole pairs, so how can it ever form a stable particle-like excitation? Landau realized that a fermion outside
the Fermi surface can not scatter into an occupied momentum state below the Fermi surface, so the closer it
is to the Fermi surface, the smaller the phase space available for decay. We will see that as a consequence, the
inelastic scattering rate grows quadratically with excitation energyǫ and temperature

τ−1(ǫ) ∝ (ǫ2 + π2T2). (7.1)

In this way, particles at the Fermi energy develop an infinitelifetime. Landau named these long-lived excita-
tions “quasi-particles”. “Landau Fermi liquid theory”[2,3, 4, 5] describes the collective physics of a fluid of
these quasiparticles.

It was a set of experiments on liquid Helium-3 (3He), half a world away from Moscow, that helped to
crystallize Landau’s ideas. In the aftermath of the Second World War, the availability of isotopically pure
3Heas a byproduct of the Manhattan project, made it possible, for the first time, to experimentally study this
model Fermi liquid. The first measurements were carried at Duke University in North Carolina, by Fairbank,
Ard and Walters. [6]. While Helium-4 atoms are bosons, atoms of the much rarer isotope,He−3 are spin-1/2
fermions. These atoms contain a neutron and two protons in the nucleus, neutralized by two orbital electrons
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in a singlet state, forming a composite, neutral fermion.3He is a much much simpler quantum fluid than the
electron fluid of metals:

• without a crystal lattice, liquid3He is isotropic and enjoys the full translational and Gallilean symmetries
of the vacuum.

• 3Heatoms are neutral, interacting via short-range interactions, avoiding the complications of a long-range
Coulomb interaction in metals.

Prior to Landau’s theory, the only available theory of a degenerate Fermi liquid was Sommerfeld’s model
for non-interacting Fermions. A key property of the non-interacting Fermi-liquid, is the presence of a large,
finite density of single-particle excitations at the Fermi energy, given by1

N(0) = 2
(4π)p2

(2π~)3

dp
dǫp

∣∣∣∣∣∣
p=pF

=
mpF

π2~3
. (7.2)

where we use a scriptN(0) to delineate the total density of states from the densityof states per spinN(0) =
N(0)/2. The argument ofN(0)(ǫ) is the energyǫ = E − µ measured relative to the chemical potential,µ. A
magnetic field splits the “up” and “down” Fermi surfaces, shifting their energy by an amount−σµFB, where
σ = ±1 andµF =

g
2

e~
2m is half the product of the Bohr magneton for the fermion and the g-factor associated

with its spin. The number of “up” and “down fermions is thereby changed by an amountδN↑ = −δN↓ =
1
2N(0)(µFB), inducing a net magnetizationM = χB where,

χ = µF(N↑ − N↓)/B = µ
2
FN(0) (7.3)

is the “Pauli paramagnetic susceptibility”. For electrons, g ≈ 2 andµF ≡ µB =
e~
2m is the Bohr magneton, so

the Pauli susceptibility of a free electron gas isµ2
BN(0).

In a degenerate Fermi liquid, the energy is given by

E(T) = E(T) − µN =
∑

kσ=±1/2

ǫk
1

eβǫk + 1
(7.4)

Here, we use the notationE = E − µN to denote the energy measured in the grand-canonical ensemble. The
variation of this quantity at low temperatures (where to orderT2, the chemical potential is constant ) depends
only on the free-particle density of states at the Fermi energy, N(0). The low temperature specific heat

CV =
dE
dT
= N(0)

∫ ∞

−∞
dǫǫ

d
dT

(
1

eβǫ + 1

)

= N(0)k2
BT

π2/3︷                          ︸︸                          ︷∫ ∞

−∞
dx

x2

(ex + 1)(e−x + 1)
=

=γ︷      ︸︸      ︷
π2

3
N(0)k2

B T (7.5)

is linear in temperature. Since both the specific heat, and the magnetic susceptibility are proportional to
the density of states, the ratio of these two quantitiesW = χ/γ, often called the Wilson ratio or “Stoner
enhancement factor”, is set purely by the size of the magnetic moment:

W =
χ

γ
= 3

(
µF

πkB

)2

(7.6)

Fairbank, Ard and Walters’ experiment confirmed the Pauli paramagnetism of liquid in Helium-3, but the

1 Note: In the discussion that follows, we shall normalize all extensive properties per unit volume, thus the density of states,N(ǫ) the
specific heatCV, or the magnetizationM, will all refer to those quantities, per unit volume.
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measured Wilson ratio is about ten times larger than predicted by Sommerfeld theory. Landau’s explanation
of these results is based on the idea that one can track the evolution of the properties of the Fermi liquid
by adiabatically switching on the interactions. He considered a hypothetical gas of non-interacting Helium
atoms with no forces of repulsion between for which Sommerfeld’s model would certainly hold. Suppose
the interactions are now turned on slowly. Landau argued that since the fermions near the Fermi surface had
nowhere to scatter to, the low-lying excitations of the Fermi liquid would evolve adiabatically, in the sense
discussed in the last chapter, so that that each quantum state of the fully-interacting liquid Helium-3, would
be inprecise one-to-one correspondence with the states of the idealized “non-interacting” Fermi-liquid.[4]

7.2 The Quasiparticle Concept

The “quasiparticle” concept is a triumph of Landau’s Fermi liquid theory, for it enables us to continue using
the idea of an independent particle, even in the presence of strong interactions; it also provides a framework
for understanding the robustness of the Fermi surface whileaccounting for the effects of interactions.

A quasiparticle is the adiabatic evolution of the non-interacting fermion into an interacting environment.
The conserved quantum numbers of this excitation: its spin and its “charge” and its momentum are un-
changed but Landau reasoned that that its dynamical properties, the effective magnetic moment and mass of
the quasiparticle would be “ renormalized” to new valuesg∗ andm∗ respectively. Subsequent measurements
on 3He[6, 5] revealed that the quasiparticle mass and enhanced magnetic momentg∗ are approximately

m∗ = (2.8)m(He3),

(g∗)2 = 3.3(g2)(He3). (7.7)

These “renormalizations” of the quasiparticle mass and magnetic moment are elegantly accounted for in
Landau Fermi liquid theory in terms of a small set of “Landau parameters” which characterize the interaction,
as we now shall see.

Let us label the momentum of each particle in the original non-interacting Fermi liquid bỹp and spin
componentσ = ±1/2. The number of fermions momentum~p, spin componentσ, npσ, is either one, or zero.
The complete quantum state of the non-interacting system islabeled by these occupancies. We write

Ψ = |np1σ1, np2σ2, . . . 〉 (7.8)

In the ground-state,Ψo all states with momentump less than the Fermi momentum are occupied, all states
above the Fermi surface are empty

Ground− stateΨo : npσ =

{
1 (p < pF)
0 (otherwise p> pF)

(7.9)

Landau argued, that if one turned on the interactions infinitely slowly, then this state would evolve smoothly
into the ground-state of the interacting Fermi liquid. Thisis an example of the adiabatic evolution encountered
in the previous chapter. For the adiabatic evolution to work, the Fermi liquid ground-state has to remain stable.
This is a condition that certainly fails when the system undergoes a phase transition into another ground-state,
a situation that may occur at a certain critical interactionstrength. However, up to this critical value, the
adiabatic evolution of the ground-state can take place. Theenergy of the final ground-state is unknown, but
we can call itE0.
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tFig. 7.1 In the non-interacting Fermi liquid (a), a stable particle can be created anywhere
outside the Fermi surface, a stable hole excitation anywhere inside the Fermi surface.
(b) When the interactions are turned on adiabatically, particle excitations near the
Fermi surface adiabatically evolve into “quasiparticles”, with the same charge, spin
and momentum. Quasiparticles and quasi-holes are only well defined near the Fermi
surface of the Landau Fermi Liquid.

Suppose we now add a fermion above the Fermi surface of the original state. We can repeat the the adia-
batic switch-on of the interactions, but it is a delicate procedure for an excited state, because away from the
Fermi surface, an electron can decay by emitting low-energyparticle-hole pairs which disipates its energy in
an irreversible fashion. To avoid this irreversibility, the lifetime of the particleτe must be longer than the adia-
batic “switch-on” timeτA = ǫ

−1 encountered in (6.93), and since this time becomes infinite,strict adiabaticity
is only possible for excitations that lie on the Fermi surface, whereτe is infinite. A practical Landau Fermi
liquid theory requires that we consider excitations that are a finite distance away from the Fermi surface,
and when we do this, we tacitly ignore the finite lifetime of the quasiparticles. By doing so, we introduce
an error of orderτ−1

e /ǫp. This error can be made arbitrarily small, provided we restrict our attention to small
perturbations to the ground-state.

Adiabatic evolution conserves the momentum of the quasiparticle state, which will then evolve smoothly
into a final state that we can label as:

Quasi− particle : Ψpoσo npσ =

{
1 (p< pF andp = po, σ = σo)
0 (otherwise)

(7.10)
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This state has total momentumpo where|po| > pF and an energyE(po) > Eo larger than the ground-state.
It is called a “quasiparticle-state” because it behaves in almost every respect like a single particle. Notice in
particular, that the the Fermi surface momentumpF is preservedby the adiabatic introduction of interactions.
Unlike free particles however, the Landau quasiparticle isonly a well-defined concept close to the Fermi
surface. Far from the Fermi surface, quasiparticles develop a lifetime, and once the lifetime is comparable
with the quasiparticle excitation energy, the quasiparticle concept loses its meaning.

The energy required to create a single quasiparticle, is

E(0)
po
= E(po) − Eo (7.11)

where the superscript (0) denotes a single excitation in theabsence of any other quasiparticles. We shall
mainly work in the Grand canonical ensemble, usingE = E − µN in place of the absolute energy, whereµ is
the chemical potential, enabling us to explore the variation of the energy at constant particle numberN. The
corresponding quasiparticle excitation energy is then

ǫ
(0)
po
= E(0)

po
− µ = E(po) − Eo. (7.12)

Notice, that since|p0| > pF , this energy is positive.
In a similar way, we can also define a “quasi-hole” state, in which a quasiparticle is removed the Fermi sea,

Quasi− hole : Ψpoσo npσ =

{
1 (p< pF except whenp = po, σ = σo)
0 (otherwise)

, (7.13)

where the bar is used to denote the hole and now,|po| < pF is beneath the Fermi surface. The energy of this
state isE(po) = Eo − Ep0, since we have removed a particle. Now the change in particlenumber is∆N = −1,
so the the excitation energy of a single quasi-hole, measured in the Grand Canonical ensemble, is then

ǫ(0)
po
= −E(0)

po
+ µ = −ǫ(0)

po
, (7.14)

i.e the energy to create a quasihole is the negative of the corresponding quasiparticle energyǫpo. Of course,

when |po| < pF , ǫpo < 0 so that the quasihole excitation energyǫ(0)
po is always positive, as required for a

stable ground-state. In this way, the energy to create a quasihole, or quasiparticle is always given by|ǫpo |,
independently of whetherpo is above, or below the Fermi surface.

The quasiparticle concept would be of limited value if it waslimited to individual excitations. At a finite
temperature, a dilute gas of these particles is excited around the Fermi surface and these particles interact.
How can the particle concept survive once one has a finite density of excitations? Landau’s appreciation of a
very subtle point enabled him to answer this question. He realized that since the phase space for quasiparticle
scattering vanishes quadratically with the quasiparticleenergy, it follows that the quasiparticle occupancy at
a given momentum on the Fermi surface becomes a constant of the motion. In this way, the Landau Fermi
liquid is characterized by aninfinite set of conserved quantitiesnpσ, so that on the Fermi surface,

[H,npσ] = 0. (p ∈ FS) (7.15)

It follows that the only residual scattering that remains onthe Fermi surface isforwardscattering, i.e

(p1,p2)→ (p1 − q,p2 + q) (q = 0 on Fermi surface.) (7.16)

The challenge is to develop a theory that describes the Free energy F[{npσ}] and the slow long distance
hydrodynamics of these conserved quantities.
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Example 7.1: Suppose|Ψ0〉 =
∏
|p|<pF ,σ

c†pσ|0〉 is the ground-state of a non-interacting Fermi liquid,
wherec†pσ creates a “bare” fermion. By considering the process of adiabatically turning on the inter-
action, time-evolving the one-particle statec†p0σ|FS〉 from the distant past to the present (t = 0) in
the interaction representation, write down an expression for the ground-state wavefunction|ψ〉 and the
quasiparticle creation operator of the fully interacting system.
Solution: The time-evolution operator from the distant past in the interaction representation is

U = T exp

[
−i

∫ 0

−∞
V̂I (t)dt

]
(7.17)

whereV̂I (t) is the interaction operator, written in the interaction representation. If we add a particle to
the filled Fermi sea, and adiabatically time evolve from the distant past to the present, we obtain

c†pσ|Ψ0〉 −→ Uc†pσ|Ψ0〉 =

QPa†pσ︷       ︸︸       ︷
(Uc†pσU†)

|φ〉︷︸︸︷
U |Ψ0〉 . (7.18)

If the adiabatic evolution avoids a quantum phase transition, then

|φ〉 = U |FS〉 (7.19)

is the ground-state of the fully interacting system. In this case, we may interpret

a†pσ = (Uc†pσU†) (7.20)

as the “quasiparticle creation operator”. Note that if we try to rewrite this object in terms of the original
creation operator,c†pσ, it involves combinations of one fermion with particle-hole pairs. See section 7.8
for a more detailed discussion.

7.3 The Neutral Fermi liquid

These physical considerations led Landau to conclude that the energy of a gas of quasiparticles could be
expressed as a functional of the quasiparticles occupancies npσ. Following Landau, we shall develop the
Fermi liquid concept using an idealized “neutral” Landau Fermi liquid, like He−3, in which the quasiparticles
move in free space, interacting isotropically via a short range interaction, forming a neutral fluid.

If the density of quasiparticles is low, it is sufficient to expand the energy in the small deviations in particle
numberδnpσ = npσ−n(o)

pσ from equilibrium. This leads to the Landau energy functional E({npσ}) = E({npσ})−
µN, where

E = E0 +
∑

pσ

(E(0)
pσ − µ)δnpσ +

1
2

∑

p,p′,σ,σ′
fpσ,p′σ′δnpσδnp′σ′ + . . . . (7.21)

The first order coefficient

ǫ
(0)
pσ ≡ E(0)

pσ − µ =
δE
δnpσ

(7.22)

describes the excitation energy of an isolated quasiparticle. Provided we can ignore spin-orbit interactions,
then the total magnetic moment is a conserved quantity, so the magnetic moments of the quasiparticles are
preserved by interactions. In this case,ǫ

(0)
pσ = ǫ

(0)
p −σµF B, whereµF is the un-renormalized magnetic moment

of an isolated fermion.
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The quasiparticle energy can be expanded linearly in momentum near the Fermi surface

E(0)
p = vF(p− pF) + µ(0), (7.23)

wherevF is the Fermi velocity at the Fermi energyµ(0), whereµ0 is the chemical potential in the ground-state.
The quasiparticle effective massm∗ is then defined in terms ofvF as

vF =
dǫ(0)

p

dp

∣∣∣∣∣∣∣
p=pF

=
pF

m∗
. (7.24)

We can use this mass to define a quasiparticle density of states

N∗(ǫ) = 2
∑

p

δ(ǫ − ǫ(0)
p ) = 2

∫
4πp2dp
(2π~)3

δ(ǫ − ǫ(0)
p ) =

p2

π2~3

dp

dǫ0
p
. (7.25)

Using (7.24), it follows that

N∗(0) =
m∗pF

π2~3
. (7.26)

In this way, the effective massm∗ determines the density of states at the Fermi energy: large effective masses
lead to large densities of states.

The second-order coefficients

fpσ,p′σ′ =
δ2E

δnpσδnp′σ′

∣∣∣∣∣∣
δnp′′σ′′ = 0

(7.27)

describe the interactions between quasiparticles at the Fermi surface. These partial derivatives are evaluated
in the presence of an otherwise“frozen” Fermi sea, where all other quasiparticle occupancies are fixed.
Landau was able to show that in an isotropic Fermi liquid, thequasiparticle massm∗ is related to the dipolar
component of these interactions, as we shall shortly demonstrate. The Landau interaction can be regarded
as an interaction operator that acts on a the thin shell of quasiparticle states near the Fermi surface. If ˆnpσ =

ψ†pσψpσ is the quasiparticle occupancy, whereψ†pσ is the quasiparticle creation operator, then one is tempted
to write

HI ∼
1
2

∑

pσp′σ′
fpσ,p′σ′ n̂pσn̂p′σ′ . (7.28)

Written this way, we see that the Landau interaction term is a“forward scattering amplitude”between
quasiparticles whose initial and final momenta are unchanged. In practice, one has to allow for slowly varying
quasiparticle densities,npσ(x), writing

HI ∼
1
2

∫
d3x

∑

pσp′σ′
fpσ,p′σ′ n̂pσ(x)n̂p′σ′ (x). (7.29)

wherenpσ(x) is the local quasiparticle density. Using the Fourier transformed density operator ˆnpσ(q) =
ψ†p−q/2σψp+q/2σ =

∫
x

e−iq·xnpσ(x), a more correct formulation of the Landau interaction is

HI =
1
2

∑

pσp′σ′,|q|<Λ
fpσ,p′σ′ (q)n̂pσ(q)n̂p′σ′ (−q). (7.30)

whereΛ is a cutoff that restricts the momentum transfer to values smaller thanthe thickness of the shell
of quasiparticles. The Landau coefficients for the neutral Fermi liquid are then the zero momentum limit
fpσ,p′σ′ = fpσ,p′σ′ (q = 0). The existence of such a limit requires that the interaction has a finite range, so that
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the its Fourier transform atq = 0 is well-defined. This requirement is met in neutral Fermi liquids, however
the Coulomb interaction does not meet this requirement. Theextension of Landau’s Fermi liquid concept to
charged Fermi liquids requires that we separate out the long-range part of the Coulomb interaction - a point
that will be returned to later.

Interactions mean that quasiparticle energies are sensitive to changes in the quasiparticle occupancies.
Suppose the quasiparticle occupancies deviate from the ground-state as followsnpσ → npσ + δnpσ. The
corresponding change in the total energy is then

δE
δnpσ

= ǫpσ ≡ Epσ − µ = ǫ(0)
pσ +

∑

p′σ′
fpσ,p′,σ′δnp′σ′ . (7.31)

The second-term is change in the quasiparticle energy induced by the polarization of the Fermi sea.
To determine thermodynamic properties of the Landau Fermi liquid we also need to know the entropy

of the fluid. Fortunately, when we turn on interactions adiabatically, the entropy is invariant, so that it must
maintain the dependence on particle occupancies that it hasin the non-interacting system, i.e.

S = −kB

∑

p,σ

[npσlnnpσ + (1− npσ)ln(1− npσ)] (7.32)

The full thermodynamics are determined by the the Free energy F = E − TS = E − µN − TS, which is the
sum of (7.21) and (7.32).

F({npσ}) = E0(µ) +
∑

pσ

ǫ
(0)
pσδnpσ +

1
2

∑

p,p′,σ,σ′
fpσ,p′σ′δnpσδnp′σ′

+ kBT
∑

p,σ

[npσlnnpσ + (1− npσ)ln(1− npσ)] (7.33)

Free energy of Landau Fermi Liquid.
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Table. 8.1 Key Properties of the Fermi Liquid .

PROPERTY NON-INTERACTING LANDAU FERMI LIQUID

Fermi momentum pF unchanged

Density of particles 2vFS
(2π)3 unchanged

Density of states N(0) = mpF

π2~3 N∗(0) = m∗pF

π2~3

Effective mass m m∗ = m(1+ Fs
1)

Specific heat Coefficient
CV = γT γ = π2

3 k2
BN(0) γ = π2

3 k2
BN∗(0)

Spin susceptibility χs = µ
2
FN(0) χs = µ

2
F
N∗(0)
1+Fa

0

Charge Susceptibility χC = N(0) χC =
N∗(0)
1+Fs

0

Sound (ωτ << 1)
Collective modes - Zero sound (ωτ >> 1)

Table 8.1 summarizes the key properties of the Landau Fermi liquid.

7.3.1 Landau Parameters

The power of the Landau Fermi liquid theory lies in its ability to parameterize the interactions in terms
of a small number of multipole parameters called “Landau parameters”. These parameters describe how
the original non-interacting Fermi liquid theory is renormalized by the feedback effect of interactions on
quasiparticle energies.

In a Landau Fermi liquid in which spin is conserved, the interaction is invariant under spin rotations and
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can in general be written in the form2

fpσ,p′σ′ = f s
p,p′ + f a

p,p′σσ
′. (7.35)

The spin-dependent part of the interaction is the magnetic component of the quasiparticle interaction.
In practice, we are only interested in quasiparticles with asmall excitation energy, so we only need to know

the values off s,a
p,p′ near the Fermi surface, permitting us to setp = pF p̂, p′ = pF p̂′, wherep̂ andp̂′ are the

unit vectors on the Fermi surface. In an isotropic Landau Fermi liquid, the physics is invariant under spatial
rotations, so that interactions on the Fermi surface only depend on the relative angleθ betweenp̂ andp̂′. We
write

f s,a
p,p′ = f s,a(cosθ), (cosθ = p̂ · p̂′). (7.36)

We convert the interaction to a dimensionless function by multiplying it with the quasiparticle density of
statesN∗(0):

Fs,a(cosθ) = N∗(0) f s,a(cosθ) (7.37)

These functions can now be expanded as a multipole expansionin terms of Legendre polynomials

Fs,a(cosθ) =
∞∑

l=0

(2l + 1)Fs,a
l Pl(cosθ). (7.38)

The coefficientsFs
l andFa

l are the Landau parameters. The spin-symmetric componentsFs
l parameterize the

non-magnetic part of the interaction while the spin-antisymmetricFa
l define the magnetic component of the

interaction. These parameters determine how distortions of the the Fermi surface are fed-back to modify
quasiparticle energies.

We can invert (7.38 ) using the orthogonality relation1
2

∫ 1

−1
dc Pl(c)Pl′ (c) = (2l + 1)−1δl,l′ ,

Fs,a
l =

1
2

∫ 1

−1
dc Fs,a(c)Pl(c) ≡ 〈Fs,a(Ω̂)Pl(Ω̂)〉Ω̂, (7.39)

where〈. . . 〉Ω̂ denotes an average over solid angle. It is useful to rewrite this angular average as an average
over the Fermi surface. To do this we note that since 2

∑
k δ(ǫk) = N∗(0), the function 2

N∗(0)δ(ǫk) behaves as
a normalized “projector” onto the Fermi surface, so that

Fs,a
l = 〈F

s,a(Ω̂)Pl(Ω̂)〉FS =
2

N∗(0)

∑

p′
Fs,a

p,p′Pl(cosθp,p′)δ(ǫp′), (7.40)

and sinceFs,a
p,p′ = N∗(0) f s,a

p,p′ ,

Fs,a
l = 2

∑

p′
f s,a
p,p′Pl(cosθp,p′)δ(ǫp′). (7.41)

This form is very convenient for later calculations.

2 To see that this result follows from spin rotation invariance, we need to recognize that the quasiparticle occupanciesnpσ we have
considered are actually the diagonal elements of a quasiparticle density matrixnpαβ. With this modification, the interaction becomes
a matrix fpαβ;p′γη whose most general rotationally invariant form is

fpαβ;p′γη = f s(p, p′)δαβδγη + f a(p,p′)~σαβ · ~σγη. (7.34)

The diagonal components of this interaction recover the results of (7.35)
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−V (p − p′)δσσ′

pσ

q = 0

pσ

+

V (q = 0)

p′σ′ pσ

q = p − p′

p′σ′ pσ

p′σ′

p′σ′

fpσ,p′σ′ = V (q = 0) − V (p − p′)δσσ′

tFig. 7.2 Feynman diagrams for leading order contributions to the Landau parameter for an
interaction V(q). Wavy line represents the interaction between quasiparticles.

Example 7.2: Use first order perturbation theory to calculate the Landau interaction parameters for a
fluid of fermions with a weak interaction described by

H =
∑

pσ

Epnpσ +
λ

2

∑

pσ,p′σ′ ,q

V(q)c†p−qσc†p′+qσ′cp′σ′cpσ

whereEp is the energy of the non-interacting Fermi gas,V(q) =
∫

d3q
(2π)3

e−iq·r V(r) is the Fourier transform
of the interaction potentialV(r) andλ << 1 is a very small coupling constant. Hint: use first order
perturbation theory inλ to compute the energy of a state

Ψ = |np1σ1 , np2σ2 , . . . 〉 (7.42)

to leading order in the interaction strengthλ, and then read off the terms quadratic innpσ. Solution:
To leading order inλ, the total energy is given byE = 〈Ψ|H|Ψ〉, or

E =
∑

pσ

Epnpσ +
λ

2

∑

pσ,p′σ′ ,q

V(q)〈Ψ|c†p−qσc†p′+qσ′cp′σ′cpσ|Ψ〉. (7.43)

The matrix element〈Ψ|c†p−qσc†p′+qσ′cp′σ′cpσ|Ψ〉 in the interaction term vanishes unless the two quasi-
particle state annihilated by the two destruction operators has an overlap with the two particle state
created by the two creation operators, i.e.

〈Ψ|c†p−qσc†p′+qσ′cp′σ′cpσ|Ψ〉 = 〈p − q, σ; p′ + q, σ′|p, σ; p′σ′〉npσnpσ′

=

(
δq=0 − δp−q,p′δσ,σ′

)
npσnpσ′ (7.44)

where the second term occurs when the outgoing state is the “exchange” of the incoming two-
quasiparticle state.
Inserting (7.44) into (7.43), we obtain

∑

pσ

Epnpσ +
λ

2

∑

pσ,p′σ′
[V(0)− V(p − p′)δσσ′ ]np′σ′npσ (7.45)

enabling us to read off the Landau interaction as

fpσ,p′σ′ = λ
[
V(q = 0)− V(p − p′)δσσ′

]
+O(λ2). (7.46)
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It follows that the symmetric and antisymmetric parts of the interaction parameters are

f s
p,p′ = λ

[
V(q = 0)− 1

2
V(p − p′)

]
+O(λ2)

f a
p,p′ = −

λ

2
V(p − p′) +O(λ2). (7.47)

Note that

• The Landau interaction is only well-defined ifV(q = 0) is finite, which implies that the interaction is
short-ranged.

• The second term in the interaction corresponds to the “exchange” of identical particles. For a repul-
sive interaction, this gives rise to anattractive f a. We can represent the interaction term by the
Feynman diagrams shown in (***).

7.3.2 Equilibrium distribution of quasiparticles

Remarkably, despite interactions, the Landau Fermi liquidpreserves the equilibrium Fermi-Dirac momentum
distribution. The key idea here is that in thermal equilibrium, the free energy (7.33) is stationary with respect
to small changesδnpσ in quasiparticle occupancies, so that

δF =
∑

pσ

δnpσ

[
ǫpσ + kBTln

( npσ

1− npσ

)]
+O(δnpσ

2) = 0. (7.48)

Stationarity of the Free energy,δF = 0 enforces the thermodynamic identityδF = δE − TδS = 0, or dE =
TdS. This requires that the linear coefficient of δnpσ in (7.48) is zero, which implies that the quasiparticle
occupancy

npσ =
1

eβǫpσ + 1
= f (ǫpσ) (7.49)

is determined by Fermi-Dirac distribution function of its energy. There is a subtlety here however, for the
quantityǫpσ contains the feedback effect of interactions, as given in (7.31)

ǫpσ = ǫ
(0)
pσ +

∑

p′σ′
fpσ,p′,σ′δnp′σ′ . (7.50)

Let us first consider the low temperature behavior in the absence of a field. In this case, as the temperature
is lowered, the density of thermally excited quasiparticles will go to zero, and in this limit, the quasiparticle
distribution function is asymptotically given by

npσ = f (ǫ(0)
p ). (7.51)

In the ground-state this becomes a step functionnpσ|T=0 = θ(−ǫ(0)
p ) = θ(µ − E(0)

p ), as expected.
To obtain the specific heat, we must calculateCVdT = dE = ∑

p ǫ
(0)
pσδnpσ. At low temperatures,δnpσ =

∂ f (ǫ(0)
pσ)

∂T dT, so that

CV =
∑

pσ

ǫ
(0)
pσ


∂ f (ǫ(0)

pσ)

∂T

→ N∗(0)
∫ ∞

−∞
dǫ ǫ

(
∂ f (ǫ)
∂T

)
, (7.52)

where, as in (7.5) the summation is replaced by an integral over the density of states near the Fermi surface.
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Apart from the renormalization of the energies, this is precisely the same result obtained in (7.5), leading to

CV = γT, γ =
π2k2

B

3
N∗(0) (7.53)

7.4 Feedback effects of interactions

One can visualize the Landau Fermi liquid as a deformable sphere, like a large water droplet in zero gravity.
The Fermi sphere changes shape when the density or magnetization of the fluid is modified, or if a current
flows. These deformations act back on the quasiparticles viathe Landau interactions, to change the quasipar-
ticle energies. These feedback effects are a generalization of the idea of a Weiss field in magnetism. When the
feedback is positive, it can lead to instabilities, such as the development of magnetism. A Fermi surface can
also oscillate collectively about its equilibrium shape. In a conventional gas, density oscillations can not take
place without collisions. In a Landau Fermi liquid, we will will see that the interactions play a non-trivial
role that gives rise to “collisionless” collective oscillations of the Fermi surface called “zero sound” (literally
zero-collision sound), that are absent in the free Fermi gas[7].

To examine the feedback effects of interactions, let us suppose an external potential or field is applied to
induce a polarization of the Fermi surface, as illustrated in Fig. 7.3. There are various kinds of external field
we can consider - a simple change in the chemical potential

δǫ0
pσ = −δµ, (7.54)

which will induce an isotropic enlargement of the Fermi surface, the application of a magnetic field,

δǫ0
pσ = −σµF B. (7.55)

which induces a spin polarization. We can also consider the application of a vector potential which couples
to the quasiparticle current

δǫ0
pσ = −A · ep

m
, (7.56)

in a translationally invariant system. Notice how, in each of these cases, the applied field couples to a con-
served quantity (the particle number, the spin and the current), which is unchanged by interactions. This
means that the energy associated with the application of theexternal field is unchanged by interactions for
any quasiparticle configuration{npσ}, which guarantees that the coupling to the external field is identical to
that of non-interacting particles. This is the reason for the appearance of the unrenormalized mass in (7.56).
For each of these cases, there will of course be a feedback effect of the interactions that we now calculate.

From (7.31) the change in the quasiparticle energy will now contain two terms - one due to direct coupling
to the external field, the other derived from the induced polarizationδnpσ of the Fermi surface

δǫpσ = δǫ
(0)
pσ +

∑

p′σ′
fpσp′σ′δnp′σ′ . (7.57)

In this case, the equilibrium quasiparticle occupancies become

npσ = f (ǫ(0)
p + δǫpσ) = f (ǫ(0)

p ) + f ′(ǫ(0)
p )δǫpσ. (7.58)
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As the temperature is lowered to zero, the derivative of the Fermi function evolves into a delta function
− f ′(ǫ) ∼ δ(ǫ), so that the quasiparticle occupancy is given by

npσ =

n(0)
pσ︷  ︸︸  ︷

θ(−ǫ(0)
p )+

δnpσ︷           ︸︸           ︷
[−δ(ǫ(0)

p )δǫpσ] . (7.59)

δnpσ = −δ(ǫ(0)
p )δǫpσ represents the polarization of the Fermi surface, which will feed back into the interaction

(7.57) as follows

δnpσ = −δ(ǫ(0)
p )δǫpσ

δǫpσ = δǫ
(0)
pσ +

∑

p′σ′
fpσp′σ′δnp′σ′ .

The resulting shift in the quasiparticle energies must thensatisfy the self-consistency relation:

δǫpσ = δǫ
(0)
pσ −

∑

p′σ′
fpσp′σ′δ(ǫ

(0)
p′ )δǫp′σ. (7.60)

This feedback process preserves the symmetry of the external perturbation, but its strength in a given symme-
try channel depends on the corresponding Landau paramater.Thus, isotropic charge and spin polarizations
of the Fermi surface shown in Fig 7.3(a) and Fig 7.3(b) are fedback via the isotropic charge and magnetic
Landau parametersFs

0 andFa
0. When the quasiparticle fluid is set into motion at velocity~u, this induces a

dipolar polarization of the Fermi surface, shown in (Fig 7.3(c)), which is fed-back via the dipolar Landau
parameterFs

1. This process is responsible for the renormalization of theeffective mass.
Consider a change in the quasiparticle potential that has a particular multipole symmetry, so that the “bare”

change in quasiparticle energy is

δǫ
(0)
pσ = vlYlm(p̂) (7.61)

whereYlm is a spherical harmonic. The renormalized response of the quasiparticle energy given by (7.60)
must have the same symmetry, but will have a different magnitudetl :

δǫpσ = tlYlm(p̂). (7.62)

When this is fed back through the interaction, according to (7.60 ), it produces an additional shift in the
quasiparticle energy of given by

∑
p′σ′ fpσ,p′σ′δnp′σ′ = −Fs

l tlYlm(p̂) (see exercise below), so that the total
change in the energy is given byδǫpσ = (vl − Fs

l tl)Ylm(p̂). Comparing this result with (7.62), we see that

tl = (vl − Fs
l tl). (7.63)

This is the symmetry resolved version of (7.60). Consequently3,

tl =
vl

1+ Fs
l

. (7.64)

We may interprettl as the scattering t-matrix associated with the potentialvl . If Fs
l > 0 is repulsive, nega-

tive feedback occurs which causes the response to be suppressed. This is normally the case in the isotropic

3 Note: in Landau’s original formulation[2], the Landau parameters were defined without the normalizing factor (2l +1) in (7.72). With
such a normalization theFl are a factor of 2l + 1 larger and one must replaceFs

l →
1

2l+1 Fs
l in (7.64)
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tFig. 7.3 Illustrating the polarization of the Fermi surface by (a) a change in chemical potential to

produce a isotropic charge polarization (b) application of a magnetic field to produce a spin

polarization and (c) the dipolar polarization of the Fermi surface that accompanies a current of

quasiparticles. The Landau parameter governing each polarization is indicated on the right

hand side.

channel, where repulsive interactions tend to suppress thepolarizability of the Fermi surface. By contrast,
if Fs

l < 0, corresponding to an attractive interaction, positive feedback enhances the response. Indeed, ifFs
l

drops down to the critical valueFs
l = −1, an instability will occur and the Landau Fermi surface becomes

unstable to a deformation - a process called a “Pomeranchuk”instbality.
A similar calculation can be carried out for a spin-polarization of the Fermi surface, where the shift in the

quasiparticle energies are

δǫ
(0)
pσ = σva

l Ylm(p̂), δǫpσ = σtal Ylm(p̂) (7.65)

Now, the spin-dependent polarization of the Fermi surface feeds back via the spin-dependent Landau param-
eters so that

tal =
va

l

1+ Fa
l

. (7.66)

The isotropic response (l = 0) corresponds to a simple spin polarization of the Fermi surface. If spin interac-
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tions grow to the point whereFa
0 = −1, the Fermi surface becomes unstable to the formation of a spontaneous

spin polarization: this is called a “Stoner” instability, and results in ferromagnetism.

Example 7.3: Calculate the response of the quasiparticle energy to a charge, or spin polarization with
a specific multipole symmetry.

1 Consider a spin-independent polarization of the Fermi surface of theform

δnpσ = −tlYlm(p̂) × δ(ǫ(0)
p )

whereYlm(p̂) is a spherical harmonic. Show that the resulting shift in quasiparticle energies is given
by

δǫpσ = −tl F
s
l Ylm(p̂).

2 Determine the corresponding result for a magnetic polarization of the Fermi surface of the form

δnpσ = −σtal Ylm(p̂) × δ(ǫ(0)
p )

Solution:
According to (7.31), the change in quasiparticle energy due to the polarization of the Fermi surface is
given by

δǫpσ =
∑

p′σ′
fpσ,p′ ,σ′δnp′σ′ . (7.67)

Substitutingδnpσ = −tlYlm(p̂) × δ(ǫ(0)
p ), then

δǫpσ = −tl
∑

p′σ′
fpσ,p′ ,σ′Ylm(p̂′) × δ(ǫ(0)

p′ ). (7.68)

Decomposing the interaction into its magnetic and non-magnetic componentsfpσ,p′σ′ = f s(p̂ · p̂′) +
σσ′ f a(p̂ · p̂′), only the non-magnetic survives the spin summation, so that

δǫpσ = −tl × 2
∑

p′
f s(p̂ · p̂′)Ylm(p̂′) × δ(ǫ(0)

p′ ). (7.69)

Replacing the summation over momentum by an angular average over the Fermi surface

2
∑

p′
δ(ǫ(0)

p′ )→ N∗(0)
∫

dΩp̂′

4π
, (7.70)

we obtain

δǫpσ = −tl × N∗(0)
∫

dΩp̂′

4π
f s(p̂ · p̂′)Ylm(p̂′)

= −tl

∫
dΩp̂′

4π
Fs(p̂ · p̂′)Ylm(p̂′) (7.71)

Now we can expand the interaction in terms of Legendre polynomials, whichcan, in turn be decom-
posed into spherical harmonics

Fs(cosθ) =
∑

l

(2l + 1)Fs
l Pl(p̂ · p̂′) = 4π

∑

l,m

Fs
l Ylm(p̂)Y∗lm(p̂′) (7.72)

When we substitute this into (7.70) we may use the orthogonality of the spherical harmonics to obtain

δǫpσ = −tl
∑

l′m′
Fs

l′Yl′m′ (p)

δl′ lδm′m︷                        ︸︸                        ︷∫
dΩp′Y

∗
l′m′ (p̂

′)Ylm(p′)

= −tl F
s
l Ylm(p̂). (7.73)
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For a spin-dependent polarization,δnpσ = −tal σYlm(p̂)δ(ǫ(0)
p ) it is the magnetic part of the interaction

that contributes. We can generalize the above result to obtain

δǫpσ = σtal × Fa
l Ylm(p̂). (7.74)

7.4.1 Renormalization of Paramagnetism and Compressibility by
interactions

The simplest polarization response functions of a Landau Fermi liquid are its “charge” and spin susceptibility.

χc =
1
V
∂N
∂µ

, χs =
1
V
∂M
∂B

, (7.75)

whereV is the volume. Here, we use the term “charge” density to referto the density response function of
the neutral Fermi liquid. These responses involve an isotropic polarization of the Fermi surface. In a neutral
fluid, the bulk modulusκ = −V dP

dV is directly related to the charge susceptibility per unit volume, κ = n2

χc
,

wheren = N/V is the particle density. Thus a smaller “charge” susceptibility implies a stiffer fluid.4

When we change the apply a chemical potential or a magnetic field, the “bare” quasiparticle energies
respond isotropically.

δǫ
(0)
pσ = δE

(0)
pσ − δµ = −σµFB− δµ. (7.76)

Feedback via the interactions renormalizes the response ofthe full quasiparticle energy

δǫpσ = −σλsµFB− λcδµ. (7.77)

Since these are isotropic responses, the feedback is transmitted through thel = 0 Landau parameters

λs =
1

1+ Fa
0

λc =
1

1+ Fs
0

. (7.78)

When we apply a pure chemical potential shift, the resulting change in quasiparticle number isδN =
λcN∗(0)δµ, so the “charge” susceptibility is given by

χc = λcN
∗(0) =

N∗(0)
1+ Fs

0

. (7.79)

Typically, repulsive interactions causeFs
0 > 0, reducing the charge susceptibility, making the fluid “stiffer”.

In 3He, Fs
0 = 10.8 at low pressures, which is roughly ten times stiffer than expected, based on its density of

states.
A reverse phenomenon occurs to the spin response of Landau Fermi liquids. In a magnetic field, the change

in the number of up and down quasiparticles isδn↑ = −δn↓ = λ
2N∗(0)µF B. The resulting change in magneti-

zation isδM = µF(δn↑ − δn↓) = λsµ
2
FN∗(0)B, so the spin susceptibility is

χs = λsµ
2
FN∗(0) =

µ2
FN∗(0)

1+ Fa
0

. (7.80)

4 In a fluid, where−∂F/∂V = P, the extensive nature of the Free energy guarantees thatF = −PV, so that the Gibbs free energy

G = F+PV = 0 vanishes. ButdG= −S dT−Ndµ+VdP= 0, so in the ground-stateNdµ = VdPand henceκ = −V dP
dV

∣∣∣
N = −N dµ

dV

∣∣∣∣
N

,

butµ = µ(N/V) is a function of particle density alone, so that−N dµ
dV

∣∣∣∣
N
= N2

V
dµ
dN

∣∣∣∣
V
= n2

χc
wheren = N/V. It follows thatκ = n2

χc
.
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There are a number of interesting points to be made here:

• The “Wilson” ratio, defined as the ratio betweenχs/γ in the interacting and non-interacting system, is
given by

W =

(
χ
γ

)

(
χ
γ

)
0

=
1

1+ Fa
0

. (7.81)

In the context of ferromagnetism, this quantity is often referred to as the “Stoner enhancement factor” In
Landau Fermi liquids with strong ferromagnetic exchange interactions between fermions,Fa

0 is negative,
enhancing the Pauli susceptibility. This is the origin of the enhancement of the Pauli susceptibility in
liquid He− 3, whereW ∼ 4. In palladium metalPd, W = 10 is even more substantially enhanced[8].

• When a Landau Fermi liquid is tuned to the point whereFa
0 → −1, χ → ∞ leading to a ferromagnetic

instability. This instability is called a “Stoner instability”: it is an example of a ferromagnetic quantum
critical point - a point where quantum zero-point fluctuations of the magnetization develop an infinite
range correlations in space and time. At such a point, the Wilson ratio will diverge.

7.4.2 Mass renormalization

Using this formulation of the interacting Fermi gas, Landauwas able to link the renormalization of quasi-
particle mass to the dipole component of the interactionsFs

1. As the fermion moves through the medium, the
backflow of the surrounding fluid enhances its effective mass according to the relation

m∗ = m
(
1+ Fs

1

)
. (7.82)

Another way to understand quasiparticle mass renormalization, is to consider the current carried by a quasi-
particle. Whether we are dealing with neutral, or physicallycharged quasiparticles, the total number of par-
ticles is conserved and we can ascribe a particle current currentvF = pF/m∗ to each quasiparticle. We can
rewrite this current in the form

vF =
pF

m∗
=

pF

m︸︷︷︸
bare current

−

backflow︷         ︸︸         ︷
pF

m

(
Fs

1

1+ Fs
1

)
. (7.83)

The first term is the bare current associated with the original particle, whereas the second term is backflow of
the surrounding Fermi sea (Fig. 7.4 ).

“Mass renormalization” increases the density of states from N(0) = mpF

π2 → N∗(0) = m∗pF

π2 , i.e it has the
effect of compressing the the spacing between the fermion energy levels, which increases the number of
quasi-particles that are excited at a given temperature by afactorm∗/m: this enhances the linear specific heat.

C∗V =
m∗

m
CV (7.84)

whereCV is the Sommerfeld value for the specific heat capacity. Experimentally, the specific heat of Helium-3
is enhanced by a factor of 2.8, from which we know thatm∗ ≈ 3m.

Landau’s original derivation depends on the use of Gallilean invariance. Here we use an equivalent deriva-
tion, based on the observation that backflow is a feedback response to the dipolar distortion of the Fermi
surface which develops in the presence of a current. This enables us to calculate the mass renormalization in
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Backflow

p
m

−p
m




F

s

1
1+F s

1





tFig. 7.4 Backflow in the Landau Fermi liquid. The particle current in the absence of backflow is
p
m. Backflow of the Fermi liquid introduces a reverse current −

(
Fs

1
1+Fs

1

)
p
m.

an analogous fashion to the renormalization of the spin susceptibility and compressibility, carried out in (7.4)
and (7.4.1), except that now we must introduce the conjugatefield to current - that is, a vector potential.

To this end, we imagine that each quasiparticle carries a conserved chargeq = 1, and that the flow of
quasiparticles is coupled to a “fictitious” vector potential qA ≡ AN. The microscopic Hamiltonian in the
presence of the vector potential is then given by

H[AN] =
∑

σ

∫
d3x

1
2m

ψσ
†(x)

[
(−i~∇ − AN)2

]
ψσ(x) + V̂ (7.85)

whereV̂ contains the translationally invariant interactions. Notice that effect ofAN is to change the momen-
tum of each particle by−AN, so thatH[AN] is in fact, the Hamiltonian transformed into Gallilean reference
frame moving at speedu = AN/m. Landau’s original derivation did infact use the Gallileanequivalence of
the Fermi liquid to compute the mass renormalization.

Since the vector potentialAN is coupled to a conserved quantity - the momentum, we can treat it in the
same way as a chemical potential or magnetic field. The linearterm inAN in the total energy isδĤ = −AN · P̂

m
whereP̂ is the conserved total momentum operator. For a non-interaction system the change in the total
energy for a small vector potential at fixed particle occupanciesnpσ is

δE = 〈δH〉 = −〈P〉
m
· AN = −

∑

pσ

(
p
m
· AN)npσ. (7.86)

Provided the momentum is conserved, this is also the change in the energy of theinteractingFermi liquid, at
fixed quasiparticle occupancy, i.e. without backflow. In this way, we see that turning on the vector potential
changes

ǫ
(0)
pσ → ǫ

(0)
pσ + δǫ

(0)
pσ (7.87)

where

δǫ
(0)
pσ = −

p
m
· AN = −AN

pF

m
cosθ. (7.88)

Here,θ is the angle between the vector potential and the quasiparticle momentum. Thus the vector potential
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introduces adipolar potentialaround the Fermi surface. Notice how the conservation of momentum guaran-
tees it is thebare massm∗ that enters intoδǫ(0)

pσ.
Now when we take account of the feedback effect caused by the redistribution of quasiparticles in response

to this potential, the quasiparticle energy becomesEp−qA =
(p−AN)2

2m∗ . Here, the replacement ofp→ p−qAN =

p − AN is guaranteed because the quasiparticle carries the same conserved chargeq = 1 as the original
particles. In this way, we see that in thepresenceof backflow, the change in quasiparticle energy

δǫpσ = −
p
m∗
· AN = −AN

pF

m∗
cosθ. (7.89)

involves the renormalized massm∗.
Since the vector potential induces a dipolar perturbation to the Fermi surface, using the results from section

(7.4), we conclude that backflow feedback effects involve the spin symmetricl = 1 Landau Parameter,Fs
1

(7.64),

δǫpσ =

(
1

1+ Fs
1

)
δǫ

(0)
pσ (7.90)

Inserting (7.88) and (7.89) into this relation, we obtain

m
m∗
=

1
1+ Fs

1

(7.91)

or m∗ = m(1+ Fs
1).

Note that:

• The Landau mass renormalization formula relies on the conservation of particle current when the inter-
actions are adiabatically turned on. In a crystal lattice, although crystal momentum is still conserved,
particle current is not conserved and at present, there is noknown way of writing down an expression
for δǫ(0)

pσ andδǫpσ in terms of crystal momentum, that would permit derivation of a mass renormalization
formula for electrons in a crystal.

• SinceFs
1 = N∗(0) f s

1 involves the renormalized density of statesN∗(0) = m∗pF

π2 , the renormalized massm∗

actually appears on both sides of (7.82). If we use (7.39 ) to rewriteFs
1 =

m∗

m N(0) f s
1 , whereN(0) = mpF

π2

is the unrenormalized density of states, then we can solve for m∗ in terms ofm to obtain:

m∗ =
m

1− N(0) f s
1

. (7.92)

This expression predicts thatm∗ → ∞ atN(0) f s
1 = 1, i.e that the quasiparticle density of states and hence

the specific heat coefficient will diverge if the interactions become too strong. This possibility was first
anticipated by Neville Mott, who predicted that in presenceof large interactions, fermions will localize,
a phenomonon now called a “Mott transition”.

There are numerous examples of “heavy electron” systems which lie close to such a localization transi-
tion, in whichm∗e/me >> 1. Quasiparticle masses in excess of 1000me have been observed via specific heat
measurements. In practice, the transition where the mass diverges is usually associated with the develop-
ment of some other sort of order, such as antiferromagnetism, or solidification. Since the phase transition
occurs at zero temperature, in the absence of thermal fluctuations, it is an example of a “quantum phase
transition”. Such mass divergences have been observed in a variety of different contexts in charged electron
systems, but they have also been observed as a second-order quantum phase transition, in the solidification of
two-dimensional liquid Helium-3 Mott transition.
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7.4.3 Quasiparticle scattering amplitudes

In 8.3 we introduced the quasiparticle interactionsfpσ,p′σ′ as the variation of the quasiparticle energyǫpσ with
respect to changes in the quasiparticle occupancyδnp′σ′ , under the condition that the rest of the Fermi sea
stays in its ground-state

fpσ,p′σ′ =
δǫpσ

δnp′σ′

∣∣∣∣∣∣
np′′σ′′

=
1

N∗(0)

[
Fs(p̂ · p̂′) + σσ′Fa(p̂ · p̂′)

]
(7.93)

The quantity fpσ,p′σ′ can be regarded as a bare forward scattering amplitude between the quasiparticles. It
proves very useful to define the corresponding quantities when Fermi sea is allowed to respond to the original
change in quasiparticle occupancies, as follows:

apσ,p′σ′ =
δǫpσ

δnp′σ′
=

1
N∗(0)

[
As(p̂ · p̂′) + σσ′Aa(p̂ · p̂′)

]
(7.94)

Microscopically, the quantitiesapσp′σ′ correspond to the t-matrix for forward-scattering of the quasiparticles.
These amplitudes can decoupled in precisely the same way as the Landau interaction (7.72),

Aα(cosθ) =
∑

l

(2l + 1)Aα
l Pl(cosθ)

= 4π
∑

l,m

Aα
l Ylm(p̂)Y∗lm(p̂′), (α = (s,a)) (7.95)

These two sets of parameters are also governed by the feedback effects of interactions:

Aα
l =

Fα
l

1+ Fα
l

(α = s,a) (7.96)

The derivation of this relation follows closely the derivation of relations (7.64) and (7.66); we now repeat the
derivation by solving the “Bethe Salpeter” integral equation that links the scattering amplitudes. The change
in the quasiparticle energy is

δǫpσ = fpσ,p′σ′δnp′σ′ +
∑

p′′σ′′,(p′,σ′)

fpσ,p′′σ′′δnp′′σ′′ , (7.97)

where the second term is the induced polarization of the Fermi surface (7.59 ),δnp′′σ′ = −δ(ǫ(0)
p′′ )δǫp′′σ′ , so

that

δǫpσ = fpσ,p′σ′δnp′σ′ −
∑

p′′σ′′
fpσ,p′′σ′′δ(ǫ

(0)
p′′ )δǫp′′σ′ . (7.98)

Substitutingδǫpσ = apσp′σ′δnp′σ′ then dividing through byδnp′σ′ , we obtain

apσpσ′ = fpσ,p′σ′ −
∑

p′′σ′′
fpσ,p′′σ′′δ(ǫ

(0)
p′′ )ap′′σ′p′σ′ . (7.99)

This integral equation for the scattering amplitudes is a form of Bethe-Saltpeter equation relating the bare
scattering amplitudef to the t-matrix described bya.

Now near the Fermi surface, we can decompose the scattering amplitudes using (7.93) and (7.94), while
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42

1

3

a

P

tFig. 7.5 Showing the geometry associated with quasiparticle scattering 1+ 2→ 3+ 4. The
momentum transfered in this process is q = |p4 − p1| = 2pF sinθ/2 sinφ/2. P = p1 + p2

is the total incoming momentum. Landau parameters determine “forward scattering”
processes in which φ = 0.

replacing the momentum summation by an angular integral
∑

p′′ → 1
2N∗(0)

∫
dǫ′′

∫ dΩp̂′′

4π so that this equation
becomes

Aα(p̂ · p̂′) = Fα(p̂ · p̂′) −
∫

dΩp̂′′

4π
Fα(p̂ · p̂′′)Aα(p̂′′ · p̂′) (7.100)

If we decomposeF andT in terms of spherical harmonics using (7.72) and (7.95) in the second term, we
obtain

∫
dΩp̂′′

4π
Fα(p̂ · p̂′′)Aα(p̂′′ · p̂′) =

= (4π)2
∑

lm,l′m′
Fα

l Aα
l′Ylm(p̂)

δll ′ δmm′ /(4π)︷                           ︸︸                           ︷∫
dΩp̂′′

4π
Y∗lm(p̂′′)Yl′m′ (p̂′′) Y∗l′m′ (p̂

′)

= (4π)
∑

lm

Fα
l Aα

l Ylm(p̂)Y∗lm(p̂′) =
∑

l

(2l + 1)Fα
l Aα

l Pl(p̂ · p̂′) (7.101)

Extracting coefficients of the Legendre Polynomials in (7.100), then givesAα
l = Fα

l − Fα
l Aα

l from which the
result

Aα
l =

Fα
l

1+ Fα
l

(α = s,a) (7.102)
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follows. The quasiparticle processes described by these scattering amplitudes involve no momentum transfer
between the quasiparticles. Geometrically, scattering processes in whichq = 0 correspond to a situation
where the momenta of incoming and outgoing quasiparticles lie in the same plane. Scattering processes which
involve situations where the plane defined by the outgoing momenta is tipped through an angleφ with respect
to the incoming momenta, as shown in Fig. 7.5 involve a finite momentum transferq = 2pF | sinθ/2 sinφ/2|.
Provided this momentum transfer is very small compared withthe Fermi momentum, i.eφ << 1 then one
can extend the t-matrix equation as follows

Aα
l (q) =

Fα
l (q)

1+ Fα
l (q)

(q << pF). (7.103)

It is important to realize however, that Landau Fermi liquidtheory is however, only really reliable for those
processes whereφ ∼ 0 is small.

7.5 Collective modes

The most common collective mode of a fluid or a gas is “sound”. Conventional sound results from colli-
sions amongst particles which redistribute momentum within the fluid - as such, sound is a “low-frequency”
phenomenon that operates at frequencies much smaller than the typical quasiparticule scattering rateτ−1, i.e
ω << τ−1 or ωτ << 1. One of the startling predictions of Landau Fermi liquid theory, is the existence of a
collionless collective mode that operates at high frequenciesωτ >> 1, “zero sound”. Zero sound is associ-
ated with collective oscillations of the Fermi surface and it does not involve collisions. Whereas conventional
sound travels at a speed below the Fermi velocity, zero-sound is “supersonic” traveling at speeds in excess of
the Fermi velocity. Historically, the observation of zero-sound in liquid He-3 clinched Landau Fermi liquid,
firmly establishing it as a foundation of fermionic many-body physics.

Let us now contrast “zero ” and “first” sound. Conventional sound is associated with oscillations in the
density of a fluid, and hydrodynamics tells us that

u2
1 =

κ

ρ
=

κ

mn
(7.104)

whereρ = mn is the density of the fluid andκ = −V ∂P
∂V is the bulk modulus. From our previous discussion,

κ = n2

χc
andχc = N∗(0)/(1+ Fs

0), so the velocity of first sound in a Fermi liquid is given by

u2
1 =

n
mχc

=
n

mN∗(0)
(1+ Fs

0) (7.105)

Replacingn =
p2

F

3π2 ,N∗(0) = m∗pF

π2 , andm= m∗/(1+ Fs
1) we obtain

u2
1 =

v2
F

3
(1+ Fs

0)(1+ Fs
1) (7.106)

In the non-interacting limit,u1 = vF/
√

3 is smaller than the Fermi velocity.
To understand of zero-sound we need to consider variations in the quasiparticle distribution function

np(x, t). Provided that the characteristic frequencyω and wavevectorq of these fluctuations are much re-
spectively smaller than the Fermi energyω << ǫF and the Fermi wave-vectorq << kF respectively, then
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fluctuations in the quasiparticle occupancy can be treated semi-classically, and this leads to a Boltzmann
equation

Dnpσ

Dt
= I [

{
npσ

}
] (7.107)

where

Dnpσ

Dt
=
∂npσ

∂t
+ ẋ · ∇xnpσ + ṗ · ∇pnpσ (7.108)

is the total rate of change of the quasiparticle occupancynpσ(x, t), taking into account the movement of
quasiparticles through phase space.I is the collision rate. In a semi-classical treatment, the rate of change of
momentum and position are determined from Hamilton’s equations ṗ = −∇xǫp andẋ = ∇pǫp, so that

Dnpσ

Dt
=
∂npσ

∂t
+ ∇pǫp · ∇xnpσ − ∇xǫpσ · ∇pnpσ (7.109)

We now consider small fluctuations of the Fermi surface defined by

np(x, t) = f (ǫ(0)
p ) + eiq·x−iωtαpσ (7.110)

whereαpσ is the amplitude of the fluctuations. Now the terms contributing to the total rate of changeDnpσ/Dt
are of orderO(ωδn), whereas the collision termI [n] ∼ O(τ−1δn) is of order the collision rateτ−1. In the high
frequency limit,ωτ >> 1 the collision terms can then be neglected, leading to the collisionless Boltzmann
equation:

∂npσ

∂t
+ ∇pǫp · ∇xnpσ − ∇xǫpσ · ∇pnpσ = 0. (7.111)

For small periodic oscillations in the Fermi surface, the first two terms in (7.111) can be written

∂npσ

∂t
+ ∇pǫp · ∇xnpσ = −i(ω − vF · q)αpσeiq·x−iωt (7.112)

In the last term of (7.111), the position dependence of the quasiparticle energies derives from interactions

∇xǫpσ =
∑

σ′

∫

p′
fpσ,p′σ′∇xnp′,σ′

= iqeiq·x−iωt
∑

σ′

∫

p′
fpσ,p′σ′αp′,σ′ (7.113)

Replacing∇pnpσ =
∂ f
∂ǫ

vF , the collisionless Boltzmann equation becomes:

(ω − vF · q)αpσ + vF · q
(
−d f

dǫ

)∑

σ′

∫

p′
fpσ,p′σ′αp′,σ′ = 0 (7.114)

For a mode propagating at speed u,ω = uq. If we expressvF .q = vFqcosθp, and write the mode velocity as
a factors times the Fermi velocity,u = svF , then this becomes

(s− cosθp)αpσ + cosθp

(
−d f

dǫ

)∑

σ′

∫

p′
fpσ,p′σ′αp′,σ′ = 0 (7.115)

We see that the fluctuations in occupancy associated with a zero-sound mode,αpσ = ησ(p̂)
(
− d f

dǫ

)
are pro-

portional to the energy derivative of the Fermi function, and thus confined to within an energy scaleT of
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the Fermi surface. The functionησ(p̂) describes the distribution around the Fermi surface, and this function
satisfies the self-consistent relation

ησ(p) =
cosθp

2(s− cosθp)

∑

σ′

∫
dΩp′

4π
Fpσ,p′σ′ησ(p̂′) (7.116)

For spin-independent zero-sound waves, the right-hand side only involvesFs and can be written

η(p) =
cosθp

(s− cosθp)

∫
dΩp′

4π
Fs

p,p′η(p̂
′) (7.117)

To illustrate the solution of this equation, consider the case where the interaction is entirely isotropic and
spin-independent, so that the only non-vanishing Landau parameter isFs

0. In this case, the angular function
is spin-independent and given by

η(θ) = A
cos(θ)

s− cos(θ)
(7.118)

whereA is a constant. Substituting this form into the integral equation, we obtain the following formula for
s= u/vF ,

A =
∫ 1

−1

dcosθ
2

cosθ
s− cosθ

AFs
0 = AFs

0

[
−1+

s
2

ln

(
s+ 1
s− 1

)]
(7.119)

so that
s
2

ln

(
s+ 1
s− 1

)
− 1 =

1
Fs

0

. (7.120)

For larges, the function on the l.h.s. behaves vanishes asymptotically as 1/(3s2), and since the r.h.s. vanishes
at large interaction,Fs

0, it follows that for large interaction strength the zero-sound velocity is much greater
thanvF ,

u = svF = vF

√
Fs

0

3
, (Fs

0 >> 1). (7.121)

For small interaction strength,s→ 1, and the zero-sound velocity approaches the Fermi velocity.
Experimentally, zero sound has been observed through a variety of methods. Low frequency zero sound

couples directly to vibrations at the wall of the fluid, and can be detected directly as a propagating density
mode. Zero sound can also be probed at higher frequencies using neutron and X-ray scattering. Neutron
scattering experiments find that at high frequencies, the zero sound mode enters back into the particle-hole
continuum, where, as a damped excitation, it acquires a “roton” minimum similar to collective modes in
bosonic 4-He.

7.6 Charged Fermi Liquids: Landau-Silin theory

One of the most useful extensions of the Landau Fermi liquid theory is to charged Fermi liquids, which
underpins our understanding of electrons in metals. Charged Fermi liquids present an additional challenge,
because of the long-range Coulomb interaction. The extension of Landau Fermi liquid theory to incorporate
the long-range part of the Coulomb interaction was originally made by Silin[9, 10]. In neutral Fermi liquids,
the existence of well-defined Landau interaction parameters depends on a short-range interactionV(q) with
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a well-defined zero momentum limitq → 0 (see also example 8.2). Yet the long-range Coulomb interaction
V(q) = e2

ǫ0q2 is singular asq→ 0. Charged quasiparticles act as sources for an electric potential which satisfy
Gauss’ law

∇2φP =
e
ǫ0

∑

p

δnpσ(x) Polarization field (7.122)

The fieldEP = −∇φP that this produces polarizes the surrounding quasiparticle fluid to form a“polariza-
tion cloud” around the quasiparticle which screens its charge, so that the net interaction between screened
quasiparticles has a finite range. Nevertheless, this posesa subtle technical problem for screening requires a
collective quasiparticle response, yet the Fermi liquid interactions are determined by variation of the quasi-
particle energy in response to a change in quasiparticle occupancy against an otherwise frozen (and hence
unpolarized) Fermi sea:

fpσ,p′σ′ (x, x′) =
δǫpσ(x)

δnp′σ′(x′)

∣∣∣∣∣∣
δnp′′σ′′=0

(7.123)

In a frozen Fermi sea, the quasiparticle interaction must then be unscreened at large distances, forcing it to
be singular asq→ 0.

The solution to this problem was proposed by Silin in 1957. Silin proposed splitting the electric potential
φ produced by charged particles into two parts: a long range classical polarization fieldφP considered above,
and a short-range, fluctuating quantum component

φ(x) = φP(x) + δφQ(x) (7.124)

The quantum component is driven by the virtual creation of electron hole pairs around a charged particle.
These processes involve momentum transfer of order the Fermi momentumpF , are hence localized to within
a short distance of order the quasiparticle de Broglie wavelengthλ ∼ h/pF around the quasiparticle. Silin
proposed that these virtual fluctuations in the electric potential introduce a second, short-range component
to the quasiparticle interactions. Silin’s theory isolates the polarization field as a separate term, so that the
quasiparticle energy is written

ǫpσ(x) = ǫ(0)
p + eφP(x) +

∑

p′σ′
f̃pσ,p′σ′δnp′σ′ (x) (7.125)

In momentum space, the change in the quasiparticle energy isgiven by

δǫpσ(q) = eφP(q) +
∑

p′σ′
f̃pσ,p′σ′δnp′σ′ (q) (7.126)

However, Gauss’ law implies thateφ(q) = e2

ǫ0q2

∑
p′σ′ δnp′σ′ (q). Combining these results together, we see that

δǫpσ(q) =
∑

p′σ′

(
e2

ǫ0q2
+ f̃pσ,p′σ′

)
δnp′σ′ (q) (7.127)

In other words, the effective interaction takes the form (see Fig. 7.6)
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fpσ,p′σ′ (q) =

Long range interaction
from polarization field︷︸︸︷

e2

ǫ0q2
+ f̃pσ,p′σ′

︸   ︷︷   ︸
Short-range residual inter-
action

(7.128)

x

fpσp′σ′δ3(x − x′) e2

4πǫ0|x−x′′|

x′

x′′
p′

h/pF

p′

p

p

p′

p

tFig. 7.6 Interactions of a charged Fermi liquid. The short-range part of the interaction results
from quantum fluctuations of the polarization field (see exercise 8.??). The long range
component of the interaction derives from the induced polarization field around the
quasiparticle.

There are a number of points to emphasize about Silin’s theory:

• When the interaction is decomposed in terms of (q-dependent)Landau parameters, the singular interaction
only enters into thel = 0, spin symmetric component; all the other components are determined by
f̃pσp′σ′ , so that

Fs
l (q) =

e2N∗(0)
ǫ0q2

δl0 + F̃s
l (7.129)

andFa
l = F̃a

l .
• The Landau-Silin theory can be derived in a Feynman diagram formalism. In such an approach, the short-

range part of the interaction is associated with multiple scattering off the Coulomb interaction.
• The short-range interactioñfpp′ is a quantum phenomenon,distinct from classical “Thomas-Fermi” screen-

ing of the quasiparticle charge, which result from the polarizing effects of the long-range, 1/q2 compo-
nent of the interaction.
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To illustrate this last point, let us calculate the linear response of the quasiparticle densityδρ(q) = χc(q)δµ(q)
to a slowly varying chemical potentialδµ(x) = δµ(q)eiq·x, whereχc(q) is the charge susceptibility. In a neutral
Fermi liquid, forq << pF , the long-wavelength density response is determined byχc(q) ≈ χn, where

χn =
N∗(0)
1+ Fs

0

(7.130)

as found in eq. (7.79). In the charged Fermi liquid, we replace Fs
0→ Fs

0(q) = e2N∗(0)
ǫ0q2 + F̃s

0, which gives

χc(q) =
N∗(0)

1+ ( e2N∗(0)
ǫ0q2 + F̃s

0)
=

χn

1+ κ2

q2

=
χn

1+ e2

ǫ0q2χn

(7.131)

whereκ2 = e2

ǫ0
χn defines a “Thomas Fermi” screening lengthlT F = κ

−1. At large momentaq >> κ (distances
x << lT F), the response is exactly that of the neutral fluid, but at small momentaq << κ, (distancesx >> lT F),
the charge density response is heavily suppressed.

Historically, the Landau Silin approach changed the way of thinking about metal physics. In early many
body theory of the electron gas, the singular nature of the Coulomb interaction was a primary focus, and
many body physics in the 1950s was in essence the study of quantum plasmas. With Landau Silin theory,
the long-range Coulomb interaction becomes a secondary interest, because this component of the interaction
is unrenormalized and can be added in later as an afterthought. This is a major change in philosophy which
shifts our interest to the short-range components of the quasiparticle interactions. In essence, the Landau
Silin observation liberates us from the singular aspects ofthe Coulomb interaction, and enables us to treat the
physics of strongly correlated electrons as a close companion to other neutral Fermi systems.

Example 7.4: Calculate the scattering t-matrix in Landau-Silin theory to display the screeningeffect
of the long range interaction.
Solution:
If we introduce a small modulation in the quaisparticle occupancy at momentum p′, while “freezing”
the rest of the Fermi sea, then the change in the quasiparticle energies willpick up a modulation given
by

δǫ(0)
p (q) = f s

p,p′ (q)δnp′ (q) (7.132)

where f s
p,p′ =

(
e2

ǫ0q2 + f̃ s
p,p′

)
is the spin symmetric part of the interaction. (For convenience we tem-

porarily drop the spin indices from the subscripts). If we now allow the quasiparticle sea to polarize in
response to the this change in energy, the change in quasiparticle energies will take the form

δǫp(q) = as
p,p′ (q)δnp′ (q) (7.133)

whereas is the screened quasiparticle interaction to be calculated. At low momentaq in an isotropic
system, bothf anda can be expanded in spherical harmonics, as in (7.72), by writing

f s
p,p′ (q) =

4π
N∗(0)

∑

l

Fs
l (q)Ylm(p̂)Y∗lm(p̂′),

as
p,p′ (q) =

4π
N∗(0)

∑

l

As
l (q)Ylm(p̂)Y∗lm(p̂′), (7.134)

For very smallq, we can solve for the relationship betweenTs
l andFs

l using the methods of section
(7.4.3), which gives

As
l (q) =

Fs
l (q)

1+ Fl(q)
(7.135)
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But from (7.129), theq dependence only enters into thel = 0 component of the spin-symmetric scat-

tering, whereF0(q) = e2N∗(0)
ǫ0q2 + F̃0 so that

As
0(q) =

e2N∗(0)
ǫ0q2 + F̃0

1+ e2N∗(0)
ǫ0q2 + F̃0

=
κ2/(1+ F̃s

0)

(κ2 + q2)
+ As(neutral)

0 (7.136)

whereAneutral
0 =

F̃s
0

1+F̃s
0

is the l = 0 scattering t-matrix of the equivalent neutral Fermi liquid. Since all

other components are unchanged by the long-range Coulomb interaction, it follows that the interaction
t-matrix of the charged Fermi liquid is a sum of the original neutral interaction, plus a screened Coulomb
correction:

apσ,p′σ(q) =
1

(1+ F̃s
0)

2

e2

ǫ0(q2 + κ2)
+ a(neutral)

pσ,p′σ′ . (7.137)

Note how the residual “Coulomb” part of the t-matrix is heavily suppressed whenF̃s
0 becomes large.

7.7 Inelastic Quasiparticle Scattering

7.7.1 Heuristic derivation.

In this section we show how the Pauli exclusion principle limits the phase for scattering of quasiparticles in
a Landau Fermi liquid, giving rise to a scattering rate with aquadratic dependence on excitation energy and
temperature

1
τ
∝ [ǫ2 + π2T2]. (7.138)

The dominant decay mode of a quasiparticle is into three quasiparticles. There are also higher order processes
that involve a quasiparticle decaying into a quasiparticle, andn particle-hole pairs:

2n+2

1

2
3

5

4

2n2n+1

a

We’ll see that the phase space for these higher order decay processes vanishes with a high power of the
energy (∝ ǫ2n+1), allowing us to neglect them relative to the leading process at low temperature and energy.
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For our discussion, we will denote a hole in the quasiparticle statej as j̄ , denoting the quasihole energy by
ǫ̃ j = −ǫ j > 0. By the Golden Rule, the rate of decay inton particle-hole pairs is

Γ2n+1(ǫ1) ∼ 2π
~

∑

2,3...2n+2
ǫ̃2,ǫ3···>0

|a(1; 2̄,3, . . . ,2n+ 2)|2δ[ǫ1 − (ǫ̃2 + ǫ3 + ǫ̃4 · · · + ǫ2n+2)] (7.139)

wherea(1; 2̄,3, . . . 2n + 1) is the amplitude for the scattering process, ¯ǫ2, ǭ4, . . . ǭ2n . . . denote the energies
of the outgoing quasiholes andǫ3, ǫ5 . . . ǫ2n+1, ǫ2n+2 denote the energies of the outgoing quasiparticles. The
energies of the final state quasi- particles and holes must all be positive, while also summing up to give
the initial energy. When the incoming particle is close to theFermi energy,ǫ and the all final state energies
ǫ1 > ǫi > 0 must also lie close to the Fermi energy, so so we can replace|a|2 by an appropriate Fermi surface
average

〈|a2n+1|2〉 =
∑

2,3,...2n+2

|a(1; 2̄,3, . . . 2n+ 2)|2δ(ǫ̃2) . . . δ(ǫ2n+1). (7.140)

to obtain5

Γ2n+1(ǫ) ∼ 2π
~
〈|a2n+1|2〉

∫ ∞

0
dǫ̃2 . . .dǫ2n+1δ[ǫ − (ǫ̃2 + . . . ǫ2n+1)] ∝ ǫ2n

(2n)!
. (7.141)

In this way6, the phase space for decay into 2n + 1 quasiparticles vanishes asǫ2n
1 . This means that near

the Fermi surface, quasiparticle decay is dominated by the decay into two quasi-particles and a quasihole,
denoted by1 −→ 2̄+ 3+ 4 as illustrated in Fig. (7.7).

(a) (b)

ε2

ε3

ε4

ε1

2

3

1

4

a

tFig. 7.7 Decay of a quasiparticle into two quasiparticles and a quasihole. (a) Scattering
process. (b) Energies of final states.

The decay rate for this process is given by

Γ(ǫ) =
2π
~
〈|a3|2〉

ǫ2

2
(7.142)

5 Formally this is done by inserting 1=
∏2n+1

i=1

∫ ∞
−∞ dǫiδ(ǫi ) into (7.139),

6 This last integral can be done by regarding theǫr as the differencesǫ j = sj − sj−1 between an ordered set of co-ordinatess2n+1 >

s2n · · · > s1 wheres0 = 0, so that

∫ ∞

0
dǫ1 . . .dǫ2n+1︸          ︷︷          ︸
=ds1...ds2n+1

δ[ǫ −
s2n+1︷                   ︸︸                   ︷

(ǫ1 + ǫ2 + . . . ǫ2n+1)] =
∫ ∞

0
ds2n+1δ(ǫ − s2n+1)

∫ s2n+1

0
ds2n . . .

∫ s2

0
ds1 =

ǫ2n

(2n)!
.
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On dimensional grounds, we expect the averaged squared matrix element to scale as〈|a3|2〉 ∼ w2

ǫF
, wherew is

a dimensionless measure of the strength of the scattering, so thatΓ ∼ 2π
~

ǫ2

ǫF
.

7.7.2 Detailed calculation of three body decay process

We now present a more detailed calculation of quasiparticledecay, deriving a result that was first obtained by
Abrikosov and Khalatnikov in 1957[3]. The amplitude to produce an outgoing hole in statē2 is equal to the
amplitude to absorb an incoming particle in state2, so we denote

a(1 −→ 2̄+ 3+ 4) = a(1+ 2 −→ 3+ 4) ≡ a(1,2; 3,4) (7.143)

Using Fermi’s golden rule, the net scattering rate into state1 is given by

I [np] =
2π
~

∑

2,3,4

|a(1,2; 3,4)|2
[ 2̄+ 3+ 4→ 1︷                    ︸︸                    ︷
(1− n2)n3n4(1− n1)−

1→ 2̄ + 3+ 4︷                    ︸︸                    ︷
n1n2(1− n3)(1− n4)

]

× (2π~)3δ(3)(p1 + p2 − p3 − p4) δ(ǫ1 + ǫ2 − ǫ3 − ǫ4) (7.144)

where
∑

2

≡
∫

d3p
(2π~)3 denotes a sum over final state momenta, and the delta functions impose the conservation

of momentum and energy, respectively. The terms inside the square brackets determine theà priori proba-
bilities for the scattering process. For scattering into state1, the initial states must be occupied and the final
state must be empty, so theà priori probability is (1− n2)n3n4 × (1 − n1), where (1− n2) is the probability
that the quasihole statē2 is occupied andn3n4 is the probability that3 and4 are occupied, while (1− n1)
is the probability that the final quasiparticle state1 is empty. The second term in the brackets describes the
scattering out of state1, and can be understood in a similar way.

In thermal equilibrium, the scattering rate vanishesI [n(0)
p ] = 0 and for small deviations from equilibrium,

we may expand the collision integral to linear order inδnp = np − n(0)
p , identifying the coefficient as the

quasiparticle decay rate as follows,I [np] = −Γδn1 +O(δn2
p), whereΓ = − δI

δn1
, or

Γ =
2π
~

∑

2,3,4

|a(1,2; 3,4)|2
[
n2(1− n3)(1− n4) + (1− n2)n3n4

]

× (2π~)3δ(ǫ1 + ǫ2 − ǫ3 − ǫ4)δ(3)(p1 + p2 − p3 − p4). (7.145)

The occupation factors in the square brackets impose the Fermi statistics. These terms are easiest to under-
stand at absolute zero, wherenp = θ(−ǫp) restrictsǫp < 0 and 1− np = θ(ǫp) restrictsǫp > 0. The first term
n2(1− n3)(1− n4) enforces the constraint that the excitation energies−ǫ2, ǫ3, ǫ4 > 0 are all positive. (Recall
that theǫ j refer to quasiparticle energies, so−ǫ2 = ǭ2 is the excitation energy of the outgoing hole in state2̄.)
At absolute zero, the second term (1−n2)n3n4 is zero unless the excitation energies are negative, and vanishes
whenǫ1 > 0. Now the delta functionδ(ǫ1 + ǫ2 − ǫ3 − ǫ4) enforces energy conservation, ¯ǫ2 + ǫ3 + ǫ4 = ǫ1.
Together with the requirement that the scattered quasiparticle energies are positive, this term forces all three
excitation|ǫ2,3,4| energies to be smaller thanǫ. In this way, we see that for smallǫ, the final quasiparticle states
must lie very close to the Fermi momentum.

With this understanding, at low tempertures, we can replacethe integrals over three dimensional momen-
tum by the product of an energy and an angular integral over the direction of the momenta on the Fermi
surface:

∑

p′
→ N

∗(0)
2

∫
dΩp̂′

4π
×

∫
dǫ′, (7.146)
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This factorization between the energy and momentum degreesof freedom is a hallmark of the Landau Fermi
liquid. Using it, we can factorize (7.145) into two parts

Γ =
2π
~

angular average︷    ︸︸    ︷〈
|a3|2

〉
×

energy phase space integral︷                                          ︸︸                                          ︷〈
n2(1− n3)(1− n4) + (1− n2)n3n4

〉

ǫ2,ǫ3,ǫ4

, (7.147)

where

〈
|a3|2

〉
=

(
N∗(0)

2

)3 ∫
dΩ2dΩ3dΩ4

(4π)3
|a(1,2; 3,4)|2(2π~)3δ(3)[pF(n̂1 + n̂2 − n̂3 − n̂4)] (7.148)

is the angular average and

〈. . . 〉ǫ2,ǫ3,ǫ4 =
∫

dǫ2dǫ3dǫ4δ(ǫ1 + ǫ2 − ǫ3 − ǫ4)
[
. . .

]
(7.149)

is the energy phase space integral. At absolute zero, the argument of the phase space integral restricts the final

states to have positive excitation energies, giving
ǫ2
1
2 , as obtained from (7.141) forn = 1. At finite temperature

(see example), thermal broadening leads to an additional quadratic temperature dependence to the phase
space integral7

〈
n2(1− n3)(1− n4) + (1− n2)n3n4

〉

ǫ2,3,4

=
1
2

(
ǫ2

1 + (πkBT)2
)

(7.150)

To calculate the average squared matrix element, it is convenient to first ignore the spin of the quasiparticle.
To evaluate the angular integral, we need to consider the geometry of the scattering process near the Fermi
surface, which is illustrated in Fig. (7.5). At low temperatures, all initial and final momenta lie on the Fermi
surface,|p j | = pF . The total momentum in the particle-particle channel isP = p1 + p2. Suppose the angle
betweenp1 andp2 is θ, so that each of these momenta subtends an angleθ/2 with P as shown in Fig. 7.5, then
|P| = 2pF sinθ/2. Now since the total momentum is conserved,p3+p4 = P also, so that|p3+p4| = 2pF sinθ/2,
which means thatp3 andp4 also subtend an angleθ/2 with P. However, in general, the planes defined byp1,2

andp3,4 are not the same, and we denote the angle between them byφ. In general, the scattering amplitude
a(θ, φ) will be a function of the two angles,θ andφ. In this way, we can parameterize the scattering amplitude
by a(θ, φ).

A detailed evaluation of the angular integral〈|a3|2〉 (see example 8.4), leads to the result

〈|a3|2〉 =
1
2
× π2

(
N∗(0)~

2pF

)3 〈
|a(θ, φ)|2
2 cosθ/2

〉

Ω

(7.151)

where 〈
|a(θ, φ)|2
2 cosθ/2

〉

Ω

≡
∫

dcosθdφ
4π

(
|a(θ, φ)|2
2 cosθ/2

)
(7.152)

denotes a weighted, normalized angular average of the scattering rate over the Fermi surface. For identical
spinless particles, the final states with scattering angleφ andφ+π are are indistinguishable, and the pre-factor
of one half is introduced into (7.151) to take into account the overcounting that occurs when we integrate from
φ = 0 toφ = 2π.

7 The first term in the phase space integral corresponds to the decay 1→ 2̄+ 3+ 4 of a quasiparticle, while the second term describes
the regeneration of quasiparticles via the reverse process2̄ + 3 + 4 → 1. The classic treatment of the quasiparticle decay given by
Abrikosov and Khaltnikov[3, 11], reproduced in Pines and Noziéres and in Mahan, only includes the first process, which introduces
an additional factor 1/(1+ e−βǫ1) into this expression.
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The complete scattering rate for a spinless quasiparticle is then given by

Γ =
2π
~
×

〈 1
2 |a(θ, φ)|2

2 cosθ/2

〉

Ω

π2

(
N∗(0)~

2pF

)3

×
(
ǫ2 + (πkBT)2

2

)
(7.153)

Let us now consider how this answer changes when we reinstatethe spin of the quasiparticles. In this case,
we must sum over the two spin orientations of quasiparticle 2, corresponding the case where the spin of 1
and 2 are either parallel (A↑↑) or antiparallel (A↑↓). When the spins of the two quasiparticles are parallel they
are indistinguishable and we must keep the factor of1

2, but when the spins are antiparallel, the particles are
distinguishable and this factor is omitted. So to take account of spin, we must replace

1
2
|a(θ, φ)|2→ 1

2
|a↑↑(θ, φ)|2 + |a↑↓(θ, φ)|2 (7.154)

in (7.153). Following the original convention of Abrikosovand Khalatnikov [3], we denote

2π
~

(
|a↑↓(θ, φ)|2 + 1

2
|a↑↑(θ, φ)|2

)
= 2W(θ, φ). (7.155)

Applying these substutions to (7.153), and writingN∗(0) = m∗pF/(π2
~

3), we obtain

Γ =
(m∗)3

8π4~6

〈
W(θ, φ)

2 cosθ/2

〉

Ω

× (ǫ2 + (πkBT)2) (7.156)

This result was originally obtained by Abrikosov and Khalatnikov in 1957[3]. An alternative way to rewrite
this expression is identify the normalized scattering amplitudesN∗(0)aαβ(θ, φ) = Aαβ(θ, φ) ≡ Aαβ(q) with the
dimensionless t-matrix introduced in section (7.4.3). From this we see that the average matrix elements can
be written in terms of a dimensionless parameterw2

w2 =

〈 |A↑↓(θ, φ)|2 + 1
2 |A↑↑(θ, φ)|2

2 cosθ/2

〉

Ω

. (7.157)

In many strongly interacting systems,w is close to unity. Using this notation, the scattering rate (7.156) can
be written in the form

Γ =
2π
~

〈|a3|2〉︷  ︸︸  ︷(
w2

16ǫF

) [
ǫ2 + (πkBT)2

2

]
(7.158)

Apart from the factor of 16 in the denominator, this is what weguessed on dimensional grounds.
There are two important regimes of behaviour to note:

• |ǫp| << πkBT: Γ ∝ T2. Near the Fermi surface, quasiparticles are thermally excited, with aT2 scattering
rate that is independent of energy.

• |ǫp| >> πkBT: Γ ∝ ǫ2
p. For higher energy quasiparticles, the scattering rate is quadratically dependent on

energy.

Example 7.5: Calculate the angular average of the scattering amplitude

〈
|a3|2

〉
=

(
N∗(0)

2

)3 ∫
dΩ2dΩ3dΩ4

(4π)3
|a(1,2; 3, 4)|2(2π~)3δ(3)[pF(n̂1 + n̂2 − n̂3 − n̂4)] (7.159)
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tFig. 7.8 Co-ordinate system used to calculate the angular average of the scattering amplitude.

in the dominant quasiparticle decay processes.

Solution: We first replaceδ(3)[pF(n̂1 + n̂2 − n̂3 − n̂4)] → 1
p3

F
δ(3)[n̂1 + n̂2 − n̂3 − n̂4], so that

〈
|a3|2

〉
=

(
N∗(0)~

4pF

)3 ∫
dΩ2dΩ3dΩ4δ

(3)[n̂1 + n̂2 − n̂3 − n̂4]|a(1, 2; 3,4)|2 (7.160)

To carry out the angular integral, we use polar co-ordinates forn̂2 ≡ (θ, φ2), n̂3 ≡ (θ3, φ3) and n̂4 =

(θ4, φ4), (as illustrated in Fig. 7.8), whereθ andφ2 are the polar angles ofn2 relative ton1, θ3,4 are the
angles between̂n3,4 and the direction of the total momentum̂P, while φ3 is the azimuthal angle ofn3

measured relative to the plane defined byn̂1 andn̂2 andφ4 is azimuthal angle ofn4 measured relative to
the common plane of̂n3 andP̂. The delta function in the integral will forcên3 andn̂4 to lie in a place,
so that ultimately, we only need to know the dependence of the amplitudea(θ, φ3) on θ andφ3.
Taking the z-axis to lie alonĝP and choosing the y axis to lie alonĝP × n̂3, then in this co-ordinate
system,̂n1+ n̂2 = (0,0,2 cosθ/2), n̂3 = (sinθ3,0, cosθ3) andn̂4 = (sinθ4 cosφ4, sinθ4 sinφ4, cosθ4), so
that

n̂3 + n̂4 − n̂1 − n̂2

= (sinθ3 + sinθ4 cosφ4, sinθ4 sinφ4, cosθ3 + cosθ4 − 2 cos(θ/2))

Factorizing the three dimensional delta function into itsx, y andz components gives

δ(3)[(n̂1 + n̂2 − n̂3 − n̂4)]
= δ[sinθ3 + sinθ4 cosφ4]δ[sinθ4 sinφ4]δ[cosθ3 + cosθ4 − 2 cos(θ/2)]

Integrating overdΩ4 = sinθ4dθ4dφ4 forcesφ4 = π andθ4 = θ3 (note thatφ4 = 0 satisfies the second
delta function, but this then requires that sinθ3 = − sinθ4 which is not possible whenθ3,4 ∈ [0, π]).
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Resolving the delta functions around these points, we may write

δ[sinθ3 + sinθ4 cosφ4]δ[sinθ4 sinφ4] =
δ(θ3 − θ4)

cosθ4

δ(φ4 − π)
sinθ4

.

When we carry out the integral overdΩ4 = sinθ4dθ4dφ4, we then obtain
∫

dΩ4δ
(3)[n̂1 + n̂2 − n̂3 − n̂4]|a(θ, φ3)|2 =

1
cosθ3

δ[2 cosθ3 − 2 cos(θ/2)]|a(θ, φ3)|2

Integrating overdΩ3 = dφ3dcosθ3 imposesθ3 = θ/2, so that
∫

dΩ3dΩ4δ
(3)[n̂1 + n̂2 − n̂3 − n̂4]|a(θ, φ3)|2 =

∫
dφ3

2 cosθ/2
|a(θ, φ3)|2

The azimuthal angleφ2 of n̂2 aboutn1 does not enter into the integral, so we may integrate over this
angle, and write the measuredΩ2 ≡ 2πdcosθ. The complete angular integral is then

∫
dΩ2dΩ3dΩ4δ

(3)[n̂1 + n̂2 − n̂3 − n̂4]|a(θ, φ3)|2 = 2π
∫

dφ3dcosθ
2 cosθ/2

|a(θ, φ3)|2.

Substituting this result into (7.160 ), the complete angular average is then

〈
|a3|2

〉
= π2

(
N∗(0)~

2pF

)3 ∫
dcosθdφ

4π
|a(θ, φ)|2
2 cosθ/2

where we have relabelledφ3 asφ. Notice (i) that the weighted angular average is normalized, so that if

|a(θ, φ)|2 = |a|2 is constant,〈|a3|2〉 = π2
(N∗(0)~

2pF

)3
|a|2, and that (ii) since the denominator in the average

vanishes forθ = π, the angular average contributing to the quasiparticle decay is weighted towards
large angle scattering events in which the outgoing quasiparticles have opposite momentap3 = −p4.
This feature is closely connected with the Cooper pair instability discussed in Chapter 14.
Example 7.6: Compute the energy phase space integral

I (ǫ,T) =
∫ ∞

−∞
dǫ2dǫ3dǫ4δ(ǫ + ǫ2 − ǫ3 − ǫ4)

[
n2(1− n3)(1− n4) + (1− n2)n3n4

]
,

whereni ≡ f (ǫi) = 1/(eβǫ + 1) denotes the Fermi function evaluated at energyǫi

Solution: As a first step, we make a change of variableǫ2 → −ǫ2, so that the integral becomes

I (ǫ,T) =
∫ ∞

−∞
dǫ2dǫ3dǫ4δ(ǫ − (ǫ2 + ǫ3 + ǫ4))

[
(1− n2)(1− n3)(1− n4) + n2n3n4

]

=

∫ ∞

−∞
dǫ2dǫ3dǫ4δ(ǫ − (ǫ2 + ǫ3 + ǫ4))

[
n2n3n4 + {ǫ ↔ −ǫ}

]
.

Next, we rewrite the delta function as a Fourier transform,δ(x) =
∫

dα
2πeiαx, so thatI (ǫ,T) = I1(ǫ,T) +

I1(−ǫ,T), where

I1(ǫ,T) =
1
2π

∫
dαdǫ2dǫ3dǫ4e

iα[ǫ−(ǫ2+ǫ3+ǫ4)][n2n3n4
]
.

By carrying out a contour integral around the poles of the Fermi function f (z) atz= iπT(2n+ 1) in the
lower half plane, we may deduce

∫ ∞

−∞
dǫe−i(α+iδ)ǫ f (ǫ) = 2πiT

∞∑

n=0

e−(α+iδ)πT(2n+1) =
πiT

sinh(α + iδ)πT
,

where a small imaginary part has been added toα to guarantee convergence. This enables us to carry
out the energy integrals inI1(ǫ,T), obtaining

I1(ǫ,T) =
∫

dα
2π

eiαǫ

(
πiT

sinh(α + iδ)πT

)3
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Now to carry out this integral, we need to distort the contour into the upper half complex plane. The
function 1/ sinh(α + iδ)πT has poles atα = in/T − iδ, so the distorted contour wraps around the poles
with n ≥ 0. The cube of this function, has both triple and simple poles at these locations. To evaluate
the residues of these poles, we expand sinhαπT to third order inδα = (α− in

T ) about the poles, to obtain

sinhαπT = (−1)nπTδα

(
1+

(πT)2

3!
δα2

)
+ . . .

So that near the poles,

( iπT
sinhαπT

)3

= −i
(−1)n

δα3

(
1− (πT)2

2
δα2

)

= −i(−1)n
(

1
δα3
− (πT)2

2δα

)

The complete contour integral becomes

I1(ǫ,T) =
∞∑

n=1

(−1)n
∮

dα
2πi


1

(α − in
T )3
− 1

2
(πT)2

(α − in
T )

 eiαǫ

= −
∞∑

n=1

(−1)n
∮

dα
2πi

1

(α − in
T )

[
ǫ2

2
+

(πT)2

2

]
eiαǫ

= −
[
ǫ2

2
+

(πT)2

2

] ∞∑

n=1

(−1)ne−nǫ/T =
1

1+ eǫ/T

[
ǫ2

2
+

(πT)2

2

]

Finally, addingI1(ǫ,T) + I1(−ǫ,T) finally gives

I (ǫ,T) =
1
2
[
ǫ2 + (πT)2]

7.7.3 Kadowaki Woods Ratio and “Local Fermi Liquids”

Heuristic Discussion

One of the direct symptoms of Landau Fermi liquid behavior ina metal is aT2 temperature dependence of
resistivity at low temperatures:

ρ(T) = ρ0 + AT2. (7.161)

Hereρ0 is the “residual resistivity” due to the scattering of electrons off impurities. The quadratic temperature
dependence in the resistivity is a direct reflection of the quadratic scattering rateΓ ∝ T2 expected in Landau
Fermi liquids. Evidence that this term is directly related to electron-electron scattering is provided by a
remarkable scaling relation between theA coefficient of the resistivity and the square of the zero temperature
linear coefficient of the specific heatγ = CV/T |T→0.

A
γ2
= α ≈ 1× 10−5µΩcm(K mol/mJ)2 (7.162)

The ratioA/γ2 is called the “Kadowaki Woods” ratio, and the quoted value corresponds to resistivity mea-
sured in unitsµΩcm and the specific heat coefficient per mole of material is measured in units mJ/mol/K2.
In a large large class of intermetallic metals called “heavyelectron metals”, in which the quasiparticle
mass renormalization is particularly large, the Kadowaki Woods ratio is found to be approximately constant
α = 1× 10−5µΩcm(K mol/mJ)2 (Fig. 7.9).
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tFig. 7.9 Showing the Kadowaki Woods ratio for a wide range of intermetallic “heavy electron”
materials after Tsujii et al [12]

To understand Kadowaki Woods scaling, we need to keep track of how A andγ depend on the Fermi energy.
In the last section, we found that the electron-electron scattering rate is set by the Fermi energy,τ−1 ∼ T2/ǫF .
If we insert this into the Drude scattering formula, for the resistivity ρ = m∗/(ne2τ), sincem∗ ∝ 1/ǫF , we
deduce thatρ ∼ (T2/ǫ2

F), i.e A ∝ 1/ǫ2
F . By contrast, the specific heat coefficientγ ∝ m∗ ∝ 1/ǫF , is inversely

proportional to the Fermi energy, so that

A ∝
(

1
ǫF

)2

, γ ∝ 1
ǫF
⇒ A

γ2
∼ constant. (7.163)

In strongly correlated metals, the Fermi energy varies fromeV to meVscales, so theA coefficient can vary
over eight orders of magnitude. This strong dependence ofA on the Fermi energy of the Landau Fermi liquid
is cancelled byγ2.

Estimate of the Kadowaki Woods Ratio

To obtain an estimate of the coefficientA, it is useful to regard a metal as a stack of 2D layers of separation
a, so thatρ = aρ2D = a/σ2D, whereσ2D is the dimensionless conductivity per layer. If we use the Drude
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formula for the conductivity in two dimensionsσ2D = ne2τ/m, puttingn = 2×πk2
F/(2π)2, ~/τ = Γ, we obtain

ρ = a

ρ�=12.9kΩ︷︸︸︷(
h

2e2

) (
Γ

2ǫF

)
. (7.164)

In the last section, we found thatΓ = 2π(w/4)2(πkBT)2/ǫF . Putting this together then gives

ρ = (aρ�)π
(w

4

)2
(
πkBT
ǫF

)2

(7.165)

(The prefactoraρ� is sometimes called the “unitary resistance”, and corresponds to the resistivity of a metal

in which the scattering rate is of order the Fermi energy. If we put a ∼ 1 − 4
◦
A, ρ� ∼ 13kΩ, we obtain

aρ� ∼ 100− 500µΩcm.) It follows that

A ≈ (aρ�)π
3
(w

4

)2
×

(
1

TF

)2

. (7.166)

whereTF = ǫF/kB is the Fermi temperature.

Now using (7.53) the specific heat coefficient per unit volume isγ = 1
3π

2k2
BN∗(0) =

π2k2
B

2ǫF
n, wheren is the

number of electrons per unit volume, thus the specific heat coefficient per electron is simplyγe =
π2k2

B
2ǫF

and the

specific heat per mole of electrons isγM =
1
2π

2R 1
TF

, whereR= kBNAV is the Gas constant,NAV is Avagadro’s
number. So if there arene electrons per unit cell,

γ2
M ∼

π4R2

4
(ne)2

T2
F

(7.167)

giving

α =
A
γ2
∼

(
w2

4π

) (
ρ�

R2

)
× a

(ne)2
. (7.168)

If we takeρ� = 13× 109µΩ, R= 8.3× 103mJ/mol/K andw2/(4π) ∼ 1, to obtain

α ∼ 2× 10−5 ×
(
a[nm]
(ne)2

)
µΩcm(K mol/mJ)2 (7.169)

giving a number of the right order of magnitude. Kadowaki andWoods found thatα ≈ 10−5µΩ cm(K
mol/mJ)2 in a wide range of intermetallic heavy fermion compounds. Intransition metal compoundsα ≈
0.4× 10−5µΩcm(K mol/J)2 has a smaller value, related to the higher carrier density.

Local Fermi Liquids

A fascinating aspect of this estimate, is that we needed to put w2/(4π) ∼ 1 to get an answer comparable with
measurements. The tendency ofw ∼ 1 is a feature of a broad class of “strong correlated” metals.Although
Landau Theory does not give us information on the detailed angular dependence of the scattering amplitude
A(θ, φ), we can make a great deal of progress by assuming that the scattering t-matrix is local. This is infact,
a reasonable assumption in systems where the important Coulomb interactions lie within core states of an
atom, as in transition metal and rare earth atoms. In this case,

aσσ′ (θ, φ) = as + aaσσ′. (7.170)
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is approximately independent of the quasiparticle momentaand momentum transfer. This is the “local” ap-
proximation to the Landau Fermi liquid. When “up” quasiparticles scatter, the antisymmetry of scattering
amplitudes under particle exchange guarantees thata↑↑(θ, φ) = −a↑↑(θ, φ + π). But if a is independent of
scattering amplitude, then it follows thata↑↑ = as + aa = 0, so that

aσσ′ (θ, φ) = as(1− σσ′). (7.171)

in a “Local” Landau Fermi liquid.
Now we can relate theaσσ′ = Aσσ′/N∗(0) to the dimensionless scattering amplitudes introduced in section

(7.4.3)). By (7.79), the charge susceptibility is given by

χc = N∗(0)×
(

1
1+ Fs

0

)
= N∗(0)×

(
1−

Fs
0

1+ Fs
0

)
= N∗(0)× (1− As

0) (7.172)

In strongly interacting electron systems the density of states is highly renormalized, so thatN∗(0) >> N(0),
but the charge susceptibility is basically unaffected by interactions, given byχc = N(0) << N∗(0). This
implies thatAs

0 ≈ 1. so thatas = 1/N∗(0), which in turn implies that the dimensionless ratiow introduced
last section is close tow = 1.

7.8 Microscopic basis of Fermi liquid Theory

Although Landau’s Fermi liquid theory is a phenomenological theory, based on physical arguments, it trans-
lates naturally into the language of diagramatic many body theory. The Landau school played a major role
in the adaptation of Feynman diagramatic approaches to manybody physics. However, Feynman diagrams
do not appear until the third of Landau’s three papers on Fermi liquid theory[13]. The classic microscopic
treatments of Fermi liquid theory are based on the analysis of many body perturbation theory to infinite order
carried out in the late 1950’s and early 1960’s.

Galitski[14], in the Soviet Union, gave the first first formulation of Landau’s theory in terms of diagra-
matic many body theory. Shortly thereafter Luttinger, Wardand Nozieres developed the detailed diagramatic
many body framework for Landau Fermi liquid theory by analysing the analytic properties of inifinite order
perturbation theory[15, 16]. Here we end with a brief discussion of some of the key results of these analyses.

From the outset, it was understood that the Landau Fermi liquid is always potentially unstable to su-
perconductivity. By the late 1960’s it also became that thatLandau Fermi liquid theory does not apply in
one-dimensional conductors, where the phase space scattering arguments used to support the idea of the Lan-
dau quasiparticle no longer apply. In one dimension, the Landau quasiparticle becomes unstable, breaking
up into collective modes that independently carry spin and charge degrees of freedom. We call such a fluid
a “Luttinger liquid”. However, with this exception, few questioned the robustness of Landau Fermi liquid
theory until the 1980s. In 1986, the discovery of high temperature superconductors, led to a resurgence of
interest in this topic, for in the normal state, these materials can not be easily understood in terms of Landau
Fermi liquid theory. For example, these materials display alinear resistivity up to high temperatures that at
this time remains an unsolved mystery. This has led to the speculatation that in two or three dimensions, Lan-
dau Fermi liquid theory might break down into a higher dimensional analog of the one-dimensional Luttinger
liquid. two or even three dimensional metals. In the wake of this interest, the Landau Fermi liquid theory was
re-examined from the perspective of the “renormalization group” [17, 18] The conclusion of these analyses
is that unlike one dimension, Fermi liquids are not generically unstable in two and higher dimensions. While
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this does not rule the possibility of new kinds of metallic behavior, the Landau Fermi liquid theory continues
to provide the bedrock for our understanding of basic metalsin two or three dimensions.

As we discussed in the last chapter, the process of adiabatically “switching on” interactions can be under-
stood as a unitary transformation of the original states of the non-interacting Fermi sea. Thus the ground state
and the one-quasiparticle state are given by

|φ〉 = U |Ψ0〉,

|k̃σ〉 = U |kσ〉 (7.173)

where|Ψ0〉 is the filled Fermi sea of the non-interacting system, andk is a momentum very close to the Fermi
surface. In fact, using the results of (6.1), we can writeU as a time-ordered exponential

U = T
[
exp

{
−i

∫ 0

−∞
V(t)dt

}]
, (7.174)

whereV̂ is the interaction, written in the interaction representation. Now since|kσ〉 = c†kσ|Ψ0〉, wherec†kσ
is the particle creation operator for the non-interacting Hamiltonian, it follows that

|k̃σ〉 =
a†kσ︷     ︸︸     ︷

Uc†kσU† |φ〉 (7.175)

so that the “quasiparticle creation operator” is given by

a†kσ = Uc†kσU†. (7.176)

From this line of reasoning, we can see that the operator thatcreates the one-quasiparticle state is nothing
more than the original creation bare creation operator, unitarily time-evolved from the distant past to the
present in the interaction representation.

While this formal procedure can always be carried out, the existence of the Landau Fermi liquid requires
that in the thermodynamic limit, the resulting state preserves a finite overlap with the state formed by additing
a bare particle to the ground-state, i.e.

Zk = |〈k̃σ0|c†kσ|φ〉|2 > 0 wavefunction renormalization (7.177)

This overlap is called the “wavefunction renormalization constant”, and so long as this quantity is finite on
the Fermi surface, the Landau Fermi liquid is alive and well.

In general, near the Fermi energy, the electron creation operator will have an expansion as a sum of states
containing one, three, five and any odd-number of quasiparticle and hole states, each with the same total spin,
charge and momentum of the initial bare particle.

c†kσ =
√

Zka†kσ +
∑

k4+k3=k2+k

A(k4σ4, k3σ3; k2σ2, kσ)a†k4σ4a
†

k3σ3ak2σ2 + . . . (7.178)

There are three important consequences that follow from this result:

• Sharp Quasiparticle peak in the spectral function.
When a particle is added to the ground-state, it excites a continuum of states|λ〉, with energy distri-

bution described by the spectral function (7.112),

A(k, ω) =
1
π

ImG(k, ω − iδ) =
∑

λ

|Mλ|2δ(ω − ǫλ). (7.179)
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where the squared amplitude|Mλ|2 = |〈λ|c†kσ|φ〉|2. In a Landau Fermi liquid, the spectral function retains
a sharp “quasiparticle pole” at the Fermi energy. If we splitoff theλ ≡ kσ contribution to the summation
in (7.179) we then get

A(k, ω) =
1
π

ImG(k, ω − iδ) =

qp peak︷         ︸︸         ︷
Zkσδ(ω − ǫk)+

continuum︷                  ︸︸                  ︷∑

λ,kσ

|Mλ|2δ(ω − ǫλ) . (7.180)

(a) (b)

ǫk

ω

Γk ∝ ǫ2
k

k = kF

ǫk = 0

ǫk

A
(k

,ω
)

A
(k

,ω
)A

(k
,ω

)

ω

ω

k 6= kF

Zk ∼ m
m∗

0

0

tFig. 7.10 (a) In a non-interacting Fermi system, the spectral function is a sharp delta function at
ω = ǫk . (b) In an interacting Fermi liquid for k , kF , the quasiparticle forms a
broadened peak of width Γk at ωk . If k = kF , this peak becomes infinitely sharp,
corresponding to a long-lived quasiparticle on the Fermi surface. The weight in the
quasiparticle peak is Zk ∼ m/m∗, where m∗ is the effective mass.

• Sudden jump in the momentum distribution.
In a non-interacting Fermi liquid, the particle momentum distribution function exhibits a sharp Fermi

distribution function which is preserved by thequasiparticlesin a Landau Fermi liquid theory

〈φ|(n̂kσ)qp|φ〉 = θ(µ − Ek) (7.181)

where here (ˆnkσ)qp = c̃†kσc̃kσ is the quasiparticle occupancy. Remarkably, part of this jump survives
interactions. To see this effect, we write the momentum distribution function of the particles as

〈n̂kσ〉 = 〈φ|c†kσckσ|φ〉 =
∫ 0

−∞
dωA(k, ω) (7.182)

where we have used the results of (6.3.3) to relate the particle number to the integral over the spectral
function below the Fermi energy. When we insert (7.180) into this expression, the contribution from the
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quasiparticle peak vanishes ifǫk > 0, but gives a contributionZk if ǫk < 0, so that

〈n̂kσ〉 = Zkθ(−ǫk) + smooth background. (7.183)

This is a wonderful illustration of the organizing power of the Pauli exclusion principle. One might have
expected interactions to have the same effect as temperature which smears the Fermi distribution by an
amount of orderkBT. Although interactions do smear the momentum distribution, the jump continues to
survive in reduced form so long as the Landau Fermi liquid is intact.

(a)

1

k

nk

m/ m*

kF

(b)

1

Scale of Interaction Energies

k

nT
k

∆ε ∼ 

kF

tFig. 7.11 (a) In a non-interacting Fermi liquid, a temperature T that is smaller than the Fermi
energy, slightly “blurs” the Fermi surface; (b) In a Landau Fermi liquid, the exclusion
principle stabilizes the jump in occupancy at the Fermi surface, even though the bare
interaction energy is far greater than than the Fermi energy,

• Luttinger sum rule .
In the Landau Fermi liquid, the Fermi surface volume measures the particle densitynF . Since the

Fermi surface of the quasiparticles and the unrenormalizedparticles coincides, it follows that the Fermi
surface volume must be an adiabatic invariant when the interactions are turned on.

nF = (2S + 1)
vFS

(2π)3
, (Luttinger sum rule) (7.184)

The demonstration of this conservation law within infinite order perturbation theory was first derived by
Luttinger in 1962, and is known as the Luttinger sum rule. In interacting fermion systems the conserva-
tion of particle number leads to a set of identities between different many body Greens functions called
“Ward Identities”. Luttinger showed how these identities can be used to relate the Fermi surface volume
to the particle density.

Today, more than a half century after Landau’s original idea, the Landau Fermi liquid theory continues to
be a main-stay of our understanding of interacting metals. However, increasingly, physicists are questioning
when and how, does the Landau Fermi liquid break-down, and what new types of fermion fluid may form
instead? We know that Landau Fermi liquid does not survive inone-dimensional conductors, where quasipar-
ticles break up into collective spin and charge excitations. or in high magnetic fields where the formation of
widely spaced Landau levels effectively quenches the kinetic energy of the particles, enhancing the relative
importance of interactions. In both these examples, new kinds of quasiparticle description are required to
describe the physics. Today, experiments strongly suggestindication that the Landau Fermi liquid breaks up
into new kinds of “Non-Fermi liquid” fluid at a zero temperature phase transition, or quantum critical point,
giving rise to new kinds of metallic behavior in electron systems. The quest to understand these new metals
and to characterize their excitation spectrum is one of the great open problems of modern condensed matter
theory.
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8
Zero Temperature Feynman

Diagrams

Chapter 6. discussed adiabaticity, and we learned how Green’s functions of an interacting system, can be
written in terms Green’s functions of the non-interacting system, weighted by the S-matrix, e.g.

〈φ|Tψ(1)ψ†(2)|φ〉 = 〈φo|TŜψ(1)ψ†(2)|φo〉
〈φo|Ŝ|φo〉

Ŝ = T exp
[
−i

∫ ∞

−∞
V(t′)dt′

]
(8.1)

where|φo〉 is the ground-state ofHo. In chapter 7. we showed how the concept of adiabaticity was used to
establish Landau Fermi liquid theory. Now we move on to will learn how to expand the fermion Green’s
function and other related quantities order by order in the strength of the interaction. The Feynman dia-
gram approach, originally developed by Richard Feynman to describe the many body physics of quantum
electrodynamics[1], and later cast into a rigorous mathematical framework by Freeman Dyson, [2] provides
a succinct visual rendition of this expansion, a kind of“mathematical impressionism” which is physically
intuitive, without losing mathematical detail.

From the Feynman rules, we learn how to evaluate

• The ground-stateS− matrix

S = 〈φo|Ŝ|φo〉 =
∑{

Unlinked Feynman Diagrams
}
. (8.2)

• The logarithm of theS− matrix, which is directly related to the shift in the ground-state energy due to
interactions.

E − Eo = lim
τ→∞

∂

∂τ
ln〈φo|S[τ/2,−τ/2]|φo〉 = i

∑{
Linked Feynman Diagrams

}
(8.3)

where each Linked Feynman diagrams describes a different virtual excitation.
• Green’s functions.

G(1− 2) =
∑{

Two-legged Feynman Diagrams
}

(8.4)

• Response functions. These are a different type of Green’s function, of the form

R(1− 2) = −i〈φ|[A(1), B(2)]|φ〉θ(t1 − t2) (8.5)

8.1 Heuristic Derivation

Feynman initially derived his diagramatic expansion as a mnemonic device for calculating scattering am-
plitudes. His approach was heuristic: each diagram has a physical meaning in terms of a specific scattering
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process. Feynman derived a set of rules that explainedhow to convert the diagrams into concrete scattering
amplitudes. These rules were fine tuned and tested in the simple cases where they could be checked by other
means; later, he applied his method to cases where the directalgebraic approach was impossibly cumbersome.
Later, Dyson gave his diagramatic expansion a systematic mathematical framework.

Learning Feynman diagrams is a little like learning a language. You can learn the rules, and work by the
book, but to really understand it, you have to work with it, gaining experience in practical situations, learning
it not just as a theoretical construct, but as a living tool tocommunicate ideas. One can be a beginner or an
expert, but to make it work for you, like a language or a culture, you will have to fall in love with it!

Formally, a perturbation theory for the fully interacting S-matrix is obtained by expanding the S-matrix as a
power-series, then using Wick’s theorem to write the resulting correlation functions as a sum of contractions.

〈φo|Ŝ|φo〉 =
∞∑

n=0

(−i)n

n!

∫ ∞

−∞
dt1 . . . dtn

∑

Contractions

〈φo|T V (t1)V (t2) : : : V (tn) |φo〉 (8.6)

The Feynman rules tell us how to expand these contractions asa sum of diagrams, where each diagram
provides a precise, graphical representation of a scattering amplitude that contributes to the complete S-
matrix.

Let us see examine how we might develop, heuristically, a Feynman diagram exapnsion for simple potential
scattering, for which

V(1) ≡
∫

d3x1U(~x1)ψ†(~x1, t1)ψ(~x1, t1). (8.7)

where we’ve suppressed spin indices into the background. When we start to make contractions we will break
up each productV(1)V(2) . . .V(r) into pairs of creation and annihilation operators, replacing each pair as
follows  (2) : : :  y(1) −→ (

√
i)2 ×G(2− 1). (8.8)

where we have divided up the the prefactor ofi two factors of
√

i, which we will transfer onto the scattering
amplitudes where the particles are created and annihilated. This contraction is denoted by

G(2− 1) = 2 1
(8.9)

representing the propagation of a particle from “1” to “2”. Pure potential scattering gives us one incoming,
and one outgoing propagator, so we denote a single potentialscattering event by the diagrampipi �iU(x) = (

√
i)2 × −iU (x) ≡ U(x)

(8.10)

Here, the “−i” has been combined with the two factors of
√

i taken from the incoming, and outgoing propa-
gators to produce a purelrealscattering amplitude (

√
i)2 × −iU (x) = U(x).

The Feynman rules for pure potential scattering tell us thatthe S-matrix for potential scattering is the
exponential of a sum of connected “vacuum” diagrams
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S = exp[ + + + . . . ] .
(8.11)

The “vacuum diagrams” appearing in the exponential do not have any incoming or outgoing propagators-
they represent the amplitudes for the various possible processes by which electron-hole pairs can bubble out
of the vacuum. Let us examine the first, and second order contractions for potential scattering. To first order

−i〈φ0|V (t1) |φ0〉 = −i
∑

σ

∫
d3xU(x)〈φ0|T y�(x; t+1 ) �(x; t�1 ) |φ0〉 (8.12)

This contraction describes a single scattering event at (~x, t1). Note that the creation operator occurs to theleft
of the annihilation operator, and to preserve this orderinginside the time-ordered exponential, we say that the
particle propagates “backwards in time” fromt = t+1 to t = t−1 . When we replace this term by a propagator the
backward time propagation introduces a factor ofζ = −1 for fermions, so that

〈φ0|T y�(x; t+1 ) �(x; t�1 ) |φ0〉 = iζG(~x− ~x, t−1 − t+1 ) = iζG(~0,0−) (8.13)

We carry along the factorU(~x) as the amplitude for this scattering event. The result of this contraction
procedure is then

−i
∫ ∞

−∞
dt1〈φ0|V (t1) |φ0〉 = −i(2S + 1)

∫
dt1 ×

∫
d3xU(x) × iζG(~0,0−)

= , (8.14)

where we have translated the scattering amplitude into a a single diagram. You can think of it as the sponta-
neous creation, and re-annhilation of a single particle. Here we may tentatively infer a number of important
“Feynman rules” - listed in Table 8.1: that we must associateeach scattering event with an amplitudeU(x),
connected by propagators that describe the amplitude for electron motion between scattering events. The
overall amplitude involves an integration over the space time co-ordinates of the scattering events, and appar-
ently, when a particle loop appears, we need to introduce thefactorζ(2S + 1) (whereζ = −1 for fermions)
into the scattering amplitude to account for the presence ofan odd-number of backwards-time propagators
and the 2S + 1 spin components of the particle field. These rules are summarized in table 8.1

Physically, the vacuum diagram we have drawn here can be associated with the small first-order shift in the
energy∆E1 of the particle due to the potential scattering. This inturnproduces a phase shift in the scattering
S-matrix,

S ∼ exp

[
−i∆E1

∫
dt

]
∼ 1− i∆E1

∫
dt, (8.15)

where the exponential has been audaciously expanded to linear order in the strength of the scattering potential.
If we compare this result with our leading Feynman diagram expansion of the S-matrix,

〈φo|Ŝ|φo〉 = 1+ ,

we see that we can interpret the overall factor of
∫

dt1 in (8.14) as the time period over which the scattering
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Table 8.1 Real Space Feynman Rules (T = 0) .

1 2 G(2− 1)

x1 U(x1)

1 2 iV(1− 2)

∏

i

∫
d3xidti

Integrate over all intermediate times and
positions.

−(2S + 1)G(~0,0−)

[−(2S + 1)]F ,

F = no. Fermion loops.

η(1) η(1)

−iη̄(1) −iη̄(1)

p = 2
1
p

× p = 8 p = order of symmetry group.
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potential acts on the particle. If we factor this term out of the expression we may identify

∆E1 =

ρ︷                 ︸︸                 ︷
iζ(2S + 1)G(~0,0−)

∫
d3xU(x) (8.16)

Here, following our work in the previous chapter, we have identified iζ(2S+1)G(~0,0−) =
∑
σ〈ψ†σ(x)ψσ(x)〉 =

ρ as the density of particles. giving∆E1 = ρ
∫

d3xU(x). The correspondence of our result with first order
perturbation theory is a check that the tentative Feynman rules are correct.

Let us go on to look at the second order contractions

〈φ0|TV (t1)V (t2) |φ0〉 = 〈φ0|TV (t1)V (t2) |φ0〉 + 〈φ0|T V (t1)V (t2) |φ0〉 (8.17)

which now generate two diagrams

1
2!

(−i)2
∫ ∞

−∞
dt1dt2〈φ0|T V (t1)V (t2) |φ0〉 =

1
2

[ ]2

=

[ ]

1
2!

(−i)2
∫ ∞

−∞
dt1dt2〈φ0|T V (t1)V (t2) |φ0〉 = , (8.18)

The first term is simply a product of two first order terms- the beginning of an exponential combination of such
terms. Notice how the square of one diagram is the original diagram, repeated twice. The factor of 1/2 that
occurs in the expression on the left hand-side is absorbed into this double diagram as a so-called “symmetry
factor”. We shall return to this issue shortly, but briefly, this diagram has a permutation symmetry described
by a group of dimensiond = 2, according to the Feynman rules, this generates a prefactor 1/d = 1/2. The
second term derives from the second-order shift in the particle energies due to scattering, and which, like
the first order shift, produces a phase shift in the S-matrix.This diagram has a cyclic group symmetry of
dimensiond = 2, and once again, there is a symmetry factor of 1/d = 1/2. This connected, second-order
diagram gives rise to the scattering amplitude

=
1
2
ζ(2S + 1)

∫
d1d2U(1)U(2)G(1− 2)G(2− 1) (8.19)

where 1≡ ( ~x1, t1), so that
∫

d1 ≡
∫

dt1d3x1

G(2− 1) ≡ G(~x2 − ~x1, t2 − t1). (8.20)

Once again, the particle loop gives a factorζ(2S+1), and the amplitude involves an integral over all possible
space-time co-ordinates of the two scattering events. You may interpret this diagram in various ways- as
the creation of a particle-hole pair at (~x1, t1) and their subsequent reannilation at (~x2, t2) (or vice versa).
Alternatively, we can adopt an idea that Feynman developed as a graduate student with John Wheeler- the
idea than that an anti-particle (or hole), is a particle propagating backwards in time. From this perspective,
this second-order diagram represents asingle particle that propagates around a loop in space time. Equation
(8.19) can be simplified by first making the change of variables t = t1 − t2, T = (t1 + t2)/2, so that

∫
dt1dt2 =∫

dT ×
∫

dt. Next, if we Fourier transform the scattering potential andGreen functions, we obtain

=

∫
dT × 1

2
ζ(2S + 1)

∫
dtd3qd3k|U(~q1)|2G(~k+ ~q, t)G(~k,−t) (8.21)
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Once again, an overall time-integral factors out of the overall expression, and we can identify the remaining
term as thesecond-ordershift in the energy

∆E2 =
i
2
ζ(2S + 1)

∫
dt

d3k
(2π)3

d3q
(2π)3

|U(~q1)|2G(~k+ ~q, t)G(~k,−t). (8.22)

To check that this result is correct, let us consider the caseof fermions, where

G(k, t) = −i[(1 − nk)θ(t) − nkθ(−t)]e−iǫk t (8.23)

which enables us to do the integral

i
∫

dte−δ|t|G(~k+ ~q, t)G(~k,−t) =
(1− nk+q)nk

ǫk+q − ǫk
+ (k ↔ k + q) (8.24)

We recognize the first process as the virtual creation of an electron of momentum~k + ~q, leaving behind a
hole in the state with momentum~k. The second-term is simply a duplicate of the first, with the momenta
interchanged, and the sum of the two terms cancels the factorof 1/2 infront of the integral. The final result

∆E2 = −(2S + 1)
∫

d3k
(2π)3

d3q
(2π)3

|U(~q)|2
(1− nk+q)nk

ǫk+q − ǫk
is recognized as the second-order correction to the energy derived from these virtual processes. Of course,
we could have derived these results directly, but the important point, is that we have established a tentative
link between the diagramatic expansion of the contractions, and the perturbation expansion for the ground-
state energy. Moreover, we begin to see that our diagrams have a direct interpretation in terms of the virtual
excitation processes that are generated by the scattering events.

To second-order, our results do indeed correspond to the leading order terms in the exponential

S = 1+

[
+ . . .

]
+

1
2!

[
+ . . .

]2

+ · · · = exp

[
+ + . . .

]
.

Before we go on to complete this connection more formally in the next section, we need to briefly dis-
cuss “source terms”, which couple directly to the creation and annihilation operators. The source terms let
us examine how the S-matrix responds to incoming currents ofparticles. Source terms add directly to the
scattering potential, so that

V(1) −→ V(1)+ η̄(1)ψ(1)+ ψ†(1)η(1).

The source terms involve a single creation or annihilation operator, thus produce either the beginning

η(1) ≡
∫

d1 · · · × η(1)

(8.25)

or the end

−iη̄ ≡ −i
∫

d2η̄(2)× . . .
(8.26)

of a Feynman diagram. In practice, each ¯η andη arrive in pairs, and the factor−i which multipliesη̄ combines
the two factors of−i from a pair (η̄, η) with the factor ofi derived from the propagator line they share. We
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need these terms, so that we can generate diagrams which involve incoming and outgoing electrons. The
simplest contraction with these terms generates the bare propagator

(−i)2

2!

∫
d2d1〈0|

[

V (2) + η̄(2)ψ(2) + ψ†(2)η(2)
] [

V (1) + η̄(1)ψ(1) + ψ†(1)η(1)
]

|0〉

=

∫
d1d2

(√
−iη̄(2)G(2− 1)

√
−iη(1)

)

= −iη̄ η. (8.27)

If we now include the contraction with the first scattering term we produce the first scattering correction to
the propagator

(−i)3

3!

∫
d2dX d1〈0|

{

[. . .+ η̄(2)ψ(2) + . . .]
[

U(X)ψ†(X)ψ(X) + . . .
] [

. . .+ ψ†(1)η(1)
]

+ perms
}

|0〉

=

∫
d1d2

(√
−iη̄(2)

∫
dXG(2− X)V(X)G(X − 1)

√
−iη(1)

)

= −iη η. (8.28)

where we have only shown one ofsix equivalent contractions on the first line. This diagram is simply inter-
preted as a particle, created at 1, scattering at positionX before propagating onwards to position 2. Notice
how we must integrate over the the space-time co-ordinate ofthe intermediate scattering event atX, to obtain
the total first order scattering amplitude. Higher order corrections will merely generate multiple insertions
into the propagator and we will have to integrate over the space-time co-ordinate of each of these scattering
events. Diagramatically, the sum over all such diagrams generates the “renormalized propagator”, denoted by

G∗(2− 1) = 2 1

= 2 1 + +

2 1 2 1
+ ... (8.29)

Indeed, to second-order in the scattering potential, we cansee that all the allowed contractions are consistent
with the following exponential form for the generating functional

S = exp

[
+ + · · · − iη̄ η

]
. (8.30)

To prove this result formally requires a little more work, that we now go into in more detail. The important
point for you to grasp right now, is that the sum over all contractions in the S-matrix can be represented by
a sum of diagrams which concisely represent the contributions to the scattering amplitude as a sum over all
possible virtual excitation processes about the vacuum.

8.2 Developing the Feynman Diagram Expansion

A neat way to organize this expansion is obtained using the source term approach we encountered in the last
chapter. There we found we could completely evaluate the theresponse of a non-interacting the system to a
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source term which injected and removed particles. We start with the source term S-matrix

Ŝ[η̄, η] = T exp

[
−i

∫
d1[ψ†(1)η(1)+ η̄(1)ψ(1)]

]
. (8.31)

Here, for convenience, we shall hide details of the spin awaywith the space-time co-ordinate, so that 1≡
(x1, t1, σ1), ψ(1) ≡ ψσ(x, t). You can think of the quantitiesη(1) and η̄(1) as “control-knobs” which we
dial up, or down, the rate at which we are adding, or subtracting particles to the system. For fermions, these
numbers must be anticommuting Grassman numbers: numbers which anticommute with each and all Fermion
field operators. The vacuum expectation value of this S-matrix is then

S[η̄, η] = 〈φ|Ŝ[η̄, η]|φ〉 = exp

[
−i

∫
d1d2η̄(1)G(1− 2)η(2)

]
(8.32)

where here,G(1−2) ≡ δσσ2G(x1−x2, t1− t2) is diagonal in spin. In preparation for our diagramatic approach,
we shall denote

∫
d1d2η̄(1)G(1− 2)η(2) = η̄ η (8.33)

where an integral over the space-time variables (x1, t1) and (x2, t2) and a sum over spin variablesσ1, σ2 is
implied by the diagram. The S-matrix equation can then be written

S[η̄, η] = exp
[
−iη̄ η

]
(8.34)

This is called a “generating functional”. By differentiating this quantity with respect to the source terms,
we can compute the expectation value of any product of operators. Grassman numbers and their differential
operators anticommute with each other, and with the field operators.1 Each time we differentiate the S-matrix
with respect to ¯η(1), we pull down a field operator inside the time-ordered product

i
δ

δη̄(1)
→ ψ(1)

i
δ

δη̄(1)
〈φ|TŜ{. . . }|φ〉 = 〈φ|TŜ{. . . ψ(1) . . . }|φ〉 (8.35)

For example, the field operator has an expectation value

〈ψ(1)〉 = 〈φ|Ŝ[η̄, η]ψ(1)|φ〉
〈φ|Ŝ[η̄, η]|φ〉

= i
δ

δη̄(1)
lnS[η̄, η]

=

∫
G(1− 2)η(2)d2

≡ [1 η] (8.36)

Notice how the differential operatori δ
δη̄(1) “grabs hold” of the end of a propagator and connects it up to space-

time co-ordinate 1. Likewise, each time we differentiate the S-matrix with respect toη(1), we pull down a
field creation operator inside the time-ordered product.

iζ
δ

δη(1)
→ ψ†(1), (8.37)

1 For example, ifF[η̄, η] = Āη+η̄A+Bη̄η, whereA, Ā, η andη̄ are Grassman numbers, whileB is a commuting number, then∂F
∂η̄ = A+Bη,

but ∂F
∂η = −Ā−Bη̄ because the differential operator anticommutes with̄A andη̄. The second derivative∂

2F
∂η∂η̄ = −

∂2F
∂η̄∂η = B, illustrating

that the differential operators of Grassman numbers anticommute.
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The appearance of a “ζ” in (8.37) compared with the “+i” in (8.35) arises because the source term anticom-
mutes with the field operators,ψ†(1)η(1) = −η(1)ψ†(1), so that

δ

δη(1)

∫
dXψ†(X)η(X) = ζ

δ

δη(1)

∫
dXη(X)ψ†(X) = ζψ†(1) (8.38)

and the expectation value of the creation operator has the value

〈ψ†(2)〉 = 〈φ|Ŝ[η̄, η]ψ†(2)|φ〉
〈φ|Ŝ[η̄, η]|φ〉

= iζ
δ

δη(2)
lnS[η̄, η]

=

∫
d1η̄(1)G(1− 2)

≡ [η̄ 2] (8.39)

If we differentiate either (8.36) w.r.t.η(2), or (8.39 ) w.r.t. ¯η(1) we obtain

δ

δη(2)
〈ψ(1)〉

∣∣∣∣∣
η=η̄=0

=
δ

δη̄(1)
〈ψ†(2)〉

∣∣∣∣∣
η=η̄=0

= −i〈φ|Tψ(1)ψ†(2)|φ〉 = G(1− 2) (8.40)

as expected.
In general, we can calculate arbitrary functions of the fieldoperators by acting on the S-matrix with the

appropriate function of derivative operators.

〈φ|TŜ[η̄, η]F[ψ†, ψ]|φ〉 = F
[
iζ
δ

δη
, i
δ

δη̄

]
exp

[
−iη̄ η

]
. (8.41)

If we now setF[ψ†, ψ] = Te−i
∫

V[ψ†,ψ]dt, then

SI [η̄, η] = 〈φ|Te−i
∫ ∞
−∞ dt

(
V(ψ†,ψ)+source terms

)
|φ〉 (8.42)

can be written completely algebraically, in the form

SI [η̄, η] = e−i
∫ ∞
−∞ V(iζ δ

δη
,i δ
δη̄

)dt exp
[
−iη̄ η

]
(8.43)

The action of the exponentiated differential operator on the source terms generates all of the contractions.
It is convenient to recast this expression in a form that groups all the factors of “i”. To do this, we write
α = η, ᾱ = −iη̄, this enables us to rewrite the expression asSI [η̄, η] = SI [ᾱ, α]|α=η,ᾱ=−iη̄, where

SI [ᾱ, α] = e(i)n−1
∫ ∞
−∞ V(ζ δ

δα
, δ
δᾱ

)dt exp
[
ᾱ α

]

where we have written

V(iζ
δ

δη
, i
δ

δη̄
) = inV(ζ

δ

δα
,
δ

δᾱ
) (8.44)

for an interaction involvingn creation andn annihilation operators ( n-particle interaction). This equation
provides the basis for all Feynman diagram expansions.

To develop the Feynman expansion, we need to recast our expression in a more graphical form. To see how
this works, let us first consider a one-particle scattering potential (n = 1). In this case, we write

in−1V(ζ
δ

δα
,
δ

δᾱ
) =

∫
d3xU(x)

(
ζ

δ2

δα(x)δᾱ(x)

)
(8.45)
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which we denote as

δ
δᾱ(1)

ζ δ
δα(1)

.

(8.46)

Notice that the basic scattering amplitude for scattering at point x is simplyU(x) (or U(x)/~ if we reinstate
Planck’s constant). Schematically then, our Feynman diagram expansion can be written as

SI [ᾱ, α] = exp
[

δ
δᾱ(1)

ζ δ
δα(1) ]

exp
[
ᾱ α

]

The differential operators acting on the bare S-matrix, glue the scattering vertices to the ends of the propaga-
tors, and thereby generate a sum of all possible Feynman diagrams. Formally, we must expand the exponen-
tials on both sides, e.g.

SI [ᾱ, α] =
∑

n,m

1
n!m!

[

δ
δᾱ(1)

ζ δ
δα(1) ]n[

ᾱ α
]m

(8.47)

The action of the differential operator on the left hand-side is to glue the m propagators together with then
vertices, to make a series of Feynman diagrams. Now, at first sight, this sounds pretty frightening- we will
have a profusion of diagrams. Let us just look at a few: do not at this stage worry about the details, just try to
get a feeling for the general structure. The simplestn = 1, m= 1 term takes the form

[

δ
δᾱ(1)

ζ δ
δα(1) ][

ᾱ α
]
= ζ

∫
d1V(1)

δ2

δα(1)δᾱ(1)

∫
dXdYᾱ(X)G(X − Y)α(Y)

= ζ

∫
d1V(1)G(1− − 1) = (8.48)

This is the simplest example of a “linked-cluster” diagram,and it results from a single contraction of the
scattering potential. The signζ = −1 occurs for fermions, because the fermi operators need to beinterchanged
to write the expression as a time-ordered propagator. One can say that the expectation value involves the
fermion propagating backwards in time from timet to an infinitesimally earlier timet− = t − ǫ. The term
n = 1, m= 2 gives rise to two sets of diagrams, as follows:

1
2

[

δ
δᾱ(1)

ζ δ
δα(1)][

ᾱ α
]2

= ᾱ α + [ × ᾱ α]

(8.49)
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The first term corresponds to the first scattering correctionto the propagator, written out algebraically,

ᾱ α =

∫
d1d2ᾱ(1)

∫
dXG(1− X)V(X)G(X − 2)α(2)

whereas the second term is an unlinked product of the bare propagator, and the first linked cluster diagram.
The Feyman rules enable us to write each possible term in the expansion of the S-matrix as a sum of unlinked
diagrams. Fortunately, we are able to systematically combine all of these diagrams together, with the end
result that

SI (ᾱ, α) = exp
[∑

linked diagrams
]

= exp

[
+ + . . . ᾱ α

]
. (8.50)

When written in this exponential form, the unlinked diagramsentirely disappear- a result of the so-called
“link-cluster” theorem we are shortly to encounter. The Feynman rules tell us how to convert these diagrams
into mathematical expressions (see table 8.1).

Let us now look at how the same procedure works for a two-particle interaction. Working heuristically,
we expect a two-body interaction to involve two incoming andtwo outgoing propagators. We shall denote a
two-body scattering amplitude by the following diagram

1 2 = (
√

i)4 × −iV(1− 2) ≡ iV(1− 2). (8.51)

Notice how, in contrast to the one-body scattering amplitude, we pick up four factors of
√

i from the external
legs, so that the net scattering amplitude involves an awkward factor of “i”. If we now proceed using the
generating function approach, we setn = 2 and then write

in−1V(ζ
δ

δα
,
δ

δᾱ
) = i

1
2

∫
d3xd3x′V(x− x′)

δ

δα(x)
δ

δα(x′)
δ

δᾱ(x′)
δ

δᾱ(x)
(8.52)

Notice how the amplitude for scattering two particles is nowiV(x−x′) (or iV(x−x′)/~ if we reinstate Planck’s
constant). We can now formally denote the scattering vertexas

1
2
δ

δᾱ(2)

δ
δα(2)

δ
δᾱ(1)

δ
δα(1)

(8.53)

This gives rise to the following expression for the generating functional

SI [ᾱ, α] = exp


1
2

δ
δᾱ(2)

δ
δα(2)

δ
δᾱ(1)

δ
δα(1)  exp

[
ᾱ α

]

for the S-matrix of interacting particles.
As in the one-particle scattering case, the differential operators acting on the bare S-matrix, glue the scat-

tering vertices to the ends of the propagators, and thereby generate a sum of all possible Feynman diagrams.
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Once again, we are supposed to formally expand the exponentials on both sides, e.g.

SI [ᾱ, α] =
∑

n,m

1
n!m!

[1
2 δ

δᾱ(2)

δ
δα(2)

δ
δᾱ(1)

δ
δα(1) ]n[

ᾱ α
]m

(8.54)

Let us again look at some of the leading diagrams that appear in this process. For instance

1
2!

[1
2 δ

δᾱ(2)

δ
δα(2)

δ
δᾱ(1)

δ
δα(1) ][

ᾱ α
]2

=
1
2

[
+

]
.

We shall see later that these are the Hartree and Fock contributions to the Ground-state energy. The prefactor
of 1

2 arises here because there are two distinct ways of contracting the vertices with the propagators. At each
of the vertices in these diagrams, we must integrate over thespace-time co-ordinates and sum over the spins.
Since spin is conserved along each propagator, so this meansthat each loop has a factor of (2S+1) associated
with the spin sum. Once again, for fermions, we have to be careful about the minus signs. For each particle
loop, there is always an odd number of fermion propagators propagating backwards in time, and this gives
rise to a factor

ζ(2S + 1) = −(2S + 1) (8.55)

per fermion loop. The algebraic rendition of these Feynman diagrams is then

1
2

∫
d1d2V(1− 2)

[
(2S + 1)2G(0,0−)2 + ζ(2S + 1)G(1− 2)G(2− 1)

]
(8.56)

Notice finally, that the first Hartree diagram contains a propagator which “bites its own tail”. This comes from
a contraction of the density operator,

−i
∑

σ

〈. . . ψσ†(x, t)ψσ(x, t) . . .〉 = ζ(2S + 1)G(x,0−) (8.57)

and since the creation operator lies to the left of the destruction operator, we pick up a minus sign for fermions.
As a second example, consider

1
3!

[1
2 δ

δᾱ(2)

δ
δα(2)

δ
δᾱ(1)

δ
δα(1) ][

ᾱ α
]3

= ᾱ


+


α

corresponding to the Hartree and Fock corrections to the propagator. Notice how a similar minus sign is
associated with the single fermion loop in the Hartree self-energy. By convention the numerical prefactors
are implicitly absorbed into the Feynman diagrams, by introducing two more rules: one which states that
each fermion loop gives a factor ofζ, the other which relates the numerical pre-factor to the symmetry of the
Feynman diagram. When we add all of these terms, the S-matrix becomes

SI (ᾱ, α) = 1+


+ + + . . .


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+ ᾱ


+ + + . . .


α

+ . . .

+
1
2

 ×
 +

 × + . . .

 (8.58)

The diagrams on the first line are “linked-cluster” diagrams: they describe the creation of virtual particle-hole
pairs in the vacuum. The second-line of diagrams are the one-leg diagrams, which describe the one-particle
propagators. There are also higher order diagrams (not shown) with 2n legs, coupled to the source terms,
corresponding to the n-particle Green’s functions. The diagrams on the third line are “unlinked” diagrams.
We shall shortly see that we can remove these diagrams by taking the logarithm of the S-matrix.

8.2.1 Symmetry factors

Remarkably, in making the contractions of the S-matrix, theprefactors in terms like eq. (8.54) are almost
completely absorbed by the combinatorics. Let us examine the number of ways of making the contractions
between the two terms in (8.54). Our procedure for constructing a diagram is illustrated in Fig. 8.1

1 We label each propagator on the Feynman diagram 1 throughm and label each vertex on the Feynman
diagram (1) through (n).

2 The process of making a contraction corresponds to identifying each vertex and each propagator in (8.54
) with each vertex and propagator in the Feynman diagram under construction. Thus theP′r th propagator
is placed at positionr on the Feynman diagram, and thePk-th interaction line is placed at positionk on the
Feynman diagram, whereP is a permutation of (1, . . . n) andP′ a permutation of (1, . . . ,m).

3 Since each interaction line can be arranged 2 ways at each location, there are 2nW(P) = 2nn! ways of
putting down the the interaction vertices andW(P′) = m! ways of putting down the propagators on the
Feynman diagram, giving a total ofW = 2nn!m! ways.

4 The most subtle point is notice that if the topology of the Feynman graph is invariant under certain permu-
tations of the vertices, then the above procedure overcounts the number of independent contractions by a
“symmetry factor”p, wherep is the dimension of the set of permutations under which the topology of the
diagram is unchanged. The point is, that each of the 2nn!m! choices made in (2) actually belongs to ap−
tuplet of different choices which have actually paired up the propagatorsand vertices in exactly the same
configuration. To adjust for this overcounting, we need to divide the number of choices by the symmetry
factor p, so that the number of ways of making the same Feynman graph is

W =
2nn!m!

p
(8.59)

As an example, consider the simplest diagram,

1

2
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(a)

(b)

tFig. 8.1 (a) Showing how six propagators and three interaction lines can be arranged on a
Feynman diagram of low symmetry (p = 1). (b) In a Feynman diagram of high
symmetry, each possible assignment of propagators and interaction lines to the
diagram belongs to a p− tuplet of topologically equivalent assignments, where p is the
order of the symmetry group of permutations under which the topology of the diagram
is unchanged. In the example shown above, p = 3 is the order of the symmetry group.
In this case, we need to divide the number of assignments W by a factor of p.

(8.60)

This diagram is topologically invariant under the group of permutations

G = {(12), (21)} (8.61)

so p = 2. In a second example

1 2

4 3

(8.62)

the invariance group is

G = {
(1234), (3412)

}
(8.63)
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so once again,p = 2. By contrast, for the diagram
1 2

4 3

(8.64)

the invariance group is

G = {
(1234), (3412), (2143), (4321)

}
(8.65)

so thatp = 4.

8.2.2 Linked Cluster Theorem

One of the major simplifications in developing a Feynman diagram expansion arise because of the Linked
Cluster Theorem. Ultimately, we are more interested in calculating the logarithm of the S-matrix, lnS(η̄, η).
This quantity determines both the energy shift due to interactions, but also, it provides the n-particle (con-
nected) Green’s functions. In the Feynman diagram expansion of the S-matrix, we saw that there are two
types of diagram: linked-cluster diagrams, and unlinked diagrams, which are actually products of linked-
cluster diagrams. The linked cluster theorem states that the logarithm of the S-matrix involves just the sum of
the linked cluster diagrams:

lnSI [η̄, η] =
∑
{Linked Cluster Diagrams} (8.66)

To show this result, we shall employ a trick called the “replica trick”, which takes advantage of the relation

lnS = lim
n→0

[
Sn − 1

n

]
(8.67)

In other words, if we expandSn as a power-series inn, then the linear coefficient in the expansion will give us
the logarithm ofS. It proves much easier to evaluateSn diagramatically. To do this, we introducen identical,
but independent replicas of the original system, each “replica” labelled byλ = (1,n). The Hamiltonian of the
replicated system is justH =

∑
λ=1,n and since the operators of each replica live in a completely independent

Hilbert space, they commute. This permits us to write

(SI [η̄, η])
n = 〈φ|T exp

−i
∫ ∞

−∞
dt

∑

λ=1,n

(
V(ψλ

†, ψλ) + source terms
)
 |φ〉 (8.68)

When we expand this, we will generate exactly the same Feynmandiagrams as inS, excepting that now,
for each linked Feynman diagram, we will have to multiply theamplitude byN. The diagram expansion for
interacting fermions will look like

SI (ᾱ, α) = 1

+ n×

 + + ᾱ

 + + + . . .

α + . . .


+ n2


( )2

+

( )2

+

(
×

)
+ . . .



+ n3


( )3

+ . . .

 + . . . (8.69)
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from which we see that the coefficient ofN in the replica expansion ofSN is equal to the sum of the linked
cluster diagrams, so that

lnSI (ᾱ, α) =


+ + ᾱ


+ + + . . .


α + . . .



By differentiating the log of the S-matrix with respect to the source terms, extract the one-particle Green’s
functions as the sum of all two-leg diagrams

G(2− 1) = ζ
δ2lnSI (ᾱ, α)
δᾱ(2)δα(1)

=
∑
{Two leg diagrams}

=


2 1+ 2 1+ 2 1+ . . .


(8.70)

This is a quite non-trivial result. Were we to have attempteda head-on Feynman diagram expansion of the
Green’s function using the Gell Mann Lowe theorem,

G(1− 2) = −i
〈φ|TSψ(1)ψ†(2)|φ〉

〈φ|S|φ〉 (8.71)

we would have to consider the quotient of two sets of Feynman diagrams, coming from the contractions of
the denominator and numerator. Remarkably, the unlinked diagrams of theS matrix in the numerator cancel
the unlinked diagrams appearing in the Wick expansion of thedenominator, leaving us with this elegant
expansion in terms of two-leg diagrams.

The higher order derivatives w.r.t.α andᾱ correspond to the connected n-body Green’s functions

Example 8.1: By introducing a chemical potential source term into the original Hamiltonian,

H =
∫

d3xδφ(x, t)ρ̂(x) (8.72)

show that the change in the logarithm of the S-matrix is

lnS[φ] = lnS[0] +
1
2

δφ(1)

����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������

δφ(2)

 (8.73)

where

+

+

+  ...

= +

(8.74)
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denotes the sum of all diagrams that connect two “density” vertices. Usethis result to show that the
time-ordered density correlation function is given by

(−i)2〈φ|Tδρ(1)δρ(2)|φ〉 = δ2

δφ(1)δφ(2)
lnS[φ] = 1

����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������

2 (8.75)

Example 8.2: Expand the S-matrix to quadratic order inα andᾱ, and use this to show that the two-
particle Green’s function is given by

1
S[ᾱ, α]

δ4S
δᾱ(1)δᾱ(2)δα(3)δα(4)

= −〈φ|T[ψ(1)ψ(2)ψ†(3)ψ†(4)]|φ〉

=

1 4

32

1 4

32

1 4

2 3
+/− +

����
����
����
����

����
����
����
����

(8.76)

Show that the last term, which is the connected two-particle Green’s function, is the quartic term coef-
ficient in the expansion of lnS[ᾱ, α].

8.3 Feynman rules in momentum space

Though it is easiest to motivate the Feynman rules in real space, practical computations are much more readily
effected in momentum space. We can easily transform to momentumspace by expanding each interaction line
and Green’s function in terms of their Fourier components:

1 2 = G(X1 − X2) =
∫

ddp

(2π)d
G(p)eip(X1−X2)

1 2 = V(X1 − X2) =
∫

ddq

(2π)d
V(q)eiq(X1−X2) (8.77)

where we have used a short-hand notationp = (p, ω), q = (q, ν), X = (x, t), andpX = p · x −ωt. We can deal
with source terms in similar way, writing

α(X) =
∫

ddp

(2π)d
eipXα(p). (8.78)

Having made these transformations, we see that the space-time co-ordinates associated with each vertex,
now only appear in the phase factors. At each vertex, we can now carry out the integral over all space-time
co-ordinates, which then imposes the conservation of frequency and momentum at each vertex.

, q
p1

p2

X =

∫
ddXei(p1−p2−q)X = (2π)dδ(d)(p1 − p2 − q) (8.79)

Since momentum and energy are conserved at each vertex, thismeans that there is one independent energy
and momentum per loop in the Feynman diagram. Thus the transformation from real-space, to momentum
space Feynman rules is effected by replacing the sum over all space-time co-ordinatesby the integral over all
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Table 8.2 Momentum Space Feynman Rules (T = 0).

(k, ω)
Go(k, ω) Fermion propagator

iV(q) Interaction

(q, ν)
1 2

ig2
qDo(q) Exchange Boson.

q U(q) Scattering potential

[−(2S + 1)]F , F= no. Fermion loops

(q, ν)

∫
ddqdν
(2π)d+1

eiν0+ Integrate over internal loop momenta and
frequency.

p = 2

1
p

p = order of symmetry group.
× p = 8

loop momenta and frequency. (Table 8.2). The convergence factor

eiωO+ (8.80)

is included in the loop integral. This term is only really needed when the loop contains a single propagator,
propagating back to the point from which it eminated. In thiscase, the convergence factor builds in the
information that the corresponding contraction of field operators is normal ordered.

Actually, since all propagators and interaction variablesdepend only on the difference of position, the
integral over alln space-time co-ordinates can be split up into an integral over the center-or-mass co-ordinate

Xcm =
X1 + X2 + . . .Xn

n
(8.81)

and the relative co-ordinates

X̃r = Xr − X1, (r > 1), (8.82)
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as follows
∏

r=1,n

ddXr = ddXcm

∏

r=2,n

ddX̃r (8.83)

The integral over thẽXr imposes momentum and frequency conservation, whilst the integral overXcm can be
factored out of the diagram, to give an overall factor of

∫
ddXcm = (2π)dδ(d)(0) ≡ VT (8.84)

whereV is the volume of the system, andT the time over which the interaction is turned on. This means that
the proper expression for the logarithm of the S-matrix is

ln(S) = VT
∑
{ linked cluster diagrams in momentum space}. (8.85)

In other words, the phase-factor associated with the S-matrix grows extensively with the volume and the time
over which the interactions act.

8.3.1 Relationship between energy, and the S-matrix

One of the most useful relationships of perturbation theory, is the link between the S-matrix and the ground-
state energy, originally derived by Jeffrey Goldstone[3]. Here the basic idea is very simple. When we turn on
the interaction, the ground-state energy changes which causes the phase of the S-matrix to evolve. If we turn
on the interaction for a timeT, then we expect that for sufficiently long times, the phase of the S-matrix will
be given by−i∆ET:

S[T] = 〈−∞|Û(T/2)U†(−T/2)|∞〉 ∝ e−i∆ET (8.86)

where∆E = Eg = Eo is the shift in the ground-state energy as a result of interactions. This means that at long
times,

ln(S[T]) = −i∆ET + constant (8.87)

But from the linked cluster theorem, we know that

S= VT
∑
{linked clusters in momentum space} (8.88)

which then means that the change in the ground-state energy due to interactions is given by

∆E = iV
∑
{linked clusters in momentum space} (8.89)

To show this result, let us turn on the interaction for a period of timeT, writing the ground-state S-matrix
as

S[T] = 〈−∞|Û(T/2)U†(−T/2)|∞〉 (8.90)

If we insert a complete set of energy eigenstates 1=
∑
λ |λ〉〈λ| into this expression for the S-matrix, we obtain

S[T] =
∑

λ

〈−∞|Û(T/2)|λ〉〈λ|U†(−T/2)|∞〉 (8.91)
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In the limit T → ∞, the only state with an overlap with the time-evolved stateU†(−T/2)| − ∞〉 will be the
true ground-state|ψg〉 of the interacting system, so we can write

S(T)→U(T)U†(−T) (8.92)

whereU(τ) = 〈−∞|Û(τ/2)|ψg〉. Now differentiating the first term in this product, we obtain

∂

∂τ
U(τ) =

∂

∂τ
〈−∞|eiHoτ/2e−iHτ/2|ψg〉

=
i
2
〈−∞|{HoU(τ/2)− U(τ/2)H}|ψg〉

= − i∆E
2
U(τ) (8.93)

Similarly, ∂
∂τ
U†(−τ) = − i∆E

2 U†(−τ), so that

∂S(T)
∂T

= −i∆ES(T) (8.94)

which proves the original claim.

8.4 Examples

8.4.1 Hartree Fock Energy

As a first example of the application of Feynman diagrams, we use the linked cluster theorem to expand the
ground-state energy of an interacting electron gas to first order. To leading order in the interaction strength,
the shift in the ground-state energy is given by

Eg = Eo + iV

[
+

]
(8.95)

corresponding to the Hartree, and Fock contributions to theground-state energy. Writing out this expression
explicitly, noting that the symmetry factor associated with each diagram isp = 2, we obtain

∆EHF =
iV
2

∫
d3kd3k′

(2π)6

dωdω′

(2π)2
ei(ω+ω′)δ

[
(−[2S + 1])2(iVq=0) + (−[2S + 1])(iVk−k′)

]
G(k)G(k′)

In the last chapter (6.80), we obtained the result

〈c†kσckσ〉 = −i
∫

dω
2π

G(k, ω)eiωδ = fk = θ(kF − |k|) (8.96)

so that the shift in the ground-state energy is given by

∆EHF =
V
2

∫
d3kd3k′

(2π)6

[
(2S + 1)2(Vq=0) − (2S + 1)(Vk−k′)

]
fk fk′ (8.97)

In the first term, we can identifyρ = (2S + 1)
∑

fk as the density, so this term corresponds to the classical
interaction energy of the Fermi gas. The second term is the exchange energy. This term is present because the
spatial wavefunction of parallel spin electrons is antisymmetric, which keeps them apart, producing a kind of
“correlation hole” between parallel spin electrons.
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Let us examine the exchange correlation term in more detail.To this end, it is useful to consider the equal
time density correlation function,

Cσσ′ (~x− ~x′) = 〈φ0| : ρσ(x)ρσ′ (x
′) : |φ0〉

In real space, the Hartree Fock energy is given by

〈φ0|V̂|φ0〉 =
1
2

∑

σ,σ′

∫
d3xd3yV(~x− ~y)〈φ0| : ρ̂σ(~x)ρσ′(~y) : |φ0〉

=
1
2

∑

σ,σ′

∫
d3xd3yV(~x− ~y)Cσσ′ (~x− ~y) (8.98)

so it is an integral of the interaction potential with the correlation function. Now if we look at the real-space
Feynman diagrams for this energy,

∆E = i

[
+

]

= −1
2

∑

σσ′

∫

x,x′
V(x − x′)

[(
σ

x
σ ’

x′
)
+ x

σ
x′δσσ′

]
(8.99)

since each interaction line contributes aiV(x − x′) to the total energy. The delta function in the second term
derives from connectivity of the diagram, which forces the spinsσ andσ′ at both density vertices to be the
same. We thus deduce that the Feynman diagram for the equal time density correlation functions are

Cσσ′ (x − y) = −
[(

σ
x

σ ’
x′

)
+

(
x

σ
x′

)
δσσ′

]
(8.100)

The first term is independent of the separation ofx andx′ and describes the uncorrelated background densities.
The second term depends onx − x′ and describes the exchange correlation between the densities of parallel
spin fermions.

Written out explicitly,

Cσσ′ (~x− ~y) = −


(

−iρ0︷     ︸︸     ︷
−G(~0,0−))2) − δσσ′G(~x− ~y,0−)G(~y− ~x,0−)



= ρ2
0 + δσσ′G(~x− ~y,0−)G(~y− ~x,0−) (8.101)

where we have identifiedG(~0,0−) = iρ0 with the density of electrons per spin. From this we see thatC↑↓(~x−
~y) = ρ2

0 is independent of separation- there are no correlations between the up and down-spin density in
the non-interacting electron ground state. However, the correlation function between parallel spin electrons
contains an additional term. We can calculate this term fromthe equal time electron propagator, which in real
space is given by

G(~x,0−) =
∫

k
G(k,0−)eik·x = i

∫

k,
fkeik·x

= i
∫

k<kF

k2dk
2π2

sinkr
kr︷                ︸︸                ︷∫

dcosθ
2

eikr cosθ
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=
i

2π2r3
[sin(kFr) − kFr cos(kFr)] = iρ0P(kF x) (8.102)

whereρ0 =
k3

F

6π2 is the density, while

P(x) = 3

(
sinx− xcosx

x3

)
=

3
x

j1(x) (8.103)

and j1(x) is the l = 1 spherical Bessel function. The density correlation function of parallel spin fermions
then takes the form

C↑↑(r) = ρ
2
0

(
1− [

P(kFr)
]2)

This function is shown in Fig. 8.2: atr = 0 it goes to zero, corresponding to the fact that the probability
to find two “up” electrons in the same place actually vanishes. It is this “exchange hole” in the correlation
function that gives the interacting electron fluid a pre-disposition towards the development of ferromagnetism
and triplet paired superfluids.

tFig. 8.2 “Exchange hole”. The equal time correlation function C↑↑(kFr) for the non-interacting
Fermi gas. Notice how this function vanishes at the origin, corresponding to a
vanishing probability to find two “up” electrons at the same location in space.

Before we end this section, let us examine the Hartree Fock energy for the Coulomb gas. Formally, with the
Coulomb interaction the Hartree interaction becomes infinite, but in practice, we need not worry, because to
stabilize the charged Fermi gas, we need to compensate the charge of the Fermi gas with a uniformly charged
background. Provided the Fermi gas is uniform, the classical Coulomb energy of the combined system is
identically zero. The leading order expression for the ground-state energy of the compensated Coulomb gas
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of Fermions is then
Eg

V
= (2S + 1)

∫

k

~
2k2

2m
fk −

(2S + 1)
2

∫

k,k′
fk fk′

e2

ǫ0(k − k)2
(8.104)

A careful evaluation of the above integrals (see Problem 8.1) gives

Eg

V
= ρ

[
3
5
ǫF −

3e2kF

4π

]

whereρ = (2S + 1)k3
F/(3π

2) is the density of particles. An important parameter for theelectron gas is the
dimensionless separation of the electrons. The separationof electronsRe in a Fermi gas is defined by

4πR3
e

3
= ρ−1

whereρ is the density of electrons. The dimensionless separationrs is defined asrs = Re/aB whereaB =
~

24πǫ0
me2

is the Bohr radius, so that

rs =
1

αkFaB
(8.105)

whereα =
(

2
9π (2S + 1)

) 1
3 ≈ 0.521 forS = 1/2. Usingrs, we can re-write the energy of the electron gas as

E
ρV
=

3
5

RY

α2r2
s
− 3

2π
RY

αrs

=

(
2.21
r2

s
− 0.916

rS

)
RY (8.106)

whereRY =
~

2

2ma2
B
= 13.6eV is the Rydberg energy. From this, we see that the most strongly correlated limit

of the electron gas is thedilute limit.

8.4.2 Electron in a scattering potential

As an illustration of the utility of the Feynman diagram approach, we now consider an electron scattering off

an attractive central scattering potential. Here, by resumming the Feynman diagrams, it is easy to show how
in dimensionsd ≤ 2, an arbitrarily weak attractive potential gives rise to bound-states.

The Hamiltonian is given by

H =
∑

k

ǫkc†kck + Hsc (8.107)

whereǫk = k2/2m− µ and the scattering potential is given by

Hsc =

∫
d3xψ†(x)ψ(x)U(x) (8.108)

If we Fourier transform the scattering potential, writing

U(x) =
∫

q
U(q)eiq·x (8.109)

then the scattering potential becomes

Hsc =

∫

k,k′
Uk−k′︸︷︷︸

amplitude to transfer momentumk − k′

c†kck′ (8.110)
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tFig. 8.3 Showing the energy per electron as a function of the reduced separation rs between
electrons, after equation (8.106)

The Feynman diagrams for the one-electron Green’s functionare then

k′ k
= δk,k

k
+

k′ k
+

k′ k′′ k
+ . . . (8.111)

where

k
= Go(k, ω) =

1
ω − ǫk − iδk

(8.112)

denotes the propagator in the absence of potential scattering and

k′ k
= Uk−k′ (8.113)

is the basic scattering vertex. The first diagram representsthe amplitude to be transmitted without scattering;
subsequent diagrams represent multiple scattering processes involving one, two three and more scattering
events. We shall lump all scattering processes into a singleamplitude, called the t-matrix, represented by

tk,k′(ω) = = +
k′′

+
k′′ k′′′

+ . . . (8.114)

With this short-hand notation, the diagrams for the electron propagator become

k′ k
= δk,k′

k
+

k′ k

tkk ′(ω)
(8.115)

Written out as an equation, this is

G(k, k′, ω) = δk,k′G
o(k, ω) +Go(k, ω)tk,k′(ω)Go(k′, ω) (8.116)
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If we look at the second, third and higher scattering terms inthe t-matrix, we see that they are a combination
of the t-matrix plus the bare scattering amplitude. This enables us to re-write the t-matrix as the following
self-consistent set of Feynman diagrams

= +
k′′

tkk ′(ω)
(8.117)

Written out explicitly, this is

tkk ′ (ω) = Uk−k′ +
∑

k′′
Uk−k′′G

o(k′′, ω)tk′′k′ (ω) (8.118)

Equations (8.116) and (8.118) fully describe the scattering off the impurity.
As a simplified example of the application of these equations, let us look at the case of s-wave scattering

off a point-like scattering center:

U(x) = Uδ(d)(x) (8.119)

In this case,U(q) = U is independent of momentum transfer. By observation, this means that the t-matrix
will also be independent of momentum, i.e.tk,k′(ω) = t(ω). The equation for the t-matrix then becomes

t(ω) = U + U
∑

k′′
Go(k′′, ω)t(ω) (8.120)

or

t(ω) =
U

1− UF(ω)
(8.121)

where

F(ω) =
∫

ddp

(2π)d

1
ω − ǫk + iδk

=

∫ Λ

−µ
dǫN(ǫ)

1
ω − ǫ + iδsign(ǫ)

. (8.122)

HereN(ǫ) is the density of states andǫ = −µ is the bottom of the conduction sea. A high-energy cut-off has
been introduced to guarantee the convergence of the integral. Physically, such a cut-off corresponds to the
energy scale, beyond which ,the scattering potential no longer behaves as a point potential. At low energies,
F(ω) < 0, so that if the potential is attractive,U < 0, there is the possibility of poles in the t-matrix,
corresponding to bound-states.

It is instructive to calculateF(ω) in two dimensions, where the density of states is constantN(ǫ) = N(0).
In this case,

F(z) = N(0)
∫ Λ

−µ
dǫ

1
z− ǫ + iδsgn(ǫ)

= −N(0) ln

[
z− Λ
z+ µ

]
≈ −N(0) ln

[
−Λ

z+ µ

]
, (|z| << Λ) (8.123)

Here we have taken the liberty of moving into the complex plane replacingω → z, which permits us to
remove theiδ from the propagator. We have also simplified the final answer,assuming that|z| << Λ. The
final answer is then

t(z) =
U

1+ UN(0) ln
[
Λ

−(z+µ)

] . (8.124)

Remarks
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• For an attractive potential,U = −|U |,

t(z) = − |U |
1− |U |N(0)ln Λ

−(z+µ)

=
1

N(0)
[
− 1

UN(0) + ln Λ

−(z+µ)

]

=
1

N(0)ln
(

ωo

−(z+µ)

) (8.125)

whereωo = Λe−
1

|U |N(0) . This has a pole at the energy

ω = −ωo − µ = Λe−
1

|U |N(0) − µ

corresponding to a bound-state split off below the bottom of the electron sea. This energy scaleωo can
not be written as a power-series inU, and as such, is an elementary example of a “non-perturbative”
result. The bound-state appears because an infinite class ofFeynman diagrams have been resummed.
(See Fig 8.4.) This is a special property of two dimensions. In higher dimensions the potential must
exceed a threshold in order to produce a bound-state. (The appearance of a bound-state for electrons
scattering off an arbitrarily weak attractive potential is similar to the Cooper instability.)

tFig. 8.4 Showing real and imaginary parts of the t-matrix function for scattering off an
attractive delta function potential in two dimensions. The bound-state at ω = −ω0 − µ
develops for arbitrarily small attractive interaction in two dimensions

• The functionF(z) contains a branch cut forω > −µ, so that

ln

(
−Λ

ω + µ + iδ

)
= ln

(
−

∣∣∣∣∣
Λ

ω + µ

∣∣∣∣∣
)
+ iπ (ω > −µ) (8.126)
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and hence

t(ω + iδ) =
U

1+ UN(0) ln
[
Λ

ω+µ

]
− iπUN(0)

(ω + µ > 0) (8.127)

The complex value of this expression reflects the appearanceof a “phase shift” in the scattering t-matrix.
Indeed, we can write the t-matrix written in standard scattering form in terms of a phase shiftη, as

t(ω + iδ) =
eiη sinη
πN(0)

(8.128)

where

η = tan−1 πUN(0)

1+ UN(0) ln
[∣∣∣∣ Λω+µ

∣∣∣∣
]

is the scattering phase shift.

8.5 The self-energy

The concept of the self-energy enables us to understand the feedback of the interacting environment on a
propagating particle. This is one of the most important examples of the power of Feynman diagram resum-
mation.

Let us consider the Greens function of a fermion in an interacting environment. Every diagram contribut-
ing to the propagator consists of a sequence of free propagators separated by various many-body scattering
processes. The self-energy sums the amplitude for all of these intermediate scattering processes into a single
entity represented by the symbolΣ. With this conceptual simplification, the propagator has the structure

= + Σ + Σ Σ + . . . (8.129)

where

Σ(k, ω) = Σ = + + + + . . . (8.130)

denotes the self-energy: the sum of all scattering processes that can not be separated into two by cutting
a single propagator. By convention each of these diagrams contain two small stubs (without arrows) that
denote the points where the diagram connects with incoming and outgoing propagators. We do not associate
any propagator with these stubs. In a rather macabre terminology, the external legs of the self-energy are
sometimes said to have been “amputated”.

The one-particle propagator can then be expanded as a geometric series involving the self-energy, as fol-
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lows

G(k, ω) = + Σ + Σ Σ + . . .

= G0 + G0ΣG0 + G0(ΣG0)2 + . . .

=
G0

1− ΣG0
=

1
(G0(k, ω))−1 − Σ(k, ω)

(8.131)

So that

G(k, ω) =
1

ω − ǫk − Σ(k, ω)
(8.132)

Feynman propagator

This heuristic derivation involves the summation of a geometric series, which in general will be outside its
radius of convergence, but we may argue the result is true by analytic continuation. Another way to derive the
same result is to notice that the second and subsequent termsin the series (8.131) can be re-written in terms
of the original Green’s function, as follows:

= + Σ

G(k, ω) = G0(k, ω) + G0(k, ω)Σ(k, ω)G(k, ω)

(8.133)

Dyson equation

This equation is called a “Dyson equation”[2]. Using it to solve for G(k, ω), we also obtain (8.132).
Physically, the self-energy describes the cloud of particle-hole excitations which accompanies the propagating
electron, “dressing” it into a quasiparticle. In general, the self-energy has both a real, and an imaginary
component.

Σ(k, ω − iδ) = Σ′(k, ω) + iΓ(k, ω). (8.134)

The imaginary component to the self-energy describes the rate of decay of the bare fermion, through the
emission of particle-hole pairs.

If we use this expression to evaluate the one-particle spectral function, we obtain

A(k, ω) =
1
π

ImG(k, ω − iδ) =
Γ(k, ω)

[ω − ǫk − Σ′(k, ω)]2 + Γ(k, ω)2
(8.135)

If the self-energy is small, we see that this corresponds to aLorentzian of widthΓ centered around a renor-
malized energyǫ∗k = ǫk +Σ

′(k, ǫ∗k). If we expand the Lorentzian around this point, we must be careful to write
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ω − ǫk − Σ′(k, ω) = (ω − ǫ∗k)Zk whereZ−1
k = (1− ∂ωΣ′(k, ω))|ω=ǫ∗k . Near the renormalized energyω ∼ ǫ∗k ,

G(k, ω − iδ) =
Zk

ω − ǫ∗k − iΓ∗k
, (8.136)

where, providedΓ∗k is small,

ǫ∗k = ǫk + Σ
′(k, ǫ∗k), renormalized energy

τ−1 = ZkΓ(k, ǫ∗k), Lifetime.
(8.137)

can be interpreted as a “quasiparticle” with energyǫ∗bk and lifetimeΓ∗k (see section 7.8). Now this “quasipar-
ticle peak” is not the only component to the spectral function, because it only contains a weightZk , while the
total weight of the spectral function is unity. The full Green’s function is better represented in the form

G(k, ω − iδ) =
Zk

ω − ǫ∗k − iΓ∗k
+Ginc(k, ω) (8.138)

whereGinc represents the incoherent particle-hole continuum contribution to the Green’s function. This is
precisely the form of spectral function expected in a Fermi liquid (7.8), with a sharp quasiparticle pole co-
existing with an incoherent backgroundAinc(k, ω). From the spectral decomposition (6.123), we can relate
Zk to the overlap between the bare particle and the dressed quasiparticle:

Zk = |〈q.ptclekσ|c†kσ|φ〉|2 “Quasiparticle weight”. (8.139)

8.5.1 Hartree-Fock Self-energy

The simplest example of the self-energy is the Hartree-Fockself energy, given by the two diagrams

ΣHF(p, ω) = +

= i
∫

p′

{
−(2S + 1)Vq=0 + Vp−p′

} ∫ dω
2π

G0(k)eiω0+ (8.140)

Here we see a case where we must include a convergence factor,associated with the normal ordering of the
operators inside the interaction. Identifying

∫
dωG0(k)eiω0+ = 2πi fp′ , we obtain

ΣHF(p) =
∫

d3p′

(2π)3

[
(2S + 1)Vq=0 − Vp−p′

]
f (ǫp′) (8.141)

The first term describes a simple shift in the energy due to theinteraction with the uniform density of particles,
the second term describes the effect of the exchange hole (Fig. 8.2) which lowers the density of fermions
around propagating particle. In the Hartree-Fock approximation, the electron acquires a renormalized energy

ǫ∗p = ǫp + ΣHF(p) (8.142)

but since the Hartree-Fock self-energy is completely static, in this approximation, the quasiparticle has an
infinite lifetime and the renormalized propagator is

G(p) =
1

ω − ǫ∗p
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The dispersion and the quasiparticle mass are renormalizedby the interaction. Now in general, the effect of
the Hartree-Fock self energy will also shift the chemical potential, changing the Fermi momentum to a new
value p∗F . We can improve the Hartree Fock solution by self-consistently feeding the renormalized Greens
function back into the Hartree Fock self energy, as follows

ΣHF(p) = + (8.143)

The use of this kind of “self-consistent” approximation is common in many body physics. If we expand the
double lines in the self-energies, we see that we are in effect, resumming an entire class of nested self-energy
diagrams, for example,

= + + + . . . (8.144)

In Hartree Fock theory, effect of this change is simply to renormalize the Fermi functions used in evaluating
the self-energy, so that nowfp = f (ǫ∗p) reflects the quasiparticle Fermi momentump∗F , so that

ΣHF(p) =
∫

d3p′

(2π)3

[
(2S + 1)Vq=0 − Vp−p′

]
f (ǫ∗p′) (8.145)

We can now relate the quasiparticle mass to the interaction.Suppose we write

p
m∗
= ∇pǫ

∗
p =

[ p
m
+ ∇pΣHF(p)

]
(8.146)

then integrating by parts,

∇pΣHF(p) = −
∫

p′
∇pVp−p′ fp′ = +

∫

p′
∇p′Vp−p′ fp′ = −

∫

p′
Vp−p′∇p′ fp′ (8.147)

Now sincefp = f (ǫ∗p), ∇p fp = ∇pǫ
∗
p (∂ f /∂ǫ∗) = − p

m∗ δ(ǫ
∗
p), we then obtain

∇pΣHF(p) =
∫

p′
Vp−p′

(
p′

m∗

)
δ(ǫ∗p)

=
pF

m∗

∫

p′
Vp−p′(p̂′ · p̂)δ(ǫ∗p) =

(pF

m∗

) N∗(0)
2

∫
dΩp′

4π
Vp−p′cosθp,p′ (8.148)

whereN∗(0) = m∗p∗F/(π
2
~

3), is the renormalized (quasiparticle) density of states. To make contact with
Landau Fermi liquid theory, we write

∇pΣHF(p) = −pF

m∗
Fs

1

where

Fs
1 = N∗(0)

∫
dΩp̂′

4π

(
−

Vp−p′

2

)
cos(θp,p′). (8.149)
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This is the dipole (l = 1) Landau parameter expected in Hartree-Fock theory, wherethe quasiparticle interac-
tion is given by fpσ,pσ′ = Vq=0 − Vp−p′δσσ′ , so thatf s

p,p′ = Vq=0 − 1
2Vp−p′ (see eq. (7.47). Combining (8.146)

and (8.148), we then obtain
p
m∗

(1+ Fs
1) =

p
m

(8.150)

so that the renormalized mass is given by

m∗

m
= 1+ Fs

1 (8.151)

Formally, this result is the same as that derived in Landau Fermi liquid theory (section 7.4.2), using the
Hartree-Fock approximation to the quasiparticle interaction (7.47 )

f s
pp′ = Vq=0 − Vp−p′ . (8.152)

However, a more realistic theory would take into account thescreening and modification of the interactions
by the medium, a subject which we touch on at the end of this chapter.

8.6 Response functions

One of the most valuable applications of Feynman diagrams, is to evaluate response functions. Suppose we
couple the interacting system up to an external source field,

H(t) = Ho + Hs(t) (8.153)

where

Hs(t) = −A(t) f (t) (8.154)

involves the coupling of an external force to a variable of the system. Examples would include

Hs(t) = −µB

∫
d3x~σ(x) · B(x, t), External magnetic field

Hs(t) = −
∫

d3xρ(x)Φ(x, t) External potential (8.155)

In each case, the system will respond by a change in the variable A(t). To calculate this change, we use the
interaction representation ofH(t) , so that

AH(t) = U†(t)AI (t)U(t) (8.156)

where, from chapter 7,

U(t) = T exp

[
−i

∫ t

−∞
Hs(t

′)dt′
]

(8.157)

We shall now drop the subscriptI , becauseAI (t) = A(t) also corresponds to the Heisenberg representation of
Ho. Expanding (8.156) to linear order inHs, we obtain

AH(t) = A(t) − i
∫ t

−∞
[A(t),Hs(t

′)]dt′ +O(H2
s) (8.158)
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Finally, taking expectation values, we obtain

〈AH(t)〉 = 〈φ|A(t)|φ〉 − i
∫ t

−∞
〈φ|[A(t),Hs(t

′)]|φ〉dt′ (8.159)

But if A is zero in the absence of the applied force, i.e.〈φ|A(t)|φ〉 = 0, then the linear response of the system
is given by

〈AH(t)〉 =
∫ ∞

−∞
dt′χ(t − t′) f (t′)dt′ (8.160)

where

χ(t − t′) = i〈φ|[A(t),A(t′)]|φ〉θ(t − t′) (8.161)

is called the “dynamical susceptibility” andA(t) is in the Heisenberg representation of the unperturbed system.
Now in diagramatic perturbation theory, we are able to evaluate time-ordered Green functions, such as

χT(1− 2) = (−i)2〈φ|T A(1)A(2)|φ〉. (8.162)

Here, the prefactor (−i)2 has been inserted because almost invariably,A is a bilinear of the quantum field, so
thatχT is a two-particle Greens function. Fortunately, there is a very deep link between the dissipative re-
sponse function, and the fluctuations associaed with a correlation function, called the “fluctuation-dissipation”
theorem. The Fourier transforms ofR andG are both governed by precisely the same many-body excitations,
with precisely the same spectral functions, with one small difference: in the complex structure ofχ(ω), all
the poles lie just below the real axis, guaranteeing a retarded response. By contrast, inχT(ω), the positive and
negative energy poles give rise to retarded, and advanced responses, respectively. The spectral decomposition
of these functions are found to be

χ(ω) =
∑

λ

2|Mλ|2ωλ
ω2
λ − (ω + iδ)2

χT(ω) = i
∑

λ

2|Mλ|2ωλ
(ωλ − iδ)2 − ω2

(8.163)

whereMλ = 〈λ|A|φ〉 is the matrix element between the ground-state and the excited stateλ andωλ = Eλ − Eg

is the excitation energy. In this way, the response functioncan be simply related to the time-ordered response
at a small imaginary frequency:

χ(ω) = −iχT(ω + iδ) (8.164)

We can obtain the Feynman rules for the time-ordered correlation function, by introducing a source termHs

and calculating the S-matrixS[ f ]. In this case,

δ2

δ f (1)δ f (2)
lnS[ f ] = −〈φ|T[A(1)A(2)]|φ〉 = χT(1− 2) ≡ 1

����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������

2 (8.165)
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Diagramatically, the time-ordered correlation function for the quantity A, is given by

χT(ω) =
∑
{diagrams formed by connecting two ”A” vertices together.} (8.166)

as summarized in Table 8.3.

Table 8.3 Table. 8.3 Relationship With Physical Quantities

∆E iV
∑{linked clusters} iV

 + + . . .



lnS VT
∑{linked clusters} VT

 + + . . .



2
−i〈Tψ(2)ψ†(1)〉

1
∑{Two leg diagrams}

+ + +

(−i)n〈Tψ(1) . . . ψ†(2n)〉 ∑{2n- leg diagrams}

G n = 2
− + +

Response Functions

(−i)2〈ψ|T[A(2)B(1)]|ψ〉 = χT
AB

A(2) B(1)

χAB = −iχT
AB(ω − iδ) −i × + + . . .

i〈[A(2), B(1)]〉θ(t1 − t2) = χAB

8.6.1 Magnetic susceptibility of non-interacting electron gas

One of the fundamental qualities of an fermi liquid, is its non-local response to an applied field. Suppose for
example, one introduces a localized “delta-function” disturbance in the magnetic field,δBz(x) = Bδ3(x). Since
the fermions have a characteristic wave vector of orderkF , this local disturbance will “heal” over a length-
scale of orderl ∼ 1/kF . Indeed, since the maximum wavevector for low-energy particle-hole excitations is
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sharply cut-off at 2kF , the response produces oscillations in the spin density with a wavelengthλ = 2π/kF

that decay gradually from the site of the disturbance. Theseoscillations are called “Friedel Oscillations”
(Fig. 8.5). In the case of the example just cited, the change in the spin density in response to the shift in the
chemical potential is given by

δM(~x) = χs(~x)B (8.167)

where

χs(~x) =
∫

q
χ(q, ω = 0)ei~q·~x (8.168)

is the Fourier transform of the dynamical spin susceptibility. We shall now calculate this quantity as an
example of the application of Feynman diagrams.

From the interaction in (8.155 ) the magnetization is given by

~M(x) =
∫

d4x′χ(x− x′)~B(x′) (8.169)

where

χ
ab

(x) = i〈φ|[σa(x), σb(0)]|φ〉θ(t) (8.170)

The electron fluid mediates this non-local response. If we Fourier transform this expression, then~M(q) =
χ(q)~B(q), where (in a relativistic short-hand)

χab(q) = iµ2
B

∫
d4x〈φ|[σa(x), σb(0)]|φ〉θ(t)e−iq·x (8.171)

We can relateχab(~q, ν) = −iχT
ab(~q, ν + iδ) where the time ordered Greens function is given by

χT
ab(q) = µ2

B

k+q

k

bσ σa

= −µ2
B

∫

k

dω
2π

2δabG(k+q)G(k)︷                        ︸︸                        ︷
Tr

[
σaG(k+ q)σbG(k)

]
= δabχ

T(q). (8.172)

The susceptibilityχT(q) is then

χT(q) = −2µ2
B

∫

k

dω
2π

[
1

ω + ν − ǫ̃k+q

1
ω − ǫ̃k

]
(8.173)

where we have invoked the notation ˜ǫk = ǫk − iδsgn(ǫk). The term inside the square brackets has two poles at
ω = ǫ̃k and atω = ǫ̃k+q − ν,

∫

ω

=

∫
dω
2π

1
(ǫ̃k+q − ǫ̃k) − ν

[
1

ω + ν − ǫk+q + iδk+q
− 1
ω − ǫk + iδk

]

We may carry out the frequency integral by completing the contour in the upper half plane. Each Green
function gives a contribution 2πi × fermi function, so that

χT(q) = −2iµ2
B

∫

k

fk+q − fk
(ǫ̃k+q − ǫ̃k) − ν (8.174)

so that the dynamic susceptibilityχ(q, ν) = −iχT(q, ν + iδ) is given by
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Bδ3(x)

tFig. 8.5 “Friedel oscillations in the spin density, in response to a delta-function disturbance in
the magnetic field at the origin.These oscillations may be calculated from the Fourier
transform of the Lindhard function.

χ(q, ν + iδ) = 2µ2
B

∫

k

fk+q − fk
ν − (ǫk+q − ǫk) + iδ

dynamic spin susceptibility (8.175)

There are a number of important pieces of physics encoded in the above expression that deserve special dis-
cussion:

• Spin Conservation. The total spin of the system is conserved, so that the application of a strictly uniform
magnetic field to the fluid can not change the total magnetization. Indeed, in keeping with this expecta-
tion, if we take~q→ 0 we find lim~q→0 χ(~q, ν) = 0.

• Static susceptibility. When we take the limitν → 0, we obtain the magnetization response to a spatially
varying magnetic field. The static susceptibility is given by

χ(q) = 2µ2
B

∫

k

fk − fk+q

(ǫk+q − ǫk)
. (8.176)

This response is finite, because the spins can always redistribute themselves in response to a non-uniform
field. When we take the wavelength of the applied field to infinity, i.e q → 0, we recover the Pauli
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(
q

2kF

)

q/(2kF )

tFig. 8.6 “The Lindhard function”. The Fourier transform of this function governs the magnetic
response of a non-interacting metal to an applied field. Notice the weak singularity
around q/(2kF) = 1 that results from the match between the Fermi surface, and the
wavevector of the magnetic response.

susceptibililty

χ→ 2µ2
B

∫

k

(
−d f(ǫ)

dǫ

)
= 2µ2

B

∫

k
δ(ǫk) = 2µ2

BN(0), (8.177)

whereN(0) = mkF

2π2 is the density of states per spin. The detailed momentum-dependent static suscepti-
bility can be calculated (see below), and is given by

χ(q) = 2µ2
BN(0)F(

q
2kF

)

F(x) =
1
4x

(1− x2)ln
∣∣∣∣∣
1+ x
1− x

∣∣∣∣∣ +
1
2

(8.178)

The functionF(x) is known as the Lindhard function[4]: it has the property that F(0) = 1, while F′(x)
has a weak logarithmic singularity at|x| = 1.

• Dissipation and the imaginary part of the susceptibility. The full dynamic spin susceptibility has both a real
and an imaginary part, given by

χ(q, ν) = χ′(q, ν) + iχ′′(q, ν).

where the imaginary part determines the dissipative part ofthe magnetic response. The dissipation arises
because an applied magnetic field generates a cloud of electron hole pairs which carry away the energy.
If we use the Dirac-Cauchy relation 1/(x+ iδ) = P(1/x) − iπδ(x) in (8.175 ), we obtain

χ′′(q, ν) = 2µ2
B

∫

k
πδ[ν − (ǫk+q − ǫk)]( fk − fk+q), (8.179)

This quantity defines the density of states of particle-holeexcitations. The excitation energy of a particle
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χ
′′(q, ν)

ν/(4ǫF )

q/(2kF )
2

1

2

0 1

F

q ~ 0

q ~ 2k

tFig. 8.7 Density plot of the imaginary part of the dynamical spin susceptibility, calculated from
(8.185) showing the band of width 2kF that spreads up to higher energies. Excitations
on the left side of the band correspond to low momentum transfer excitations of
electrons from just beneath the Fermi surface to just above the Fermi surface.
Excitations on the right hand side of the band correspond to high momentum transfer
processes, right across the Fermi surface.

hole pair is given by

ǫk+q − ǫk =
q2

2m
+

qk
m

cosθ

whereθ is the angle betweenk andq. This quantity is largest whenθ = 0, k = kF and smallest when
θ = π, k = kF so that

q2

2m
+

qkF

m
> ν >

q2

2m
− qkF

m

defines a band of allowed wavevectors where the particle-hole density of states is finite, as shown in
Figure 8.7. Outside this region,χo(q, ν) is purely real.

8.6.2 Derivation of Lindhard Function

The dynamic spin-susceptibility

χ(q, ν) = 2µ2
B

∫

k

fk − fk+q

(ǫk+q − ǫk − ν)
. (8.180)

can be rewritten as

χ(q, ν) = 2µ2
B

∫

k
fk

[
1

(ǫk+q − ǫk − ν)
+

1
(ǫk−q − ǫk + ν)

]
(8.181)
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Written out explicity, this is

χ(q, ν) = 2µ2
B

∫ kF

0

k2dk
2π2

∫ 1

−1

dcosθ
2

[
1

(ǫk+q − ǫk − ν)
+ ((ν, q)→ −(ν, q))

]
.

By replacingǫk → k2

2m − µ rescalingx = k/kF , q̃ = q/(2kF) and ν̃ = ν/(4ǫF), we obtainχ(q, ν) =
2µ2

BN(0)F (q̃, ν̃), where

F (q̃, ν̃) =
1
4q̃

∫ 1

0
x2dx

∫ 1

−1
dc


1

xc+ q̃− ν̃
q̃

+ (ν→ −ν)
 (8.182)

is the “Lindhard Function”. Carrying out the integral over angle, we obtain

F (q̃, ν̃) =
1
4q̃

∫ 1

0
xdx

ln

q̃− ν̃

q̃ + x

q̃− ν̃
q̃ − x

 + (ν̃→ −ν̃)


=
1
8q̃



1−
(
q̃− ν̃

q̃

)2 ln


q̃− ν̃

q̃ + 1

q̃− ν̃
q̃ − 1

 + (ν̃→ −ν̃)
 +

1
2

(8.183)

This function is known as the Lindhard function. Its static limit, F(q̃) = F (q̃, ν̃ = 0),

F(q̃) =
1
4q̃

([
1− q̃2

]
ln

∣∣∣∣∣
q̃+ 1
q̃− 1

∣∣∣∣∣
)
+

1
2

(8.184)

has the property thatF(0) = 1, and thatdF/dx is singular atx = 1 as shown in Fig. 8.6. The imaginary part
of χ(q, ν + iδ) is given

χ′′(q, ν) = 2µ2
BN(0)× π

8q̃



1−
[
q̃− ν̃

q̃

]2 θ
1−

[
q̃− ν̃

q̃

]2 − (ν→ −ν)
 (8.185)

which is plotted in Fig. 8.7.

8.7 The RPA (Large-N) electron gas

Although the Feynman diagram approach gives us a way to generate all perturbative corrections, we still need
a way to selecting the physically important diagrams. In general, as we have seen from the last examples, it
is important to resum particular classes of diagrams to obtain a physical result. What principles can be used
to select classes of diagrams?

Frequently however, there is no obvious choice of small parameter, in which case, one needs an alternative
strategy. For example, in the electron gas, we could select diagrams according to the power ofrs entering
the diagram. This would give us a high-density expansion of the properties - but what if we would like to
examine a low density electron gas in a controlled way?

One way to select Feynman diagrams in a system with no naturalsmall parameter is to take the so-called
“large-N” limit. This involves generalizing some internaldegree of freedom so that it hasN components.
Examples include:

• The Hydrogen atom in N-dimensions.
• The electron gas withN = 2S + 1 spin components.
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• Spin systems, with spinS in the limit thatS becomes large.

• Quantum Chromodynamics, with N, rather than three colours.

In each of these cases, the limitN → ∞ corresponds to a new kind of semiclassical limit, where certain
variables cease to undergo quantum fluctuations. The parameter 1/N plays the role of an effective~

1
N
∼ ~ (8.186)

This does not however mean that quantum effects have been lost, merely that their macroscopic consequences
can be lumped into certain semi-classical variables.

We shall now examine the second of these two examples. The idea is to take an interacting Fermi gas where
each fermion hasN = 2S + 1 possible spin components. The interacting Hamiltonian isstill written

H =
∑

k,σ

ǫkc†kσckσ +
1
2

∑
Vqc†k+qσc†k′−qσ′ck′σ′ckσ (8.187)

but now, the spin summations run overN = 2S + 1 values, rather than just two. AsN is made very large, it
is important that both the kinetic and the interaction energy scale extensively withN, and for this reason, the
original interactionVq is rescaled, writing

Vq =
1
N
Vq (8.188)

where it is understood that asN → ∞, V is to be kept fixed. The idea is to now calculate quantities as an
expansion in powers of 1/N, and at the end of the calculation, to giveN the value of specific interest, in our
case,N = 2. For example, if we are interested in a Coulomb gas of spin 1/2 electrons, then study the family
of problems where

Vq =
1
N

ẽ2

q2
=
Vq

N
(8.189)

andẽ2 = 2e2/ǫ0. At the end, we setN = 2, boldly hoping that the key features of the solution aroundN = 2
will be shared by the entire family of models. In practice, this only holds true if the density of electron gas is
large high enough to avoid instabilities, such as the formation of the Wigner crystal. For historical reasons,
the approxation that appears in the largeN limit is called the “Random Phase approximation” or “RPA” for
short, a method developed during the 1950s. The early version of the RPA approximation was developed by
Bohm and Pines[5] while its reformulation in a diagrammaticlanguage was later given by Hubbard[6].2 The
largeN treatment of the electron gas recovers the RPA electron gas in a controlled approximation.

With the above substitution, the Feynman rules are unchanged, excepting that now we associate a factor
1/N with each interaction vertex. Before we start however, there are a few few preliminaries, in particular,
we need to know how to handle long range Coulomb interactions. We’ll begin considering a generalṼq with
a finite interaction range. To be concrete, we can consider a screened Coulomb interaction

Vq =
ẽ2

q2 + δ2
(8.190)

where we takeδ→ 0 at the end of the calculation to deal with the infinite range interaction.

2 A more detailed discussion of this early history can be found in the book by Nozìeres and Pines[7]
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8.7.1 Jellium: introducing an inert positive background.

To deal with long-range Coulomb interactions (and takeδ → 0 in the above interaction (8.190)), we will
need to make sure that the charge of the entire system is actually neutral. The resulting medium is a radically
simplified version of matter that is playfully refered to as “jellium” (a term first introduced by John Bardeen).
In jellium, there is an inert and completely uniform background of positive charges, with charge+|e| and
number densityρ+(x) = ρ+ adjusted so thatρ+ = ρe, the density of electrons. The the Coulomb interaction
Hamiltonian of jellium takes the form

HI =
1
2

∫

~x,~y
V(x− y) : (ρ̂(x) − ρ+)(ρ̂(y) − ρ+) :=

1
2

∫

~x,~y
V(x− y) : δρ(x)δρ(y) : (8.191)

whereρ̂(x) is the density of electrons andδρ(x) = ρ̂(x) − ρ+ is the fluctuation of the density. We see that the
Coulomb energy of jellium is only sensitive to the fluctuations in the density. The presence of the background
charge has the the effect of upwardly shifting the chemical potential of the electrons by an amount

∆µ =

∫
V(x− x′)ρ+(x

′) = Vq=0ρ+ (8.192)

This chemical potential shift can be treated as a scatteringpotential that is diagonal in momentum,∆Vk,k′ =

−∆µδk,k′ , which introduces an additional uniform potential scattering term into the electron self energy

k k
= −∆µ = −Vq=0ρ+. (8.193)

If we compare this term with the the “tadpole” diagrams in theself-energy

= −i(2S + 1)Vq=0

∫

k
G(k) = Vq=0ρe. (8.194)

we see that when we combine the terms, providedρe = ρ+, they cancel one-another.

+ = Vq(ρe − ρ+) = 0. (8.195)

Thus by introducing a uniform positively charged background, we entirely remove the tadpole insertions.
Let us now examine how the fermions interact in this large-N fermi gas. We can expand the effective

interaction as follows

iVe f f(q)
=

iVq

N

+

iVq

N

χ

iVq

N

+

iVq

N
χ

iVq

N

χ

iVq

N

+ . . .

(8.196)

The ”self-energy” diagram for the interaction line is called a ”polarization bubble”, and has the following
diagramatic expansion.

=

O(N) O(1) O(1) O(1/N)

+ + + +  ...χ = iNχ(q) (8.197)
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By summing the geometric series that appears in (8.196) we obtain

Ve f f =
1
N

V(q)
1+V(q)χ(q)

(8.198)

This modification of the interaction by the polarization of the medium is an example of “screening”. In the
large-N limit, the higher-order Feynman diagrams forχ(q) are smaller by factors of 1/N, so in the large-N
limit, these terms can be neglected giving

iχ(q)N = iχ0(q)N +O(1) = +O(1) (8.199)

The large N approximation where we replaceχ(q)→ χ0(q) is also called the “RPA appoximation”.
In the case of a Coulomb interaction, the screened interaction becomes

Ve f f(q, ν) =
1
N

ẽ2

q2ǫRPA(q, ν)
(8.200)

where we have identified the quantity

ǫRPA(q, ω) = 1+V(q)χ(q) = 1+
ẽ2

q2
χo(q) (8.201)

as the dielectric function of the charged medium. Notice how, in the interacting medium, the interaction be-
tween the fermions has become frequency dependent, indicating that the interactions between the particles are
nowretarded. From our previous study of the Lindhard function, we showedthatχo(q) = N(0)F (q/(2kF)), ν/(4ǫF))
whereF is the dimensionless Lindhard function andN(0) = mkF

2π2~2 is the density of states per spin at the Fermi
surface, so we may write

ǫRPA(q, ω) = 1+ λ

(
F (q̃, ν̃)

q̃2

)
(8.202)

where the dimensionless coupling constant

λ =
ẽ2N(0)
(2kF)2

=
1
πkF
× e2m

4πǫ0~2
=

1
πkFaB

=

(
α

π

)
rs, (8.203)

hereaB is the Bohr radiusα =
(

4
9π

)1/3 ≈ 0.521 andrs = (αkFaB)−1 is the dimensionless electron separation
(see 8.105). Notice that the accuracy of the largeN expansion places no restriction on the size of the coupling
constantλ, which may take any value in the largeN limit. Summarizing,

ǫRPA(q, ω) = 1+
1

πkFaB

(
F (q̃, ν̃)

q̃2

)
(8.204)

Dielectric constant of the RPA electron gas

8.7.2 Screening and Plasma oscillations

At zero frequency and low momentum,F → 1, so the dielectric constant diverges:

ǫ = limq→0ǫ(q, ν = 0)→ ∞.
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Is this a failure of our theory?
In fact, no. The divergence of the uniform, static dielectric constant is a quintisential property of a metal.

Sinceǫ = ∞, no static electric fields penetrate a metal. Moreover, the electron charge is completely screened.
At smallq, the effective interaction is

Ve f f(q, ν) =
1
N

ẽ2

q2 + κ2
≡ e2

ǫ0(q2 + κ2)
, (N = 2) (8.205)

where

κ =
√

ẽ2N(o) =
√

2e2N(0)/ǫ0, (N = 2) (8.206)

can be identified as an inverse screening length.κ−1 is the “Thomas-Fermi” screening length of a classical
charge plasma. You can think of

escreening(q) =
e

ǫ(q,0)
− e∼ |e| κ2

q2 + κ2

(wheree = −|e|), as the Fourier transform of the screening charge around the electron. We can see that the
electron charge is fully screened at infinity, sinceescreening(q = 0) = +|e|. Note however, that there is still a
weak singularity in the susceptibility whenq ∼ 2kF , χ0(q ∼ 2kF ,0) ∼ (q − 2kF) ln(q − 2kF), which Fourier
transformed, gives rise to a long-rangeoscillatorycomponent to the interaction between the particles of the
form

Ve f f(r) ∝
cos 2kFr

r3
. (8.207)

This long-range oscillatory interaction is associated with Friedel oscillations.
A second, and related consequence of the screening is the emergence collective of plasma oscillations.

In the opposite limit of finite frequency, but low momentum, we may approximateχ0 by expanding it in
momentum, as follows

χo(q, ν) =
∫

k

fk+q − fk
ν − (ǫk+q − ǫk)

≈
∫

k

(q · vk)
ν − (q · vk)

(
d f(ǫ)

dǫ

)
(8.208)

wherevk = ∇kǫk is the group velocity. Expanding this to leading order in momentum gives

χo(q, ν) = −
∫

k

(q · vk)2

ν2

(
−d f(ǫ)

dǫ

)
= −

N(0)v2
F

3

(
q2

ν2

)
= −

( ñ
m

) (q2

ν2

)
, (8.209)

whereñ = n/N is the density of electrons per spin, so that the RPA dielectric function (8.201) is given by

ǫRPA(q, ν) = 1+
ẽ2

q2
χo(q, ω) = 1−

ω2
p

ν2
(8.210)

where

ω2
p =

ẽ2ñ
m
=

e2n
ǫ0m

(N = 2). (8.211)

is the plasma frequency. This zero in the dielectric function atω = ωp indicates the presence of collective
plasma oscillations in the medium at frequencyωp. At finite q, ωP(q) develops a, forming a collective mode.

It is instructive to examine the response of the electron gasto a time-dependent change in potential energy
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−δU(x, t) (corresponding to a change in energyH = −
∫
δU(x, t)ρ(x)) with Fourier transformδU(q). In a

non-interacting electron gas, the induced change in chargeis

δρe(q) = Nχ0(q)δU(q)

corresponding to the diagram

δρe(q) = −i δU(q) (8.212)

In the RPA electron gas, the change in the electron density induced by the applied potential produces its own
interaction, and the induced change in charge is given by

δρe(q) = −i

[
+ + + . . .

]
δU(q)

= N
[
χ0 + χ0(−Vχ0) + χ0(−Vχ0)2 + . . .

]
δU(q)

= N

[
χ0(q)

1+Vqχ0(q)

]
δU(q). (8.213)

So we see that the dynamical charge susceptibility is renormalized by interactions

χ(q) = N
χ0(q)
ǫRPA(q)

= N(0)

[
F (q̃, ν̃)

1+ αrs

π
F (q̃, ν̃)

]
, (q̃ = q/2kF , ν̃ = ν/4ǫF) (8.214)

whereF (q̃, ν̃) is given in (8.183) andN(0) = N × N(0) is the total density of states. The imaginary part of
the dynaical susceptibilityχ(q, ν − iδ) defines the spectrum of collective excitations of the RPA electron gas,
shown in in Fig. 8.8. Notice how the collective plasma mode issplit off above the particle-hole continuum.

Remarks:

• The appearance of this plasma mode depends on the singular, long-range nature of the Coulomb interaction.
It is rather interesting to reflect on what would have happened to the results of this section had we kept
the regulatingδ in the bare interactionVq (8.190) finite. In this case the plasma frequency would be
zero, while the dielectic constant would be finite. In other words, the appearance of the plasma mode,
and the screening of an infinite range interaction are intimately interwined. In fact, the plasma mode in
the Coulomb gas is an elementary example of a Higg’s particle- a finite mass excitation that results from
the screening of a long-range (gauge) interaction. We shalldiscuss this topic in more depth in section
(12.6.2).

8.7.3 The Bardeen Pines Interaction

One of the most famous applications of the RPA approach is thethe Bardeen-Pines theory[8] for the electron-
electron interaction. Whereas the treatment of “jellium” described so far treats the positive ionic background
as a rigid medium, the Bardeen Pines theory takes account of its finite compressibility. The ions immersed in
the electron sea are thousands of times more massive than thesurrounding electrons, so their motions are far
more sluggish. In particular, The ionic plasma frequency isgiven by

Ω2
P =

(Ze)2nion

ǫ0M
=

Ze2n
ǫ0M

(8.215)
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ν/(4ǫF )

q/(2kF )

χ
′′(q, ν)

2

1

2

0 1

tFig. 8.8 Density plot of the imaginary part of the dynamical charge susceptibility
Im[χ0(q, ν)/ǫ(q, ν)] in the presence of the Coulomb interaction calculated for αrs

π
= 1,

(rs ∼ 6). using eq. (8.204) and eq. (8.183). Notice the split-off plasmon frequency
mode, and how the charge fluctuations have moved up to frequencies above the
plasma frequency.

where+Z|e|nion is the charge density of the background-ions andnion the corresponding ionic density. The
ionic plasma frequency is thousands of times smaller than the electronic plasma frequency. Note that the
expression on the right-hand side of (8.215) follows from the requirement of neutrality, which implies that
the electron density isZ times larger than the ionic density,|e|n = Z|e|nion = ρ+. The ionic plasma frequency
ΩP sets the characteristic frequency scale for charge fluctuations of the background ionic medium.

The charge polarizability of the combined electron-ion medium now contains two terms - an electron, plus
an ionic component. In its simplest version, the Bardeen Pines theory treats the positive ionic background as
a uniform plasma. In the RPA (largeN) approximation, the effective interaction is then

Ve f f =
1
N

V(q)
1+V(q)[χ0(q) + χion(q)]

≡ 1
N
V(q)
ǫ(q)

(8.216)

where,

(8.217)

i[χ0(q) + χion(q)]N = + (8.218)

(8.219)

is the sum of the non-interacting RPA polarizeabilities of the electron and ionic plasmas, where the dashed
lines represent the ionic propagators. For frequencies relevant for electron-electron interactions, we can ap-
proximate the electron component of the polarizeability bythe low-frequency screening form

V(q)χ0(q) ∼ κ2

q2
. (8.220)

By contrast, the large ratio of the ionic to electron masses guarantees that the ionic part of the polarizeability
is described by its high frequency, lowq plasma approximation (8.209), which for the ions

V(q)χion(q) ∼ −
Ω2

P

ν2
. (8.221)
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With these approximations, the combined dielectric constant is then given by

ǫ(q) = 1+
κ2

q2
−
Ω2

P

ν2
. (8.222)

Substituting this dielectric constant into (8.216), the effective interaction is then given by

Ve f f(q) =
ẽ2

Nǫ(q)q2
=

1
N

ẽ2

(q2 + κ2 −Ω2
P(q2/ν2))

(8.223)

which we can separate into the form

Ve f f(q) =
ẽ2

N

[
1

q2 + κ2

] 1+
Ω2

P
q2

ν2

q2 + κ2 −Ω2
P

q2

ν2



=
ẽ2

N

[
1

q2 + κ2

] 1+
ω2

q/ν
2

1− ω2
q/ν

2

 (8.224)

where

ω2
q = Ω

2
P

q2

q2 + κ2
(8.225)

is a renormalized plasma frequency. Replacing ˜e2→ (2)(e2/ǫ0) and settingN = 2 we obtain

Ve f f(q, ν) =
[

e2

ǫ0(q2 + κ2)

] 1+
ω2

q

ν2 − ω2
q

 (8.226)

Bardeen Pines interaction

Remarks:

• We see that the electron-electron interaction inside the jellium plasma has split into terms: a repulsive and
instantaneous (i.e frequency independent) screened Coulomb interaction, plus a retarded (i.e frequency
dependent) electron-phonon interaction.

Ve f f(q, ν) =
[

e2

ǫ0(q2 + κ2)

]

︸          ︷︷          ︸
screened Coulomb

+

retarded electron phonon interaction︷                      ︸︸                      ︷[
e2

ǫ0(q2 + κ2)

]
ω2

q

ν2 − ω2
q

(8.227)

It is the retarded attractive interaction produced by the second term that is responsible for Cooper pairing
in conventional superconductors (see Ex 8.7 and [9])

• The plasma frequency(8.225) is renormalized by the interaction of the positive jellium with the electron
sea, to form a dispersing mode with a linear dispersionωq = cqat low frequencies, where

c =
ΩP

κ
(8.228)
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Now by (8.206),

κ2 =
e2

ǫ0
N(0) =

e2

ǫ0

(
3n
2ǫF

)
=

(
ne2

ǫ0m

)
3

v2
F

= 3
ω2

p

v2
F

(8.229)

whereωP is the electron plasma frequency, so that the sound velocitypredicted by the Bardeen Pines
theory is

c =
vF√

3

(
ΩP

ωp

)
=

√
Z
3

( m
M

) 1
2

vF , (8.230)

a form for the sound-velocity first derived by Bohm and Staver[10], which remarkably, agrees within
a factor of two with the experimental sound-velocity for a wide range of metals [8]. In this way, the
Bardeen Pines theory is able to account for the emergence of longitudinal phonons inside matter as a
consequence of the interaction between the plasma modes of the ions and the electron sea.

• The Bardeen Pines interaction can be used to formulate an effective Hamiltonian for the low-energy physics
of Jellium, known as the Bardeen Pines Hamiltonian:

HBP =
∑

kσ

ǫkc†kσckσ +
1
2

∑

k,k′
Ve f f(q, ǫk − ǫk′ )c†k−qσc†k′+qσ′ck′σ′ckσ (8.231)

Bardeen Pines Hamiltonian

The Bardeen Pines model Hamiltonian is the predecessor of the BCS model, and it demonstrates that
while the intrinsic electron-electron interaction is repulsive, “overscreening” by the lattice, causes it to
develop a retarded attractive component. (See Ex 8.7)

8.7.4 Zero point energy of the RPA electron gas.

Let us now examine the linked cluster expansion of the ground-state energy. Without the tadpole insertions,
the only non-zero diagrams are then:

∆E
V
=


+ + + +...

O(1)



+


+ +...

O(1/N)

 +


2O(1/N  )

+...

+ . . . ...


(8.232)

These diagrams are derived from the zero the zero-point fluctuations in charge density, which modify the
ground-state energyE→ Eo + Ezp. We shall select the leading contribution

Ezp

V
= + + + +...

O(1)

(8.233)
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Now thenthdiagram in this series has a symmetry factorp = 2n, and a contribution (−χo(q)V(q))n associated
with then polarization bubbles and interaction lines. The energy perunit volume associated with this series
of diagrams is thus

Ezp = i
∞∑

n=1

1
2n

∫
d4q

(2π)4
(−χo(q)V(q))n. (8.234)

By interchanging the sum and the integral, we see that we obtain a series of the form
∑

n
(−x)n

n = −ln(1+ x),
so that the zero-point correction to the ground-state energy is

Ezp = −i
1
2

∫
d4q

(2π)4
ln[1 +Vqχo(q)]

Now the logarithm has a branch cut just below the real axis, for positive frequency, but just above the real
axis for negative frequency. If we carry out the frequency integral by completing the contour in the lower half
plane, we can distort the contour integral around the branchcut at positive frequency, to obtain

Ezp = −
i
2

∫

q

∫ ∞

0

dω
2π

[
ln[1 + χo(q, ν + iδ)Vq] − ln[1 + χo(q, ν − iδ)Vq]

]

=
1
2

∫

q

∫ ∞

0

dω
π

arctan

( Vqχ
′′(q, ν)

[1 +Vqχ′(q, ν)]

)
(8.235)

If we associate a “phase shift”

δ(q, ω) = arctan

( Vqχ
′′(q, ν)

[1 +Vqχ′(q, ν)]

)
(8.236)

then we can the zero-point fluctuation energy can also be written in the form

∆Ezp =

∫
d3q

(2π)3

∫ ∞

0
dωΛ(ω)

[
ω

2

]
(8.237)

where

Λ(ω) =
1
π

∂δ(q, ω)
∂ω

. (8.238)

We can interpretΛ(ω) as the “density of states” of charge fluctuations at an energy ω. When the interactions
are turned on, each charge fluctuation mode in the continuum experiences a scattering phase shiftδ(~q, ω)
which has the effect of changing the density of states of charge fluctuations.The zero-point energy describes
the change in the energy of the continuum due to these scattering effects.

Exercises

Exercise 8.1 The separation of electronsRein a Fermi gas is defined by

4πR3
e

3
= ρ−1

whereρ is the density of electrons. The dimensionless separationrs is defined asrs = Re/a where
a = c~2

me2 is the Bohr radius.
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(a) Show that the Fermi wavevector is given by

kF =
1

αrsa

whereα =
(

4
9π

) 1
3 ≈ 0.521.

(b) Consider an electron plasma where the background chargedensity precisely cancels the charge
density of the plasma. Show that the ground-state energy to leading order in the strength of the
Coulomb interaction is given by

E
ρV
=

3
5

RY

α2r2
s
− 3

2π
RY

αrs

=

(
2.21
r2

s
− 0.916

rS

)
RY (8.239)

whereRY =
~

2

2ma2 is the Rydberg energy. (Hint - in the electron gas with a constant charge back-
ground, the Hartree part of the energy vanishes. The Fock part is the second term in this expression.
You may find it useful to use the integral

∫ 1

0
dx

∫ 1

0
dyxyln | x+ y

x− y
| = 1

2

(c) In what limiting case can the interaction effects in a Coulomb gas be ignored relative the kinetic
energy?

Exercise 8.2 Consider a gas of particles with interaction

V̂ = 1/2
∑

~k~k′~qσσ′

Vqc†~k−~qσc†~k′+~qσ′c~k′σ′c~kσ

(a) Let |φ〉 represent a filled Fermi sea, i.e. the ground state of the non interacting problem. Use Wick’s
theorem to evaluate an expression for the expectation valueof the interaction energy〈φ|V̂|φ〉 in the
non-interacting ground state. Give a physical interpretation of the two terms that arise and draw the
corresponding Feynman diagrams.
(b) Suppose|φ̃〉 is the full ground-state of the interacting system. If we addthe the interaction energy
〈φ̃|V̂|φ̃〉 to the non-interacting ground-state energy, do we obtain the full ground-state energy? Please
explain your answer.
(c) Draw the Feynman diagrams corresponding to the second order corrections to the ground-state
energy. Without calculation, write out each diagram in terms of the electron propagators and interaction
Vq, being careful about minus signs and overall pre-factors.

Exercise 8.3 Consider a d-dimensional system of fermions with spin-degeneracyN = 2S+ 1, massmand
total densityNρ, whereρ is the density per spin component. The fermions attract one-another via the
two-body potential

V(r i − r j) = −αδ(d)(r i − r j), (α > 0) (8.240)

(a.) Calculate thetotalenergyper particle, ǫs(N, ρ) to first order inα.
(b.) Beyond some critical valueαc, the attraction between to the particles becomes so great that the gas
becomes unstable, and may collapse. Calculate the dependence ofαc on the density per spinρ. To what
extent do you expect the gas to collapse ind = 1,2,3 whenαc is exceeded?
(c.) In addition to the above two-body interaction nucleonsare also thought to interact via a repulsive
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three-body interaction. Write the three-body potentialV(r i , r j , r k) = βδ(d)(r i−r j)δ(d)(r j−r k), in second-
quantized form.
(d.) Use Feynman diagrams to calculate the ground-state energy per particle, ǫs(N, ρ) to leading order
in bothβ andα. How does your result compare with that obtained in (a) whenN = 2?
(e.) If we neglect Coulomb interactions, why is the caseN = 4 relevant to nuclear matter?

Exercise 8.4 (a. )Consider a system of fermions interacting via a momentum-dependent interactionV(q) =
1
N U(q), whereN = 2S + 1 is the spin degeneracy. WhenN is large, the interactions in this fluid can
be treated exactly. Draw the Feynman diagram expansion for the ground-state energy, identifying the
leading and subleading terms in the 1/N expansion.

(b) Certain classes of Feynman diagrams in the linked-cluster expansion of the ground-state energy
identically vanish. Which ones, and why?
(c.) If Nχ(o)(q) = 〈δρ(q)δρ(−q)〉o is the susceptibility of the non-interacting Fermi gas, i.e

= iNχ(o)(q), (8.241)

whereq = (q, ν), what is the effective interaction between the fermions in the largeN limit? Suppose
that in real space,U(r) = e2/r is a long-range Coulomb interaction, explain in detail whathappens to
the effective interaction at long-distances.

Exercise 8.5 Compute the rms quantum fluctuations∆ρ =
√
〈(ρ − ρo)2〉 in the charge density of the elec-

tron gas about its average density,ρo, in the large-N limit. Show that∆ρ/ρo ∼ O(1/N), so that the
density behaves as a semiclassical variable in the largeN limit.

Exercise 8.6 Show that the dynamical charge susceptibility of an interacting electron gas in the largeN
limit, defined by

χ(q, ν + iδ) =
∫

d3x
∫ ∞

0
i〈φ|[ρ(x, t), ρ(0,0)]|φ〉e−i(q·x−ωt) (8.242)

contains a pole at frequencies

ωq = ωp(1+
3
10

qvF) (8.243)

whereωp =
√

4πẽ2ñ/m is the Plasma frequency andvF = pF/m is the Fermi velocity.
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Exercise 8.7 Show that Bardeen Pines interaction (8.226) can be reformulated in terms of a screened
Coulomb and an electron phonon interaction given by (see [9])

HI =
1
2

∑

k,k′,qσσ′
Ve f f(q)c†k+qσc†k′−qσ′ck′σ′ckσ +

∑

k,q,σ

gq(b†q + b−q)c†k−qσckσ

gq =

(nion

M

) 1
2 ZqVe f f(q)

[
2ωq

] 1
2

(8.244)

where

Ve f f(q) =
e2

ǫ0(q2 + κ2)
(8.245)

is the screened Coulomb interaction and

ωq =
qΩP

[
q2 + κ2

] 1
2

=
q

[
q2 + κ2

] 1
2

(
(Ze)2nion

ǫ0M

)
(8.246)

is the phonon frequency.
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9
Finite Temperature Many Body

Physics

For most purposes in many body theory, we need to know how to include the effects of temperature. At first
sight, this might be thought to lead to undue extra complexity in the mathematics, for now we need to average
the quantum effects over an ensemble of states, weighted with the Boltzmannaverage

pλ =
e−βEλ

Z
(9.1)

It is here that some of the the most profound aspects of many body physics come to our aid.

Ground State T=0 p� = e��E�ZEnsemble of states at temperature T> 0

tFig. 9.1 At zero temperature, the properties of a system are determined by the ground-state.
At finite temperature, we must average the properties of the system over an ensemble
which includes the ground-state and excited states, averaged with the Boltzmann
probability weight e−βEλ

Z .

Remarkably, finite temperature Many Body physics is no more difficult than its zero temperature partner,
and in many ways, the formulation is easier to handle. The essential step that makes this possible is due to
the Japanese physicist Kubo, who noticed in the early fiftiesthat the quantum-mechanical partition function
can be regarded as a time-evolution operator inimaginary time:

ρ̂ ∝ e−βĤ = U(−i~β),

whereU(t) = e−i tH
~ is the time-evolution operator, and by convention, we writeH = H0 − µN to take into

account of the chemical potential. Kubo’s observation led him to realize that finite temperature many body
physics can be compactly reformulated using an imaginary, rather than a real time to time-evolve all states

it
~
−→ τ.

Kubo’s observation was picked up by Matsubara, who wrote down the first imaginary time formulation of
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finite temperature many body physics. In the imaginary time approach, the partition function of a quantum
system is simply the trace of the time-evolution operator, evaluated at imaginary timet = -i ~β,

Z= Tre− βH= TrU(−i~β),

whilst the expectation value of a quantityA in thermal equilibrium is given by

〈A〉 = Tr
[
U(−i~β)A

]

Tr
[
U(−i~β)

] ,

an expression reminiscent of the Gell-Mann Lowe formula excepting that now, the S-matrix is replaced by
time-evolution over thefinite interval t ∈ [

0,−i~β
]
: The imaginary time universe is of finite extent in the

time direction! We will see that physical quantities turn out to be periodic in imaginary time, over this finite
interval τ ∈ [0, ~β]. This can loosely understood as a consequence of the incoherence induced by thermal
fluctuations: thermal fluctuations lead to an uncertaintykBT in energies, so

τT =
~

kBT

represents a characteristic time of a thermal fluctuation. Processes of duration longer thanτT loose their phase
coherence, so coherent quantum processes are limited within a world of finite temporal extent,~β.�hkBT1

�1
T> 0

T=0

y

y

t

x

x

(a) τ

0
�hkBT

(b)

ψF (β) = −ψF (0)
ψB(β) = ψB(0)

tFig. 9.2 (a) Zero temperature field theory is carried out in a space that extends infinitely from
t = −∞ to t = ∞. (b) Finite temperature field theory is carried out in a space that
extends over a finite time, from τ = 0 to τ = ~β. Bosonic fields (ψB) are periodic over
this interval whereas Fermionic fields (ψF) are antiperiodic over this interval.

One of the most valuable aspects of finite temperature quantum mechanics, first explored by Kubo concerns
the intimate relationship between response functions and correlation functions in both real and imaginary
time, which are mathematically quantified via the “fluctuation dissipation theorem”.
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Quantum/thermal Fluctuations↔ Dynamic Response

“Fluctuation dissipation”

These relationships, first exploited in detail by Kubo, and now known as the “Kubo formalism”, enable us to
calculate correlation functions in imaginary time, and then, by analytically continuing the Fourier spectrum,
to obtain the real-time response and correlation functionsat a finite temperature.

Most theoretical many body physics is conducted in the imaginary time formalism, and theorists rarely
give the use of this wonderful method a moments use. It is probably fair to say that we do not understand the
deep reasons why the imaginary time formalism works. Feynman admits in his book on Statistical mechanics,
that he has sought, but not found a reason for why imaginary time and thermal equilibrium are so intimately
intertwined. In relativity, it turns out that thermal density matrices are always generated in the presence of an
event horizon, which excludes any transmission of information between the halves of the universe of different
sides of the horizon. It would seem that a complete understanding of imaginary time may be bound-up with
a more complete understanding of information theory and quantum mechanics than we currently possess.
What-ever the reason, it is a very pragmatic and beautiful approach, and it is this which motivates us to
explore it further!

9.1 Imaginary time

The key step in making the jump from zero temperature, to finite temperatures many body physics, is the
replacement

it
~
→ τ. (9.2)

With this single generalization, we can generalize almost everything we have done at zero temperature. In
zero temperature quantum mechanics, we introduced the ideaof the Schr̈odinger, Heisenberg and interaction
representations. We went on to introduce the concept of the Greens function, and developed a Feynman
diagram expansion of the S-matrix. We shall now repeat this exact procedure in imaginary time, reinterpreting
the various entities which appear in terms of finite temperature statistical mechanics. Table 1. summarizes the
key analogies between real time zero temperature, and imaginary time, finite temperature many body physics.
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Table. 9.0 The link between real and imaginary time formalisms.

Schr̈odinger eqn |ψs(t)〉 = e−itH |ψs(0)〉 |ψs(τ)〉 = e−τH |ψs(0)〉

Heisenberg rep Ah = eitH Ase−itH AH = eτHAse−τH

Interaction rep |ψI (t)〉 = e−itH0 |ψI (t)〉 |ψI (τ)〉 = e−τH0 |ψI (τ)〉

Perturbation Expansion S = 〈−∞|Te−i
∫

Vdt|∞〉 Z
Z0
= Tr

[
e−

∫ β

0
Vdτ

]

Wick’s Theorem  (1) y(2) = h0jT (1) y(2)j0i  (1) y(2) = hT (1) y(2)i
Green’s function Gλλ′ (t) = −i〈0|Tψλ(τ)ψ†λ′(0)|0〉 Gλλ′ (τ) = −〈Tψλ(τ)ψ†λ′ (0)〉

Feynman Diagrams
ln S = TV

∑
[linked clusters] =
−iT∆E

ln Z
Zo
= βV

∑
[linked clusters] = −β∆F

9.1.1 Representations

The imaginary time generalization of the Heisenberg and interaction representations precisely parallels the
development in real time, but there are some minor differences that require us to go through the details here.
After making the substitutiont → −iτ~, the real time Schr̈odinger equation

H|ψs〉 = i~
∂

∂t
|ψs〉, (9.3)

becomes

H|ψs〉 = −
∂

∂τ
|ψs〉. (9.4)

so the time-evolved wavefunction is given by

|ψs(τ)〉 = e−Hτ|ψs(0)〉. (9.5)

The Heisenberg representation removes all time-dependence from the wavefunction, so that|ψH〉 = |ψs(0)〉
and all time-evolution is transfered to the operators,

AH(τ) = eiH (−iτ)ASe−iH (−iτ) = eHτASe−Hτ. (9.6)
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so that the Heisenberg equation of motion becomes

∂AH

∂τ
= [H,AH]

If we apply this to the free particle Hamiltonian

H =
∑

ǫkc
†

kck

we obtain

∂ck

∂τ
= [H, ck] = −ǫkck

∂c†k
∂τ
= [H, c†k] = ǫkc

†
k (9.7)

so that
ck(τ) = e−ǫkτck

c†k(τ) = eǫkτc†k

}
(p.s c†k(τ) = (ck(−τ))† , (ck(τ))

† ). (9.8)

Notice a key difference to the real-time formalism: in the imaginary time Heisenberg representation, creation
and annihilation operator are no longer Hermitian conjugates.

We go on next, to develop the Interaction representation, which freezes time-evolution from the non-
interacting part of the HamiltonianH0, so that

|ψI (τ)〉 = eH0τ|ψs(τ)〉 = eH0τe−Hτ|ψH〉 = U(τ)|ψH〉

whereU(τ) = eH0τe−Hτ is the time evolution operator. The relationship between the Heisenberg and the
interaction representation of operators is given by

AH(τ) = eHτASe−Hτ = U−1(τ)AI (τ)U(τ)

In the interaction representation, states can be evolved between two times as follows

|ψI (τ1)〉 = U(τ1)U−1(τ2))|ψI (τ2)〉 = S(τ1, τ2)|ψI (τ2)〉

The equation of motion forU(τ) is given by

− ∂
∂τ

U(τ) = − ∂
∂τ

[
eHoτe−Hτ

]

= eHoτVe−Hτ

= eHoτVe−HoτU(τ)
= VI (τ)U(τ) (9.9)

and a similar equation applies toS(τ1, τ2),

− ∂
∂τ

S(τ1, τ2) = VI (τ1)S(τ1, τ2). (9.10)

These equations parallel those in real time, and following exactly analogous procedures, we deduce that the
imaginary time evolution operator in the interaction representation is given by a time-ordered exponential, as
follows

U(τ) = T exp

[
−

∫ τ

0
VI (τ)dτ

]

S(τ1, τ2) = T exp

[
−

∫ τ2

τ1

VI (τ)dτ

]
. (9.11)
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One of the immediate applications of these results, is to provide a perturbation expansion for the partition
function. We can relate the partition function to the time-evolution operator in the interaction representation
as follows

Z = Tr
[
e−βH

]
= Tr

[
e−βHoU(β)

]

=

Z0︷     ︸︸     ︷
Tr

[
e−βH0

]

〈U(β)〉0︷               ︸︸               ︷
Tr

[
e−βHoU(β)

]

Tr
[
e−βH0

]


= Z0〈U(β)〉0 (9.12)

enabling us to write the ratio of the interacting, to the non-interacting partition function as the expectation
value of the time-ordered exponential in the non-interacting system.

Z
Z0
= e−β∆F = 〈T exp

[
−

∫ β

0
VI (τ)dτ

]
〉 (9.13)

Notice how the logarithm of this expression gives the shift in Free energy resulting from interactions. The
perturbative expansion of this relation in powers ofV is basis for the finite temperature Feynman diagram
approach.

9.2 Imaginary Time Green Functions

The finite temperature Green function is defined to be

Gλλ′ (τ − τ′) = −〈Tψλ(τ)ψλ′†(τ′)〉 = −Tr
[
e−β(H−F)ψλ(τ)ψλ′

†(τ′)
]

(9.14)

whereψλ can be either a fermionic or bosonic field, evaluated in the Heisenberg representation,F = −T ln Z is
the Free energy. TheT inside the angle brackets the time-ordering operator. ProvidedH is time independent,
time-translational invariance insures thatG is solely a function of the time differenceτ − τ′. In most cases,
we will refer to situations where the quantum numberλ is conserved, which will permit us to write

Gλλ′ (τ) = δλλ′Gλ(τ).

For the case of continuous quantum numbersλ, such as momentum, it is convention to promote the quantum
number into the argument of the Green function, writingG(p, τ) rather thanGp(τ).

As an example, consider a non-interacting system with Hamiltonian

H =
∑

ǫλψ
†
λψλ, (9.15)

whereǫλ = Eλ−µ is the one-particle energy, shifted by the chemical potential. Here, the equal time expectation
value of the fields is

〈ψλ′†ψλ〉 = δλλ′
{

n(ǫλ) (Bosons)
f (ǫλ) (Fermions)

(9.16)
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where

n(ǫλ) =
1

eβǫλ − 1

f (ǫλ) =
1

eβǫλ + 1
(9.17)

are the Bose and Fermi functions respectively. Similarly,

〈ψλψ†λ′〉 = δλλ′ ± 〈ψλ′†ψλ〉 = δλλ′
{

1+ n(ǫλ) (Bosons)
1− f (ǫλ) (Fermions)

(9.18)

Using the time evolution of the operators,

ψλ(τ) = e−ǫλτψλ(0)
ψ†λ(τ) = eǫλτψ†λ(0) (9.19)

we deduce that

Gλλ′(τ − τ′) = −
[
θ(τ − τ′)〈ψλψ†λ′〉 + ζθ(τ′ − τ)〈ψ†λ′ψλ〉

]
e−ǫλ(τ−τ

′) (9.20)

where we have re-introducedζ = 1 for Bosons and−1 for fermions, from Chapter 8. If we now write
Gλλ′(τ − τ′) = δλλ′Gλ(τ − τ′), then

Gλ(τ) = −e−ǫλτ.

{
[(1+ n(ǫλ))θ(τ) + n(ǫλ)θ(−τ)] (Bosons)[
(1− f (ǫλ))θ(τ) − f (ǫλ)θ(−τ)

]
(Fermions)

(9.21)

There are several points to notice about this Green’s function:

• Apart from prefactors, at zero temperature the imaginary time Green’s functionGλ(τ) is equal to zero-
temperature Green’s functionGλ(t), evaluated at a timet = −iτ, Gλ(τ) = −iGλ(−iτ).

• If τ < 0 the Green function satisfies the relation

Gλλ′ (τ + β) = ζGλλ′(τ)

so that the bosonic Green function is periodic in imaginary time, while the fermionic Green function is
antiperiodic in imaginary time, with periodβ. (See Fig. 9.3).

tFig. 9.3 Showing (a) periodicity of bosonic Green’s function and antiperiodicity of (b) fermionic
Green’s function.
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9.2.1 Periodicity and Antiperiodicity

The (anti) periodicity observed in the last example is actually a general property of finite temperature Green
functions. To see this, take−β < τ < 0, then we can expand the Green function as follows

Gλλ′ (τ) = ζ〈ψ†λ′(0)ψλ(τ)〉
= ζTr

[
e−β(H−F)ψ†λ′e

τHψλe
−τH

]
(9.22)

Now we can use the periodicity of the trace Tr(AB) = Tr(BA) to cycle the operators on the left of the trace
over to the right of the trace, as follows

Gλλ′(τ) = ζTr
[
eτHψλe

−τHe−β(H−F)ψ†λ′
]

= ζTr
[
eβFeτHψλe

−(τ+β)Hψ†λ′
]

= ζTr
[
e−β(H−F)e(τ+β)Hψλe

−(τ+β)Hψ†λ′
]

= ζTr〈ψλ(τ + β)ψ†λ′(0)〉
= ζGλλ′(τ + β) (9.23)

This periodicity, or antiperiodicity was noted by Matsubara[1]. In the late 1950’s, Abrikosov, Gorkov and
Dzyalozinski[2] observed that we are in fact at liberty to extend the function outsideG(τ) outside the range
τ ∈ [−β, β] by assuming that this periodicity, or antiperiodicity extends indefinitely along the entire imaginary
time axis. In otherwords, there need be no constraint on the value ofτ in the periodic or antiperiodic boundary
conditions

Gλλ′(τ + β) = ±Gλλ′(τ)

With this observation, it becomes possible to carry out a Fourier expansion of the Green function in terms of
discrete, frequencies. Today we use the term coined by Abrikosov, Gorkov and Dzyaloshinskii, calling them
“Matsubara” frequencies[2].

9.2.2 Matsubara Representation

The Matsubara frequencies are defined as

νn = 2πnkBT (Boson)
ωn = π(2n+ 1)kBT (Fermion). (9.24)

where by convention,νn is reserved for Bosons andωn for fermions. These frequencies have the property that

eiνn(τ+β) = eiνnτ

eiωn(τ+β) = −eiωnτ (9.25)

The periodicity or antiperiodicity of the Green function isthen captured by expanding it as a linear sum of
these functions:

Gλλ′ (τ) =
{

T
∑

nGλλ′(iνn)e−iνnτ Boson
T

∑
nGλλ′ (iωn)e−iωnτ Fermion

(9.26)

and the inverse of these relations is given by

Gλλ′(iαn) =
∫ β

0
dτGλλ′(τ)eiαnτ, (αn =

{
Matsubara frequency

}
) (9.27)
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Free Fermions and Free Bosons

For example, let us use (9.27) to derive the propagator for non-interacting fermions or bosons withH =∑
ǫλψ

†
λψλ. For fermions, the Matsubara frequencies areiωn = π(2n+1)kBT so using the real time propagator(9.21),

we obtain

Gλ(iωn) = −
∫ β

0
dτe(iωn−ǫλ)τ

[1+e−βǫλ ]−1

︷       ︸︸       ︷
(1− f (ǫλ))

= − 1
iωn − ǫλ

−1︷           ︸︸           ︷
(e(iωn−ǫλ) − 1)

1+ e−βǫλ
(9.28)

so that

Gλ(iωn) =
1

iωn − ǫλ
Free Fermions (9.29)

In a similar way, for free Bosons, where the Matsubara frequencies areiνn = π2nkBT, using (9.27) and
(9.21), we obtain

Gλ(iνn) = −
∫ β

0
dτe(iνn−ǫλ)τ

[1−e−βǫλ ]−1

︷      ︸︸      ︷
(1+ n(ǫλ))

= − 1
iνn − ǫλ

−1︷          ︸︸          ︷
(e(iνn−ǫλ) − 1)

1− e−βǫλ
(9.30)

so that

Gλ(iνn) =
1

iνn − ǫλ
Free Bosons (9.31)

Remarks

• Notice how the finite temperature propagators (9.29) and (9.31) are essentially identical for free fermions
and bosons. All the information about the statistics is encoded in the Matsubara frequencies.

• With the replacementω → iωn the finite temperature propagator for Free fermions (9.29) is essentially
identical to the zero temperature propagator, but notice that the inconvenientiδsign(ǫλ) in the denomi-
nator has now disappeared.

Example 9.1: Calculate the finite temperature Green function

D(τ) = −〈T x(τ)x(0)〉 (9.32)
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and its corresponding propagator

D(iν) =
∫ β

0
eiνnτD(τ) (9.33)

for the simple harmonic oscillator

H = ~ω(b†b+
1
2

)

x =

√
~

2mω
(b+ b†) (9.34)

Solution:
Expanding the Green function in terms of the creation and annihilation operators, we have

D(τ) = − ~
2mω

〈T(b(τ) + b†(τ))(b(0)+ b†(0))〉

= − ~
2mω

(
〈Tb(τ)b†(0)〉 + 〈Tb†(τ)b(0)〉

)
, (9.35)

where terms involving two creation or two annihilation operators vanish. Nowusing the derivations that
led to (9.21 )

−〈Tb(τ)b†(0)〉 = G(τ) = −[(1 + n(ω))θ(τ) + n(ω)θ(−τ)]e−ωτ. (9.36)

and

−〈Tb†(τ)b(0)〉 = −[n(ω)θ(τ) + (1+ n(ω))]eωτ

= [(1 + n(−ω))θ(τ) + n(−ω)θ(−τ)]eωτ. (9.37)

which corresponds to−G(τ) with the sign ofω inverted. With this observation,

D(τ) =
~

2mω
[G(τ) − {ω→ −ω}] . (9.38)

When we Fourier transform the first term inside the brackets, we obtain1
iνn−ω , so that

D(iνn) =
~

2mω

[
1

iνn − ω
− 1

iνn + ω

]

=
~

2mω

[
2ω

(iνn)2 − ω2

]
. (9.39)

This expression is identical to the corresponding zero temperature propagator, evaluated at frequency
z= iνn.

Example 9.2: Consider a system of non-interacting Fermions, described by the Hamiltonian H =∑
λ ǫλc

†
λcλ whereǫλ = Eλ − µ andEλ is the energy of a one-particle eigenstate andµ is the chemical

potential.
Show that the total number of particles in equilibrium is

N(µ) = T
∑
Gλ(iωn)e

iωnO+

whereGλ(iωn) = (iωn − ǫλ)−1 is the Matsubara propagator. Using the relationshipN = −∂F/∂µ show
that that Free energy is given by

F(T, µ) = −kBT
∑

λ,iωn

ln
[
−Gλ(iωn)

−1
]
eiωnO+ +C(T) (9.40)
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Solution: The number of particles in stateλ can be related to the equal time Green’s function as follows

Nλ = 〈c†λcλ〉 = −〈Tcλ(0
−)c†λ(0)〉 = Gλ(0−).

RewritingGλ(τ) = T
∑

iωn
Gλe−iωnτ, we obtain

N(µ) =
∑

λ

Nλ = T
∑

λ,iωn

Gλ(iωn)e
iωn0+

Now since−∂F/∂µ = N(µ), it follows that

F = −
∫ µ

dµN(µ) = −T
∑

λ,iωn

∫ µ

dµ
eiωnO+

iωn − Eλ + µ

= −T
∑

λ,iωn

ln [ǫλ − iωn] eiωnO+

= −T
∑

λ,iωn

ln
[
−Gλ(iωn)

−1
]
eiωnO+ +C(T). (9.41)

We shall shortly see thatC = 0 using Contour integral methods.
Example 9.3: Consider an electron gas where the spins are coupled to a magnetic field, so thatǫλ ≡
ǫk −µBσB. Write down an expression for the magnetization and by differentiating w.r.t the fieldB, show
that the temperature dependent magnetic susceptibility is given by

χ(T) =
∂M
∂B

∣∣∣∣∣
B=0
= −2µ2

BkBT
∑

k,iωn

G(k)2

whereG(k) ≡ G(k, iωn) is the Matsubara propagator.
Solution: The magnetization is given by

M = µB

∑

λ,σ

σ〈c†kσckσ〉 = µBT
∑

kσ,iωn

σGσ(k, iωn)e
iωn0+

Differentiating this w.r.t.B and then settingB = 0, we obtain

χ =
∂M
∂B

∣∣∣∣∣
B=0
= −µ2

BT
∑

kσiωn

σ2Gσ(k, iωn)
2

∣∣∣∣∣∣∣
B=0

= −2µ2
BkBT

∑

k,iωn

G(k)2 (9.42)

9.3 The contour integral method

In practice, we shall do almost all of our finite temperature calculations in the frequency domain. To obtain
practical results, we will need to be able to sum over the Matsubara frequencies, and this forces us to make an
important technical digression. As an example of the kind oftasks we might want to carry out, consider how
we would calculate the occupancy of a given momentum state ina Fermi gas at finite temperature, using the
Matsubara propagatorG(p, iωn). This can be written in terms of the equal time Green function, as follows

〈c†pσcpσ〉 = G(p,0−) = T
∑

n

1
iωn − ǫ(p)

eiωnO+ . (9.43)
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A more involved example, is the calculation of the finite temperature dynamical spin susceptibilityχ(q) of
the Free electron gas at wavevector and frequencyq ≡ (q, iνn). We shall see that this quantity derives from a
Feynman polarization bubble diagram which gives

χ(q) = −2µ2
BT

∑

p

G(p+ q)G(p) = −2µ2
B

∑

p

kBT
∑

r

G(p + q, iωr + iνn)G(p, iωr )

 . (9.44)

where the−1 derives from the Fermion loop. In both cases, we need to knowhow to do the sum over the
discrete Matsubara frequencies, and to do this, we use the method of contour integration. To make this possi-
ble, observe that the Fermi functionf (z) = 1/[ezβ + 1] has poles of strength−kBT at each discrete frequency
z= iωn, because

f (iωn + δ) =
1

eβ(iωn+δ) + 1
= − 1

βδ
= −kBT

δ

so that for a general functionF(iωn), we may write

C

n(a)

Pole of F(z)
of F(z)
Branch−cut

(b)

ιωn

Pole of F(z)

C’C’

(c)

of F(z)
Branch−cut

C

ιω

tFig. 9.4 (a) Contour integration around the poles in the Fermi function enables us to convert a
discrete Matsubara sum T

∑
F(iωn) to a continuous integral (b) The integral can be

distorted around the poles and branch-cuts of F(z) provided that F(z) dies away faster
than 1/|z| at infinity.

kBT
∑

n

F(iωn) =
∫

C

dz
2πi

F(z) f (z) (9.45)
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where the contour integralC is to be taken clockwise around the poles atz= iωn as shown in Fig. 9.4 (a)
Once we have cast the sum as a contour integral, we may introduce “null” contours (Fig. 9.4 (b)) which

allow us to distort the original contourC into the modified contourC′ shown in Fig. 9.4 (c), so that now

kBT
∑

n

F(iωn) =
∫

C′

dz
2πi

F(z) f (z) (9.46)

whereC′ runs anticlockwisearound all the poles and branch-cuts inF(z). Here we have used “Jordan’s
lemma” which guarantees that the contribution to the integral from the contour at infinity vanishes, provided
the functionF(z) × f (z) dies away faster than 1/|z| over the whole contour.

For example, in case (9.43),F(z) = ez0+

z−ǫp , so thatF(z) has a single pole atz= ǫp, and hence

〈npσ〉 = T
∑

n

1
iωn − ǫ(p)

eiωnO+ =

∫

C′

dz
2πi

1
z− ǫp

ez0+ f (z)

= f (ǫp), (9.47)

recovering the expected result. In this example, the convergence factorez0+ that results from the small negative
time increment in the Green function, plays an important role inside the Contour integral, where it gently
forces the functionF(z) to die away faster than 1/|z| in the negative half-plane. Of course the original contour
C integral could have been made by arbitrarily replacingf (z) with f (z)− constant. However, the requirement
that the function dies away in the positive half plane forcesus to set the constant term here to zero.

In the second example (9.44)

F(z) = −G(p + q, iνn + z)G(p, z) = − 1
iνn + z− ǫp+q

1
z− ǫp

which has two poles atz= ǫp andz= −iνn + ǫp+q. The integral for this case is then given by

χ(q) = −2µ2
B

∑

p

∫

C′

dz
2πi

G(p + q, z+ iνn)G(p, z) f (z)

= −
∑

p

(
G(p,−iνn + ǫp+q) f (−iνn + ǫp+q) +G(p + q, ǫp + iνn) f (ǫp)

)
(9.48)

The first term in the above expression deserves some special attention. In this term we shall make use the
periodicity of the Fermi function to replace

f (−iνn + ǫp+q) = f (ǫp+q).

This replacement may seem obvious, however, later, when analytically extendingiνn → z we will keep
this quantityfixed, i.e, we will not analytically extendf (−iνn + ǫp+q) → f (−z + ǫp+q). In other words,
the continuationiνn → z is made, keeping the location and residues of all poles inχ(q, z) fixed. With this
understanding, we continue, and find that the resulting expression is given by

χ(q, iνn) = 2µ2
B

∑

p

(
fp+q − fp

iνn − (ǫp+q − ǫp)

)
(9.49)

where we have used the shorthandfp ≡ f (ǫp). The analytic extension of this quantity is then

χ(q, z) = 2µ2
B

∑

p

(
fp+q − fp

z− (ǫp+q − ǫp)

)
(9.50)

A completely parallel set of procedures can be carried for summation over Matsubara boson frequencies
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iνn, by making the observation that the Bose functionn(z) = 1
eβz−1 has a string of poles atz = iνn of strength

kBT. Using a completely parallel procedure to the fermions, we obtain

kBT
∑

n

P(iνn) = −
∫

C

dz
2πi

P(z)n(z) = −
∫

C′

dz
2πi

P(z)n(z)

whereC is a clockwise integral around the imaginary axis andC′ is an anticlockwise integral around the
poles and branch-cuts ofF(z). (See exercise 9.1.)

Example 9.4: Starting with the expression

F = −T
∑

λiωn

ln[(ǫλ − iωn)]e
iωn0+ +C(T)

derived in example (9.1), use the contour integration method to show that

F = −T
∑

λ

ln
[
1+ e−βǫλ

]
+C(T)

so thatC(T) = 0.
Solution: Writing the Free energy as a contour integral around the poles of the imaginary axis, we have

F =
∑

λ

∫

P

dz
2πi

f (z) ln [ǫλ − z] ez0+ +C(T)

where the pathP runs anticlockwise around the imaginary axis. There is a branch cut in thefunction
F(z) = ln[ǫλ − z] running fromz= ǫλ to z= +∞. If we distort the contour P around this branch-cut, we
obtain

F =
∑

λ

∫

P′

dz
2πi

f (z) ln [ǫλ − z] ez0+ +C(T)

whereP′ runs clockwise around the branch cut, so that

F =
∑

λ

∫ ∞

ǫλ

dω
π

f (ω) +C(T)

=
∑

λ

−T ln(1+ e−βǫλ ) +C(T) (9.51)

so thatC(T) = 0, to reproduce the standard expression for the Free energy of a setof non-interacting
fermions.

9.4 Generating Function and Wick’s theorem

The zero temperature generating functions for free fermions or bosons, derived in chapter 7. can be general-
ized to finite temperatures. Quite generally we can consideradding a source term to a free particle Hamilto-
nian to formH(τ) = H0 + V(τ),

H0 =
∑
ǫψ†λψλ

V(τ) = −∑
λ[η̄λ(τ)ψλ + ψ

†
λη(τ)]

}
(9.52)

226



bk.pdf April 29, 2012 118

c©2011 Piers Coleman Chapter 9.

The corresponding finite temperature Generating functional is actually the partition function in the presence
of the perturbationV. Using a simple generalization of (9.13), we have

Z0[η̄, η] = Z0〈Te−
∫ β

0
VI (τ)dτ〉0

= Z0〈T exp


∫ β

0
dτ

∑

λ

(
η̄λ(τ)ψλ(τ) + ψ

†
λ(τ)ηλ(τ)

)〉0 (9.53)

where the driving terms are complex numbers for bosons, but are anticommuting C-numbers or Grassman
numbers, for fermions. For free fields, the Generating functional is given by

Z0[η̄, η]
Z0

= exp

−
∑

λ

∫ β

0
dτ1dτ2η̄λ(1)Gλ(τ1 − τ2)ηλ(2)



Gλ(τ1 − τ2) = −〈Tψλ(τ1)ψ†λ(τ2)〉 (9.54)

A detailed proof of this result is given in Appendix A of this chapter. However, a heuristic proof is obtained
by appealing to the “Gaussian” nature of the underlying Freefields. As at zero temperature, we expect the
the physics to be entirely Gaussian, that is, that the amplitudes of fluctuation of the free fields are entirely
independent of the driving terms. The usefulness of the generating function, is that we can convert partial
derivatives with respect to the source terms into field operators inside the expectation values,

δ

δη̄(1)
→ ψ(1),

δ

δη(2)
→ ζψ†(2), (9.55)

where we have used the short-hand notationη(1) ≡ ηλ(τ1), ψ(1) ≡ ψλ(τ1)). In particular

δ ln Z0[η̄, η]
δη̄(1)

= 〈ψ(1)〉, (9.56)

where the derivative of the logarithm ofZ0[η̄, η] is required to place aZ0[η̄, η] in the denominator for the
correctly normalized expectation value. For bosons, you can think of the source terms as an external field that
induces a condensate of the field operator. At high temperatures, once the external source term is removed,
the condensate disappears. However, at low temperatures, in a Bose-Einstein condensate, the expectation
value of the field survives even when the source terms are removed. For fermions, the idea of a genuine
expectation value for the Fermi field is rather abstract, andin this case, once the external source is removed,
the expectation value disappears.

We can of course take higher derivatives, and these do not vanish, even when the source terms are removed.
In particular the second derivative determines the fluctuations of the quantum field, given by

δ2 ln Z0[η̄, η]
δη(2)δη̄(1)

=
δ

δη(2)

[
1

Z0[η̄, η]
δZ0[η̄, η]
δη̄(1)

]

=
1

Z0[η̄, η]
δ2Z0[η̄, η]
δη(2)δη̄(1)

− 1
Z0[η̄, η]

[
δZ0[η̄, η]
δη(2)

]
1

Z0[η̄, η]

[
δZ0[η̄, η]
δη̄(1)

]

= ζ
(
〈Tψ†(2)ψ(1)〉 − 〈ψ†(2)〉〈ψ(1)〉

)

= 〈Tψ(1)ψ†(2)〉 − 〈ψ(1)〉〈ψ†(2)〉
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= 〈T
(
ψ(1)− 〈ψ(1)〉

)(
ψ†(2)− 〈ψ†(2)〉

)
〉 = 〈δψ(1)δψ†(2)〉, (9.57)

whereδψ(1) = ψ(1) − 〈ψ(1)〉 represents the fluctuation of the fieldψ around its mean value. If this quantity
is independent of the source terms, then it follows that the fluctuations must be equal to their value in the
absence of any source field, i.e.

δ2 ln Z0[η̄, η]
δη̄λ(τ1)δηλ(τ2)

=
δ2 ln Z0[η̄, η]
δη̄λ(τ1)δηλ(τ2)

∣∣∣∣∣∣
η=η̄=0

= −Gλ(τ1 − τ2).

A more detailed, algebraic rederivation of this result is given in Appendix A. One of the immediate corollo-
raries of (9.129) is that the multi-particle Green functions can be entirely decomposed in terms of one-particle
Green functions, i.e., the imaginary time Green functions obey a Wick’s theorem. If we decompose the origi-
nal generating function (9.128) into a power series, we find that the general coefficient of the source terms is
given by

(−1)nG(1,2, . . . n; 1′,2′, . . . n′) = 〈Tψ(1) . . . ψ(n)ψ†(n′) . . . ψ(1′)〉

by contrast, if we expand the right-hand side of (9.129) in the same way, we find that the same coefficient is
given by

(−1)n
∑

P

(ζ)p
n∏

r=1

G(r − Pr )

wherep is the number of pairwise permutations required to produce the permutationP. Comparing the two
results, we obtain the imaginary time Wick’s theorem

G(1,2, . . . n; 1′,2′, . . . n′) =
∑

P

(−1)p
n∏

r=1

G(r − Pr )

Although this result is the precise analog of the zero-temperature Wick’s theorem, notice that that unlike
its zero-temperature counterpart, we can not easily derivethis result for simple cases by commuting the
destruction operators so that they annihilate against the vacuum, since there is no finite temperature vacuum.

Just as in the zero temperature case, we can define a “contraction” as the process of connecting two free
-field operators inside the correlation function,

〈T [. . . ψ(1) . . . ψ†(2) . . .]〉 −→ 〈T [ψ(1)ψ†(2)]〉 = −G(1 − 2)

〈T [. . . ψ†(2) . . . ψ(1) . . .]〉 −→ 〈T [ψ†(2)ψ(1)]〉 = −ζG(1 − 2)
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so that as before,

(−1)n〈T [ψ(1)ψ(2) . . . ψ(n) . . . ψ†(P′
2
) . . . ψ†(P′

1
) . . . ψ†(P′

n
)]〉

= ζPG(1− P′1)G(2− P′2) . . .G(n − P′n). (9.58)

Example 9.5:
Use Wick’s theorem to calculate the interaction energy of a dilute Bose gas of spinS bosons particles

interacting via a the interaction

V̂ =
1
2

∑

q,kσ,k′,σ′
V(q)b†k+qσb†k′σ′bk′+qσ′bkσ

at a temperature above the Bose Einstein condensation temperature.
Solution: To leading order in the interaction strength, the interaction energy is given by

〈V〉 =
∑

q,k,k′,σ,σ′
V(q)〈b†k+q,σb†k′,σ′bk′+q,σ′bkσ〉

Using Wick’s theorem, we evalute

〈b†k+q,σb†k′,σ′bk′+q,σ′bk,σ〉 = 〈b†k+q,σb
†
k′,σ′bk′+q,σ′bk,σ〉 + 〈b†k+q,σb

†
k′,σ′bk′+q,σ′bk,σ〉

= nknk′δq,0 + nknk+qδk,k′δσσ′ (9.59)

so that

〈V̂〉 = 1
2

∫

k,k′
nknk′

[
(2S + 1)2Vq=0 + (2S + 1)Vk−k′

]

wherenk =
1

eβ(ǫk−µ)−1
.

9.5 Feynman diagram expansion

We are now ready to generalize the Feynman approach to finite temperatures. Apart from a very small change
in nomenclature, almost everything we learnt for zero temperature in chapter 8 now generalizes to finite
temperature. Whereas previously, we began with a Wick expansion of theS matrix, now we must carry out a
Wick expansion of the partition function

Z = e−βF = Z0〈T exp

[
−

∫ β

0
V̂(τ)dτ

]
〉0 =

All the combinatorics of this expansion are unchanged at finite temperatures.
Now we are at finite temperature, the Free energyF = E − S T− µN replaces the energy. The main results

of this procedure can almost entirely be guessed by analogy.In particular:

229

Chapter 9. c©Piers Coleman 2011

• The partition function

Z = Z0

∑
{Unlinked Feynman diagrams}

• The change in the Free energy due to the perturbationV is given by

∆F = F − F0 = −kBT ln

[
Z
Z0

]
= −kBT

∑
{Linked Feynman diagrams}

This is the finite temperature version of the linked cluster theorem.
• Matsubara one-particle Green’s functions

G(1− 2) =
∑
{Two-legged Feynman diagrams}

, and the main changes are

(i) the replacement of a−i −→ −1 in the time-ordered exponential.
(ii) the finite range of integration in time

∫ ∞

−∞
dt −→

∫ β

0
dτ

which leads to the discrete Matsubara frequencies.

The effect of these changes on the real-space Feynman rules is summarized in Table 9.1.
The book-keeping that leads to these diagrams now involves the redistribution of a “−1” associated with

each propagator  (2) : : :  y(1) −→ (i)2 × G(2− 1). (9.60)

where as before,

G(2− 1) = 2 1
(9.61)

represents the propagation of a particle from “1” to “2”, butnow we must redistribute ani (rather than a
√
−i)

to each end of the progator. When these terms are redistributed onto one-particle scattering vertices, they
cancel the−1 from the time-ordered exponential

i

i

−U(x) = (i)2 × −U(x) ≡ U(x)
(9.62)

whereas for a two-particle scattering potentialV(1 − 2), the four factors ofi give a (i)4 = 1, so that the
two-particle scattering amplitude is−V(1− 2).

1 2 = (i)4 × −V(1− 2) ≡ −V(1− 2). (9.63)

Apart from these small changes, the real-time Feynman rulesare basically the same as those at zero temper-
ature.
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Table. 9.1 Real Space Feynman Rules: Finite Temperature .

2 1 G(2− 1)

x1 U(x1)

1 2 −V(1− 2)

∏

i

∫
d3xi

∫ β

0
dτ Integrate over all intermediate times and positions.

−(2S + 1)G(~0,0−)

[−(2S + 1)]F ,

F = no. Fermion loops.

η(1) η(1)

− η̄(1) −η̄(1)

p = 2
1
p

× p = 8 p = order of symmetry group.
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9.5.1 Feynman rules from Functional Derivatives

As in chapter 8, we can formally derive the Feynman rules froma functional derivative formulation. Using
the notation

∫
d1d2η̄(1)G(1− 2)η(2) = η̄ η (9.64)

whered1 andd2 implies the integration over the space-time variables (~1, τ1) and (~2, τ2) and a sum over
suppressed spin variablesσ1 andσ2, we can write the non-interacting generating functional as

Z0[η̄, η]
Z0

= 〈Ŝ〉0 = exp
[
−η̄ η

]
(9.65)

where we have used the short-hand

Ŝ = T exp

[∫ β

0
d1[η̄(1)ψ(1)+ ψ†(1)η(1)]

]

Now each time we differentiateŜ with respect to its source terms, we bring down an additionalfield operator,
so that

δ

δη̄(1)
〈T . . . Ŝ〉0 = 〈. . . ψ(1) . . . Ŝ〉0,

δ

δη(2)
〈T . . . Ŝ〉0 = 〈T . . . ψ†(2) . . . Ŝ〉0 (9.66)

we can formally evaluate the time-ordered expectation value of any operatorF[ψ†, ψ] as

〈T F
[
ψ†, ψ

]
Ŝ〉0 = F[

δ

δη
,
δ

δη̄
] exp

[
−η̄ η

]

so that

Z[η̄, η]
Z0

= 〈Texp

[
−

∫ β

0
V̂(τ)dτ

]
Ŝ〉0

= 〈exp

[
−

∫ β

0
dτV

(
δ

δη
,
δ

δη̄

)]
exp

[
−η̄ η

]

The formal expansion of this functional derivative generates the Feynman diagram expansion. Changing
variables to (α, ᾱ) = (η,−η̄), we can remove the minus-sign associated with each propagator, to obtain

Z[−ᾱ, α]
Z0

= exp

[
(−1)n

∫ β

0
dτV

(
δ

δα
,
δ

δᾱ

)]
exp

[
ᾱ α

]
(9.67)

for ann− body interaction. The appearance of the (−1)n in the exponent indicates that we should associate a
(−1)n with the corresponding scattering amplitude.

As in the case of zero temperature, we may regard (??) as a machine for generating a series of Feynman
diagrams- both linked and unlinked, so that formally,

Z[ᾱ, α] = Z0

∑
{Unlinked Feynman diagrams}.
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Table. 9.2 Momentum Space Feynman Rules: Finite Temperature.

(k, iωn)
Go(k, iωn) Fermion propagator

−V(q) Interaction

(q, νn)
1 2

−g2
qDo(q, iνn) Exchange Boson.

= −g2
q


2ωq

(iνn)2 − ω2
q



q U(q) Scattering potential

[−(2S + 1)]F , F= no. Fermion loops

(q, iνn)
T

∑

n

∫
ddq

(2π)d
eiαn0+ Sum over internal loop frequency and

momenta.

p = 2

1
p

p = order of symmetry group.
× p = 8

9.5.2 Feynman rules in frequency/momentum space

As at zero temperature, it is generally more convenient to work in Fourier space. The transformation to
Fourier transform space follows precisely parallel lines to that at zero temperature, and the Feynman rules
which result are summarized in Table 9.2. We first re-write each interaction line and Green’s function in a
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Feynman diagram in terms of their Fourier transformed variables

1 2 = G(X1 − X2) =
∑

n

∫
dd−1p

(2π)d−1
G(p)eip(X1−X2)

1 2 = V(X1 − X2) = T
∑

n

∫
dd−1q

(2π)d−1
V(q)eiq(X1−X2) (9.68)

where we have used a short-hand notationp = (p, iαn) (whereαn = ωn for fermions,αn = νn for bosons),
q = (q, iνn), X = (x, iτ), ip.X = ip · x − iωnτ andiq.X = iq · x − iνrτ). As an example, consider a screened
Coulomb interaction

V(r) =
e2

r
e−κr

In our space time notation, we write the interaction as

V(X) = V(x, τ) =
e2

|x|e
−κ|x| × δ̃(τ)

Where the delta function in time arises because the interaction is instantaneous. (Subtle point: we will in
fact inforce periodic boundary conditions by taking the delta function to be a periodic delta functionδ̃(τ) =∑

n δ(τ − nβ)). When we Fourier transform this interaction, we obtain

V(Q) = V(q, iνr ) =
∫

d4XV(X)e−iQ.X

=

∫
d3x

∫ β

0
dτV(x)δ̃(τ)e−i(q·x−νrτ)

= V(q) =
4πe2

q2 + κ2
(9.69)

and the delta function in time translates to an interaction that is frequency independent.
We can also transform the source terms in a similar way, writing

η(X) = T
∑

n

∫
d3p

(2π)3
eipXη(p)

η̄(X) = T
∑

n

∫
d3p

(2π)3
e−ipXη̄(p) (9.70)

where,ipX = i~p · ~x − iαnτ. With these transformations, the space-time co-ordinatesassociated with each
scattering vertex now only appear as “phase factors”. By making the integral over space-time co-ordinates
at each such vertex, we impose the conservation of momentum and (discrete) Matsubara frequencies at each
vertex

, q
p1

p2

X =

∫
d4Xei(p1−p2−q)X = (2π)3βδ(3)(p1 − p2 − q)δα1+α2−νr (9.71)

Since momentum and frequency are conserved at each vertex, this means that there is one independent energy
and frequency per loop in the Feynman diagram. To be sure thatthis really works, let us count the number of
independent momenta that are left over after imposing a constraint at each vertex in the diagram. Consider
a diagram withV vertices andP propagators. In d spacetime dimensions, each propagator introducesP× d,
momenta. When we integrate over the space-time co-ordinatesof theV vertices, we must be careful to split
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the integral up into the integral over theV − 1 relative co-ordinates̃X j = X j+1 − X j and the center of mass
co-ordinates:

∫ V∏

j=1

ddX j =

∫
ddXCM

∫ V−1∏

j=1

ddX̃ j

This imposes (V − 1) constraints per dimension, so the number of independent momenta are then

no. of independent momenta= d[P− (V − 1)]

Now in a general Feynman graph, the apparent number of momentum loops is the same as the number of
facets in the graph, and this is given by

L = E + (P− V)

whereE is the Euler characteristic of the object. The Euler characteristic is equal to one for planar diagrams,
and equal to one plus the number of “handles” in a non-planar diagram. For example, the diagram

V=4, P=6, L=4 (9.72)

hasV = 4 vertices,P = 6 propagators and it has one handle with Euler characteristic E = 2, so that
L = 6 − 4 + 2 = 4 as expected. So from the above, we deduce that the number of independent momenta is
given by

d[L − (E − 1)]

This result needs a moments pause. One might have expected number of independent momentum loops to be
equal toL. However, when there are handles, this overcounts the number of independent momentum loops -
for each handle added to the diagram adds only one additionalmomentum loop, butL increases by 2. If you
look at our one example, this diagram can be embedded on a cylinder, and the interaction propagator which
loops around the cylinder only counts as one momentum loop, giving a total of 4− (2− 1) = 3 independent
momentum loops.

L =  4 − 1 = 3

Handle

L=4 (9.73)
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In this way, we see that̃L = L + (E − 1) is the correct number of independent momentum loops. Indeed, our
momentum constraint does indeed convert the diagram from anintegral overV space-time co-ordinates tõL
independent momentum loops.

In this way, we see that the transformation from real-space,to momentum space Feynman rules is effected
by replacing the sum over all internal space-time co-ordinates by an integral/sum over all loop momenta and
frequencies. A convergence factor

eiαn0+

is included in the loop integral. This term guarantees that if the loop contains a single propagator which
propagates back to the point from which it eminated, then thecorresponding contraction of field operators is
normal ordered.

9.5.3 Linked Cluster Theorem

The linked cluster theorem for imaginary time follows from the replica trick, as at zero temperature. In this
case, we wish to compute the logarithm of the partition function

ln(
Z
Z0

) = lim
n→0

1
n

[(
Z
Z0

)n

− 1

]

It is worth mentioning here that the replica trick was in factoriginally invented by Edwards as a device for
dealing with disorder- we shall have more to say about this inchapter 11.

We now write the term that contains (Z/Z0)n as the product of contributions fromn replica systems, so that
(

Z
Z0

)n

=

〈
exp

−
∫ β

0
dτ

n∑

λ=1

V(λ)(τ)


〉

0

When we expand the right-hand side as a sum over unlinked Feynman diagrams, each separate Feynman
diagram has a replica index that must be summed over, so that asingle linked diagram is of orderO(n),
whereas a group of k unlinked diagrams is of orderO(nk). In this way, asn→ 0, only the unlinked diagrams
survive, so that. The upshot of this result is that the shift in the Free energy∆F produced by the perturbation
V̂, is given by

−β∆F = ln(Z/Z0) =
∑
{Closed link diagrams in real space}}

Notice that unlike the zero temperature proof, here we do nothave to appeal to adiabaticity to extract the shift
in Free energy from the closed loop diagrams.

When we convert to momentum space, Fourier transforming eachpropagator and interaction line, an over-
all integral over the center of mass co-ordinates factors out of the entire diagram, giving rise to a prefactor

∫
ddXcm = β(2π)d−1δ(d−1)(0) ≡ Vβ

whereV is the spatial volume. Consequently, expressed in momentumspace, the change in Free energy is
given by

∆F
V
= −

∑{
Closed linked diagrams in momentum space

}
.

Finally, let us say a few words about Green-functions Since then− th order coefficients ofα andᾱ are the
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irreducible n-point Green-functions,

ln Z[ᾱ, α] = −β∆F +
∫

d1d2ᾱ(1)G(1− 2)α(2)

+
1

(2!)2

∫
d1d2d3d4ᾱ(1)ᾱ(2)α(3)α(4)Girr (1,2; 3,4)+ . . . . (9.74)

n-particle irreducible Green functions are simply the n-particle Green functions in which all contributions
from n−1 particle Green functions have been subtracted. Now since the n-th order coefficients in the Feynman
diagram expansion of lnZ[ᾱ, α] are the connected 2n-point diagrams, it follows that the n-paricle irreducible
Green functions are given by the sum of all 2n point diagrams

Girr (1,2, . . . n; 1′,2′, . . . n′) =
∑
{Connected n-point diagrams}.

The main links between finite temperature Feynman diagrams and physical quantities are given in table
9.3.

9.6 Examples of the application of the Matsubara Technique

To illustrate the Matsubara technique, we shall examine three examples. In the first, we will see briefly how
the Hartree Fock approximation is modified at finite temperatures. This will give some familiarily with the
techniques. In the second, we shall examine the effect of disorder on the electron propagator. Surprisingly, the
spatial fluctuations in the electron potential that arise ina disordered medium behave like a highly retarded
potential, and the scattering created by these fluctuationsis responsible for the Drude lifetime in a disordered
medium. As our third introductory example, we will examine an electron moving under the retarded inter-
action effects produced by the exchange of phonons, examining for the first time how inelastic scattering
generates an electron lifetime.

9.6.1 Hartree Fock at a finite temperature.

As a first example, consider the Hartree-Fock correction to the Free energy,

∆FHF

V
= −


+


(9.75)

These diagrams are precisely the same as those encountered in chapter 8, but now to evaluate them, we
implement the finite temperature rules, which give,

∆FHF

V
=

1
2

∑

k

G(k)
∑

k′
G(k′)

{
[−(2S + 1)]2 V(k− k′) − (2S + 1)V(q = 0)

}
(9.76)

where the prefactor is thep = 2 symmetry factor for these diagrams and

∑

k

G(k) ≡
∫

k
T

∑ 1
iωn − ǫk

eiωn0+
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Table. 10.3 Relationship With Physical Quantities: FiniteTemperature

∆F −V
∑{linked clusters} −V

 + + . . .



lnZ/Zo Vβ
∑{linked clusters} Vβ

 + + . . .



2
−〈Tψ(2)ψ†(1)〉

1
∑{Two leg diagrams}

+ + +

(−1)n〈Tψ(1) . . . ψ†(2n)〉 ∑{2n- leg diagrams}

G n = 2
− + +

Response Functions

〈ψ|T[A(2)B(1)]|ψ〉 = χT
AB

B(1)

����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������

A(2)
χAB = χ

T
AB(ω − iδ) + + . . .

i〈[A(2), B(1)]〉θ(t1 − t2) = χAB

Using the contour integration method introduced in section(9.3), following (9.47 ), we have

T
∑ 1

iωn − ǫk
eiωn0+ =

∫

C

dz
2πi

1
z− ǫk

ez0+ f (z) = f (ǫk),

where the contourC runs anticlockwise around the pole atz = ǫk , so that the first order shift in the Free
energy is

∆FHF =
1
2

∫

k,k′

[
(2S + 1)2(Vq=0) − (2S + 1)(Vk−k′)

]
fk fk′ .
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This is formally exactly the same as at zero temperature, excepting that nowfk refers to the finite temperature
Fermi Dirac. Notice that we could have applied exactly the same method to bosons, the main result being a
change in sign of the second Fock term.

9.6.2 Electron in a disordered potential

As a second example of the application of finite temperature methods, we shall consider the propagator for
an electron in a disordered potential. This will introduce the concept of an “impurity average”.

Our interest in this problem is driven ultimately by a desireto understand the bulk properties of a disordered
metal. The problem of electron transport is almost as old as our knowledge of the electron itself. The term
“electron” was first coined to describe the fundamental unitof charge (already measured from electrolysis)
by the Irish physicist George Johnstone Stoney in 1891[3]. Heinrich Lorentz derived his famous force law for
charged “ions” in 1895[4], but did not use the term electron until 1899. In 1897 J. J. (“JJ”) Thomson[5] made
the crucial discovery of the electron by correctly interpreting his measurement of them/e ratio of cathode
rays in terms of a new state of particulate matter “from whichall chemical elements are built up”. Within
three years of this discovery, Paul Drude[6] had synthesized these ideas and had argued, based on the idea
of a classical gas of charged electrons, that electrons would exhibit a mean-free pathl = velectronτ, where
τ is the scattering rate anl the average distance between scattering events. In Drude’stheory electrons were
envisioned as diffusing through the metal, and he was able to derive his famous formula for the conductivity
σ

σ =
ne2τ

m
.

Missing from Drude’s pioneering picture, was any notion of the Fermi-Dirac statistics of the electron fluid.
He had for example, no notion that the characteristic velocity of the electrons was given by the Fermi velocity,
velectron∼ vF a vastly greater velocity at low temperatures than could ever be expected on the grounds of a
Maxwell Boltzman fluid of particles. This raises the question - how - in a fully quantum mechanical picture
of the electron fluid, can we rederive Drude’s basic model?

A real metal contains both disorder and electron-electron interactions - in this course we shall only touch
on the simpler problem of disorder in an otherwise free electron gas. We shall actually return to this problem
in earnest in the next chapter. Our task here in our first example will be to examine the electron propagator
in a disordered medium of elastically scattering impurities. We shall consider an electron in a disordered
potential

H =
∑

k

ǫkc†kck + Vdisorder

Vdisorder=
∫

d3xU(~x)ψ†(x)ψ†(x) (9.77)

whereU(x) represents the scattering potential generated by a randomarray ofNi impurities located at posi-
tionsRj , each with atomic potentialU(x − Rj ),

U(x) =
∑

j

U(x − Rj )
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An important aspect of this Hamiltonian, is that it containsno interactions between electrons, and as such the
energy of each individual electron is conserved: all interactions are elastic.

We shall not be interested in calculating the value of a physical quantity for aspecificlocation of impurities,
but rather on the value of that quantity after we have averaged over the locations of the impurities, i.e.

〈A〉 =
∫ ∏

j

1
V

d3Rj〈Â[{R j}]〉

This is an elementary example of a “quenched average”, in which the “impurity average” takes placeafter
the Thermodynamic average. Here, we’ll calculate the impurity averaged Green function. To do this we need
to know something about the fluctuations of the impurity scattering potential about its average. It is these
fluctuations that scatter the electrons.

Electrons will in general scatter off the fluctuations in the potential. The average impurity potential U(x)
plays the roll of a kind of shifted chemical potential. Indeed, if we shift the chemical potential by an amount
∆µ, the scattering potential becomesŨ(x) = U(x) − ∆µ, and we can always choose∆µ = U(x) so that

Ũ(x) = 0. The residual potential describes the fluctuations in the scattering potential,δU(x) = U(x) − U(x).
We shall now drop the tilde. The fluctuations in the impurity potential are spatially correlated, and we shall
shortly show that

δU(x)δU(x′) =
∫

q
eiq·(x−x′)ni |u(q)|2 (9.78)

whereu(q) =
∫

d3xU(x)e−iq·x is the Fourier transform of the scattering potential andni = Ni/V is the
concentration of impurities. It is these fluctuations that scatter the electrons, and when we come to consider
the impurity averaged Feynman diagrams, we’ll see that the spatial correlations in the potential fluctuations
induce a sort of “attractive interaction”, denoted by the diagram

x x’
∫

ni |u(q)|2eiq·(x−x′) = −Veff(x − x′)

(9.79)

Although in principle, we should keep all higher moments of the impurity scattering potential, in practice,
the leading order moments are enough to extract a lot of the basic physics in weakly disordered metals.
Notice that the fluctuations in the scattering potential areshort-range - they only extend over the range of
the scattering potential. Indeed, if we neglect the momentum dependence ofu(q), assuming that the impurity
scattering is dominated by low energy s-wave scattering, then we can writeu(q) = u0. In this situation, the
fluctuations in the impurity scattering potential are entirely local,

δU(x)δU(x′) = niu
2
0δ(x − x′) white noise potential

In our discussion today, we will neglect the higher order moments of the scattering potential, effectively
assuming that it is purely Gaussian.

To prove (9.78 ), we first Fourier transform the potential

U(q) =
∑

j

e−iq·Rj

∫
d3xU(x − Rj )e−iq·(x−Rj ) = u(q)

∑

j

e−iq·Rj , (9.80)
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so that the locations of the impurities are encoded in the phase shifts which multiplyu(q). If we now carry
out the average,

δU(x)δU(x′) =
∫

q,q′
ei(q·x−q·x′)

(
U(q)U(−q′) − U(q) U(−q′)

)

=

∫

q,q′
ei(q·x−q·x′)u(q)u(−q′)

∑

i, j

(
e−iq·Ri eiq′·Rj − e−iq·Ri eiq′·Rj

)
(9.81)

Now since the phase terms are independent at different sites, the variance of the random phase term in the
above expression vanishes unlessi = j, so

∑

i, j

(
e−iq·Ri eiq′·R j − e−iq·Ri eiq′·Rj

)
= Ni ×

∫
1
V

d3Rje
−i(q−q′)·R j

= ni(2π)3δ(3)(q − q′) (9.82)

from which

U(q)U(−q′) − U(q) U(−q′) = ni |u(q)|2(2π)3δ(3)(q − q′)

and (9.78) follows.

V(  )x

y

x

x

y

k1

k1

k’

k

k’

k

tFig. 9.5 Double scattering event in the random impurity potential.

Now let us examine how electrons scatter off these fluctuations. If we substituteψ†(x) =
∫

k
c†ke−ik·x into
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V̂disorder, we obtain

V̂disorder=
∫

k,k′
c†kck′δU(k − k′)

We shall represent the scattering amplitude for scatteringonce

jR

k k’

δU(k − k′) =

u(k − k′)
∑

j

ei(k−k′)·Rj

 − ∆µδk−k′ .

(9.83)

where we have subtracted the scattering off the average potential. The potential transfers momentum, but
does not impart any energy to the electron, and for this reason frequency is conserved along the electron
propagator. Let us now write down, in momentum space the Greens function of the electron

G(k, k′, iωn) = ++ + + ,

= G0(k, iωn)δk,k′ + G0(k, iωn)δU(k − k′)G0(k′, iωn)

+

∫

k1

G0(k, iωn)δU(k − k1)G0(k1, iωn)δU(k1 − k′)G0(k′, iωn) + . . . (9.84)

where the frequencyiωn is constant along the electron line. Notice thatG is actually a function of each
impurity position! Fig. 9.5 illustrates one of the scattering events contributing to the third diagram in this
sum. We want to calculate the quenched avaerageG(k, k′, iωn), and to do this, we need to average each
Feynman diagram in the above series.

When we impurity average the single scattering event, it vanishes:

G0(k, iωn)δU(k − k′)G0(k′, iωn) = G0(k, iωn)

=0︷       ︸︸       ︷
δU(k − k′)G0(k′, iωn)

but the average of a double scattering event is

∑

k1

G0(k, iωn)G0(k1, iωn)G0(k′, iωn) ×

ni |uk−k′ |2δk−k′︷                        ︸︸                        ︷
δU(k − k1)δU(k1 − k′)

= δk−k′ × G0(k, iωn)2ni

∑

k1

u(k − k1)2G0(k1, iωn)G0(k, iωn) (9.85)

Notice something fascinating - after impurity averaging, momentum is now conserved. We can denote the
impurity averaged double scattering event Feynman diagram

k k

k−q

q

=
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(9.86)

where we have introduced the Feynman diagram

k

k−Q

Q k’+Q

k’

ni |u(q)|2 = −Veff(Q)

(9.87)

to denote the momentum transfer produced by the quenched fluctuations in the random potential. In writing
the diagram this way, we bring out the notion that quenched disorder can be very loosely thought of as an
interaction with an effective potential

Veff(q, iνn) =
∫ β

0
dτeiνnτ

−ni |u(q)|2︷     ︸︸     ︷
Veff(q, τ) = −βδn0ni |u(q)|2

where theβδn0 ≡
∫

dτeiνnτ is derived from the fact that the interactionVeff(q, τ)does not depend on the time
difference guarantees that there is no energy transferred by thequenched scattering events. In otherwords,
quenched disorder induces a sort of infinitely retarded, but“attractive” potential between electrons. (Our
statement can be made formally correct in the language of replicas - this interaction takes place between
electrons of the same, or different replica index. In then → 0 limit, the residual interaction only acts on
one electron in the same replica. ) The notion that disorder induces interactions is an interesting one, for it
motivates the idea that disorder can lead to new kinds of collective behavior.

After the impurity averaging, we notice that momentum is nowconserved, so that the impurity averaged
Green function is now diagonal in momentum space,

G(k, k′, iνn) = δk−k′G(k, iνn).

If we now carry out the impurity averaging on multiple scattering events, only repeated scattering events at
the same sites will give rise to non-vanishing contributions. If we take account of all scattering events induced
by the Gaussian fluctuations in the scattering potential, then we generate a series of diagrams of the form

G(k) = + + +

In the Feynman diagrams, we can group all scatterings into connected self-energy diagrams, as follows:

Σ(k) = Σ = + + +

G(k) = + += Σ Σ Σ

= [iωn − ǫk − Σ(k)]−1 (9.88)

In the case of s-wave scattering, all momentum dependence ofthe scattering processes is lost, so that in this
caseΣ(k) = Σ(iωn) only depends on the frequency. In the above diagram, the double line on the electron
propagator indicates that all self-energy corrections have been included. From the above, you can see that the
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self-energy corrections calculated from the first expression are fed into the electron propagator, which in turn
is used in a self-consistent way inside the self-energy

We shall begin by trying to calculate the first order above diagrams for the self-energy without imposing
any self-consistency. This diagram is given by

Σ(iωn) = = ni

∑

k′
|u(k − k′)|2G(k′, iωn)

= ni

∑

k′
|u(k − k′)|2 1

iωn − ǫk′
(9.89)

Now we can replace the summation over momentum inside this self-energy by an integration over solid angle
and energy, as follows

∑

k′
→

∫
dΩk′

4π
dǫ′N(ǫ′)

whereN(ǫ) is the density of states. With this replacement,

Σ(iωn) = niu
2
0

∫
dǫN(ǫ)

1
iωn − ǫ

where

u2
0 =

∫
dΩk′

4π
|u(k − k′)|2 = 1

2

∫ 1

−1
dcosθ|u(θ)|2

is the angular average of the squared scattering amplitude.To a good approximation, this expression can be
calculated by replacing the energy dependent density of states by its value at the Fermi energy. In so doing,
we neglect a small real part to the self-energy, which can, inany case be absorbed by the chemical potential.
This kind of approximation is extremely common in many body physics, in cases where the key physics
is dominated by electrons close to the Fermi energy. The deviations from constancy inN(ǫ), will in practice
affect the real part ofΣ(iωn), and these small changes can be accomodated by a shift in thechemical potential.
The resulting expression forΣ(iωn) is then

Σ(iωn) = niu
2
0N(0)

∫ ∞

−∞
dǫ

1
iωn − ǫ

= −i
1
2τ

sgn(ωn) (9.90)

where we have identified1
τ
= 2πniu2

0 as the electron elastic scattering rate. We notice that thisexpression is
entirely imaginary, and it only depends on the sign of the Matsubara frequency. Notice that in deriving this
result we have extended the limits of integration to infinity, an approximation that involves neglecting terms
of order 1/(ǫFτ).

We can now attempt to recomputeΣ(iωn) with self-consistency. In this case,

Σ(iωn) = = niu
2
0

∑

k′

1
iωn − ǫk′ − Σ(iωn)

(9.91)

If carry out the energy integration again, we see that the imposition of self-consistency has no effect on the
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scattering rate

Σ(iωn) = niu
2
0N(0)

∫ ∞

−∞
dǫ

1
iωn − ǫ − Σ(iωn)

= −i
1
2τ

sgn(ωn). (9.92)

Our result for the electron propagator, ignoring the “vertex corrections” to the scattering self-energy is given
by

G(k, z) =
1

z− ǫk + i 1
2τsgnIm(z)

where we have boldly extended the Green function into the complex plane. We may now make a few remarks:

• The original pole of the Green function has been broadened. The electron “spectral function”,

A(k, ω) =
1
π

ImG(k, ω − iδ) =
1
π

(2τ)−1

(ω − ǫk)2 + (2τ)−2

is a Lorentzian of width 1/τ. The electron of momentumk now has a lifetimeτ due to elastic scattering
effects.

• Although the electron has a mean-free path,l = vFτthe electron propagator displays no features of dif-
fusion. The main effect of the finite scattering rate is to introduce a decay length into the electron
propagation. The electron propagator does not bear any resemblance to the “diffusion propagator”
χ = 1/(iν − Dq2) that is the Greens function for the diffusion equation (∂t − D∇2)χ = −δ(x, t). The
physics of diffusion and Ohm’s law do not appear until we are able to examine the charge and spin
response functions, and for this, we have to learn how to compute the density and current fluctuations in
thermal equilibrium. (Chapter 10).

• The scattering rate that we have computed is often called the“classical” electron scattering rate. The
neglected higher order diagrams with vertex corrections are actually smaller than the leading order
contribution by an amount of order

1
ǫFτ
=

1
kF l

This small parameter defines the size of “quantum corrections” to the Drude scattering physics, which
are the origin of the physics of electron localization. To understand how this small number arises in the
self-energy, consider the first vertex correction to the impurity scattering,

k  + k   − k1 2

k 2 k 1k k

(9.93)

This diagram is given by

Σ2 =

−i 1
2τ︷               ︸︸               ︷

N(0)
∫

dǫ1
iωn − ǫ1

−i 1
2τ︷               ︸︸               ︷

N(0)
∫

dǫ2
iωn − ǫ2

∼ −i
kF vF︷                            ︸︸                            ︷∫

dΩ1dΩ2

(4π)2

1
iωn − ǫk1+k2−k

∼ i
1
τ
× 1

kF l
(9.94)

245

Chapter 9. c©Piers Coleman 2011

where the last term in the integral derives from the central propagator in the self-energy. In this self-
energy, the momentum of the central propagator is entirely determined by the momentum of the two
other internal legs, so that the energy associated with thispropagator isǫ−k+k1+k2. This energy is only
close to the Fermi energy whenk1 ∼ −k2, so that only a small fraction 1/(kF l) of the possible directions
of k2 give a large contribution to the scattering processes.

9.7 Interacting electrons and phonons

The electron phonon interaction is one of the earliest successes of many body physics in condensed matter.
In many ways, it is the condensed matter analog of quantum-electrodynamics - and the early work on the
electron phonon problem was carried out by physicists who had made their early training in the area of
quantum electrodynamics.

When an electron passes through a crystal, it attracts the nearby ions, causing a local build-up of positive
charge. Perhaps a better analogy, is with a supersonic aircraft, for an electron moves at about Mach 100. We
can confirm this with a back-of-the envelope calculation. First notice that the ratio of the sound velocityvs to
the Fermi velocityvF is determined by the ratio of the Debye frequency to the Fermienergy,

vs

vF
∼ ∇kωk

∇kǫk
∼ ωD/a
ǫF/a

=
ωD

ǫF

wherea is the size of the unit cell. Now an approximate estimate for the Debye frequency is given byω2
D ∼

k/M, whereM is the mass of an atomic nucleus andk ∼ ǫF/a2 is the “spring constant” associated with atomic
motions, thus

ω2
D ∼

(
ǫF

a2

) 1
M

and
ω2

D

ǫ2
F

∼ 1

(ǫFa2)︸︷︷︸
∼1/m

1
M
∼ m

M

so that the ratio

vs

vF
∼

√
m
M
∼ 1

100
.

confirming the supersonic nature of electrons at the Fermi surface. As it moves through the crystal, an electron
leaves behind a narrow wake of positive charge caused by the distortion in the crystal lattice responding to
its momentary presence. This distortion attracts other electrons, long after the original disturbance has passed
by. This is the origin of the weak attractive interaction induced by the exchange of virtual phonons. This
attraction is highly retarded, quite unlike the repulsive Coulomb interaction which is almost instantaneous in

time. (The ratio of characteristic timescales being∼ ǫF
ωD
∼

√
M
m ∼ 100). Thus- whereas two electrons at the

same place and time, feel a strong mutual Coulomb repulsion,two electrons which arrive at the same place,
but at different times are generally subject to an attractive electronphonon interaction. It is this attraction that
is responsible for the development of superconductivity inmany conventional metals.

In an electron fluid, we must take into account the quantum nature of the sound-vibrations. An electron
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can not continously interact with the surrounding atomic lattice - it must do so by the emission and absorp-
tion of sound quanta or “phonons”. The basic Hamiltonian to describe the electron phonon problem is the
Fröhlich Hamiltonian, derived by Fröhlich, a German emigré to Britain, who worked in Liverpool shortly af-
ter the second-world war[7, 8]. Fröhlich recognized that the electron-phonon interaction isclosely analogous
to the electron-photon interaction of QED. Fröhlich appreciated that this interaction would give rise toan
effective attraction between electrons and together with Bardeen, was the first to identify the electron phonon
interaction as the driving force behind conventional superconductivity.

To introduce the Fr̈ohlich Hamiltonian, we will imagine we have a three phonon modes labelled by the
index λ = (1,2,3), with frequencyωqλ. For the moment, we shall also ignore the Coulomb interaction
between electrons. The Fröhlich Hamiltonian is then

He =
∑

kσ

ǫkc†kσckσ

Hp =
∑

q,λ

ωqλ(a
†

qλaqλ +
1
2

)

HI =
∑

k,q,λ

gqλc
†

k+qσckσ

[
aqλ + a†−qλ

]
(9.95)

To understand the electron phonon coupling, let us considerhow long-wavelength fluctuations of the lattice
couple to the electron energies. Let~Φ(x) be the displacement of the lattice at a given pointx, so that the strain
tensor in the lattice is given by

uµν(x) =
1
2

(
∇µΦν(x) + ∇νΦµ(x)

)

In general, we expect a small change in the strain to modify the background potential of the lattice, modifying
the energies of the electrons, so that locally,

ǫ(k) = ǫ0(k) +Cµνuµν(x) + . . .

Consider the following, very simple model. In a free electron gas, the Fermi energy is related to the density
of the electronsN/V by

ǫF =
1

2m

(
3π2N

V

) 2
3

. (9.96)

When a portion of the lattice expands fromV → V + dV, the positive charge of the background lattice is
unchanged, and preservation of overall charge neutrality guarantees that the number of electronsN remains
constant, so the change in the Fermi energy is given by

δǫF

ǫF
= −2

3
dV
V
∼ −2

3
~∇ · ~Φ

On the basis of this simple model, we expect the following coupling between the displacement vector and the
electron field
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HI = C
∫

d3xψσ
†(x)ψσ(x)~∇.~Φ C = −2

3
ǫF (9.97)

The quantityC is often called the “deformation potential”. Now the displacement of the the phonons was
studied in Chapter 4. In a general model, it is given by

Φ(x) = −i
∑

qλ

eλq ∆xqλ

[
aqλ + a†−qλ

]
eiq·x

where we’ve introduced the shorthand

∆xqλ =

(
~

2MNsωqλ

) 1
2

to denote the characteristic zero point fluctuation associated with a given mode. (Ns is the number of sites
in the lattice. ) The body of this expression is essentially identical to the displacement of a one-dimensional
harmonic lattice (see (3.81)), dressed up with additional polarization indices. The unfamiliar quantityeλq is
the polarization vector of the mode. For longitudinal phonons, for instance,eL

q = q̂. The “−i” infront of
the expression has been introduced into the definition of thephonon creation and annihilation operators so
that the requirement that the Hamiltonian is hermitian (which implies (eλq)∗ = −(eλ−q)) is consistent with the
convention thatechanges sign when the momentum vectorq is inverted.

The divergence of the phonon field is then

~∇ · Φ(x) =
∑

qλ

q · eλq∆xqλ

[
aqλ + a†−qλ

]
eiq·x

In this simple model, the electrons only couple to the longitudinal phonons, since these are the only phonons
that change the density of the unit cell. When we now Fourier transform the interaction Hamiltonian, making
the insertionψσ(x) = 1√

V

∑
k ckσeik·x (9.97), we obtain

HI = C
∫

d3xψσ
†(x)ψσ(x)~∇ · ~Φ(x)

=
∑

k,k′,q,λ

c†k′σckσ

[
aqλ + a†−qλ

]
δk′−(k+q)︷                  ︸︸                  ︷

1
V

∫
d3xei(q+k−k′)·x ×C∆xqλ(q · eλq)

=
∑

qkλ

gqλc
†

k+qσckσ

[
aqλ + a†−qλ

]
(9.98)

where

gqλ =


Cq∆xqλ = Cq

(
~

2MNsωqλ

) 1
2

(λ = longitudinal)

0 (λ = transverse )

Note thatNs = V/a3, wherea is the lattice spacing. To go over to the thermodynamic limit, we will replace
our discrete momentum sums by continuous integrals,

∑
q ≡ V

∫
q
→

∫
q
. Rather than spending a lot of

time keeping track of how the volume factor is absorbed into the integrals, it is simpler to regardV = 1
as a unit volume, replacingNs → a−3 whenever we switch from discrete, to continuous integrals.With this
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understanding, we will use

gq = Cq
√
~a3/(2Mωqλ) (9.99)

for the electron-phonon coupling to the longitudinal modes. Our simple model captures the basic aspects of
the electron phonon interaction, and it can be readily generalized. In a more sophisticated model,

• C becomes momentum dependent and should be replaced by the Fourier transform of the atomic potential.
For example, if we compute the electron - phonon potential from given by the change in the atomic
potentialVatomicresulting from the displacement of atoms,

δV(x) =
∑

j

δVatomic(x − R0
j − ~Φ j) = −

∑

j

~Φ j · ~∇Vatomic(x − R0
j )

we must replace the constant

C→ 1
vcell

∫
d3xVatomic(x)e−iq·x = nionVatomic(q) ∼ ZnionVe f f(q) (9.100)

wherenion = 1/a3 is the ionic density,Z is the atomic number andVe f f(q) is the screened Coulomb
interaction. These replacements appear in the Bardeen-Pines model of the electron phonon interaction
(see 8.226 and Ex 8.7).

• When the plane-wave functions are replaced by the detailed Bloch wavefunctions of the electron band, the
electron phonon coupling becomes dependent on both the incoming and outgoing electron momenta, so
that

gk′−kλ → gk′,kλ.

Nevertheless, much can be learnt from our simplified model Inthe discussion that follows, we shall drop the
polarization index, and assume that the phonon modes we refer to are exclusively longitudinal modes.

In setting up the Feynman diagrams for our Fröhlich model, we need to introduce two new elements- a
diagram for the phonon propagator, and a diagram to denote the vertex. If we denoteφq = aq + a†−q, then the
phonon Green function is given by

D(q, τ − τ′) = −〈Tφq(τ)φq(τ′)〉 = T
∑

iνn

D(q)e−iνn(τ−τ′) (9.101)

where the propagator

D(q) =
2ωq

(iνn)2 − (ωq)2

is denoted by the diagram

(q, iνn)
= D(q, iνn) (9.102)

The interaction vertex between electrons and phonon is denoted by the diagram

k

k+ q

q
= (i)3 × −gq = igq (9.103)

The factori3 arises because we have three propagators entering the vertex, each donating a factor ofi. The
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−1gq derives from the interaction Hamiltonian in the time-ordered exponential. Combining these two Feyn-
man rules, we see that when two electrons exchange a boson, this gives rise to the diagram

(q, νn)
1 2 = (igq)2D(q) = −(gq)2D(q) (9.104)

so that the exchange of a boson induces an effective interaction

Veff(q, z) = g2
q

2ωq

(z)2 − ω2
q

(9.105)

Notice three things about this interaction -

• It is strongly frequency dependent, reflecting the stronglyretarded nature of the electron phonon interac-
tion. The characteristic phonon frequency is the Debye frequencyωD, and the characteristic “restitution”
time associated with the electron phonon interaction isτ ∼ 1/ωD, whereas the corresponding time asso-
ciated with the repulsive Coulomb interaction is of order 1/ǫF . The ratioǫF/ωD ∼ 100 is a measure of
how much more retarded the electron-phonon interaction is compared with the Coulomb potential.

• It is weakly dependent on momentum, describing an interaction that is spatially local over one or two
lattice spacings.

• At frequencies below the Debye energy,ω<˜ωD the denominator inVeff changes sign, and the residual
low-energy interaction is actually attractive. It is this component of the interaction that is responsible for
superconductivity in conventional superconductors.

We wish to now calculate the effect of the electron-phonon interaction on electron propagation. The main
effect on the electron propagation is determined by the electron-phonon self energy. The leading order Feyn-
man diagram for the self-energy is given by

k
k− q

q

k
≡ Σ(k) =

∑

q

(igq)2G0(k− q)D(q) (9.106)

or written out explicitly,

Σ(k, iωn) = −T
∑

q,iνn

g2
q


2ωq

(iνn)2 − ω2
q


1

iωn − iνn − ǫk−q

= −T
∑

q,iνn

[
1

iνn − ωq

1
iωn − iνn − ǫk−q

− (ωq → −ωq)

]
(9.107)

where we have simplified the expression by splitting up the boson propagator into a positive and negative
frequency component, the latter being obtained by reversing the sign onωq. We shall carry out the Matsubara
sum over the bosonic frequencies by writing it as a contour integral with the Bose function:

−T
∑

iνn

F(iνn) = −
∫

C

dz
2πi

n(z)F(z) =
∫

C′

dz
2πi

n(z)F(z) (9.108)
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whereC runs anti-clockwise around the imaginary axis andC′ runs anticlockwise around the poles inF(z).
In this case, we choose

F(z) =
1

z− ωq

1
iωn − z− ǫk−q

=

[
1

z− ωq
− 1

z− (iωn − ǫk−q)

]
1

iωn − (ωq + ǫk−q)
(9.109)

which has two poles, one atz= ωq and one atz= iωn − ǫk−q (Fig. 9.6). Carrying out the contour integral, we

ιω  − εn k−q

ωq

ιω  − εn k−q

ωq
−1 x   =

C

C’

C’

tFig. 9.6 Contours C and C′ used in evaluation of Σ(k, iωn)

then obtain

Σ(k) =
∑

q

g2
q



n(ωq) −
−(1− fk−q)︷          ︸︸          ︷

n(iωn − ǫk−q)

iωn − (ωq + ǫk−q)
− {ωq → −ωq}



=
∑

q

g2
q

[
1+ nq − fk−q

iωn − (ωq + ǫk−q)
− {ωq → −ωq}

]
(9.110)

The second term in this expression is obtained by reversing the sign onωq in the first term, which gives
finally,

Σ(k, z) =
∑

q

g2
q

[
1+ nq − fk−q

z− (ǫk−q + ωq)
+

nq + fk−q

z− (ǫk−q − ωq)

]

where we have taken the liberty of analytically extending the function into the complex plane. There is a
remarkable amount of physics hidden in this expression.

The terms appearing in the electron phonon self-energy can be interpreted in terms of virtual and real
phonon emission processes. Consider the zero temperature limit, when the Bose termsnq = 0. If we look
at the first term inΣ(k), we see that the numerator is only finite if the intermediateelectron state is empty,
i.e |k − q| > kF . Furthermore, the poles of the first expression are located at energiesωq + ǫk−q, which is
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the energy of an electron of momentumk − q and an emitted phonon of momentumωq, so the first process
corresponds to phonon emission by an electron. If we look at the second term, then at zero temperature, the
numerator is only finite if|k − q| < kF , so the intermediate state is a hole. The pole in the second term occurs
at−z= −ǫk−q + ωq, corresponding to a state of one hole and one phonon, so one way to interpret the second
term as the energy shift that results from the emission of virtual phonons by holes. At zero temperature then,

Σ(k, z) =
∑

q

g2
q

[
virtual/real phonon emission by electron︷             ︸︸             ︷

1− fk−q

z− (ǫk−q + ωq)
+

virtual/real phonon emission by hole︷             ︸︸             ︷
fk−q

z− (ǫk−q − ωq)

]

As we shall discuss in more detail in the next chapter, the analytically extended Greens function

G(k, z) =
1

z− ǫk − Σ(k, z)

can be used to derive the real-time dynamics of the electron in thermal equilibrium. In general,Σ(k, ω− iδ) =
ReΣ(k, ω − iδ) + iImΣ(k, ω − iδ) will have a real and an imaginary part. The solution of the relation

ǫ∗k = ǫk + ReΣ(k, ǫ∗k)

determines the renormalized energy of the electron due to virtual phonon emission. Let’s consider the case of
an electron, for whichǫ∗k is above the Fermi energy. The quasiparticle energy takes the form

ǫ∗k = ǫk −

energy lowered by virtual phonon emission︷                            ︸︸                            ︷∑

|k−q|>kF

g2
q

1
(ǫk−q + ωq) − ǫ∗k

+

energy raised by blocking vacuum fluctuations︷                           ︸︸                           ︷∑

|k−q|<kF

g2
q

1
ǫ∗k + |ǫk−q| + ωq

.

If we approximateǫ∗k by its unrenormalized valueǫk , we obtain the second-order perturbation correction to the
electron quasiparticle energy, due to virtual phonon processes. To understand these two terms, it is helpful to
redraw the Feynman diagram for the self energy so that the scattering events are explicitly time ordered, then
we see that there are two virtual processes - depending on whether the intermediate electron line propagates
forwards or backwards in time:

Virtual phonon emission

2t
1t

1 2<(t t  )

Virtual phonon and e−h pair

1t
2t

1 2>(t t  )k

k

k−q

k−q

q

The first term is recognized as the effect of virtual scattering into an intermediate state with one photon
and one electron. But what about the second term? This term involves the initial formation of an electron-
hole pair and the subsequent reannihilation of the hole withthe incoming electron. During the intermediate
process, there seem to betwo electrons (with the same spin) in the same momentum statek. Can it really
be that virtual processes violate the exculsion principle?Fortunately, another interpretation can be given.
Under close examination, we see that unlike typical virtualfluctuations to high energy states, which lower the
total energy, this term actually raises the quasiparticle energy. These energy raising processes are a “blocking
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effect” produced by the exclusion principle, on the vacuum fluctuations. In the ground-state, there are virtual
fluctuations

GS⇋ electron (k′) + hole (−k′ − q) + phonon (q)

which lower the energy of the ground-state. When a single electron occupies the state of momentumk, the
exclusion principle prevents vacuum fluctuations withk′ = k, raising the energy of the quasiparticle. So
time ordered diagrams that appear to violate the exclusion principle describe the suppression of vacuum
fluctuations by the exclusion principle.

If we now extend our discussion to finite temperatures, for any givenk andq, both the first and the second
terms in the phonon self-energy are present. For phonon emission processes, the appearance of the additional
Bose termsnq is the the effect of stimulated emission, whereby the occupancy of phononstates enhances
the emission of phonons. The terms which vanish at zero temperature can also be interpreted as the effect of
phonon absorption of the now thermally excited phonons, i.e

Σ(k, z) =
∑

q

g2
q

[
1− fk−q + nq

z− (ǫk−q + ωq)︸             ︷︷             ︸
virtual/real phonon absorption by hole

+
fk−q + nq

z− (ǫk−q − ωq)︸             ︷︷             ︸
virtual/real phonon absorption by electron

]

By contrast, the imaginary part of the self-energy determines the decay rate of the electron due to real
phonon emission, and the decay rate of the electron is related to the quantity

Γk = 2ImΣ(k, ǫ∗k − iδ) ≈ 2ImΣ(k, ǫk − iδ)

If we use the Dirac relation [
1

x− a− iδ

]
= P

1
x− a

+ iπδ(x− a)

then we see that for a weak interaction, the decay rate of the electron is given by

Γk = 2π
∑

q

g2
q

[ phonon emission︷                                       ︸︸                                       ︷
(1+ nq − fk−q)δ(ǫk − (ǫk−q + ωq))+

phonon absorption︷                                 ︸︸                                 ︷
(nq + fk−q)δ(ǫk − (ǫk−q − ωq))

]

which we may identify as the contribution to the decay rate from phonon emission and absorption, respec-
tively. Schematically, we may write

Im


k k− q

q

k
 =

∑

q




k

k − q
q


2

+


k

k − q
q


2

× 2πδ(E f − Ei)

so that taking the imaginary part of the self-energy “cuts” the internal lines. The link between the imaginary
part of the self-energy and the real decay processes of absorption and emission is sometimes refered to as the
“optical theorem”.

9.7.1 α2F: the electron-phonon coupling function

One of the most important effects of the electron phonon interaction, is to give rise to a superconducting
instability. Superconductivity is driven by the interaction of low-energy electrons very close to the Fermi
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surface, so the amount of energy transferred in an interaction is almost zero. For this reason, the effective
interaction between the electrons is given by (9.105)

Veff(q,0) = −
2g2

q

ωq

Now the momentum dependence of this interaction is very weak. In our simple model, for example,g2
q/2ωq ∼

q2

ω2
q
∼ constant, and a weak momentum dependence implies that to a first approximation then, the effective

low energy interaction is local, extending over one unit cell and of approximate form

He f f ≈ −g
∑

σσ′

∑

q,k,k′,(|ǫk |, |ǫk′ |, |ǫk+q |, |ǫk′+q |, <ωD)

ψ†k+qσψ
†

k′σ′ψk′+qσ′ψkσ (9.111)

where the sum over electron momenta is restricted to within anarrow band of energies, withinωD of the
Fermi energy. This means that the interaction is “instantaneous” to within a time-scale ofδt ∼ 1/ωD. The
effective interaction strengthg is the sum over all 2g2

q/ωq,

g =
1
V

∑

q

2g2
q

ωq
≡

∫

q

2g2
q

ωq
(V ≡ 1) (9.112)

Bardeen and Pines were amongst the first to realize that the electron-electron interaction induced by phonon
exchange is highly retarded relative to the almost instantaneous Coulomb interaction, so that for low energy
processes, the Coulomb interaction could be ignored. The attractive interaction in (9.111) was then the basis of
the “Bardeen-Pines” model[9] - a predecessor of the BCS Hamiltonian. We can make an order-of-magnitude
estimate ofg, by replacing

g ∼
g2

2kF

a3ωD
∼ 1

a3ωD

(g2kF )2

︷                    ︸︸                    ︷[(
a3

2MωD

)
ǫ2

F(2kF)2

]
∼

M
m︷︸︸︷
ǫ2

F

ω2
D


k2

F

2M
∼ ǫF

where we have taken~ = 1 and replaced
∫

q
→ 1/a3. The electron phonon coupling constant is defined as the

product of the interaction strength, times the electron density of states,

λ = N(0)g =
∑

q

2N(0)g2
q

ωq
(9.113)

This dimensionless quantity is not reduced by the small ratio of electron to atom mass, and in typical metals
λ ∼ 0.1− 0.2. We’ll now relate the electron phonon self energy to this quantity.

The electron-phonon self-energy can be simplified by the introduction of a function we call “α2F”, that
keeps track of the frequency dependence of the electron-phonon coupling constant, whereα(ω) is the typical
energy dependent coupling constant andF is the phonon density of states. It turns out thatα2F can be actually
measured inside superconductors andF can be measured by neutron scattering.

The basic idea here, is that the momentum dependence of the electron-phonon self energy is far smaller
than the frequency dependence, so the momentum dependence of the self-energy can be neglected. The
dimensionless ratio between these two dependences is a small number of orderωD/ǫF ,

(
1
vF
|∇kΣ|

)
/

(
∂Σ

∂ω

)
∼ ωD

ǫF
<< 1
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To a good approximation then, the electron phonon self-energy can be averaged over the Fermi surface,
writing

Σ(ω) =

∫
dS Σ(k, ω)
∫

dS

where
∫

dS ≡
∫

d2k/(2π)3 is an integral over the Fermi surface. Now the sum overk′ inside the self-energy
can be replaced by a combination of an energy integral, and a Fermi surface integral, as follows

∑

k′
→

∫
dS′dk′perp=

∫
dS′

|dǫk′/dk′|dǫ
′ =

∫
dS′

vF(S′)
dǫ′

wheredS′ ≡ d2k is a surface integral along the surface of constant energy and vF(S) = n · ∇kǫk is the local
Fermi velocity normal to this surface. Making this substitution,

Σ(ω) =
1∫
dS

∫
dS dS′

v′F
dǫ′g2

k−k′

[
1+ nk−k′ − f (ǫ′)
z− (ǫ′ + ωk−k′)

+
nk−k′ + f (ǫ′)

z− (ǫ′ − ωk−k′ )

]

If we introduce a delta function in the phonon frequency intothis expression, using the identity 1=
∫

dνδ(ν−
ωqλ), then we may rewrite it as follows

Σ(ω) =
1∫
dS

∫
dǫ′dν

∫
dS dS′

v′F
g2

k−k′δ(ν − ωk−k′)

[
1+ n(ν) − f (ǫ′)

z− (ǫ′ + ν)
+

n(ν) + f (ǫ′)
z− (ǫ′ − ν)

]

=

∫ ∞

−∞
dǫ

∫ ∞

0
dνα2(ν)F(ν)

[
1+ n(ν) − f (ǫ′)

z− (ǫ′ + ν)
+

n(ν) + f (ǫ′)
z− (ǫ′ − ν)

]
(9.114)

where the function

F(ω) =
∑

q,λ

δ(ω − ωqλ)

is the phonon density of states, and

α2(ν)F(ν) =
1∫
dS

∫
dS dS′

v′F
δ(ν − ωk−k′)g

2
k−k′λ

is the Fermi surface average of the phonon matrix element anddensity of states. With this definition, the
electron phonon coupling constant is given by

g = 2
∫ ∞

0
dν
α2(ν)F(ν)

ν
, (9.115)

and we may rewrite the self energy as

Σ(z) =
∫ ∞

−∞
dǫ

∫ ∞

0
dνα2(ν)F(ν)

[
1+ n(ν) − f (ǫ)

z− (ǫ + ν)
+

n(ν) + f (ǫ)
z− (ǫ − ν)

]
,

where the energy dependence of the electron density of states has been neglected. This is a very practical
form for the electron self-energy. In practice, most of the energy dependence inα2F is determined by the
phonon density of states. As we shall see later, in a conventional electron-phonon superconductor, one may
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infer the functionα2F using the density of electron states in the superconductor measured by tunneling in the
superconducting state.

9.7.2 Mass Renormalization by the electron phonon interaction

Our simplified expression for of the self-energy enables us to examine how electron propagation is modified
by the exchange of virtual phonons. Let us expand the electron-phonon self energy around zero frequency in
the ground-state. In the ground-state,

Σ(ω) =
∫ ∞

−∞
dǫ

∫ ∞

0
dνα2(ν)F(ν)

[
θ(ǫ)

z− (ǫ + ν)
+

θ(−ǫ)
z− (ǫ′ − ν)

]

=

∫ ∞

0
dνα2(ν)F(ν) ln

[
ν − z
ν + z

]

so that at low frequencies,

Σ(ω) = Σ(0)− λω

where

λ = − dΣ(ω)
dω

∣∣∣∣∣
ω=0

= 2
∫

dν
α2(ν)F(ν)

ν
(9.116)

If we look at our definition ofα2F, we see that this expression is the Fermi surface average of the electron
phonon coupling constant defined in (9.113).

Now at low energies, we can write the electron propagator in terms of the quasiparticle energies, as follows

G(k, ω − iδ) =
1

ω − ǫk − Σ(ω − iδ)

=
1

ω − ǫk − Σ(ǫ∗k − iδ)︸            ︷︷            ︸
ǫ∗k−iΓ/2

+λ(ω − ǫ∗k)
, (9.117)

or

G(k, ω − iδ) =
Z

ω − ǫ∗k − iΓ∗/2
(9.118)

where

Z = (1+ λ)−1 wavefunction renormalization
ǫ∗k = ǫk + Σ(ǫ∗k) quasiparticle energy
Γ∗ = 2ZImΣ(ǫ∗k − iδ) quasiparticle decay rate.

(9.119)

We see that in the presence of the electron phonon interaction, electron quasiparticles are still well-defined at
low temperatures. Indeed, at the Fermi surface,Γ∗ = 0 in the ground-state, so that electron quasiparticles are
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infinitely long-lived. This is an example of a Landau Fermi liquid, discussed in chapter 8. If we differentiate
ǫk with respect toǫ∗k , we obtain

dǫk
dǫ∗k
= (1+ λ) =

(
m∗

m

)

so that the effective mass of the electron is enhanced by the cloud of virtual phonons which trails behind it.
The density of states is also renormalized in the same way

N(0)∗ =
dǫk
dǫ∗k

N(0) = N(0)(1+ λ)

while the electron group velocity is renormalized downwards according to

v∗F = ∇kǫ
∗
k =

dǫ∗k
dǫk
∇kǫk = ZvF

Thus the electron phonon interaction drives up the mass of the electron, effect of squeezing the one-particle
states more closely together and driving the electron groupvelocity downwards. This in turn will mean that
the linear coefficient of the electronic specific heatCv = γ

∗T

γ∗ =
π2k2

B

3
N∗(0) = γ0(1+ λ)

is enhanced.
We can give the wavefunction renormalization another interpretation. Recall that using the method of

contour integration, we can always rewrite the Matsubara representation of the Green function

G(k, τ) = T
∑

n

G(k, iωn)e−iωnτ

as

G(k, τ) = −
∫

dω
π

[
(1− f (ω))θ(τ) − f (ω)θ(−τ)] A(k, ω)e−ωτ, (9.120)

whereA(k, ω) = ImG(k, ω − iδ) is the spectral function. Now, from the normalization of the fermionic
commutation relation{ckσ, c†kσ} = 1, we deduce that the spectral function is normalized:

1 = 〈{ckσ, c
†

kσ}〉 =
〈c†kσckσ〉︷   ︸︸   ︷

G(k,0−)−
−〈ckσc†kσ〉︷   ︸︸   ︷
G(k,0+)

=

∫
dω
π

A(k, ω) (9.121)

The quasiparticle part of the spectral function (9.118) is aLorentzian of widthΓ∗k , weightπZ, and since the
width Γ∗k → 0 asǫ∗k gets closer to the Fermi energy, we deduce that fork ∼ kF , the quasiparticle part of the
spectral function ever more closely represents a delta function of weightZ, so that

1
π

A(k, ω) ∼ Zδ(ω − ǫ∗k) + incoherent background

where the incoherent background is required so that the total frequency integral of the spectral function is
equal to unity.

Now from (9.120), we see that the ground-state occupancy of the electron momentum statek is given by

nkσ = 〈n̂kσ〉T=0 = −G(k,0−) =
∫

dω
π

f (ω)A(k, ω)
∣∣∣∣∣
T=0
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=

∫ 0

−∞

dω
π

A(k, ω), (T = 0) (9.122)

The presence of the quasiparticle pole in the spectral function means that at the Fermi surface, there is a
discontinuity in the occupancy given by

nkσ|k=k−F
− nkσ|k=k+F

= Z =
1

1+ λ

as shown in Fig. 9.7

ZZ
F

−

F

+

F

1

a) b)

c)

A(k,  )ω

ω

A(k,  )ω

ω

k = k k = k 

k

kn

k

Z= 1/(1+  )λ

tFig. 9.7 Illustrating the relationship between the coherent, quasiparticle component in the
electron spectral function, and the discontinuity in the momentum-space occupancy at
the Fermi surface due to the electron-phonon interaction. a) Spectral function just
below the Fermi surface - quasiparticle peak occupied. b) Spectral function just above
Fermi surface - quasiparticle peak unoccupied. c) Momentum space occupancy nk .

Remarks:

• The survival of a sharp “coherent” delta-function peak in the quasiparticle spectral function, together with
this sharp precipace-like discontinuity in the momentum-space occupancy, are one of the hallmark fea-
tures of the Landau Fermi liquid. In an electron-phonon mediated superconductor, it is the coherent part
of the spectral function which condenses into the pair condensate.

• At first sight, one might imagine that since the density of states N∗(0) = (1 + λ)N(0) is enhanced, the
magnetic susceptibility will follow suit. In actual fact, the compression of the density of states produced
by phonons is always located at the Fermi energy, and this means that if the electron phonon interaction
is turned on adiabatically, it does not affect the Fermi momenta of either up, or down electrons, so thatthe
magnetization, and hence the magnetic susceptibility are unaffected by the electron phonon interaction.
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9.7.3 Migdal’s theorem.

At first sight, one might worry about the usefulness of our leading order self-energy correction. We have
already seen that the size of the electron phonon interaction λ is of order unity. So what permits us to ignore
the vertex corrections to the self energy?

One of the classic early results in the electron phonon problem, is Migdal’s theorem[10], according to
which that the renormalization of the electron-phonon coupling by phonon exchange, is of order

√ m
M .

Migdal’s theorem is a result of the huge mismatch between theelectron and phonon dispersion. Basically-
when an electron scatters off a phonon, it moves away so fast that other phonons can not “catch up” with the
outgoing electron.

Migdal’s theorem concerns the correction to the electron-phonon vertex. Diagramatically, the electron self-
energy can be expanded as follows

Σ = + + . . . (9.123)

which we can denote by the shorthand

Σ = (9.124)

Here, the shaded circle denotes the vertex part, given by

= + + · · · = ig(q)(1+ Λ(q)) (9.125)

We shall discuss the leading order vertex correction,

q

k′ + q

k− k′

k+ q

k′
k

= (igq)Λ(q) (9.126)
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where the vertex functionΛ(q) is given by

Λ(q) = T
∑

k′≡(iω′n,k′)

(igk−k′)
2G(k′ + q)G(k′)D(k− k′) (9.127)

We are interested in an order of magnitude estimate of this quantity.
Now at low temperatures, we can replace the summation over the Matsubara frequency can be replaced by

an integral,

T
∑

ω′n

→
∫

dω′n
2π

so that

Λ(q) = −
∫

dω′n
2π

∫
d3k′

(2π)3
(gk−k′)

2G(k′ + q)G(k′)D(k− k′)

Now the propogator

D(k− k′) = − ωk−k′

(ωn − ω′n)2 + ω2
q

vanishes as 1/(ω′n)2 in the region where|ωn − ω′n|>˜ωD, so we restrict this integral, writing

Λ(q) = −
∫ ωD

−ωD

dω′n
2π

∫
d3k′

(2π)3
(gk−k′)

2D(k− k′)G(k′ + q)G(k′)

Inside the restricted frequency integral, to obtain an estimate of this quantity, we shall replaceg2
k−k′D(k−k′) ∼

a3g × 2ωk−k′D(k − k′) ∼ −g, since 2ωk−k′D(k − k′) ∼ −1. To good approximation, the frequency integral
may be replaced by a single factorωD, so that

Λ(q) ∼ ωDga3

∼ (kF )3

ǫ2F︷                                 ︸︸                                 ︷∫
d3k′

(2π)3
G(k′ + q)G(k′)

∣∣∣∣∣∣
ω′n=ωn

.

Now inside the momentum summation overk′, the electron momenta are unrestricted so the energiesǫk′ and
ǫk′+q are far from the Fermi energy and we may estimate this term as of order (kFa)3

ǫ2
F

. Putting these results

together,

Λ ∼ gωD
(kFa)3

ǫ2
F

Now sinceg ∼ λǫF and (kFa)3 ∼ 1, we see that

Λ ∼ λωD

ǫF
∼

√
m
M

In otherwords, even though the electron phonon interactionis of order unity, the large ratio of electron to ion
mass leads to a very small vertex correction.
Remarks:

• Perhaps the main difficulty of the Migdal argument, is that it provides a false sense of security to the
theorist- giving the impression that one has “proven” that the perturbative treatment of the electron
phonon interaction is always justified. Migdal’s argument is basically a dimensional analysis. The weak-
point of the derivation, is that the dimensional analysis does not work for those scattering events where
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the energies of the scattered electrons are degenerate. While such scattering events may make up a small
contribution to the overall phase space contributing to theself-energy, they become important because
the associated scattering amplitudes can develop strong singularities that ultimately result in a catas-
trophic instability of the Fermi liquid. The dimensional analysis in the Migdal argument breaks down
when electrons inside the loop have almost degenerate energies. For example, the Migdal calculation,
does not work for the case whereq is close to a nesting vector of the Fermi surface, whenq spans two
nested Fermi surfaces, this causesǫk′ andǫk′+q to become degenerate, enhancing the size of the vertex
by a factor ofǫF/ωD × log(ωD/T). The singular term ultimately grows to a point where an instability
to a density wave takes place, producing a charge density wave. The other parallel instability is the
Cooper instability, which is a singular correction to the particle-particle scattering vertex, caused by the
degeneracy of electron energies for electrons of opposite momenta.

9.8 Appendix A

In this appendix, we consider the Hamiltonian

H =

H0︷        ︸︸        ︷∑

λ

ǫλψ
†
λψλ −

−VI︷                   ︸︸                   ︷∑

λ

[
z̄λ(τ)ψλ + ψ

†)λ
]

and show that the generating functional

Z0[η̄, η] = Z0〈Te−
∫ β

0
VI (τ)dτ〉0

= Z0〈T exp


∫ β

0
dτ

∑

λ

(
η̄λ(τ)ψλ(τ) + ψ

†
λ(τ)ηλ(τ)

)〉0 (9.128)

is explicitly given by

Z0[η̄, η]
Z0

= exp

−
∑

λ

∫ β

0
dτ1dτ2η̄λ(1)Gλ(τ1 − τ2)ηλ(2)



Gλ(τ1 − τ2) = −〈Tψλ(τ1)ψ†λ(τ2)〉 (9.129)

for both bosons and fermions.
We begin by evaluating the equation of motion of the fields in the Heisenberg representation:

∂ψλ

∂τ
= [H, ψλ] = −ǫλψλ(τ) + ηλ(τ)

Multiplying this expression by the integrating factoreǫλτ, we obtain

∂

∂τ

[
eǫλτψλ(τ)

]
= eǫλτηλ(τ)

which we may integrate fromτ′ = 0 toτ′ = τ, to obtain

ψλ(τ) = e−ǫλτψλ(0)+
∫ τ

0
dτ′e−ǫλ(τ−τ

′)ηλ(τ
′)dτ′
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We shall now take expectation values of this equation, so that

〈ψλ(τ)〉 = e−ǫλτ〈ψλ(0)〉 +
∫ τ

0
dτ′e−ǫλ(τ−τ

′)ηλ(τ
′)dτ′ (9.130)

If we impose the boundary condition〈ψλ(β)〉 = ζ〈ψλ(0)〉, whereζ = 1 for bosons andζ = −1 for fermions,
then we deduce that

〈ψλ(0)〉 = ζnλ
∫ β

0
eǫλτ

′
ηλ(τ

′)dτ′,

wherenλ = 1/(eβǫλ − ζ) is the Bose (ζ = 1), or Fermi functionζ = −1. Inserting this into (9.130), we obtain

〈ψλ(τ)〉 = ζnλ
∫ β

0
e−ǫλ(τ−τ

′)ηλ(τ
′)dτ′ +

∫ β

0
e−ǫλ(τ−τ

′)θ(τ − τ′)ηλ(τ′)dτ′, (9.131)

where we have introduced a theta function in the second term,in order to extend the upper limit of integration
to β. Rearranging this expression, we obtain

〈ψλ(τ)〉 =
∫ β

0
dτ′

−Gλ(τ−τ′)︷                                                       ︸︸                                                       ︷
e−ǫλ (τ − τ′) [(1+ ζnλ)θ(τ − τ′) + ζnλθ(τ′ − τ)

]

= −
∫ β

0
dτ′Gλ(τ − τ′)ηλ(τ′) (9.132)

soGλ(τ) is the imaginary time response of the field to the source term. We may repeat the same procedure for
the expectation value of the creation operator. The resultsof these two calculations may be summarized as

〈ψλ(τ)〉 =
δZ[η̄, η]
δη̄(τ)

= −
∫ β

0
dτ′Gλ(τ − τ′)ηλ(τ′)

〈ψ†λ(τ)〉 =
δZ[η̄, η]
δη(τ)

= −
∫ β

0
dτ′η̄(τ)Gλ(τ − τ′). (9.133)

Notice how the creation field propagates backwards in time from the source. The common integral to these
two expression is

ln Z[η̄, η] = ln Z0 −
∫ β

0
dτdτ′η̄λ(τ)Gλ(τ − τ′)ηλ(τ′)

where the constant term lnZ0 has to be intependent of bothη and η̄. The exponential of this expression
recovers the result (9.129 ).

Exercises

Exercise 9.1 Use the method of complex contour integration to carry out the Matsubara sums in the fol-
lowing:
(i) Derive the density of a spinless Bose Gas at finite temperature from the boson propagatorD(k) ≡
D(k, iνn) = [iνn −ωk ]−1, whereωk = Ek −µ is the energy of a boson, measured relative to the chemical
potential.

ρ(T) =
N
V
= V−1

∑

k

〈Tbk(0−)b†k(0)〉 = −(βV)−1
∑

iνn,k

D(k)eiνn0+ . (9.134)
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How do you need to modify your answer to take account of Bose Einstein condensation?
(ii) The dynamic charge-susceptibility of a free Bose gas, i.e

χc(q, iνn) =

D(k+q)

D(k)

= T
∑

iνn

∫
d3k

(2π)3
D(q+ k)D(k). (9.135)

Please analytically extend your final answer to real frequencies.
(iii) The “pair-susceptibility” of a spin-1/2 free Fermi gas, i.e.

χP(q, iνn) =
G(k+q)

G(-k)

= T
∑

iωr

∫
d3k

(2π)3
G(q+ k)G(−k) (9.136)

whereG(k) ≡ G(k, iωn) = [iωn − ǫk ]−1. (Note the direction of the arrows: why is there no minus sign
for the Fermion loop?) Show that the static pair susceptibility, χP(0)is given by

χP =

∫
d3k

(2π)3

tanh[βǫk/2]
2ǫk

(9.137)

Can you see that this quantity diverges at low temperatures?How does it diverge, and why ?
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Exercise 9.2 A simple model an atom with two atomic levels coupled to a radiation field is described by
the Hamiltonian

H = Ho + HI + Hphoton, (9.138)

�������������
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�������������
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����������������������������

E

E-

+

οω

where

Ho = Ẽ−c
†
−c− + Ẽ+c

†
+c+ (9.139)

describes the atom, treating it as afermion

HI = V−1/2
∑

~q

g(ω~q)
(
c†+c− + c†−c+

)[
a†~q + a−~q

]
(9.140)

describes the coupling to the radiation field (V is the volume of the box enclosing the radiation) and

Hphoton=
∑

~q

ω~qa†~qa~q, (ωq = cq) (9.141)

is the Hamiltonian for the electromagnetic field. The “dipole” matrix elementg(ω) is weak enough to
be treated by second order perturbation theory and the polarization of the photon is ignored.
(i) Calculate the self-energyΣ+(ω) andΣ−(ω) for an atom in the+ and− states.
(ii) Use the self-energy obtained above to calculate the life-timesτ± of the atomic states, i.e.

τ−1
± = 2ImΣ±(Ẽ± − iδ). (9.142)

If the gas of atoms is non-degenerate, i.e the Fermi functions are all small compared with unity,f (E±) ∼
0 show that

τ−1
+ = 2π|g(ωo)|2F(ωo)[1 + n(ωo)]
τ−1
− = 2π|g(ωo)|2F(ωo)n(ωo), (9.143)

whereωo = Ẽ+ − Ẽ− is the separation of the atomic levels and

F(ω) =
∫

d3q
(2π)3

δ(ω − ωq) =
ω2

2πc3
(9.144)

is the density of state of the photons at energyω. What do these results have to do with stimulated
emission? Do your final results depend on the initial assumption that the atoms were fermions?
(iii)Why is the decay rate of the upper state larger than the decay rate of the lower state by the factor
[1 + n(ω0)]/n(ω0)?
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[7] H Fröhlich, Theory of the superconducting state. I. The ground state at the absolute zero of temperature,

Physical Review, vol. 79, pp. 845, 1950.
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10
Fluctuation Dissipation Theorem and

Linear Response Theory

10.1 Introduction

In this chapter we will discuss the deep link between fluctuations about equilibrium, and the response of a
system to external forces. If the susceptibility of a systemto external change is large, then the fluctuations
about equilibrium are expected to be large. The mathematical relationship that quantifies this this connection
is called the “fluctuation-dissipation” theorem[1, 2]. We shall discuss and derive this relationship in this
chapter. It turns out that the link between fluctuations and dissipation also extends to imaginary time, enabling
us to relate equilibrium correlation functions and response functions to the imaginary time Greens function
of the corresponding variables.

To describe the fluctuations and response at a finite temperature we will introduce three related three types
of Green function- the correlation functionS(t) [3],

S(t − t′) = 〈A(t) A(t′)〉 =
∫ ∞

−∞

dω
2π

e−iω(t−t′)S(ω),

the dynamical susceptibilityχ(t)

χ(t − t′) = i〈[A(t),A(t′)]〉θ(t − t′),

which determines the retarded response

〈A(t)〉 =
∫ ∞

−∞
dt′χ(t − t′) f (t′), 〈A(ω)〉 = χ(ω) f (ω),

to a force f (t) term coupled toA inside the HamiltonianHI = − f (t)A(t), and lastly, the imaginary time
response functionχ(τ)

χ(τ − τ′) = 〈T A(τ)A(τ′)〉

.
The fluctuation dissipation theoremm[1, 2, 4] relates the Fourier transforms of these quantities. according to

S(ω)︸︷︷︸
Fluctuations

= 2~[

Quantum︷︸︸︷
1 +

Thermal︷︸︸︷
nB(ω)] χ′′(ω)︸︷︷︸

Dissipation

,

whereχ′′(ω) = Im χ(ω) describes the dissipative part of the response function. In the limit,ω << kBT, when
n(ω) ∼ kBT/~ω, this result reverts to the classical fluctuation-dissipation theorem,

S(ω) =
2kBT
ω

χ′′(ω).
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Thus in principle, if we know the correlation functions in thermal equilibrium, we can compute the response
function of the system.

The dissipative response of the system also enters into the Kramer’s Kronig expansion of the response
function,

χ(z) =
∫

dω
π

1
ω − z

χ′′(ω)

and this expression can be used to analytically extendχ(ω) into the complex plane. In practice, the theorist
takes advantage of a completely parallel fluctuation-dissipation theorem which exists in imaginary time. The
imaginary time correlation functionχ(τ) is periodic in time.χ(τ + β) = χ(τ), and has an discrete Matsubara
Fourier expansion, given by

χ(τ) = 〈T A(τ)A(0)〉 = 1
β

∑

n

e−iνnτχM(iνn)

The key relation between this function and the physical response function is that

χM(iνn) = χ(z).|z=iνn
.

This relation permits us to compute the physical response function by analytically continuing the Fourier
components of the imaginary-time correlation functions onto the real axis.

To understand these relations, we need first to understand the nature of the quantum mechanical response
functions. We shall then carry out a “spectral decomposition” of each of the above functions, deriving the fluc-
tuation dissipation theorem by showing that the same underlying matrix elements enter into each expression.
A heuristic understanding of the relationship between fluctuations and dissipation, is obtained by examining
a classical example. The main difference between the classical and the quantum fluctuation-dissipation theo-
rem, is that in classical mechanics we are obliged to explicitly include the external sources of noise, whereas
in the quantum case, the noise is intrinsic, and we can analyse the fluctuations without any specific reference
to external sources of noise. Nevertheless, the classical case is highly pedagagocical, and it is this limit that
we shall consider first.

10.2 Fluctuation dissipation theorem for a classical harmonic
oscillator

In a classical system, to examine correlation functions we need to include an explicit source of external noise.
To illustrate the procedure, consider a harmonic oscillator in thermal equilibrium inside a viscous medium.
Suppose that thermal fluctuations give rise to a random force, acting on the oscillator, according to the quation
of motion:

m(ẍ+ ω2
ox) + ηẋ = f (t)

If we Fourier transform this relationship, we obtain
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fluctuations
︷ ︸︸ ︷

〈x(t)x(0)〉 = 2kBT

∫
dω

2π

χ′′(ω)

ω
︸ ︷︷ ︸

dissipation

e−iωt

t

x(t)

tFig. 10.1 Fluctuations in a classical harmonic oscillator are directly related to the dissipative
response function via the “fluctuation dissipation theorem”.

x(ω) = χ(ω) f (ω)
χ(ω) = [m(ω2

0 − ω2) − iωη]−1 (10.1)

Hereχ(ω) is the response function , or susceptibility to the external force. The imaginary part of the suscep-
tibility governs the dissipation and is given by

χ′′(ω) =
ωη

m(ω2
0 − ω2) + ω2η2

= |χ(ω)|2ωη. (10.2)

Now let us consider the fluctuations in thermal equilibrium.Over long time periods, we expect the two-point
correlation function to be purely a function of the time difference:

〈x(t)x(t′)〉 = 〈x(t − t′)x(0)〉

The power spectrum of fluctuations is defined as

〈|x(ω)|2〉 =
∫

dt〈x(t)x(0)〉eiωt

and the inverse relation gives

〈x(t)x(t′)〉 =
∫

dω
2π

e−iω(t−t′)〈|x(ω)|2〉.
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Now in thermal equilibrium, the equipartition theorem tells us that

mω2
0

2
〈x2〉 = kBT

2
,

or

〈x2〉 =
∫

dω
2π
〈|x(ω)|2〉 =

∫
dω
2π
|χ(ω)|2〈| f (ω)|2〉 = kBT

mω2
0

Since the integrand is very sharply peaked around|ω| = ω0, we replace〈| f (ω)|2〉 → 〈| f (ω0)|2〉 in the above
expression. Replacing|χ(ω)|2→ 1

ωη
χ′′(ω) we then obtain

kBT

mω2
0

=
〈| f (ω0)|2〉

2η

∫
dω
π

χ′′(ω)
ω
=
| f (ω0)|2

2ηmω2
0

.

so that the spectrum of force fluctuations is determined by the viscosityη

〈| f (ω0)|2〉 = 2ηkBT.

Now if we assume that the noise spectrum it depends only on theproperties of the viscous medium in which
the oscillator is embedded, and that it does not depend on theproperties of the oscillator, then we expect
this expression holds for any frequencyω0, and since it isindependentof the frequency, we conclude that
the power spectrum of the force is a flat function of frequency, enabling us to replaceω0 → ω in the above
expression. This implies that in thermal equilibrium, the force coupling the system to the environment is a
source of white noise of amplitude which depends on the viscosity of the medium

〈 f (t) f (t′)〉 =
∫

dω
2π

e−iω(t−t′)

2ηkBT︷    ︸︸    ︷
〈| f (ω)|2〉 = 2ηkBTδ(t − t′)

We can now compute the noise spectrum of fluctuations, which is given by

S(ω) = 〈|x(ω)|2〉 = |χ(ω)|2〈| f (ω)|2〉 = 〈| f (ω)|2〉χ
′′(ω)
ωη

=
2kBT
ω

χ′′(ω).

This expression relates the thermal fluctuations of a classical system to the dissipation, as described by the
imaginary part of the response function,χ′′(ω).

10.3 Quantum Mechanical Response Functions.

Suppose we couple a forcef to variableA. For later generality, it suits our need to consider a force in both in
real and imaginary time, with Hamiltonian

H = Ho − f (t)A
H = Ho − f (τ)A. (10.3)

We shall now show that the response to these forces are given by
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〈A(t)〉 = 〈A〉 +
∫ ∞

−∞
χ(t − t′) f (t′)dt′

〈A(τ)〉 = 〈A〉 +
∫ β

0
χ̃(τ − τ′) f (τ′)dτ′ (10.4)

χ(t − t′) = i〈[A(t), A(t′)]〉θ(t − t′)

χ̃(τ − τ′) = 〈T A(τ)A(τ′)]〉 − 〈A〉2 (10.5)

where〈A〉 is the value ofA in thermal equilibrium. Let us begin in real time. Using the interaction represen-
tation, we know that

AH(t) = U†(t)AI (t) U(t),

where

U(t) = T expi
∫ t

−∞
dt′AI (t

′) f (t′).

Remembering that the interaction representation corresponds to the Heisenberg representation forHo, we can
drop the subscript onAI (t) ≡ A(t), so that to linear order inf (t),

U(t) = 1+ i
∫ t

−∞
dt′A(t′) f (t′),

U†(t) = 1− i
∫ t

−∞
dt′A(t′) f (t′)

so that

AH(t) = A(t) + i
∫ t

−∞
dt′[A(t),A(t′)] f (t′),

In thermal equilibrium if〈A(t)〉 = 〈A〉 , so the response to the applied force is given by

〈AH(t)〉 = 〈A〉 +
∫ +∞

−∞
dt′ χ(t − t′) f (t′),

where

χ(t − t′) = i〈[A(t),A(t′)] 〉θ(t − t′)

is the “retarded response function”, also known as the “dynamical susceptibility”. The above equation is
particularly interesting, for it relates a quantum-mechanical response function to a correlation-function.

Let us now consider imaginary time. In this case, the partition function in the presence of the perturbation
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is

Z = Z0〈T exp
∫ β

0
dτ f (τ)AI (τ)〉0

The expectation value ofA(τ) is then given by

〈A(τ)〉 = δ ln Z
δ f (τ)

=
〈T A(τ) exp

∫ β

0
dτ′ f (τ′)AI (τ′)〉

〈T exp
∫ β

0
dτ′ f (τ′)AI (τ′)〉

= 〈A〉 +
∫ β

0
dτ′

χ̃(τ−τ′)︷                      ︸︸                      ︷[
〈T A(τ)A(τ′)〉 − 〈A〉2

]
f (τ′) +O( f 2) (10.6)

so that

χ̃(τ) = 〈T A(τ)A(0)〉 − 〈A〉2
= 〈T(A(τ) − 〈A〉)(A(0)− 〈A〉)〉 (10.7)

where the expectation values are to be taken in thermal equilibrium for H0.

10.4 Fluctuations and Dissipation in a quantum world

The quantum Boltzmann formulation of many body physics is naturally tailored to a discussion of the statis-
tics of fluctuations and dissipation. Quantum systems are naturally noisy, and there is no need for us to
add any additional noise source to examine the deep link between flucutations and dissipation in a quantum
many body system. Indeed, the quantum fluctuation dissipation theorem can be derived in rather mechanistic
fashion by carrying out out a spectral decomposition of the various response and correlation functions. The
procedure is formally more direct that its classical analogue, but the algebra tends to hide the fact that the
underlying physics holds precisely the same link between fluctuations- now both thermal and quantum in
character- and dissipation.

To derive the quantum fluctuation theorem, we must first spectrally decompose the correlation function
S(t − t′) and the response functionχ(t − t′).

10.4.1 Spectral decomposition I: the correlation function S(t − t′)

This is the easiest decomposition of the three to carry out. We begin by expanding the response function in
terms of a complete set of energy eigenstates which satisfy

H |λ〉 = Eλ |λ〉 ,∑

λ

|λ〉 〈λ| = 1,

〈λ |A(t)| ζ〉 =
〈
λ
∣∣∣eiHt A e−iHt

∣∣∣ ζ
〉
= e−i(Eζ−Eλ)(t−t′) 〈λ |A| ζ〉 .

Using these key results, we make the expansion as follows,

S(t − t′) = 〈A(t)A(t′)〉
=

∑

λ,ζ

e−β(Eλ−F) 〈λ |A(t)| ζ〉
〈
ζ
∣∣∣A(t′)

∣∣∣ λ
〉
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=
∑

λ,ζ

e−β(Eλ−F) |〈ζ |A| λ〉|2 e−i(Eζ−Eλ)(t−t′) (10.8)

If we now Fourier transform this expression, the frequency dependent correlation function can be written

S(ω) =
∫ ∞

−∞
dteiωtS(t)

=
∑

λ,ζ

e−β(Eλ−F) |〈ζ |A| λ〉|2 2πδ(Eζ − Eλ − ω). (10.9)

This is the frequency spectrum of the correlations.

10.4.2 Spectral decomposition II: the response function χ(t − t′)

We now use the same spectral decomposition approach for the response function. In this case, we need to
take care of two operator orderings inside the commutator, which yield

χ(t − t′) = i
∑

λ,ζ

e−β(Eλ−F)
{
〈λ |A(t)| ζ〉

〈
ζ
∣∣∣A(t′)

∣∣∣ λ
〉
−

〈
λ
∣∣∣A(t′)

∣∣∣ ζ
〉
〈ζ |A(t)| λ〉

}
θ(t − t′)

= i
∑

λ,ζ

eβF(e−βEλ − e−βEζ ) |〈ζ |A| λ〉|2 e−i(Eζ−Eλ)(t−t′)θ(t − t′).

By introducing the spectral function

χ′′(ω) = π(1− e−βω)
∑

λ,ζ

|〈ζ |A| λ〉|2 δ[ω − (Eζ − Eλ)]e
−β(Eλ−F), (10.10)

we see that the retarded response function can be written,

χ(t) = i
∫

dωe−iωtθ(t) χ′′(ω). (10.11)

Fourier transforming this result, using

i
∫ ∞

0
dtei(ω−ω′+iδ) t =

1
ω′ − ω − iδ

,

we obtain

χ(ω) =
∫

dω′

π

1
ω′ − ω − iδ

χ′′(ω′). (10.12)

This “Kramers-Kr̈onig” relation can be used to extend the response function into the complex plane. Notice
that because the response function isretarded, χ(ω) is analytic in the upper-half complex plane and the poles
lie just below the real axis, atz= ω′− iδ. Finally, taking the imaginary part of this expression, using the Dirac
relationIm[1/(ω′ − ω − iδ) = πδ(ω′ − ω), we are able to identify

χ′′(ω) = Imχ(ω + iδ)

as the dissipative part of the response function.
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10.4.3 Quantum Fluctuation dissipation Theorem

If we compare the relations (10.10 ) and (10.9), we see that

S(ω) =
2

1− e−βω
χ′′(ω).

If we restore~, this becomes

S(ω) =
2~

1− e−β~ω
χ′′(ω) = 2~ [1+ nB(~ω)] χ′′(ω). (10.13)

Thus, by carrying out a spectral analysis, we have been able to directly link the correlation functionS(ω)
with the dissipative part of the response functionχ(ω).

10.4.4 Spectral decomposition III: fluctuations in imaginary time

For the final of our three decompositions, we move to imaginary time, and write,τ − τ′ > 0,

χ(τ − τ′) =
∑

λ,ζ

e−β(Eλ−F)
{
〈λ |A(τ)| ζ〉

〈
ζ
∣∣∣A(τ′)

∣∣∣ λ
〉}

=
∑

λ,ζ

e−β(Eλ−F)e−(Eλ−Eζ )(τ−τ′) |〈ζ |A| λ〉|2 .

Now
∫ β

0
dτeiνnτe−(Eλ−Eζ )τ =

1
(Eζ − Eλ − iνn)

(1− e−(Eλ−Eζ )β),

so

χ(iνn) =
∫ β

0
dτeiνnτχ(τ)

=
∑

λ,ζ

e−β(Eλ−F)(1− e−β(Eζ−Eλ)) |〈ζ |A| λ〉|2 1
(Eζ − Eλ − iνn)

.

Using (10.10 ), we can write this as

χ(iνn) =
∫

dω
π

1
ω − iνn

χ′′(ω) (10.14)

so thatχ(iνn) is the unique analytic extension ofχ(ω) into the complex plane. Our procedure to calculate
response functions will be to writeχ(iνn) in the form 10.14, and to use this to read off χ′′(ω).

10.5 Calculation of response functions

Having made the link between the imaginary time, and real time response functions, we are ready to discuss
how we can calculate response functions from Feynman diagrams. Our procedure is to compute the imaginary
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Table. 10.0 Selected Operators and corresponding responsefunction.

Quantity Operator̂A A(k) Response Function

Density ρ̂(x) = ψ†(x)ψ(x) ραβ = δαβ Charge susceptibility

Spin density ~S(x) = ψα†(x)
(
~σ
2

)
αβ
ψβ(x) ~Mαβ = µB~σαβ Spin susceptibility

Current density e
mψ
†(x)

(
−i~

↔
∇ −e~A

)
ψ(x) ~j = e~vk = e~∇ǫk Conductivity

Thermal current ~
2

2mψ
†(x)

↔
∇
↔
∂ t ψ(x) ~jT = iωn~vk = iωn

~∇ǫk Thermal conductivity

(Where
↔
∇≡ 1

2

(→
∇ −

←
∇
)
,
↔
∂ t≡ 1

2

(→
∂ t −

←
∂ t

)
)

time response function, and then analytically continue to real frequencies. Suppose we are interested in the
response function forA where,

A(x) = ψ†α(x)Aαβψβ(x).

(See table 10.0). The corresponding operator generates thevertex

β

α

x = Aαβ

(10.15)

where the spin variablesαβ are to be contracted with the internal spin variables of the Feynman diagram. This
innevitably means that the variableAαβ becomes part of an internal trace over spin variables. If we expand
the corresponding response functionχ(x) = 〈A(x)A(0)〉 using Feynman diagrams, then we obtain

χ(τ) = 〈A(x)A(0)〉 =
∑

closed linked two-vertex diagrams

=

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

x 0

For example, in a non-interacting electron system, the imaginary time spin response function involves
A(x) = µBψα

†(x)σαβψβ(x), so the corresponding response function is
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χab(x− x′) = µ2
B × αβ

a
σ βα

b
σ

β

α

x x’

= −

Trace over
spin variables︷︸︸︷

Tr
[
σaG(x− x′)σbG(x′ − x)

]

= −δab2µ2
BG(x− x′)G(x′ − x) (10.16)

Now to analytically continue to real frequencies, we need totransform to Fourier space, writing

χ(q) =
∫

d4xe−iqxχ(x)

where the integral over timeτ runs from 0 toβ. This procedure converts the Feynman diagram from a real-
space, to a momentum space Feynman diagram. At the measurement vertex at positionx, the incoming and
outgoing momenta of the fermion line give the following integral

∫
d4xe−iqxei(kin−kout)x = βVδ4(kout − kin + q).

As in the case of the Free energy, theβV term cancels with the 1/(βV)
∑

k terms associated with each pro-
pogator, leaving behind one factor of 1/(βV) = T/V per internal momentum loop. Schematically, the effect
of the Fourier transform on the measurement vertex at position x, is then

∫
d4xe−iqx

x
 =

q

k

k+q

(10.17)

For example, the momentum-dependent spin response function of the free electron gas is given by

χab(q) = µ2
B ×

a
σ

b
σ

k

k+q

= − 1
βV

∑

k

Tr
[
σaG(k+ q)σbG(k)

]
= δabχ(q) (10.18)

where

χ(q, iνr ) = −2µ2
B

∫

k
T

∑

iωn

G(k + q, iωn + iνr )G(k, iωn) (10.19)

When we carry out the Matsubara summation in the above expression by a contour integral, (see Chapter 9),
we obtain

−T
∑

iωn

G(k + q, iωn + iνr )G(k, iωn) = −
∫

C′

dz
2πi

f (z)G(k + q, z+ iνr )G(k, z)

=

(
fk − fk−q

(ǫk+q − ǫk) − iνr

)
, (10.20)
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whereC′ encloses the poles of the Green functions. Inserting this into (10.19), we obtainχ(q, iνr ) = χ(q, z)|z=iνr ,where

χ(q, z) = 2µ2
B

∫

k

(
fk − fk−q

(ǫk+q − ǫk) − iνr

)
(10.21)

From this we can also read off the power-spectrum of spin fluctuations

χ′′(q, ω) = Imχ(q, ω + iδ) = 2µ2
B

∫

q
πδ(ǫq+k − ǫk − ω)

[
fk − fk+q

]
(10.22)

When we come to consider conductivities, which involve the response function of current operators, we
need to know how to deal with an operator that involves spatial, or temporal derivatives. To do this, it is
convenient to examine the Fourier transform of the operatorA(x),

∫
d4xe−iqxψ†(x)Aψ(x) =

∑

k

ψ†(k− q/2)Aψ(k+ q/2)

In current operators,A is a function of gradient terms such as
↔
∇ and

↔
∂ t. In this case, the use of the symmetrized

gradient terms ensures that when we Fourier transform, the derivative terms are replaced by the midpoint
momentum and frequency of the incoming or outgoing electron.

∫
d4xe−iqxψ†(x)A[−i

↔
∇, i

↔
∂ t]ψ(x) =

∑

k

ψ†(k− q/2)A(k, iωn)ψ(k+ q/2)

for example, the current operator~J(x) = e~
m

(
−i
↔
∇
)

becomes

J(q) =
∑

k

e~vkψ
†(k− q/2)ψ(k+ q/2),

where~vk =
~~k
m is the electron velocity. For the thermal current operator~Jt(~x) = ~

2

m

(↔
∇
↔
∂ t

)
,

~Jt(q) =
∑

k

iωn
~

2~k
m
ψ†(k− q/2)ψ(k+ q/2).

Example 10.1: Calculate the imaginary part of the dynamic susceptibility for non-interactingelectrons
and show that at low energiesω << ǫF ,

χ′′(q, ω)
ω

=

{
µ2

B
N(0)
vF q (q ≤ 2kF)

0 (q > 2kF)

wherevF = ~kF/m is the Fermi velocity.
Solution: Starting with (10.22) In the low energy limit, we can write

lim
ω→0

χ′′(q, ω)
ω

= 2µ2
B

∫

q
δ(ǫq+k − ǫk)

fk+q − fk
ǫk − ǫk+q

= 2µ2
B

∫

q
δ(ǫq+k − ǫk)

(
− d f

dǫk

)
(10.23)

Replacing
∫

q
→

∫
dǫN(ǫ)

∫ 1

−1

dcosθ
2

we obtain
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lim
ω→0

χ′′(q, ω)
ω

= 2µ2
BN(0)

∫ 1

−1

dcosθ
2

δ(
q2

2m
+

qkF

m
cosθ)

= 2µ2
BN(0)

m
2qkF

= µ2
B

(
N(0)
vFq

)
(q < 2kF) (10.24)

10.6 Spectroscopy: linking measurement and correlation

The spectroscopies of condensed matter provide the essential window on the underlying excitation spectrum,
the collective modes and ultimately the ground-state correlations of the medium. Research in condensed
matter depends critically on the creative new interpretations given to measurements. It is from these interpre-
tations, that new models can be built, and new insights discovered, leading ultimately to quantitative theories
of matter.

Understanding the link between experiment and the microscopic world is essential for theorist and experi-
mentalist. At the start of a career, the student is often flunginto a seminar room, where it is often difficult to
absorb the content of the talk, because the true meaning of the spectroscopy or measurements is obscure to
all but the expert - so it is important to get a rough idea of howand what each measurement technique probes
- to know some of the pitfalls of interpretation - and to have an idea about how one begins to calculate the
corresponding quantities from simple theoretical models.
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Table. 10.1 Selected Spectroscopies .

C
H

A
R

G
E

S
P

IN
E

LE
C

T
R

O
N

NAME SPECTRUM Â Questions and Issues

Surface probe.T ∼ 0 measurement.

STM
dI
dV

dI
dV

(x) ∝ A(x, ω)|ω=eV ψ(x) Is the surface different?

ARPES I (k, ω) ∝ f (−ω)A(k,−ω) ckσ(t) p⊥ unresolved.
Surface probe. No magnetic field

Inverse PES I (ω) ∝
∑

k

[1 − f (ω)]A(k, ω) c†kσ(t) p unresolved.

Surface probe.

χDC χDC =

∫
dω
πω

χ′′(q = 0, ω) M χ ∼ 1
T local moments.

Uniform Susceptibility χ ∼ cons paramagnet

Inelastic Neutron
Scattering What is the background?

d2σ

dΩdω
S(q, ω) =

1
1− e−βω

χ′′(q, ω) S(q, t) Quality of crystal?

NMR
Knight Shift Kcontact∝ χlocal S(x, t) How is the orbital part subtracted?

1
T1

T
∫

q
F(q)

χ′′(q, ω)
ω

∣∣∣∣∣∣
ω=ωN

How does powdering affect sample?

What is the resistance ratio?

Resistivityρ ρ =
1

σ(0)
~j(q = 0) (R300/R0)

Reflectivity:

Optical σ(ω) =
1
−iω

[〈 j(ω′) j(−ω′)〉]ω0 ~j(ω) How was the Kramer’s Kr̈onig done?

Conductivity Spectral weight transfer?

278



bk.pdf April 29, 2012 144

c©2011 Piers Coleman Chapter 10.

Fundamentally, each measurement is related to a given correlation function. This is seen most explicity in
scattering experiments. Here, one is sending in one a beam ofparticles, and measuring the flux of outgoing
particles at a given energy transferE and momentum transferq. The ratio of outgoing to incoming particle
flux determines the differential scattering cross-section

d2σ

dΩdω
=

Outward particle flux
Inward particle flux

When the particles scatter, they couple to some microscopic variableA(x) within the matter, such as the
spin density in neutron scattering, or the particle field itself A(x) = ψ(x) in photo-emission. The differential
scattering cross-section this gives rise to what is, in essence a measure of the autocorrelation function ofA(x)
at the wavevectorq and frequencyω = E/~ inside the material,

d2σ

dΩdω
∼

∫
d4x〈A(x, t)A(0)〉e−i(q·x−ωt) = S(q, ω)

Remarkably scattering probes matter at two points in space!How can this be? To understand it, recall that the
differential scattering rate is actually an (imaginary) part ofthe forward scattering amplitude of the incoming
particle. The amplitude for the incoming particle to scatter in a forward direction, contains the Feynman
process where it omits a fluctuation of the quantityA at positionx′, travelling for a brief period of time as
a scattered particle, before reabsorbing the fluctuation atx. The amplitude for the intermediate process is
nothing more than

k−q

k

k

A(x’)

A(x)

amplitude=

amplitude for fluctuation︷        ︸︸        ︷
〈A(x)A(x′)〉× ei[q·(x−x′)−ω(t−t′)]

︸             ︷︷             ︸
amplitude for particle to scatter at x’,
and reabsorb fluctuation at x .

(10.25)

(In practice, since the whole process is translationally invariant, we can replacex by x− x′ and setx′ = 0. )
The relationship between the correlation function and scattering rate is really a natural consequence of

Fermi’s Golden rule, according to which

d2σ

dΩdω
∼ Γi→ f =

2π
~

∑

f

pi |〈 f |V|i〉|2δ(E f − Ei)

wherepi is the probability of being in the initial state|i〉. Typically, an incoming particle (photon, electron,
neutron) with momentumk scatters into an outgoing particle state (photon, electron, neutron) with momen-
tum k′ = k − q, and the system undergoes a transition from a state|λ〉 to a final state|λ′〉:

|i〉 = |λ〉|k〉, | f 〉 = |λ′〉|k′〉

If the scattering Hamiltonian withV ∼ g
∫

x
ρ(x)A(x), whereρ(x) is the density of the particle beam, then the
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scattering matrix element is

〈 f |V̂|i〉 = g
∫

x′
〈k′|x′〉〈λ′|A(x′)|λ〉〈x′|k〉 = g

Vo

∫

x′
eiq·x′〈λ′|A(x′)|λ〉 (10.26)

so the scattering rate is

Γi→ f =
g2

V2
0

∫

x, x′
pλ〈λ|A(x)|λ′〉〈λ′|A(x′)|λ〉e−iq·(x−x′)2πδ(Eλ′ − Eλ − ω) (10.27)

where pλ = e−β(Eλ−F) is the Boltzmann probability. Now if we repeat the spectral decomposition of the
correlation function made in (10.9)

∫
dteiωt〈A(x, t)A(x′,0)〉 = 2π

∑

λ,λ′

pλ〈λ|A(x)|λ′〉〈λ′|A(x′)|λ〉δ(Eλ′ − Eλ − ω),

we see that

Γi→ f ∼
g2

V2
0

∫

x,x′
dteiωt〈A(x, t)A(x′,0)〉e−iq·(x−x′)

=
g2

V0

∫
d3xdte−i(q·x−ωt)〈A(x, t)A(0)〉

where the last simplification results from translational invariance. Finally, if we divide the transition rate by
the incoming flux of particles∼ 1/V0, we obtain the differential scattering cross-section.

For example, in an inelastic neutron scattering (INS) experiment, the neutrons couple to the electron spin
densityA = S(x) of the material, so that

d2σ

dΩdω
(q, ω) ∼

∫
d4x〈S−(x, t)S+(0)〉e−i(q·x−ωt) ∝ 1

1− e−βω
χ′′(q, ω)

whereχ(q, ω) is the dynamic spin susceptibility which determines the magnetizationM(q, ω) = χ(q, ω)B(q, ω)
by a modulated magnetic field of wavevectorq, frequencyω. By contrast, in an angle resolved photo-emission
(ARPES) experiment, incoming X-rays eject electrons from the material, leaving behind “holes”, so that
A = ψ is the electron annihilation operator and the intensity of emitted electrons measures the correlation
function

I (k, ω) ∼
∫

d4x〈ψ†(x)ψ(0)〉e−i(k·x−ωt) =

f (−ω)︷   ︸︸   ︷
1

1+ eβω
A(k,−ω)

where the Fermi function replaces the Bose function in the fluctuation dissipation theorem.

10.7 Electron Spectroscopy

10.7.1 Formal properties of the electron Green function

The spectral decomposition carried out for a bosonic variable A is simply generalized to a fermionic variable
such asckσ. The basic electron “correlation” functions are

〈ckσ(t)c†kσ(0)〉 =
∫

dω
2π

G>(k, ω)e−iωt
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〈c†kσ(0)ckσ(t)〉 =
∫

dω
2π

G<(k, ω)e−iωt (10.28)

called the “greater” and “lesser” Green functions. A spectral decomposition of these relations reveals that

G>(k, ω) =
∑

λ,ζ

pλ|〈ζ |c†kσ|λ〉|22πδ(Eζ − Eλ − ω)

G<(k, ω) =
∑

λ,ζ

pλ|〈ζ |ckσ|λ〉|22πδ(Eζ − Eλ + ω)

describe the positive energy distribution functions for particles (G>) and the negative energ distribution
function for holes (G<) respectively. By relabellingζ ↔ λ in (10.29) it is straightforward to show that

G<(k, ω) = e−βωG>(k, ω)

We also need to introduce the retarded electron Green function, given by

GR(k, t) = −i〈{ckσ(t), c†kσ(0)}〉θ(t) =
∫

dω
2π

GR(k, ω)e−iωt

(note the appearance of an anticommutator for fermions and the minus sign pre-factor) which is the real-time
analog of the imaginary time Green function

G(k, τ) = −〈Tckσ(τ)c†kσ(0)〉 = T
∑

n

G(k, iωn)e−iωnτ

A spectral decomposition of these two functions reveals that they share the same power-spectrum and Kramer’s
Krönig relation, and can both be related to the generalized Green function

G(k, z) =
∫

dω
π

1
z− ωA(k, ω) (10.29)

where

GR(k, ω) = G(k, ω + iδ) =
∫

dω′

π

1
ω − ω′ + iδ

A(k, ω)

G(k, iωn) = G(k, z)|z=iωn =

∫
dω
π

1
iωn − ω

A(k, ω′), (10.30)

and the spectral functionA(k, ω) = 1
π
G(k, ω − iδ) is then given by

A(k, ω) =
∑

λ,ξ

pλ



electron addition︷                             ︸︸                             ︷
|〈ζ |c†kσ|λ〉|2δ(ω − Eζ − Eλ)+

electron removal︷                            ︸︸                            ︷
|〈ζ |ckσ|λ〉|2δ(ω + Eζ − Eλ)



=
1
2π

[G>(k, ω) +G<(k, ω)] (10.31)

is the sum of the particle and hole energy distribution functions. From the second of (10.31) and (10.28), it
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follows thatA(k, ω) is the Fourier transform of the anticommutator

〈{ckσ(t), c†kσ(0)}〉 =
∫

dωA(k, ω)e−iωt (10.32)

At equal times, the commutator is equal to unity,{ckσ, c†kσ} = 1, from which we deduce the normalization
∫

dωA(k, ω) = 1.

For non-interacting fermions, the spectral function is a pure delta-function, but in Fermi liquids the delta-
function is renormalized by a factorZ and the remainder of the spectral weight is transfered to an incoherent
background.

A(k, ω) = Zkδ(ω − Ek) + background

π
A(k,   )

G  (k,  ) : ARPES< G  (k,  ): IPES>

Q. particle
Pole, strength
Zk

0

ω

ω ω

ω
tFig. 10.2 Showing the redistribution of the quasiparticle weight into an incoherent background

in a Fermi liquid.

The relations

G>(k, ω) =
2π

1+ e−βω
A(k, ω) = 2(1− f (ω))A(k, ω) (particles)

G<(k, ω) =
2π

1+ eβω
A(k, ω) = 2 f (ω)A(k, ω) (holes) (10.33)

are the fermion analog of the fluctuation dissipation theorem.
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10.7.2 Tunneling spectroscopy

Tunneling spectroscopy is one of the most direct ways of probing the electron spectral function. The basic
idea behind tunneling spectroscopy, is that a tunneling probe is close enough to the surface that electrons
can tunnel through the forbidden region between the probe and surface material. Traditionally, tunneling was
carried out using point contact spectroscopy, whereby a sharp probe is brought into contact with the surface,
and tunneling takes place through the oxide layer separating probe and surface. With the invention of the
Scanning Tunneling Microscope, by Gerd Binnig and HeinrichRohrer in the 80’s has revolutionized the
field. In recent times, Seamus Davis has developed this tool into a method that permits the spectral function
of electrons to be mapped out with Angstrom level precision across the surface of a conductor.

In the WKB approximation, the amplitude for an electron to tunnel between probe and surface is

t(x1, x2) ∼ exp

[
−1
~

∫ x2

x1

√
2m[U(x) − E]ds

]
(10.34)

where the integral is evaluated along the saddle-point pathbetween probe and surface. The exponential de-
pendence of this quantity on distance means that tunneling is dominated by the extremal path from a single
atom at the end of a scanning probe, giving rise to Angström - level spatial resolution.

The Hamiltonian governing the interaction between the probe and the sample can be written

V̂ =
∑

k,k′
tk,k′

[
c†kσpk′σ + H.c.

]
.

wheretk,k′ is the tunnelling matrix element between the probe and substrate,c†kσ andp†kσ create electrons
in the sample and the probe respectively. The particle current of electrons from probe to sample is given by

iP→S = 2π
∑

k,k′,ζ,ζ′,λ,λ′,σ

pλpλ′ |tk,k′ |2|〈ζ, ζ′|c†kσpk′σ|λ, λ′〉|2δ(Eζ + Eζ′ − Eλ − Eλ′)

where|λ, λ′〉 ≡ |λ〉|λ′〉 and |ζ, ζ′〉 ≡ |ζ〉|ζ′〉 refer to the joint many body states of the sample (unprimed) and
probe (primed), and we have dropped~ from the equation. This term creates electrons in the sample, leaving
behind holes in the probe.

Now if we rewrite this expression in terms of the spectral functions of the probe and sample, after a little
work, we obtain

iP→S = 4π
∑

k,k′
|tk,k′ |2

∫
dωAS(k, ω) ÃP(k′, ω)(1− f (ω)) fP(ω),

whereÃP(k, ω) and fP(ω) are the spectral function and distribution function of thevoltage-biased probe. We
have doubled the expression to account for spin. You can check the validity of these expressions by expanding
the spectral functions using (10.31), but the expression issimply recognized as a product of matrix element,
density of states and Fermi-Dirac electron and hole occupancy factors.

Similarly, the particle current of electrons from sample toprobe is

iS→P = 2π
∑

k,k′,ζ,ζ′,λ,λ′,σ

pλpλ′ |tk,k′ |2|〈ζ, ζ′|p†k′σckσ|λ, λ′〉|2δ(Eζ + Eζ′ − Eλ − Eλ′)

= 4π
∑

k,k′
|tk,k′ |2

∫
dωAS(k, ω)ÃP(k′, ω)[1 − fP(ω)] f (ω). (10.35)
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Subtracting these two expressions, the total electrical current I = e(iP→S − iS→P) from probe to sample is

I = 4πe
∑

k,k′
|tk,k′ |2

∫
dωAS(k, ω) ÃP(k′, ω)[ fP(ω) − f (ω)]. (10.36)

The effect of applying a voltage biasV > 0 to the probe is to lower the energy of the electrons in the
probe, so that both the energy distribution functionfP(ω) and the spectral function of electrons in the probe
ÃP(k, ω) are shifted down in energy by an amount|e|V with respect to their unbiased values, in other words
fP(ω) = f (ω + |e|V) = f (ω − eV) (e= −|e|) andÃP(k′, ω) = AP(k′, ω − eV), so that

I = 4πe
∑

k,k′
|tk,k′ |2

∫
dωAS(k, ω) AP(k′, ω − eV)[ f (ω − eV) − f (ω)]. (e= −|e|) (10.37)

We shall ignore the momentum dependence of the tunneling matrix elements, writing|t|2 = |tk,k′ |2, and∑
k′ A(k′, ω) = N(0), the density of states in the probe, we obtain

I (V) = 2e

Γ︷      ︸︸      ︷
2π|t|2N(0)

∫
dωAS(ω)[ f (ω − eV) − f (ω)]. (10.38)

and

AS(ω) =
∑

k

AS(k, ω)

(10.39)

is the local spectral functions for the sample. Typically, the probe is ametal with a featureless density of
states, and this justifies the replacementN(ω) ∼ N(0) in the above expression. The quantity 2πt2N(0) =
Γ is the characteristic resonance broadening width created by the tunnelling out of the probe. If we now
differentiate the current with respect to the applied voltage, we see that the differential conductivity

G(V) =
dI
dV
=

(
2e2

~

)
Γ

∫
dωAS(ω)

∼δ(ω−eV)︷              ︸︸              ︷(
−d f(ω − eV)

dω

)

At low temperatures, the derivative of the Fermi function gives a delta function in energy, so that

G(V) =

(
4e2Γ

h

)
AS(ω)

∣∣∣∣∣∣
ω=eV

Thus by mapping out the differential conductance as a function of position, it becomes possible to obtain a
complete spatial map of the spectral function on the surfaceof the sample.

10.7.3 ARPES, AIPES and inverse PES

ARPES (angle resolved photoemission spectroscopy), AIPES(angle integrated photoemision spectroscopy)
and inverse PES (inverse photo-electron spectrosopy) are the alternative ways of probing the hole and electron
spectra in matter. The first two involve “photon in, electronout”, the second “electron in, photon out”. The
coupling of radiation to light involves the dipole couplingterm

HI = −
∫

d3x~j(x) · ~A(x)
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where~j(x) = i e~
2mψσ

†(x)~∇ψσ(x) is the paramagnetic electron current operator. Unlike STMor neutron scat-
tering, this is a strongly coupled interaction, and the assumption that we can use the Golden Rule to relate the
absorption to a correlation function is on much shakier ground. ARPES spectroscopy involves the absorption
of a photon, and the emission of a photo-electron from the material. The interpretation of ARPES spectra is
based on the “sudden approximation”, whereby it is assumed that the dipole matrix element between the in-
tial and final states has a slow dependence on the incoming photon energy and momentum, so that the matrix
element is i.e

〈ζ, k + q| − ~j · ~A|λ,q〉 ∼ Λ(q, êλ)〈ζ |ckσ|λ〉

On the assumption thatΛ is weakly energy and momentum dependent, we are able to directly relate the
absorption intensity to the spectral density beneath the Fermi energy,

IARPES(k, ω) ∝ f (−ω)A(k,−ω)

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

inγ e out

(10.40)

The appearance of the Fermi function masks states above the Fermi energy, and sometimes causes problems
for the interpretation of ARPES spectra near the Fermi energy - particularly for the estimation of anisotropic,
superconducting gaps. There is a large caveat to go with thisequation: when photo-electrons escape from a
surface, the component of their momentum perpendicular to the surface is modified by interactions with the
surface. Consequently, ARPES spectroscopy can not resolvethe momenta of the spectral function perpen-
dicular to the surface. The other consideration about ARPES, is that it is essentially a surface probe - X-ray
radiation has only the smallest ability to penetrate samples, so that the information obtained by these methods
provides strictly a surface probe of the system.

In recent years, tremendous strides in the resolution of ARPES have taken place, in large part because of
the interest in probing the electron spectrum of the quasi- two-dimensional cuprate superconductors. These
methods have, for example, played an important role in exhibiting the anisotropic d-wave gap of these mate-
rials.

Inverse photo-electron spectroscopy probes the spectral function above the Fermi energy. At present, angle
resolved IPES is not a as well developed, and most IPES work involves unresolved momenta, i.e

I IPES(ω) ∝
∑

k

[1 − f (ω)]A(k, ω)

������
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outγe in

(10.41)

In certain materials, both PES and IPES spectra are available. A classic example is in the spectroscopy of
mixed valent cerium compounds. In these materials, theCeatoms have a singly occupied f-level, in the 4f 1

configuration. PES spectroscopy is able to resolve the energy for the hole excitation

4 f1→ 4 f 0 + e−, ∆EI = −E f

whereE f is the energy of a single occupied 4f level. By contrast, inverse PES reveals the energy to add an
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electron to the 4f 1 state,

e− + 4 f1→ 4 f 2, ∆EII = E f + U

whereU is the size of the Coulomb interaction between two electronsin an f-state. By comparing these two
absorption energies, it is possible to determine the size ofthe Coulomb interaction energy

10.8 Spin Spectroscopy

10.8.1 D.C. magnetic susceptibility

If one measures the static D. C. magnetization of a medium, one is measuring the magnetic response at zero
wavevectorq = 0 and zero frequencyω = 0. By the Kramer’s Kr̈onig relation encountered in (10.12), we
know that

χDC =

∫
dω
π

χ′′(q = 0, ω)
ω

So the static magnetic susceptibility is an economy-class measurement of the magnetic fluctuation power
spectrum at zero wavevector. Indeed, this link between the two measurements sometimes provides an impor-
tant consistency check of neutron scattering experiments.

In static susceptibility measurements, there are two important limiting classes of behavior, Pauli para-
magnetism, in which the susceptibility is derived from the polarization of a Fermi surface, and is weakly
temperature dependent,

χ ∼
µ2

B

ǫF
∼ constant. (Pauli paramagnetism)

and Curie paramagnetism, produced by unpaired electrons localized inside atoms, commonly known as “local
moments”. where the magnetic susceptibilty is inversely proportional to the temperature, or more generally

χ(T) ∼ ni

M2
e f f︷             ︸︸             ︷

g2µ2
B j( j + 1)

3

×
1

T + T∗
(local moment paramagnetism)

whereni is the concentration of local moments andM2
e f f is the effective moment produced by a moment

of total angular momentumj, with gyromagnetic ratio,g. T∗ is a measure of the interaction between local
moments. For Ferromagnets,T∗ = −Tc < 0, and ferromagnetic magnetic order sets in atT = Tc, where the
uniform magnetic susceptibility diverges. For antiferromagnetis,T∗ > 0 gives a measure of the strength of
interaction between the local moments.

10.8.2 Neutron scattering

Neutrons interact weakly with matter, so that unlike electrons or photons, they provide an ideal probe of the
bulk properties of matter. Neutrons interact with atomic nucleii via an interaction of the form

ĤI = α

∫
d3xψ†N(x)ψN(x)ρ(x),
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whereρ(x) is the density of nucleii andψN(x) is the field of the neutrons. This interaction produces unpolar-
ized scattering of the neutrons, with an inelastic scattering cross-section of the form (see example below),

d2σ̃

dΩdE
=

kf

ki

(
αmN

2π~2

)2 S(q,E)
2π

whereS(q,E) is the autocorrelation function of nuclear density fluctuations in the medium. Where do these
come from? They are of course produced by phonons in the crystal. The neutrons transfer energy to the
nucleii by exciting phonons, and we expect that

S(q,E) ∼ (1+ nB(E))δ(E − ~ωq)

whereωqλ is the phonon dispersion spectrum inside the medium.
The second important interaction between neutrons and matter, is produced by the interaction between the

nuclear moment and the magnetic fields inside the material. The magnetic moment of the neutron is given by

~M = γµN
~σ

2

whereγ = −1.91 is the gyromagnetic ratio of the neutron andµN =
e~

2mN
is the neutron Bohr magneton. The

interaction with the fields inside the material is then givenby

ĤI =
γµN

2

∫
d3xψ†N(x)~σψN(x) · ~B(x),

The magnetic field inside matter is produced by two sources- the dipole field generated by the electron spins,
and the orbital field produced by the motion of electrons. We will only discuss the spin component here. The
dipole magnetic field produced by spins is given by

B(x) =
∫

d3x′V(x − x′) · M̃ (x′)

where ~M(x) = µBψ
†(x)σ̃ψ(x) is the electron spin density and

V(x) = −∇̃ × ∇̃ ×
(
µ0

4π|x|

)

We can readily Fourier transform this expression, by makingthe replacements

~∇ → i~q,
1

(4π|x|) →
1
q2

(10.42)

so that in Fourier space,

[
V(q)

]
ab
= µ0

[
~q× ~q×

(
1
q2

)]

ab

= µ0
[
q̂× q̂×]ab

= µ0

Pab(q̂)︷        ︸︸        ︷[
δab − q̂aq̂b

]
. (10.43)

The only effect of the complicated dipole interaction, is to remove the component of the spin parallel to the
q-vector. The interaction between the neutron and electronspin density is simply written

HI = g
∫

q
σN(−q)P(q̂) · ~Se(q), g = µ0γµNµB

Apart from the projector term, this is essentially, a “pointinteraction” between the neutron and electron spin
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density. Using this result, we can easily generalize our earlier expression for the nuclear differential scattering
to the case of unpolarized neutron scattering by replacingα→ g, and identifying

S⊥(q,E) = Pab(q̂)Sab(q,E)

as the projection of the spin-spin correlation function perpendicular to the q-vector. For unpolarized neutrons,
the differential scattering cross-section is then

d2σ̃

dΩdE
=

kf

ki
r2

oS⊥(q,E)

where

r0 =

( gmN

2π~2

)
=
γ

2

1
4πǫ0c2︷︸︸︷(
µ0

4π

) e2

m

=

(
γ

2

) e2
cgs

mc2
(10.44)

is, apart from the prefactor, the classical radius of the electron.

Example 10.2: Calculate, in the imaginary time formalism, the self-energy of a neutron interacting
with matter and use this to compute the differential scattering cross-section. Assume the interaction
between the neutron and matter is given by

ĤI = α

∫
d3xψ†N(x)ψN(x)ρ(x)

whereψN(x) is the neutron field andρ(x) is the density of nuclear matter.
Solution:
We begin by noting that the the real-space self-energy of the neutron is given by

Σ(x− x′) = α2〈δρ(x)δρ(x′)〉G(x− x′)

where〈δρ(x)δρ(x′)〉 = χ(x− x′) is the real-time density response function of the nuclear matter. (Note
that the minus sign in−α2 associated with the vertices is absent because the propagator used here
〈δρ(x)δρ(0)〉 contains no minus sign pre-factor. ) If we Fourier transform this expression, we obtain

Σ(k) =
α2

βV

∑

q

G(k− q)χ(q)

= α2

∫

q
T

∑

iνn

G(k− q)χ(q) (10.45)

Carrying out the Matsubara summation, we obtain

Σ(k, z) = α2

∫

q

dE′

π

1+ n(E′) − fk−q

z− (Ek−q + E′)
χ′′(q,E′)

whereEk is the kinetic energy of the neutron and the Fermi functionfk of the neutron can be ultimately
set to zero (there is no Fermi sea of neutrons),fk → 0, so that

Σ(k, z) = α2

∫

q

dE′

π

1
z− (Ek−q + E′)

S(q,E)︷                    ︸︸                    ︷
(1+ n(E′))χ′′(q,E′)

From the imaginary part of the self-energy, we deduce that the lifetimeτ of the neutron is given by

1
τ
=

2
~

ImΣ(k,Ek − iδ) =
2α2

~

∫

k′
S(k − k′,Ek − Ek′ )
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where we have changed the momentum integration variable fromq to k′ = k − q. Splitting the momen-
tum integration up into an integral over solid angle and an integral over energy, we have

∫

k′
=

∫ (
mNkf

8π2~2

)
dE′dΩ′

from which we deduce that the mean-free pathl of the neutron is given by

1
l
=

1
vNτ
=

1
vN

2ImΣ(k,Ek − iδ) =
∫

dΩk′dEk′ ×
[
kf

ki

(
αmN

2π~2

)2

S(q,E)

]

whereq = k − k′ andE = Ek − Ek′ andvN = ~ki/mN is the incoming neutron velocity.
Normally we writel = 1/(niσ) , whereσ is the cross-section of each scatterer andni is the concentration
of scattering centers. Suppose ˜σ = niσ is the scattering cross-section per unit volume, then ˜σ = 1/l, so
it follows that

σ̃ =
1
vN

2ImΣ(k,Ek − iδ) =
∫

dΩk′dEk′ ×
[
kf

ki

(
αmN

2π~2

)2

S(q,E)

]

from which we may identify the differential scattering cross-section as

d2σ̃

dΩdE
=

kf

ki

(
αmN

2π~2

)2

S(q,E)

10.8.3 NMR

Knight Shift K

Nuclear Magnetic resonance, or “Magnetic resonance imaging” (MRI), as it is more commonly referred
to in medical usage, is the use of nuclear magnetic absorption lines to probe the local spin environment in
a material. The basic idea, is that the Zeeman interaction ofa nuclear spin in a magnetic field gives rise to
a resonant absorption line in the microwave domain. The interaction of the nucleus with surrounding spins
and orbital moments produces a “Knight shift” this line and it also broadens the line, giving it a width that is
associated with the nuclear spin relaxation rate 1/T1.

The basic Hamiltonian describing a nuclear spin is

H = −µn~I · ~B+ Hh f

where~I is the nuclear spin,µn is the nuclear magnetic moment. The termHh f describes the “hyperfine”
interaction between the nuclear spin and surrounding spin degrees of freedom. The hyperfine interaction
between a nucleus at sitei and the nearby spins can be written

Hh f = −~I i · ~Bh f (i)
~Bh f (i) = A

contact
· ~Si + A

orbital
· ~Li +

∑

j

A
trans

(i − j) · S j . (10.46)

whereBh f (i) is an effective field induced by the hyperfine couplings. The three terms in this Hamiltonian are
derived from a local contact interaction, with s-electronsat the same site, an orbital interaction, and lastly,
a transfered hyperfine interaction with spins at neighboring sites. The various tensorsA are not generally
isotropic, but for pedagogical purposes, let us ignore the anisotropy.

The Knight shift - the shift in the magnetic resonance line, is basically the expectation value of the hyperfine
field Bh f In a magnetic field, the electronic spins inside the materialbecome polarized, with〈S j〉 ∼ χB, where
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χ is the magnetic susceptibility, so in the simplest situation, the Knight shift is simply a measure of the local
magnetic susceptibility of the medium. n turn, a measure of the electron density of states〈N(ǫ)〉, thermally
averaged around the Fermi energy, so

K ∼ Bh f ∼ χB ∼ 〈N(ǫ)〉B.

One of the classic indications of the development of a gap in the electron excitation spectrum of an electronic
system, is the sudden reduction in the Knight shift. In more complex systems, where there are different spin
sites, the dependence of the Knight shift can depart from theglobal spin susceptibility.

Another application of the Knight shift, is as a method to detect magnetic, or antiferromagnetic order. If
the electrons inside a metal develop magnetic order, then this produces a large, field-independent Knight shift
that can be directly related to the size of the ordered magnetic moment

K ∼ 〈Slocal〉

Unlike neutron scattering, NMR is able to distinguish between homogeneous and inhomogeneous magnetic
order.

Relaxation rate1/T1

The second aspect to NMR, is the broadening of the nuclear resonance. If we ignore all but the contact
interaction, then the spin-flip decay rate of the local spin is determined by the Golden Rule,

1
T1
=

2π
~

I2A2
contactS+−(ω)

∣∣∣∣∣
ω=ωN

whereωN is the nuclear resonance frequency and

S+−(ω) =
∫

q
[1+ nB(ω)] χ′′+−(q, ω)

∼ T
∫

d3q
(2π)3

1
ω
χ′′+−(q, ω) (10.47)

at frequenciesω ∼ ωN, so for a contact interaction, the net nuclear relaxation rate is then

1
T1
=

2π
~

I2A2
contact× T

∫
d3q

(2π)3

1
ω
χ′′+−(q, ω)

∣∣∣∣∣∣
ω=ωN

In a classical metal,χ′′(ω)/ω ∼ N(0)2 is determined by the square of the density of states. This leads to an
NMR relaxation rate

1
T1
∝ T N(0)2 ∼ kBT

ǫ2
F

Korringa relaxation

This linear dependence of the nuclear relaxation rate on temperature is name a “Korringa relaxation” law,
after the Japanese theorist who first discovered it. Korringa relaxation occurs because the Pauli principle
allows only a fraction fractionT N(0) ∼ T/ǫF of the electrons to relax the nuclear moment. In a more general
Fermi system, the NMR relaxation rate is determined by the thermally averaged square density of states.

1
T1
∼ T

∫ (
−d f(ω)

dω

)
N(ω)2 ∼ T × [N(ω ∼ kBT)]2

In a wide class of anisotropic superconductors with lines ofnodes along the Fermi surface, the density of
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states is a linear function of energy. One of the classic signatures of these line nodes across the Fermi surface
is then a cubic dependence of 1/T1 on the temperature

line nodes in gap⇒ N(ǫ) ∝ ǫ, ⇒ 1
T1
∝ T3

In cases where the transferred hyperfine couplings are important, the non-locality introduces a momentum
dependence intoA(k) =

∑
~R A(~Rj)e−ik·~Rj these couplings. In this case,

1
T1
=

2π
~

I2 × T
∫

d3q
(2π)3

A(q)2 1
ω
χ′′+−(q, ω)

∣∣∣∣∣∣
ω=ωN

These momentum dependences can lead to radically different temperature dependences in the relaxation
rate at different sites. One of the classic examples of this behavior occurs in the normal state of the high
temperature superconductors. The active physics of these materials takes place in quasi-two dimensional
layers of copper oxide, and the NMR relaxation rate can be measured at both the oxygen (O17) and copper
sites.

(
1
T1

)

Cu

∼ constant,

(
1
T1

)

O

∼ T,

The appearance of two qualitatively different relaxation rates is surprising, because the physics of the copper-
oxide layers is thought to be described by a single-band model, with a single Fermi surface that can be seen
in ARPES measurements. Why then are there two relaxation rates?

One explanation for this behavior has been advanced by Mila and Rice, who argue that there is indeed a
single spin fluid, located at the copper sites. They noticed that whereas the copper relaxation involves spins
at the same site, so that

ACu(q) ∼ constant,

the spin relaxation rate on the oxygen sites involves a transfered hyperfine coupling between the oxygenpx or
py orbitals and the neigboring copper spins. The odd-parity ofa px or py orbital means that the corresponding
form factors have the form

Apx(q) ∼ sin(qxa/2).

Now high temperature superconductors are doped insulators. In the insulating state, cuprate superconduc-
tors are “Mott insulators”, in which the spins on the Copper sites are antiferromagnetically ordered. In the
doped metallic state, the spin fluctuations on the copper sites still contain strong antiferromagnetic correla-
tions, and they are strongly peaked around~Q0 ∼ (π/a, π/a), wherea is the unit cell size. But this is precisely
the point in momentum space where the transfered hyperfine couplings for the Oxygen sites vanish. The ab-
sence of the Korringa relaxation at the cupper sites is then taken as a sign that the copper relaxation rate is
driven by strong antiferromagnetic spin fluctuations whichdo not couple to oxygen nucleii.
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10.9 Electron Transport spectroscopy

10.9.1 Resistivity and the transport relaxation rate

One of the remarkable things about electron transport, is that one of the simplest possible measurements - the
measurement of electrical resistivity, requires quite a sophisticated understanding of the interaction between
matter and radiation for its microscopic understanding. Weshall cover this relationship in more detail in the
next chapter, however, at basic level, DC electrical resistivity can be interpreted in terms of the basic Drude
formula

σ =
ne2

m
τtr

where 1/τtr is the transport relaxation rate. In Drude theory, the electron scattering rateτtr is related to the
electron mean-free pathl via the relation

l = vFτ

wherevF is the Fermi velocity. We need to sharpen this understanding, for 1/τtr is not the actual electron
scattering rate, it is the rate at which currents decay in thematerial. For example, if we consider impurity
scattering of electrons with a scattering amplitudeu(θ) which depends on the scattering angleθ, the electron
scattering rate is

1
τ
= 2πniN(0)|u(θ)|2

where

|u(θ)|2 =
∫ 1

−1

dcosθ
2
|u(θ)|2.

denotes the angular average of the scattering rate. However, as we shall see shortly, the transport scattering
rate which governs the decay of electrical current containsan extra weighting factor:

1
τtr
= 2πniN(0)|u(θ)|2(1− cosθ)

|u(θ)|2(1− cosθ) =
∫ 1

−1

dcosθ
2
|u(θ)|2(1− cosθ). (10.48)

The angular weighting factor (1− cosθ) derives from the fact that the change in the current carriedby an
electron upon scattering through an angleθe is evF(1 − cosθ). In other words, only large angle scattering
causes current decay. For impurity scattering, this distinction is not very important but in systems where the
scattering is concentrated nearq = 0, such as scattering off ferromagnetic spin fluctuations, the (1− cosθ)
term substantially reduces the effectiveness of scattering as a source of resistance.

At zero temperature, the electron scattering is purely elastic, and the zero temperature resistanceR0 is then a
measure of the elastic scattering rate off impurities. At finite temperatures, electrons also experience inelastic
scattering, which can be strongly temperature dependent. One of the most important diagnostic quantities to
characterize the quality of a metal is the resistance ratio -the ratio of resistance at room temperature to the
resistance at absolute zero

RR= Resistance Ratio=
R(300K)

R(0)
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The higher this ratio, the lower the amount of impurities andthe higher the quality of sample. Hardware
quality copper piping already has a resistance ratio of order a thousand! A high resistance ratio is vital for the
observation of properties which depend on the coherent balistic motion of Bloch waves, such as de-Haas van
Alphen oscillations or the development of anisotropic superconductivity, which is ultra-sensitive to impurity
scattering.

With the small caveat of distinction between transport and scattering relaxation rates, the temperature de-
pendent resistivity is an excellent diagnostic tool for understanding the inelastic scattering rates of electrons:

ρ(T) =
m

ne2
×

(
1

τtr (T)

)

There are three classic dependences that you should be familiar with:

• Electron phonon scattering above the Debye temperature

1
τtr
= 2πλkBT

Linear resistivity is produced by electron-phonon scattering at temperatures above the Debye tempera-
ture, where the coefficientλ is the electron-phonon coupling constant defined in the previous chapter.
In practice, this type of scattering always tends to saturate once the electron mean-free path starts to
become comparable with the electron wavelength. It is this type of scattering that is responsible for
the weak linear temperature dependence of resistivity in many metals. A note of caution - for linear
resistivity does not necessarily imply electron phonon scattering! The most well-known example of lin-
ear resitivity occurs in the normal state of the cuprate superconductors, but here the resistance does
not saturate at high temperatures, and the scattering mechanism is almost certainly a consequence of
electron-electron scattering.

• Electron-electron or Baber scattering

1
τtr
=
π

~
|UN(0)|2N(0)(πkBT)2

where

|UN(0)|2 = N(0)2
∫

dΩk̂′

4π
|U(k − k′)|2(1− cos(θk,k′))

is the weighted average of the electron-electron interactionU(q). This quadratic temperature dependence
of the inelastic scattering rate can be derived from the Golden rule scattering rate

1
τtr
=

4π
~

∑

k′,k′′
|U(k − k′)|2(1− cosθk,k′)(1− fk′ )(1− fk′′ ) fk′+k′′−kδ(ǫk′ + ǫk′′ − ǫk′′′)

where the 4π = 2 × 2π prefactor is derived from the sum over internal spin indicesIf we neglect the
momentum dependence of the scattering amplitude, then thisquantity is determined entirely by the
three-particle phase space

1
τtr
∝

∫
dǫ′dǫ′′(1− f (ǫ′))(1− f (ǫ′′)) f (−ǫ′ − ǫ′′)

= T2
∫

dxdy

(
1

1− e−x

) (
1

1− e−y

) (
1

1− e−(x+y)

)
=
π2

4
T2 (10.49)

In practice, this type of resistivity is only easily observed in strongly interacting electron materials,
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where it is generally seen to develop at low temperatures when a Landau Fermi liquid develops. TheT2

resistivity is a classic hallmark of Fermi liquid behavior.
• Kondo spin-flip scattering

In metals containing a dilute concentration of magnetic impurities, the spin-flip scattering generated
by the impurities gives rise to a temperature dependent scattering rate of the form

1
τtr
∼ ni

1

ln2
(

T
TK

)

whereTK is the “Kondo temperature”, which characterizes the characteristic spin fluctuation rate of
magnetic impurity. This scattering is unusual, because it becomes stronger at lower temperatures, giving
rise to a “ resistance minimum” in the resistivity.

In heavy electron materials, the Kondo spin-flip scatteringis seen at high temperatures, but once a coher-
ent Fermi liquid is formed, the resistivity drops down againat low temperatures, ultimately following aT2

behavior.

10.9.2 Optical conductivity

Probing the electrical properties of matter at finite frequencies requires the use of optical spectroscopy. In
principle, optical spectroscopy provides a direct probe ofthe frequency dependent conductivity inside a con-
ductor. The frequency-dependent conductivity is defined bythe relation

~j(ω) = σ(ω)~E(ω) (10.50)

Modern optical conductivity measurements can be made from frequencies in the infra -red of orderω ∼
10cm−1 ∼ 1meV up to frequencies in the optical, of order 50,000cm−1 ∼ 5eV. The most direct way of
obtaining the optical conductivity is from the reflectivity, which is given by

r(ω) =
1− n(ω)
1+ n(ω)

=
1−
√
ǫ(ω)

1+
√
ǫ(ω)

, (10.51)

wheren(ω) =
√
ǫ(ω) is the diffractive index andǫ(ω) is the frequency dependent dielectric constant. Now

ǫ(ω) = 1+ χ(ω) whereχ(ω) is the frequency dependent dielectric susceptibility. Now since the polarization
P(ω) = χ(ω)E(ω), and since the current is given byj = ∂tP, it follows that j(ω) = −iωP(ω) = −iωχ(ω)E(ω),
so thatχ(ω) = σ(ω)/(−iω) and hence

ǫ(ω) = 1+
σ(ω)
−iω

. (10.52)

Thus in principle, knowledge of the complex reflectivity determines the opical conductivity.
In the simplest measurements, it is only possible to measurethe intensity of reflected radiation, giving

|r(ω)|2. More sophisticated “ elipsometry” techniques which measure the reflectivity as a function of angle
and polarization, are able to provide both the amplitude andphase of the reflectivity, but here we shall discuss
the simplest case where only the amplitude|r(ω)| is available. In this situation, experimentalists use the
“Kramers’ Kronig” relationship which determines the imaginary partσ2(ω) of the optical conductivity in
terms of the real part,σ1(ω), (Appendix A)

σ2(ω) = ω
∫ ∞

0

dω′

π

σ1(ω′)
ω2 − ω′2 (10.53)
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This is a very general relationship that relies on the retarded nature of the optical response. In principle,
this uniquely determines the dielectric function and reflectivity. However, since the range of measurement
is limited below about 5eV, an assumption has to be made about the high frequency behavior of the optical
conductivity where normally, a Lorentzian form is assumed.

With these provisos, it becomes possible to invert the frequency dependent reflectivity in terms of the
frequency dependent conductivity. We shall return in the next chapter for a consideration of the detailed
relationship between the optical conductivity and the microscopic correlation functions. We will see shortly
that the interaction of an electromagnetic field with matterinvolves the transverse vector potential, which
couples to the currents in the material without changing thecharge density. As we shall see in section (11.2),
the optical conductivity can be related to the following response function

σ(ω) =
1
−iω

[
ne2

m
− 〈 j(ω) j(−ω)〉

]
(10.54)

This expression contains two parts - a leading “diamagneticpart”, which describes the high frequency, short-
time response of the medium to the vector potential, and a second, “paramagnetic” part, which describes the
slow recovery of the current towards zero. We have used the shorthand

〈 j(ω) j(−ω)〉 = i
∫ ∞

0
dtd3x〈[ j(x, t), j(0)]〉eiωt

to denote the retarded response function for the “paramagnetic” part of the electron current densityj(x) =
−i ~mψ

†~∇ψ(x).
.

10.9.3 The f-sum rule.

One of the most valuable relations for the analysis of optical conductivity data, is the so-called “f-sum rule”,
according to which the total integrated weight under the conductivity spectrum is constrained to equal the
plasma frequency of the medium,

∫ ∞

0

dω
π
σ(ω) =

ne2

m
= ω2

Pǫ0 (10.55)

wheren is the density of electronic charge andωP is the Plasma frequency. To understand this relation,
suppose we apply a sudden pulse of electric field to a conductor

E(t) = E0δ(t), (10.56)

then immediately after the pulse, the net drift velocity of the electrons is changed tov = eE0/m, so the
instantaneous charge current after the field pulse is

j(0+) = nev=
ne2

m
E0, (10.57)

wheren is the density of carriers. After the current pulse, the electric current will decay. For example, in the
Drude theory, there is a single current relaxation time rateτtr , so that

j(t) =
ne2

m
e−t/τtr E0 (10.58)
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tFig. 10.3 Showing the effective electron count ne f f(ω) of aluminum (see eq. 10.63), determined
from the longitudinal optical conductivity, from a combination of experiments ranging
from the infrared to the X-ray, after reference [5]. The high frequency data converge to
the total electron count Z = 13 of aluminium. Up to 100 eV, only the conduction band
is important, and the effective total electron density is n = 3. At higher energies, the
two sudden cusps in the data correspond to the L edge (excitation of the n=2, L shell
electrons) and the K edge (excitation of the n=1, K shell electrons).

and thus

σ(t − t′) =
ne2

m
e−(t−t′)/τtr θ(t − t′) (10.59)

and by Fourier transforming we deduce that

σ(ω) =
∫ ∞

0
dteiωtσ(t) =

ne2

m
1

τ−1
tr − iω

(10.60)

Actually, the f-sum rule does not depend on the detailed formof the curent relaxation. Using the instantaneous
response in (10.57) we obtain

J(t = 0+) = Eoσ(t = 0+) = Eo

∫ ∞

−∞

dω
2π

e−i0+σ(ω) =
ne2

m
E0 (10.61)

is a consequence of Newton’s law. It follows that (independently of how the current subsequently decays),
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∫ ∞

0

dω
π
σ(ω) =

ne2

m
= ǫ0ω

2
p (10.62)

f-sum rule

where we have identifiedǫ0ω2
p =

ne2

m with the plasma frequencyωp of the gas. This relationship is called the
f-sum rule, and it is important because it holds, independently of the details of how the current decays.

The important point about the f-sum rule, is that in principle, the total weight under the optical spectrum, is
a constant, providing one integrates up to a high-enough energy. Of course, the energy required to recover the
entire electron density is immense. Experimentally it is often useful to define a frequency dependent electron
count, given by

ne f f(ω) =
m
e2

∫ ω

0

dω′

π
σ(ω′). (10.63)

A plot of this quantity for metallic aluminium (Z=13) is shown in Fig. (10.3), showing how the integral low
energies reflects the three electrons in the conduction band, while the higher energy integral recovers the
additional 10 electrons in the core states.

In practice, one is most interested in redistributions of spectral weight that accompany changes in the
electron correlations. When the temperature is raised, the spectral weight in the optical conductivity tends
to redistribute to higher energies. In a simple metal, the optical conductivity forms a simple “Drude peak”
- Lorentzian of width 1/τtr around zero frequency. In a semi-conductor, the weight inside this peak decays
as e−∆/T , where∆ is the semi-conducting gap. In a simple insulator, the balance of spectral weight must
then reappear at energies above the direct gap energy∆g. By contrast, in a superconductor, the formation
of a superconducting condensate causes the spectral weightin the optical conductivity to collapse into a
delta-function peak.
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tFig. 10.4 The f-sum rule. Illustrating (a ) the spectral weight transfer down to the condensate in
a superconductor (b) the Drude weight in a simple metal and (c) The spectral weight
transfer up to the conduction band in an insulator. )
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Appendix A: Kramer’s Kr önig relation

The Kramer’s Kr̈onig relation applies to any retarded linear response function, but we shall derive it here in
special reference to the conductivity. In time, the currentand electric field are related by the retarded response
function

j(t) =
∫ t

−∞
dt′σ(t − t′)E(t′) (10.64)

which becomesj(ω) = σ(ω)E(ω) in Fourier space, whereσ(ω) is the Fourier transform of the real-time
response functionσ(t − t′)

σ(ω) =
∫ ∞

0
dteiωtσ(t).

This function can be analytically extended into the upper-half complex plain ,

σ(z) = σ(x+ iy) =
∫ ∞

0
dteiztσ(t) = .

∫ ∞

0
dteixt−ytσ(t).

So long asz lies above the real axis, the real part−yt of the exponent is negative, guaranteeing that the integral
σ(z) is both convergent and analytic. ProvidedImz0 > 0, then the conductivity can be written down using
Cauchy’s theorem

σ(z0) =
∫

C′

dz
2πi

σ(z)
z− zo

whereC′ runs anti-clockwise around the pointz0. By distorting the contour onto the real axis, and neglecting
the contour at infinity, it follows that

σ(z0) =
∫ ∞

−∞

dω′

2πi
σ(ω′)
ω′ − z0

Taking z0 = ω + iδ, and writingσ(ω + iδ) = σ1(ω) + iσ2(ω) on the real axis, we arrive at the “Kramer’s
Krönig” relations

σ2(ω) = −
∫ ∞

−∞

dω′

2π
σ1(ω′)
ω′ − ω = ω

∫ ∞

0

dω′

π

σ1(ω′)
ω2 − ω′2

σ1(ω) =
∫ ∞

−∞

dω′

2π
σ2(ω′)
ω′ − ω =

∫ ∞

0

dω′

π

ω′σ2(ω′)
ω2 − ω′2 (10.65)

Exercises

Exercise 10.1 Spectral decomposition. The dynamic spin susceptibility of a magnetic system, is defined
as

χ(q, t1 − t2) = i〈[S−(q, t1),S+(−q, t2)] > θ(t1 − t2) (10.66)

whereS±(q) = Sx(q) ± iSy(q) are the spin raising and lowering operators at wavevectorq, i.e

S±(q) =
∫

d3e−iq·xS±(x) (10.67)
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so thatS−(q) = [S+(−q)]†. The dynamic spin susceptibility determines the response of the magnetiza-
tion at wavevectorq in response to an applied magnetic field at this wavevector

M(q, t) = (gµB)2
∫

dt′χ(q, t − t′)B(t′). (10.68)

(a) Make a spectral decomposition, and show that

χ(q, t) = iθ(t)
∫

dω
π
χ′′(q, ω)eiωt (10.69)

whereχ′′(q, ω) ( often called the “power-spectrum” of spin fluctuations) is given by

χ′′(q, ω) = (1− e−βω)
∑

λ,ζ

e−β(Eλ−F)|〈ζ |S+(−q)|λ〉|2πδ[ω − (Eζ − Eλ)] (10.70)

andF is the Free energy.
(b) Fourier transform the above result to obtain a simple integral transform which relatesχ(q, ω) and

χ′′(q, ω). The correct result is a “Kramers Kronig” transformation.
(c) In neutron scattering experiments, the inelastic scattering cross-section is directly proportional to

a spectral function calledS(q, ω),

d2σ

dΩdω
∝ S(q, ω) (10.71)

whereS(q, ω) is the Fourier transform of a correlation function:

S(q, ω) =
∫ ∞

−∞
dteiωt〈S−(q, t)S+(−q,0)〉 (10.72)

By carrying out a spectral decomposition, show that

S(q, ω) = (1+ n(ω))χ
′′
(q, ω) (10.73)

This relationship, plus the one you derived in part (i) can beused to completely measure the
dynamical spin susceptibility via inelastic neutron scattering.

Exercise 10.2 Compressibility or charge susceptibility sum rule. From equation (10.54) and its generaliza-
tion to finite wavevector, we see that in a non-superconducting state, the finiteness of the conductivity
atω = 0 requires that the zero frequency limit of the current-current correlation function

χ
j j
αβ(q, ω)|ω→0 = 〈 jα(q) jβ(−q)〉ω→0 =

ne2

m
δαβ. (10.74)

(a) Use the Kramers Kronig relation to show that this leads toa sum rule on the current-current spectral
function,

∫ ∞

0

dω
π

Imχ j j
αβ(q, ω + iδ)

ω
=

ne2

m
δαβ. (10.75)

(b) Use the equation of continuity (∇.~j = −ρ̇,⇔ i~q · ~j(q) = −(−iω)ρ(q)), to show that the charge and
current correlation functions are related by the relation

qαqβχ j j
αβ(q, ω) = ω2χρρ(q, ω) (10.76)

where

χρρ(q, ω) = i
∫

d3xdt〈[ρ(x, t), ρ(0)]〉ei(ωt−q·x) (10.77)
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is the dynamical response function for charge.
(c) Use the results of the last two parts to derive the charge or “compression” sum rule

∫ ∞

0

dω
π
ωχ′′ρρ(q, ω) =

ne2

m
q2. (10.78)

(d) Show that if the charge susceptibility contains a singleplasma pole, that the long-wavelength
(small q) limit of the charge susceptibility must then have the form

χ′′(q, ω) = π
ne2

m
q2

ωP
δ(ω − ωP) = πǫ0ωPq2δ(ω − ωP).

wherene2/m= ǫ0ω2
P determines the plasma frequency.
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11 Electron transport Theory

11.1 Introduction

Resistivity is one of the most basic properties of conductors. Surprisingly, Ohm’s law

V = IR

requires quite a sophisticated understanding of the quantum many body physics for its understanding. In the
classical electron gas, the electron current density

~j(x) = −ne~v(x)

is a simple c-number related to the average drift velocity~v(x) of the negatively charged electron fluid. This
is the basis of the Drude model of electricity, which Paul Drude introduced shortly after the discovery of
the electron. Fortunately, many of the key concepts evolvedin the Drude model extend to the a quantum
description of electrons, where~j(x) is an operator. To derive the current operator, we may appeal to the
continuity equation, or alternatively, we can take the derivative of the Hamiltonian with respect to the vector
potential,

~j(x) = − δH

δ~A(x)

where

H =
∫

d3x


1

2m
ψ†(x)

(
− i~~∇ − e~A(x)

)2

ψ(x) − eφ(x)ψ†(x)ψ(x)

 + VINT

where the Hamiltonian is written out for electrons of chargeq = e= −|e|. Now only the Kinetic term depends
on ~A, so that

~j(x) = − ie~
2m

ψ†(x)
↔
∇ ψ(x) −

(
e2

m

)
~A(x)ρ(x), (11.1)

where
↔
∇= 1

2

(→
∇ −

←
∇
)

is the symmetrized derivative.

The discussion we shall follow dates back to pioneering workby Fritz London[1, 2]. London noticed in
connection with his research on superconductivity, that the current operator splits up into components, which
he identified with the paramagnetic and diamagnetic response of the electron fluid:

~j(x) = ~jP(x) + ~jD(x) (11.2)

where

~jP(x) = − ie~
m
ψ†(x)

↔
∇ ψ(x) (11.3)

302



bk.pdf April 29, 2012 156

c©2011 Piers Coleman Chapter 11.

and

~jD(x) = −
(
e2

m

)
~A(x)ρ(x). (11.4)

Although the complete expression for the current densityis invariant under gauge transformationsψ(x) →
eiφ(x)ψ(x), ~A(x) → ~A − ~e~∇φ(x) the separate parts are not. However, in aspecificgauge, such as the London

or Coulomb gauge, where~∇ · A = 0, they do have physical meaning. We shall identify this lastterm as the
term responsible for the diamagnetic response of a conductor, and the first term, the “paramagnetic current”,
is responsible for the decay of the current a metal.
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tFig. 11.1 (a) Illustrating the diffusion of electrons on length-scales large compared with the
mean-free path l, (b) The Drude frequency dependent conductivity. The short-time
behavior of the current is determined by Newton’s law, which constrains the area
under the curve to equal

∫
dωσ(ω) = π ne2

m , a relation known as the f-sum rule.

In a non-interacting system, the current operator commuteswith the Kinetic energy operatorH0 and is
formally a constant of the motion. In a periodic crystal, electron momentum is replaced by the lattice mo-
mentumk, which is, in the absence of lattice vibrations, a constant of the motion, with the result that the
electron current still does not decay. What is the origin of electrical resistance?

There are then two basic sources of current decay inside a conductor:

• Disorder - which destroys the translational invariance of the crystal,
• Interactions - between the electrons and phonons, and between the electrons themselves, which cause the

electron momenta and currents to decay.

The key response function which determines electron current is the conductivity, relating the Fourier compo-
nent of current density at frequencyω, to the corresponding frequency dependent electric field,

~j(ω) = σ(ω)~E(ω)

We should like to understand how to calculate this response function in terms of microscopic correlation
functions.

The classical picture of electron conductivity was developed by Paul Drude, shortly after the discovery of
the electron. Although his model was introduced before the advent of quantum mechanics, many of the basic
concepts he introduced carry over to the quantum theory of conductivity. Drude introduced the the concept
of the electron mean-free pathl - the mean distance between scattering events. The characteristic timescale
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between scattering events is called the transport scattering timeτtr . ( We use the “tr” subscript to delineate
this quantity from the quasiparticle scattering timeτ, because not all scattering events decay the electric
current.) In a Fermi gas, the characteristic velocity of electrons is the Fermi velocity and the mean-free path
and transport scattering time are related by the simple relation

l = vFτtr

The ratio of the mean-free path to the electron wavelength isthe same order of magnitude as the ratio of the
scattering time to the characteristic timescale associated with the Fermi energy~/ǫF is determined by the
product of the Fermi wavevector and the mean-free path

l
λF
=

kF l
2π
∼ τtr

~/ǫF
=
ǫτtr

~

In very pure metals , the mean-free path of Bloch wave electrons l can be tens, even hundreds of microns,
l ∼ 10−6m, so that this ratio can become as large as 104 or even 106. From this perspective, the rate at which
current decays in a good metal is very slow on atomic time-scales.

There are two important aspects to the Drude model:

• the diffusive nature of density fluctuations,
• the Lorentzian line-shape of the optical conductivity

σ(ω) =
ne2

m
1

τ−1
tr − iω

Drude recognized that on length scales much larger than the mean-free path multiple scattering events
induce diffusion into the electron motion. On large length scales, the current and density will be related by he
diffusion equation,

~j(x) = −D~∇ρ(x),

whereD = 1
3

l2

τtr
= 1

3v2
Fτtr , which together with the continuity equation

~∇ · ~j = −∂ρ
∂t

gives rise to the diffusion equation [
− ∂
∂t
+ D∇2

]
ρ = 0.

The response functionχ(q, ν) of the density to small changes in potential must be the Green’s function for
this equation, so that in Fourier space

[iν − Dq2]χ(q, ν) = 1

from which we expect the response function and density-density correlation functions to contain a diffusive
pole

〈δρ(q, ν)δρ(−q,−ν)〉 ∼ 1
iν − Dq2

The second aspect of the Drude theory concerns the slow decayof current on the typical time-scaleτtr , so
that in response to an electric field pulseE = E0δ(t), the current decays as

j(t) = e−
t
τtr
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In the last chapter, we discussed how, from a quantum perspective, this current is made up of two components,
a diamagnetic component

jDIA = −
ne2

m
A =

ne2

m
E0, (t > 0)

and a paramagnetic part associated with the relax9ation of the electron wavefunction, which grows to cancel
this component,

jPARA=
ne2

m
E0(e−t/τtr − 1), (t > 0)

We should now like to see how each of these heuristic featuresemerges from a microscopic treatment of
the conductivity and charge response functions. To do this,we need to relate the conductivity to a response
fucntion - and this brings us to the Kubo formula.

11.2 The Kubo Formula

Lets now look again at the form of the current density operator. According to (11.1), it can divided into two
parts

~j(x) = ~jP + ~jD (11.5)

where

~jP = −
i~
2m

ψ†(x)
↔
∇ ψ(x) paramagnetic current

~jD = −
e2

m

∫
d3x ρ(x)~A(x) diamagnetic current (11.6)

are the “paramagnetic” and “ diamagnetic” parts of the current. The total current operator is invariant under
gauge transformationsψ(x)→ eiφ(x)ψ(x), ~A(x)→ ~A+ ~e

~∇φ(x) and speaking, the two terms in this expression
for the current can’t be separated in a gauge invariant fashion. However, in a specific gauge. We shall work in
the London gauge

~∇ · ~A = 0 “London Gauge”.

In this gauge, the vector potential is completely transverse,~q · ~A(~q) = 0. The equations of the electromagnetic
field in the London Gauge are

(
1
c2
∂2

t − ∇2

)
~A(x) = µ0~j(x)

−∇2φ(x) =
ρ(x)
ǫ0

(11.7)

so that the potential fieldρ(x) is entirely determined by the distribution of charges inside the material, and the
only independent external dynamic field coupling to the material is the vector potential. We shall then regard
the vector potential as the only external field coupling to the material.

We shall now follow Fritz London’s argument for the interpretation of these two terms. Let us carry out a
thought experiment, in which we imagine a toroidal piece of metal, as in Fig. 11.2 in which a magnetic flux
is turned on att = 0, passing up through the conducting ring, creating a vectorpotential around the ring given
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by A = A0θ(t) =
φ0

2πr θ(t), wherer is the radius of the ring. The Electric field is related to the external vector
potential via the relation

~E = −∂
~A
∂t
= −A0δ(t)

so ~E = −~Aoδ(t) is a sudden inductively induced electrical pulse.

~jD = �ne2m ~A
�(t) = �0�(t) A(t)

�ne2m A0
j0 ttA0

�tr
tFig. 11.2 Schematic diagram to illustrate diamagnetic current pulse produced by a sudden

change of flux through the conducting loop.

Suppose the system is described in the Schrödinger representation by the wavefunction|ψ(t)〉, then the
current flowing after time t is given by

〈~j(t)〉 = 〈ψ(t)|~jP|ψ(t)〉 − ne2

m
Aoθ(t) (11.8)

where we have assumed that〈ρ(x)〉 = n is the equilibrium density of electrons in the material. We see
that the second “diamagnetic” term switches on immediatelyafter the pulse. This is nothing more than the
diamagnetic response - the effect of the field induced by Faraday’s effect. What is so interesting, is that this
component of the current remainsindefinitely, after the initial step in the flux through the toroid. But the
current must decay! How?

The answer is that the initial “paramagnetic” contributionto the current starts to develop after the flux is
turned on. Once the vector potential is present, the wavefunction |ψ(t)〉 starts to evolve, producing a param-
agnetic current that rises and in a regular conductor, ultimatelyexactly cancelsthe time-independent diamag-
netic current. From this point of view, the only difference between an insulator and a metal, is the timescale
required for the paramagnetic current to cancel the diamagnetic component. In an insulator, this time-scale is
of order the inverse (direct) gap∆g, τ ∼ ~/∆g, whereas in a metal, it is the transport relaxation timeτ ∼ τtr .

These arguments were first advanced by Fritz London. He noticed that if, for some unknown reason the
wavefunction of the material could become “rigid”, so that it would not respond to the applied vector poten-
tial. In this special case, the paramagnetic current would never build up, and one would then have a perfect
diamagnet - a superconductor. Lets now look at this in more detail. We need to compute

~j(~x, t) = 〈~jP(x, t)〉 − ne2

m
~A(x, t)

Now if we are to compute the response of the current to the applied field, we need to compute the build up
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of the paramagnetic part of the current. Here we can use linear response theory. The coupling of the vector
potential to the paramagnetic current is simply−

∫
d3x~j(x) · ~A(x), so the response of this current is given by

〈 jαP(t)〉 =
∫

t′<t
d3x′dt′i〈[ jαP(x), jβP(x′)]〉Aβ(x′) (11.9)

In other words, we may write

~j(1) = −
∫

d2Q(1− 2)~A(2)

Qαβ(1− 2) =
ne2

m
δαβδ(1− 2)− i〈[ jαP(1), jβP(2)]〉θ(t1 − t2). (11.10)

The quantityQ(1−2) is the “London response” Kernel. In the most general case,this response is non-local in
both space and time. In a metal, this response is non-local over a distance given by the electron mean-free path
l = vFτtr . In a superconductor the response to the vector potential isnon-local over the “Pippard coherence
length”,ξ = vF/∆, where∆ is the superconducting gap. We can write the above result in Fourier space as

~j(q) = −Q(q)~A(q)

where

Qαβ(q) =
ne2

m
δαβ − i〈[ jα(q), jβ(−q)〉

and we have used the cavalier notation,

〈[ jα(q), jβ(−q)〉 =
∫

d3x
∫ ∞

0
dt〈[ jα(x, t), jβ(0)〉e−i(~q·~x−νt).

Finally, if we write ~E = − ∂A
∂t , or A(q) = 1

iνE(q), we deduce that

~j(q) = σ(q)~E(q) Kubo formula

σαβ(q) = − 1
iν

Qαβ(q) =
1
−iν

{
ne2

m
δαβ − i〈[ jα(q), jβ(−q)〉

}
(11.11)

This is the famous “Kubo formula”[3] that allows us to relatecurrent fluctuations to the conductivity. In
practice, the high velocity of light means thatq = ν/c << kF is much shorter than an electronic wavevector,
so that in electronic condensed matter physics, we may consider the limit~q = 0, writingσ(ν) = σ(~q = 0, ν).
This is the quantity that is measured in optical conductivity measurements. The D.C. conductivity is given by
the zero-frequency limit of the uniform conductivity, i.e.σDC = Ltν→0σ(ν).

In a regular conductor,σDC is finite, which implies thatQ(ν = 0) = 0, so that in a conductor

i〈[ jα(q), jβ(−q)〉|q=0 =
ne2

m
δαβ

We shall see that this identity breaks down in a system with broken gauge invariance - and this is the origin
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of superconductivity. In a normal fluid however, we can use this identity to rewrite the expression for the
conductivity as

σαβ(ν) =
1
−iν

[
− i〈[ jα(ν′), jβ(−ν′)〉

]ν′=ν

ν′=0

(11.12)

A practical calculation of conductivity depends on our ability to extract this quantity from the imagi-
nary time response function. We can quickly generalize expression (11.10) to imaginary time, by replacing
i〈[A(1), B(2)]〉 → 〈T A(1)B(2)〉, so that in imaginary time,

~j(1) = −
∫

d2Q(1− 2)~A(2), (1 ≡ (~x1, τ1))

Qαβ(1− 2) =
ne2

m
δαβδ(1− 2)− 〈T jαP(1) jβP(2)〉 (11.13)

so that in Fourier space, our expression for the optical conductivity is given by

σαβ(iνn) = − 1
νn

[
〈T jα(ν′) jβ(−ν′)〉

]ν′=iνn

ν′=0

(11.14)

where we have used the short-hand notation

〈T jα(iνn) jβ(−iνn)〉 =
∫ β

0
dτeiνnτ〈T jα(τ) jβ(0)〉

11.3 Drude conductivity: diagramatic derivation

In the last section we showed how the fluctuations of the electrical current can be related to the optical
conductivity. Let us now see how these fluctuations can be computed using Feynman diagrams in a disordered
electron gas with dispersionǫk = k2

2m. First, let us review the Feynman rules. We shall assume thatwe have
taken the leading order effects of disorder into account in the electron propagator, denoted by

= G(k) =
1

iωn − ǫk + isgnωn
1
2τ

The current operator isjα(q) =
∑

ekα

mψ
†

k−q/2σψk+q/2σ, which we denote by the vertex

α ≡ e
kα

m

The set of diagrams that represent the current fluctuations can then be written

〈 jα(q) jβ(−q)〉 = α β

k+q

k

+ +α β α β + . . .
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+ +βα βα + . . . (11.15)

In the above expansion, we have identified three classes of diagrams. The first diagram, denotes the simplest
contribution to the current fluctuation: we shall see shortly that this is already sufficient to capture the Drude
conductivity. The second set of diagrams represent the leading impurity corrections to the current vertex: these
terms take account of the fact that low-angle scattering does not affect the electric current, and it is these terms
that are responsible for the replacement of the electron scattering rateτ by the transport relaxation rateτtr .
We shall see that these terms vanish for isotropicaly scattering impurities, and justifying our neglect of these
contributions in our warm-up calculation of the conductivity.

The last set of diagrams involve crossed impurity scattering lines - we have already encountered these
types of diagrams in passing, and the momentum restrictionsassociated with crossed diagrams lead to a
reduction factor of orderO( 1

kF l ) ∼
λ
l , or the ratio of the electron wavelength to the mean-free path. These are

the “quantum corrections” to the conductivity. These maximally crossed diagrams were first investigated by
Langer and Neal in 1966, during the early years of research into electron transport , but it was not until the
late 1970’s that they became associated with the physics of electron localization - more on this later.

Using the Feynman rules, the first contribution to the current fluctuations is given by

i rω  

βα

ω   +    νii r n

= 〈 jα(iνn) jβ(−iνn)〉

= −2e2T
∑

k,iωr

kαkβ

m2
G(k, iωr + iνn)G(k, iωr ) (11.16)

where the minus sign derives from the fermion loop and the factor of two derives from the sum over spin
components. The difference between the fluctuations at finite and zero frequencies is then

[
〈 jα(ν) jβ(−ν)〉

]iνn

0
= −2e2T

∑

k,iωr

kαkβ

m2

[
G(k, iωr + iνn)G(k, iωr ) − {iνn→ 0}

]
(11.17)

Now the amplitude at current fluctuations at any one frequency involves electron states far from the Fermi
surface. However, thedifferencebetween the current fluctuations at two low frequencies cancels out most
of these contributions, and the only important remaining contributions involve electrons with near the Fermi
surface. This observation means that we can replace the momentum summation in (11.17) by an energy
integral in which the density of states is approximated by a constant, and the limits are extended to infinity,
as follows

∑

k

kαkβ

m2

[
. . .

]
→

∫
4πk2dk
(2π)3

∫
dΩk̂

4π
kαkβ

m2

[
. . .

]

→ δαβ
v2

FN(0)

3

∫ ∞

−∞
dǫ

[
. . .

]
(11.18)

309

Chapter 11. c©Piers Coleman 2011

The London Kernel then becomes

Qαβ(iνn) = 2δαβ
e2v2

FN(0)

3
T

∑

ωr

×

2
∫ ∞

−∞
dǫ



Poles on opposite side ifω+r > ωr︷                                                        ︸︸                                                        ︷(
1

iω+r − ǫ + isgnω+r /2τ

) (
1

iωr − ǫ + isgnωr/2τ

)
−

Poles on same side︷         ︸︸         ︷(
iνn→ 0

)


We can now carry out the energy integral by contour methods. We shall assume thatνn > 0. Now, provided
that iω+r > 0 andiωr < 0, the first term inside this summation has poles on opposite sides of the real axis, at
ǫ = iωr + i/2τ andǫ = iωr − 1/2τ, whereas the second term has poles on the same side of the realaxis. Thus,
when we complete the energy integral we only pick up contributions from the first term. (It doesn’t matter
which side of the real axis we complete the contour, but if we choose the contour to lie on the side where
there are no poles in the second term, we are able to immediately see that this term gives no contribution. )
The result of the integrals is then

Qαβ(iνn) = δαβ

ne2

m︷       ︸︸       ︷
2e2v2

FN(0)

3
T

∑

0>ωr>−νn,

2πi
iνn + iτ−1

= δαβ
ne2

m
νn

τ−1 + νn
(11.19)

Converting the London Kernel into the optical conductivity,

σαβ(iνn) =
1
νn

Qαβ(iνn) = δαβ
ne2

m
1

τ−1 − i(iνn)

Finally, analytically continuing onto the real axis, we obtain

σαβ(ν + iδ) =
ne2

m
1

τ−1 − iν
Transverse conductivity

There are a number of important points to make about this result

• Our result ignores the effects of anisotropic scattering. To obtain these we need to include the “ladder”
vertex corrections, which we will shortly see, replace

1
τ
→ 1

τtr
= 2πniN(0)(1− cosθ)|u(θ)|2, (11.20)

where the (1− cosθ) term takes into account that small angle scattering does not relax the electrical
current.

• Our result ignores localization effects that become important when1kF l ∼ 1. In one or two dimensions,
the effects of these scattering events accumulates at long distances, ultimately localizing electrons, no
matterhowweak the impurity scattering.
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• Transverse current fluctuations are not diffusive - this is not surprising, since transverse current fluctuations
do not involve any fluctuation in the charge density.

To improve our calculation, let us now examine the vertex corrections that we have so far neglected. Let
us now re-introduce the “ladder” vertex corrections shown in (11.15). We shall write the current-current
correlator as

〈 jα(q) jβ(−q)〉 = α β

k+q

k

(11.21)

where the vertex correction is approximated by a sum of ladder diagrams, as follows

β = β + +β β+ · · · = ΛevβF

(11.22)

We shall re-write the vertex part as a self-consistent Dysonequation, as follows:

eΛvβF = β + β
p’

p’+q

(11.23)

whereq = (0, iνn) andp′ = (~p ′, iωr ). The equation for the vertex part is then

evβFΛ(ωr , νn) = evβF + ni

∑

~p ′

|u(~p− ~p ′)|2G(~p ′, iω+r )G(~p ′, iωr )Λ(ωr , νn)ev′βF . (11.24)

Assuming that the vertex part only depends on frequencies, and has no momentum dependence, we may then
write

Λ = 1+ Λni

∫
dcosθ

2
|u(θ)|2 cosθ

∫
d3p′

(2π)3
G(~p ′, iω+r )G(~p ′, iωr )

We can now carry out the integral over~p ′ as an energy integral, writing

N(0)
∫

dǫG(ǫ, iω+r )G(ǫ, iωr ) = N(0)
∫

dǫ
1

iω̃+n − ǫ
1

iω̃n − ǫ
where we use the short-hand

ω̃n = ωn + signωn(
1
2τ

). (11.25)

Carrying out this integral, we obtain

N(0)
∫

dǫG(ǫ, iω+r )G(ǫ, iωr ) =

{
πN(0) 1

νn+τ−1 −νn < ωr < 0
0 otherwise
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so that

Λ = 1+

(
τ̃−1

νn + τ−1

)
Λθνn,ωr

whereτ̃−1 = 2πniN(0)cosθ|u(θ)|2 andθνn,ωr = 1 if −νn < ωr < 0 and zero otherwise, so that

Λ =


νn+τ

−1

νn+τ
−1
tr
−νn < ωr < 0

1 otherwise
(11.26)

where

τ−1
tr = τ

−1 − τ̃−1 = 2πniN(0)(1− cosθ)|u(θ)|2.

when we now repeat the calculation, we obtain

Qαβ(iωn) =
ne2

m
δαβT

∑

iωr

∫ ∞

−∞
dǫ

[
G(ǫ, iω+r )G(ǫ, iωr ) − (iνn→ 0)

]
Λ(iωr , iνn)

=
ne2

m
δαβT

∑

iωr

2πi
iνn + iτ−1

νn + τ
−1

νn + τ
−1
tr

=
ne2

m

(
νn

νn + τ
−1
tr

)
δαβ (11.27)

So making the analytic continuation to real frequencies, weobtain

σ(ν + iδ) =
ne2

m
1

τ−1
tr − iν

Note that

• We see that transverse current fluctuations decay at a rateτ−1
tr < τ. By renormalizingτ → τtr , we take

into account the fact that only backwards scattering relaxes the current.τtr andτtr are only identical in
the special case of isotropic scattering. This distinctionbetween scattering rates becomes particularly
marked when the scattering is dominated by low angle scattering, which contributes toτ−1, but does not
contribute to the decay of current fluctuations.

• There is no diffusive pole in the transverse current fluctuations. This is not surprising, since transverse
current fluctuations do not change the charge density.

11.4 Electron Diffusion

To display the presence of diffusion, we need to examine the density response function. Remember that a
change in density is given by

〈δρ(q)〉 = i〈[ρ(q), ρ(−q)]〉
−eV(q)︷︸︸︷
δµ(q)

whereV is the change in the electrical potential and

i〈[ρ(q), ρ(−q)]〉 =
∫

d3xdti〈[ρ(x, t), ρ(0)]〉e−i~q·~x+iωt
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We shall calculate this using the same set of ladder diagrams, but now using the charge vertex. Working with
Matsubara frequencies, we have

〈ρ(q, iνn)ρ(−q,−iνn)〉 =
k

k+q

+ + + . . .

=

k+q

k

(11.28)

where the current vertex

k+q

k

= +
k

k+q k’+q

k’
= −eΛc(k,q).

(11.29)

Let us now rewrite (11.28) and (11.29) as equations. From (11.28) the density-density response function is
given by

〈ρ(q, iνn)ρ(−q,−iνn)〉 = −2T
∑

k

G(k+ q)G(k)Λc(k,q).

From (11.29), the Dyson equation for the vertex is

Λc(k,q) = 1+ ni

∑

k′
|u(k − k′)|2G(k′ + q)G(k′)Λc(k

′,q) (11.30)

For convenience, we will assume point scattering, so thatu = u0 is momentum independent so thatΛc(k,q)
only depends onk through its frequency componentiωr , soΛ(k,q) = Λ(iωr ,q)

Λc(iωr ,q) = 1+ niu
2
0

∑

k′
G(k′ + q)G(k′)Λc(iωr ,q)

= 1+ Π(iωr ,q)Λc(iωr ,q) (11.31)

or

Λc(iωr ,q) =
1

1− Π(iωr ,q)

where the polarization bubble is given by

Π(iωr ,q) = niu
2
0

∑

p′
G(k′ + q)G(k′)

= niu
2
0N(0)

∫
dΩ
4π

∫
dǫ

1
iω̃+r − (ǫ + ~q · ~vF)

1
iω̃r − ǫ

. (11.32)

(Note the use of the tilde frequencies, as defined in (11.25).) Now if iνn > 0, then the energy integral in
π(iωr ,q) will only give a finite result if−νn < ωr < 0. Outside this frequency range,π(iωr ,q) = 0 andΛc = 1.
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Inside this frequency range,Π(iωr ,q) = Π(q) is frequency independent, and given by

Π(q) =

τ−1/(2π)︷    ︸︸    ︷
niu

2
0N(0)

∫
dΩ
4π

2πi
iνn + iτ−1 + ~q · ~vF

=

∫
dΩ
4π

1
1+ νnτ − i~q · ~vFτ

(11.33)

Now we would like to examine the slow, very long wavelength charge flucations, which means we are inter-
ested inq small compared with the inverse mean-free path,q << l−1 = 1/(vFτ), and in frequencies that are
much smaller than the inverse scattering lengthνnτ << 1. This permits us to expandΠ in powers of~q. We
shall take the first non-zero contribution, which comes in atorderq2. With these considerations in mind, we
may expandΠ as follows

Π(q) =
∫

dΩ
4π

(
1− νnτ + i~q · ~vFτ + i2(vF · q)2τ2 + . . .

)

=

1− νnτ −
v2

Fτ

3
q2τ + . . .

 (11.34)

where we neglect terms of orderO(q2νn). We may identify the combinationv2
f τ/3 = D in the second term with

the diffusion constantD. Note that had we done this integral ind dimensions, the “3” in the denominator of
the second term above would be replaced byd, but the general form for the diffusion constant ind dimensions
is D = v2

f τ/d, so that in any dimension, we obtain

Π(q) =
(
1− νnτ − Dq2τ + . . .

)
(11.35)

We then obtain

Λc(q) =
1

1− Π(q)
=

τ−1

νn + Dq2
, (−νn < ωr < 0). (11.36)

Summarizing then, the long-wavelength, low frequency charge vertex has the form

Λc(iωr ,q) =


iτ−1

νn+Dq2 , (−|νn| < sgn(νn)ωr < 0)

1 otherwise

and thus the dynamic charge correlation function is given by

〈ρ(q)ρ(−q)〉 =

k+q

k

= −2N(0)T
∑

iωr

∫
dǫG(ǫ, iω+r )G(ǫ, iωr )Λc(iωr ,q)

(11.37)

Now if we evaluate this quantity at zero frequency,νn = 0, whereΛc = 1, we obtain the static susceptibility

χ0 = −2T
∑

r,k

!
(iω̃r − ǫk)2

= 2
∫

dǫN(ǫ)
∫

dω
2πi

f (ω)

{
1

(ω + i/(2τ) − ǫ)2
− 1

(ω − i/(2τ) − ǫ)2

}
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= 2
∫

dǫN(ǫ)
∫

dω
2πi

d f(ω)
dω

−2iA(ǫ,ω)︷                                             ︸︸                                             ︷{
1

(ω + i/(2τ) − ǫ) −
1

(ω − i/(2τ) − ǫ)

}

= 2
∫

dω

(
−d f(ω)

dω

)
=N(ω)︷                 ︸︸                 ︷∫

dǫ
N(ǫ)
π

A(ǫ, ω) = 2N(0) unrenormalized (11.38)

so that the static charge susceptibility is unaffected by the disorder. This enables us to write

〈ρ(q)ρ(−q)〉 = χ0 − 2T
∑

iωr

∫
N(ǫ)dǫ

[
G(ǫ, iω+r )G(ǫ, iωr )Λc(ωr , νn) − {νn→ 0}]

Since this intgeral is dominated by contributions near the Fermi energy, we can extend the energy integral
over the whole real axis, replacing

∫
N(ǫ)dǫ → N(0)

∫ ∞

−∞
dǫ

enabling the energy integral to be carried out by contour methods, whereupon,

〈ρ(q)ρ(−q)〉 = χ0 − 2T N(0)
∑

iωr

∫ ∞

−∞
dǫ

[
G(ǫ, iω+r )G(ǫ, iωr )Λc(ωr , νn) − {νn→ 0}]

= χ0 − χ0

→νnτ︷      ︸︸      ︷(
νn

νn + τ−1

) [
τ−1

νn + Dq2

]

where, again, in the last step we have assumed|νn|τ << 1. The Matsubara form for the charge susceptibility
is then

χo(~q, iνn) = χ0
Dq2

|νn| + Dq2

Analytically continuing this result, we finally obtain

χ(~q, ν + iδ) = χ0

(
Dq2

Dq2 − iν

)
(11.39)

. Note that:

• Density fluctuations are diffusive. Indeed, we could have anticipated the above form on heuristic grounds.
The solution of the diffusion equationD∇2ρ =

∂ρ
∂t is, in Fourier space,

ρ(~q, ν) =
1

Dq2 − iν
ρ(q)

whereρ(q) is the Fourier transform of the initial charge distribution. If we requireρ(~q, ν = 0) = χ0U(~q),
whereU(~q) is the Fourier transform of the applied potential, then this implies (11.39)

• The order of limits is important, for whereas

lim
q→0

lim
ν→0

χ(q, ν) = χ0
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which is the response to a static potential of large, but finite wavelength,

lim
ν→0

lim
q→0

χ(q, ν) = 0

which states that the response to a uniform potential of vanishingly small frequency is zero. The dif-
ference in these two response functions is due to the conservation of charge - if one wants to change
the charge density in one place, it can only be done by redistributing the charge. If one applies a static
uniform potential, the charge density does not change.

• We can use these results to deduce the longitudinal conductivity - the current response to a longitudinal
electric field for which~q · ~E , 0. Letφ(q) be the electric potential, thenδρ(q) = χ(q)eφ(q), so that

δρ(q) = χ0
Dq2

Dq2 − iν
eφ(q) = −χ0

Di~q ·

~∇φ=−~E(q)︷   ︸︸   ︷
(i~qφ(q))

Dq2 − iν

= χ0

(
Di~q

Dq2 − iν

)
· ~E(q) (11.40)

Now since∂ρ
∂t ≡ −iνρ(q), it follows that

ρ̇(q) = eχ0

(
Dν~q

Dq2 − iν

)
· ~E(q). (11.41)

Now by continuity,e∂ρ
∂t = −~∇ · ~j(q) = −i~q · ~j(q), where~j is the charge current, so by comparing with

(11.41) we deduce that the longitudinal current is

jL(q) = e2χ0D

(
iν

iν − Dq2

)
~E(q),

so the longitudinal conductivity contains a diffusive pole

σLONG(q) = e2χ0D

(
iν

iν − Dq2

)
.

Note also that atq = 0,σ = e2χ0D, which can be written as the Einstein relation

σ = e2χ0D =
ne2

m
τ Einstein Relation

11.5 Weak Localization

We should like to finish our brief introduction to electron transport by touching on the concept of electron
localization. The disorder that has been considered in thischapter is weak and the electron states we have
considered are delocalized. We have remarked on a few occasions that disorder is like a kind of “attractive”
but infinitely retarded interaction, and like other attractive interactions, it has the capacity to induce new kinds
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of collective behavior amongst the electrons. Infact, disorder actually gives rise to collective interference ef-
fects within the electron gas, which ultimately lead to the localization of the electron wavefunction. This idea
was first proposed by Anderson[4] in 1958, but it took two decades for the idea to gain acceptance in the
physics community. Our modern understanding of electron localization was greatly aided by a conceptual
break-through on this problem made by Liciardello and Thouless[5] who proposed that the resistance of a
material, or rather, the inverse resistance, the conducance G = 1/R is a function of scale. Thouless’s idea,
initially proposed for one dimension, was taken up by the so called “Gang of Four”, Abrahams, Anderson
Licciardello and Ramakrishnan[6] and extended to higher dimensions leading to the modern “scaling theory”
of localization[7]. One of the ideas that emerged from this break-through, is that electron localization results
from the coherent interference between electron waves, which at long-distances ultimately builds up to pro-
duce a disorder-drive metal-insulator transition - a kind of phase transition in which the order parameter is
the conductance. Like all phase transitions, localizationis sensitive to the dimensionality. Whereas in three
dimensions, electron localization requires that the disorder exceed a critical value, in two and one dimension,
an arbitrarily small amount of disorder is sufficient to localize electrons, and the leading order effects of lo-
calization can already be seen in weakly disordered materials. These ideas can all be developed for weakly
disordered conductors by a simple extention of the Feynman diagram methods we have been using.

To develop a rudimentary conceptual understanding of electron localization, we shall follow a heuristic
argument by Altshuler, Aronov, Larkin and Khmelnitskii[??], (see also Bergman [??]) who pointed out that
weak localization results from the constructive interference between electrons passing along time-reversed
paths. Consider the amplitude for an electron to return to its starting point. In general, it can do this by passing

P

P

n−1

1

2

3n−2

tFig. 11.3 Scattering of an electron around two time-reversed paths

around a a sequence of scattering sites labelled 1 throughn, as shown in Fig. 11.3, where we identifyn ≡ 1
as the same scattering site. The amplitude for scattering around this loop is

AP = GR(n,n− 1)GR(n− 1,n− 2) . . .GR(2,1)

where

GR(~x1, ~x2) =
∫

ddk

(2π)d

1
ω − ǫk + iδ

ei~k·(~x1−~x2)

317

Chapter 11. c©Piers Coleman 2011

is the retarded propagator describing the amplitude for an electron of frequencyω to propagate between two
sites. Now for each path P, there is a corresponding time-reversed path̃P. The amplitude for the same electron
to follow P̃ starting at 1≡ n, is

AP̃ = GR(1,2)GR(2,3) . . .GR(n− 1,n)

The total propability associated with passage along both paths is given by

P = |AP + AP̃|2 = |AP|2 + |AP̃|2 + 2Re[A∗
P̃
AP]

Now if AP =
√

p1eiφ1 andAP̃ =
√

p2eiφ2 then total probability to scatter back to the starting pointvia the two
paths,

pTOT = p1 + p2 + 2
√

p1p2 cos(φ2 − φ1).

contains an interference term 2
√

p1p2 cos(φ2−φ1). If the two paths were unrelated, then the impurity average
of interference term would be zero, and we would expectP = p1 + p2. However! The two pathsare related
by time-reversal, so thatAP̃ = AP, with precisely the same magnitude and phase, and so the two processes
alwaysconstructively interfere,

pTOT = 4p1

Without the interference termpTOT = 2p1, so we see that constructive interference between time-reversed
paths doubles the return probabilty.

This means that an electron that enters into a random medium has an quantum-mechanicallyenhanced
probability of returning to its starting point - quantum electrons “bounce back” twice as often as classical
electrons in a a random medium! The same phenomenon causes the light from a car’s headlamps to reflect
backwards in a Fog. These effects tend to localize waves - causing light localization in the case of fog - and
electron localization in disordered conductors. We shall see that the return probability is enhanced in lower
dimensions, and in one, or two dimensions, these effects innevitably lead to the localization of electrons, for
arbitrarily small amounts of disorder.

Let us now make a diagramatic identification of these interference terms. The complex conjugate of the
retarded propagator is the advanced propagator

GR(2− 1, ω)∗ = G(2− 1, ω + iδ)∗ = G(2− 1, ω − iδ) == GA(2− 1, ω)

so the interference term

A∗
P̃
AP =

n−1∏

j=1

GR( j + 1, j;ω)GA( j + 1, j;ω)

which is represented by a “ladder diagram” for repeated scattering of electron pairs. The sum of all such

ωi +

ωi
r

r 2 n−1 n

j j+1

1
tFig. 11.4 n-th order contribution to the “Cooperon”

diagrams is called a “Cooperon”, because of its similarity to the pair susceptibility in superconductivity.
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Notice that the lower electron line involves the advanced propagatorGA, whereas the upper involves the
retarded propagatorGR. In the Matsubara approach the distinction between these two propagators is enforced
by running a frequencyiω+r ≡ iωr + iνn along the top line, and a frequencyiωr along the bottom. Whenνn

is analytically continued and ultimately set to zero, this enforces the distinction betwen the two propagators.
Now if we twist the Cooperon around, we see that it is equivalent to a maximally crossed, or “Langer-Neal”
diagram

ωi r

ωi +
r

21 n−1 n

n n−1 2 1
tFig. 11.5 A twisted cooper diagram forms a maximally crossed diagram.

Let us now compute the amplitudes associated with these localization corrections to the conductivity. We
begin by denoting the Cooperon by a sum of ladder diagrams

C(q) =
q

= + + ...+

k’kk

−k+q −k+q −k’+q

=
niu2

0

1− Π̃(q)
(11.42)

where

Π̃(q) = niu
2
0

∑

k

GR(k)GA(−k+ q)

where we have denotedGR(k) ≡ G(k, iω+r ) andGA(k) ≡ G(k, iωr ), implicitly assuming thatω+r andωr are of
opposite sign. Now if we look carefully at̃Π, we see that it is identical to the particle hole bubbleΠ that we
encountered when computing diffusive charge fluctuations in (11.32 ), excepting that in the hole line has been
replaced by a particle line, and in so doing, we replacek + q → −k + q in the momentum of the propagator.
However, thanks to time-reversal symmetry holds, this thisdoes not change the value of the polarization
bubble, and we conclude that

Π̃(q) =
(
1− νnτ − Dq2τ + . . .

)

and thus

C(q) = niu
2
0

τ−1

Dq2 + |νn|
=

1
2πN(0)τ2

1
Dq2 + |νn|

We shall redraw the maximally crossed contributions to the conductivity as follows

∆Qab = + +
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=

k −k+q

k −k+q

+

k −k+q

k −k+q

+

k −k+q

k −k+q

= q

k −k+q

k −k+q

(11.43)

Written out explicitly, this gives

∆σab(iνn) =
∆Qab

νn

=
2e2T
νn

∑

k=(k,iωr )
q

va
kvb
−k+q

[
C(q)G+(k)G−(k)G+(−k+ q)G−(−k+ q) − {iνn→ 0}]

At this point, we can simplify the diagram by observing that to extract the most singular, long-distance effects
of localization, we can ignore the smoothq dependence of the conduction electron lines. By settingq = 0
along the conduction lines, we decouple∆σ into a product of two terms

∆σab(iνn) =
2e2T
νn

∑

q

C(q)

− νn
2πT

ne2

m δab
∫

dǫ︷    ︸︸    ︷∑

k

va
kvb
−k

[
(G+(k))2(G−(k))2 − {iνn→ 0}

]

= −ne2

m
δab 1

2πN(0)τ2

∫
ddq

(2π)d

1
Dq2 + |νn|

∫
dǫ
2π

G2
R(ǫ)G2

A(ǫ) (11.44)

The energy integral in the second term yields
∫

dǫ
2π

G2
R(ǫ)G2

A(ǫ) = 2τ3.

We need to consider the upper and lower bounds to the momentumintegral. The upper bound is set by the
condition thatDq2 = τ−1, the elastic scattering rate. The lower bound is set either by the size of the system
L, in which caseq = L−1, or by theinelasticscattering rateτ−1

i . We may define

τ−1
0 = max(

D
L2
, τ−1

i )

as the inverse time-scale associated with the lower cutoff. The quantity

Eth = ~
D
L2

is called the “Thouless” energy, and corresponds to the energy scale associated with the phase-coherent
diffusion of electrons from one side of the sample, to the other. In an ultra-pure, or small system, it is this
scale that provides the infra-red cut-off to localization effects. We may then write

∆σab(ν) = −δab

(
ne2τ

m

)
1

2πN(0)

∫ (Dτ)−1/2

(Dτo)−1/2

ddq

(2π)d

1
Dq2 − iν

(11.45)
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If we apply a sudden pulse of electric fieldE = E0δ(t), giving rise to a white noise field spectrum,E(ν) = E0,
the current induced by localization effects has a frequency spectrum

j(ν) = ∆σ(ν)E(ν) = ∆σ(ν)E0 ∝
∫ (Dτ)−1/2

(Dτ0)−1/2

ddq

(2π)d

1
Dq2 − iν

In highly phase-coherent systems, the characteristic timescale of the localization back-scattering response in
the current pulse is given byt ∼ D/L2 which we recongnize as the time for electrons to diffuse across the
entire sample. This is a kind of backscattering “echo” produced by the phase-coherent diffusion of electrons
along time-reversed paths that cross the entire sample. Themomentum integral in∆σ is strongly dependent
on dimensionality. in three and higher dimensions, this term is finite, so that the weak-localization effects are
a perturbation to the Drude conductivity. However, if the dimensiond ≤ 2, this integral becomes divergent,
and in a non-interacting system, it is cut off only by the frequency, or the finite sizeL of the system. In two
dimensions,

∫ (Dτ)−1/2

(Dτo)−1/2

ddq

(2π)d

1
Dq2 − iν

=
1

4πD
ln(

τ

τ0
)

giving rise to a localization correction to the static conductivity that is

∆σ = −
(
ne2τ

m

)
1

8π2N(0)D
ln(
τ0

τ
) (11.46)

Replacingnτ/m→ 2N(0)D, we obtain

∆σ = −
(

e2

2π2

)
ln(

τ

τ0
)→ − 1

2π2

(
e2

~

)
ln(
τ0

τ
) (11.47)

where we have restored~ into the expression. The quantityg0 =
e2

~
∼ 1

10(kΩ)−1 is known as the universal
conductance.

There are a number of interesting consequences of these results

• By replacing 2πN(0)D = 1
2kF l, the total conductivity can be written

σ = σ0

[
1− 1

2πkF l
ln(
τ0

τ
)

]
(11.48)

We see that the quantum-interference correction to the conductivity is of orderO(1/(kF l)), justifying
their neglect in our earlier calculations.

• If we consider the case where inelastic scattering is negligible, the localization correction to the conduc-
tivity in two dimensions is

σ = σ0

[
1− 1

2πkF l
ln(

1
EThτ

)

]

∼ σ0

[
1− 1

πkF l
ln(

L
l
)

]
(11.49)

so that the conductivity drops gradually to zero as the size of the sample increases. The conductivity
becomes of ordere

2

~
at the “localization length”

Lc ∼ lekF l

independently of the strength of the interaction. In two dimensions, resistivity and resistance have the
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same dimension, so we expect that when the size of the system is equal to the localization length, the
resistivity is always of order 10kΩ! At longer length-scales, the material evolves into insulator.

• The weak localization corrections are not divergent for dimensions greater than 2, but become much
stronger in dimensions belowd = 2. It was this observation that led the the “Gang of Four”, Abra-
hams, Anderson, Licciardello and Ramakrishnan, to proposethe scaling theory for localization, in which
dc = 2 is the critical dimensionality.

−(L / L   )cg(L) ~ e

g(L) ~ L
(d−2)

d ln (g)

d ln L
β(    ) = g

gc

d−2

d>2

d=2

d<2

ln g

Insulator

Metal

tFig. 11.6 The scaling function β(g) deduced by Abrahams et al. for a non-interacting metal. For
d > 2 there is critical conductance gc which gives rise to a disorder-driven
metal-insulator transition. In d ≤ 2, disorder always gives rise to localization and the
formation of an insulator.

We shall end this section by making a brief remark about the scaling theory of localization. Stimulated
by the results in two dimensions, and earlier work on one dimensional wires, by Thouless, Abrahams et al.
were led to propose that in any dimension, conductance, or inverse resistance,G = 1/R could always be
normalized to form a dimensionless parameter

g(L) =
G(L)

e2

~

which satisfies a one-parameter scaling equation

d ln g(L)
d ln L

= β(g)
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When this quantity is large, we may use the Drude model, so thatg(L) = ne2τ
m Ld−2, and

β(g) = (d − 2), (g→ ∞)

is independent ofg. When the conductance was smallg→ 0, on scales longer than the localization lengthLc,
they argued thatg(L) would decay exponentiallyg(L) ∼ e−L/Lc, so that for small conductance,

β(g) ∼ − ln g, (g→ 0)

By connecting up these two asymptotic limits, Abrahams et alreasoned that the beta function for conduc-
tance would take the form shown in Fig. 11.6. In dimensionsd ≤ 2, theβ(g) is always negative, so the
conductance always scales to zero and electrons are always localized. However in dimensionsd > 2, there is
a disorder-driven metal-insulator transition at the critical conductanceg = gc. As the amount of disorder is
increased, when the short-distance conductanceg passes belowgc, the material becomes an insulator in the
thermodynamic limit. These heuristic arguments stimulated the development of a whole new field of research
into the collective effects of disorder on conductors, and the basic results of the scaling theory of localization
are well-established in metals where the effects of interactions between electrons are negligible. Interest in
this field continues actively today, with the surprise discovery in the late 1990s that two dimensional electron
gases formed within heterojunctions appear to exhibit a metal insulator transition - a result that confounds
the one-parameter scaling theory, and is thought in some circles to result from electron-electron interaction
effects.

Exercises

Exercise 11.1 (Alternative derivation of the electrical conductivity. )
In our treatment of the electrical conductivity, we derived

σab(iνn) = e2 T
νn

∑

k,iωr

va
kvb

k

[
G(k, iωr + iνn)G(k, iωr ) −G(k, iωr )

2
]

This integral was carried out by first integrating over momentum, then integrating over frequency. This
techique is hard to generalize and it is often more convenient to integrate the expression in the opposite
order. This is the topic of this question. Consider the case where

G(k, iωr ) =
1

iωr − ǫk − Σ(iωr )

andΣ(iωr ) is any momentum-independent self-energy.

1 By rewriting the momentum integral as an integral over kinetic energyǫ and, angle show that the
conductivity can be rewritten asσab(iνn) = δabσ(iνn), where

σ(iωn) =
ne2

m
1
νn

∫ ∞

−∞
dǫ T

∑

iωr

[
G(ǫ, iωr + iνn)G(ǫ, iωr ) −G(ǫ, iωr )

2
]
.

and

G(ǫ, z) ≡ 1
z− ǫ − Σ(z)
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2 Carry out the Matsubara sum in the above expression to obtain

σ(iωn) =
ne2

m
1
νn

∫ ∞

−∞

dω
π

∫ ∞

−∞
dǫ f (ω) [G(ǫ, ω + iνn) +G(ǫ, ω − iνn)] A(ǫ, ω),

whereA(ǫ, ω) = ImG(ǫ, ω − iδ). (Hint - replaceT
∑

n → −
∫

dz
2πi f (z), and notice that whileG(ǫ, z)

has a branch cut alongz = ω with discontinuity given byG(ǫ, ω − iδ) − G(ǫ, ω + iδ) = 2iA(ǫ, ω),
while whileG(ǫ, z+ iνn) has a similar branch cut alongz = ω − iνn. Wrap the contour around these
branch cuts and evaluate the result).

3 Carry out the energy integral in the above expression to obtain

σ(iωn) =
ne2

m
1
νn

∫ ∞

−∞

dω
π

f (ω)

×
[

1
iνn − (Σ(ω + iνn) − Σ(ω − iδ))

− 1
iνn − (Σ(ω + iδ) − Σ(ω − iνn))

]
. (11.50)

4 Carry out the analytic continuation in the above expression to finally obtain

σ(ν + iδ) =
ne2

m

∫ ∞

−∞
dω

[
f (ω − ν/2)− f (ω + ν/2)

ν

]
×

1
−iν + i(Σ(ω + ν/2+ iδ) − Σ(ω − ν/2− iδ))

. (11.51)

5 Show that your expression for the optical conductivity canbe rewritten in the form

σ(ν + iδ) =
ne2

m

∫ ∞

−∞
dω

[
f (ω − ν/2)− f (ω + ν/2)

ν

]
1

τ−1(ω, ν) − iνZ(ω, ν)
. (11.52)

where

τ−1(ω, ν) = Im [Σ(ω − nu/2− iδ) + Σ(ω + ν/2− iδ)] (11.53)

is the average of the scattering rate at frequenciesω ± ν/2 and

Z−1(ω, ν) − 1 = −1
ν

Re[Σ(ω − ν/2)− Σ(ω + ν/2)]

is a kind of “wavefunction renormalization”.
6 Show that if theω dependence ofZ andτ−1 can be neglected, one arrives at the phenomenological

form

σ(ν) =
ne2

m

[
1

τ−1(ν) − iνZ−1(ν)

]

This form is often used to analyze optical spectra.
7 Show that the zero temperature conductivity is given by thethermal average

σ(ν + iδ) =
ne2τ

m
(11.54)

whereτ−1 = 2ImΣ(0− iδ).
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12
Phase Transitions and broken

symmetry

12.1 Order parameter concept

The idea that phase transitions involve the development of an order parameter which lowers, or “breaks” the
symmetry is one of the most beautiful ideas of many body physics. In this chapter, we introduce this new
concept, which plays a central role in our understanding of the way complex systems transform themselves
into new states of matter at low temperatures.

Landau introduced the order parameter concept in 1937[1] asa means to quantify the dramatic transforma-
tion of matter at a phase transition. Examples of such transformations abound: a snowflake forms when water
freezes; iron becomes magnetic when electron spins align into a single direction; superfluidity and supercon-
ductivity develop when quantum fluids are cooled and bosons or pairs of fermions condense into a single
quantum state with a well-defined phase. Phase transitions can even take place in very fabric of space, and
there is very good evidence that we are living in a broken symmetry universe, which underwent one, or more
phase transitions which broke the degeneracy between the fundamental forces[2], shortly after the big bang.
Indeed, when the sun shines on our faces, we are experiencingthe consequences of this broken symmetry.
Remarkably, while the microscopic physics of each case is different, they are unified by a single concept.

Landau’s theory associates each phase transition with the development of an “order parameter”ψ once the
temperature drops below the transition temperatureTc:

|ψ| =

{
0 (T > Tc)

|ψ0| > 0 (T < Tc)

The order parameter can be a real or complex number, a vector or a spinor that can, in general, be related to
an n-component real vectorψ(x) = (ψ1, ψ2 . . . ψn). For example:

Order parameter Realization Microscopic origin

m= ψ1 Ising ferromagnet 〈σ̂z〉
ψ = ψ1 + iψ2 Superfluid, Superconductor 〈ψ̂B〉, 〈ψ̂↑ψ̂↓〉
~M = (ψ1, ψ2, ψ3) Heisenberg Ferromagnet 〈~σ〉

Φ =

([
ψ1 + iψ2

ψ3 + iψ4

])
Higg’s Field

(
〈φ̂+〉
〈φ̂−〉

)

Microscopically, each order parameter is directly relatedto the expectation value of a quantum operator.
Thus, in an Ising ferromagnet “m = 〈σz(x)〉” is the expectation value of the spin density along a particular
anisotropic axis, while in a Heisenberg ferromagnet, the magnetization can point in any direction, so that the
order parameter is a vector pointing in the direction of the spin density~m = 〈~σ(x)〉. In a superconductor or

326



bk.pdf April 29, 2012 168

c©2011 Piers Coleman Chapter 12.

tFig. 12.1 “Broken symmetry”. The development of crystalline order within a spherical
waterdroplet leads to the formation of a snowflake, reducing the symmetry from
spherical symmetry, to six-fold symmetry. (Snowflake picture reproduced with
permission from K. G. Librrecht.)

superfluid, the order parameter is a complex number related to the expectation value a bosonic field in the
condensate.

The emergence of an order parameter often has dramatic macroscopic consequences in a material. In zero
gravity, water droplets are perfectly spherical, yet if cooled through their freezing point they form crystals of
ice with the classic six-fold symmetry of a snowflake. We say that the symmetry of the water has “broken
the symmetry”, because the symmetry of the ice crystal no longer enjoys the continuous rotational symmetry
of the original water droplet. Equally dramatic effects occur within quantum fluids. Thus, when a metal
develops a ferromagnetic order parameter, it spontaneously develops an internal magnetic field. By contrast,
when a metal develops superconducting order, it behaves as aperfect diamagnet, and will spontaneously
expel magnetic fields from its interior even when cooled in a magnetic field, giving rise to what is called the
“Meissner effect”.

Part of the beauty of Landau theory, is that the precise microscopic expression for the order parameter is
not required to development a theory of the macroscopic consequences of broken symmetry. The Ginzburg-
Landau theory of superconductivity pre-dated the microscopic theory by seven years. Landau theory provides
a “coarse grained” description of the properties of matter.In general, the order parameter description is good
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(c)(b)

(a)

ψ = 0

ψFM 6= 0 ψSC 6= 0

tFig. 12.2 (a) In a normal metal, there is no long-range order. (b) Below the Curie temperature
Tc of a ferromagnet, electron spins align to develop a ferromagnetic order parameter.
The resulting metal has a finite magnetic moment. (c) Below the transitition
temperature of a superconductor, electrons pair together to develop a
superconducting order parameter. The resulting metal exhibits the Meissner effect,
excluding magnetic fields from its interior.

on length scales larger than

ξ0 = “coherence length”. (12.1)

On length-scales longer than coherence length, the internal structure of the order parameter is irrelevant and
it behaves as a smootly varying function that has forgotten about its microscopic origins. However, physics
on scales smaller thanξ0 requires a microscopic description. For example, in a superconductor, the coherence
length is a measure of the size of a Cooper pair - a number that can be hundred or thousands of atom spacings,
while in superfluidHe− 4, the coherence length is basically an atom spacing.
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12.2 Landau Theory

12.2.1 Field cooling and the development of order

The basic idea of Landau theory, is to write the free energy asa functionF[ψ] of the order parameter. To keep
things simple, we will begin our discussion with the simpestcase whenψ is a one-component Ising order
parameter representing, for example, the magnetization ofan Ising Ferromagnet. We begin by considering
the meaning of an order parameter, and the relationship of the the free energy to the microscopic physics.

We can always induce the order parameter to develop by cooling in the presence of an external fieldh
that couples to the order parameter. In general, the inversedependence of the field on the order parameter,
h[ψ] will be highly non-linear, but once we know it, we can convert the dependence of the energy onh to a
function ofψ. Broken symmetry develops ifψ remains finite once the external field is removed.

Mathematically, an external field introduces a “source term” into the microscopic Hamiltonian:

H → H − h
∫

d3xψ̂(x).

The fieldh that couples linearly to the order parameter is called the conjugate field. For an magnet, where
ψ ≡ M is the magnetization,h ≡ B is the external magnetic field. For a ferro-electric, whereψ ≡ P is
the electric polarization, the conjugate fieldh ≡ E is the external electric field. For many classes of order
parameter, such as the pair density of a superconductor, or the staggered magnetization of an antiferromagnet,
although there is no naturally occuring external field that couples linearly to the order parameter, but the idea
of a conjugate field is still a very useful concept.

The free energy of the system in the presence of an external field is a Gibb’s free energy which takes
account of the coupling to the fieldG[h] = F[ψ] − Vψh. G[h] is given by

G[h] = −kBT ln
(
Z[h]

)
= −kBT ln

(
Tr

[
e−β(Ĥ−h

∫
ψ̂d3x)

])
(12.2)

where the partition functionZ[h] involves the trace over the many body system. If we differentiate (12.2) with
respect toh we recover the expectation value of the induced order parameterψ[h] = 〈ψ̂〉

ψ(h,V) =
1

Z[h]
Tr

[
e−β(H−h

∫
ψd3x)ψ̂(x)

]
= − 1

V
∂G[h]
∂h

, (12.3)

It follows that−δG = ψVδh.
In a finite system, the order parameter will generally disappear once we remove the finite field. For exam-

ple, if we take a molecular spin cluster and field-cool it below its bulk Curie temperature it will develop a
finite magnetization. However, once we remove the external field, thermal fluctuations will generate domains
with reversed order. Each time a domain wall crosses the system, the magnetization reverses, so that on long
enough time scales, the magnetization will average to zero.But as the size of the system grows beyond the
nano-scale, two things will happen - first infinitesimal fields will prevent the thermal excitation of macro-
scopic domains - and second - even in a truly zero field, the probability to form these large domains becomes
astronomically small. (See example Ex. 12.2.1) In this way,broken symmetry “freezes into” the system and
becomes stable in the thermodynamic limit.

From this line of reasoning, it becomes clear that the development of a thermally stable order parameter
requires that we take the thermodynamic limitV → ∞ before we remove the external field. When we “field
cool” an infinitely large system below a second-order phase transition, the order parameter remains after the
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external field is removed. The equilibrium order parameter is then defined as

ψ = lim
h→0

lim
V→∞

ψ(h,V).

To obtain the Landau function,F[ψ], must writeG[h] in terms ofψ and then,

F[ψ] = G[h] + Vhψ = G[h] − h
∂G[h]
∂h

.

This expression forF[ψ] is a Legendre transformation ofG[h]. SinceδG = −Vψδh, δF = δG + Vδ(hψ) =
Vhδψ, so the inverse transformation ish = V−1 ∂F

∂ψ
. If h = 0, then

hV =
∂F
∂ψ
= 0

which states the intuitively obvious fact that whenh = 0, the equilibrium value ofψ is determined by a
stationary point ofF[ψ].

Example 12.1: Consider a cubic nanomagnet ofN = L3 Ising spins interacting via a nearest neighbor
ferromagnetic interaction of strengthJ. Suppose the dynamics can be approximated by Monte Carlo
dynamics, in which each spin is “updated” after a a timeτ0. At T = 2J, (the bulkTc = 4.52J) estimate
the time, in units ofτ0 required to form a domain that will cross the entire sample. Ifτ0 = 1ns, estimate
the minimum sizeL for the decay time of the total magnetization to become comparable with the time
span of a Ph. D. degree.
Solution: To form a domain wall of areaA ∼ L2 costs an free energy∆F ∼ 2JL2, occuring with
probability p ∼ e−(∆F/T). The time required for formation may be estimated to be

τ ∼ τ0p−1 ∼ τ0e
2JL2/T .

where the most important aspect of the estimate, is that the exponent grows with L2. Our naive estimate
does not take into account the configurational entropy (the number of ways of arranging a domain wall),
but it will give a rough idea of the required size. Puttingτ0 ∼ 10−9sandτ = 5y ∼ 108s for a typical Ph.
D, this requiresτ/τ0 = 1019 ∼ e40, thusL ∼

√
40∼ 6. Already by aboutL3 = 403/2 ∼250 spins the time

for the magnetization to decay is of the order of years. ByN ∼ 500, this same timescale has stretched
to the age of the universe.

12.2.2 The Landau Free energy

Landau theory concentrates on the region of smallψ, audaciously expanding the free energy of the many
body system as a simple polynomial:

fL[ψ] =
1
V

F[ψ] =
r
2
ψ2 +

u
4
ψ4. (12.4)

• The Landau free energy describes the leading dependence of the total free energy onψ. The full free energy
is given by ftot = fn(T) + f [ψ] +O[ψ4], where fn is the energy of the “normal” state without long range
order.
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TTc

ψ

h>0

ψ

(a) (b)F(   )ψ
cT>T

T<T

T=T

c

c

tFig. 12.3 (a) The Landau free energy F(ψ) as a function of temperature for an Ising order
parameter. Curves are displaced vertically for clarity. (b) Order parameter ψ as a
function of temperature for a finite field h > 0 and an infinitesimal field h = 0+.

• For an Ising order parameter, both the Hamiltonian and the free energy are an even function ofψ: H[ψ] =
H[−ψ]. We say that the system possesses a “globalZ2 symmetry”, because the Hamiltonian is invariant
under transformations of theZ2 group that takesψ→ ±ψ.

Providedr andu are greater than zero, the minimum offL[ψ] lies atψ = 0. Landau theory assumes that
the phase transition temperuture,r changes sign, so that

r = a(T − Tc)

as illustrated in Fig. 12.3 (a). The minimum of the free energy occurs when

d f
dψ
= 0 = rψ + uψ3⇒ ψ =


0 (T > Tc)

±
√

a(Tc−T)
u (T < Tc)

(12.5)

so that forT < Tc, there are two minima of the free energy function (Fig. 12.3 (a)). Note that:

• if we cool the system in a tiny external field, the sign of the order parameter reflects the sign of the field
(Fig. 12.3 (b)):

ψ = sgn(h)

√
a(Tc − T)

u
, (T < Tc). (12.6)

This branch-cut along the temperature axis of the phase diagram, is an example of a first-order phase
boundary. The pointT = Tc, h = 0 where the line ends is a“critical point” .

• If u < 0 the free energy becomes unbounded below. To cure this problem, the Landau free energy must be
expanded to sixth order inψ:

f [ψ] =
1
V

F[ψ] =
r
2
ψ2 +

u
4
ψ4 +

u6

6
ψ6

Whenu < 0 the free energy curve develops three minima and the phase transition becomes first order;
the special point atr = h = u = 0 is a convergence of three critical points called atri-critical point (see
exercise 12.3).
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ψ < 0 ψ > 0
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h
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Tc

(b)(a)

ψ

T

tFig. 12.4 Phase diagram in an applied field. A first order line stretches along the zero field axis,
h = 0 up to the critical point. The equilibrium order parameter changes sign when this
phase boundary is crossed. (a) Three dimensional plot showing discontinuity in order
parameter as a function of field ψ. (b) Two dimensional phase boundary showing first
order line.

12.2.3 Singularities at the critical point.

At a second order phase transition, the second derivatives of the Free energy develop singularities. If we plug
(12.6) back into the Free energyfL[ψ] (12.4), we find that

fL =

{
0 (T > Tc)

− a2

4u(Tc − T)2 (T < Tc)

In this way, the free energy and the entropyS = − ∂F
∂T are continuous at the phase transition, but the specific

heat

CV = −T
∂2F
∂T2
= C0(T) +

{
0 (T > Tc)

a2T
2u (T < Tc)

(12.7)

whereC0 is the background component of the specific heat not associated with the ordering process. We see
thatCV “jumps” by an amount

∆CV =
a2Tc

2u

below the transition. The jump size∆CV has the dimensions of entropy per unit volume, and sets a character-
istic size of the entropy lost per unit volume once long-range order sets in.

At a second-order transition, matter also becomes infinitely susceptible to the applied fieldh, as signalled
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by a divergence in susceptibilityχ = ∂ψ
∂h . To see this in Landau theory, let us introduce a field by replacing

f (ψ)→ f (ψ) − hψ =
r
2
ψ2 +

u
4
ψ4 − hψ (12.8)

A finite field h > 0 has the effect of “tipping” the free energy contour to the right, preferentially lowering
the energy of the right-hand minimum, as illustrated in Fig.(12.4). Forh , 0, equilibrium requires∂ f /∂ψ =
rψ+uψ3−h = 0, which we can solve forr = h

ψ
−4uψ2. Above and belowTc, we can solve forψ by linearizing

ψ[h] = δψ + ψ0 around theh = 0 value given in (12.6), to obtainδψ = χ(T)h + O(h3), (See Fig. 12.3(b))
where

χ(T) =
dψ
dh
=

1
a|T − Tc|

×
{

1 (T > Tc)
1
2 (T < Tc)

(12.9)

describes the divergence of the “susceptibility” at the critical point. When we are actually at the critical point
(r = 0), the induced order parameter is a non-linear function of field,

ψ =

(
h
u

)1/3

(T = Tc) (12.10)

The divergence of the susceptibility at the critical point means that if cool through the critical point in the
absence of a field, the tiniest stray field will produce a huge effect, tipping the system into either an up or
down state. Once this happens, we say that the system has“spontaneously broken theZ2 inversion symmetry”
of the original Hamiltonian.

The singular powerlaw dependences of the order parameter, specific heat and susceptibility near a second
order transition described by Landau theory are preserved at real second-order phase transitions, but the
critical exponents are changed by the effects of spatial fluctuations of the order parameter. In general, we
write

CV ∝ (|T − Tc|)−α (Specific heat),

ψ ∝
{

(Tc − T)β

h
1
δ

(Order parameter),

χ ∝ (T − Tc)−γ (Susceptibility),

(12.11)

which Landau theory estimates asα = 0, β = 1/2, δ = 3 andγ = 1. Remarkably, this simple prediction of
Landau theory continues to hold once the full-fledged effects of order parameter fluctuations are included, and
still more remarkably, the exponents that emerge are found to be universal for each class of phase transition,
independently of the microscopic physics[3].

12.2.4 Broken Continuous symmetries : the Mexican Hat Potential

We now take the leap from a one, to an n-component order parameter. We shall be particularly interested
in a particularly important class of multi-component orderin which the underlying physics involves a con-
tinous symmetry that is broken by the phase transition. In this case, then − componentorder parameter
~ψ = (ψ1 . . . ψn) acquires both magnitude and direction, and the discreteZ2 inversion symmetry of the Ising
model is now replaced by a continuous “O(N)” rotational symmetry. At a phase transition the breaking of
such continous symmetries has remarkable consequences.

TheO(N) symmetric Landau theory is simply constructed by replacing ψ2 → |ψ|2 = (ψ2
1 + . . . ψ

2
n) = ~ψ · ~ψ,

taking the form
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fL[~ψ] =
r
2

(~ψ · ~ψ) +
u
4

[(~ψ · ~ψ)]2, O(N) invariant Landau theory

where as beforer = a(T − Tc). This Landau function is invariant underO(N) rotations~ψ → R~ψ that
preserve the magnitude of the order parameter. Such symmetries do not occur by accident, but owe their
origin to conservation laws which protect them in both the microscopic Hamiltonian and the macroscopic
Landau theory. For example, in a Heisenberg magnet, the corresponding Landau theory hasO(3) symmetry
associated with the underlying conservation of the total spin magnetization.

OnceT < Tc, the order parameter acquires a definite magnitude and direction given by

~ψ =

√
|r |
u

n̂

wheren̂ is a unit (n-component) vector. By acquiring a definite direction, the order parameter breaks theO(N)
symmetry. In a magnet, this would correspond to the spontaneous development of a uniform magnetization.
In a superconductor or superfluid, it corresponds to the development of a macroscopic phase.

A particularly important example of a broken continuous symmetry occurs in superfluids and supercon-
ductors, where the the order parameter is a single complex order parameter composed from two real order
parametersψ = ψ1 + iψ2 = |ψ|eiφ. In this case, the Landau free energy takes the form1

f [ψ] = r(ψ∗ψ) +
u
2

(ψ∗ψ)2, U(1) invariant Landau theory

ψ ≡ ψ1 + iψ2 ≡ |ψ|eiφ. (12.12)

Fig. (12.5) shows the Landau free energy as a function ofψ, where the magnitude of the order parameter|ψ| is
represented in polar co-ordinates. The free energy surfacedisplays a striking rotational invariance, associated
with the fact that the free energy is independent of the global phase of the order parameter

f [ψ] = f [eiαψ]. U(1) gauge invariance

This is a direct consequence of the globalU(1) invariance of the particle fields that have condensed to develop
the complex order parameter. ForT < Tc, the negative curvature of the free energy surface atψ = 0 causes the
free energy surface to develops the profile of a “Mexican Hat”, with a continuous rim of equivalent minima
where

ψ =

√
|r |
u

eiφ

The appearance of a well-defined phase breaks the continuousU(1) symmetry.
The “Mexican hat” potential illustrates a special propertyof phases with broken continuous symmetry:

it becomes possible to continuously rotate the order parameter from one broken symmetry state to another.
Notice however, that if the order parameter is to maintain a well-defined phase, or direction then it is clear that
there must be an energy cost for deforming or “twisting” the direction of the order parameter. This rigidity

1 For complex fields, it is more convenient to work without the factor of 1/2 in front of the quadratic terms. To keep the numerology
simple, the interaction term is also multiplied by two.
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ψ = ψ1

ψ

ψ1

ψ2

(b) ψ = ψ1 + iψ2
(a)

ψ1

f(ψ)

f(ψ)
|ψ|

φ

tFig. 12.5 Dependence of Free energy on order parameter for (a) an Ising order parameter
ψ = ψ1, showing two degenerate minima and (b) complex order parameter
ψ = ψ1 + iψ2 = |ψ|eiφ, where the the Landau free energy forms a “Mexican Hat
Potential” in which the free energy minimum forms a rim of degenerate states with
energy that is independent of the phase φ of the uniform order parameter.

is an essential component of broken continuous symmetry. Insuperfluids, the emergence of a well-defined
phase associated with the order parameter is intimately related to persistent currents, or superflow. We shall
shortly see that when we “twist” the phase, a superflow develops.

~j ∝ ~∇φ.

To describe this rigidity, we need to take the next step, introducing a term into energy functional that keeps
track of the energy cost of a non-uniform order parameter. This leads us onto Landau Ginzburg theory.

12.3 Ginzburg Landau theory I: Ising order

Landau theory describes the energy cost of a uniform order parameter: a more general theory needs to ac-
count for inhomogenious order parameters in which the amplitude varies or the direction of the order param-
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eter is “twisted”. This development of Landau theory is called “Ginzburg Landau” theory2, after Ginzburg
and Landau[5], who developed this formalism as part of theirmacroscopic theory of superconductivity. We
will begin our discussion of Landau Ginzburg theory with thesimplest case a one-component “Ising” order
parameter.

Ginzburg Landau theory[5] introduces an addition energy cost δ f ∝ |∇ψ|2 associated with gradients in the
order parameter:fGL[ψ,∇ψ] = s

2 |∇ψ|2 + fL[ψ(x)]. For a single, Ising order parameter, the Free energy (in “d”
dimensions) is given by

FGL[ψ] =
∫

ddx fGL[ψ(x),∇ψ(x),h(x)]

fGL[ψ,∇ψ,h] =
s
2

(∇ψ)2 +
r
2
ψ2 +

u
4
ψ4 − hψ (12.13)

Ginzburg Landau Free energy: one component order

There are two points to be made here:

• Ginzburg Landau (GL) theory is only valid near the critical point, where the order parameter is small
enough to permit a leading order expansion.

• Dimensional analysis shows that [c]/[r] = L2 has the dimensions of length-squared. The new length-scale
introduced by the gradient term, called the “correlation length”

ξ(T) =
√

s
|r(T)| = ξ0

∣∣∣∣∣1−
T
Tc

∣∣∣∣∣
− 1

2

correlation length (12.14)

sets the characteristic length-scale of order-parameter fluctuations, where

ξ0 = ξ(T = 0) =

√
s

aTc
coherence length

is a measure of the microscopic coherence length. Near the transition,ξ(T) diverges, but far from the
transition, it becomes comparable with the coherence length.

The traditional use of Ginzburg Landau theory, is as a as avariational principle, using the condition of
stationarityδF/δψ = 0 to determine non-equilibrium configurations of the order parameter. Landau Ginzburg
theory is also the starting point for a more general analysisof thermal fluctuations around the mean-field
theory. We shall return at the end of this chapter.

12.3.1 Non-uniform solutions of Ginzburg Landau theory

There are two kinds of non-uniform solutions we will consider:

1 The linear, but non-local response to a small external field.
2 “Soliton” or domain wall solutions, in which the order parameter changes sign, passing through the maxi-

mum in the free energy atψ = 0. (Such domain walls are particular to Ising order ).

2 The idea of using a gradient expansion of the free energy firstappears in print in the work of Ginzburg and Landau. However,germs
of this theory are contained in the work of Ornstein and Zernicke, who in 1914 developed a theory to describe critical opalescence[4].
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To obtain the equation governing non-uniform solutions, wewrite

δFGL =

∫
ddx δψ(x)

[
−s∇2ψ(x) +

∂ fL[ψ]
∂ψ(x)

]
. (12.15)

Since the Ginzburg Landau free energy must be stationary with respect to small variations in the field:

δFGL

δψ(x)
= −s∇2ψ +

∂ fL[ψ]
∂ψ

= 0 (12.16)

or more explicitly

[
(−s∇2 + r) + uψ2

]
ψ(x) − h(x) = 0 (12.17)

Susceptibility and linear response

The simplest application of GL theory, is to calculate the linear response to a non-uniform applied field. For
T > Tc, for a small linear response we can neglect the cubic term so that (−c∇2+ r)ψ(x) = h(x). If we Fourier
transform this equation, we obtain

(sq2 + r)ψq = hq (12.18)

or ψq = χqhq, where

χq =
1

sq2 + r
=

1
s(q2 + ξ−2)

(12.19)

is the momentum-dependent susceptibility andξ =
√

s/r is the correlation length defined in (12.14). Notice
thatχq=0 = 1/[a(T − Tc)] = r−1 is the uniform susceptibility obtained in (12.9) earlier. For largeq >> ξ−1,
χ(q) ∼ 1/q2 becomes strongly momentum dependent: in otherwords, the response to an applied field is
non-local up to a the correlation length.

Example 12.2:

(a) Show that ind = 3 dimensions, forT > Tc, the response of the order parameter field to an applied
field is non-local, and given by

ψ(x) =
∫

d3x′χ(x− x′)h(x′)

χ(x− x′) =
χ

4πξ2

e−|x−x′ |/ξ

|x− x′| (12.20)

(b) Show that providedh(x) is slowly varying on scales of orderξ, the linear response can be approxi-
mated by

ψ(x) = χh(x)

Solution:
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(a) If we carry out the inverse Fourier transform of the responseψ(q) = χ(q)h(q), we obtain

ψ(x) =
∫

x′
χ(x− x′)h(x′)

In example (4.6) we showed that under a Fourier transform

e−λ|x|

|x|
FT−→ 4π

q2 + λ2

so the (inverse) Fourier transform of the non-local susceptibility is

χ(q) =
c−1

q2 + ξ−2

FT−1

−→ 1
4πs

e−|x|/ξ

|x| =
χ

4πξ2

e−|x|/ξ

|x|
(b) At small q, we may replaceχ(q) ≈ χ, so that for slowly varyingh in real space we can replace

χ(x − x′) → χδ(d)(x − x′). So that providedh is slowly varying over lengths longer than the
correlation length,ψ(x) = χh(x).

(b)

x

(a)

ψ
ψ

V [ψ] = −f(ψ)
f(ψ)

−ψ0
ψ0

+ψ0

−ψ0 ψ0

−ψ0

ψ

ξ

≡
ψ(x)

ψ(t)

tFig. 12.6 Soliton solution of Ginzburg Landau equations. (a) The evolution of ψ in one
dimension is equivalent to a particle at position ψ, moving in an inverted potential
V[ψ] = − fL[ψ]. A soliton is equivalent to a “bounce” between maxima at ψ = ±ψ0 of
V[ψ]. (b) The “path” that the particle traces out in time “t” ≡ x defines the spatial
dependence of the order parameter ψ[x].

Domain Walls

OnceT < Tc, it is energetically costly for the order parameter to deviate seriously from the equilibrium values
ψ0. Major deviations from these “stable vacua” can however take place at “domain walls” or “solitons”, which
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are narrow walls of space which separate the two stable “vacua” of opposite sign, whereψ = ±ψ0. To change
sign, and Ising order parameter must pass through zero at thecenter of the domain wall, passing over the
“hump” in the free energy.

We now solve for the soliton in one dimension, where the Ginzburg Landau equation becomes

cψ′′ =
d fL[ψ]

dψ
. (12.21)

This formula has an intriguing interpretation as Newton’s law of motion for a particle of massc moving in
an inverted potentialV[ψ] = − fL[ψ]. This observation permits an analogy between a soliton andand motion
in one dimension which enables us to to quickly develop a solution for the soliton. In this analogy,ψ plays
the role of displacement whilex plays the role of time. It follows thats2(ψ′)2 is an effective “kinetic energy”
3 and the effective “energy”

E = s
2

(ψ′)2 − fL[ψ]

is conserved and independent ofx. With our simple analogy, we can map a soliton onto the problem of a
particle rolling off one maxima of the inverted potentialV[ψ] = − fL[ψ], “bouncing” throughψ = 0 out to the
other maxima (Fig12.6). Fixing the conserved initial energy to beE = − fL[ψ0], we deduce the “velocity”

ψ′ =
dψ
dx
=

√
2
s
(E + fL[ψ]) =

ψ0√
2ξ

1−
ψ2

ψ2
0

 ,

To make the last step we have replacedψ2
0 =

|r |
u andξ =

√
s
|r | . Solving fordx= (

√
2ξ/ψ0)[1 − (ψ̃/ψ0)2]−

1
2 dψ

and integrating both sides yields

x− x0 =

√
2ξ
ψ0

∫ ψ

0

dψ̃

1− (ψ̃/ψ0)2
=
√

2ξ tanh−1(ψ/ψ0),

wherex = x0 is the point where the order parameter passes through zero, so that

ψ(x) = ψ0 tanh(
x− x0√

2ξ
). “soliton”

This describes a “soliton” solution to the Ginzburg Landau located atx = x0.

Example 12.3: Show that the Ginzburg Landau free energy of a Domain wall can be written

∆F = A
u
4

∫
dx[ψ4

0 − ψ4(x)]

whereA = Ld−1 is the area of the domain wall. Using this result, show that surface tensionσ = ∆F/A

3 This can be derived by multiplying (12.21) by the integratingfactorψ′ then

c(ψ′ψ′′) − ψ′ d fL[ψ]
dψ

=
d
dx

[ s
2

(ψ′)2 − fL[ψ]
]
= 0.
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is given by

σ =

√
8

3
ξuψ4

0.

Solution: First, let us integrate by parts to write the total energy of the domain in the form

F = A
∫

dx
[
− s

2
ψψ′′ + fL[ψ]

]
(12.22)

where forr < 0, fL[ψ] = − |r |2 ψ4 + u
4ψ

4 Using the GL equation (12.21)

sψ′′ =
d fL
dψ
= −|r |ψ + uψ3.

Subsituting into (12.22), we obtain

F = −A
∫

dx

[
−1

2
ψ

(
−✚✚|r |ψ + uψ3

)
−
�
��|r |

2
ψ2 +

u
4
ψ4

]

= −uA
∫

dxψ4(x) (12.23)

Subtracting off the energy of the uniform configuration, we then obtain

∆F = A
u
4

∫
dx(ψ4

0 − ψ4(x))

To calculate the surface tension, substituteψ(x) = ψ0 tanh[x/(
√

2ξ)], which gives

σ =
∆F
A
=

u
4
ψ4

0

∫ ∞

−∞
dx(1− tanh[x/(

√
2ξ)4)

=
ξu
√

8
ψ4

0

8/3︷                     ︸︸                     ︷∫ ∞

−∞
du(1− tanh[u]4) =

√
8

3
ξuψ4

0. (12.24)

12.4 Landau Ginzburg II: Complex order and Superflow

12.4.1 “A macroscopic wavefunction”

We now turn to discuss the Ginzburg Landau theory of complex,or two component order parameters. Here,
we shall focus on the use of Ginzburg Landau theory to understand superfluids and superconductors. At the
heart of our discussion, is the emergence of a kind of “macroscopic wavefunction” in which the microscopic
field operators of the quantum fluid̂ψ(x) acquire an expectation value

〈ψ̂(x)〉 ≡ ψ(x) = |ψ(x)|eiφ(x) “Macroscopic wavefunction”

complete with phase. The magnitude of this order parameter determines the density of particles in the super-
fluid

|ψ(x)|2 = ns(x)
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while the twist, or gradient of the phase determines the superfluid velocity.

vs(x) =
~

m
∇φ(x).

The idea that the wavefunction can acquire a kind of Newtonian reality in a superfluid or superconductor
goes deeply against our training in quantum physics: at firstsight, it appears to defy the Copenhagen in-
terpretation of quantum mechanics, in whichψ(x) is an unobservable variable. The bold idea suggested by
Ginzburg Landau is thatψ(x) is a macroscopic manifestation of quintillions of particles - bosons - all con-
densed into precisely the same quantum state. Even the greatfigures of the field - Landau himself - found
this hard to absort, and debate continues today. Yet on his issue, history and discovery appear to consistently
have sided with the bold, if perhaps naive, interpretation of the superconducting and superfluid order param-
eter as a essentially real, observable property of quantum fluids 4. It is the classic example of an“emergent
phenomenon”- one of the many collective properties of matter that we are still discovering today which is a
nota priori self-evident from the microscopic physics.

Vitalii Ginzburg and Lev Landau introduced their theory in 1950, as a phenomenological theory of super-
conductivity, in whichψ(x) played the role of a macroscopic wavefunction whose microscopic origin was,
at the time, unknown. We shall begin by illustrating the application of with an application of this method to
superfluids. For a superfluid, the GL free energy density is

fGL[ψ,∇ψ] =
~

2

2m
|∇ψ|2 + r |ψ|2 + u

2
|ψ|4, (12.25)

GL free energy: superfluid

Before continuing, let us make a few heuristic remarks aboutthe GL free energy:

• The the GL free energy is to be interpreted as the energy density of a condensate of bosons in which
the field operator behaves as a complex order parameter. Thisleads us to identify the coefficient of the
gradient term

s|∇ψ|2 ≡ ~
2

2m

〈
∇ψ̂†∇ψ̂

〉
(12.26)

as the kinetic energy, so thats= ~
2

2m.

• As in the case of Ising order, the correlation length, or “Ginzburg Landau coherence length” governing the
characteristic range of amplitude fluctuations of the orderparameter is given by

ξ =

√
s
|r | =

√
~2

2M|r | = ξ0

(
1− T

Tc

)−1/2

(12.27)

4 On more than one occasion, senior physicists advised their students and younger colleagues against such a brash interpretation. One
such story took place in Moscow in 1953. Shortly after Ginzburg Landau theory was introduced, a young student of Landau, Alexei
Abrikosov showed that a naive classical interpretation of the order parameter field led naturally to the predication of quantized vortices
and superconducting vortex lattices. Landau himself could not bring himself to make this leap and persuaded his student to shelve
the theory. It was only after Feynman published a theory of vortices in superfluid helium, that Landau accepted the idea, clearing the
way for Abrikosov to finally publish his paper. [6]
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whereξ0 = ξ(T = 0) =
√

~2

2maTc
is the coherence length. Beyond this length-scale, only phase fluctua-

tions survive.
• If we freeze out fluctuations in amplitude, writingψ(x) =

√
nseiφ(x), then∇ψ = i∇φ ψ and|∇ψ|2 = ns(∇φ)2,

the residual dependence of the kinetic energy on the twist inthe phase is

~
2ns

2m
(∇φ)2 =

mns

2

v2
s︷   ︸︸   ︷(

~

m
∇φ

)2

.

Sincemns is the mass density, we see that a twist of the phase results inan increase in the kinetic energy
that we may associate with a “superfluid” velocity

vs =
~

m
∇φ.

12.4.2 Off-diagonal long range order and coherent states

What then, is the meaning of the complex order parameterψ? It is tempting to associate it with the expectation
value of the field operator

〈ψ̂(x, t)〉 = ψ(x, t)

Yet, paradoxically, a field operator, links states with different particle numbers, so such an expectation value
can never develop in a state in a state with a definite number ofparticles. One way to avoid this problem,
proposed by Penrose and Onsager, is to define the order parameter in terms of correlation functions[7, 8].
The authors noted that even in a state with a definite particlenumber, broken symmetry manifests itself as a
long-distance factorization [9] of the correlation function 〈ψ†(x)ψ(x)〉:

〈ψ†(x′)ψ(x)〉
|x′−x|≫ξ
−−−−−−−−→ ψ∗(x′) ψ(x) + small terms (12.28)

Off-diagonal long range order.

in terms of the order parameter. This property is called “off-diagonal long range order” [10](ODLRO).
However, a more modern view is that in macroscopic systems, we don’t need to restrict our attention to to

states of definite particle number, and indeed, once we bringa system into contact with a bath of particles,
quantum states of indefinite particle number do arise. This issue also arises in a ferromagnet where, the analog
of particle number is the conserved magnetizationSz along the z-axis. A ferromagnet ofN spins polarized in
thez direction has wavefunction

|Z〉 =
∏

⊗
i=1,N

| ↑〉i

However, if we cool the magnet in a field aligned along the x-axis, coupled via the HamiltonianH = −2BSx =

−B(S+ + S−), then once we remove the field at low temperatures, the magnet remains polarized in thex
direction:

|X〉 =
∏

⊗
i=1,N

| →〉i =
∏

⊗
i=1,N

(
| ↑〉 + | ↓〉
√

2

)

i

.
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Thus the coherent exchange of spin with the environment leads to a state that contains an admixture of states
of differentSz. In a similar way, we may consider cooling a quantum fluid in a field that couples to the
superfluid order parameter. Such a field is created by a “proximity effect” of the exchange of particles with a
pre-cooled superfluid in close vicinity, giving rise to a field term in the Hamiltonian such as

H′ = −∆
∫

ddx[ψ†(x) + ψ(x)]

When we cool below the superfluid transition temperatureTc in the presence of this pairing field, removing
the proximity field at low temperatures, then like a magnet, the resulting state acquires an order parame-
ter forming a stable state of indefinite particle number.5 To describe such states requires the many body
equivalent of wave-packets: a type of state called a “coherent state”.

Coherent states are eigenstates of the field operator

ψ̂(x)|ψ〉 = ψ(x)|ψ〉. (12.29)

These states form an invaluable basis for describing superfluid states of matter. A coherent state can be simply
written as

|ψ〉 ∼ e
√

Nsb† |0〉 coherent state. (12.30)

where

b† =
1
√

Ns

∫
ddx ψ(x)ψ̂†(x),

coherently adds a boson to a condensate with with wavefunctionψ(x). Here,Ns =
∫

ddx|ψ(x)|2 is theaverage
number of bosons in the superfluid and the normalization is chosen so that [b,b†] = 1. (See example 13.4 and
exercise 13.12.6.)

Similarly, the conjugate state〈ψ| = 〈0|e
√

Nsb̂ diagonalizes the creation operator:

〈ψ|ψ̂†(x) = ψ∗(x)〈ψ|. (12.31)

However, it not possible to simultaneously diagonalize both creation and annihilation operators because they
don’t commute. Thus|ψ〉 only diagonalizes the destruction operator and〈ψ∗| only diagonalizes the creation
operator.

Coherent states are really the many body analog of “wave-packets”, with the roles of momentum and
position replaced byN andφ respectively. Just as ˆp generates spatial translations ,e−iPa/~|x〉 = |x + a〉, N̂
translates the phase (see exercise 12.1), so thateiαN̂|φ〉 = |φ + α〉. (Notice the difference in the sign in the
exponent). For an infinitesimal phase translation〈φ + δφ| = 〈φ|(1− iδφN̂), soi d

dφ 〈φ| = 〈φ|N̂, implying

N̂ = i
d
dφ
.

This is the many body analog of the identity ˆp ≡ −i~ d
dx. Just as periodic boundary conditions in space give

rise to discrete quantized values of momentum, the periodicnature of phase, gives rise to a quantized particle
number. It follows that

[N̂, φ̂] = i

5 One might well object to this line of reasoning - for clearly, creating a state with a definite phase requires we have anotherpre-cooled
superfluid prepared in a state of definite phase. But what happens if we have none to start with? It turns out that what we really can
do, is to control the relative phase of two superfluids. By field-cooling, and it is the relative phase that we can actually measure.
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implying phase and particle number are conjugate variableswhich obey an uncertainty relation6

∆φ∆N>
˜

1

A coherent state trades in a small fractional uncertainty inparticle number to gain a high degree of precision
in its phase. For small quantum systems where the uncertainty in particle number is small, phase becomes
ill-defined. If we write the uncertainty principle in terms of the relative error∆ǫ = ∆N/N, then∆φ∆ǫ >˜ 1/N

we see that onceN ∼ 1023, the fractional uncertaintly in particle number and the phase can be known to an
accuracy of order 10−11. In the thermodynamic limit this means we can localize and measuring both the phase
and the particle density with Newtonian precision.

Example 12.4: The coherent state (12.30) is not normalized. Show that the properly normalized co-
herent state

|ψ〉 = e−Ns/2e
√

Nsb̂† |0〉,
b† =

1
√

Ns

∫

x
ψ(x)ψ̂†(x) (12.32)

is an eigenstate of the annihilation operatorψ̂(x) with eigenvalueψ(x), whereNs =
∫

ddx|ψ(x)|2.
Solution:

1 First, since [̂ψ(x), ψ̂†(x′)] = δ(d)(x− x′), we note that

[b,b†] =
1
Ns

∫

x,x′
ψ(x)ψ∗(x′)

δ(d)(x−x′)︷          ︸︸          ︷
[ψ̂(x), ψ̂†(x′)] =

1
Ns

∫

x
|ψ(x)|2 = 1,

so thatb andb† are canonical bosons.
2 To obtain the normalization of a coherent state, let us expand the exponential in |z〉 = ezb̂† |0〉 in terms

of eigenstates of the boson number operator ˆn = b†b, |n〉, as follows:

|z〉 =
∞∑

n=0

(zb†)n

n!
|0〉 =

∞∑

n=0

zn

√
n!

|n〉︷   ︸︸   ︷
(b†)n

√
n!
|0〉 =

∞∑

n=0

zn

√
n!
|n〉

Since〈n′|n〉 = δn,n′ , taking the norm, we obtain

〈z|z〉 =
∑

n

|z|n
n!
= e|z|

2

Placingz=
√

Ns, it follows that the normalized coherent state is|ψ〉 = e−Ns/2e
√

Nsb† |0〉.
3 Sinceψ̂(x)|0〉 = 0, the action of the field operator on the coherent state is

ψ̂(x)|ψ〉 = e−Ns/2[ψ̂(x),e
√

Nsb† ]|0〉 (12.33)

To simplify notation, let us denoteα† =
√

Nsb†. The commutator

[ψ̂(x), α†] =
∫

x′
ψ(x′)

δ(d)(x−x′)︷          ︸︸          ︷
[ψ̂(x), ψ̂†(x′)] = ψ(x)

which in turn implies that [̂ψ(x), (α†)r ] = rψ(x)(α†)r−1. Now expanding

eα
†
=

∑

r

1
r!

(α†)r

6 The strict relation is∆φ∆N ≥ 1
2 |[φ̂, N̂]| = 1

2 . As in the case of wavepackets, in heuristic discussion, we drop the factor of one half.
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we find that

[ψ̂(x),eα̂
†
] =

∞∑

r=0

1
r!

[ψ̂(x), (α̂†)r ] = ψ(x)
∞∑

r=1

(α̂†)r−1

(r − 1)!
= ψ(x)eα̂

†

so that finally,

ψ̂(x)|ψ〉 = e−Ns/2[ψ̂(x),e
√

Nsb† ]|0〉 = ψ(x)e−Ns/2e
√

Nsb† |0〉 = ψ(x)|ψ〉. (12.34)

Ginzburg Landau energy for a coherent state

We shall now link the one-particle wavefunction of the condensate to the order parameter of Ginzburg Landau
theory. While coherent states are not perfect energy eigenstates, at high density they provide an increasingly
accurate description of the ground-state wavefunction of acondensate. To take the expectation value of normal
ordered operators between coherent states, one simply replaces the fields by the order parameter, so that if

Ĥ = ~
2

2m
∇ψ̂†(x)∇ψ̂(x) + (U(x) − µ)ψ̂†(x)ψ̂(x) +

u
2

: (ψ̂†(x)ψ̂(x))2 : (12.35)

is the energy density of the microscopic fields, whereU(x) is the one-particle potential, then the energy
density of the condensate is

〈ψ|H [ψ̂†, ψ̂]|ψ〉 = H [ψ∗, ψ] =
~

2

2m
|∇ψ(x)|2 + (U(x) − µ)|ψ(x)|2 + u

2
|ψ(x)|4.

which we recognize as a Ginzburg Landau energy density with

s=
~

2

2m
, r(x) = U(x) − µ.

At a finite temperature, this analysis needs modification. For instance,µ will acquire a temperature depen-
dence that permitsr(T) to vanish atTc, while the relevant functional becomes free energyF = E − TS.
Finally, note that at a finite temperature,ns(T) only defines the superfluid component of the total particle
densityn, which contains both a normal and a superfluid componentn = ns(T) + nn(T).

12.4.3 Phase rigidity and superflow

In GL theory the energy is sensitive to a “twist” of the phase.If we substituteψ = |ψ|eiφ into the GL free
energy, the gradient term becomes∇ψ = (∇|ψ| + i∇φ|ψ|)eiφ, so that

fGL =

KE: phase rigidity︷          ︸︸          ︷
~

2

2m
|ψ|2(∇φ)2 +

amplitude flucts︷                              ︸︸                              ︷[
~

2

2m
(∇|ψ|)2 + r |ψ|2 + u

2
|ψ|4

]
(12.36)

The second term resembles the Ginzburg Landau functional for an Ising order parameter, and describes the
energy cost of variations in the magnitude of the order parameter. The first term term is new. This term
describes the“phase rigidity” . As we learnt in the previous section, amplitude fluctuations of the order
parameter are confined to scales shorter than the correlation lengthξ. On longer length-scales the physics is
entirely controlled by the phase degrees of freedom, so that

fGL =
ρφ

2
(∇φ)2 + constant (12.37)
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The quantityρφ = ~
2

mns is often called the “superfluid phase stiffness”.
From a microscopic point of view, the phase rigidity term is simply the kinetic energy of particles in the

condensate, but from a macroscopic view, it is an elastic energy associated with the twisted phase. The only
way to reconcile these two viewpoints, is if a twist of the condensate wavefunction results in a coherent flow
of particles.

To see this explicitly, let us calculate the current in a coherent state. Microscopically, the current operator
is

~J = −i
~

2m

(
ψ̂†~∇ψ̂ − ~∇ψ̂†ψ̂

)

so in a coherent state,

〈ψ| ~J|ψ〉 = −i
~

2m

(
ψ∗~∇ψ − ~∇ψ∗ψ

)
(12.38)

If we substituteψ(x) =
√

ns(x)eiφ(x) into this expression, we find that

Js = ns
~

m
∇φ (12.39)

so that constant twist of the phase generates a flow of matter.Writing Js = nsvs, we can identify

vs =
~

m
∇φ.

as the “superfluid velocity” generated by the twisted phase of the condensate. Conventional particle flow is
acheived by the addition of excitations above the ground-state, but superflow occurs through a deformation
of the ground-state phase and every single particle moves inperfect synchrony.

Example 12.5:

(a) Show that in a condensate, the quantum equations of motion for the phase and particle number can
be replaced by Hamiltonian dynamics[9]:

~
dN
dt
= i[N,H] =

∂H
∂φ

~
dφ
dt
= i[φ,H] = −∂H

∂N
(12.40)

which are the analog of ˙q = ∂H
∂p and ṗ = − ∂H

∂q .
(b) Use the second of the above equations to show that in a superfluid at chemical potentialµ, the equi-

librium order parameter will precess with time, according to

ψ(x, t) = ψ(x,0)e−iµt/~

(c) If two superfluids with the same superfluid density, but at different chemical potentialsµ1 andµ2 are
connected by a tube of lengthL show that the superfluid velocity from 1→ 2 will “accelerate”
according to the equation

dvs

dt
= − ~

m
µ2 − µ1

L

Solution:

(a) Since [φ, N̂] = i, there are two alternative representations of the operators:

N̂ = −i
d
dφ
, φ̂ = φ (12.41)
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or, in the case thatN is large enough to be considered a continuous variable,

φ̂ = i
d

dN
, N̂ = N (12.42)

Using (12.41), the Heisenberg equation of motion forN(t) is given by

dN
dt
=

i
~

[N,H] =
i
~

[−i
d
dφ
,H(N, φ)] =

1
~

∂H
∂φ

(12.43)

while using (12.42), the Heisenberg equation of motion forφ(t) is given by

dφ
dt
=

i
~

[φ,H] =
i
~

[i
d

dN
,H] = −1

~

∂H
∂N

, (12.44)

(b) In a bulk superfluid,∂H
∂N = µ, so using (12.44 ),̇φ = µ/~, and henceφ(t) = − µt

~
+ φ0, or

ψ(x, t) = ψ(x,0)e−iµt/~

(c) Assuming a constant gradient of phase along the tube connecting thetwo superfluids, the superfluid
velocity is given by

vs =
~

m
∇φ(t) =

~

m
(φ2(t) − φ1(t))/L

But φ(2)− φ(1) = −(µ2 − µ1)t + cons, hence

dvs

dt
= − ~

m
µ2 − µ1

L

Vortices and topological stability of superflow

Superflow is stable because of the underlying topology of a twisted order parameter. If we wrap the system
around on itself then the the single-valued nature of the order parameter implies that the change in phase
around the sample must be an integer multiple of 2π:

∆φ =

∮
dx · ∇φ = 2π × nφ

corresponding tonφ twists of the order parameter. But sincevs =
~

m∇φ, this implies that line-integral, or
“circulation” of the superflow around the sample is quantized

ω =

∮
dx · vs =

h
m
× nφ quantization of circulation

(noteh without a slash). Assuming translational symmetry, this implies

vs =
h

mL
nφ quantization of velocity,

a phenomenon first predicted by Onsager and Feynman[11, 12].The number of twists of the order parameter
nφ is a “topological invariant” of the superfluid condensate, since it can not be changed by any continuous
deformation of the phase. The only way to decay the superflow is to create high energy domain walls: a
process that is exponentially suppressed in the thermodyanmic limit. Thus the topological stability of a twisted
order parametery sustains a persistent superflow.

Another topologically stable configuration of a superfluid is a “vortex”. A vortex is a singular line in the
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superfluid around which the phase of the order parameter precesses by an integer multiple of 2π. If we take a
circular path of radiusr around the vortex then the quantization of circulation implies

ω = nφ

(
h
m

)
=

∮
dx · vs(x) = 2πrvs

or

vs = nφ ×
(
~

m

)
1
r
, (r >

˜
ξ)

This formula, where the superfluid velocity appears to diverge at short distances, is no longer reliable for
r <˜ ξ, where amplitude variations in the order parameter become important.

Let us now calculate the energy of a vortex. Suppose the vortex is centered in the middle of a large cylinder
of radiusR, then the energy per unit length is

F
L
=
ρφ

2

∫
d2x(∇φ)2 =

ρφ

2

∫ R

ξ

2πrdr

(
2πnφ
2πr

)2

= πρφ ln

(
R
ξ

)
× n2

φ.

In this way, we see that the energy ofnφ isolated vortices with unit circulation, isnφ times smaller than one
vortex with nφ-fold circulation. For this reason, vortices occur with single quanta of circulation, and their
interaction is repulsive.

12.5 Landau Ginzburg III: Charged fields

12.5.1 Gauge Invariance

In a neutral superfluid the emergence of a macrosopic wavefunction with a phase leads superfluidity. When
the corresponding fluid is charged, the superflow carries charge, forming a superconductor. One of the key
properties of superconductors, is their ability to actively exclude magnetic fields from their interior, a phe-
nomenon called the “Meissner effect”. Ginzburg Landau theory provides a beautiful account of this effect.

The introduction of charge into a field theory brings with it the notion of gauge invariance. From one-body
Schr̈odinger equation,

i~
∂ψ

∂t
=

[
− ~

2

2m

(
∇ − i

e
~

A
)2
+ eϕ(x)

]
ψ

whereϕ is the scalar electric potential, we learn that we can changethe phase of a particle wavefunction
by an arbitrary amount at each point in space and time,ψ(x, t) → eiα(t)ψ(x, t) without without altering the
equation of motion, so long as the change is compensated by a corresponding gauge transformation of the
electromagnetic field:

A → A +
~

e
∇α, ϕ→ ϕ − ~

e
∂α

∂t
. (12.45)

This intimate link between changes in the phase of the wavefunction and gauge transformations of the electro-
magnetic field threads through all of many body physics and field theory. Once we second-quantize quantum
mechanics, the same rules of gauge invariance apply to the fields that create charged particles, and when these
fields, or combinations of them condense, the correspondingcharged order parameter also obeys the rules of
gauge invariance, with the proviso that the chargee∗ is the charge of the condensate field. These kinds of
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arguments imply that in the Ginzburg Landau theory of a charged quantum fluid, normal derivatives of the
field are replaced by gauge invariant derivatives

∇ → D = ∇ − ie∗

~
A

wheree∗ is the charge of the condensing field. Thus the simple replacement

fGL[ψ,∇ψ] → fGL[ψ,Dψ]

incorporates the coupling of the superfluid to the electromagnetic field. To this, we must add the energy
density of the magnetic fieldB2/(2µ0), to obtain

F[ψ,A] =
∫

ddx
[

fψ︷                                        ︸︸                                        ︷
~

2

2M

∣∣∣∣∣(∇ −
ie∗

~
A)ψ

∣∣∣∣∣
2

+ r |ψ|2 + u
2
|ψ|4+ (∇ × A)2

2µ0︸     ︷︷     ︸
fEM

]
(12.46)

GL Free energy: charged superfluid.

whereM is mass of the condensed field and∇ × A = B is the magnetic field.

Note that:

• So long as we are considering superconductors, where the condensing boson is a Cooper pair of electrons,
e∗ = 2e. Although there are cases of charged bosonic superfluids, such as a fluid of deuterium nucleii, in
whiche∗ = e, for the rest of this book, we shall adopt

e∗ ≡ 2e (12.47)

as an equivalence.
• Under the gauge transformation

ψ(x)→ ψ(x)eiα(x), A → A +
~

e∗
∇α

Dψ→ eiα(x)Dψ, so that|Dψ|2 is unchanged and the GL free energy is gauge invariant.
• F[ψ,A] really containstwo intertwined Ginzburg Landau theories forψ andA respectively, with two cor-

responding length scales: the coherence lengthξ =
√

~2

2M|r | governing amplitude fluctuations ofψ and
and the “London penetration depth”λL, which sets the distance a magnetic field penetrates into thesu-
perconductor. In a uniform condensateψ =

√
ns, the free energy dependence on the vector potential is

given by

f [A] ∼ cA
(∇ × A)2

2
+

rA

2
A2, (12.48)

wherecA =
1
µ0

and rA =
e∗2ns

M . This is a Ginzburg Landau functional for the vector potential with a
characteristicLondon penetration depth

λL =

√
cA

rA
=

√
M

nse∗2µ0
, (12.49)
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12.5.2 Ginzburg Landau Equations

To obtain the equations of motion we need to take variations of the free with respect to the vector potential
and the order parameterψ. Variations in the vector potential recover Ampères equation, while variations in the
order parameter lead to a generalization of the non-linear Schrodinger equation obtained previously for non-
uniform Ising fields. Each of these equations is of great importance - non-uniform solutions determine the
physics of the domain walls between “normal” and “superconducting” regions of a type II superconductor,
while the Ginzburg Landau formulation of Ampère’s equation provides an understanding of the Meissner
effect.

If we vary the vector potential, thenδF = δFψ + δFEM, where

δFψ = −
∫

x
δA(x) ·

J(x)︷                                      ︸︸                                      ︷[
− i~

2M

(
ψ∗~∇ψ − ~∇ψ ψ

)
− e∗2

M
|ψ|2

]

is the variation in the condensate energy and7

δFEM =
1
µ0

∫
∇ × δA · B = 1

µ0

=0︷             ︸︸             ︷∫

x
∇ · (δA × B)+

1
µ0

∫

x
δA(x) · (∇ × B)

is the variation in the magnetic field energy. Setting the total variation to zero, we obtain:

δF
δA(x)

= −J(x) +
∇ × B
µ0

= 0. (12.51)

where

J(x) = − ie∗~
2M

(
ψ∗~∇ψ − ~∇ψ∗ ψ

)
− e∗2

M
|ψ|2A. (12.52)

is the supercurrent density. In this way, we have rederived Ampère’s equation, where the current density
takes the well-known form of a probability current in the Schrodinger equation. However,ψ(x) now assumes
a macroscopic, physical significance - it is literally, the “macroscopic wavefunction” of the superconducting
condensate. We will shortly see how Eq. (12.51) leads to the Meissner effect.

To take variations with respect toψ, it is useful to first integrate by parts, writing

Fψ =

∫

x

~
2

2M
ψ∗(−i∇ − e∗

~
A)2ψ + rψ∗ψ +

u
2

(ψ∗ψ)2
]
. (12.53)

If we now take variations with respect toψ∗ andψ, we obtain

δF =
∫

ddx

(
δψ∗(x)

[
~

2

2M
(−i∇ − e∗

~
A)2ψ(x) + rψ(x) + u|ψ(x)|2ψ(x)

]
+ H.c

)

7 The variation ofFEM is tricky. We can carry it out using index notation to integrateδFEM by parts as follows:

δFEM =
1
µ0

∫

x
ǫabc(∇bδAc)Ba =

1
µ0

∫

x

=−ǫcba︷︸︸︷
ǫabc

[
∇b(δAcBa)︸       ︷︷       ︸

0

−δAc∇bBa

]

=
1
µ0

∫

x
δAc(x)ǫcba∇bBa =

1
µ0

∫

x
δA(x) · (∇ × B) (12.50)

where we have set total derivative terms to zero.
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implying that

− ~
2

2M
(∇ − i

e∗

~
A)2ψ(x) + rψ(x) + u|ψ(x)|2ψ(x) = 0. (12.54)

This “non-linear Schroedinger equation” is almost identical to (12.17) obtained for an Ising order parameter,
but here∇2 → (∇ − i q

~
A)2 to incorporate the gauge invariance andψ3 → |ψ|2ψ takes account of the complex

order parameter. We will shortly see how this equation can beused to determine the surface tensionσsn of a
drop of superconducting fluid.

12.5.3 The Meissner Effect

We now examine how a superconductor behaves in the presence of a magnetic field. It is useful to write the
supercurrent (12.52)

J(x) = − ie∗~
2M

(
ψ∗~∇ψ − H.c

)
− e∗2

M
|ψ|2A

in terms of the amplitude and phase of the order parameterψ = |ψ|eiφ (c.f. 12.36). The derivative termψ∗∇ψ
can be re-written

ψ∗∇ψ = |ψ|e−iφ~∇(|ψ|eiφ) = i|ψ|2~∇φ + |ψ|~∇|ψ|,

so that the termψ∗∇ψ − H.c = 2i|ψ|2∇φ and hence

J(x) =
e∗~
M
|ψ|2∇φ − e∗2

M
|ψ|2A

= e∗ns

vs︷             ︸︸             ︷
~

M

(
~∇φ − e∗

~
A
)
= e∗nsvs (12.55)

where we have replaced|ψ|2 = ns and identified

vs =
~

M

(
∇φ − e∗

~
A
)
. (12.56)

as the superfluid velocity. Note that in contrast with (12.39), either a twist in the phase, or an external vector
potential can promote a superflow. Under a gauge transformation,φ→ φ+α, A → A+ ~e∗∇α, this combination
is gauge-invariant. Written out explicitly, Ampéres equation then becomes

∇ × B = −µ0
nse∗

2

M

(
A − ~

e∗
∇φ

)
(12.57)

If we take the curl of this expression (assumingns is constant), we obtain

∇ × (∇ × B) = µ0∇ × J = −µ0nse∗
2

M
B (12.58)

where we have used the identity∇×∇φ = 0 to eliminate the phase gradient. But∇×(∇×B) = ∇(∇·B)−∇2B =
−∇2B, since∇ · B = 0, so that
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∇2B =
1

λ2
L

B, Meissner Effect

1

λ2
L

=
µ0nse∗

2

M
(12.59)

This equation, first derived by Fritz London on phenomenological grounds[13], expresses the astonishing
property that magnetic fields are actively expelled from superconductors. The only uniform solutions that are
possible are

B = 0,ns > 0, superconductor
B , 0,ns = 0, normal state (12.60)

One dimensional solutions to the London equation∇2B = B/λ2
L take the formB ∼ B0e−

x
λL , showing that near

the surface of a superconductor, magnetic fields only penetrate a distance depthλL into the condensate. The
persistent supercurrents that screen the field out of the superconductor lie within this thin shell on the surface.

As we shall see however, in the class of type II superconductors, where the coherence length is small
compared with the penetration depth (ξ < λL/

√
2), magnetic fields can penetrate the superconductor in a

non-uniform way as vortices.
Lastly, note that in a superconductor, whereM = 2me ande∗ = 2e are the mass and charge of the Cooper

pair respectively, whilens =
1
2ne is half the concentration of electrons in the condensate,

nse∗
2

M
=

1
2ne4e2

2me
=

nee2

m

so the expression for the penetration depth has the same formwhen written in terms of the charge and mass
of the electron.

1

λ2
L

= µ0
nee2

m

The critical field Hc

In a medium that is immersed in an external field, we can dividethe magnetic field into an “external” mag-
netizing fieldH and the magnetizationM . In SI units,

B = µ0(H +M )

wherejext = ∇ × H is the current density in the external coils andj int = ∇ × M are the internal currents
of the material: in a superconductor, these are the supercurrents. Now the ratioχ = M/H, is the magnetic
susceptibility. Since the magnetic fieldB = µ0(M+H) vanishes inside a superconductor, this impliesM = −H,
so that8

χSC = −1. Perfect diamagnet.

In other words, superconductors areperfect diamagnets, in which shielding supercurrentsJint = ∇×M provide
a perfect Faraday cage to screen out the magnetic field from the interior of the superconductor. However, the

8 Most older texts use Gaussian units, for whichχSC = − 1
4π in a superconductor. In Gaussian unitsB = H + 4πM = (1 + 4πχ)H. If

B = 0, this implies thatχSC = − 1
4π in Gaussian units.
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external fieldH can not be increased without limit, and beyond a certain critical field |H| > Hc, the uniform
Meissner effect can no longer be sustained.

To calculate the critical field, we need to compare the energies of the normal and superconducting state.
To this end, we separate the free energy into a condensate anda field component,F = Fψ + FEM, where
δFψ/δB(x) = −M (x) is the magnetization induced by the supercurrents whileδFEM/δB(x) = µ0

−1B(x) is the
magnetic field. Adding these terms together,

δF
δB(x)

= −M (x) +
1
µ0

B(x) = H

Now the magnetizing fieldH is determined by the external coils, and can be taken to be constant over the
scale of the coherence and penetration depth. Since it is theexternal fieldH that is fixed, it is more convenient
to use the Gibb’s free energy

G[H, ψ] = F[B, ψ] −
∫

d3xB(x) · H

which is a functional of the external fieldH and independent of theB− field (δG/δB = 0). The second term
describes the work done by the coils in producing the constant external field. This is analogous to setting
G[P] = F[V] + PV to include the workPV done by a piston to maintain a fluid at constant pressure. In a
uniform superconductor,

g =
G
V
= r |ψ|2 + u

2
|ψ|4 + B2

2µ0
− BH

In the normal state,ψ = 0, B = µ0H, so that

gn = −
µ0

2
H2

whereas in the superconducting state,B = 0, and|ψ| = ψ0 =
√
−r/u, so that

gsc = rψ2
0 +

u
2
ψ4

0 = −
r2

2u

Clearly, if gsc < gn, i.e, if

H < Hc =

√
r2

µ0 u
critical field (12.61)

the superconductor is thermodynamically stable. The free energy density of the superconductor can then be
written

gsc = −
r2

2u
= −µ0

2
H2

c

Surface energy of a superconductor.

When the external field,H = Hc, the free energy density of the normal state and the superconductor are iden-
tical, and so the two phases can co-exist. The interface between the degenerate superconductor and normal is
a domain wall, where the Gibb’s energy per unit energy definesthe surface energy

∆G/A = σsn

353

Chapter 12. c©Piers Coleman 2011

whereA is the area of the interface. At the interface the superconducting order parameter and the magnetic
field decay away to zero over length scales of order the coherence lengthξ and penetration depthλL, respec-
tively, as illustrated below.

ξ

λL

ψ0

Bc

x

tFig. 12.7 Schematic illustrating a superconductor-normal metal domain wall in a type I
superconductor, where ξ >> λL.

The surface tensionσsn (surface energy)σns of the domain wall between the superconductor and normal
phase has a profound influence on the macroscopic behavior ofa superconductor. The key parameter which
controls the surface tension is the ratio of the magnetic penetration to the coherence length,

κ =
λL

ξ
, Ginzburg Landau parameter.

There are two types of superconductor (see Fig. 12.8):

1 κ < 1√
2

Type I superconductors, with a positive domain wall energy. In type I superconductors, magnetic
fields are vigorously excluded from the material by a thin surface layer of screening currents (Fig 12.9(a)).
At H = Hc there is a first order transition into the normal state.

2 κ > 1√
2

Type II superconductors, with a negative surface tension (σsn < 0). In type II superconductors, the
surface layer of screening currents is smeared out on the scale of the coherence length, and the magnetic
field penetrates much further into the superonductor (Fig 12.9(b)). In type II superconductors, there are
now two critical fields, an “upper” critical fieldHc2 > Hc and a lower critical fieldHc1 < Hc. Between
these two fields,Hc1 < H < Hc2 the magnetic field penetrates the bulk, forming vortices in which the high
energy of the normal core is offset by the negative surface energy of the layer of screening currents.

The domain wall energy between a superconductor and a metal at H = Hc is the excess energy associated
with a departure from uniformity:

σns =
1
A

∫
d3x

[
~

2

2M

∣∣∣∣∣(∇ −
ie∗

~
A)ψ

∣∣∣∣∣
2

+ r |ψ|2 + u
2
|ψ|4 + B2

2µ0
− B · Hc − gsc

]
(12.62)

InsertingHc = Bc/µ0 andgsc = − B2
c

2µ0
, we see that the last three terms can be combined into one, to obtain

σns =
1
A

∫
d3x

[
~

2

2M

∣∣∣∣∣(∇ −
ie∗

~
A)ψ

∣∣∣∣∣
2

+ r |ψ|2 + u
2
|ψ|4 + (B− Bc)2

2µ0

]
(12.63)
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tFig. 12.8 Contrasting the phase diagrams of type I and type II superconductors. (a) In type I
superconductors application of a high field converts the Meissner phase directly into
the normal state. (b) In type II superconductors, application of a modest field
(H > Hc1) results in the partial penetration of field into the superconductor to form a
superconducting flux lattice, which survives up to much a much higher field Hc2.

By imposing the condition of stationarity, it is straightforward to show (see example 12.6) that the domain
wall energy of a domain in the y-z plane can be cast into the compact form

σsn =
B2

c

2µ0

∫ ∞

−∞
dx


(
B(x)
Bc
− 1

)2

−
(
ψ(x)
ψ0

)4 . (12.64)

This compact form for the surface tension of a superconductor can be loosely interpreted as the difference of
field and condensation energy

σsn =

∫ ∞

−∞
dx

[
field energy− condensation energy

]

In the superconductor at the critical field, these two terms terms directly cancel one another whereas in the
normal metal both terms are zero. It is the imperfect balanceof these two energy terms at the interface that
creates a non-zero surface tension. In a type I superconductor, the healing lengthξ for the order parameter is
long so the condensation energy fails to compensate for the field energy generating a positive surface tension.
By contrast, in a type II superconductor, the healing lengthfor the magnetic fieldλL is large so the field
energy fails to compensate for the condensation energy leading to a negative surface tension. In fact, within
Ginzburg Landau theory, the surface tension vanishes atκ = 1/

√
2 (see example 12.7), soκ = 1/

√
2 is the

dividing line between the two classes of superconductor. Summarizing:

Type I: (κ < 1/
√

2) Interface condensation energy< field energy σsn > 0
Type II: (κ > 1/

√
2) Interface field energy< condensation energyσsn < 0

(12.65)
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tFig. 12.9 Superconductor-normal domain wall in type I and type II superconductors. (a) For
κ = λL

ξ
< 1√

2
, the superconductor is a type I superconductor. In the limit κ → 0

illustrated here, the magnetic field drops precipitously to zero at x = 0. In the extreme
type I limit κ >> 1/

√
2, the magnetic field and the screening currents extend a

distance of λL >> ξ into the superconductor.

One of the most dramatic effects of a negative surface tension, is the stabilization of non-uniform supercon-
ducting states at fields over a wide range of fields betweenBc1 andBc2, whereBc2 =

√
2κBc is the “upper

critical field”, andBc1 ∼ Bc/(
√

2κ) is the “lower critical field”.
Let us estimate the surface tension in extreme type I and typeII superconductors (Fig. 12.9). In the former,

whereλL << ξ, the length scale over which the magnetic field varies is negligible relative to the coherence
length(see Fig. 12.9(a)), so that the magnetic field can be approximated by a step function

B(x) = Bcθ(x), Extreme type I.

For x > 0, B(x) = Bc is constant, which implies thatB′′ ∝ ψ2Bc = 0, so thatψ(x) = 0 for x ≥ 0. Forx < 0, on
the superconducting side of the domain wall,B = A = 0 and in the absence of a field, the evolution equation
for ψ is identical to an Ising kink treated in section (12.3.1), for which the solution isψ/ψ0 = tanh(x/(

√
2ξ)).

Substituting into (12.64), the surface tension is then

σI
sn =

B2
c

2µ0

∫ 0

−∞
dx

[
1− tanh(x/(

√
2ξ))4

]
=

B2
c

2µ0
× 1.89ξ (12.66)

For an extreme type II superconductor, the situation is reversed: now the longest length-scale is the penetra-
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tion depth. Unfortunately, since the vector potential modifies the equilibrium magnitude of the order parame-
ter,λL sets the decay length ofboththe field and the order parameter. Let us nevertheless estimate the surface
tension by treating the order parameter as a step functionψ(x) ∼ ψ0θ(−x). In this case,A′′ = 1

λ2
L
(ψ/ψ0)2A, so

that

B(x) = Bc ×
{

ex/λL (x < 0)
1 (x > 0)

(12.67)

Substituting into (12.76 ), this then gives

σII
sn ≈

B2
c

2µ0

∫ 0

−∞
dx[(ex/λL − 1)2 − 1] = − B2

c

2µ0
× 3

2
λL (12.68)

showing that at largeκ, the surface tension becomes negative. The result of a more detailed calculation
(example 12.8) replaces the factor of 3/2 by (8/3)(

√
2− 1) = 1.1045 [14].

Summarizing the results of a detailed Landau Ginzburg calculation,

σns =
B2

c

2µ0
×

{
1.89ξ (extreme type I)
−1.10λL (extreme type II)

Example 12.6: Calculate the domain wall energy per unit areaσns of a superconducting-normal inter-
face lying in they− z plane, and show that it can be written

σsn =
B2

c

2µ0

∫ ∞

−∞
dx


(
B(x)
Bc
− 1

)2

−
(
ψ(x)
ψ0

)4 . (12.69)

Solution: Consider a domain wall in they− z plane separating a superconductor atx < 0 from a metal
at x > 0, immersed in a magnetic field along thez− axis. Let us take

A(x) = (0,A(x),0), B(x) = (0,0,A′(x)),

seeking a domain wall solution in whichψ(x) is real. Our boundary conditions are then

(ψ(x), A(x)) =

{
(ψ0,0) (x→ −∞)
(0, xBc) (x→ +∞) (12.70)

The domain wall energy is then

σsn =
G
A
=

∫
dx

[
~

2

2M



(
dψ
dx

)2

+
e∗2A2

~2
ψ2

 + rψ2 +
u
2
ψ4 +

(B− Bc)2

2µ0

]
(12.71)

Notice that there are no terms linear indψ/dx, because the vector potential and the gradient of the order
parameter are orthgonal (∇ψ ·A = 0). Let us rescale thex co-ordinate in units of the penetration length,
the order parameter in units ofψ0 and the magnetic field in units of the critical field, as follows:

x̃ =
x
λL
, ψ̃ =

ψ

ψ0
, Ã =

A
BcλL

, B̃ =
B
Bc
=

dÃ
dx̃
≡ Ã′.

In these rescaled variables, the Gibb’s free energy becomes

σsn =
B2

cλL

2µ0

∫
dx

[
2ψ′2

κ2
+ A2ψ2 +

(
(ψ2 − 1)2 − 1

)
+ (A′ − 1)2

]
. (12.72)

where for clarity, we have now dropped the tildes. The rescaled boundary conditions are (ψ,A)→ (1,0)
in the superconductor atx << 0, and (ψ,A)→ (0, x) deep inside the metal atx >> 0.
Taking variations with respect toψ gives

−ψ
′′

κ2
+

1
2

A2ψ + (ψ2 − 1)ψ = 0 (12.73)
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while taking variations with respect toA gives the dimensionless London equation

Aψ2 − A′′ = 0 (12.74)

Integrating by parts to replace (ψ′)2 → −ψψ′′ in (12.72 ), we obtain

σsn =
B2

cλL

2µ0

∫
dx

[
−A2ψ2−2(ψ2−1)ψ2

︷   ︸︸   ︷
−2ψψ′′

κ2
+A2ψ2 +

(
(ψ2 − 1)2 − 1

)
+ (A′ − 1)2

]
(12.75)

where we have used (12.73) to elimiateψ′′. Cancelling theA2ψ2 andψ2 terms in (12.75), we can then
write the surface tension in the compact form

σsn =
B2

cλL

2µ0

∫ ∞

−∞
dx

[
(A′(x) − 1)2 − ψ(x)4

]
. (12.76)

Restoringx→ x
λL

, A′(x)→ B(x)
Bc

andψ(x)→ ψ(x)
ψ0

, we obtain (12.64).

Example 12.7: Show that the domain wall energy changes sign atκ = 1/
√

2.
Solution: Using equation (12.76), we see that in the special case where the surface tensionσsn = 0, is
zero, it follows that

A′(x) = 1∓ ψ(x)2

where we select the upper choice of signs to give a physical solution where the field is reduced inside
the superconductor (A′ < 1). Taking the second derivative, givesA′′ = −2ψψ′. But sinceA′′ = ψ2 A, it
follows thatψ′ = − 1

2 Aψ. Now we can derive an alternative expression forψ′ by integrating the second
order equation (12.74). By multiplying (12.73) by 4ψ̃′, using (12.74) we can rewrite (12.73) as a total
derivative

d
dx

[
− 2
κ2

(ψ′)2 + A2ψ2 + (ψ2 − 1)2 − A′2
]
= 0

from which we deduce that

− 2
κ2

(ψ′)2 + A2ψ2 + (ψ2 − 1)2 − A′2 = constant= 0 (12.77)

is constant across the domain, where the value of the constant is obtainedby placingψ = 1, A = A′ = 0
on the superconducting side of the domain. SubstitutingA′ = (1−ψ2), the last two terms cancel. Finally,
putting (ψ′)2 = 1

4(Aψ)2, we obtain
(
1− 1

2κ2

)
(Aψ)2 = 0, (12.78)

showing thatκc = 1/
√

2 is the critical value where the surface tension drops to zero.

Example 12.8: Using the results of the example 13.6, show that within Landau Ginzburg theory, the
surface tension of an extreme type II superconductor is [14]

σns = −
B2

c

2µ0
× 8

3
(
√

2− 1)λL ≈ −
B2

c

2µ0
× 1.10λL

358



bk.pdf April 29, 2012 184

c©2011 Piers Coleman Chapter 12.

Solution: We start with equations (12.73 ) and (12.74 )

ψ′′

κ2
+

1
2

A2ψ + (ψ2 − 1)ψ = 0 (12.79)

Aψ2 − A′′ = 0 (12.80)

For an extreme type II superconductor,κ >> 1 allowing us to neglect the derivative term in the first
equation. There are then two solutions:

ψ2 = 1− 1
2 A2, (x < 0)

ψ = 0, A = x+
√

2 (x > 0)
(12.81)

For (x < 0), substituting into (12.80), we then obtain

A(1− A2/2) = A′′ (12.82)

Multiplying both sides by the integrating factor 2A′, we obtain

d
dx

(
A2(1− A2/4)

)
=

d
dx

(A
′
)2

or A2(1 − A2/4) = (A
′
)2 + cons, where the integration constant vanishes becauseA andA′ both go to

zero asx→ −∞, so that

A′ = A
√

1− A2/4, (x < 0) (12.83)

Now using (12.81) in (12.76), the surface tension is

σsn =
B2

cλL

2µ0
× I

I =
∫ 0

−∞

[
(A′ − 1)2 − (1− A2/2)2

]
dx (12.84)

Substituting forA′ using (12.83) then gives

I =
∫ 0

−∞

[
(A

√
1− A2/4− 1)2 − (1− A2/2)2

]
dx

=

∫ 0

−∞

[
2A2(1− A2/4)− 2A

√
1− A2/4

]
dx

=

∫ 0

−∞

[
2(A′ − 1)

]
A′dx

=

∫ √
2

0
2
[
(A

√
1− A2/4− 1)

]
dA= −8

3

(√
2− 1

)
≈ −1.1045 (12.85)

where we have used the fact thatψ = 0, A =
√

2 at x = 0. It follows that in the extreme type II
superconductor

σsn = −
B2

c

2µ0
× (1.10λL).

12.5.4 Vortices, Flux quanta and type-II superconductors.

OnceH > Hc1, type II superconductors support the formation of superconducing vortices.
In a neutral superfluid, a superconducting vortex is a line defect around which the phase of the order

parameter precesses by 2π, or a multiple of 2π. In section (12.4.3), we saw that this gave rise to a quantization
of circulation. In a superconducting vortex, the rotating electric currents give rise to a trapped magnetic flux,

359

Chapter 12. c©Piers Coleman 2011

quantized in units of the superconducting flux quantum

Φ0 =
h
e∗
≡ h

2e
.

This quantization of magnetic flux we predicted by London andOnsager[13, 15].

tFig. 12.10 Contrasting (a) a vortex in a neutral superfluid with (b) a vortex in a superconductor,
where each unit of quantized circulation binds one quanta of magnetic flux.

To understand flux quantization, it is instructive to contrast a neutral superfluid with a superconducting
vortex (see Fig. 12.10). In a neutral superfluid, the superfluid velocity is uniquely dictated by the gradient
of the phase,vs =

~

M
~∇φ, so around a vortex, the superfluid velocity decays as 1/r (vs = n × h

Mr ). Around a
superconducting vortex, the superfluid velocity contains an additional contribution from the vector potential

vs =
~

M
~∇φ − e∗

M
A.

In the presence of a magnetic field, this term compensates forthe phase gradient, lowering the supercurrent
velocity and reducing the overall kinetic energy of the vortex. On distances larger than the penetration depth
λL the vector potential and the phase gradient almost completely cancel one-another, leading to a supercurrent
that decays exponentially with radiusvsc ∝ e−r/λL .

360



bk.pdf April 29, 2012 185

c©2011 Piers Coleman Chapter 12.

If we integrate the circulation around a vortex, we find

ω =

∮
dx · vs =

~

M

∆φ=2πn︷      ︸︸      ︷∮
dx · ~∇φ− e∗

M

Φ︷    ︸︸    ︷∮
dx · A (12.86)

where we have identified
∮

dx · ~∇φ = 2π × n as the total change in phase around the vortex, while
∮

dx · A =∫
B · dS= Φ is the magnetic flux contained within the loop, so that

ω = n
h
M
− e∗Φ

M
.

In this way, we see that the presence of bound magnetic flux reduces the total circulation. At large distances,
energetics favor a reduction of the circulation to zero, limR→∞ω = 0, so that around a large loop

0 = n
h
M
− e∗Φ

M

or

Φ = n

(
h
e∗

)
= nΦ0 (12.87)

whereΦ0 =
h
e∗ is the quantum of flux. In this way, each quantum of circulation generates a bound quantum of

magnetic flux. The lowest energy vortex contains a single flux, as illustrated in Fig. 12.10 A simple realization
of this situation occurs in a hollow superconducting cylinder (Fig. 12.11). In its lowest energy state, where
no supercurrent flows around the cylinder, the magnetic flux trapped inside the cylinder is quantized. If an
external magnetic field is is applied to the cylinder, and then later removed, the cylinder is found to trap flux
in units of the flux quantumΦ0 =

h
2e, [16, 17], providing a direct confirmation of the charge of the Cooper

pair
In thermodynamic equilibrium, vortices penetrate a type IIsuperconductor provided the applied fieldH lies

between the upper and lower critical fieldsHc2 andHc1 respectively. In an extreme type II superconductor,
Hc2 andHc1 differ fromHc by a factor ofκ = λL

ξ
:

Hc1 ∼
Hc ln κ
√

2κ
(κ >> 1) (12.88)

Hc2 =
√

2κHc. (12.89)

Below Hc1 and aboveHc2 the system is uniformly superconducting and normal respectively. In between,
fluxoids self-organize themselves into an ordered triangular lattice, called the Abrikosov Flux Lattice. Thus
Hc1 is the first field at which it becomes energetically advantageous to add a vortex to the uniform super
conductor, whereasHc2 is the largest field at which a non-uniform superconducting solution is still stable.

For an extreme type II superconductor,Hc1 can be made calculating the field at which the Gibb’s Free
energy of a vortex

∆GV = ǫVL − H ·
∫

d3xB(x)

= ǫVL − HΦ0L, (12.90)

becomes negative. HereL is the length of the vortex andǫV is the vortex energy per unit length. For an extreme
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∆φ = 2πn =
2e

h̄

∮

d~x · ~A

Φ =

∮

d~x · ~A = n
h

2e

tFig. 12.11 Flux quantization inside a cylinder. In the lowest energy configuration, with no
supercurrent in the cylinder walls, the ∆φ = 2πn twist in the phase of the order
parameter around the cylinder is compensated by a quantized circulation of the vector
potential, giving rise to a quantized flux. The inset shows quantized flux measured in
reference [16].

type II superconductor, this energy is roughly equal to the lost condensation energy of the core. Assuming
the core to have a radiusξ, this is

ǫV ∼
r2

2u
× πξ2 =

B2
c

2µ0
πξ2.

Vortices will start to enter the condensate when∆GV < 0, i.e when

Hc1Φ0 ∼
B2

c

2µ0
× πξ2.

PuttingHc1 = Bc1/µ0, and estimating the area over which the magnetic field is spread to beπλ2
L, so that the

total flux,Φ0 = Bc1 × πλ2
L, we obtain

Hc1

Hc
∼ 1
κ

so thatHc1 << Hc for an extreme typeII superconductor. A more detailed calculation gives the answer
quoted in (12.88).
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To calculateHc2, consider a metal in which the applied field is gradually reduced from a high field.Hc2 will
be the field at which the first non-uniform superconducting solution becomes possible. Non uniform solutions
of the order parameter satisfy the non-linear Schroedingerequation (12.54),

~
2

2M
(−i∇ − e∗

~
A)2ψ(x) + rψ(x) + u|ψ(x)|2ψ(x) = 0. (12.91)

Since the developing superconducting instability will have a very small amplitude, we can ignore the cubic
term. ChoosingA = (0,0, Bx), let us now seek solutions ofψ that depend only onx, so that

− ~
2

2M
ψ′′ +

1
2

mω2
cψ = −rψ(x). (12.92)

whereωc =
e∗B
M . This as the time-independent Schroedinger equation for a harmonic oscillator with energy

E = −r. Since the smallest energy eigenvalue isE = 1
2~ωc, it follows that−r = 1

2~ωc. Now according to

(12.27), the coherence length is given byξ2 = ~
2

2M|r | , so that|r | = ~
2

2Mξ2 = ~
e∗Bc2

M , so that

2πBc2ξ
2 =

h
e∗
= Φ0 (12.93)

whereΦ0 =
h
e∗ is the superconducting flux quantum. At the uppercritical field, a tube of radiusξ contains half

a flux quanta,Φ0/2.
Using (12.93), the upper critical field is given by

Bc2 = µ0Hc2 =
~

e∗ξ2
=

1
e∗ξ

√
2M|r |.

By contrast, using (12.61) and (12.49) the critical fieldBc is given by

µ0Hc =

√
µ0

r2

u
=

1
e∗λL

√
M|r |

so that the ratio
Hc2

Hc
=
√

2
λL

ξ
=
√

2κ

Thus providedκ > 1√
2
, the condition for type II superconductivity, the upper-critical field Hc2 exceeds the

thermodynamic critical field,Hc2 > Hc (see Fig. 12.8).

12.6 Dynamical effects of broken symmetry: Anderson Higg’s
mechanism

One of the most dramatic effects of broken symmetry lies in its influence on gauge fields that couple to
the condensate. This effect, called the “Anderson Higg’s mechanism”. not only lies behind the remarkable
Meissner effect, but it is responsible for the short-range character of the weak nuclear force. When a gauge
field couples to the long-wavelength phase modes of a chargedorder parameter, it absorbs the phase modes
to become a massive gauge field that mediates a short range (screened) force:

gauge field+ phase−→ massive gauge field.
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Superconductivity is the simplest, and historically, the first working model of this mechanism, which today
bears the name of Anderson, who first recognized its more general significance for relativistic Yang Mills
theories[18], and Higg’s who formulated these ideas in an action formulation [19]. In this section, we provide
an introduction to the Anderson Higg’s mechanism, using a simple time-dependent extension of Ginzburg
Landau theory that in essence, applies the method used by Higg’s[19] to the simpler case of aU(1) gauge
field.

12.6.1 Goldstone mode in neutral superfluids

In the ground-state, Ginzburg Landau theory can be thought of as describing the “potential energy”V[ψ] ≡
FGL[ψ]|T=0 associated with a static and slowly varying configuration ofthe order parameter. At scales much
longer than the coherent length, amplitude fluctuations of the order parameter can be neglected, and all the
physics is contained in the phase of the order parameter. Fora neutral superfluidV = 1

2ρs(∇φ)2, whereρs is

the superfluid stiffness, given in Ginzburg Landau theory byρs =
~

2ns

2M . But to determine the dynamics, we
need the LagrangianL = T−V associated with slowly varying configurations of the order parameter, whereT
is the “kinetic” energy associated with a time-dependent field configurations. The kinetic energy can also be
expanded to leading order in the time-derivatives of the phase (see exercise 13.8), so that the action governing
the slow phase dynamics is

S =
ρs

2

∫
dtd3x

“ −∇µφ∇µφ ”︷                ︸︸                ︷[
(φ̇/c∗)2 − (∇φ)2

]
(12.94)

In relativistic field theory,c∗ = c is the speed of light, and Lorentz invariance permits the action to be
simplified using a 4-vector notation−(∇lµφ)2as shown in the brackets above. The relativistic action and
the Ginzburg Landau free energy can be viewed as Minkowskii and Euclidean versions of the same energy
functional:

Minkowski︷                       ︸︸                       ︷
S = −ρs

2

∫
d4x(∇µφ)2←−−→

Euclidean︷                    ︸︸                    ︷
F =

ρs

2

∫
d3x(∇φ)2 (12.95)

However, in a non-relativistic superfluid,c∗ is a characteristic velocity of the condensate. For example, in a
paired fermionic superfluid, such as superfluidHe− 3, c∗ =

√
3vF , wherevF is the Fermi velocity of the the

underlying Fermi liquid. If we take variations with respectto φ, (integrating by parts in space-time so that
∇δφ∇φ =→ −δφ∇2φ, andδφ̇φ̇→ −δφφ̈), we see thatφ satisfies the wave equation

∇2φ − 1

c∗2
∂2φ

∂t2
= 0 Boguilubov phase modeω = c∗q

corresponding to a phase mode that propagates at a speedc∗. This mode, often called a “Boguilubov mode”
is actually a special example of a Goldstone mode. The infinite wavelength limit of this mode corresponds
to a simple uniform rotation of the phase, and is an example ofnaturally gapless mode that appears when a
continuous symmetry is broken in a system governed by short-range forces.

Example 12.9: If density fluctuationsδns(x) = ns(x) − ns are included into the Hamiltonian of a
superfluid, the ground-state energy is given by

H =
∫

d3x

[
(ns(x) − ns)2

2χ
+
ρs

2
(∇φ)2

]
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whereχ = ∂N/∂µ is the charge susceptibility. From (see Ex. 13.5) we learned that density and phase
are conjugate variables, which in the continuum satisfy Hamiltons equation that δH/δns(x) = µ(x) =
−~φ̇(x). Using this result, show that that the LagrangianL =

∫
d3x δH

δns(x)δns(x)−H can be written in the
form

L =
ρs

2

∫
d3x

[
(φ̇/c∗)2 − (∇φ)2

]

where (c∗)2 = ρs/(χ~2).
Solution: By varying the Hamiltonian with respect to the local density, we obtain the localchemical
potential of the condensate

µ(x) =
δH
δns(x)

= χ−1δns(x). (12.96)

By writing the condensate order parameter asψ(x, t) = ψeiφ(x,t) = ψe−i µ(x)
~

t, we may identifyµ(x)
~
= −φ̇

as the rate of change of phase, thus from (12.96), we obtain

~φ̇ = −χ−1δns(x)

so that (δns)2/(2χ) = χ

2 (φ̇)2 and the Lagrangian takes the form

L =
∫

d3x(−~φ̇δns) − H =
1
2

∫
d3x

[
χ(~φ̇/c∗)2 − ρs(∇φ)2

]

Replacing~2χ = ρs/c∗
2, we obtain the result.

12.6.2 Anderson Higgs mechanism

The situation is subtlely different when we consider a charged superfluid. In this case, changes in phase of the
order parameter become coupled by the long-range electromagnetic forces, and this has the effect of turning
them into gapped “plasmon” modes of the superflow and condensate charge density.

From Ginzburg Landau theory, we already learned that in a charge field, physical quantities, such as the
supercurrent and the Ginzburg Landau free energy , depend onthe the gauge invariant gradient of the phase
∇φ − e∗

~
A. Since the action involves time-dependent phase configurations, it must be invariant under both

space and time-dependent gauge transformations(12.45),

φ→ φ + α(x, t), A → A +
~

e∗
∇α, ϕ→ ϕ − ~

e∗
α̇. (12.97)

which means that time derivatives of the phase must occur in the gauge-invariant combinationφ̇+ e∗

~
ϕ, where

ϕ is the electric potential. The action of a charged superluidnow involves two terms

S = Sψ + SEM

where

Sψ =

∫
dtd3x

ρs

2


1

c∗2

(
φ̇ +

e∗

~
ϕ

)2

− (∇φ − e∗

~
A)2

 (12.98)

is the gauged condensate contribution to the action and

SEM =
1

2µ0

∫
dtd3x

[(E
c

)2

− B2

]
(12.99)
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is the electromagnetic Lagrangian, whereE = − ∂A
∂t − ∇φ andB = ∇ × A are the electric and magnetic field

respectively.
The remarkable thing, is that since the scalar and vector potential always occur in the same gauge invariant

combination with the phase gradients, we can redefine the electromagnetic fields to completely absorb the
phase gradients as follows:

A′ = A − ~
e∗
∇φ, ϕ′ = ϕ + ~

e∗
φ̇, (Aµ → ~

e∗
∇µϕ).

Notice that in (12.98), the vector potential, which we associate with transverse electromagnetic waves, be-
comes coupled to gradients of the phase, which are longitudinal in character. The sum of the phase gradient
and the vector potential creates a field with both longitudinal and transverse character. In terms of the new
fields, the action becomes

S =
∫

dtd3x
{

Lψ︷                   ︸︸                   ︷
1

2µ0λ
2
L

[(
ϕ

c∗

)2
− A2

]
+

LEM︷               ︸︸               ︷
1

2µ0

[(E
c

)2

− B2

]}
. (12.100)

where 1/(µ0λ
2
L) = (ρse∗

2)/(~2) = nse∗
2/M defines the London penetration depth and we have dropped the

primes onϕ andA in subsequent equations.
Amazingly, by absorbing the phase of the order parameter, wearrive at a purely electromagnetic action,

but one in which the phase stiffness of the condensateLψ imparts a new quadratic term in the action of the
electromagnetic field - a “mass term”. Like a python that has swallowed its prey whole, the new gauge field
is transformed into a much more sluggish object: it is heavy and weak. To see this in detail, let us re-examine
Maxwell’s in the presence of the mass term. Taking variations with respect to the fields, we obtain

δSψ =

∫
dtd3x (δA(x) · j (x) − δϕ(x)ρ(x)) (12.101)

where

j = − 1

µ0λ
2
L

A, ρ = − 1

µ0c∗2λ2
L

ϕ, (12.102)

denote the superfluid velocity and the voltage-induced change in charge density, while

δSEM =
1
µ0

∫
dtd3x

[
δA ·

(
1
c2

Ė − ∇ × B
)
+ δϕ

1
c2
∇ · E

]
. (12.103)

SettingδS = δSψ + δSEM = 0, the vanishing of the coefficient ofδϕ gives Gauss’ equation

δS
δϕ
= ǫ0∇ · E − ρ = 0, (12.104)

while the vanishing of the coefficient ofδA gives us Amperes equation,

δS
δA
=

1
µ0

(
1
c2

Ė − ∇ × B
)
+ j = 0. (12.105)

Since∇ · (∇ × B) = 0, taking the divergence of (12.105) and using (12.104) to replace∇ · E = ρ/ǫ, leads to a
continuity equation for the supercurrent

∇ · j + ∂ρ
∂t
= − 1

µ0λ
2
L

(
∇ · A + 1

c∗2
∂ϕ

∂t

)
= 0, (12.106)
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excepting now, continuity also implies a gauge condition that tiesφ to the longitudinal part ofA. For the
relativistic case (c∗ = c) this is the well-known Lorentz gauge condition (∇µAµ = 0).

If we now expand Amperes equations in terms ofA, we obtain

∇ × B = ∇(∇ · A) − ∇2A = − 1

λ2
L

A +
1
c2

∂

∂t

(
−∂A
∂t
− ∇ϕ

)
, (12.107)

and using the continuity (12.106) to eliminate the potential term, we obtain
�2 − 1

λ2
L

 A =

1−
(
c∗

c

)2∇(∇ · A), (12.108)

where�2 = ∇2 − 1
c2

∂2

∂t2 . In a superconductor, wherec∗ , c, the right-hand side of (12.108) becomes active
for longitudinal modes, where∇ · A , 0. If we substituteA = Aoei(p·x−Ept)/~ê into (12.108) we find that the
dispersionE(p) of the transverse and longitudinal photons are given by

E(p) =



[(mAc2)2 + (pc∗)2]1/2, (ê ⊥ p longitudinal)

[(mAc2)2 + (pc)2]1/2, (ê ‖ p transverse)
(12.109)

Remarks:

• Both photons share the same mass gap but they have widely differing velocities[18, 20]. The slower lon-
gitudinal mode of the electromagnetic field couples to density fluctuations: this is the mode associated
with the exclusion of electric fields from within the superconductor, and it continues to survive in the
normal metal aboveTc as a consequence of electric screening.

• The rapidly moving transverse mode, which couples to currents: this is the new excitation of the supercon-
ductor that gives rise to the Meissner screening of magneticfields.

• For a relativistic case, the right-hand side of (12.108) vanishes and the longitudinal and transverse photons
merge into a single massive photon[19, ], described by a “Klein Gordon” equation

[
�

2 −
(mAc
~

)2
]
A = 0 (12.110)

for a vector field of massmA = ~/(λLc). The generation of a finite mass in a gauge field through the
absorption of the phase degrees of freedom of an order parameter into a gauge field is the essence of the
Anderson Higg’s mechanism.

12.6.3 Electroweak theory

The standard model for electroweak theory, developed by Glashow, Weinberg and Salam[21, 22, 2] provides a
beautiful example of how the idea of broken symmetry, developed for physics in the laboratory, also provides
insight into physics of the cosmos itself. This is not abstract physics, for the sunshine we feel on our face is
driven by the fusion of protons inside the sun. The rate limiting process is the conversion of two protons to a
deuteron according to the reaction

p+ p→ (pn) + e+ + νe

where theνe is a neutrino. This process occurs very slowly, due to the Coulomb repulsion between protons,
and the weakness of the weak decay process that converts a proton into a neutron. Were it not for the weakness
of the weak force, fusion would burn too rapidly, and the sun would have burnt out long before life could
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have formed on our planet. It is remarkable that the physics that makes this possible, is the very same physics
that gives rise to the levitation of superconductors.

Electroweak theory posits that the electromagnetic and weak force derive from a common unified origin,
in which part of the field is screened out of our universe through the development of a broken symmetry,
associated with two component complex order parameter or “Higg’s field”

Ψ =

(
ψ0

ψ1

)

that condenses in the early universe. The coupling of its phase gradients to gauge degrees of freedom generates
the massive vector bosons of the weak nuclear force via the Anderson-Higg’s effect, miraculously leaving
behind one decoupled gapless mode that is the photon. Fluctuations in the amplitude of the Higg’s condensate
are predicted to give rise to a massive Higg’s particle.

The basic physics of the standard model can be derived using the techniques of Ginzburg Landau theory,
by examining the interaction of the Higg’s condensate with gauge fields. In its simplest version, first written
down by Weinberg [2], this is given by (see example 13.9)

SΨ = −
∫

d4x

[
1
2
|
(
∇µ − iAµ

)
Ψ|2 + u

2

(
Ψ†Ψ − 1

)2
]
, (12.111)

where relativistic notation|∇µΨ|2 ≡ |∇Ψ|2 − |Ψ̇|2 is used in the gradient term. The gauge fieldAµ acting on a
two component order parameter is a two dimensional matrix made up of a U(1) gauge fieldBa that couples
to the charge of the Higg’s field and an SU (2) gauge field~Aµ,

Aµ = g~Aµ · ~τ + g′Bµ

where~τ are the Pauli matrices and~Aµ = (A1
µ,A

2
µ,A

3
µ) is a triplet of three gauge fields that couple to the isospin

of the condensate. When the Anderson Higg’s effect is taken into account, three components of the Gauge
fields acquire a mass, giving rise to two chargedW± with massMW and one neutralZ boson of massMZ that
couples to neutral currents of leptons and quarks.

Aµ −→
{

Z, W± neutral/charged vector bosons
A photon

WhenSΨ is split up into amplitude and phase modes of the order parameter, it divides up into two parts (see
example below)S = SH + SW, where

SH = −
1
2

∫
d4x

[
(∇µφH)2 +m2

Hφ
2
H

]
(12.112)

describes the amplitude fluctuations of the order parameterassociated with the Higg’s boson, wherem2
H = 4u

defines its mass, while

SW = −
1
2

∫
d4x

[
M2

W(W†µW
µ) + M2

Z(ZµZ
µ)
]

(12.113)

determines the masses of the vector bosons.
The ratio of masses determines the weak-mixing angleθW

cos(θW) =
MW

MZ

Experimentally,MZ = 91.19 GeV/c2 andMW = 80.40 GeV/c2, corresponding to a Weinberg angle ofθW ≈
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280. The Higg’s particle has not yet been observed, and estimates of its mass vary widely, from values as low
as 80GeV/c2, to values an order of magnitude higher.

From the perspective of superconductivity, these two numbers define two length scales: a “penetration
depth” for the screened weak fields of order

λW =
~

mWc
∼ 2× 10−18m

which defines the range of the weak force. At present, the “coherence length” of electroweak theory. If one
uses the estimated Higg’s mass, this is a length of order[23]

ξW =
~

mHc
∼ 2× 10−18 − 2× 10−19m.

This very wide range of scales leaves open the possibility that the condensed Higg’s field is either weakly type
I , or strongly typeII in character, an issue of importance to theories of the earlyuniverse. The microscopic
physics that develops below the coherence lengthξW is also an open mystery that is the subject of ongoing
measurements at the Large Hadron Collider.

Table II contrasts the physics of superconductivity with the electroweak physics.

Superconductivity Electro-weak

Order parameter ψ

(
ψ0

ψ1

)

Pair condensate Higg’s condensate

Gauge field/Symmetry (φ,A) Aµ = g′Bµ + g(~Aµ · ~τ)
U (1) U (1)×SU(2)

Penetration depth λL ∼ 10−7m λW ∼ 10−18m

Coherence length ξ = vF
∆
∼ 10−9 − 10−7m ξEW ∼ 10−18 − 10−19m

Condensation mechanism pairing unknown

Screened field ~B W±, Z

Massless gauge field None ElectromagnetismAµ
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Example 12.10:

(a) Suppose the Higg’s condensate is writtenΨ(x) = (1+φH(x))U(x)Ψ0, whereφH is a real field, describ-
ing small amplitude fluctuations of the condensate,U(x) is a matrix describing the slow variations
in orientation of the order parameter andΨ0 =

(
1
0

)
is just a unit spinor. Show that the the action

splits into two terms,S = SH + SW, where

SH = −
1
2

∫
d4x

[
(∇µφH)2 +m2

Hφ
2
H

]
(12.114)

describes the amplitude fluctuations of the order parameter associated withthe Higg’s boson,
wherem2

H = 4u defines its mass, while

SW = −
1
2

∫
d4x|A′µΨ0|2. (12.115)

determines the masses of the vector bosons.
(b) By expanding out the quadratic term in (12.115), show that it is diagonalized in terms of two gauge

fields

SW = −
1
2

∫
d4x

[
M2

W(W†
µW

µ) + M2
Z(ZµZ

µ)
]

and give the form of the fields and their corresponding masses in terms of the original fields and
coupling constants.

Solution:

(a) Let us substitute

Ψ(x) = (1+ φH(x))U(x)Ψ0

whereΨ0 =
(

1
0

)
, into (12.111) SinceΨ†Ψ = (1 + φH)2Ψ0

†U†UΨ0 = (1 + φH)2, so to quadratic
order, the “potential” part ofSΨ can be written as

u
2

(Ψ†Ψ − 1)2 =
u
2

(2φH + φ
2
H)2 =

mH

2
φ2

H +O(φ3
H). (m2

H = 4u)

The derivatives in the gradient term can be expanded as

(∇µ − iAµ)Ψ(x) = (∇µ − iAµ)UΨ0 + ∇µφH(UΨ0).

Since the derivative of a unit spinor is orthogonal to itself, the two terms in the above expression
are orthogonal so that when we take the modulus squared of the above expression, we obtain

|(∇µ − iAµ)Ψ|2 = |(∇µ − iAµ)UΨ0|2 + (∇µφH)2

=|Ψ0|2=1︷ ︸︸ ︷
|UΨ0|2

= |U†(Aµ + i∇µ)UΨ0|2 +
(∇µφH

)2 (12.116)

Here, we have introduced a pre-factoriU † into the first term, which does not change its magnitude.
Now the combination

A′µ = U†(Aµ + i∇µ)U

is a gauge transformation ofAµ which leaves the physical fields (Gµν = ∇µAν−∇νAµ− i[Aµ,Aν])
and the action associated with the gauge fields invariant. In terms of this transformed field, the
gradient terms ofSΨ can be written simply as

|(∇µ − iAµ)Ψ|2 = |A′µΨ0|2 + (∇µφH)2.

so that the sum of the gradient and potential terms yields

L = −1
2
|
(
∇µ − iAµ

)
Ψ|2 + u

2

(
Ψ†Ψ − 1

)2
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=

LW︷        ︸︸        ︷
−1

2
|A′µΨ0|2−

1
2

[
(∇µφH)2 +m2

Hφ
2
H

]

︸                       ︷︷                       ︸
LH

(12.117)

which when integrated over space-time, gives the results (SH) and (vbosons).
(b) Written out explicitly, the gradient appearing in the gauge theory mass term is

A′µΨ0 =
[
g′Bµ + g~Aµ · ~τ

]
· Ψ0

=

[
g′

(
Bµ

Bµ

)
+ g

(
A3
µ A1

µ − iA2
µ

A1
µ + iA2

µ −A3
µ

)] (
1
0

)

=

(
g′Bµ + gA3

µ

g(A1
µ + iA2

µ)

)
(12.118)

so that the mass term of the gauge fields can be written

LW = −
1
2
|AµΨ|2 = −

1
2

[
(gA3

µ + g′Bµ)
2 + g2|A1

µ + iA2
µ|2

]

= −
M2

Z

2
Z2
µ −

M2
W

2
|Wµ|2 (12.119)

where

Wµ = A1
µ + iA2

µ,

Zµ =
1√

g2 + (g′)2

(
g′A(3)

µ + gBµ
)

(12.120)

are respectively, the chargedW and neutralZ bosons which mediate the weak force,MZ =√
g2 + g′2 andMW = g = MZcos[θW], whereθW is the Weinberg angle determined by

cosθW =
g√

g2 + g′2
.

12.7 The concept of generalized rigidity

The “phase rigidity” responsible for superflow, the Meissner effect and its electro-weak counterpart, are each
consequences of general property of broken continuous symmetries. In any broken continuous symmetry,
the order parameter can assume any one of continouous numberof directions, each with precisely the same
energy. By contrast, it always costs an energy to slowly “bend” the direction of the order-parameter away
from a state of uniform order. This property is termed “generalized rigidity” [24]. In a superconductor or
superfluid, it costs a phase bending energy

U(x) ∼ 1
2
ρs(∇φ(x))2, (12.121)

to create a gradient of the phase. The differential ofU with respect to the phase gradientδU/(~δ∇φ) defines
the “superflow” of particles is directly proportional to theamount of phase bending, or the gradient of the
phase

js =
δU
~δ∇φ =

ρs

~
∇φ. (12.122)
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This relationship holds because density and phase are conjugate variables. Anderson noted that that we can
generalize this concept, to a wide variety of broken symmetries, each with their corresponding phase and
conjugate conserved quantity. In each case, a gradient of the order parameter gives rise to a “superflow” of
the quantity that translates the phase(see table 1).

For example, broken translation symmetry leads to the superflow of momentum, or sheer stress, broken
spin symmetry leads to the superflow of spin or spin superflow.There are undoubtedly new classes of broken
symmetry yet to be discovered - one of which might be broken time translational invariance (see table 1).

Table. 1. Order parameters, broken symmetry and rigidity.

Name Broken Symmetry Rigidity/Supercurrent

Crystal Translation Symmetry Momentum superflow
(Sheer stress)

Superfluid Gauge symmetry Matter superflow

Superconductivity E.M. Gauge symmetry Charge superflow

Antiferromagnetism Spin rotation symmetry Spin superflow
(x-y magnets only)

? Time Translation Symmetry Energy superflow ?

12.8 Thermal Fluctuations and criticality

At temperatures that are far below, or far above a critical point, the behavior of the order parameter resembles
a tranquil ocean with no significant amount of thermal noise in its fluctuations. But fluctuations become
increasingly important near the critical point as the correlation length diverges. At the second-order phase
transition, infinitely long-range“critical fluctuations” develop in the order parameter. The study of these
fluctuations requires that we go beyond mean field theory. Instead of using the Landau Ginzburg functional as
a variational Free energy, now we use it to determine the Boltzmann probability distribution of the thermallly
fluctuating order parameter, as follows

p[ψ] = Z−1e−βFGL[ψ] =
1
Z

exp

[
−β

∫
ddx

(1
2

[
s(∇ψ)2 + r |ψ(x)|2

]
+ u|ψ(x)|4

)]

372



bk.pdf April 29, 2012 191

c©2011 Piers Coleman Chapter 12.

whereZ =
∑
ψ e−βFGL[ψ] is the normalizing partition function. This is the famous “φ4 field theory” of statistical

mechanics (where we useψ in place ofφ.)
The variational approach can be derived from the probability distribution functionp[{ψ}], by observing that

the probabilitly of a given configuration is sharply peaked around around the mean field solution,ψ = ψ0. If
we make a Taylor expansion around around a nominal mean-fieldconfiguration, writingψ(x) = ψ0 + δψ(x),
then

FGL[{ψ}] = Fm f +

∫

x
δψ(x)

=0︷︸︸︷
δFGL

δψ(x)
+

1
2

∫

x,x′
δψ(x)δψ(x′)

δ2FGL

δψ(x)δψ(x′)
+ . . .

where the first derivative is zero because the Free energy is stationary for the mean-field solutionδF/δψ = 0,
which implies

FGL[{ψ}] = Fm f[ψ0] +
1
2

∫

x,x′
δψ(x)δψ(x′)

δ2FGL

δψ(x)δψ(x′)
+ . . .

The first non-vanishing terms in the Free energy are second order terms, describing a Gaussian distribution
of the fluctuations of the order parameter about its average

δψ(x) = ψ(x) − ψ0

The amplitude of the fluctuations at long wavelengths becomes particularly intense near a critical point.
This point was first appreciated by Ornstein and Zernicke, who observed in 1914 that light scatters strongly
off the long-wavelength density fluctuations of a gas near the critical point of the liquid-gas phase transition.
We now follow Ornstein Zernicke’s original treatment, and study study the behavior of order parameter
fluctuations above the phase transition.

To treat the fluctuations we Fourier transform the order parameter:

ψ(x) =
1
√

V

∑

q

ψqeiq·x, ψq =
1
√

V

∫
ddxψ(x)e−iq·x. (12.123)

Here, we use periodic boundary conditions in a finite box of volume V = Ld, with discrete wavevectors
q = 2π

L (l1, l2, . . . ld). Note thatψ−q = ψ
∗
q, sinceψ (or each of itsn− components) is real. Substituting 12.123

into 12.15, noting that (−s∇2 + r)→ (sq2 + r) inside the Fourier transform, we obtain

F =
1
2

∑

q

|ψq|2
(
sq2 + r

)
+ u

∫
ddx|ψ(x)|4. (12.124)

so that the quadratic term is diagonal in the momentum-spacerepresentation. Notice how we can rewrite the
GL energy in terms of the (bare) susceptibilityχq = (sq2 + r)−1 encountered in (12.19), as

F =
1
2

∑

q

|ψq|2χ−1
q + u

∫
ddx|ψ(x)|4. (12.125)

so the quadratic coefficient of the GL free energy is the inverse susceptibilty.
Supposer > 0 and the deviations from equilibriumψ = 0 are small enough to ignore the interaction,

permitting us to temporarily setu = 0. In this case,F is a simple quadratic function of )ψq and the probability
distribution function is a simple Gaussian

p[ψ] = Z−1 exp

−
β

2

∑

q

|ψq|2
(
sq2 + r

)
 ≡ Z−1 exp

−
∑

q

|ψq|2
2Sq


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where

Sq = 〈|ψq|2〉 =
kBT

sq2 + r
=

kBT/c
q2 + ξ−2

. (12.126)

is the variance of the fluctuations at wavevectorq andξ =
√

s/r is the correlation length. This distribution
function is known as the “Ornstein-Zernicke” form for the Gaussian variance of the order parameter. This
quantity is the direct analog of the Green’s function in manybody physics. Note that

• For q >> ξ−1, Sq ∝ 1/q2 is singular or “critical”.

• Using (12.19) we see that the fluctuations of the order parameter are directly related to its static suscepti-
bility. Sq = kBTχq. This is a consequence of the fluctuation dissipation theorem in the classical limit.

• Sq resembles a Yukawa interaction associated with the virtualexchange of massive particles :V(q) =
1/(q2 +m2). Indeed, short-range nuclear interactions are a result ofquantum fluctuations in a pion field
with correlation lengthξ ∼ m−1.

Next, let us Fourier transform this result to calculate the spatial correlations:

S(x − x′) = 〈δψ(x)δψ(x′)〉 = 1
V

∑

q,q′

Sqδq−q′︷    ︸︸    ︷
〈ψ−qψq′〉ei(q′·x′−q·x)

=

∫
ddq

(2π)d

kBT/c
q2 + ξ−2

eiq·(x′−x) (12.127)

where we have taken the thermodynamic limitV → ∞. This is a Fourier transform that we have encountered
in conjunction with the screened Coulomb interaction, and in three dimensions we obtain

S(x − x′) =
kBT
4πs

e−|x−x′ |/ξ

|x − x′| , (d = 3)

Note that:

• The generalization of this result tod dimensions gives

S(x) ∼ e−x/ξ

xd−2+η

where Ginzburg Landau theory predictsη = 0.

• S(x) illustrates a very general property. On length scales below the correlation length, the fluctuations are
critical, with power-law correlations, but on longer length scales, correlations are exponentially sup-
pressed. (See Fig. 12.12).

• Ginzburg Landau theory predicts that the correlation length diverges as

ξ ∝ (T − Tc)
−ν

whereν = 1/2. Remarkably, even though Ginzburg Landau theory neglectsthe non-linear interactions
of critical modes, these results are qualitatively correct. More precise treatments of critical phenomenon
show that the exponents depart from Gaussian theory in dimensionsd < 4.
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tFig. 12.12 Length-scales near a critical point. On length-scales ξ >> x >> ξ0, fluctuations are
critical, with universal power-law correlations. On length-scales larger than the
correlation length ξ, fluctuations are exponentially correlated. On length scales
shorter than the coherence length ξ0, the order parameter description must be
replaced by a microscopic description of the physics.

12.8.1 Limits of mean-field Theory: Ginzburg Criterion

What are the limits of mean-field theory? We studied the fluctuations at temperaturesT > Tc by assuming that
the non-linear interaction term can be ignored. This is onlytrue provided the amplitude of fluctuations is suffi-
ciently small. The precise formulation of this criterion was first proposed by Levanyuk[25] and Ginzburg[26].
The key observation here, is that mean-field theory is only affected by fluctuations on length-scales longer
than the correlation lengthx >> ξ. Fluctuations on wavelengths shorter than the correlationlength are ab-
sorbed into renormalized Landau parameters and do not produce departures from mean-field theory. To filter
out the irrelevant short-wavelength fluctuations, we need to consider a coarse-grained averageψ̄ of the order
parameter over a correlation volumeξd. The Ginzburg criterion simply states that variance of the averaged
order parameter must be small compared with the equilibriumvalue, i.e

δψ̄2 =
1
ξd

∫

|x|<ξ
ddx〈δψ(x)δψ(0)〉 << ψ2

0 (12.128)
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Since correlations decay exponentially on length-scales longer thanξ, to get an an estimate of this average,
we can remove the constraint|x| < ξ on the volume integral, to obtain

δψ̄2 ∼ 1
ξd

∫
ddx〈δψ(x)δψ(0)〉 ∼

Sq=0

ξd
=

kBTc

s ξd−2

Now substitutingψ2
0 =

|r |
4u ∼

s
u

1
ξ2 we obtain

δψ̄2

ψ2
0

∼ kBTc

ξd−4

u
s2
<< 1.

or

ξ4−d <<
c2

kBTc
.

Let us try to understand the meaning of the length-scale defined by this expression. Multiplying by this
expression byξd−4

0 , whereξ0 =
√

s/(aTc) is the coherence length, we obtain the dimensionless criterion

(
ξ

ξ0

)4−d

<< ξd
0

(aTc)2

︷︸︸︷
s2ξ−4

0

ukBTc
= ξd a2Tc

ukB

Now from (12.11 ) we recognize the combinationa2Tc

u = 8∆CV as the jump in the specific heat, so that the
Ginzburg criterion can be written in the form

(
ξ

ξ0

)4−d

<<
SG

kB
, SG = ∆CVξ

d
0 Ginzburg Criterion, (12.129)

where we have dropped the factor of 8. The quantitySG = ∆CVξ
d
0, has the dimensions of entropy, and can

be loosely interpreted as the entropy reduction per coherence volumeξd
0 associated with the development of

order, so thatSG/kB = ln W is a logarithmic measure number of degrees of freedomW associated with the
fully-developed order parameter.

For models withd > 4, the Ginzburg criterion implies that large correlation lengths are good and in this
situation, as the correlation length diverges close to the critical point, mean-field theory becomes essentially
exact. The dimensiondU = 4 is called the upper critical dimension. In a realistic situation, whered < dU = 4
d < 4, ξ4−d diverges as the critical point is approached, so ford < dU = 4, the Ginzburg criterion sets an
upper bound on the correlation length and lower bound on the distance from the phase transition. If we rewrite
ξ/ξ0 = |∆T/Tc|−1/2, the temperature deviation fromTc, ∆T must satisfy the requirement

|∆T |
Tc

>> (SG/kB)−(4−d)2 (12.130)

for mean-field theory to be reliable.
From the above discussion, it is clear that systems with a large coherence length will deviate from mean-

field theory only over a very narrow temperature window. Examples of systems with large coherence lengths
are superconductors, superfluidHe− 3 and spin density waves, where the ratio between the transition tem-
perature and the Fermi temperature of the fluidkBTc/ǫF << 1. For example, in a superconductor, the entropy
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of fondensation per unit cell is of orderkB(ǫ/∆), where∆ ∼ 3.5kBTc is the gap, while the coherence length
is of ordervF/∆ ∼ a(ǫF/∆), wherevF ∼ ǫFa is the Fermi velocity, so that the entropy of condensation per
coherence length is of order

∆SG/kB ∼ (∆/ǫF) × (ǫF/∆)3 ∼ (ǫF/∆)2

and the Ginburg criterion is
|∆T |
Tc

>> (∆/ǫF)4

in three dimensions. Similar arguments may be applied to charge and spin density wave materials. For a
typical superconductor withTc ∼ 10K, ∆ ∼ 30K, ǫF ∼ 105K, this gives |∆T |

Tc
∼ (10−5)4 ∼ 10−20, far beyond

the realm of observation. By contrast, in an insulating magnet the coherence length is of order the lattice
spacing,a and the “Ginzburg entropy” is of order unity so∆T/Tc ∼ 1. These discussions are in accord with
observations. Superconductors and charge density wave systems display perfect mean-field transitions, yet
insulating magnets and superfluidHe−3 display the classicλ-shaped specific heat curves that are a hall-mark
of a non-trivial specific-heat exponentα.

Exercises

Exercise 12.1 Show that the action ofU(φ)eiφN̂ on a coherent state,|φ〉 = U†(φ)|ψ〉 uniformly shifts the
phase of the order parameter byφ, i.e.

ψ̂(x)|φ〉 = ψ(x)eiφ|φ〉

so that

−i
d
dφ
|φ〉 = N̂|φ〉
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Solution:

(a) Let us begin by showing thatU(φ)ψ̂†(x)U†(φ) = eiφψ̂†(x). Sinceψ̂† adds a particle to a state, it
follows that

ψ̂†(x)|α,N〉 = |β,N + 1〉.

where|α,N〉 and|β,N + 1〉 are states withN andN + 1 particles, respectively. But then

eiφN̂

e−iφN |β,N+1〉︷              ︸︸              ︷
ψ̂†(x)e−iφN̂|α,N〉 = eiφ(N+1)ψ̂†(x)e−iφN|α,N〉 = eiφψ̂†(x)|α,N〉

Since this holds for all states|α,N〉, it follows that

U(φ)ψ̂†(x)U†(φ) = eiφψ̂†(x)

(b) Let us write out|φ〉 = U(φ)|ψ〉 explicitly:

U(φ)|ψ〉 = U(φ) exp

[∫
ddxψ(x)ψ̂†(x)

]
U†(φ)|0〉

where we have sneaked in aU†(φ) just before the vacuum, sinceU†(φ)|0〉 = |0〉. Using the identity
UeAU† = eUAU† , we can move the unitary operators inside the exponential

U(φ)|ψ〉 = exp



∫
ddxψ(x)

eiφψ̂†(x)︷              ︸︸              ︷
U(φ)ψ̂†(x)U†(φ)


|0〉

= exp

[∫
ddx(ψ(x)eiφ)ψ̂†(x)

]
|0〉 (12.131)

corresponding to a coherent state whereψ(x) → ψ(x)eiφ has picked up an additional uniform
phase.

(c) Since|φ〉 = eiφN̂|ψ〉, differentiating both sides with respect toφ, we obtain

−i
d
dφ
|φ〉 = −i

iN̂eiφN̂

︷     ︸︸     ︷
d
dφ

[
eiφN̂

]
|ψ〉 = N̂|φ〉.

Since this holds for all such coherent states, it follows that N̂ = −i d
dφ .

Exercise 12.2 Consider the most general form of a two component Landau theory

f [ψ] =
r
2

(ψ2
1 + ψ

2
2) +

s
2

(ψ2
1 − ψ2

2) + u(ψ2
1 + ψ

2
2)2 + u2(ψ4

1 − ψ4
2) + u3ψ

2
1ψ

2
2

1 Rewrite the free energy in terms of the amplitude and phase of the order parameter to demonstrating
that if s, u2 or u3 are finite, the free energy is no longer gauge invariant.

2 Rewrite the free energy as a function ofψ andψ∗.
3 If s> 0, what symmmetry is broken whenr < 0?
4 Write down the mean field equations fors= 0, r < 0.
5 Sketch the phase diagram in the (u2,u3) plane.

Exercise 12.3 Consider the more general class of Landau theory where the interactionu can be negative:

f [ψ] =
1
V

F[ψ] =
r
2
ψ2 + u4ψ

4 + u6ψ
6 − hψ
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1 Show that forh = 0, u < 0, r > 0 the free energy contains three local minima, one atψ = 0 and two
others atψ = ±ψ0, where

ψ2
0 = −

u
3u6
±

√(
u

3u6

)2

− r
6u6

.

2 Show that forr < rc, the solution atψ = 0 becomes metastable, giving rise to a first order phase
transition at

rc = −
u2

2u6

(Hint: Calculate the critical value ofr by imposing the second conditionf [ψII ] = 0. Solve the
equationf [ψ] = 0 simultaneously withf ′[ψ0] = 0 from the last part. )

3 Sketch the (T,u) phase diagram forh = 0.
4 For r = 0 but h , 0 show that there are three lines of critical points wheref ′[ψ] = f ′′[ψ] = 0

converging at the single pointr = u = h = 0. This point is said to be a “tricritical point”.
5 Sketch the (h,u) phase diagram forr = 0.

Exercise 12.4 We can construct a state of bosons in which the bosonic field operator has a definite expec-
tation value using a coherent state as follows

|ψ〉 = exp

[∫
d3xψψ̂†(x)

]
|0〉.

The Hermitian conjugate of this state is〈ψ̄| = 〈0|e
∫

d3xψ̂(x)ψ∗ .

1 Show that this coherent state is an eigenstate of the field destruction operator:̂ψ(x)|ψ〉 = ψ|ψ〉.
2 Show that overlap of the coherent state with itself is givenby 〈ψ̄|ψ〉 = eN, whereN = V|ψ|2 is the

number of particles in the condensate.
3 If

H =
∫

d3x

[
ψ̂†(x)

(
− ~

2

2m
∇2 − µ

)
ψ(x) + U : (ψ†(x)ψ(x))2 :

]

is the (normal ordered) energy density, show that the energydensity f = 1
V 〈H〉, where

〈H〉 = 〈ψ̄|H|ψ〉〈ψ̄|ψ〉
is given by

f = −µ|ψ|2 + U |ψ|4.

providing a direct realization of the Landau Free energy functional.

Exercise 12.5 (Systematic derivation of the Ginzburg criterion).

1 Show that the Ginzburg Landau free energy (12.125) can be written in the form

F =
1
2

∫
ddx′ddxψ(x′)χ−1

0 (x′ − x)ψ(x′) + u
∫

ddxψ(x)4. (12.132)

where

χ−1
0 (x′ − x) = δd(x− x′)

[
−s∇2 + r

]

is inverse of the susceptibility. The subscript “0” has beenadded toχ−1 denoting that is the “bare”
susceptibilty, calculated foru = 0.
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2 By identifying the renormalized susceptibility with the second derivative of the free energy, show
that when interactions are taken into account

χ−1
0 (x′ − x) ≈ 〈 δ2F

δψ(x)δψ(x′)
〉 = δd(x′ − x)

[
−s∇2 + r + 12u〈ψ2〉

]

(Hint: differentiate (12.17) with respect toψ(x) and take the expectation value of the resulting ex-
pression), so that in momentum space

χq = sq2 + r + 12u〈ψ2〉T

where〈ψ2〉T = S(x−x′)|x=x′ is the variance of the order parameter at a single point in space, evaluated
at temperatureT.

3 Show that the effects of fluctuations suppressTc, and that at the new suppressed transition tempera-
tureT∗c

r = r0 = a(T∗c − Tc) = −12u〈ψ2〉T∗c = −12u
∫

ddq

(2π)d

kBT∗c/c

q2
.

so that

χ−1
q = sq2 + (r − r0) + 12u

[
〈ψ2〉 − 〈ψ2〉T∗c

]

Notice how the subtraction of the fluctuations atT = T∗c renormalizesr → r − r0 = a(T − T∗c ). What
is the renormalized correlation length?

4 Finally, calculate the Ginzburg criterion by requiring that |r − r0| > 12u
[
〈ψ2〉 − 〈ψ2〉T∗c

]
, to obtain

|r − r0|
4u

< 3
∫

ddq

(2π)d

kBT∗c
q2

[
ξ−2

q2 + ξ−2

]
(12.133)

The term inside the square brackets on the right hand side results from the renormalization ofr → r−
r0. Notice how this term only involves fluctuations withq<˜ ξ−1, i.e the long-wavelength fluctuations
of wavelength greater thanξ. What has happened to the short wavelength fluctuations

5 By approximately evaluating the integral on the right-hand side of (12.133) obtain the Ginzburg
criterion:

|r − r0|
u

<<
kBT∗c

s
1
ξd−2

Exercise 12.6 Properties of a coherent state.

Show that a coherent state|α〉 = eαa† |0〉 can be expanded as a sum of Harmonic oscillator states
|n〉 = 1√

n!
(a†)n|0〉, as follows

|a〉 = |0〉 + α|1〉 + . . . α
n

√
n!
|n〉

12 Show that〈α∗|α〉 = e|a|
2
, so that a normalized coherent state is given by

|α〉N = e−|α|
2/2eαâ† |a〉

3 Show that the probabilty of being in a state withn particles is a Poisson distribution

p(n) =
(λ)n

n!
e−|λ|, λ = |α|2

Note that a Poission distribution has equal mean and variance : 〈N̂〉 = 〈δN̂2〉 = λ
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4 Show that whenα =
√

Ns, δN2

N2 =
1
Ns

.
5 Show that when the superconducting order parameter is written in terms of its amplitude and phase,
ψ = |ψ|eiφ, that the Ginzburg Landau free energy of a superconductor separates into a phase and an
amplitude component.

∣∣∣∣∣
(
∇ − i

q
~

A
)
ψ

∣∣∣∣∣
2

=

∣∣∣∣∣e
iφ

[
∇|ψ| + i

(
∇φ − q

~
A
)]∣∣∣∣∣

2

= (∇|ψ|)2 + |ψ|2
(
∇φ − q

~
A
)2

(12.134)

Use this expression to rederive an expression for the current in terms of the phase gradient of the
order parameter.
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13 Path Integrals

13.1 Coherent states and path integrals.

In this chapter, we link the order parameter concept with microscopic Many Body Physics by introducing the
path integral formulation of quantum many body theory. The emergence of a macroscopic order parameter
in a quantum system is analogous to the emergence of classical mechanics in macroscopic quantum systems.
The emergence of classical mechanics from quantum mechanics is most naturally described using wave-
packets and the Feynman path integral. We shall see that a similar approach is useful for many body systems,
where the many body “wave-packets” states are coherent states: eigenstates of the quantum fields.

Chapter 12 introduced Landau’s concept of broken symmetry,embracing the idea of an order parameter
Ψ(x). The beauty of the Landau approach, is that it is a macroscopic description of matter: a length scales
beyond the microscopic coherence lengthξ0, the emergence of an order parameter does not depend on the
detailed microscopic microscopic physics that gives rise to it. In this chapter we go beneath the coherence
length, to examine the connection between the order parameter and the microscopic physics of a many body
system.

The basic idea of Feynman’s path integral[1, 2, 3], is to re-formulate the quantum mechanical amplitude
as sum of contributions from all possible paths, in which theclassical action plays the role of the phase
φ = SPath/~ associated with the path. The amplitude for a particle in a box to go from state|i〉 to state| f 〉 is
given by

〈 f |e−i Ht
~ |i〉 =

∑

Pathsi −→ f
exp

i
Spath
~



where

Spath=
∫ t

0
dt′

(
pq̇− H[p,q]

)
(13.1)

The Feynman formulation is a precise reformulation of operator quantum mechanics. In the classical limit
~→ 0, the path integral is dominated by the paths of stationary phase, which correspond to the classical path
which minimizes the action.

Feynman’s idea can be extended to encompass statistical mechanics by treating the Boltzmann density
matrix as a time-evolution operator in imaginary time. The trace over the density matrix is then the sum of
amplitudes of paths that return to the initial configurationafter an imaginary timet = i~β:

Z = Tr
[
e−βĤ

]
=

∑

λ

〈λ|e−i Ht
~ |λ〉

∣∣∣∣∣∣∣
t=−i~β

(13.2)

By changing variables toit/~→ τ, so thatidt/~→ dτ, andpq̇dt→ pq̇dτ we obtain we see that we can write
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tFig. 13.1 Illustrating a periodic path in imaginary time that contributes to the partition function of
a single particle.

this quantity as

Z =
∑

periodic paths
exp[−SE]

where

SE =

∫ β

0
dτ

(
− i
~

p∂τq+ H[p,q]
)
. (13.3)

We will now discuss a sophisticated extension of this idea tomany body systems, in which the path integral
sums over the configurations of the particle fields rather than the trajectories of the particles themselves.
The key innovation that makes this possible, is the use of coherent states, which are literally, eigenstates of
the quantum field. In quantum optics, such states, sometimescalled “Glauber states”, are used to describe
“minimum-uncertainty” wave-packets of photon fields[4]. For a single boson field, a coherent state is given
by

|b〉 = eb̂†b|0〉 (13.4)

where in this chapter, we use the romanb̂ andb̂† to denote boson operators, reserving the italicb andb̄ for the
corresponding eigenvalues. Now|0〉 is a harmonic oscillator ground-state defined byb̂|0〉 = 0, and it forms a
a minimum uncertainty wavepacket centred around the originof phase space. By contrast, the state|b〉 is the
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result of translating|0〉 so that it is centered around the point (q, p) in phase space, whereb = (q+ ip)/
√

2~
incorporates both variables into a single complex variable(see problem 14.1). Paradoxically, though the state
is an eigenstate of̂b = (q̂+ i p̂)/

√
2~, it is not an eigenstate of either ˆq or p̂. In a many body problem the fields

ψ̂(x) are defined at at each point in space and in the correspondingcoherent state|φ〉

ψ̂(x)|φ〉 = φ(x)|φ〉. (13.5)

We can still use the definition (13.11) for a coherent state, but now

b̂† =
∫

ddx ψ̂†(x)φ(x), (13.6)

coherently adds a boson to a condensate with wavefunctionψ(x). (See example 12.33 and exercise 12.12.6.)
These states are the “wavepackets” of many body physics. With care, we can use them as a basis set in
which the matrix elements of the Hamiltonian are obtained simply by replacing the field operators by their
expectation values. Using this procedure, the partition function can be re-written as a path integral in which
φ(x, t) defines a “history”, or path over which the field at pointx evolves, and (Fig. 13.2),

Z =
∑

periodic paths
e−SE[φ̄,φ] . (13.7)

By convention, we denote the complex conjugate ofφ(x) by φ̄(x). In chapter 3, we introduced motivated

tFig. 13.2 Illustrating how the operator field at each point in space is represented by a trajectory
inside the path integral.

particle field operators of particles as the quantization ofthe single particle wavefunction, identifyingφ(x) ∼
q, i~φ̄†(x) ∼ p as the corresponding canonical position and momenta co-ordinates. Using this analogy the
many-body analog of the kinetic term in (14.3) is

− i
~

p∂τq ∼ φ̄(x)∂τφ(x), (13.8)
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so the many-body analogue of (13.3) is expected to take the form

SE =

∫ β

0
dτd3x

[
φ̄(x, τ)∂τφ(x, τ) + H[φ̄, φ]

]
. (13.9)

whereH is the many-body Hamiltonian, with field operators replacedby the c-numbersφ andφ̄. Infact, as
we’ll see, this is precisely the form that is obtained when the quantum partition function is expanded in terms
of coherent states|φ(x, τ)〉 [5, 6, 7]. Furthermore, time-ordered Green’s functions canalso be re-written as an
average under the path integral, so that

〈Tψ̂(1)ψ̂†(2)〉 = 1
Z

∑

path

exp
[
−Spath

]
φ(1)φ̄(2)

whereψ̄(2) is the complex conjugate ofψ(2). In this way, the quantum mechanics of the many body system
is transformed from an operator formalism, into astatisticaldescription, with each with each space-time
configuration of the fields weighted by the action.

Remarkably, this approach can be extended to include fermions, using an idea of Julian Schwinger [8]
that generalizies the concept of “c-numbers” to include anticommuting Grassman numbers. For fermions,
the numbersψ(x) appearing in the coherent states mustanticommutewith each-other. They are thus a new
kind of number, which requires some new algebraic tricks. Moreover, we’ll see that that we can evaluate the
corresponding path integral forall non-interacting problems. This is already a major achievement.

A final aspect of path integrals, is that interacting problems can be transformed, by the method of “Hubbard
Stratonovich” [9, 10], into a problem of “free” particles moving in a fluctuating effective field. This technique
provides an important tool for the study of broken symmetry phase transitions.

Zinteracting−→
∑

{∆}

[
path integral of fermions moving in field∆

]
(13.10)

where{∆} denotes a given configuration of the symmetry breaking field∆.

13.2 Coherent states for Bosons

To demonstrate the path integral approach, and its derivation using coherent states, we will start with the
bosonic path integral. As a warm up for path integrals, we need to establish a few key properties of the
bosonic coherent state. We start by considering the coherent state of a single boson operatorb̂†, given by

|b〉 = eb̂†b|0〉, (13.11)

whereb is a complex number. This state is an eigenstate of the annihilation operator

b̂|b〉 = b|b〉. (13.12)

We can also form the conjugate state

〈b̄| = 〈0|eb̄b̂. (13.13)

which is the eigenstate of the creation operator,

〈b̄|b̂† = 〈b̄|b̄,
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whereb̄ is the complex conjugate ofb. Althoughb and b̄ are complex conjugates of one-another, they are
derived from two independent real variables, and when we integrate over them we need a double integral in
which we treatb andb̄ as independent variables. The “bar” notation is adopted by convention to emphasize
this linear independence.

A coherent state describes a condensate with an indefinite particle number. If we decompose it into eigen-
states of particle numbern by expanding in powers ofb we obtain

|b〉 =
∑

n

bn

n!
(b̂†)n|0〉 =

∑

n

|n〉 bn

√
n!

(13.14)

where|n〉 = (b̂†)n
√

n!
|0〉 is the eigenstate of the number operator ˆn = b̂†b̂. In this way we see that the amplitude

for a coherent state to be in a state withn particles is

φn(b) = 〈n|b〉 = bn

√
n!
. (13.15)

Similarly,

〈b̄| =
∑

m

b̄m

√
m!
〈m|, (13.16)

and

〈b̄|m〉 = b̄m

√
m!

(13.17)

From (13.14) and (13.16), the overlap between the two states〈b̄1| and|b2〉 is given by

〈b̄1|b2〉 =
∑

m,n

b̄m
1√
m!

δmn︷︸︸︷
〈m|n〉

bn
2√
n!
=

∑

n

(b̄1b2)n

n!
= eb̄1b2. (13.18)

13.2.1 Matrix elements and the completeness relation.

Remarkably, even though coherent states are non-orthogonal, they can be used to great effectiveness as a
basis (an overcomplete basis), in which the field operators are diagaonal. There are two important properties
of the coherent state that we shall repeatedly use to great advantage:

• Matrix elements. Matrix elements of normal ordered operatorsO[b̂†, b̂] between two coherent states are
obtained simply by replacing the operatorsb̂ andb̂† by the c-numbersb andb̄ respectively:

〈b̄1|Ô[b̂†, b̂]|b2〉 = O[b̄1,b2] × 〈b̄1|b2〉 = O[b̄1,b2] × eb̄1b2 (13.19)

• Completeness.

The unit operator can be decomposed in terms of coherent states as follows

1̂ =
∑

b̄,b

|b〉〈b̄|, (13.20)
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where1
∑

b̄,b

≡
∫

db̄db
2πi

e−b̄b (13.24)

is the normalized measure for summing over coherent states.

We present a detailed derivation of these two results in appendix 14A, continuing now to use them to derive
a path integral.

tFig. 13.3 Probability distribution function for a coherent state with b̄b= n0 = 10.

Example 13.1: Prove that in a coherent state|b〉, the probabilityp(n) to be in a state withn particles is
a Poisson distribution with average particle numbern0 = 〈n̂〉 = b̄b, and variance〈δn2〉 = n0, where

p(n) =
1
n!

(b̄b)ne−b̄b, (13.25)

Solution:
To calculate the normalized probalility to be in a state|n〉, we calculate

p(n) =
|〈n|b〉|2

〈b̄|b〉
=

1
n!

(b̄b)ne−b̄b.

1 Note:In quantum optics, one often encounters the “normalized” coherent or Glauber state,

|b, b̄〉N =
1
√

2πi
e−b̄b̂+b̂†b|0〉 = 1

√
2πi

e−b̄b/2|b〉 (13.21)

This affords the advantage of a simpler completeness relation

1 =
∫

db̄db |b, b̄〉N〈b, b̄|N, (13.22)

but unfortunately, the matrix elements of normal ordered operators now assume a more complex form,

〈b1, b̄1|Ô(b̂†, b̂)|b2,b2〉N = eb̄1b2−b̄1b1/2−b̄2b2/2O(b̄,b). (13.23)

The prefactor in this expression vanishes ifb1 = b2, but our use of completeness in the derivation of the path integral forces us to
include paths whereb2 andb1 are completely independent. For this reason, while Glauber states are a useful mnemonic device for
remembering completeness, this book chooses to use coherent states without the normalizing pre-factor.
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The average particle number is

n0 =
∑

n=1,∞
np(n) =

∑

n=1,∞

1
n− 1!

(b̄b)ne−b̄b = b̄be−b̄b
∑

n=0,∞

1
n!

(b̄b)n = b̄b

Now

〈n̂2 − n̂〉 =
∑

n=1,∞
n(n− 1)p(n) = (b̄b)2

∑

n=2,∞

1
n− 2!

(b̄b)n−2e−b̄b = (b̄b)2 = n2
0

so that〈n̂2〉 = n0(n0 + 1) and hence〈δn2〉 = 〈n̂2〉 − n2
0 = n0. Notice that〈δn2〉/〈n〉2 = 1/n0. Whenn0 is

large, the distribution function becomes Gaussian and resembles a delta function in the thermodynamic
limit.

Example 13.2: Using the completeness relation, prove that iff (α) = 〈 f |α〉 is the overlap of coherent
state|α〉 with state| f 〉, then

f (α) =
∫

db̄db
2πi

f (b)eb̄(α−b). (13.26)

Solution: Write the functionf (α) as the overlap of state〈 f | with state|α〉, f (α) = 〈 f |α〉. Now insert the
completeness relation into this expression to obtain

〈 f |α〉 = 〈 f |1̂|α〉 =
∫

db̄db
2πi
〈 f |b〉〈b̄|α〉e−b̄b

=

∫
db̄db
2πi

f (b)eb̄(α−b). (13.27)

Note the useful identity

δ(α − b) =
∫

db̄
2πi

eb̄(α−b). (13.28)

Example 13.3: Using the completeness relation, prove that the trace of any operator (not necessarily
normal-ordered)̂A[b̂†, b̂] is given by

Tr[A] =
∑

b̄,b

〈b̄|A|b〉 =
∫

db̄db
2πi

e−b̄b〈b̄|A|b〉 (13.29)

Solution: In the particle-number basis, the trace overÂ is given by

Tr[A] =
∑

n

〈n|A|n〉 =
∑

n,m

〈m|A|n〉δnm (13.30)

From completeness,

δnm =
∑

b̄,b

〈n|b〉〈b̄|m〉

so that

Tr[A] =
∑

b̄,b,n,m

〈n|b〉〈b̄|m〉〈m|A|n〉

=
∑

b̄,b,m,n

〈b̄
=1︷ ︸︸ ︷
|m〉〈m| Â

=1︷︸︸︷
|n〉〈n| b〉

=
∑

b̄,b

〈b̄|A|b〉 ≡
∫

db̄db
2πi

e−b̄b〈b̄|A|b〉 (13.31)
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Table. 1. Boson Calculus.

Completeness

〈b|b〉 = eb̄b Over-complete basis.
∫

db̄db
2πi

e−b̄b|b〉〈b̄| = 1 Completeness relation.

Tr[Â] =
∫

db̄db
2πi

e−b̄b〈b̄|Â|b〉 Trace Formula.

Gaussian Integrals
∫ ∏

j

db̄ jdbj

2πi
e−

[
b̄·A·b̄− j̄·b−b̄· j

]
=

e
[

j̄·A−1· j
]

detA

13.3 Path integral for the partition function: Bosons

We now develop the path integral expression for the partition function of a single boson field, with a normal-
ordered Hamiltonian̂H[b̂†, b̂]. Our key result, to be derived is

Z =
∫
D[b̄,b]e−S

S =
∫ β

0
dτ

(
b̄∂τb+ H[b̄,b]

)
(13.32)

Path integral for the Partition Function

All of our results can be simply generalized to include many different bosons. We begin by writing the trace
required for the partition function in a coherent state basis, as

Z = Tr[e−βH] =
∫

db̄db
2πi

e−b̄b〈b̄|e−βH |b〉 (13.33)

Unfortunately,e−βH[b̂†,b̂] is not a normal-ordered operator, so we can’t just replace the boson operators by
their c-number equivalents. To achieve such a replacement,we divide the Boltzmann factore−βH = U(β) (Fig
13.4) into a large numberN tiny time-slices of duration∆τ = β/N,

e−βH =
(
e−∆τH

)N
(13.34)

SinceH is normal ordered,e−∆τH = 1− ∆τ : H : +O(∆τ2) so thate−∆τH and :e−∆τH : only differ at second
order in∆τ. Thus, to an accuracyO(∆τ2) = O(1/N2) per time slice, we can replace the boson operators by
c-numbers in each time slice.

〈b̄ j |e−∆τH[b̂†,b̂] |b j−1〉 = exp
[
b̄ jb j−1 − ∆τH[b̄ j ,b j−1]

]
+ (∆τ2). (13.35)

This is a huge step forward, which transforms the time-sliceinto a purelyalgebraicexpression.
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tFig. 13.4 Illustrating the division of the trajectory into N time slices.

Let us now put this all together. The time-sliced partition function (13.33 ) is first written

Z =
∫

db̄Ndb0

2πi
〈b̄N|

(
e−∆τH

)N |b0〉e−b̄Nb0 (13.36)

where we have relabelled̄b→ bN, b→ b0 in (13.33). Next, between each time slice, we now introduce the
completeness relation,

1̂ =
∫

db̄ jdbj

2πi
|b j〉e−b̄ jb j 〈b̄ j | ≡ 1 j . (13.37)

so that the partition function becomes

Z =
∫

db̄Ndb0

2πi
〈b̄N|e−∆τH × . . . 1 j × e−∆τH × 1 j−1 × · · · × 11 × e−∆τH |b0〉e−b̄Nb0

=

∫
DN[b̄,b]

N∏

j=1

e−b̄ jb j 〈b̄ j |e−∆τH |b j−1〉. (13.38)

Notice that we have identifiedbN ≡ b0 andb̄N ≡ b̄0. We have also introduced the short-hand notation

DN[b̄,b] =
N∏

j=1

db̄ jdbj

2πi
(13.39)

for the measure.
Inserting expression (13.35 ) into (13.38), we then obtain

Z =
∫
DN[b̄,b] exp

−
N∑

j=1

(
b̄ j(b j − b j−1) + ∆τH[b̄ j ,b j−1]

)
 +O(N∆τ2), (13.40)
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where we have grouped the errors from allN time slices into a final term of orderO(N∆τ2) = O(1/N). Since
this error vanishes in the limitN→ ∞, we may thus write

Z = lim
N→∞

∫
DN[b̄,b] exp[−SN]

SN =

N∑

j=1

∆τ

(
b̄ j

(b j − b j−1)

∆τ
+ H[b̄ j ,b j−1]

)
(13.41)

This is the path integral representation of the partition function for a single boson field. Let us pause to reflect
on this result. The integral represents a sum over all possible “histories” of the field,

b(τ j) ≡ (b1,b2 . . . bN),
b̄(τ j) ≡ (b̄1, b̄2 . . . b̄N), (13.42)

This kind of integral is also called a “functional integral”, because it involves integrating over all values of
the functionsb(τ). When we take the thickness of each time slice to zero, the discrete functionsb(τ j) ≡ b j

become functions of continuous time. Our identification ofb0 ≡ bN and hencēb0 ≡ b̄N implies that the set of
complete functions that we sum over is periodic in time:

b(τ) = b(τ + β), b̄(τ) = b̄(τ + β), (13.43)

This is a new type of integral calculus - rather than integrating over all points on a line, we are integrating
over all possible values of a function. We call these integrals “path integrals” or “functional integrals”. Just
as in conventional integral calculus, at some point we reserve a special notation for the continuum limit

DN[b̄,b] → D[b̄,b].

Assuming that the continuum limit is indeed a well-defined limit, we now replace

N∑

j=1

∆τ→
∫ β

0
dτ,

b j → b(τ), b̄ j
(b j − b j−1)

∆τ
→ b̄∂τb,

H[b̄ j ,b j−1] → H[b̄,b]. (13.44)

These brash replacements hide a mountain of subtlety. Unlike a conventional integral, there is no sense of
“continuity” associated with the fieldb(τ): inside the functional integral the paths we sum over are jagged
noisy objects. However, if we look at their typical noise spectra, they have a characteristic frequency. For
a Harmonic oscillator, this is just the frequency of oscillation ω, but if we include interactions, there will
typically be a spectrum of such frequencies with some minimum frequencyω0. The continnum limit will
develop providedω0∆τ << 1.

The limiting value of the path integral is then written

Z =
∫
D[z̄,b]e−S

S =
∫ β

0
dτ

(
b̄∂τb+ H[b̄,b]

)
(13.45)

The simplest example of such a path integral is the non-interacting Harmonic oscillator, in whichH = ǫb̂†b̂.
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For this case,

Z =
∫
D[b̄,b] exp

[
−

∫ β

0
dτb̄

(
∂τ + ǫ

)
b

]
(13.46)

This is an example of a “Gaussian” path integral, because theaction is just a quadratic function of the fields,
and we’ll shortly see that we can evaluate all such path integrals in a close form. It should be clear that this
derivation does not depend on whether there are interactionterms in the Hamiltonian. We could equally well
consider the case of the anharmonic oscillator, written in normal-ordered form as

H = ǫb̂†b̂+ g : (b̂+ b̂†)4 :

The partition function for this case is now

Z =
∫
D[b̄,b] exp

[
−

∫ β

0
dτ

(
b̄
(
∂τ + ǫ

)
b+ g(b+ b̄)4

)]
.

This is probably the simplest example of an “interacting” path integral.

13.3.1 Many bosons

The derivation of the last section is easily generalized to include many bosons, with a HamiltonianH[b̂†λ, b̂λ],
by using a multi-variable coherent state

|b〉 = exp


∑

λ

b̂†λbλ

 .

Since this is just a product of coherent states, we can simplyextend the completeness relationship as product
of the measures for each individual boson

1̂ =
∑

b̄,b

|b〉〈b| (13.47)

where now
∑

b̄,b

=

∫ ∏

λ

db̄λdbλ
2πi

e−bλbλ

The procedure of developing the path integral is exactly thesame: we subdivide the interval intoN time
slices, approximatinge−∆τH by its normal ordered form. The resulting path integral is formally very similar,

Z =
∫
D[b̄,b]e−S

S =
∫ β

0
dτ

(∑

λ

b̄λ∂τbλ + H[b̄λ,bλ]
)

(13.48)

Path integral for the partition function: many bosons.

where the measure is now a product of the measure for each boson field,

D[b̄,b] =
∏

λ

D[b̄λ,bλ]
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For example, the path integral for a gas of free bosons with HamiltonianH =
∑

k ωk b̂†k b̂k has the action

S =
∫ β

0


∑

k

b̄k(∂τ + ωk)bk

 .

13.3.2 Time-ordered expectation values

In addition to providing equilibrium thermodynamics, the path integral can also be used to calculate time-
ordered expectation values. The division of time intoN time-slices using coherent states can also be carried
out for the evaluation of arbitrary time-ordered products of fields - and when we do so, we discover that the
time-ordered product of fields maps onto a path integral overthe corresponding c-number product of fields.
Thus for the two-point Green’s function

G(2− 1) = −〈Tb̂(2)b̂†(1)〉 = −
∫
D[b̄,b]e−Sb(2)b̄(1)

∫
D[b̄,b]e−S

(13.49)

where we have used the notation 1≡ (τ1,X1, {λ1}) to denote the continuous and discrete variables associated
with the boson field.In this way, time-ordered products of operatorsbecome weighted averages of c-numbers
inside the path-integral. The operator form for the Green’s function is written in terms of the Heisenberg
fields and to convert it into a path integral, we need to rewrite the Heisenberg field operators in terms of the
Schr̈odinger fields,

b̂H(2) = eHτ2b̂S(2)e−Hτ2

where the time argumentτ2 of the Schr̈odinger fieldb̂S(2) is a dummy variable. Now with this device, the
Green’s function can be transformed to the Schrödinger representation as follows

G(2− 1) = − 1
Z

Tr[e−βHT
{
b̂H(2)b̂†H(1)

}
]

= − 1
Z

Tr[e−βHT
{
eτ2Hb̂S(2)e−τ2Heτ1Hb̂†S(1)e−τ1H

}
]

= − 1
Z

Tr[T
{
U(β − τ2)b̂S(2)U(τ2 − τ1)b̂†S(1)U(τ1)

}
]

= Tr[T
{
U(β)b̂S(2)b̂†S(1)

}
] (13.50)

whereU(τ) = e−Hτ is the time-evolution operator. To write the Green’s function as a path integral, we
now expand the time-ordered trace in terms ofN time slices, introducing the Schrodinger operators at the
time-slicesτ j andτk which corresponding toτ1 andτ2 respectively. Here’s where coherent states work their
marvellous magic, for we can rewrite the destruction operator as

b̂S(τk) = b̂S(τk) × 1k =

∫
db̄kbk

2πi
e−b̄kbk |bk〉 bk〈b̄k| (13.51)

and similarly

b̂†S(τ j) = 1 j × b̂†S(τ j) =
∫

db̄ jb j

2πi
e−b̄ jb j |b j〉 b̄ j 〈b̄ j |, (13.52)
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so that inside the path integral,b̂S(2)b̂†S(1)→ b(2)b̄(1) and

Tr[T
{
U(β)b̂S(2)b̂†S(1)

}
] =

∫
D[b̄,b]e−Sb(2)b̄(1)

from which the path integral expression for the Green’s function (13.49) follows. We can easily extend these
results to all higher moments, quite generally, mapping time-ordered Green functions onto the corresponding
moments under the path integral

〈Tb̂(1)b̂(2) . . . b̂†(2′)b̂†(1′)〉 =
∫
D[b̄,b]e−Sb(1)b(2) . . . b̄(2′)b̄(1′)

∫
D[b̄,b]e−S

(13.53)

In this way, the path integral maps a system of interacting particles onto a statistical mechanics problem,
with distribution functione−S.

13.3.3 Gaussian path integrals

An important class of path integrals are the “Gaussian path integrals”, in which the action is a quadratic
functional of the fields. For example, for for free bosons Hamiltonian Ĥ = b̂†αhαβb̂β the action is

SE =

∫ β

0
dτb̄α(∂τ + hαβ)bβ ≡

∫ β

0
dτb̄(∂τ + h)b (13.54)

Remarkably, all Gaussian path integrals can be evaluated ina closed form and the key result is

ZG =

∫
D[b̄,b] exp

[
−

∫ β

0
dτb̄(∂τ + h)b

]
= [det(∂τ + h)]−1 (13.55)

Bosonic Gaussian Integral

To understand this result, it is helpful to think of the function bα(τ) ≡ bα̃ as a huge vector labelled by the
indicesα̃ ≡ (α, τ). From this perspective, a Gaussian action is a vast matrix bilinear

SE =
∑

(α,τ), (β,τ′)

b̄α(τ)Mαβ(τ, τ
′)bβ(τ

′) ≡ b̄ · M · b, (13.56)

where

Mαβ(τ, τ
′) = δ(τ − τ′)(∂τ′ + hαβ). (13.57)

You may be worried about the notion of treating time-integration as a summation. To assuage your doubts,
it is useful to re-writeSE in the frequency domain, where summations over time are replaced by discrete
frequency summations. Sinceb(τ) = b(τ + β), the Bose field can always be represented in terms of a discrete
set of Fourier components,

bα(τ) =
1
√
β

∑

n

bα(iνn)eiνnτ. (13.58)
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In this basis

[M(τ − τ′)]αβ = δ(τ − τ′)(∂τ′ + hαβ) −→ (−iνnδαβ + hαβ) = M(iνn) (13.59)

so the action becomes a discrete summation over Matsubara frequencies

SE =
∑

iνn

b̄α(iνn)
(
−iνnδαβ + hαβ

)
bβ(iνn) ≡ b̄ · M · b (13.60)

To integrate a Gaussian path integral, we employ the generalresult for a multi-dimensional Gaussian
integral

∫ ∏

α

db̄αdbα
2πi

e−b̄αMαβbβ =
1

det[M]
(13.61)

whereM is a matrix with non-zero eigenvalues. To prove this result we transform to a basis whereM is
explicitly diagonal. Letb = U · a, andb̄ = ā · U†, whereU ≡ Uαλ is the unitary matrix that diagonalizesM,
then sinceU†λαMαβUβλ′ = mλδλλ′ , where themλ are the eigenvalues ofM,

b̄αMαβbβ = āλmλaλ

is explicitly diagonal. Furthermore, under a unitary transformation, the measure remains unchanged. To see
this, we write the transformed measure using a Jacobian,

∏

α

db̄αdbα =
∏

α

dāαdaα ×
δ[b̄,b]
δ[ā,a]

=
∏

α

dāαdaα

wwwwwwwwwww
U† 0
0 U

wwwwwwwwwww
=

∏

α

dāαdaα

where unitarity guarantees that the Jacobian is unity:
wwwwwwwwwww

U† 0
0 U

wwwwwwwwwww
= Det[U†U] = 1.

Under these transformations, the Gaussian integral becomes diagonal and can be explicitly evaluated:
∫ ∏

α

db̄αdbα
2πi

e−b̄αMαβbβ =
∏

λ

∫
dāλdaλ

2πi
e−mλāλaλ =

(∏

λ

mλ

)−1

=
1

Det[M]
(13.62)

where, in the last step, we have identified the determinant ofM with the product of its eigenvalues, Det[M] =∏
λ mλ. Finally, if we now replaceM → ∂τ + h, we obtain the general relationship given in (13.55).

ZG =
1

Det[∂τ + h]
(13.63)

We can equally well write this in the frequency-domain, where the determinant can be explicitly evaluated:

ZG =

∫
D[b̄,b] exp

−
∑

n

b̄(iνn)(−iνn + h)b(iνn)

 =
1∏

n Det(−iνn + h)
=

1∏
n,λ(−iνn + ǫλ)

(13.64)

where theǫλ are the energy eigenvalues ofh. This expression is most usefully re-written as an expression for
the Free energy

FG = −T ln ZG = T
∑

n

Trln(h− iνn)eiνn0+ = T
∑

n,λ

ln(ǫλ − iνn)eiνn0+
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where we have used the identity ln DetA = Tr ln A and have introduced the convergence termeiνn0+ . This term
is motivated by the observation that derivatives of the partition function represent equal time expectation
values, which are the expectation values of time-ordered operators at an infinitesimally negative time.

In ending this section, we make one last identification. For adiagonalized non-interacting Hamiltonian, the
bosonic Green’s function is given by

Gλλ′ (iνn) = δλλ′(iνn − ǫλ)−1. (13.65)

So we can identify (−iνn+ ǫλ) = −G−1(iνn) = −G−1, as the inverse Green’s function. Since this identity holds
in any basis, we can identify

(∂τ + h) ≡ 〈b(iνn)b̄(iνn)〉 = −G−1 (13.66)

in the time domain. An alternative expression for the Gaussian integral is then

ZG =

∫
D[b̄,b] exp

[
−

∫ β

0
b̄(−G−1)b

]
=

1
Det[−G−1]

(13.67)

If we take logarithms of both sides, we may write down the Freeenergy in terms of the one-particle Green’s
function

F = T ln Det[−G−1] = TTr ln[−G−1]. (13.68)

This expression enables us to relate the Green’s function and Free energy without having to first diagonalize
the HamiltonianG−1.

Example 13.4: Use the equation of motion,∂τb̂(1) = [Ĥ, b̂(1)] to confirm that for a free system of
bosons, wherêH = b̂†hb̂ ≡ b̂†αhαβb̂β, the Green’s function is given byG = −(∂τ + h)−1.
Solution: The boson Green’s function is given by

G(1− 2) = −〈Tb̂(1)b̂†(2)〉 (13.69)

The time-dependence of the Green’s function has two components - a smoothly varying term derived
from the time-evolution of the bose field and a discontinuous term derived from the derivatives of the
time-ordering operator. To see this, let us first expand the time-ordering operator in terms ofθ functions,

G(1− 2) = −〈b̂(1)b̂†(2)
〉
θ(τ1 − τ2) −

〈
b̂†(2)b̂(1)

〉
θ(τ2 − τ1) (13.70)

If we now take the derivative w.r.t. time, we must take account of the discontinuity in the theta functions.
Using ,∂τθ(τ1 − τ2) = δ(τ1 − τ2) and∂τθ(τ2 − τ1) = −δ(τ1 − τ2), we obtain

∂τG(1− 2) =
(
−〈b̂(1)b̂†(2)

〉
δ(τ1 − τ2) +

〈
b̂†(2)b̂(1)

〉
δ(τ1 − τ2)

)
− 〈

T∂τb̂(1)b̂†(2)
〉

= −〈
δ(1−2)︷                       ︸︸                       ︷

[b̂(1), b̂†(2)]
〉
δ(τ1 − τ2)−

〈
T

[H,b̂(1)]︷︸︸︷
∂τb̂(1)b̂†(2)

〉

= −δ(1− 2)− 〈
T[H, b̂(1)]b̂†(2)

〉
. (13.71)

where we have simplified the first term using the canonical commutation relations
(
[b̂(1), b̂†(2)]δ(τ1 − τ2)

)
αβ
≡ [b̂α, b̂

†
β]δ(τ1 − τ2) = δαβδ(τ1 − τ2) ≡ δ(1− 2)αβ,

and used the equation of motion,∂τb(1) = [H, b(1)]. The commutator between the Hamiltonian and the
boson field is

[H, b̂(1)]α ≡ [H, b̂α] = −[b̂α, b̂
†
λhλβb̂β] = −

δαλ︷   ︸︸   ︷
[b̂α, b̂

†
λ] hλβb̂β = −hαβb̂β ≡ −[h · b̂(1)]α

398



bk.pdf April 29, 2012 204

c©2011 Piers Coleman Chapter 13.

so putting this all together, we have

∂τG(1− 2) = −δ(1− 2)− h ·G(1− 2) (13.72)

or

(∂τ + h)G(1− 2) = −δ(1− 2) (13.73)

If we write this expression succinctly as

(∂τ + h)G = −1. (13.74)

we see that

G = −(∂τ + h)−1. (13.75)

If you are uncomfortable with treating integrals over the time-domain as a matrix multiplication, you
can Fourier transform (13.72), writing

G(τ − τ′) = T
∑

n

G(iνn)e
−iνn(τ−τ′) (13.76)

so that∂τ → −iνn and then (13.74) becomes

(iνn − h) ·G(iνn) = 1 (13.77)

and hence

G(iνn) = (iνn − h)−1. (13.78)

which is the Fourier transform of (13.75).

Example 13.5: Calculate the free energy of free bosonic gas, whereĤ =
∑

k ǫk b̂†k b̂k using the path
integral method.
Solution: We begin by writing the action in the Frequency domain as

SE = −
∑

k,iνn

b(k, iνn)G(k, iνn)
−1b(k, iνn)

G(k, iνn)
−1 = (iνn − ǫk). (13.79)

The partition function is given by

e−βF =
1

det[−G−1]
(13.80)

so that

F = TlnDet[−G−1] = TTr ln[−G−1] = T
∑

k,iνn

ln(ǫk − iνn)e
iνn0+ , (13.81)

where we have introduced the convergence factoreiνn0+ and used the identity ln Det[A] = Tr ln A.
Carrying out the frequency summation using complex contour methods,we have

F = −
∑

k

�

dz
2πi

n(z) ln(ǫk − z) (13.82)

where the integral is anticlockwise around the branch-cut on the real axis. This branch-cut runs out from
ω = ǫk to positive infinity, with a discontinuity of 2π. Rewriting the integral along this discontinuity,
we have

F = −
∑

k

∫ ∞

−∞

dω
2πi

n(ω)

2πi θ(ω−ǫk )︷                                      ︸︸                                      ︷[
ln(ǫk − ω + iδ) − ln(ǫk − ω − iδ)

]
= −

∑

k

∫ ∞

ǫk

dωn(ω)
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= −T
∑

k

[
ln(1− e−βω)

]∞
ǫk

= +T
∑

k

[ln(1 − e−βǫk )] (13.83)

13.3.4 Source terms in Gaussian integrals

Source terms provide a means of probing the correlations andfluctuations described by a path integral. For
Gaussian path integrals, the result of introducing source terms can be evaluated to obtain

ZG[ j̄, j] =
∫
D[b̄,b] exp

{
−

∫ β

0
d1

[
b̄
(
∂τ + h

)
b− j̄(1)) · b(1)− b̄(1) · j(1)

]}

=

exp
[
−

∫ β

0
d1d2 j̄(1)G(1− 2) j(2)

]

Det[∂τ + h]
(13.84)

Bosonic Gaussian Path Integral with source terms

where we have used the schematic notation 1≡ (τ1,X1, {λ1}), 2 ≡ (τ2,X2, {λ1}), to denote the time, position
and all other relevant indices of the boson field and

∫ β

0
d1 =

∑
λ1

∫ β

0
dτ1

∫
ddX1 to denote the corresponding

integration over continuous variables and summation over discrete quantum numbers. The expansion of the
left and the right-hand sides of this expression as a power-series provide the Wick expansion of multi-particle
Green’s functions of the Boson field. Differentiating first the left and then the right-hand side with respect to
j̄(1) we obtain

〈b̂(1)〉 ≡
∫

D[b̄,b]e−Sb(1)
∫

D[b̄,b]e−S
=

1

ZG[ j̄, j]

δZG[ j̄, j]

δ j̄(1)
= −

∫ β

0
d2G(1− 2) j(2). (13.85)

Taking second-derivatives and setting the source terms to zero we obtain

〈Tb̂(1)b̂†(2)〉 j̄, j=0 ≡
∫

D[b̄,b]e−Sb(1)b̄(2)
∫

D[b̄,b]e−S
=

1

ZG[ j̄, j]

δ2ZG[ j̄, j]

δ j(2)δ j̄(1)

∣∣∣∣∣∣
j̄, j=0

= −G(1− 2) (13.86)

while higher-order differentials give us the Wick expansion,

1

ZG[ j̄, j]

δ2nZG[ j̄, j]

δ j(1′) . . . δ j̄(1)

∣∣∣∣∣∣
j̄, j=0

=

(−1)n
∑

P

G(1− P′1)G(2− P′2) . . .G(n− P′n) =

∫
D[b̄,b]e−Sb(1)b(2) . . . b̄(2′)b̄(1′)

∫
D[b̄,b]e−S

≡ 〈Tb̂(1)b̂(2) . . . b̂†(2′)b̂†(1′)〉. (13.87)

In this remarkable fashion, the correlation functions of non-interacting bosons in imaginary time are identified
with the classic properties of Gaussian-distributed random variables.

To prove (13.85), we take (13.61) and shift the integration variables inside the integral

b→ b− M−1 j, b̄→ b̄− j̄M−1, (13.88)
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Under this simple shift, the measure remains unchanged, while the action term̄b · M · b becomes

b̄ · M · b→ (b̄− j̄M−1) · M · (b− M−1 j) = b̄ · M · b− ( j̄ · b+ b̄ · j) + j̄ · M−1 · j. (13.89)

Since the integral is unchanged under this change of variables, it follows that

e− j̄·M j
∫ ∏

α

db̄αdbα
2πi

e−(b̄αMαβbβ− j̄αbα−b̄α jα) =
1

Det[M]
(13.90)

in other words,
∫ ∏

α

db̄αdbα
2πi

e−(b̄αMαβbβ− j̄αbα−b̄α jα) =
ej̄·M−1 j

det[M]
(13.91)

If we rewrite this expression by replacingM → −G−1 = (∂τ + h), we obtain the key result (13.85). As usual,
if you are uncomfortable with the change from discrete, to continuous variables, this procedure can first be
carried out using the discrete variables in Fourier space, followed by an inverse Fourier transformation back
into real space.

13.4 Fermions: Coherent states and Grassman mathematics

We now generalize the results of the last section to fermions, using Grassman numbers to set up a completely
parallel derivation of the fermionic path integral in termsof coherent states.

Feynman’s original derivation of path integrals applied purely to bosonic fields and its extension to fermions
was begun in the 1950s. The idea of using anticommuting numbers, both as eigenvalues of fermion fields and
as fermionic source terms was proposed in a seminal paper by Julian Schwinger in 1953[8]. Early propos-
als for path integrals for fermions were made by P. Matthews and Abdus Salam in 1955[11] and by David
Candlin in 1956 [5]. The first explicit formulation of the fermionic action in terms of Grassman numbers,
with a derivation using fermion coherent states was made by by J. L. Martin in 1959[6]. The mathematical
foundations of fermionic path integrals were extensively developed in the 1960s by Felix Berezin[12] and the
extension of the fermionic path integral to imaginary time and finite temperature was later provided by David
Sherrington and Sam Edwards[7, 13]. However it is only in thelast few decades that the method has become
a commonly used tool in quantum many body physics.

To illustrate the basic approach, we shall consider a a single fermionic fieldĉ†. The coherent state for this
field is

|c〉 = eĉ†c|0〉

and its conjugate is

〈c̄| = 〈0|ec̄ĉ.

In this text we’ve reserved roman symbolsĉ† andĉ for the creation and annihilation operators, to delineate
them from their expectation values ¯c andc. Herec andc̄ are anticommuting “Grassmann numbers”. Note that
in common usage the notationc† is often used interchangeably to describe both the operatorand its Grassman
counterpart ¯c.

There are a number of caveats you need to remember about Grassmans. On the one hand, the quantitiesc
andc̄ are numbers whichcommutewith all observableŝO, cÔ = Ôc. On the other hand, to correctly represent

401

Chapter 13. c©Piers Coleman 2011

the anticommuting algebra of the original Fermi fields, Grassman numbersanticommuteamongst themselves
andwith other Fermi operators, so that

cc̄+ c̄c= 0, cψ̂ + ψ̂c = 0, (13.92)

But c must also anticommute with itself, which means that

c2 = c̄2 = 0, (13.93)

But how can we possibly deal with numbers which when squared,give zero? Though this seems absurd, we’ll
see that anticommuting or “Grassman” numbers do form a non-trivial calculus and that ultimately, the leap to
this new type of number is no worst and no more remarkable thanthe jump from real, to complex numbers.

The main effect of the anticommuting properties of Grassmans is to drastically reduce the set of possible
functions and the set of possible linear operations one can carry out on such functions. For example, the
Taylor series expansion of Grassman functions has to truncate at first order in any particular variable. Thus a
function of two variables,f (c̄, c)

f [c̄, c] = fo + c̄ f1 + f̃1c+ f12c̄c

only has four terms! The coherent state also truncates, so that

|c〉 = |0〉 + ĉ†c|0〉
= |0〉 + |1〉c (13.94)

so that the overlap between the “n” fermion state (n = 0,1) and the coherent state is given by

〈n|c〉 = cn, (n = 0,1)

To develop a path integral representation for fermions one needs to know how to carry out Grassman calculus.
The key properties of Grassman algebra are summarized in table 1. In particular, you will notice that theonly
formal difference with bosons, is that the measure contains a different normalization

∑

b̄,b

=

∫
db̄db
2πi

e−b̄b→
∑

c̄, c

=

∫
dc̄dce−c̄c, (13.95)

that the trace formula contains an additional minus sign

Tr[A]B =
∑

b̄,b

〈b̄|A|b〉 → Tr[A]F =
∑

c̄,c

〈−c̄|A|c〉. (13.96)

and that both the Jacobian and the Gaussian integral are theinversesof their bosonic counterpart.

13.4.1 Completeness and matrix elements

Coherent states are over-complete, for

〈c̄|c〉 = 〈0|(1+ c̄ĉ)(1+ ĉ†c)|0〉 = 1+ c̄c= ec̄c. (13.97)

Notice the formal parallel with the overlap of bosonic coherent states. To derive the completeness relation,
we start with the identity ∫

dc̄dce−c̄ccnc̄m = δnm, (n,m= 0,1) (13.98)
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then by writingcn = 〈n|c〉, c̄m = 〈c̄|m〉 we see that the overlap between the eigenstates|n〉 of definite particle
number is given by

δnm = 〈n|m〉 =
∫

dc̄dce−c̄c〈n|c〉〈c̄|m〉 = 〈n|
∫

dc̄dce−c̄c |c〉〈c̄| |m〉 (13.99)

from which it follows that

∫
dc̄dc|c〉〈c̄|e−c̄c = |0〉〈0| + |1〉〈1| ≡ 1. (13.100)

Completeness relation

Alternatively, we may write ∑

c̄,c

|c〉〈c̄| = 1

where
∑

c̄, c

≡
∫

dc̄dce−c̄c (13.101)

is the measure for fermionic coherent states. The exponential factore−c̄c = 1/〈c̄|c〉 provides the normalizing
factor to take account of the over-completeness.

Matrix elements between coherent states are easy to evaluate. If an operatorA[ĉ†, ĉ] is normal ordered,
then since the coherent states are eigenvectors of the quantum fields, it follows that

〈c̄|Â|c〉 = 〈c̄|c〉A[c̄, c] = ec̄cA[c̄, c], (13.102)

i.e

〈c̄|Â|c〉 = ec̄c × c-number formed by replacingA[ĉ†, ĉ] → A[c̄, c]. (13.103)

This wonderful feature of coherent states enables us at a swoop, to convert normal-ordered operators into
c-numbers.

The last result we need is the trace ofA. We might guess that the appropriate expression is

Tr[Â] =
∑

c̄,c

〈c̄|Â|c〉

actually - this is almost right, but infact, it turns out thatthe anticommuting properties of the Grassmann’s
force us to introduce a minus sign into this expression

Tr[Â] =
∑

c̄,c

〈−c̄|Â|c〉 =
∫

dc̄dce−c̄c〈−c̄|Â|c〉 (13.104)

Grassman Trace formula
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Table. 2. Grassman Calculus .

Algebra
c1c2 = −c2c1

anticommute with Fermions and other Grassman
numbers

cb̂ = b̂c, cψ̂ = −ψ̂c
commute with bosons, anticommute with Fermi
operators.

Functions f [c̄, c] = fo + c̄ f1 + f̃1c+ f12c̄c
Sincec2 = 0, truncate at linear order in each
variable.

Calculus

∂ f = − f̃1 − f12c̄
Differentiation

∂̄ f = f1 + f12c

∫
dc≡ ∂c

∫
dc1 = ∂c1 = 0

∫
dcc= ∂cc = 1

Completeness

〈c|c〉 = ec̄c Over-complete basis.
∫

dc̄dce−c̄c|c〉〈c̄| = 1 Completeness relation.

Tr[Â] =
∫

dc̄dce−c̄c〈−c̄|Â|c〉 Trace Formula.

Change of variable J

(
c1 . . . cr

ξ1 . . . ξr

)
=

∣∣∣∣∣
∂c1 . . . cr

∂ξ1 . . . ξr

∣∣∣∣∣
−1

Jacobian - inverse of Bosonic Jacobian.

Gaussian Integrals

∫ ∏

j

dc̄ jdcje
−
[
c̄·A·c̄− j̄·c−c̄· j

]
= detA× e

[
j̄·A−1· j

]
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which we shall shortly see, gives rise to the antisymmetric boundary conditions of fermionic fields. To prove
the above result, we rewrite (13.99) as

δnm = 〈n|m〉 =
∫

dc̄dce−c̄c〈−c̄|m〉〈n|c〉 (13.105)

where the minus sign arises from anticommutingc andc̄. We can now rewrite the trace as

TrA =
∑

n,m

〈m|A|n〉δnm

=
∑

n,m

∫
dc̄dce−c̄c〈−c̄|m〉〈m|A|n〉〈n|c〉

=

∫
dc̄dce−c̄c〈−c̄|Â|c〉 (13.106)

We shall make extensive use of the completeness and trace formulae (13.100) and (13.104) in developing the
path integral. Both expressions are simply generalized to many fieldsc j by making the appropriate change in
the measure and by replacing ¯cc in the exponent, by the dot product,

dc̄dc→
∏

j

dc̄ jdcj , (13.107)

c̄c→
∑

j

c̄ jc j .

13.4.2 Path integral for the partition function: Fermions

This section very closely parallels the derivation of the bosonic path integral in section (13.3), but for com-
pleteness, we include all relevant steps. To begin with, we consider a single fermion, with Hamiltonian

H = ǫĉ†ĉ (13.108)

Using the trace formula (13.104), the partition function

Z = Tre−βH (13.109)

can be re-written in terms of coherent states as

Z = −
∫

dc̄Ndc1ec̄Nc1〈c̄N|e−βH |c1〉, (13.110)

where the labeling anticipates the next step. Now we expand the exponential into a sequence of time-slices

e−βH =

(
e−∆τH

)N

, ∆τ = β/N. (13.111)

Between each time slice we introduce the completeness relation
∫

dc̄ jdcj+1|c j+1〉〈c̄ j |e−c̄ jc j+1 = 1 (13.112)

so that

Z = −
∫

dc̄Ndc1ec̄Nc1

N−1∏

j=1

dc̄ jdcj+1e−c̄ jc j+1

N∏

j=1

〈c̄ j |e−H∆τ|c j〉 (13.113)
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where the first integral is associated with the trace and the subsequent integrals with theN − 1 completeness
relations. Now if we define

c1 = −cN+1 (13.114)

we are able to identify theN th time slice with the 0 th the time-slice. In this way, the integral associated with
the trace

−
∫

dc̄Ndc1ec̄Nc1〈c̄N| . . . |c1〉 =
∫

dc̄NdcN+1e−c̄NcN+1〈c̄N| . . . |c1〉 (13.115)

can be absorbed into the otherN − 1 integrals, and furthermore, we notice that the fields entering into the
discrete path integral areantiperiodic.

With this observation,

Z =
∫ N∏

j=1

dc̄ jdcj+1e−c̄ jc j+1〈c̄ j |e−H∆τ|c j〉 (13.116)

Provided each time-slice is of sufficiently brief duration, we can replacee−∆τH by its normal ordered form, so
that

〈c̄ j |e−H∆τ|c j〉 = ec̄ j c̄ j e−H[c̄ jc j ]∆τ +O(∆τ2), (13.117)

whereH[c̄, c] = ǫc̄c is the normal-ordered Hamiltonian, with Grassman numbers replacing operators.

Division of Grassmanian time evolution into “time-slices”.

Combining (13.110) and (13.113) we can write

Z = LtN→∞ZN

ZN =

∫ N∏

j=1

dc̄ jdcj exp
[
−S

]

S =
N∑

j=1

[
c̄ j(c j+1 − c j)/∆τ + ǫc̄ jc j

]
∆τ, (13.118)
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As in the bosonic case, this path integral represents a sum over all possible values “histories” of the fields:

c(τ j) ≡ {c1, c2 . . . cN}, (13.119)

c̄(τ j) ≡ {c̄1, c̄2 . . . c̄N} (13.120)

as illustrated in Fig. 2. This kind of integral is also calleda “functional integral”, because it involves inte-
grating over all possible values of the functionsc(τ) andc̄(τ). When we take the thickness of the time slices
to zero, the discrete functionsc(τ) and c̄(τ) become functions of continuous time. The boundary condition
(13.114) implies that the set of complete functions which wesum over must satisfy anti-periodic boundary
conditions

c(τ + β) = −c(τ), c̄(τ + β) = −c̄(τ)

In the continuum limit,N→ ∞, we now replace

c̄ j(c j − c j−1)/∆τ→ c̄∂τc,
∑

j

∆τ→
∫ β

0
dτ. (13.121)

The sense in whichc j becomes “close” toc j+1 needs to be carefully understood. Suppose we rewrite the
antiperiodicc j in terms of their frequency components as

c j =
1
√
β

∑

|n|≤N/2

c(iωn)e−iωnτ j ,

then in this new basis,
∑

j

c̄ j(c j+1 − c j) =
∑

|n|≤N/2

c̄(iωn)

[
e−iωn∆τ − 1
∆τ

]
c(iωn)

In practice, the path-integral is dominated by functionsc j with a maximum characteristic temporal frequency
max(|ωn|) ∼ ǫ, so that as∆τ→ 0, we can replace

[
e−iωn∆τ − 1
∆τ

]
→ −iωn

which is the Fourier transform of∂τ.
With these provisos, the continuum limit of the action and path integral are then

S =
∫ ∞

0
dτ

[
c̄(∂τ + ǫ)c

]
,

Z =
∫
D[c̄, c] exp

[
−S

]
(13.122)

where we use the notation

D[c̄, c] =
∏

τl

dc̄(τl)dc(τl)

At first sight, it might seem a horrendous task to carry out theintegral over all possible functionsc(τ). How
can we possibly do this in a controlled fashion? The clue to this problem lies in the observation that the set of
functionsc(τ) (and its conjugate, ¯c(τ) ) are spanned by adiscretebut complete set of anti-periodic functions,
as follows

c(τ) =
1
√
β

∑

n

cne−iωnτ,
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We can integrate over all possible functionsc(τ) by integrating over all possible values of the coefficientscn

and since the transformation which links these two bases is unitary, the Jacobian which links the two bases is
unity, i.e.

D[c̄, c] ≡
∏

n

dc̄ndcn

It is much easier to visualize and work with a discrete basis.We can transform to this basis, by replacing
∂τ → −iωn in the action, rewriting it as

S =
∑

n

c̄n(−iωn + ǫ)cn

Now the path integral is just a discrete Gaussian integral

Z =
∫ ∏

n

dc̄ndcn exp
[
−

∑

n

c̄n(−iωn + ǫ)cn

]
=

∏

n

(−iωn + ǫ)

so that the Free energy is given by

F = −TlnZ = −T
∑

n

ln(ǫ − iωn)eiωn0+

Here we have added a small convergence factoreiωn0+ because the time-evolution fromτ = 0 to τ = β is
equivalent to time evolution fromτ = 0 toτ = 0−.

We can show that this reverts to the standard expression for one-particle free energy by replacing the
Matsubara sum with a contour integral:

F = T
∮

dz
2πi

f (z)ln[ǫλ − z]ez0+ (13.123)

where the contour integral passes counter-clockwise around the poles of the Fermi function atz = iωn, and
the choice off (z) is dictated by the convergence factor. We take the logarithm to have a branch cut which
extends fromz= ǫλ to infinity. By deforming the integral around this branch cutwe obtain

F = −
∫ ∞

ǫ

dω
2πi

f (ω)
[
ln(ǫ − ω − iδ) − (c.c.)

]

=

∫ ∞

ǫ

dω f (ω)

= −Tln[1 + e−βǫ ] (13.124)

which is the well-known Free energy of a single fermion.
Of course, here we have used a sledge-hammer to crack a walnut, but the virtue of the method is the ease

with which it can be generalized to more complex problems. Three important points need to be made about
this result:

• This result can easily be generalized to an arbitrary numberof Fermi-fields. In this case,

S =
∫ ∞

0
dτ

[∑

λ

c̄λ∂τcλ + H[c̄, c]
]
,

and the measure for the path integral becomes

D[c̄, c] =
∏

τl ,r

dc̄λ(τl)dcλ(τl)
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• The derivation did not depend on any details ofH, and can thus be simply generalized to interacting
Hamiltonians. In both cases, the conversion of the normal-order Hamiltonian occurs by simply replacing
operators with the appropriate Grassman variables.

: H[ĉ†, ĉ] :→ H[c̄, c]

• Because the Jacobian for a unitary transformation is unity,we can change basis inside the path integral.
For example, if we start with the action for a gas of fermions

S =
∫ β

0
dτ

∑

k

c̄k(∂τ + ǫk)ck ,

whereǫk = (k2/2m) − µ, we can transform to a completely discrete basis by Fourier transforming in
time,

ck =
1
√
β

∑

n

ckneiωnτ,

∂τ → −iωn

D[c̄, c] →
∏

k,n

dc̄kndckn. (13.125)

In the this discrete basis, the action becomes

S =
∑

k,n

(ǫk − iωn)c̄knckn

This basis usually proves very useful for practical calculations.
• We can also transform to a continuum real-space basis, as follows

ck =
1
√

V

∫
d3xψ(x)e−ik·x,

ǫk → −
∇2

2m
− µ

D[c̄, c] → D[ψ̄, ψ]. (13.126)

In the new basis, the the action becomes

S =
∫ β

0
dτ

∫
d3xψ̄(x)

[
∂τ −

∇2

2m
− µ

]
ψ(x).

The discrete and continuous measures, (13.125) and (13.126) are equivalent
∏

k,n

dc̄kndckn ≡ D[ψ̄, ψ].

because the space of continuous functionsψ(x) is spanned by a complete, but discrete set of basis func-
tions.

ψ(x, τ) =
1
√
βV

∑

k,n

cknei(k·x−ωnτ),

We can integrate over all possible functionsψ(x, τ) by integrating over all values of the discrete vector
ckn.
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13.4.3 Gaussian Path Integral for Fermions

For non-interacting fermions the action only involves bilinears of the Fermi fields, so the path integral is
of Gaussian form and can always be evaluated. To discuss the most general case, we shall include “source
terms” in the original Hamiltonian, writing

H(τ) =
∑

λ

[
ǫλĉλ

†ĉλ − j̄λ(τ)ĉλ − ĉλ
† jλ(τ)

]

whereĉλ† is Schr̈odinger field that creates a fermion in the eigenstate with energyǫλ. With source terms, the
partition function becomes a “generating functional”

Z[ j̄, j] = Tr
[
T exp

{−
∫ β

0
dτH(τ)

}]
.

Derivatives of the generating functional generate the irreducible Green’s functions of the fermions, for in-
stance,

δlnZ[ j̄, j]

δ j̄(1)
= 〈c(1)〉 (13.127)

δ2lnZ[ j̄, j]

δ j(2)δ j̄(1)
= 〈T[c(1)c†(2)]〉 − 〈c(2)〉〈c†(1)〉 (13.128)

where

〈. . .〉 = 1

Z[ j̄, j]
Tr

[
T exp

{−
∫ β

0
dτH(τ)

}
. . .

]

Transforming to a path integral representation, now

Z[ j̄, j] =
∫
D[c̄, c]e−S (13.129)

S =
∫

dτ
[
c̄(τ)(∂τ + h)c(τ) − j̄(τ)c(τ) − c̄(τ) j(τ)

]
(13.130)

wherehαβ = ǫαδαβ is the one-particle Hamiltonian. One can carry out functional derivatives on this integral
without actually evaluating it. For example, we find that

〈c(1)〉 = 1

Z[ j̄, j]

∫
D[c̄, c]c(1)e−S (13.131)

〈T[c(1)c†(2)]〉 = 1

Z[ j̄, j]

∫
D[c̄, c]c(1)c̄(2)e−S (13.132)

Notice how the path integral automatically furnishes us with time-ordered expectation values.
Fortunately, the path integral is Gaussian, allowing us to use the general result obtained in Appendix 14D,

∫ ∏

j

dξ̄ jdξ j exp[−ξ̄ · A · ξ + j̄ · ξ + ξ̄ · j] = detAexp[ j̄ · A−1 · j]. (13.133)

In the case considered here,A = ∂τ + h, so we can do the integral, to obtain
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Z[ j̄, j] =
∫
D[c̄, c] exp

[
−

∫
dτ

[
c̄(τ)(∂τ + h)c(τ) − j̄(τ)c(τ) − c̄(τ) j(τ)

]]

= det[∂τ + h] exp
[
−

∫
dτdτ′ j̄(τ)G[τ − τ′] j(τ′)

]
(13.134)

where

G[τ − τ′] = −(∂τ + h)−1 (13.135)

.
By differentiating (13.134) with respect toj and j̄, we are able to identify

δ2 ln Z

δ j(τ′)δ j̄(τ)

∣∣∣∣∣∣
j̄, j=0

= (∂τ + h)−1 = 〈c(τ)c†(τ′)〉 = −G[τ − τ′], (13.136)

so the inverse of the Gaussian coefficient in the action−[∂τ + h]−1 directly determines the imaginary time
Green-function of these non-interacting fermions. Higherorder moments of the generating functional provide
a derivation of Wick’s theorem.

From the partition function in (13.134), the Free energy is then given by

F = −TlnZ = −Tlndet[∂τ + h] = −TTrln[∂τ + h] = TTrln[−G−1]

where we have used the result lndet[A] = Trln[∂τ + h].
To explicitly compute the Free energy it is useful to transform to Fourier components,

cλ(τ) =
1
√
β

∑

n

cλne−iωnτ,

jλ(τ) =
1
√
β

∑

n

jλne−iωnτ, (13.137)

In this basis,

(∂τ + ǫλ) −→ (−iωn + ǫλ)
G = −(∂τ + ǫλ)

−1 −→ (iωn − ǫλ)−1 (13.138)

so that

S =
∑

λ,n

[
[−iωn + ǫλ]c̄λncλn − j̄λncλn − c̄λn jλn

]
(13.139)

whereupon,

det[∂τ + h] = =
∏

λ,n

(−iωn + ǫλ)

Z[ j̄, j] =
∏

λ,n

(−iωn + ǫλ) exp
[∑

λ,n

(−iωn + ǫλ)
−1 j̄λn jλn

]
(13.140)
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If we set j = 0 in Z we obtain the Free energy in terms of the Fermionic Green function.

F = −T
∑

λ,n

ln[−iωn + ǫλ]

As in the case of a single field, by replacing the Matsubara sumwith a contour integral we obtain

F = T
∑

λ

∮
dz
2πi

f (z)ln[ǫλ − z] (13.141)

= −T
∑

λ

ln[1 + e−βǫλ ] (13.142)

If we differentiateZ with respect to its source terms, we obtain the Green’s function:

− δ2lnZ

δ j̄λnδ jλ′n′
= [G]λn,λ′n′ = δλλ′δnn′

1
iωn − ǫλ

13.5 Effective action and Hubbard Stratonovich transformation

13.5.1 Heuristic derivation

The “Hubbard Stratonovich” transformation [9, 10], provides a means of representing the interactions be-
tween fermions in terms of an exchange boson. It is in essence, a way of replacing an instantaneous inter-
action by a force-carrying boson that describes the fluctuations of an emergent order parameter. Using this
method it becomes possible to formally “integrate out” the microscopic fermions, rewriting the problem as an
effective field theory describing the thermal and quantum fluctuations of the order parameter as a path integral
with a new “effective action”. The method also provides an important formal basis for the order-parameter
and mean-field description of broken symmetry states.

To motivate this approach, we begin with a heuristic derivation. Consider a simple attractive point interac-
tion between particlesV(x − x′) = −gδ(x − x′), given by the interaction Hamiltonian

HI = −
g
2

∫

x
ρ(x)2. (13.143)

We can write the partition function as a path integral,

Z =
∫
D[ψ] exp

[
−

∫

x,τ
ψ̄(x)(∂τ + h)ψ(x) − g

2
ρ(x)2

]
(13.144)

If we expand the logarithm of the partition function diagrammatically, then we get a series of linked-cluster
diagrams,

ln(Z/Z0) = + + + + . . . (13.145)
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where the point interaction is represented by Feynman diagram

1 2 = gδ(1− 2). (13.146)

Rather that thinking of an instantaneous contact interaction, we can regard this diagram as the exchange of
force carrying boson, writing the diagram as

1 2 = (i)2

︸︷︷︸
vertices

×
−〈Tφ(1)φ(2)〉︷       ︸︸       ︷
−gδ(1− 2) (13.147)

where the vertices (−i) derive from an interactionS′I =
∫

x,τ
ρ(x)φ(x), between the fermions and the boson

with imaginary time Green’s function

G(1− 2) = −〈Tφ(1)φ(2)〉 = −gδ(1− 2) (13.148)

But this implies that the exchange boson has a white noise correlation function〈Tφ(1)φ(2)〉 = δ(1− 2): these
kind of white noise correlations are exactly what we expect for a field governed by a simple Gaussian path
integral, where ∫

D[φ]φ(1)φ(2)e−Sφ

∫
D[φ]e−Sφ

= gδ(1− 2) (13.149)

with the Gaussian action

Sφ =

∫

x

∫ β

0
dτ
φ(x)2

2g
. (13.150)

By addingSφ+S′I to the free fermion action we can thus represent original point interaction by a fluctuating
white-noise potential

−g
2
ρ(x)2→ ρ(x)φ(x) +

φ(x)2

2g
. (13.151)

If we now insert this transformed interaction into the action, the transformed path integral expression of the
partition function becomes

Z =
∫
D[ψ, φ] exp

[
−

∫

x,τ
ψ̄(x)[∂τ + h+ φ(x)]ψ(x) +

1
2g
φ(x)2

]
. (13.152)

Note that:

• Although our derivation is heuristic, we shall shortly see that the Hubbard Stratonovich transformation
is exactso long as we allowφ(x) = φ(x, τ) to describe a fluctuating quantum variable inside the path
integral.

• If we replaceφ(x, τ) by its average value,φ(x, τ) → 〈φ(x, τ)〉 = φ(x) we obtain a “mean-field theory”.
Suppose, instead of carrying out the Hubbard Stratonovich transformation, we chose to expand the
density in powers of its fluctuationsδρ(x) about its average value〈ρ(x)〉, writing ρ(x) = 〈ρ(x)〉 + δρ(x).
The interaction can then be written

HI = −
g
2

∫

x
(〈ρ(x)〉 + δρ(x))2

= −g
2

∫

x

[
〈ρ(x)〉2 + 2〈ρ(x)〉δρ(x)

]
+O(δρ(x)2) (13.153)
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If we neglect the term second order in the fluctuations, then resubstituteδρ(x) = ρ(x)−〈ρ(x)〉, we obtain

HI ≈ −
g
2

∫

x

[
2〈ρ(x)〉ρ(x) − 〈ρ(x)〉2

]
=

∫

x

[
ρ(x)φ(x) +

φ(x)2

2g

]
(13.154)

where we have replaced−g〈ρ(x)〉 = φ(x). This approximate mean-field Hamiltonian (13.154) resembles
the result of the Hubbard Stratonovich transformation (13.151)

With care, this kind of reasoning can be extended to a whole host of interactions between various kinds of
charge, spin, current densities, including both non-localinteractions and repulsive interactions. For example,
in the Hubbard and Anderson models, the interaction can be written as an attractive interaction in the magnetic
channel of the form that is factorized as follows:

−U
2

(n↑ − n↓)
2→ (n↑ − n↓)M +

M2

2U
(13.155)

corresponding to electrons exchanging fluctuations of the magnetic Weiss fieldM. The coupling between the
field M and the electrons can sometimes stabilize a broken symmetrystate whereM develops an expectation
value - leading to a magnet. The Hubbard Stratonovich transformation can also be applied to complex fields,
permitting the following factorization

HI = −gA†A→ Ā∆ + ∆̄A+
∆̄∆

g
(13.156)

where∆ is a complex field. Notice how we have switchedA† → Ā to emphasize that the replacement is only
exactunder the path integral(or alternatively, if you wish to switch to operators, underthe time-ordering
operator). This kind of interaction occurs in a BCS superconductor, where the pairing interaction

HI = −g
∑

k,k′
c†k↑c

†
−k↓c−k′↓ck′↑ = −g

A†︷          ︸︸          ︷∑

k

c†k↑c
†
−k↓

A︷       ︸︸       ︷∑

k

c−k↓ck↑ .

In this case,under the path integralthe interaction can be rewritten in terms of electrons moving in a fluctu-
ating pair field

HI → ∆̄
∑

k

c−k↓ck↑ +
∑

k

c̄k↑c̄−k↓∆ +
∆̄∆

g

Once superconductivity develops,∆ develops an expectation value, playing the role of an order parameter.

13.5.2 Detailed derivation

Let us examine the above procedure in detail. To be concrete,consider an attractive interation of the form
HI = −g

∑
j A† jA j , whereA j represents an electron bilinear (such as the pair density orspin density of an x-y

spin). Consider a fermion path integral on a lattice with interactionsHI = −g
∑

j A j
†A j ,

Z =
∫
D[c̄, c] exp

−
∫ β

0
dτc̄(∂τ + h)c− g

∑

j

Ā jA j

 , (13.157)
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where inside the path integral, we have replacedA† → Ā. The next step is to introduce a “white noise”
variable,α j described by the path integral

Zα =
∫
D[ᾱ, α] exp

[
−

∑

j

∫ β

0
dτ
ᾱ jα j

g

]
. (13.158)

The weight function

exp

−
∑

j

∫ β

0
dτ
ᾱ jα j

g



is a Gaussian distribution function for a white noise field with correlation function2

〈ᾱi(τ)α j(τ
′)〉 = gδi jδ(τ − τ′). (13.159)

Now the product of these two path integrals

Z × Zα =
∫
D[c̄, c]

∫
D[ᾱ, α] exp

−
∫ β

0
dτc̄(∂τ + h)c−

∑

j

H′I ( j)︷                ︸︸                ︷(
−gĀ jA j +

ᾱ jα j

g

)  , (13.160)

describes two independent systems. As written, the “α” integrals are on the inside of the path so that for all
configurations of theα j(τ) field explored in the innerα integral, the space-time configuration of theA j(τ) set
by the outer integral are frozen and can hence be regarded as “constants”, fixed at each point in space time.
This permits us to define a new variable

∆ j(τ) = α j(τ) − gAj(τ),

and its corresponding conjugatē∆ j = ᾱ j − gĀ j . Formally this is just a shift in the integration variable, so the
measure is unchanged and we can writeD[∆̄,∆] = D[ᾱ, α]. The transformed interaction becomes

H′I =
∑

j

{
−gĀ jA j

(∆̄ j + gĀ j)(∆ j + gAj)

g

}

=
∑

j

{
Ā j ∆ j + ∆̄ jA j +

∆̄ j∆ j

g

}
. (13.161)

In this way, we arrive at a transformed interaction in which new variable∆ j is linearly coupled to the electron

2 To show this, it is helpful to consider the generating functional

Λ[ j̄, j] =
∫
D[ᾱ, α] exp

[
−

∑

r

∫ β

0
dτ

(
ᾱrαr

g
− j̄rαr − ᾱr jr

)]

By changing variables,αr → αr + g jr , we can absorb the terms linear inj, to obtain

Λ[ j̄, j] = exp
[
g
∑

r

∫ β

0
dτ( j̄r (τ) jr (τ))

]

Differentiating this with respect tojr (τ), we find that

∂2lnΛ[ j, j̄]

∂ j̄r (τ)∂ jr′ (τ′)

∣∣∣∣∣∣
j, j̄=0
= 〈αr (τ)ᾱr′ (τ

′)〉 = gδrr ′δ(τ − τ′)
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operatorA j . If we now re-invert the order of integration inside the pathintegral (13.160), we obtain

Z =
∫
D[∆̄,∆] exp

−
∑

j

∫ β

0
dτ
∆̄ j∆ j

g


∫
D[c̄, c]e−S̃

S̃ =
∫ β

0
dτ

(
c̄∂τc+ HE[∆̄,∆]

)
(13.162)

where

HE[∆̄,∆] = c̄hc+
∑

j

{
Ā j∆ j + ∆̄ jA j

}
(13.163)

represents the action for electrons moving in the fluctuating field ∆ j . Notice that sinceA and Ā represent
fermion bilinear terms, thatHE is itself a bilinear Hamiltonian.

tFig. 13.5 (a) Action for initial white noise variable α. (b) Action for shifted variable ∆ is shifted
off-centre when the related quantity A has a predisposition towards developing an
expectation value.

These noisy fluctuations mediate the interaction between the fermions, much as an exchange boson medi-
ates interactions in the vacuum. More schematically,

Z =
∑

{∆}
exp

−
∑

j

∫
dτ
|∆ j |2

g

 ×
[

Path integral of fermions moving in field∆
]

(13.164)

where the summation represents a sum over all possible configurations{∆} of the auxiliary field∆. The
transformed field

∆ j = α j − gAj

is a combination of a white noise fieldα j and the physical field−gAj , so its fluctuations now acquire the
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correlations associated with the electron fluid. Indeed, when the associated variableA is prone to the develop-
ment of a broken-symmetry expectation value, the distribution function for∆ becomes concentrated around
a non-zero value (Fig. 13.5). We call∆ j a “Weiss field” after Weiss, who first introduced such a field inthe
context of magnetism.

13.5.3 Integrating out the fermions.

Since the fermionic action inside the path integral is actually Gaussian, we can formerly integrate out the
fermions as follows

e−Sψ[∆̄,∆] =

∫
D[c̄, c]e−S̃ = det[∂τ + hE[∆̄,∆]] (13.165)

wherehE is the matrix representation ofHE. The Full path integral may thus be written

Z =
∫
D[∆̄,∆]e−SE[∆̄,∆]

where

SE[∆̄,∆] =
∑

j

∫
dτ
∆̄ j∆ j

g
− ln det[∂τ + hE[∆̄,∆]]

=
∑

j

∫
dτ
∆̄ j∆ j

g
− Trln[∂τ + hE[∆̄,∆]] (13.166)

where we have made the replacement ln det→ Tr det. This quantity is called the “effective action” of the field
∆. The additional fermionic contribution to this action can profoundly change the distribution of the field∆.
For example, ifSE develops a minima away around∆ = ∆o , 0, the∆ = −A/g will acquire a “vacuum
expectation value”. This makes the Hubbard Stratonovich transformation an invaluable tool for studying the
development of broken symmetry in interacting Fermi systems.

13.5.4 Generalizations to real variables and repulsive interactions

The method outlined in the previous section can also be applied to real fields. If we have a real Hamiltonian
we can introduce a real white noise field as follows

HI = −
g
2

∑

j

A2
j →

∑

j

−
g
2

A2
j +

q2
j

2g

 (13.167)

and then by redefiningq j = Q j + gAj , one obtains

−g
2

∑

j

A2
j →

∑

j

Q jA j +
Q2

j

g

 (13.168)

For example, we can use the Hubbard Stratonovich transformation to replace an attractive interaction between
fermions by a white noise potential with variance g:

HI = −
g
2

∑

j

(n j)
2→

∑

jσ

V jn j +
V2

j

2g

wheren j = n j↑ + n j↓.
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But what about repulsive interactions? These require a little more care, because we can’t just change the
sign ofg in (13.168) for the integral over the white noise fields will no longer be convergent. Instead, after
introducing the dummy white noise fields as before,

HI =
g
2

A2
j →

∑

j


g
2

A2
j +

q2
j

2g

 , (13.169)

to absorb the interaction, we shift each variable in the pathintegralq j(τ) by an imaginary amount,q j(τ) =
Q j(τ) + igA j(τ), to obtain3

g
2

∑

j

A2
j →

∑

j

iQ jA j +
Q2

j

2g

 (13.170)

Note finally, that if one replacesQ j = −iQ̃ j , this takes the form

g
2

∑
A2

j →
∑

j

Q̃ jA j −
Q̃2

j

2g

 (13.171)

Which first sight, looks like the generalization of (13.168) to negativeg excepting now, the integrals over the
eachQ j(τ) traverse the imaginary, rather than the real axis.

Example 13.6: Using the Hubbard Stratonovich transformation, show that the Coulomb interaction
can be decoupled in terms of a fluctuating potential as follows:

HI =
1
2

∫

x, x′
ρ(x)ρ(x′)

e2

4πǫ0|x − x′| →
∫

x

[
eρ(x)φ(x) − ǫ0

(∇φ)2

2

]
(13.172)

What is the interpretation of the new term, quadratic in the potential field (and why is the sign negative)?
Solution: Because of the non-local nature of the Coulomb interaction, it is more transparent to make
this transformation in momentum space. Writing

ρ(x) =
∫

q
ρqeiq·x,

1
ǫ0|x − x′| =

∫

q

1
ǫ0q2

eiq·(x−x′) (13.173)

where
∫

q
≡

∫
d3q

(2π)3
, the interaction becomes

HI =
1
2

∫

q

(eρq)(eρ−q)

ǫ0q2

We now add in a dummy white noise term,

HI → H′I =
1
2

∫

q

[
(eρq)(eρ−q)

ǫ0q2
− ǫ0q

2φqφ−q

]
,

3 One might be worried about the legitimacy of shifting a real field by an imaginary quantity. However, just as the integral

∫ ∞

−∞
dQe−Q2/2 =

∫ ∞+iA

−∞+iA
dQe−Q2/2 =

is unaffected by a constant shift of the variableQ by an imaginary amount,Q→ Q+ iA axis, a multi-variable path integral
∫

D[Q]e−
∫

dτQ(τ)2/2

is similarly unaffected by shifting the integration variableQ(τ) by an amountiA(τ), Q(τ)→ Q(τ) + iA(τ).
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with the understanding that in the path integral, theφq field is to be integrated along the imaginary axis
φq = iφ̃q. Now if we shiftφq → φq − eρq

ǫ0q2 , we obtain

H′I =
∫

q

[
(eρq)φ−q −

ǫ0

2
q2φqφ−q

]

Finally, Fourier transforming back into real space, (q2 → −∇2) we obtain

H′I =
∫

x

[
eρ(x)φ(x) +

ǫ0

2
φ∇2φ

]
(13.174)

Integrating the last term by parts gives

H′I =
∫

x

[
eρ(x)φ(x)

−ǫ0E2/2︷     ︸︸     ︷
− ǫ0

2
(∇φ)2

]
(13.175)

We can identify the last term in this expression as−ǫ0E2/2, which is the electrostatic contribution to the
action. The minus sign can be traced back to the fact that inside the electromagnetic (Maxwell) action

SEM =

∫
d3xdτ

[
B2

2µ0
− ǫ0E2

2

]
(13.176)

the electrostatic contribution to the action enters with the opposite sign to the magnetic part. The com-
plete path integral for interacting electrons in this representation is then

Z =
∫
D[ψ̄, ψ, φ] exp

[
−

∫ β

0
dτ

∫
d3x

(
ψ̄
(− 1

2m
∇2 + eφ(x) − µ)ψ − ǫ0

2
(∇φ)2

)]
.

Thus by carrying out a Hubbard Stratonovich transformation, the actionbecomes local. This formula-
tion is ideal for the development of RPA approximations to the electron gas,while mean-field solutions
of this path integral can be used to explore the formation of Wigner crystals.

13.6 Example: Magnetism in the Hubbard model.

To illustrate the Hubbard Stratonovich transformation, wenow examine its application to the treatment of
magnetism in the Hubbard model. Without spin, all matter would be magnetically inert (neither diamag-
netic nor paramagnetic). Quantum mechanics provides an explanation of magnetism as a consequence of
the orientational ordering of electron spins. This connection between magnetism and spin is one of the huge
accomplishments of quantum mechanics.

13.6.1 Development of the theory of Itinerant Magnetism

Before our example, let me make a few remarks about the development of the theory of magnetism [14, 15]. A
century ago, the ferro-magnetism of simple metals, such as iron, cobalt or nickel was an unsolved mystery. In
1906 the French physicist, Pierre Weiss working at ETH, Zurich, discovered that if you look at an ferromagnet
on a small enough scale, it consists of magnetic domains. This led him to propose the first “mean-field theory”,
introducing the concept concept of an emergent “molecular”contribution to the effective internal magnetic
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field[16, 17]

HE = H +

molecular Weiss field︷︸︸︷
IM . (13.177)

But the origin of the Weiss field was unknown. Worst, it quickly became clear that magnetism can’t be
understood using classical mechanics: indeed, according to the “Bohr-van Leeuwen theorem”, independently
proven by Neils Bohr and Hendrika van Leeuwen[18, 19] a fluid of (spinless) classical electronsin thermal
equilibriumhas zero magnetization,4 even in a field[20].

This mystery was resolved by quantum mechanics and the discovery of “spin”. In 1928, Werner Heisen-
berg, working at Leipzig made the critical link between magnetization and electron spin polarization; he also
identified the Coulomb exchange interaction as the driving force for ferromagnetism [21] and the origin of the
mysterious “I ” in Weiss’ theory. In the 1930’s Edmund Stoner at Leeds University and John Slater at Harvard
University developed the basis for an itinerant theory of ferromagnetism in metals[22, 23, 24]. A key idea
here, is that strong interactions drive a metal to become unstable towards the development of a spontaneous
spin polarization. In the simplest case, a ferromagnet develops, but later Albert Overhauser, working at Ford
Labs in the early 1960s, showed the instability can also occur at a finite wavevectorQ to form aspin den-
sity wave[25], as in the case of metallic chromium. This instability occurs when the product of the electron
interactionI and “bare” magnetic susceptibility of the non-interactingelectron gas at this wavevectorχ0(Q)
reaches unity

IQχ0(Q) = 1, (Stoner criterion).

Later in the 1960s, Junjiro Kanamori[26] at Osaka University and John Hubbard[27] in Harwell, England
reformulated the theory of magnetism using the model we now call the Hubbard model. Sebastian Doniach
and Stanley Engelsberg[28] at Imperial College London, andNorman Berk and Robert Schrieffer[29] at the
University of Pennsylvannia, refined this work, demonstrating that quantum fluctuations of the magnetization
play a crucial role: these fluctuations act to suppress the magnetization and become particularly strong near
the point of instability or critical point. It is only recently that physicists have been able to experimentally
examine such quantum critical points.

Itinerant magnetism is only one part of the story of magnetism, for in magnetic materials where the
electrons are localized, the magnetization derives from “localized magnetic moments”. High performance
neodynium-iron alloy magnets derive their strength from localized moments on at the neodynium sites. Many
of the most fascinating systems of current study, such as thehigh temperature cuprate and iron-based super-

4 The Bohr-van Leeuwen theorem follows simply from the fact that the classical partition function of a gas of interacting particles can
be transformed to show it is entirely independent of the applied field. The classical partition function is written

Z =
∫ ∏

i=1,N

d3pid
3xie

−βH (13.178)

where

H[p, x] =
∑

i

(pi − eA(xi ))2

2m
+

∑

i< j

U(xi − x j ) + eφ(xi )

where all the magnetic field dependence lies in the vector potential term, given byA = 1
2B × x in the Landau gauge. However, one

can always make the change of variablep′ = p+ eA(x), x′ = x, for which the Jacobian is unity, completely absorbing all dependence
on the external magnetic field. The equilibrium magnetization, M = −TδlnZ/δB(x) = 0 is therefore zero. This also implies that the
isothermal magnetic susceptibility of a classical plasma is zero. Note however that a classical electron gas does have a diamagnetic
response when a field is applied adiabatically, rather than isothermally.
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conductors appear to lie in a murky region between “intineracy” and “localization”, where electrons are on
the brink of localization. This is a topic we shall return to chapter 15.

13.6.2 Path integral formulation of the Hubbard Model

We encountered the Hubbard model in Chapter 5. It consists ofa single band of electrons moving on a
tight-binding lattice, with a localized interaction of strengthU, described by the Hamiltonian

H =
∑

k,σ

ǫkc†kσckσ + U
∑

j

n j↑n j↓. (13.179)

where

ckσ =
1
√

Ns

∑
c† jσeik·r j

creates an electron of wavevectork with energyǫk . To explore magnetism in this model we rewrite the
interaction term in terms of the spin operators as follows

Un j↑n j↓ = −
U
2

(n j↑ − n j↓)
2 +

U
2

(n j↑ + n j↓). (13.180)

where we have used the fact thatn2
j↑ = n j↑. Now as written, the above decoupling emphasizes the magnetic

fluctuations along thez− axis. Indded, we might have made the decoupling around any spin quantization axis,
and since we are interested in keeping track of magnetic fluctuations along all axes it makes sense to average
over all three directions, writing the decoupling as

Un j↑n j↓ = −
U
6

(
σ j

)2

+
U
2

(n j↑ + n j↓), (13.181)

where we have introduced the notationσ j = (c† jασαβc jβ) for the magnetization at sitej. The second term
in this expression can be absorbed into a redefinition of the chemical potential, by writingµ = µ′ + U/2.
The minus sign in this interaction manifestly displays magnetic exchange effect of the Coulomb interaction,
whereby a repulsion between charges leads to anattraction between spins.

We now formulate the problem as a path integral

Z =
∫
D[c]e−S

S =
∫ β

0
dτ

[∑

k,σ

c̄kσ(∂τ + ǫk)ckσ −
I
2

∑

j

(
σ j

)2
]
, (I = U/3), (13.182)

where we have introduced the coupling constantI = U/3. At this point, we carry out a Hubbard Stratonovich
transformation. Adding a white noise fieldmj into the action, so that

− I
2

∑

j

(
σ j)

2→ − I
2

∑

j

(
σ j)

2 +

∫ β

0
dτ

∑

j

m2
j

2I
, (13.183)

and then shiftingm j = M j − Iσ j , we obtain

− I
2
(
σ j

)2→ −M j(τ) · σ j +
M j(τ)2

2I
, (13.184)

whereM j(τ) is a fluctuating Weiss field. We have chosen the sign of the first term to reflect the role of the
Weiss field as “effective magnetic field”. The transformed partition function
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Z =
∫
D[M , c̄, c]e−S[c̄,c,M ] ,

S[c̄, c,M ] =
∫ β

0
dτ


∑

k,σ

c̄kσ(∂τ + ǫk)ckσ +
∑

j

[
−M j · σ j +

M j
2

2I

] , (13.185)

describes electrons moving through a lattice of fluctuatingmagnetization. We can emphasize this interpreta-
tion by moving the magnetization integral to the outside, writing

Z =
∫
D[M ]e−SE[M ] (13.186)

where the effective action

e−SE[M ] =

∫
D[c̄, c]e−S[c̄,c,M ] (13.187)

describes the action associated with a particular space-time configuration{M j(τ)} of the magnetization. Since
the exponentialS[c̄, c,M ] in (13.187) is a quadratic function of fermion fields, the integral is Gaussian and
can be evaluted in closed form. To carry out the integral, it is convenient to Fourier transform the fields,
writing c jσ =

1√
Ns

∑
k ckσeik·x j , so that

∑

jσ

M j · σ j =
∑

jσ

M j · (c̄ jασαβc jβ) =
∑

k,k′,σ

c̄k′α
(
M k′−k · σαβ

)
ckβ (13.188)

whereMq =
1
Ns

∑
j M je−iq·R j is the Fourier transform of the magnetization. The effective action can be written

in the compact form

e−SE[M ] =

∫
D[c̄, c] exp

−
∫ β

0
dτ

c̄(∂τ + hE[M ])c+
∑

j

M2
j

2I



 (13.189)

where,

[hE]k′,k = ǫkδk,k′ −M k′−k(τ) · σ (13.190)

describes the effective Hamiltonian for the electrons moving in the (time dependent) magnetization field.
Carrying out the Gaussian integral over ¯c andc using (13.134 ) then gives

e−SE[M ] = Det
[
∂τ + hE[M ]

]
exp

−
∑

j

∫ β

0
dτ

M2
j

2I

 , (13.191)

or more explicitly,

SE[M ] =

− ln Det[∂τ+hE]︷                                      ︸︸                                      ︷
−Tr ln

[
(∂τ + ǫk)δk′,k −M k′−k · σ

]
+

∑

j

∫ β

0
dτ

M2
j

2I
. (13.192)

Note that
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• In general, we can only evaluateSE analytically for simple static configurations ofM j(τ) = M j . These
provide the basis for mean-field theories.

• The factore−SE[M] in (13.191) resembles a Boltzmann distribution in classical statistical mechanics. How-
ever, in striking distinction with its classical counterpart, in certain non-uniform configurations of the
magnetization the weigth functione−SE[M] acquires negativevalues. These configurations are in many
ways, the most interesting configurations of the path integral, and when they proliferate, standard Metropo-
lis Monte Carlo approaches become exceedingly inaccurate.This is “the minus sign problem” of many
body physics - one of the major unsolved problems of numerical Many Body physics.

It is also useful to cast the effective action in terms of Feynman diagrams. To do this, we first rewrite the
magnetization in terms of its Matsubara Fourier modes,

Mq ≡ Mq(iνn) =
1
β

∫ β

0
dτ Mq(τ)eiνnτ (13.193)

In Fourier space, we replace∂τ → −iωn in the Fermionic Determinant of (13.192 ) to obtain

SE[M ] = −Tr ln
[
(−iωn + ǫk)δk,k′ −M k−k′ · σ

]
+ Nsβ

∑

q

|Mq|2
2I

. (13.194)

We can factor out (−iω + ǫk) inside the logarithm, which permits us to split it into two terms,

SE[M ] = −Tr ln
[
(−iωn + ǫk)(1+ (iωn − ǫk)−1M k−k′ · σ)

]
+ Nsβ

∑

q

|Mq|2
2I

= −Tr ln [(−iωn + ǫk)] −
Tr ln(1−G0V)︷                    ︸︸                    ︷

Tr ln
[
1−G0(k)Vk,k′

]
+Nsβ

∑

q

|Mq|2
2I

. (13.195)

where

G0(k) = (iωn − ǫk)−1,Vk,k′ = −M k−k′ · σ. (13.196)

Here we have used the identity Tr[ln(AB)] = Tr ln A + Tr ln B to seperate the terms inside the logarithm.
Normalized with respect to the volume of space time, The firstterm in (13.195) can be normalized to give the
free energy density fo the non-interacting system

F0 =
S0

Nsβ
= − 1

Nsβ
Tr ln [(−iωn + ǫk)] .

The second term is the change in the Free energy of the fermions due to the magnetization field: the overbrace
shows how we can rewrite it in terms of the bare propagatorG0 = (iωn − ǫk)−1 and the scattering potential
Vk′,k = −M k′−k ·σ. This term can be reinterpreted as an infinite sum of Feynman diagrams, describing repeated
scattering off the exchange field

Tr ln(1−G0V) = Tr[−G0V − 1
2

(G0V)2 − 1
3

(G0V)3 + . . . ]
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= Nsβ


+ + + + . . .


. (13.197)

The pre-factorNsβ, the volume of space-time, is included because we are working in Fourier space, with the
convention that all internal momentum and frequency sums are normalized with a measure1Nsβ

∑
k,iωn

. The
effective free energy (per site)FE[M ] = SE/(Nsβ) can then be written diagrammatically as

FE[M ] = F0 −


+ + + + . . .


+

∑

q

|Mq|2
2I

. (13.198)

13.6.3 Saddle point and the Mean field theory of magnetism

To explore broken symmetry solutions, we now make a saddle point approximation, approximating the parti-
tion function by its value at the saddle-pointM = M0

Z =
∫
D[M]e−SE[M ] ≈ e−SE[M0] (13.199)

where
δSE[M ]
δM

∣∣∣∣∣
M=M (0)

= 0. (13.200)

Equations (13.199) and (13.200) contain the essence of mean-field theory and deserve some discussion.
We discussed in Chapter 13 how a system develops a spontaneously broken symmetry when the Landau
functionalF[M] develops a minimum at a non-zero value of the order parameter. A full-fledged calculation
of this functional would involve calculating the full path-integralZ[h] with a symmetry breaking fieldh in
place, using a Legendre transformation to calculateS[M] = S[h] − h.δS/δh, ultimately takingh to zero
the end of the calculation. The mean-field approach approximatesS[M ] ≈ SE[M ]. Such “saddle point” or
“mean-field” solutions serve as the staging point to computethe fluctuations around the broken symmetry
state. The ultimate consistency of any mean-field approximation depends on the fluctuations being small
enough that they do not wash out the broken symmetry solution.

If we differentiateSE[M ] in (13.187), we see that the saddle point condition (13.200) implies

δSE

δM j
= =

1
e−SE

∫
D[c̄, c]

δS[c̄,c,M ]
δM j︷           ︸︸           ︷(

M j

I
− c̄ jσc j

)
e−S[c̄,c,M ] =

M j

I
− 〈c† jσc j〉

∣∣∣∣∣
hE

. (13.201)

where we have used (13.185) to calculateδS[c̄, c,M ]/δM j . In this way the saddle point condition (13.200)
automatically satisfies the mean-field relation

δS[M ]
δM j

∣∣∣∣∣∣
M=M0

= 0,⇐⇒ M (0)
j = I 〈c† jσc j〉

∣∣∣
hE[M (0)]
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Saddle point condition Mean field theory. (13.202)

This makes life a lot easier: instead of labouring to impose the self-consistency condition on the right-hand
side, we can simply generate mean-field solutions by minimizing the effective action. Generally, we’re inter-
ested in a static saddle point, whereM j(τ) = M (0)

j , In this situation, the effective action is directly related to
the mean-field partition function

e−SE[M (0)] = Tr
[
e−βĤMF

]
(13.203)

where

ĤMF = c†hE[M (0)] c+
∑

j

(M (0)
j )2

2I
, (13.204)

is read off from the action in the path integral (13.189 ).
In a ferromagnet, the magnetization is uniform: for convenience we choose the spin-polarization along the

z-axis, writing

M (0)
j = Mẑ, (13.205)

or in in Fourier spaceMq = Mδq ẑ. In this case, the mean-field Hamiltonian is diagonal:

HMF =
∑

kσ

c†kσ(ǫk − σM)ckσ + Ns
M2

2I
(13.206)

sinceMq = Mδq0. We see that whenM is finite, the up and down Fermi surfaces are now exchange split by
an amount∆ = 2M. By carrying out the Gaussian integral over the Fermi fields,or substituting into (13.194)
we can immediately write down the effective action as

SE[M] = −
∑

k,iωn

Tr ln
[
ǫk − Mσz − iωn

]
+ Nsβ

M2

2I
(13.207)

tFig. 13.6 Phase diagram for 3D “Stoner model” computed using using (13.213) and (13.214).
The horizontal axis is the coupling constant Ī = IN(0), where the critical value Īc = 1.
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The result of carrying out the Matsubara sum on this expression gives the well known form

FE[M] = − 1
Nsβ

∑

k,σ

ln
[
1+ e−β(ǫk−σM)] + M2

2I

= −T
2

∫
dǫN(ǫ)

∑

σ

ln
[
1+ e−β(ǫ−σM)] + M2

2I
, (13.208)

whereFE = SE/(βNs) is the Free energy per unit volume, and we have rewritten themomentum summation
as an integral, over the density of states per siteN(ǫ).

To find the stationary point of the action, we differentiate it with respect toM to get

−∂FE[M]
∂M

= 0 =
M
I
−

〈σz〉︷                                 ︸︸                                 ︷
1
2

∑

σ=±1

∫
dǫN(ǫ) f (ǫ − σM)σ (13.209)

or

M =
I
2

∑

σ=±1

∫
dǫN(ǫ) f (ǫ − σM)σ (13.210)

which expresses the mean-field conditionM = I〈σz〉. We can obtain the second-order phase transition tem-
peratureTc by lettingM → 0+. Replacingf (ǫ − σM)→ f (ǫ) − σM f ′(ǫ) gives

1 = I

χ0(Tc)︷                   ︸︸                   ︷∫
dǫN(ǫ)

(
−d f

dǫ

)∣∣∣∣∣∣
T=Tc

= Iχ0(Tc) (Stoner Criterion)

where we have identified bracketed term as the spin-susceptibility of the non-interacting gas atTc. At a finite
temperature the Stoner Criterion defines the Curie temperatureTc of the electron gas. In the ground-state at
absolute zero, we can replace the derivative of the Fermi function by a delta function−d f/dǫ → δ(ǫ) so the
Stoner Criterion becomes

IcN(0) = 1 (Stoner CriterionT = 0)

whereI = Ic is the critical value of the interactionI , beyond which the paramagneticground-statebecomes
unstable to magnetism, as shown in Fig (13.6). This is aquantum phase transition, driven not by thermal, but
by quantum fluctuations.

Example 13.7: Calculate the magnetic phase boundaryTc(I ) for the 3D continuum Stoner model,

where the density of statesN(ǫ) = N(0)
√

ǫ+µ

ǫF
, whereǫF is the Fermi temperature andN(0) the density

of states at the Fermi surface.
Solution: In three dimensions, the Stoner Criterion can be written

1 = IN(0)
∫ ∞

0
dE

√
E
ǫF

f (E − µ)[1 − f (E − µ)]
Tc

= I

√
Tc

2ǫF

∫ ∞

0
dx
√

x sech2[x− µβc/2] (13.211)

If we were interested in the problem at constant chemical potential, we could stop here, however if we
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wish to take account of the drift of the chemical potential at finite temperature, we need to impose the
condition of constant particle densityn0,

n0 = N(0)
∫ ∞

0
dE

√
E
ǫF

f (E − µ)

= N(0)ǫF

(
Tc

ǫF

) 3
2
∫ ∞

0
dx
√

x
1

ex−µβc + 1
. (13.212)

At zero temperature, this givesn0 =
2
3 N(0)ǫF , so that

2
3

N(0)ǫF = N(0)ǫF

(
Tc

ǫF

) 3
2
∫ ∞

0
dx
√

x
1

ex−µβc + 1
.

enabling us to writeTc as a parametric function ofy = µβc

Tc(y) = ǫF

[
3
2

∫ ∞

0
dx
√

x
1

ex−y + 1

]−2/3

. (13.213)

Inserting (13.213) into (13.211) we can also writeĪ = IN(0) as a parametric function ofy = µβc,

Ī (y) =

[
3
2

∫ ∞
0

dx
√

x 1
ex−y+1

]1/3
.

1√
2

∫ ∞
0

dx
√

x sech2[x− y/2]
(13.214)

Fig (13.6) shows the phase diagram computed using (13.213) and (13.214)

To finish this section, let us calculate the Landau expansionof the Free energy. If we make a binomial
expansion of the logarithm inSE[M] in powers ofM, we obtain

−T
2

∑

σ

ln
[
1+ e−β(ǫ−σM)] = −T ln

[
1+ e−βǫ

]
+

∞∑

r=1

M2r

(2r)!
d2r−1 f (ǫ)

dǫ2r−1
(13.215)

where odd powers ofM vanish andf (ǫ) is the Fermi function. Thus

F [M] = F0 +

∞∑

r=1

M2r

(2r)!

∫
dǫN(ǫ)

d2r−1 f (ǫ)
dǫ2r−1

+
M2

2I
. (13.216)

If we integrate in (13.216) by parts, we obtain

F [M] = F0 −
∑

r

M2r

(2r)!

N(2r−2)(0)︷                       ︸︸                       ︷∫
dǫ

(
−d f

dǫ

)
N(2r−2)(ǫ)+

M2

2I
. (13.217)

whereN(r) = dr N(ǫ)/dǫr is the r-th derivative of the density of states andN(r)(0) is its corresponding thermal
average around the Fermi surface. If we take terms up toM4, we obtain

F = F0 +
1
2

M2

(
1
I
− χ0(T)

)
+

M4

4!
(−N′′(0))+O(M6) (13.218)

where(−N′′(0)) denotes the thermal average average of the second derivative of the density of states around
the Fermi energy. This is the Landau energy function predicted by the “Stoner theory” of itinerant ferromag-
net. Note that
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• The quartic coefficient in the Free energy is positive, only ifN′′(0) < 0 is negative, i.e, if the density of
states has a downward curvature. If this requirement is not met, the ferromagnetic phase transition be-
comes first order. Most transition metal ferromagnets, suchas iron and cobalt, involve narrow bands in
three dimensions with a large negative curvature of the density of states and the transition is second-
order. However, in quasi-two dimensional systems where thedensity of states has mostly positive cur-
vature, the ferromagnetic phase transition is expected to be first order.

• The mean-field parameters in the above action are likely to bemodified by fluctuations. In our mean-
field theory, an isotropic decoupling gaveI = U/3, but had we chosen an Ising decoupling, just in thez
direction, we would have obtainedI = U, which is most likely an over-estimate ofI . Mean-field theories
can not in general give a very reliable indication of the absolute size of such parameters.

• There is a formal “largeN limit” in which the above mean-field theory does become exact. If instead of
the original model, we chose a multi-band (N-band) model, with the action

S =
∫ β

0
dτ


∑

k,λσ

c̄kλσ(∂τ + ǫk)ckσ −
I

2N

∑

j

(∑

λ

σλ( j)
)2

 (13.219)

where the band indexλ ∈ [1,N]. Here the interactionI can be regarded as a “Hund’s” interaction
between the different bands. For largeN the action of this model grows extensively withN, and in
this situation, the path integral becomes saturated by the saddle-point solution, so the mean-field theory
becomes exact.

Example 13.8:
(a) Show from the Landau energy (13.218), that near the quantum critical point atT = 0, I = Ic =

1/N(0), the magnetic moment is given by

M =

√(
I − Ic

II c

)
6

−N′′(0)
∼

√
I − Ic. (13.220)

(b) By expanding the density of states in a power-series about the Fermienergy, show that the transition
temperature predicted by (13.218) is

Tc =

√
6
π2

(
1
I
− N(0)

)
1

(−N′′(0))
.

Solution: (a) We begin by writing the Landau free energy as

F = rM2

2
+

uM4

4

wherer = I−1 − N(0), u = −N′′(0)/6. At zero temperature,

r =

(
1
I
− 1

Ic

)
, u =

−N′′(0)
6

whereIc = 1/N(0). Setting∂F/∂M2 = 0, we obtainrM + uM3 = 0, or

M =

√
r
u
=

√(
I − Ic

II c

)
6

−N′′(0)
∼

√
I − Ic.

(b) Carrying out a Taylor expansion of the density of states,

N(0) =
∫

dǫ

(
−d f

dǫ

) [
N(0)+ ǫN′(0)+

ǫ2

2
N′′(0)

]
= N(0)+

π2T2

6
N′′(0)
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it follows that at a small finite temperature

r(T) =

(
1
I
− 1

Ic
+
π2T2

6
(−N′′(0))

)

Settingr(Tc) = 0, it follows that

Tc =

√
6
π2

(
1
I
− N(0)

)
1

(−N′′(0))
.

13.6.4 Quantum fluctuations in the magnetization

tFig. 13.7 Illustrating (a) mean-field theory (b) fluctuations about mean-field theory.

The beauty of the saddle point approach, is that it allows oneto go beyond the mean-field theory to examine
the fluctuations in the order parameter. The basic idea is to expand the magnetization in fluctuations around
the saddle point, writing

M j(τ) = M (0) + δM j(τ) (13.221)

or in Fourier space

Mq = M (0)δq=0 + δMq, (q ≡ (q, iνn)) (13.222)

Because the effective action is stationary with respect to variations inM at the saddle point, the leading
order corrections to the effective action are quadratic in the fluctuations,

SE[M ] = SE[M (0)] +
1
2

∑

q

δ2S

δMa
qδMb

−q

δMa
qδM

b
−q +O(δM3)

Notice that all linear terms in the fluctuations vanish by virtue of the fact that the mean-field action is sta-
tionary with respect to fluctuations. Provided the fluctuations are small compared to the order parameter,

429

Chapter 13. c©Piers Coleman 2011

one can use the quadratic approximation to the effective action to examine the leading fluctuations of the
magenization in the ferromagnetic state.

In a magnet these fluctuations take place against abroken symmetrybackground. The electrons scattering
off the fluctuations are partially spin polarized and governed by the “renormalized” propagator, denoted by
the double line

k
= G(k) = (iωn − ǫk − σzM)−1.

where we have underlinedG(k) to emphasize that it is a two-dimensional, albeit diagonal, matrix.
Let us now expand the effective actionSE[M ] in (13.194) in the fluctuations by substitutingMk−k′ =

Mδk−k′ + δMk−k′ to obtain

FE[M ] = − 1
Nsβ

Tr ln
[
−G(k)−1δk,k′ − δM k−k′ · σ

]
+

∑

q

|Mẑδq + δMq|2
2I

. (13.223)

If we now expand this expression in powers ofδMq, we get a Feynman diagram expansion in terms of the
renormalized propagators, as follows

FE = −
1

Nsβ
Tr ln[−G(k)−1] −


+ + + + . . .



+
∑

q

|Mẑδq + δMq|2
2I

. (13.224)

where the wavy line denotes scattering off the order-parameter fluctuations. Now since the action is stationary
with respect to fluctuations, all terms linear inδMq must cancel. which leads to

∆FE[M ] = −


+ + + . . .


+

∑

q

|δMq|2
2I

, (13.225)

where∆FE[M ] = FE[M ] − FE[M (0)]. Only first diagram and the final term in this expression, arequadratic
in δMq. Combining them, and dropping the higher order terms, we obtain the “Gaussian action” for the
magnetization fluctuations

∆FG[M ] =
1
2

∑

q

δMa
−q


δab

I
− σa

k

k+ q

σb


δMb

q

=
1
2
δMa
−q

[
δab

I
− χ(0)

ab(q)
]
δMb
−q (13.226)

Gaussian Action of Fluctuations.

430



bk.pdf April 29, 2012 220

c©2011 Piers Coleman Chapter 13.

where

χ
(0)
ab(q) = σa

k

k+ q

σb = −
1
βNs

∑

k

Tr
[
σaG(k+ q)σbG(k)

]
(13.227)

is the “bare” susceptibility of the polarized metal. Now thepresence of a magnetization means that the off-
diagonal termsχ(0)

xy (q) = χ(0)
yx (−q) are non-zero. To diagonalize the magnetic fluctuations, itis convenient to

work in terms of the raising and lowering components of the transverse spin,σ± = 1
2(σx ± iσy), and the

corresponding components of the magnetization

M±q = Mx
q ± iMy

q.

The non-zero components of the transverse susceptibility are then

χ
(0)
+−(q) = − 1

βNs

∑

k

Tr
[
σ+G(k+ q)σ−G(k)

]

χ
(0)
−+(q) = − 1

βNs

∑

k

Tr
[
σ−G(k+ q)σ+G(k)

]
= χ

(0)
+−(−q) (13.228)

where the identityχ(0)
−+(q) = χ(0)

+−(−q) follows by changing variablesk→ k− q inside the sum.
RewritingM · σ = Mz

qσz + M+σ− + M−σ+, the Gaussian effective action then becomes

∆FG[M ] =
1
2

∑

q

[
δMz
−q

(
1
I
− χ(0)

zz (q)

)
δMz

q

+ δM−−q

(
1
2I
− χ(0)

+−(q)

)
δM+q + δM+−q

(
1
2I
− χ(0)

−+(q)

)
δM−q

]
(13.229)

Now since the magnetization is a real variable, follows thatδM±q = δM∓−q (where we use a bar to denote
complex conjugate) so we can rewrite this expression in the form

∆FG[M ] =
1
2

∑

q

[
δMz
−q

(
1
I
− χ(0)

zz (q)

)
δMz

q

+ δM+q

(
1
2I
− χ(0)

+−(q)

)
δM+q + δM+−q

(
1
2I
− χ(0)

−+(q)

)
δM+−q

]
(13.230)

It is this quadratic functional that provides the argument for the Gaussian distribution function of the magnetic
fluctuationsp[Mq] = Z−1e−∆S[M ] = e−βNs∆FG[M ] . Now by (13.228),χ(0)

−+(q) = χ(0)
+−(q) so we can combine the

last terms into one. The final results describing the distribution function for the Gaussian magnetic fluctuations
about the Stoner mean-field theory for an intinerant ferromagnet are

p[Mq] ∝ e−∆S[M ] = e−βNs∆FG[M ] (13.231)

∆FG[M ] =
∑

q

[
1
2
δMz
−q

(
1
I
− χ(0)

zz (q)

)
δMz

q + δM+q

(
1
2I
− χ(0)

+−(q)

)
δM+q

]
. (13.232)

From the Gaussian form of this distribution, we can immediately read off the fluctuations in magnetization.
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Denoting

〈δMα
qδMβ

−q′〉 =
1
βNs

δq,q′ × 〈δMα
qδMβ

−q〉 (13.233)

the fluctuations in magnetization are given by

〈δMz
qδMz

−q〉 =
1

1
I − χ

(0)
zz (q)

〈δM+q δM+−q〉 =
1

1
2I − χ

(0)
+−(q)

(13.234)

Let us now convert these results into spin correlation functions. If we go back to the original Hubbard
Stratonovich transformation, (13.184), we recall that to decouple the interaction, we had to introduce a
dummy white noise variable, let us call itm j(τ), with distribution function〈ma

j (τ)m
b
j (τ
′)〉 = Iδabδ(τ − τ′),

or 〈ma
qmb
−q〉 = Iδab. To carry out the Hubbard Stratonovich transformation we redefined this varible, writing

m j(τ) → M j − Iσ j . It follows that the variable we are working with is related to the original white noise
variable byM j(τ) = m j(τ) + Iσ j(τ). Consequently, the Gaussian fluctuations in the magnetization are given
by

〈σa
qσ

b
−q〉 =

1
I2


〈δMa

qδMb
−q〉 −

Iδab

︷       ︸︸       ︷
〈δma

qδm
b
−q〉



It follows that

〈σz
qσ

z
−q〉 = χzz(q) =

1
I2


1

1
I − χ

(0)
zz (q)

− I

 =
χ

(0)
zz (q)

1− Iχ(0)
zz (q)

(Longitudinal)

〈σ+qσ−−q〉 = χ+−(q) =
1
I2


1

1
2I − χ

(0)
+−(q)

− 2I

 =
χ

(0)
+−(q)

1− 2Iχ(0)
+−(q)

(Transverse) (13.235)

RPA spin fluctuations

These are the celebrated “RPA” spin fluctuations of an intinerant Ferromagnet.
It is particularly interesting to examine the transverse spin fluctuations in (13.235). A uniform transverse

spin fluctuation corresponds to a rotation of the magnetization, which costs no energy due to the rotational
invariance of the system. If we carry out a slow twist of the magnetization, this costs an energy that goes to
zero as the pitch of the twist goes to infinity. The corresponding normal mode is the “Goldstone mode” of the
magnet.

One can analtyically calculate the transverse spin fluctuations of a ferromagnet with a quadratic dispersion
ǫk =

k2

2m − µ, because the bare susceptibilitiesχ(0)(q) can be calculated as Lindhardt functions. The transverse
bare susceptibility (per unit cell) is given by

χ
(0)
+−(q) = − 1

Nsβ

∑

k,iωn

[
σ+G(k+ q)σ−G(k)

]
= σ+

k ↑

k+ q ↓

σ−

= − 1
Nsβ

∑

k,iωn

[
G↓(k+ q)G↑(k)

]
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tFig. 13.8 The energy spectrum of quantum magnetic fluctuations in an intinerant ferromagnet.
The above spectrum was computed for a magnetization M = 0.9ǫF corresponding to
an almost fully polarized Fermi sea.

= a3
∫

k

fk↑ − fk+q↓

(ǫk+q↓ − ǫk↑) − iνn
(13.236)

whereǫkσ = ǫk−σM, (σ =↑, ↓). These sort of expressions are a type of Lindhard function already encountered
in chapter 8. Following the same lines as section 8.62, we analytically continuing to real frequencies, and
rewrite the integrals as follows

χ
(0)
+−(q, ν) = a3

∫

k

(
fk↑

(ǫk+q − ǫk) − (ν − 2M)
+

fk↓
(ǫk−q − ǫk) + (ν − 2M)

)

=
∑

σ=±
a3

∫ kFσ

0

k2dk
2π2

∫
dcosθ

2

[
1

(ǫk+q − ǫk) − σ(ν − 2M)

]

=
1
2

∑

σ

(
mkFσ

π2

)
F

(
q

2kFσ
, σ
ν − 2M

4ǫF

)
(13.237)

whereǫFσ = ǫF +σM andkFσ = kF(1+ M
ǫF

)
1
2 are the Fermi energy and momenta of the spinσ = (↑, ↓) Fermi

surfaces and

F [q̃, ν̃] =
1
8q̃

[
(1− A2) ln

(
A+ 1
A− 1

)
+ 2A

]
,
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A = q̃− ν̃
q̃

(13.238)

is the Lindhard function.
Fig. (13.8) shows a density plot of the transverse dynamicalspin susceptibilityχ′′+−(q, ν) = Imχ+−(q, ν− iδ)

predicted by the Gaussian (RPA) theory. The spectrum of magnetic fluctuations about the mean-field theory
is determined by the energies at which one can excite a particle-hole pair by flipping a spin. Unlike a non-
magnetic metal, the energy to flip a spin atq = 0 is twice the Weiss fieldǫk↓ − ǫk↑ = 2M. The continuum
of spin-flip particle-hole excitations is thus lifted up at low momenta, forming what is known as the “Stoner
continuum”. The threshold energy for a spin-flip excitationfinally drops to zero at the wavevectorq = kF↑ −
kF↓. Below the Stoner continuum is a sharp Goldstone mode, labelled by the dotted line in Fig ()13.8),
corresponding to a low-energy pole in the dynamic susceptibility located at frequenciesωq determined by the
condition

2Iχ+−(q, ωq) = 1.

A careful evaluation of this condition shows that

ωq = Z(M/ǫF)
q2

2m
, (13.239)

where

Z(x) =
4
5x

[
(1+ x)5/2 − (1− x)5/2 − 5

(1+ x)3/2 − (1− x)3/2
.

]
(13.240)

This is the relation used to determine the dotted line-curvein Fig. (13.8).

13.7 Summary

Casting many body quantum mechanics as a path integral. Key result. So second nature, that most condensed
matter physicists use the same notation for the operators and their c-number representation inside the path
integral.

With these approaches, one has to have the Hamiltonian in theform of canonical operators. Poses problems
in strongly correlated systems, where the strong interactions between the particles force us to introduce new
operators that do not obey canonical commutation relations. We will return to these issues in Chapter ***.

As an example, we examined how these methods can be applied toitinerant ferromagnetism. In the process,
we encountered the new concept of a “quantum phase transition”, a point in the phase diagram where the long
range order is destroyed by quantum, rather than thermal fluctuations. This is a subject of immense current
interest Though we didn’t follow it in detail, we remarked that the saddle point could be made exact in the
largeN limit of 1/N expansion. These methods are believed to break down in two dimensions (ref to Metilsky
and Sun Silk Lee), and the resolution of this situation is at this time, an unsolved problem of great interest.
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13.8 Appendices

Appendix 13A Derivation of key properties of bosonic coherent states.

Here we derive the matrix elements and the completeness properties of bosonic coherent states.

Matrix elements. Matrix elements of normal ordered operatorsO[b̂†, b̂] between two coherent states are
obtained simply by replacing the operatorsb̂ andb̂† by the c-numbersb andb̄ respectively:

〈b̄1|Ô[b̂†, b̂]|b2〉 = O[b̄1,b2] × 〈b̄1|b2〉 = O[b̄1,b2] × eb̄1|b2 (13.241)

To derive the matrix elements of coherent states, we first note that the properties of coherent states guarantee
that

〈b̄|(b̂†)nb̂m|b〉 = (b̄†)nbm〈b̄|b〉 = (b̄)nbmeb̄b. (13.242)

Thus if Ô[b̂†, b̂] =
∑

m,n Omn(b̂†)mbn is anormal orderedoperator, (all annihilation operators on the right), it
follows that

〈b̄|Ô[b̂†, b̂]|b〉 =
∑

m,n

Omn b̄mbn × 〈b̄|b〉 = O[b̄,b] × eb̄b.

or

Ô[b†,b]
coherent states−−−−−−−−−−−−−−−−−−−−→ O[b̄,b] × 〈b̄|b〉

Note that if one has an operator that is not normal ordered, then one has to normal-order the operator prior to
applying this theorem. For example, ifO = (b̂+ b̂†)2, thenO =: O : +1, and〈b̄|O|b〉 = [(b+ b̄)2 + 1]eb̄b.

Completeness.

The unit operator can be decomposed in terms of coherent states as follows

1̂ =
∑

b̄,b

|b〉〈b̄|, (13.243)

where
∑

b̄,b

≡
∫

db̄db
2πi

e−b̄b (13.244)

is the normalized measure for summing over coherent states.To demonstrate the completeness relation, we
will first derive the orthogonality relation between the wavefunctionsφn(b) = 〈n|b〉 of the coherent states:

Inm =

∫
db̄db
2πi

e−b̄b〈n|b〉〈b̄|m〉 = δnm. (13.245)

To prove this, let us substituteb = reiφ and b̄ = re−iφ. Although b̄ andb are complex conjugates of each
other, they are derived from two independent real variables, and so the measure for integrating over them is
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two-dimensional. We can transform the measure into polar co-ordinates by introducing a Jacobian, as follows:

db̄db=

δ[b̄,b]/δ[r,φ]︷      ︸︸      ︷wwwwwwwwwwww

δb̄
δr

δb̄
δφ

δb
δr

δb
δφ

wwwwwwwwwwww
drdφ =

wwwwwwwwwww
e−iφ −ire−iφ

eiφ ireiφ

wwwwwwwwwww
drdφ = 2irdrdφ

so that (13.245) factorizes into a radial and an angular integral,

Inm =
1
√

n!m!

∫
db̄db
2πi

b̄nb̄me−b̄b =
1
√

n!m!

∫ ∞

0
2rdrr n+me−r2 ×

δmn︷             ︸︸             ︷∫ 2π

0

dφ
2π

eiφ(n−m), (13.246)

where we have substituted〈n|b〉 = 1√
n!

bn and〈b̄|m〉 = 1√
m!

b̄m. The angular integral vanishes unlessn = m.

Changing variablesr2→ x, 2rdr = dx in the first integral we then obtain

Inm =
δnm

n!

∫ ∞

0
dx xne−x = δnm (13.247)

proving the orthogonality relation. Now sinceδnm = 〈n|m〉, we can write the orthogonality relation (13.245)
as

〈n|m〉 =
∫

db̄db
2πi

e−b̄b〈n|b〉〈b̄|m〉 = 〈n|
(∫

db̄db
2πi

e−b̄b|b〉〈b̄|
)
|m〉.

Since this holds for all states|n〉 and|m〉, it follows that the quantity in brackets is the unit operator,

1̂ =
∫

db̄db
2πi

e−b̄b|b〉〈b̄| =
∫

db̄db
2πi
|b〉〈b̄|
〈b̄|b〉

≡
∑

b̄,b

|b〉〈b̄| (13.248)

Completeness relation

Appendix 13B Grassman Differentiation and Integration

Differentiation is defined to have the normal linear properties of the differential operator. We denote

∂c ≡
∂

∂c
, ∂c̄ ≡

∂

∂c̄
(13.249)

so that

∂cc = ∂c̄c̄ = 1. (13.250)

If we have a function

f (c̄, c) = f0 + f̄1c+ c̄ f1 + f12c̄c (13.251)

then differentiation from the left-hand side gives

∂c f = f̃1 − f12c̄
∂c̄ f = f1 + f12c (13.252)

where the minus sign in the first expression occurs because the ∂̄ operator must anticommute withc. But how
do we define integration? This proves to be much easier for Grassman variables, than for regular c-numbers.
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The great sparseness of the space of functions dramaticallyrestricts the number of linear operations we can
apply to functions, forcing differentiation and integration to become thesameoperation :

∫
dc≡ ∂c,

∫
dc̄ ≡ ∂c̄ (13.253)

In other words, ∫
dc̄c̄ = 1,

∫
dcc= 1,

∫
dc̄ =

∫
dc= 0 (13.254)
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Appendix 13C Grassman calculus: Change of variables

Suppose we change variables, writing


c1
...

cr


= A



ξ1
...

ξr


(13.255)

whereA is c-number matrix, then we would like to know how to evaluatethe Jacobian for this transformation,
which is defined so that

∫
dc1 . . .dcr [. . . ] =

∫
J

(
c1 . . . c
ξ1 . . . ξr

)
dξ1 . . .dξr [. . . ] (13.256)

Now since integration and differentiation are identical for Grassman variables, we can evaluate the fermionic
Jacobian using the chain rule for differentiation, as follows

∫
dc1 . . . dcr [. . . ] =

∂r

∂c1 . . . ∂cr
[. . . ]

=
∑

P

(
∂ξP1

∂c1
. . .

∂ξPr

∂cr

)
∂r

∂ξP1 . . . ∂ξPr

[. . . ] (13.257)

whereP =

(
1 . . . r
P1 . . . Pr

)
is a permutation of the sequence (1. . . r). But we can order the differentiation in

the second term, picking up a factor (−1)P whereP is the signature of the permutation, to obtain
∫

dc1 . . . dcr [. . . ] =
∑

P

(−1)P
(
∂ξP1

∂c1
. . .

∂ξPr

∂cr

)
∂r

∂ξ1 . . . ∂ξr
[. . . ]

= Det[A−1]
∂r

∂ξ1 . . . ∂ξr
[. . . ]

=

∫
Det[A−1]dξ1 . . . dξr [. . . ] (13.258)

where we have recognized the prefactor as the determinant ofthe inverse transformationξ = A−1c. From this
result, we can read off the Jacobian of the transformation as

J

(
c1 . . . cr

ξ1 . . . ξr

)
= Det[A]−1 =

∣∣∣∣∣
∂c1 . . . cr

∂ξ1 . . . ξr

∣∣∣∣∣
−1

(13.259)

which is precisely the inverse of the bosonic Jacobian. Thishas important implications for super-symmetric
field theories, where the Jacobian of the bosons and fermionsprecisely cancel. For our purposes however, the
most important point, is that for a Unitary transformation,the Jacobian is unity.

Appendix 13D Grassman Calculus: Gaussian Integrals

The basic Gaussian integral is simply
∫

dc̄dce−ac̄c =

∫
dc̄dc(1− ac̄c) = a (13.260)
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If now we introduce a set ofN variables, then
∫ ∏

j

dc̄ jdcj exp−[
∑

j

a j c̄ jc j ] =
∏

j

a j (13.261)

Suppose now, we carry out a unitary transformation, for which the Jacobian is unity, then since

c = Uξ, c̄ = ξ̄U†,

the integral then becomes ∫ ∏

j

dξ̄ jdξ j exp[−ξ̄ · A · ξ] =
∏

j

a j

whereAi j =
∑

l U† il alUl j is the matrix with eigenvaluesal . It follows that
∫ ∏

j

dξ̄ jdξ j exp[−ξ̄ · A · ξ] = Det[A] (13.262)

Finally, by shifting the variablesξ → ξ + A−1 j, where j is an arbitrary vector, we find that

Z[ j] =
∫ ∏

j

dξ̄ jdξ j exp[−(ξ̄ · A · ξ + j̄ · ξ + ξ̄ · j)] = Det[A] exp[ j̄ · A−1 · j] (13.263)

This is the basic Gaussian integral for Grassman variables.Notice that using the result lnDet[A] = Trln[A],
it is possible to take the logarithm of both sides to obtain

S[ j] = −lnZ[ j] = −Trln[A] − j̄ · A−1 · j. (13.264)

The main use of this integral, is for evaluating the Path integral for free field theories. In this case, the matrix
A → −G−1 becomes the inverse propagator for the fermions, andξn → ψ(iωn) is the Fourier component of
the Fermi field at Matsubara frequencyiωn.
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Exercises

Exercise 13.1 In this problem consider~ = 1. Suppose|0〉 is the ground-state of a harmonic oscillator
problem, whereb|0〉 = 0. Consider the state formed by simultaneously translatingthis state in momen-
tum and position space as follows:

|p, x〉 = exp
[−i(xp̂− px̂)

] |0〉.

By rewriting b̂ = (x̂+ i p̂)/
√

2, z= (x+ ip)/
√

2, show that this state can be rewritting as

|p, x〉 = eb†z−z̄b|0〉

Using the relationeA+B = eAeBe
1
2 [A,B] , provided [A, [A, B]] = [B, [A, B]] = 0, show that|p, x〉 is equal to

a normalized coherent state

|p, x〉 ≡ |z〉e−z̄z/2 = eb†z|0〉e− 1
2 z̄z

showing that the coherent state|z〉 represents a minimum uncertainty wavepacket centered at (q, p) in
phase space.

Exercise 13.2 Repeat the calculation of section 13.33. without taking thecontinuum limit. Show that the
path integral for a single boson with HamiltonianH = ǫb†b with a large, but finite number of time
slices is given by

ln ZN =

N∑

n=1

ln
(
ǫ − iνnF(νn∆τ/2)

)

whereF(x) = (1− e−x)/x. If you approaximate each term in the sum by its value at∆τ = 0, and then
takeN → ∞ the result obviously converges to the continuum limit. But the error contribution from
N such terms appears to be of orderO(N × ∆τ) = O(1). Use contour integration to show that this is
fortunately an over-estimate, and that the actual error isO(∆τ) = O(1/N).

Exercise 13.3 Using path integrals, calculate the partition function fora single Zeeman-split electronic
level described by the action

S =
∫

dτ f̄α
(
δαβ∂τ + σαβ · B

)
fβ

Why is your answer not the same as the partition function of a spin S = 1/2 in a magnetic field?

Exercise 13.4 Suppose

M = e
1
2

∑
i, j Ai j c† ic† j

whereAi j is an N × N antisymmetric matrix, and thec† j are a set ofN canonical Fermi creation
operators. Using coherent states, calculate

Tr[MM†]

where the trace is over the 2N dimensional Hilbert space of fermions. (Hint: notice thatMM† is already
normal ordered, so that by using the trace formula, you can rewrite this in terms of a simple Grassman
integral.)
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Exercise 13.5 Calculate, to Gaussian order, the change in the BCS effective action for a fluctuation in the
gap function of the following form

∆(τ) = ∆0 +
1
√
β

∑

n

δ∆ne−iνnτ

whereνn = 2πTn is the Bose Matsubara frequency and∆0 is a value of∆ which minimizes the effective
action. Use your result to confirm that the BCS Free energy perunit volume is accurate toO(1/V),
whereV is the volume.

Exercise 13.6 Re-derive table 1. for the case of bosonic coherent states.

|b〉 = ebb̂† |0〉

where the Grassman variable is now replaced by a conventional c-numberb.
Exercise 13.7 (a) SupposeH = ǫc†c represents a single fermion state. Consider the approximation to the

partition function obtained by dividing up the periodτ ∈ [0, β] into N equal time-slices,

ZN = Tr[(e−∆τH)N] (13.265)

where∆τ = β/N. By using coherent states|c〉 = eĉ†c|0〉, and approximating the matrix element from
timeτ j to timeτ j+1, whereτ j = j∆τ by

〈c̄ j+1|e−∆τH |c j〉 = eαc̄ j+1c j +O(∆τ2) (13.266)

whereα = (1− ∆τǫ), (Fig. 1.)

0ττ3 2 1β=τ
(13.267)

show thatZ3 can be written as a “toy functional integral”,

Z3 =

∫
dc̄3dc3dc̄2dc2dc̄1dc1 exp


−(c̄3, c̄2, c̄1)



1 −α 0
0 1 −α
α 0 1





c3

c2

c1




(13.268)

(b) EvaluateZ3.
(c) Generalize the result toN time slices and obtain an expression forZN. What is the limiting value

of your result asN→ ∞?
Exercise 13.8 Derive the completeness and trace formulae for a set of bosonic coherent states,

|α〉 = eb†α|0〉 (13.269)

You may assume the basic result

δnm =

∫
db̄db
2πi

e−b̄bbnb̄m

In particular
(a) Show that the completeness relation is given by

∑

|b〉, |b̄〉
|b〉〈b̄| = 1
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∑

|b〉, |b̄〉
=

∫
db̄db
2πi

e−b̄b (13.270)

(b) Show that the trace formula is given by

Tr[Â] =
∑

|b〉, |b̄〉
〈b̄|Â|b〉

(c) What is the key difference between the derivation of the Bosonic and the Fermionic path integrals?
Exercise 13.9 The one dimensional electron gas is prone to the developmentof charge-density wave in-

stabilities. The treatment of these instabilities bears close resemblance to the BCS theory of supercon-
ductivity. Suppose we have a one-dimensional conductor, described by the Hamiltonian

H − µN = Ho + HI ,

Ho = −t
∑

j, σ

(
ψ† j+1 σψ j σ + ψ

†
j σψ j+1 σ

)
,

HI = −g
∑

j

n j↑n j↓ (13.271)

whereg > 0 andψ† jσ creates an electron with spinσ = ± 1
2 at site j. The separation between sites is

taken to be unity and the chemical potential has been chosen to bezero, giving a half-filled band.
(a) Show thatHo can be diagonalized in the form

Ho = −
∑

k σ

(2t cosk)c†kσckσ, (13.272)

whereckσ =
1√
N

∑
j ψ jσe−ik j , k = 2π

N (0, 1, . . .N − 1) . Please note that the band is exactly half-filled,
so that the Fermi surfaces are separated by a distanceπ in momentum space and the average electron
density is 1 per site.
(b) Suppose a staggered potentialV j = −(−1) jΦ is applied to the conductor. This will induce a staggered
charge density to the sample

〈n jσ〉 =
1
2
+ (−1) j∆ j/g (13.273)

At low temperatures, the staggered order will remain even after the applied potential is removed. Why?
If the RMS fluctuations in the staggered charge density can beignored, show that the interaction Hamil-
tonian can be recast in the form

HI →
∑

j

(−1) j∆ j n̂ j +
∆2

j

g

 +O(δn̂2
j ). (13.274)

(c) How can the above transformation be elevated to the status of an exact result using a path integral?
(Note that the order parameter is no longer complex- does this change your discussion?)
(d) Calculate the excitation spectrum in the presence of theuniformly staggered order parameter∆ j =

∆. (Hint: write the mean field Hamiltonian in momentum space and treat the terms that scatter from
one-side of the Fermi surface in an analogous fashion to the pairing terms in superconductivity. You

may find it useful to work with the spinorΨkσ =

(
ckσ

ck+πσ

)
.)

(e) Calculate the Free energyF[∆] and sketch your result as a function of temperature. Write down the
gap equation for the value of∆(T) that develops spontaneously at low temperatures.
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14 Superconductivity and BCS theory

14.1 Introduction: Superconductivity pre-history

Superconductivity - the phenomenon whereby the resistanceof metal spontaneously drops to zero upon cool-
ing below its critical temperature, was discovered over a hundred years ago by Kamerlingh Onnes in 1911.
However, it took another 46 years to develop the conceptual framework required to understand this collective
phenomenon. During this time, many, many great physicists,including Bohr, Einstein, Heisenberg, Bardeen
and Feynman had tried to develop a microscopic theory of the phenomenon.

The development in the theory of superconductivity leadingto BCS theory really had two parts - one
phenomenological, the second microscopic. Let me mention some highlights:

• The discovery of the Meissner effect in 1933 by Walther Meissner and Robert Ochsenfeld[1]. When a metal
is cooled in a small magnetic field, the flux is spontaneously excluded as it becomes superconducting (see
Fig. 14.1). The Meissner effect demonstrates that a superconductor is, in essence a perfect diamagnet.

tFig. 14.1 (a) A magnet rests on top of a normal metal, with its field lines penetrating the metal.
(b) once cooled beneath Tc, the superconductor spontaneously excludes magnetic
fields, generating persistent supercurrents at its surface causing the magnet to
levitate.

• Rigidity of the wavefunction. In 1937[2, 3] Fritz London proposed that a persistent supercurrent is a
ground-stateproperty that results when the ground-state wavefunction develops a rigidity to the ap-
plication of a magnetic field. London’s idea applies to the full many body wavefunction, but he initially
developed it using a phenomenological one-particle wavefunctionψ(x) that today we call the supercon-
ducting order parameter. He noted that the quantum mechanical current contains a “paramagnetic” and
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a “diamagnetic” component, writing

j =
~e

2im
(ψ∗~∇ψ − ψ~∇ψ∗) −

(
e2

m

)
ψ∗ψ~A. (14.1)

In the ground-state in the absence of a field (~A = 0), the current vanishes, so the ground-state wavefunc-
tion ψ0 must be uniform. Normally, the wavefunction is highly sensitive to an external magnetic field,
but London reasoned that if the wavefunction is somehowrigid and hence unchanged to linear order in
the magnetic field,ψ(x) = ψ0(x) + O(B2), whereψ0 is the ground-state wavefunction, then to leading
order in a field, the current carried by the uniform quantum state is

~j = −e2

m
|ψ0|2~A+ . . . . (14.2)

In London’s equation we see a remarkable convergence of the classical and the quantum: it is certainly
a “classical” equation of motion in that it involves purely macroscopic variables, yet on the other hand,
it contains a “naked” vector potential~A, rather than the magnetic field~B = ∇ × ~A, a feature alien to
conventional electromagnetism which reflects the broken symmetry of the underlying quantum state.

London’s equation provides a natural explanation of the Meissner effect. To see this, we use Ampères
relation~j = µ−1

0 ∇ × ~B to cast London’s equation as

∇ × ~B = − 1

λ2
L

~A,


1

λ2
L

= µ0
e2

m
|ψ0|2

 (14.3)

where the quantityλL defined through the relation on the right is the “London penetration depth”. Taking
the curl of (14.3), we can eliminate the vector potential to obtain

−∇2~B︷      ︸︸      ︷
∇ × ∇ × ~B = − 1

λ2
L

=~B︷︸︸︷
∇ × ~A, (14.4)

or

∇2B =
1

λ2
L

~B (14.5)

where we have substituted∇ × (∇ × ~B) = ~∇(∇ · ~B) − ∇2~B = −∇2~B, using the divergence-free nature of
the magnetic field. The solutions of this equation describe magnetic fieldsB(x) ∼ B0e±x/λL which decay
over a London penetration depth, accounting for the Meissner effect.

• Ginzburg-Landau theory [4]. In 1950, Lev Landau and Vitaly Ginzburg in Moscow re-interpreted Lon-
don’s phenomenological wavefunctionψ(x) as acomplex order parameter. Using arguments of gauge
invariance, they reasoned that the Free energy must containa gradient term that instills the rigidity of
the order parameter,

f =
∫

d3x
1

2m∗
|(−i~~∇ − e∗ ~A)ψ|2 (14.6)

The vitally important aspect of this gauge-invariant functional (see section 12.5) is that onceψ , 0, the
electromagnetic field develops a mass giving rise to a super-current

~j(x) = −δ f /δ~A(x) = − (e∗)2

m∗
|ψ|2~A(x) (14.7)

where we have dropped gradients ofψ assuming a uniform order parameter. It is only later that theorder
parameter was identified with an electron pair condensate, with chargee∗ = 2e.

446



bk.pdf April 29, 2012 228

c©2011 Piers Coleman Chapter 14.

Following the second world war, physicists set to work againto try to understand superconductivity. The
development of quantum field theory and new experimental techniques, such as microwaves, a biproduct of
radar and the availability of isotopes after the Manhattan project, meant that a new intellectual offensive could
begin. The landmark events included:

• Theory of the electron-phonon interaction. In 1949-1950, Herbert Fr̈ohlich[5] at Purdue and Liverpool
Universities, formulated the electron phonon interaction, showing that it gives rise to a low energy inter-
action

Ve f f(k, k′) = g2
k−k′

2ωk−k′

(ǫk − ǫk′)2 − (ωk−k′)2
(14.8)

whereǫk andǫk′ are the energies of incoming and outgoing electrons, whileωq is the phonon frequency.
Ve f f(k, k′) becomes attractive for low energy transfers|ǫk − ǫk′ | << ωk−k′ .

tFig. 14.2 Superconducting transition temperature as a function of isotopic mass for mercury,
showing the “-1/2” exponent implying phonon-driven superconductivity, after Serin et
al.[6].

• Discovery of the isotope effect. In 1950, Emanuel Maxwell at the National Bureau of Standards[7] and the
group of Bernard Serin at Rutgers University[8] observed a reduction in the superconducting transition
temperature in mercury with the isotopic mass. It now becameclear that the electron-phonon interac-
tion provided the key to superconductivity. Indeed,any theory in which the transition temperature is
proportional to the Debye temperature, the expected dependence on isotopic massM is given by[9]

Tc ∝ ωD ∼
1
√

M
⇒ d ln Tc

d ln M
= −1

2
. (14.9)

Careful analysis showed agreement with the−1/2 exponent[6] (see fig. 14.2), but what was the mecha-
nism?
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• Discovery of the coherence length. In 1953 Brian Pippard at the Cavendish Laboratory in Cambridge, pro-
posed, based on his thesis work on the anamalous skin depth indirty superconductors, that the character
of superconductivity changes at short distances, below a scale he named the coherence lengthξ [10, 11].
Pippard showed that at these short distances, the local London relation between current and vector po-
tential is replaced by a non-local relationship. Pippard’sresult means that Ginzburg Landau theory is
inadequate at distances shorter than the coherence lengthξ, demanding a microscopic theory.

• Gap hypothesis. In 1955 John Bardeen, who had recently resigned from Bell Labs to pursue his research
into the theory of superconductivity at the University of Illinois in Urbana Champaign, proposed that if
a gap∆ developed in the electron spectrum, this would account for the wavefunction rigidity proposed
by London and would also give rise to Pippard’s coherence length ξ ∼ vF/∆, where vF is the Fermi
velocity[12]. What was now needed was a model and mechanism tocreate the gap.

• Bardeen Pines Hamiltonian. In 1955 John Bardeen and David Pines[13] at the University of Illinois, Urbana
Champaign rederived the Fröhlich interaction as a second-quantized model, incorporating the effects of
the Coulomb interaction in a “Jelium model” in which the ionsform a smeared positive background.
(See section (9.111)). The Bardeen-Pines effective interaction takes the form

VBP(q, ν) =
e2

ǫ0(q2 + κ2)

1+
ω2

q

ν2 − ω2
q

 (14.10)

whereκ−1 is the Thomas Fermi screening length and the phonon frequency ωq is related to the plasma
frequency of the ionsΩ2

p = (Ze)2nion/(ǫ0M) via the relationωq = (q/[q2 + κ2]1/2)Ωp The Bardeen Pines
interaction is seen to contain two terms: a frequency-independent Coulomb interaction and a strongly
frequency dependent electron phonon interaction. In the time domain, the former corresponds to an
instantaneous Coulomb repulsion, while the latter is a highly retarded attractive interaction. This inter-
action became the basis for the BCS theory.

The stage was set for Bardeen Cooper Schrieffer, “BCS” theory.

14.2 The Cooper Instability

In the Fall of 1956, Bardeen’s postdoc Leon Cooper, at the University of Illinois, Urbana Champaign, solved
one of the most famous “warm-up” problems of all time. Considering two electrons moving above the Fermi
surface of a metal, Cooper found that an arbitrarily weak electron-electron attraction induces a two-particle
bound-state that will destabilize the Fermi surface[14].

Cooper imagined adding a pair of electrons above the Fermi surface in a state with no net momentum,
described by the wavefunction

|Ψ〉 = Λ†|FS〉 (14.11)

where

Λ† =

∫
d3xd3x′φ(x − x′)ψ†↓(x)ψ†↑(x′) (14.12)

creates a pair of electrons, while|FS〉 =∏
k<kF

c†k↑c†−k↓|0〉 defines the filled sea. If we Fourier transform the
fields, writingψ†σ(x) = 1√

V

∑
k c†kσe−ik·x, then the pair creation operator can be recast as a sum over pairs in

momentum space,
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tFig. 14.3 Illustration of a “Cooper pair”. (Note: the location of the electrons relative to the pair
wavefunction involves artistic license since the wavefunction describes the relative
position of the two electrons.)

Λ† =
∑

k

φkc†k↓c
†
−k↑ (14.13)

Cooper Pair Creation operator

where

φk =

∫
d3xe−ik·xφ(x) (14.14)

is the Fourier transform of the spatial pair wavefunction. This result tells us that a real-space pair of fermions
can be decomposed into a sum of momentum-space pairs, weighted by the amplitudeφk . The properties
of the pair (and the superconductor it will give rise to) are encoded in the pair wavefunctionφk . In the
phonon mediated superconductors considered by BCS,φk ∼ f (k) is an isotropic, s-wave function, but in a
rapidly growing class of “anisotropically paired superfluids” of great current interest, including superfluid
He3, heavy fermion, and the the iron and copper-based high temperature superconductorsφk is anisotropic,
changing signsomewherein momentum space to lower the repulsive interaction energy, giving rise to anodal
pair wavefunction.

When an electron pair is created, electrons can only be added above the Fermi surface, so that

|Ψ〉 = Λ†|FS〉 =
∑

|k|>kF

φk |kP〉, (14.15)
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where|kP〉 ≡ |k ↑,−k ↓〉 = c†k↑c†−k↓|FS〉. Now suppose that the Hamiltonian has the form,

H =
∑

k

ǫkc†kσckσ + V̂ (14.16)

whereV̂ contains the details of the electron-electron interaction; if |Ψ〉 is an eigenstate with energyE then

H|Ψ〉 =
∑

|k|>kF

2ǫkφk |kP〉 +
∑

|k|, |k′ |>kF

|kP〉〈kP|V̂|k′P〉φk′ . (14.17)

Identifying this withE|Ψ〉 = E
∑

k φk |kP〉, so comparing the amplitudes to be in the state|kP〉

Eφk = 2ǫkφk +
∑

|k′ |>kF

〈kP|V̂|k′P〉φk′ (14.18)

The beauty of this equation, is that the details of the electron interactions are entirely contained in the pair
scattering matrix elementVk,k′ = 〈kP|V̂|k′P〉. Microscopically, this scattering is produced by the exchange
of virtual phonons (in conventional superconductors), andthe scattering matrix element is determined by
electron-phonon propagator

Vk,k′ = g2
k−k′D(k′ − k, ǫk − ǫk′) (14.19)

as illustrated in Fig. 14.4. Cooper noted that this matrix element is not strongly momentum-dependent, only

tFig. 14.4 Virtual phonon exchange process responsible for the BCS interaction. The process
|k ↑,−k ↓〉 → |k′ ↑,−k′ ↓〉 can be thought of as the consequence of “Bragg diffraction”
off a virtual standing wave: one electron in the pair |k ↑,−k ↓〉 diffracts from k → k′

creating a virtual standing wave (phonon) of momentum k − k′. Later, the second
diffracts from −k → −k′, reabsorbing the virtual phonon.

becoming attractive within an energyωD of the Fermi surface, and this motivated a simplified model interac-
tion in which

Vk,k′ =

{
−g0/V ( |ǫk |, |ǫk′ | < ωD)

0 otherwise
(14.20)

This is a piece of pure physics “Haiku”, a brilliant simplification that makes BCS theory analytically tractable.
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Much more is to come, but for the moment, it enables us to simplify (14.18)

(E − 2ǫk)φk = −
g0

V

∑

0<ǫk′<ωD

φk′ , (14.21)

so that by solving forφk

φk = −
g0/V

E − 2ǫk

∑

0<ǫk′<ωD

φk′ , (14.22)

then summing both sides overk and factoring out
∑

k φk we obtain the self-consistent equation

1 = − 1
V

∑

0<ǫk<ωD

g0

E − 2ǫk
. (14.23)

Replacing the summation by an integral over energy,1
V

∑
0<ǫk<ωD

→ N(0)
∫ ωD

0
whereN(0) is the density of

states per spin per unit volume at the Fermi energy, the resulting equation gives

1 = g0N(0)
∫ ωD

0

dǫ
2ǫ − E

= −1
2

g0N(0) ln

[
2ωD − E
−E

]
≈ −1

2
g0N(0) ln

[
2ωD

−E

]
(14.24)

where anticipating the smallness of|E| << ωD we have approximated 2ωD − E ≈ 2ωD. In other words the
energy of the Cooper pair is given by

E = −2ωDe−
2

g0N(0) . (14.25)

Remarks:

tFig. 14.5 Formation of a Cooper pair beneath the two-particle continuum. This density plot
shows the density of states of pair excitations obtained from the imaginary part of the
pair susceptibility χ′′(E,p) (see example 15.1). At a finite momentum, the Cooper pair
energy defines a collective bosonic mode beneath the quasiparticle continuum with
dispersion Ep ≈ E(0)+ vF |p|.

• The Cooper pair is a bound-state beneath the particle-hole continuum (see Fig. 14.5).
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• In his seminal paper, Cooper notes that the Cooper pair is a boson. This changes everything, for as pairs,
electrons can condense macroscopically.

• A generalization of the above calculation to finite momentum(see example 15.1) shows that the Cooper
pair has alineardispersionEp − E = vF p (see Fig 14.5), reminiscent of a collective mode.

Example 14.1: Generalize Cooper’s calculation to a pair with finite momentum. In particular:

(a) Show that the operator that creates a Cooper pair at a finite momentump,

Λ†(p) =
∫

d3xd3x′φ(x − x′)ψ†↑(x)ψ†↓(x′)eip·(x+x′)/2 (14.26)

can be re-written in the form

Λ†(p) =
∑

k

φ(k)c†k+p/2↑c
†
−k+p/2↓ (14.27)

(b) Show that the energyEp of the pair stateΛ†(p)|FS〉 is given by the rootsz= Ep of the equation

1+
g0

V

∑

0<ǫk±p/2<ωD

1
z− (ǫk+p/2 + ǫk−p/2)

= 0. (14.28)

Demonstrate that this equation predicts a linear dispersion given by

Ep = −2ωDe−
2

g0N(0) + vF |p|. (14.29)

Solution:

(a) Introducing center of mass variablesX = (x + x′)/2 andr = x − x′, usingd3xd3x′ = d3Xd3r, we
rewrite the Cooper pair creation operator in the form

Λ†(p) =
∫

d3rd3X eip·Xφ(r ) ψ†↑(X + r/2)ψ†↓(X − r/2) (14.30)

If we substituteψ†σ(x) = 1√
V

∑
k c†kσe−ik·x, we then obtain

Λ†(p) =
1
V

∫
d3rd3Xeip·Xφ(r )

∑

k1,k2

c†k1↑c
†

k2↓e
−ik1·(X+r/2)eik2·(X−r/2)

=
∑

k1,k2

c†k1↑c
†
−k2↓

φ((k1+k2)/2)︷                     ︸︸                     ︷∫
d3r φ(r )eir ·(k1+k2)/2

δp−(k1−k2)︷                       ︸︸                       ︷
1
V

∫
d3R ei[p−(k1−k2)]·X

=
∑

k

φ(k) c†k+p/2↑c
†
−k+p/2↓ (14.31)

where we have replaced (k1 + k2)/2→ k in the last step.
(b) Denote a Cooper pair with momentump by

Λ†(p)|FS〉 ≡ |ψ(p)〉 =
∑

k

φk |k, p〉, (14.32)

where|k,p〉 = c†k+p/2↑c†−k+p/2↓|FS〉. Applying H|Ψ(p)〉 = Ep|Ψ(p)〉, using (14.16),

Ep

∑

k

φk |k, p〉 =
∑

|k± p
2 |>kF

(ǫk+p/2 + ǫk−p/2) φk |k,p〉 +
∑

|k|, |k′ |>kF

|k,p〉〈k,p|V̂|k′,p〉φk′ .

Assume that〈k,p|V̂|k′,p〉φk′ = −g0/V is independent ofp. Comparing coefficients of|k, p〉,

Epφk = (ǫk+p/2 − ǫk−p/2) φk −
g0

V

∑

0<ǫk′±p/2<ωD

φk′ (14.33)
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Solving forφk

φk =
g0/V

ǫk+p/2 + ǫk−p/2 − Ep

∑

0<ǫk′±p/2<ωD

φk′ . (14.34)

Substituting back into the equation, we then obtain

1− g0

V

∑

0<ǫk±p/2<ωD

1
ǫk+p/2 + ǫk−p/2 − Ep

= 0. (14.35)

It is convenient to cast this as the zero of the functionG−1[Ep,p] = 0, where

G−1[z,p] = 1− g0χ0(z,p), (14.36)

and

χ0(z,p) =
1
V

∑

0<ǫk±p/2<ωD

1
ǫk+p/2 + ǫk−p/2 − z

(14.37)

can be interpreted as the bare pair susceptibility of the conduction sea. Now, takingǫk = k2/2m−µ,
in the momentum summation, we must impose the condition

ǫk±p/2 = ǫk ±
p · vF

2
+

p2

8m
> 0, (14.38)

or ǫk >
pvF
2 | cosθ| − p2

8m. Replacing the momentum summation by an integral over energy and
angles,

χ0[z, p] =
N(0)

2

∫ 1

−1

dcosθ
2

∫ ωD

pvF
2 | cosθ|−p2/8m

dǫ
2ǫ + p2/4m− z

=
N(0)

2

∫ 1

0
dcosθ ln

[
2ωD

pvF cosθ − z

]
. (14.39)

Finally, carrying out the integral overθ, one obtains

χ0(z, p) =
N(0)

2
χ̃0

[
z

2ωD
,

pvF

2ωD

]
, (14.40)

where

χ̃0[z̃, p̃] = ln

(
1

p̃− z̃

)
+

[
1+

z̃
p̃

ln
(
1− p̃

z̃

)]
. (14.41)

Thus for smallvF p << |E|, using (14.36)

G−1[E, p] = 1− g0N(0)
2

ln

[
2ωD

vF p− E

]
, (14.42)

so the bound-state pole occurs atG−1(Ep,p) = 0, or

Ep = −2ωD exp

[
− 2

g0N(0)

]
+ vF p. (14.43)

The linear spectrum is a signature of a collective, bosonic mode. Incidentally, the quantity

χ′′(E,p) = Im[χ0(z,p)/(1− g0χ0(z,p))]|z=E−iδ, (14.44)

can be interpreted as a spectral function giving the density of Cooper pairs above and below the
particle-particle continuum. It is this quantity that is plotted in Fig. (14.5).
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14.3 The BCS Hamiltonian

tFig. 14.6 In the BCS Hamiltonian, the matrix Vk,k′ acts attractively on pairs of electrons within
ωD of the Fermi surface. Provided the repulsive interaction at higher energies is not
too large, a superconducting instability results.

After Cooper’s discovery, it took a further six months of intense exploration of candidate wavefunctions,
before Bardeen Cooper and Schrieffer succeeded in formulating the theory of superconductivity in terms of a
pair condensate. It was the grad student in the team, J. Robert Schrieffer, who took the next leap.1 Schrieffer’s
insight was to identify the superconducting ground-state as a coherent state of the Cooper pair operator:

|ψBCS〉 = exp[Λ†]|0〉, (14.45)

where|0〉 is the electron vacuum andΛ† =
∑

k φkc†k↑c−k↓ is the Cooper pair creation operator (14.13). If we
expand the exponential as a product in momentum space

1 Following a conference at the Stephen’s institute in Hoboken, New Jersey on the Many Body Problem, inspired by a wavefunction
that Tomonaga had derived, Schrieffer wrote down a candidate wavefunction for the ground-statesuperconductivity. Schrieffer recalls
the event in his own words, [15]

“So I guess it was on the subway, I scribbled down the wave function andI calculated the beginning of that expectation
value and I realized that the algebra was very simple. I think it was somehow in the afternoon and that night at this friend’s
house I worked on it. And the next morning, as I recall, I did the variational calculation to get the gap equation and I
solved the gap equation for the cutoff potential.”
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|ψBCS〉 =
∏

k

exp[φkc†k↑c
†
−k↓]|0〉 =

∏

k

(1+ φkc†k↑c
†
−k↓)|0〉. (14.46)

BCS Wavefunction

In the second step, we have truncated the exponential to linear order because all higher powers of the pair
operator vanish: (c†k↑c†−k↓)n = 0 (n > 1). This remarkable coherent state mixes states of different particle
number, giving rise to a state of off-diagonal long range order in which

〈ψBCS|c−k↓ck↑|ψBCS〉 ∝ φk . (14.47)

But what Hamiltonian explicitly gives rise to pairing? A clue came from the Cooper instability, which depends
on the scattering amplitudeVk,k′ = 〈kP|V̂|k′P〉 between zero-momentum pairs. BCS incorporated this feature
into a model Hamiltonian:

H =
∑

kσ

ǫkσc†kσckσ +
∑

k,k′
Vk,k′c

†
k↑c
†
−k↓c−k′↓c−k′↑ (14.48)

BCS Hamiltonian

In the universe of possible superconductors and superfluids, the interactionVk,k′ can take a wide variety of
symmetries, but in its s-wave manifestation, it is simply anisotropic attraction that develops within a narrow
energy shell of electrons within a Debye energy of the Fermi surface,ωD (Fig. 14.6)

Vk,k′ =

{
−g0/V, (|ǫk | < ωD)

0 (otherwise).
(14.49)

The s-wave BCS Hamiltonian then takes the form

H =
∑

|ǫk |<ωD, σ

ǫkσc†kσckσ −
g0

V
A†A.

A† =
∑

|ǫk |<ωD

c†k↑c
†
−k↓, A =

∑

|ǫk′ |<ωD

c−k′↓ck′↑. (14.50)

s-wave BCS Hamiltonian

Remarks:

• The BCS Hamiltonian is amodelHamiltonian capturing the low-energy pairing physics.
• The normalizing factor 1/V is required in the interaction so that the interaction energy is extensive, growing

linearly, rather than quadratically with volumeV.
• The BCS interaction takes place exclusively at zero moemntum, and as such involves an infinite range

interaction between pairs. This long-range aspect of the model permits the exact solution of the BCS
Hamiltonian using mean-field theory. In the more microscopic Fröhlich model the effective interaction
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(Fig. (14.6)) is attractive within a narrow momentum shell|∆p| ∼ ωD/vF , corresponding to a spatial
interaction range of order 1/|∆p| ∼ vF/ωD ∼ O(ǫF/ωD) × a, wherea is the lattice spacing. This length-
scale is typically hundreds of lattice spacings, so the “infinite range” mean-field theory is a reasonable
rendition of the underlying physics.

14.3.1 Mean Field description of the condensate

The key consequence of the BCS model, is the development of a state with off-diagonal long-range order (See
12.4.2). The pair operator̂A is extensive, and in a superconducting state its expectation value is proportional
to the volume of the system〈Â〉 ∝ V. The pair density

∆ = |∆|eiφ = −g0

V
〈Â〉 = −g0

∫

|ǫk |<ωD

d3k
(2π)3

〈c−k↓ck↑〉 (14.51)

is an intensive, macroscopic property of superconductors that has both an amplitude|∆| anda phaseφ. This is
the order parameter. It sets the size of the gap in the excitation spectrum and gives rise to the emergent phase
variable whose rigidity supports superconductivity.

Like the pressure in a gas, the order parameter∆ is an emergent many body property. Just as fluctuations
in pressure〈δP2〉 ∼ O(1/V) become negligible in the thermodynamic limit, fluctuations in∆ can be similarly
ignored. Of course, the reasoning needs to be refined to encompass a quantum variable, formally requiring a
path-integral approach. The important point is that the change in actionδS[δ∆] = S[∆+δ∆0]−S[∆] associated
with a small variation in∆ about a stationary point scales extensively in volume:δS[δ∆] ∼ V × δ∆2, so that
the corresonding distribution function can be expanded as aGaussian

P[∆] ∝ e−S[δ∆] ∼ exp
[
− δ∆2

O(1/V)

]
, (14.52)

which is exquisitely peaked about∆ = ∆0, with variance〈δ∆2〉 ∝ 1/V, justifying a mean-field treatment.
Let us now expand the BCS interaction in powers of the fluctuation operatorδÂ = Â− 〈Â〉,

−g0

V
A†A =

O(V)︷                 ︸︸                 ︷
∆̄A+ A†∆ + V

∆̄∆

g0
−

O(1)︷     ︸︸     ︷
g0

V
δA†δA . (14.53)

Now the first three terms are extensive in volume, but since〈δA†δA〉 ∼ O(V) the last term is intensive
O(1), and can be neglected in the thermodynamic limit. We shall shortly see how this same decoupling
is accomplished in a path integral using a Hubbard Stratonovich transformation. The resulting mean-field
Hamiltonian for BCS theory is then

HMFT =
∑

kσ

ǫkc†kσckσ +
∑

k

[
∆̄c−k↓ck↑ + c†k↑c

†
−k↓∆

]
+

V
g0
∆̄∆ (14.54)

BCS Theory: Mean Field Hamiltonian

in which∆ needs to be determined self-consistently by minimizing thefree energy.
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14.4 Physical Picture of BCS Theory: Pairs as spins

Let us discuss the physical meaning of the pairing terms in the BCS mean-field Hamiltonian (14.54)

HP(k) =
(
∆̄c−k↓ck↑ + c†k↑c

†
−k↓∆

)
. (14.55)

On the one hand, the term̄∆c−k↓ck↑ converts two particles into the condensate;

Pair creation : e− + e− ⇋ Pair2− (14.56)

alternatively, by writingc−k↓ = h†k↓ as a hole creation operator, we see thatHP(k) ≡ (h†k↑∆̄)ck↑ + H.c
describes the scattering of an electron into a condensed pair (represented bȳ∆) and a hole, a process called
“Andreev reflection”

Andreev reflection : e− ⇋ Pair2− + h+ (14.57)

While the first process builds the condensate, the second coherently mixes particle and holes. We will denote
Andreev scattering process by a Feynman diagram

Andreev reflection differs from conventional reflection in that

- it elastically scatters electrons into holes, reversingall components of the velocity2.
- yet it conservesspin, momentumandcurrent, for a hole in the state (−k, ↓) has spin up, momentum+k and

carries a currentI = (−e) × (−∇ǫk) = e∇kǫk .

Now the particle and hole dispersions are given by

particle: ǫk
hole: − ǫ−k

(14.58)

as denoted by the blue and red lines in Fig. 14.7. These two dispersion lines cross at the Fermi surface so
that when Andreev scattering develops, the mixing between electrons and holes eliminates the Fermi surface,
giving rise to a gap and a dispersion which, we will shortly show takes the form

Ek =

√
ǫ2

k + |∆|2 (14.59)

as illustrated in Fig. 14.7. The quasiparticle operators now become linear combinations of electron and hole
states with corresponding quasiparticle operators

a†kσ = ukc†kσ + sgn(σ)c−k−σ. (14.60)

2 Andreev noticed that although the momentum of the hole is the same as the incoming electron, its group velocity∇k (−ǫ−k ) =
∇k (−ǫk ) = −∇kǫk , is reversed. Andreev reasoned that such scattering at the interface of a superconductor leads to non-specular
reflection of electrons, which scatter back as holes moving inthe opposite direction to incoming electrons.
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tFig. 14.7 Illustrating the excitation spectrum of a superconductor. Andreev scattering resulting
scattering mixes the electron excitation spectrum (blue) with the hole excitation
spectrum (red) producing the gap ∆ in the quasiparticle excitation spectrum. The
quasiparticles at the Fermi momentum are linear combinations of electrons and holes,
with an indefinite charge.

14.4.1 Nambu Spinors

We now introduce Nambu’s spinor formulation of BCS theory which we’ll employ to expose the beautiful
magnetic analogy between pairs and spins discovered by Yoichiro Nambu[16] working at the University of
Chicago and Philip W. Anderson[17] at AT&T Bell Labs. The more precise magnetic analogue of a super-
conductor is the antiferromagnet, for both superconductivity and antiferromagnetism involve an order param-
eter which (unlike ferromagnetism), does notcommute with the Hamiltonian. Superconductivity involvesan
analagous quantity to spin we will call “isospin” which describes orientations in charge space. The pairing
field ∆ can be regarded as a transverse field in isospin space.

To bring out this physics, it is convenient to introduce the charge analog of the electron spinor, the “Nambu
spinor”, defined as

ψk =

(
ck↑

c†−k.↓

)
,

electron,
hole.

(14.61)

with the corresponding Hermitian conjugate

ψ†k =
(
c†k↑, c−k↓

)
. (14.62)
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Nambu spinors behave like conventional electron fields withan algebra

{ψkα, ψ
†

k′β} = δαβδk,k′ , (14.63)

but instead of “up” and “down” electrons, they describe electrons and holes. These spinors enable us to unify
the kinetic and pairing energy terms into a singlevectorfield, analagous to a magnetic field that acts in isospin
space.

The kinetic energy can be written as

∑

k

ǫk(c†k↑ck↑ − c−k↓c
†
−k↓ + 1) =

(
c†k↑, c−k↓

) [ǫk 0
0 −ǫk

] (
ck↑

c̄†−k↓

)
+

∑

k

ǫk (14.64)

where the sign-reversal in the lower component derives fromanticommuting the down-spin electron opera-
tors. The energy−ǫk is the energy to create a hole. We will drop the constant remainder term

∑
k ǫk . We can

now combine the kinetic and pairing terms into a single matrix

ǫk
∑

σ

c†kσckσ +
[
∆̄c−k↓ck↑ + c†k↑c

†
−k↓∆

]
=

(
c†k↑, c−k↓

) [ǫk ∆

∆̄ −ǫk

] (
ck↑

c†−k↓

)

= ψ†k

[
ǫk ∆1 − i∆2

∆1 + i∆2 −ǫk

]
ψk

= ψ†k [ǫkτ3 + ∆1τ1 + ∆2τ2]ψk , (14.65)

where we denote∆ = ∆1 − i∆2, ∆̄ = ∆1 + i∆2 and we have introduced the “isospin” matrices

~τ = (τ1, τ2, τ3) =

( [
0 1
1 0

]
,

[
0 −i
i 0

]
,

[
1 0
0 −1

] )
. (14.66)

By convention the symbolτ is used to delineate a Pauli matrix in charge space, from a spinσ, acting in spin
space. Putting this all together, the mean-field Hamiltonian can now be re-written

H =
∑

k

ψ†k (~hk · ~τ)ψk + V
∆̄∆

g0
(14.67)

where
~hk = (∆1,∆2, ǫk) (14.68)

plays the role of a “field” acting in isospin space.

14.4.2 Anderson’s domain wall interpretation of BCS theory.

Anderson noted that the isospin operatorsψ†k~τψk have the properties of spin-1/2 operators acting in charge
space. The z-component of the isospin is

τ3k = ψ
†

kτ3ψk = (c†k↑ck↑ − c−k↓c
†
−k↓) = (nk↑ + n−k↓ − 1). (14.69)

so the “up” and “down” states correspond to the doubly occupied and empty pair state,

τ3k = +1 : | ⇑k〉 ≡ |2〉 = c†k↑c†−k↓|0〉
τ3k = −1 : | ⇓k〉 ≡ |0〉. (14.70)

By contrast, the transverse components of the isospin describe pair creation and annihilation:

τ̂1k = ψ
†

kτ1ψk = c†k↑c
†
−k↓ + c−k↓ck↑
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tFig. 14.8 Showing the domain wall configuration of the isospin ~τk and direction of pairing field
n̂k near the Fermi momentum. (a) A normal metal, in which the Weiss field Bk

vanishes linearly at the Fermi energy and (b) a superconductor in which the Weiss
field remains finite at the Fermi energy, giving rise to a gap in the excitation spectrum.

τ̂2k = ψ
†

kτ2ψk = −i(c†k↑c
†
−k↓ − c−k↓ck↑). (14.71)

In a normal metal, the isospin points “up” in the occupied states below the Fermi surface, and “down” in
the empty states above the Fermi surface (Fig. 14.8 (a)). Nowsince the Hamiltonian isH =

∑
k ψ
†

k(~hk ·~τ)ψk ,
the quantity

~Bk = −~hk = −(∆1,∆2, ǫk) (14.72)

is thus a momentum-dependent Weiss field, setting a natural quantization axis for the electrons at momentum
k: in the ground-state, the fermion isospins line up with thisfield. In the normal state, the natural isospin
quantization axis is the charge or “z-axis”, but in the superconductor, the presence of a pairing condensate
tips the quantization axis, mixing particle and hole states(Fig. 14.8 (b)).

With this analogy one can identify the reversal of an isospinout of its ground-state configuration as the
creation of a pair of quasiparticles “above” the condensate. Since this costs an energy 2|~Bk |, the magnitude of
the Weiss field

Ek ≡ |~Bk | =
√
ǫ2

k + |∆|2 = quasiparticle energy (14.73)

must correspond to the energy of a single quasiparticle. In ametal (∆ = 0), the Weiss field vanishes at the
Fermi surface so it costs no energy to create a quasiparticlethere, but in a superconductor the Weiss field has
magnitude|∆| so the quasiparticle spectrum is now gapped (Fig. 14.9 (b)).

Let us write~Bk = −Ek n̂k , where the unit vector

n̂k =

(
∆1

Ek
,
∆2

Ek
,
ǫk

Ek

)
(14.74)
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tFig. 14.9 Illustrating how the excitation of quasiparticle pairs corresponds to a an “isospin flip”,
which forms a pair of up and down quasiparticles with energy 2|Bk |. (a) Quasiparticle
pair formation in the normal state where the quasiparticle spectrum is gapless (b)
formation of a “Boguilubov” quasiparticle pair in the superconducting state costswhere
the excitation spectrum is gapped

points upwards far above the Fermi surface, and downwards far beneath it. In a normal metal, ˆnk (see Fig.
14.8) reverses at the Fermi surface forming a sharp “Ising-like” domain wall, but in a superconductor, the ˆn
vector is is aligned at an angleθ to theẑaxis, where

cosθk =
ǫk

Ek
. (14.75)

This angle rotates continuously as one passes through the Fermi energy, so the domain wall is now spread out
over an energy range of order∆, forming a kind of “Bloch” domain wall in isospin space as shown in figure
(14.8).

In the ground-state each isospin will align parallel to the field ~Bk = −Ek n̂k , i.e.

〈ψ†k~τψk〉 = −n̂k = −(sinθk ,0, cosθk), (14.76)

where we have taken the liberty of chosing the phase of∆ so that∆2 = 0. In a normal ground-state (∆ = 0)
the isospin aligns along the z-axis,〈τ3k〉 = 〈nk↑ +n−k↓ −1〉 = sgn(kF −k), but in a superconductor, the isospin
quantized axis is rotated through an angleθk so that the z-component of the isospin is

〈τ3k〉 = 〈nk↑ + n−k↓ − 1〉 = − cosθk = −
ǫk√
ǫ2

k + ∆
2
, (14.77)

which smears the occupancy around the Fermi surface, while the transverse isospon component, representing
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the pairing, is now finite,

〈τ1k〉 = 〈(c†k↑c†−k↓ + c−k↓ck↑)〉 = − sinθk = −
∆√

ǫ2
k + ∆

2
. (14.78)

Now since we have chosen∆2 = 0, 〈τ2k〉 = −i〈(c†k↑c†−k↓ − c−k↓ck↑))〉 = 0 so it follows that〈c−k↓ck↑〉 =
− 1

2 sinθk . Imposing the self-consistency condition∆ = − g0

V

∑
k〈c−k↓ck↑〉 (14.51) one then obtains the “BCS

gap equation”

∆ =
g0

V

∑

k

1
2

sinθk = g0

∫

|ǫk |<ωD

d3k
(2π)3

∆

2
√
ǫ2

k + ∆
2

(14.79)

BCS Gap Equation (T = 0)

Since the momentum sum is restricted to a narrow region of theFermi surface, one can replace the momentum
sum by an energy integral, to obtain

1 = g0N(0)
∫ ωD

−ωD

dǫ
1

2
√
ǫ2 + ∆2

= g0N(0) sinh−1
(
ωD

∆

)
≈ g0N(0) ln

[
2ωD

∆

]
(14.80)

so in the superconducting ground-state, the BCS gap is givenby

∆ = 2ωDe−
1

g0N(0) (14.81)

Remarks

• Note the disappearance of the factor of two in the exponent that appeared in Cooper’s original calculation
(14.25).

• The magnetic analogy has many intriguing consequences. Onecan immediately see that like a magnet,
there must be collective pair excitations, in which the isospins fluctuate about their ground-state orien-
tation. Like magnons, these excitations form quantized collective modes. In a neutral superconductor,
this leads to a gapless “sound” (Boguilubov or Goldstone) mode but in a charged superconductor, the
condensate phase mixes with the electromagnetic vector potential via the Anderson-Higg’s mechanism
(see 12.6), to produce the massive photon responsible for the Meissner effect.

14.4.3 The BCS ground-state

In the vacuum|0〉 electron isospin operators all point “down”τ3k = −1. To construct the ground state in
which the isospins are aligned with the Weiss field, we need toconstruct a state in which each isospin is
rotated relative to the vacuum. This is done by rotating the isospin at each momentumk through an angleθk

about they axis, as follows

|θk〉 = exp
[
−i
θk

2
ψ†kτyψk

]
| ⇓k〉 =

(
cos

θk

2
− i sin

θk

2
ψ†kτyψk

)
| ⇓k〉

= cos
θk

2
| ⇓k〉 − sin

θk

2
| ⇑k〉 (14.82)
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The ground-state is a product of these isospin states

|BCS〉 =
∏

k

|θk〉 =
∏

k

(
cos

θk

2
+ sin

θk

2
c†−k↓c

†
k↑

)
|0〉, (14.83)

where we have absorbed the minus sign by anticommuting the two electron operators. Following BCS, the
coefficients cos

(
θk
2

)
and sin

(
θk
2

)
are labelleduk and vk respectively, writing

|BCS〉 =
∏

k

|θk〉 =
∏

k

(
uk + vkc†−k↓c

†
k↑

)
|0〉 (14.84)

where

uk ≡ cos
(
θk

2

)
=

√√√√√1
2

[
1+ cosθk

︸  ︷︷  ︸
ǫk/Ek

]
=

√
1
2

[
1+

ǫk

Ek

]

vk ≡ sin
(
θk

2

)
=

√
1
2

[
1− cosθk

]
=

√
1
2

[
1− ǫk

Ek

]
(14.85)

Remarks

• Dropping the normalization, the BCS wavefunction can be rewritten as a coherent state(14.45)

|BCS〉 =
∏

k

(
1+ φkc†k↑c

†
−k↓

)
|0〉) = exp


∑

k

φkc†k↑c
†
−k↓

 |0〉 = exp
[
Λ†

]
|0〉, (14.86)

whereφk = − vk
uk

determines the Cooper pair wavefunction.
• We can thus expand the exponential in (14.86) as a coherent sum of pair-states

|BCS〉 =
∑

n

1
n!

(Λ†)n|0〉 =
∑

n

1
√

n!
|n〉. (14.87)

where|n〉 = 1√
n!

(Λ†)n|0〉 is a state containingn pairs.

The BCS wavefunction breaks gauge invariance, because it isnot invariant under gauge transformations
c†kσ → eiαc†kσ of the electron operators,

|BCS〉 → |α〉 =
∏

k

(1+ e2iαφkc†k↑c
†
−k↓)|0〉 =

∑ ei2nα

√
n!
|n〉. (14.88)

Under this transformation, the order parameter∆ = −g0/V
∑

k〈α|c−k↓ck↑|α〉, acquires a phase∆ → e2iα|∆|.
On the other hand, the energy of the BCS state is unchanged by agauge transformation, so the states|α〉must
form a family of degenerate broken symmetry states.

The action of the number operatorN̂ on this state may be represented as a differential with respect to phase,

N̂|α〉 =
∑ 1
√

n!
2nei2nα|n〉 = −i

d
dα
|α〉. (14.89)

so that

N̂ ≡ −i
d

dα
. (14.90)

In this way, we see that the particle number is the generator of gauge transformations. Moreover, the phase
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of the order parameter is conjugate to the number operator, [α,N] = i, and like position and momentum, or
energy and time, the two variables therefore obey an uncertainty principle

∆α∆N>
˜

1. (14.91)

Just as a macroscopic object with a precise position has an ill-defined momentum, a pair condensate with a
sharply defined phase (relative to other condensates) is a physical state of matter - a macroscopic Schrödinger
cat state with an ill-defined particle number.

For the moment we’re ignoring the charge of the electron, butonce we restore it, we will have to keep track
of the vector potential, which also changes under gauge transformations.

14.5 Quasiparticle excitations in BCS Theory

Let us now construct the quasiparticles of the BCS Hamiltonian. Recall that for any one-particle Hamiltonian
H = ψ†αhαβψβ, we can transform to an energy basis where the operatorsa†k = ψ†β〈β|k〉 diagonalizeH =∑

k Eka†kak. Now the〈β|k〉 are the eigenvectors ofhαβ, since〈α|Ĥ|k〉 = Ek〈α|k〉 = hαβ〈β|k〉, so to construct
quasiparticle operators we must project the particle operators onto the eigenvectors ofhαβ, a†k = ψ†β〈β|k〉.

We now seek to diagonalize the BCS Hamiltonian, written in Nambu form

H =
∑

k

ψ†k (~hk · ~τ)ψk +
V
g0
∆̄∆

The two dimensional Nambu matrix

hk = ǫkτ3 + ∆1τ1 + ∆2τ2 ≡ Ek n̂k · ~τ (14.92)

has two eigenvectors with isospin quantized parallel and antiparallel ton̂k , 3

n̂k · ~τ
(
uk

vk

)
= +

(
uk

vk

)
, n̂k · ~τ

(
−v∗k
u∗k

)
= −

(
−v∗k
u∗k

)
(14.93)

and corresponding energies±Ek = ±
√
ǫ2

k + |∆k |2. We can combine (14.93) into a single equation,

(n̂k · ~τ)Uk = Ukτ3 (14.94)

where

Uk =

(
uk −v∗k
vk u∗k

)
. (14.95)

is the unitary matrix formed from the eigenvectors ofhk . If we now projectψ†k onto the eigenvectors ofhk ,
we obtain the quasiparticle operators for the BCS Hamiltonian

3 Here complex conjugation is required to ensure that the complex eigenvectors are orthogonal when the gap is complex.
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a†k↑ = ψ
†

k ·
(
uk

vk

)
= c†k↑uk + c−k↓vk

a−k↓ = ψ
†

k ·
(
−v∗k
u∗k

)
= c−k↓u

∗
k − c†k↑v

∗
k (14.96)

Boguilubov transformation

This transformation, mixing particles and holes, is named after its inventor, Nikolay Boguilubov. If one
takes the complex conjugate of the quasihole operator and reverses the momentum, one obtainsa†k↓ =
c†k↓uk − c−k↑vk , which defines the spin down quasiparticle. The general expression for the spin up and down
quasiparticles can be written

a†kσ = c†kσuk + sgn(σ)c−k−σvk (14.97)

Let us combine the two expressions (14.96) into a single Nambu spinora†k ,

a†k = (a†k↑,a−k↓) = ψ
†

k

Uk︷      ︸︸      ︷(
uk −v∗k
vk u∗k

)
= ψ†kUk . (14.98)

Taking the Hermitian conjugate,ak = U†kψk thenψk = Ukak , sinceUU† = 1. Using (14.94),

ψ†khkψk = a†kUk
†
Uk Ekτ3︷︸︸︷
hkUk ak = ak

†Ekτ3ak (14.99)

so that as expected,

H =
∑

k

a†kEkτ3ak + V
∆̄∆

g0
(14.100)

is diagonal in the quasiparticle basis. Written out explicitly,

H =
∑

k

Ek(a†k↑ak↑ − a−k↓a
†
−k↓) + V

∆̄∆

g0
. (14.101)

If we rewrite the Hamiltonian in the form

H =
∑

kσ

Ek(a†kσakσ −
1
2

) + V
∆̄∆

g0
. (14.102)

we can interpret the excitation spectrum in terms of quasiparticles of energyEk =

√
ǫ2

k + |∆|2 and a ground
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state energy4

Eg = −
∑

k

Ek + V
∆̄∆

g0
. (14.104)

Now if the density of Boguilubov quasiparticles per spin isNs(E), then since the number of quasiparticles
states is conserved,Ns(E)dE = Nn(0)d|ǫ| (whereNn(0) = 2N(0) is the quasiparticle density of states in the
normal state). It follows that

N∗s(E) = Nn(0)
d|ǫk |
dEk

= Nn(0)


E√

E2 − |∆|2

 θ(E − |∆|) (14.105)

where we have writtenǫk =
√

E2
k − |∆|2 to obtaindǫk/dEk = Ek/

√
E2

k − |∆|2. The theta function describes
the absence of states in the gap (see Fig. 14.10 (a) ). Notice how the Andreev scattering causes states to pile
up in a square-root singularity above the gap - this feature is called a “coherence peak”.

One of the most direct vindications of BCS theory derives from tunneling measurements of the excitation
spectrum. in which the differential tunneling conductance is proportional to the quasiparticle density of states:

dI
dV
∝ Ns(eV) = Nn(0)

eV
√

eV2 − ∆2
θ(eV− |∆|) (14.106)

The first observation of such tunneling spectra in superconducting aluminium in 1960 by Ivar Giaever[18]
provided the first direct confirmation of the energy gap predicted by BCS theory (see Fig. 14.10 (b) ).

Example 14.2: Show that the the BCS ground-state is the vacuum for the Boguilubov quasiparticles,
i.e that the destruction operatorsakσ annihilate the BCS ground-state.
Solution: One way to confirm this is to directly construct the quasiparticle quasiparticle vacuum,|ψ〉
by repeatedly applying the pair destruction operators to the electron vacuum, so that if

|ψ〉 =
∏

k

a−k↓ak↑|0〉

⇒ akσ|ψ〉 = 0, (14.107)

for all k, since the square of a destruction operator is zero, so|ψ〉 is the quasiparticle vacuum. Using the
form (14.85 ),

ak↑ = ukck↑ + vkc†−k↓
a−k↓ = ukc−k↓ − vkc†k↑, (14.108)

where for convenience, we assume thatuk and vk are real, we find

∏

k

a−k↓ak↑|0〉 =
∏

k

(uk c−k↓ − vk c†k↑)(✘✘✘ukck↑ + vk c †−k↓)|0〉

=
∏

k

(ukvkc−k↓c
†
−k↓ − (vk)2c†k↑c

†
−k↓)|0〉

=
∏

k

vk ×
∏

k

(uk + vkc†−k↓c
†

k↑)|0〉 ∝ |BCS〉 (14.109)

4 Note that if we were to restore the constant term
∑

k ǫk dropped in (14.64), the ground-state energy becomes

Eg =
∑

k

(ǫk − Ek ) + V
∆̄∆

g0
. (14.103)
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tFig. 14.10 Contrasting (a) the quasiparticle density of states with (b) measured tunneling density
of states in Sn-MgO-Mg superconducting normal tunnel junctions after Giaever, Hart
and Megerle[19]. In practice, finite temperature, disorder, variations in the gap size
around the Fermi surface lead and “strong-coupling” corrections to BCS theory lead to
small deviations from the ideal ground-state BCS density of states.

where terms involving the destruction operator acting on the vacuum vanishand are omitted. Apart from
normalization, this is the BCS ground-state, confirming that the Boguilubov quasiparticle operators are
the unique operators that annihilate the BCS ground state.
Example 14.3:

(a) If the Boguilubov quasiparticleα†k↑ = c†k↑uk + c−k↓vkα−k↓, then starting with the equation of motion
of the Boguilubov quasiparticle,

[H, α†k↑] =
∂α†k↑

∂τ
= Ekα

†
k↑, (14.110)

show that

(
uk

vk

)
must be an eigenvector ofhk that satisfies

hk

(
uk

vk

)
=

(
ǫk ∆

∆ −ǫk

) (
uk

vk

)
= Ek

(
uk

vk

)
(14.111)

(b) By solving the eigenvalue problem assuming the gap is real, show that

u2
k =

1
2


1+

ǫk√
ǫ2

k + ∆
2



v2
k =

1
2


1− ǫk√

ǫ2
k + ∆

2


(14.112)
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Solution:

(a) We begin by writing

α†k↑ = ψ
†

k ·
(
uk

vk

)
(14.113)

whereψ†k = (c†k↑, c−k↓) is the Nambu spinor. Since [H, ψ†k ] = ψ†k hk , it follows that

[H, α†k↑] = ψ
†

k hk

(
uk

vk

)
(14.114)

Comparing (14.110) and (14.114), we see that the spinor

(
uk

vk

)
is an eigenvector ofhk ,

hk

(
uk

vk

)
=

(
ǫk ∆

∆ −ǫk

) (
uk

vk

)
= Ek

(
uk

vk

)
(14.115)

(b) Taking the determinant of the eigenvalue equation, det[hk − Ek1] = E2
k − ǫ2

k − ∆2=0, and imposing

the condition thatEk > 0, we obtainEk =

√
ǫ2

k + ∆
2.

Expanding the eigenvalue equation (14.115),

(Ek − ǫk)uk = ∆vk ,
∆uk = (Ek + ǫk)vk . (14.116)

Multiplying these two equations, we obtain (Ek − ǫk)u2
k = (Ek + ǫk)v2

k , or ǫk(u2
k + v2

k) = ǫk =

Ek(u2
k − v2

k), sinceu2
k + v2

k = 1 . It follows thatu2
k − v2

k = ǫk/Ek . Combining this withu2
k + v2

k = 1,
we obtain the results given in ( 14.112 ).

14.6 Path integral formulation.

After our discussion of the physics, let us return to the mathto examine how the BCS mean-field theory
is succinctly formulated using path integrals. The appearance of single pairing fieldsA andA† in the BCS
Hamiltonian makes it particularly easy to apply path-integral methods. We begin by writing the problem as a
path integral

Z =
∫
D[c̄, c]e−S (14.117)

where

S =
∫ β

0

∑

kσ

c̄kσ(∂τ + ǫk)ckσ −
g0

V
ĀA (14.118)

Here the condition|ǫk | < ωD is implicitly implied in all momentum sums. Next, we carry out the Hubbard-
Stratonovich transformation, (see chapter 14),

−gĀA→ ∆̄A+ A∆̄ +
V
g0
∆̄∆. (14.119)
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where∆̄(τ) and∆(τ) are fluctuating complex fields. Inside the path integral this substitution is formally exact,
but its real value lies in the static mean-field solution it furnishes for superconductivity. We then obtain

Z =
∫
D[∆̄,∆, c̄, c]e−S

S =
∫ β

0
dτ


∑

kσ

c̄kσ(∂τ + ǫk)ckσ + ∆̄A+ A∆̄ +
V
g0
∆̄∆.

 (14.120)

The Hamiltonian part of this expression can be compactly reformulated in terms of Nambu spinors, following
precisely the same steps used for the operator Hamiltonian.To transform the Berry phase term, we note that
since the Nambu spinors satisfy a conventional anticommutation algebra, they must have precisely the same
Berry phase term as conventional fermions, i.e

∫
dτ c̄kσ∂τckσ =

∫
dτψ̄k∂τψk

5.
Putting this all together, the partition function and the action can now be re-written

Z =
∫
D[∆̄,∆, ψ̄, ψ]e−S

S =
∫ β

0
dτ


∑

k

ψ̄k(∂τ + hk)ψk +
V
g0
∆̄∆

 . (14.122)

wherehk = ǫkτ3 + ∆1τ1 + ∆2τ2, with ∆ = ∆1 − i∆2, ∆̄ = ∆1 + i∆2. Since the action is explicitly quadratic in
the Fermi fields, we can carry out the Gaussian integral of theFermi fields to obtain

Z =
∫
D[∆̄,∆]e−SE[∆̄,∆]

e−SE[∆̄,∆] =
∏

k

det[∂τ + hk(τ)]e−V
∫ β

0
dτ ∆̄∆g0 (14.123)

for the effective action, where we have separated the fermionic determinant into a product over each decou-
pled momentum. Thus

SE[∆̄,∆] = V
∫ β

0
dτ
∆̄∆

g0
+

∑

k

Trln(∂τ + hk). (14.124)

where we have replaced ln det→ Tr ln. This is the action of electrons moving in atime-dependentpairing
field ∆(τ).

14.6.1 Mean Field Theory as a saddle point of the path integral

Although we can only explicitly calculateSE in static configurations of the pair field, in BCS theory it is
preciselythese configurations that saturate the path integral in the thermodynamic limit (V → ∞). To see this

5 We can confirm this result by anticommuting the down spin Grassmans in the Berry phase, then integrating by parts:

SB =
∑

k

∫ β

0
dτ

[
c̄k↑∂τck↑ − (∂τc−k↓)c̄−k↓

]
=

∑

k

∫ β

0
dτ

[
c̄k↑∂τck↑ + c−k↓∂τc̄−k↓ −

→0︷         ︸︸         ︷
∂τ(c−k↓c̄−k↓)

]
=

∑

k

∫ β

0
dτ

[
ψ̄k∂τψk

]
. (14.121)

The anti-periodicity of the Grassman fields in imaginary time causes the total derivative to vanish.
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consider the path integral

Z =
∫
D[∆̄,∆]e−SE[∆̄,∆] (14.125)

Every term in the effective action is extensive in the volumeV, so if we find a static configuration of∆ = ∆o

which minimizesSE = VS0, so thatδSE/δ∆ = 0, fluctuationsδ∆ around this configuration will cost a free
energy that is of orderO(V), i.e. the amplitude for a small fluctuation is given by

e−S = e−VS0+O(V×|δ∆|2) (14.126)

The appearance ofV in the coefficient of this Gaussian distribution implies the variance ofsmall fluctuations
around the minimum will be of order〈δ∆2〉 ∼ O(1/V), so that to a good approximation,

Z ≈ ZBCS = e−SE[∆̄0,∆0] (14.127)

This is why the mean-field approximation to the path integralis essentially exact for the BCS model. Note
that we can also expand the effective action as a Gaussian path integral

ZBCS =

∫
D[ψ̄, ψ]e−SMFT

SMFT =

∫ β

0
dτ


∑

k

ψ̄k(∂τ +

hk︷                  ︸︸                  ︷
ǫkτ3 + ∆1τ1 + ∆2τ2)ψk +

V
g0
∆̄∆


. (14.128)

in which the saddle point solution∆(0)(τ) ≡ ∆ = ∆1 − i∆2 is assumed to be static. Since this is a Gaussian
integral, we can immediately carry out the the integral to obtain

ZBCS =
∏

k

det(∂τ + hk) exp

[
−Vβ

g0
∆̄∆

]

It is far easier to work in Fourier space, writing the Nambu fields in terms of their Fourier components

ψk(τ) =
1
√
β

∑

n

ψkne−iωnτ (14.129)

In this basis,

∂τ + h→ [−iωn + hk ]. (14.130)

and the path integral is now diagonal in momentum and frequency:

ZBCS =

∫ ∏

kn

dψ̄kndψkne−SMFT [ψ̄kn,ψkn]

SMFT [ψ̄kn, ψkn] =
∑

k n

ψ̄kn(−iωn + hk)ψkn + βV
∆̄∆

g0
. (14.131)

Remarks

• The distribution functionP[ψk ] for the Fermion fields is Gaussian,

P[ψkn] ∼ e−SMFT ∝ exp[−ψ̄kn(−iωn + hk)ψkn] (14.132)
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so that the amplitude of fluctuations (see 13.136) is given by

〈ψknψ̄kn〉 = −G(k, iωn) = [−iωn + hk ]−1. (14.133)

which is the electron Green’s function in the superconductor. We shall study this in the next section.
• We can now evaluate the determinant

det[∂τ + hk ] =
∏

n

det[−iωn + hk ] =
∏

n

[ω2
n + ǫ

2
k + |∆|2] (14.134)

With these results, we can fully evaluate the partition function

ZBCS =
∏

n

[ω2
n + ǫ

2
k + |∆|2] × e−

βV|∆|2
g0 = e−SE (14.135)

and the effective action is then

F [∆,T] =
SE

β
= −T

∑

kn

ln[ω2
n + ǫ

2
k + |∆|2] + V

|∆|2
g0

(14.136)

Free energy; BCS pair condensate

This is the mean-field free-energy for the BCS model.

∆1

∆̄ = ∆1 + i∆2

∆2

∆̄

F [∆]

|∆|

φ

tFig. 14.11 Showing the form of F [·] for T < Tc. The free energy is a minimum at a finite value of
|Ψ|. The Free energy is invariant under changes in phase of the gap, which are
generated by the number operator N̂ ∝ −i d

dφ . See Ex. 15.4.
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Remarks

• This quantity provides a microscopic realization of the Landau free energy of superconductor discussed in
chapter 12. Notice howF is invariant under changes in the phase of the gap function sothatF [∆,T] =
F [∆eiφ,T], which follows from particle conservation. (The number operator, which commutes withH,
is the generator of phase translations.).

• Following our discussion in Chapter 12, we expect that belowTc the Free energyF [∆,T] develops a
minimum at finite|∆|, forming a “Mexican Hat” potential (Fig 14.11).

• Notice the appearance of the quasiparticle energyEk =

√
ǫ2

k + |∆|2 inside the logarithm.

To identify the equilibrium gap∆, we minimizeF w.r.t ∆̄, which leads to the BCS gap equations

∂F
∂∆̄
= −

∑

kn

∆

ω2
n + E2

k

+ V
∆

g0
= 0 (14.137)

or

1
g0
=

1
βV

∑

kn

1

ω2
n + E2

k

BCS Gap equation

If we now convert the Matsubara sum to a contour integral, we obtain

1
β

∑

n

1

ω2
n + E2

k

=

∮
dz
2πi

f (z)
1

z2 − E2
k

=

∮
dz
2πi

f (z)
1

2Ek

[
1

z− Ek
− 1

z+ Ek

]

=
∑

k

=2 f (Ek )−1︷                ︸︸                ︷
( f (Ek) − f (−Ek))

1
2Ek
=

tanh(βEk/2)
2Ek

(14.138)

where the integral runs anticlockwise around the poles atz= ±Ek . Thus the gap equation can be rewritten as

1
g0
=

∫

|ǫk |<ωD

d3k
(2π)3

[ tanh(βEk/2)
2Ek

]
BCS Gap Equation II (14.139)

where we have reinstated the implicit energy shell restriction |ǫk | < ωD. If we approximate the density of
states by a constantN(0) per spin over the narrow shell of states around the Fermi surface, we may replace
the momentum sum by an energy integral so that

1
g0N(0)

=

∫ ωD

0
dǫ

[ tanh(β
√
ǫ2 + ∆2/2)

√
ǫ2 + ∆2

]
. (14.140)

At absolute zero, the hyperbolic tangent becomes equal to unity. If we subtract this equation from its zero
temperature value, it becomes

∫ ∞

0
dǫ

[ tanh(β
√
ǫ2 + ∆2/2)

√
ǫ2 + ∆2

− 1√
ǫ2 + ∆2

0

]
= 0, (14.141)

where∆0 = ∆(T = 0) is the zero temperature gap. Since the argument of the integrand now rapidly converges

472



bk.pdf April 29, 2012 241

c©2011 Piers Coleman Chapter 14.

to zero at high energies, we can set the upper limit of integration to zero. This is a useful form for the nu-
merical evaluation of the temperature dependence of the gap. Fig (14.12) contrasts the BCS prediction of the
temperature dependent gap obtained from (14.141), with thegap measured from tunneling in lead.

Example 14.4:
Carry out the Matsubara sum in (14.136 ) to derive a an explicit form for the Free energy of the super-
conducting condensate in terms of the quasiparticle excitation energies.

F = −2TV
∫

|ǫk |<ωD

d3k
(2π)3

[
ln[2 cosh(βEk/2)]

]
+ V
|∆|2
g0

(14.142)

Solution:
Using the contour integration method, we can rewrite (14.136) as

F = −
∑

k

∮
dz
2πi

f (z)ln[z2 − E2
k ] + V

|∆|2
g0

(14.143)

where the integral runs anti-clockwise around the poles of the Fermi function. The logarithm inside the
integral can be split up into two terms

ln[z2 − E2
k ] → ln[Ek − z] + ln[−Ek − z] (14.144)

which we immediately recognize as the contributions from fermions with energies±Ek , so that the
result of carrying out the contour integral, is

F = −TV
∫

d3k
(2π)3

[
ln[1 + e−βEk ] + ln[1 + eβEk ]

]
+ V
|∆|2
g0

= −2TV
∫

|ǫk |<ωD

d3k
(2π)3

[
ln[2 cosh(βEk/2)]

]
+ V
|∆|2
g0

(14.145)

14.6.2 Computing ∆ and Tc

To computeTc we shall take the Matsubara form of the gap equation (14.136), which we rewrite replacing
the sum over momenta by an integral near the Fermi energy, replacing 1

V

∑
k → N(0)

∫
dǫ we get

1
g0
= T N(0)

∑

n

∫ ∞

−∞
dǫ

1

ω2
n + ǫ

2
k + ∆

2
= πT N(0)

∑

|ωn|<ωD

1√
ω2

n + ∆
2

(14.146)

where we have extended the limits of integration over energyto infinity. By carrying out the integral over
energy first, we are forced to impose the cut-off on the Matsubara frequencies.

If we now takeT → 0 in this expression, we may replace

T
∑

n

= T
∑ ∆ωn

2πT
→

∫
dω
2π

(14.147)

so that at zero temperature and setT = 0, we obtain

1 = gN(0)
∫ ωD

0

dǫ
√
ǫ2 + ∆2

= gN(0)
[
sinh−1

(
ωD

∆

)]
≈ gN(0) ln

(
2ωD

∆

)
(14.148)

473

Chapter 14. c©Piers Coleman 2011

tFig. 14.12 Comparing the temperature dependence of the gap on the reduced temperature T/Tc

with the gap measured by tunneling in superconducting lead, after [20].

where we have assumedgN(0) is small, so thatωD/∆ >> 1. We may now solve for the zero temperature gap,
to obtain

∆ = 2ωDe−
1

gN(0) (14.149)

This recovers the form of the gap first derived in section 14.4.2.
To calculate the transition temperature, we note that just below the transition temperature, the gap becomes

infinitesimally small, so that∆(T−c ) = 0. Substituting this into (14.147), we obtain

1
gN(0)

= πTc

∑

|ωn|<ωD

1
|ωn|
= 2πTc

∞∑

n=0

(
1
ωn
− 1
ωn + ωD

)
(14.150)

where we have imposed the limit onωn by subtracting off an identical term, withωn→ ωn+ωD. Simplifying
this expression gives

1
gN(0)

=

∞∑

n=0


1

n+ 1
2

− 1

ωn +
1
2 +

ωD
2πTc

 (14.151)

At this point we can use an extremely useful identity of the digamma functionψ(z) = d
dz lnΓ(z),

ψ(z) = −C −
∞∑

n=0

(
1

z+ n
− 1

1+ n

)
(14.152)
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whereC = 0.577 is the Euler constant, so that

1
gN(0)

=

≈ln(ωD/(2πTc))︷          ︸︸          ︷
ψ(

1
2
+

ωD

2πTc
)−ψ(

1
2

) = ln


ωDe−ψ( 1

2 )

2πTc

 , (14.153)

We we have approximatedψ(z) ≈ ln(z) for large|z|. Thus,

Tc =

≈1.13︷     ︸︸     ︷(
e−ψ(1/2)

2π

)
ωDe−

1
g0N(0) (14.154)

Notice that the details of the way we introduced the cut-off into the sums affects both the gap∆ in (14.149)
and the transition temperature in (14.154). However, the ratio of twice the gap toTC,

2∆
Tc
= 8πeψ( 1

2 ) ≈ 3.53 (14.155)

is universalfor BCS superconductors, because the details of the cut-off cancel out of this ratio. Experiments
confirm that this ratio of gap to transition is indeed observed in phonon mediated superconductors.

14.7 The Nambu Gor’kov Greens function

To describe the propagation of electrons and the Andreev scattering between electron and hole requires a
matrix Greens function, function formed from two Nambu spinors. This objuect, written

Gαβ(k, τ) = −〈Tψkα(τ)ψ†kβ(0)〉, (14.156)

is called the Nambu Gor’kov Greens function. Written out moreexplicitly, it takes the form

G(k, τ) = −
〈
T

(
ck↑(τ)

c̄†−k↓(τ)

)
⊗ (c†k↑(0), c−k↓(0))

〉

= −
[
〈Tck↑(τ)c†k↑(0)〉 〈Tck↑(τ)c−k↓(0)〉
〈Tc†−k↓(τ)c†k↑(0)〉 〈Tc†−k↓(τ)c−k↓(0)〉

]
. (14.157)

The unusual off-diagonal componenents

F(k, τ) = −〈Tck↑(τ)c−k↓(0)〉, F̄(k, τ) = −〈Tc†−k↓(τ)c
†

k↑(0)〉. (14.158)

in G(k, τ) describe the amplitude for an electron to convert to a hole as it Andreev scatters off the condensate.
These Green’s functions are named Gor’kov Greens functions.

Now from (13.134) and (14.131) the Green function is given bythe inverse of the Gaussian actionG =
−(∂τ −H)−1, or in Matsubara space

G(k, iωn) = [iωn − hk ]−1 ≡ 1
(iωn − hk)

(14.159)

where we use the notation1M ≡ M−1 to denote the inverse of the matrixM. Now sincehk = ǫkτ3+∆1τ1+∆2τ2
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(14.92) is a sum of Pauli matrices, its square is diagonal:h2
k = ǫ

2
k+∆

2
1+∆

2
2 = E2

k and thus (iωn−hk)(iωn+hk) =
(iωn)2 − E2

k . Using the matrix identity1
B = A 1

BA, we may then write

G(k) = (iωn + hk)
1

(iωn − hk)(iωn + hk)
=

(iωn + hk)

[(iωn)2 − E2
k ]

(14.160)

Written out explicitly, this is

G(k, iωn) =
1

(iωn)2 − E2
k

[
iωn + ǫk ∆

∆̄ iωn − ǫk

]
(14.161)

whereEk =

√
ǫ2

k + ∆
2 is the quasiparticle energy.

To gain insight, let obtain the same results diagrammatically. Andreev scattering converts a particle into a
hole, which we denote by the Feynman scattering vertices

∆̄c−k↓ck↑ ≡
∆k −k

∆̄

∆c†k↑c
†
−k↓ ≡

∆−k k
∆ (14.162)

The “bare” propagators for the electron and hole are the diagonal components of the bare Nambu propagator

G
0
(k) =

1
iωn − ǫkτ3

=


1

iωn−ǫk
1

iωn+ǫk

 . (14.163)

We denote these two components by the diagrams
k

≡ G0(k) =
1

iωn − ǫk−k
≡ −G0(−k) =

1
iωn + ǫk

(14.164)

(The minus sign in the second term is because we have commutedcreation and annihilation operators to
construct the hole propagator. ) The Feynman diagrams for the conventional propagator are given by

= ...k −kk k k −k −kk k
(14.165)

involving an even number of Andreev reflections. This enables us to identify a “self-energy” term that de-
scribes the Andreev scattering off a hole-state,

k

Σ = Σ(k) =
−k

=
|∆|2

iωn + ǫk
(14.166)

We may then redraw the propagator as

G(k) = ...ΣΣΣ

=
1

iωn − ǫk − Σ(iωn)
=

1

iωn − ǫk − |∆|2
iωn+ǫk

=
iωn + ǫk

(iωn)2 − E2
k

. (14.167)

In a similar way, the anomalous propagator is given by

= ...−k k k−k k −k

=
−k k

(14.168)
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so that

F(k) =
∆

iωn + ǫk

1

iωn − ǫk − |∆|2
iωn+ǫk

=
∆

(iωn)2 − E2
k

(14.169)

Example 14.5:
Decompose the Nambu Gor’kov Greens function in terms of its quasiparticle poles, and show that that
the diagonal part can be written

G(k) =
u2

k

iωn − Ek
+

v2
k

iωn + Ek
. (14.170)

Solution:
To carry out this decomposition, it is convenient to introduce the projectionoperators

P+(k) =
1
2

(1+ n̂ · ~τ), P−(k) =
1
2

(1− n̂ · ~τ), (14.171)

which satisfyP2
+ = P+, P2

− = P− andP+ + P− = 1, and furthermore,

P+(k)(n̂k · ~τ) = P+(k), P−(k)(n̂k · ~τ) = −P−(k), (14.172)

so that these operators conveniently project the isospin onto the directions±nk .
We can use the projectorsP±(k) to project the Nambu propagator as follows

G = (P+ + P−)
1

iωn − Ek n̂ · ~τ
= P+

1
iωn − Ek

+ P−
1

iωn + Ek
(14.173)

we can interpret these two terms as the “quasiparticle” and “quasi-hole” parts of the Nambu propagator.
If we explicitly expand out this expression, using

n̂ =

(
ǫ

Ek
,
∆1

Ek
,
∆2

Ek

)
, (14.174)

then

P± =
1
2

1±

ǫk
Ek

∆

2Ek
∆̄

2Ek
− ǫk

2Ek

 (14.175)

where∆ = ∆1 − i∆2, we find that the diagonal part of the Green’s function is given by

G(k) =
1
2

(
1+

ǫk

Ek

)
1

iωn − Ek
+

1
2

(
1− ǫk

Ek

)
1

iωn + Ek

=
u2

k

iωn − Ek
+

v2
k

iωn + Ek
. (14.176)

confirming thatuk and vk determine the overlap between the electron and the quasiparticle and quasi-
hole, respectively.

Example 14.6: The semiconductor analogy.
One useful way to regard superconductors, is via the “semiconductoranalogy”, in which the quasi-
particles are treated like the positive and negative energy excitations of a semiconductor. Divide the
Brillouin zone up into two equal halves, and redefine a set of positive andnegative energy quasiparticle
operators according to

α†kσ+ = a†kσ,
α†kσ− = sgn(σ)a−k−σ,

}
(k ∈ 1

2
BZ). (14.177)
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(a) Rewrite the BCS Hamiltonian in terms of these new operators, and show that the excitation spectrum
can be interpreted in terms of an empty band of positive energy excitationsand a filled band of
negative energy excitations.

(b) Show that the BCS ground-state wavefunction can be regarded as afilled sea of negative energy
quasiparticle states and an empty sea of positive energy quasiparticle states.

Solution:

(a) Dividing the Brillouin zone into two halves, the BCS Hamiltonian can be re-written

H =
∑

k∈ 1
2 BZ

Ek(a†k↑ak↑ − a−k↓a
†
−k↓) +

∑

k∈ 1
2 BZ

Ek(a†−k↑a−k↑ − ak↓a
†

k↓)

=
∑

k∈ 1
2 BZ,σ

Ek(a†kσakσ − a−kσa†−kσ)

=
∑

k∈ 1
2 BZ,σ

Ek(α†kσ+αkσ+ − α†k−αkσ−) (14.178)

corresponding to two bands of positive and negative energy quasiparticles.
(b) Following example (15.2), the BCS ground-state can be written (up to anormalization) as

|ψBCS〉 =
∑

k

a−k↓ak↑|0〉. (14.179)

Factoring the product into the two halves of the Brillouin zone, we may rewritethis as

|ψBCS〉 =
∏

k∈ 1
2 BZ

(ak↓ak↑)(a−k↓a−k↑)|0〉

=

empty sea of positive energy qp︷        ︸︸        ︷∏

k∈ 1
2 BZ,σ

αkσ+

∏

k∈ 1
2 BZ,σ

α†kσ−

︸         ︷︷         ︸
filled sea of negative energy qp

|0〉 (14.180)

corresponding to an empty sea of positive energy quasiparticles and a filled sea of negative energy
quasiparticles. (See Fig. 14.13) .

14.7.1 Tunneling Density of states and Coherence factors

In a superconductor, the particle-hole mixing transforms the character of the quasiparticle, changing the
matrix elements for scattering, introducing terms we call “coherence factors” into the physical response
functions. These effects produce dramatic features in the various spectroscopies of the superconducting con-
densate.

Let us begin by calculating the tunneling density of states,which probes the spectrum to add and remove
particles from the condensate. In a tunneling experiment the differential conductance is directly proportional
to the local spectral function,

dI
dV
∝ A(ω)|ω=eV. (14.181)

where

A(ω) =
1
π

Im
∑

k

G(k, ω − iδ) (14.182)
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tFig. 14.13 Semiconductor analogy for BCS theory (See example 15.6). The BCS ground-state
can be regarded as a filled sea of negative energy quasiparticles. Positive energy
excitations are created by adding positive quasiparticles α†kσ|ψBCS or or removing
negative energy quasiparticles, αkσ−|ψBCS .

The mixed particle-hole character of the quasiparticlea†k↑ = ukc†k↑ + vkc−k↓, means that quasiparticles can
be created by adding or removing electrons from the condensate. Taking the decomposition of the Green’s
function in terms of its poles (14.176)

G(k, z) =
ω + ǫk

z2 − E2
k

=
1
2

(
1+

ǫk

Ek

)
1

z− Ek
+

1
2

(
1− ǫk

Ek

)
1

z+ Ek

=
u2

k

z− Ek
+

v2
k

z+ Ek
, (14.183)

it follows that

A(k, ω) =
1
π

ImG(k, ω − iδ) = u2
kδ(ω − Ek) + v2

kδ(ω + Ek) (14.184)

The positive energy part of this expression corresponds to the process of creating a quasiparticle by adding
an electron, while the negative energy part corresponds to the creation of a quasiparticle by adding a hole.
The amplitudes

|uk |2 = |〈qp : kσ|c†kσ|ψBCS〉|2
|vk |2 = |〈qp : kσ|c−k−σ|ψBCS〉|2 (14.185)

describe the probability to create a quasiparticle throughthe addition, or removal of an electron, respectively.
In this way, the tunneling density of states contains both negative and positive energy components.

Now we can sum over the momenta in (14.182), replacing the momentum sum by an integral over energy.
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In thi case,

A(ω) =
N(0)
π

Im
∫ ∞

−∞
dǫ

ω + ǫ

(ω − iδ)2 − ǫ2 − |∆|2 = −N(0)Im
ω√

∆2 − (ω − iδ)2

= N(0)
|ω|

√
∆2 − ω2

θ(|ω| − ∆) (14.186)

where we have used
√
∆2 − (ω − iδ)2 = i

√
ω2 − ∆2sgn(ω). Curiously, this result is identical (up to a factor

of one half derived from the energy average of the coherence factors) with the quasiparticle density of states,
except that there is both a positive and negative energy component to the spectrum. In “weakly coupled”
phonon-paired superconductors, such as Niobium, experimental tunneling spectra are in good accord with
BCS theory. In more strongly coupled electron phonon superconductors, wiggles develop in the spectrum
related to the detailed phonon spectrum.

tFig. 14.14 Comparison between the experimental tunneling spectrum and the BCS spectrum,
after Eric Hudson et al [21]

Other forms of spectroscopy probe the condensate by scattering electrons. In general a one-particle observ-
ableÂ, such as spin or charge density can be written as

Â =
∑

kα,k′β

Aαβ(k, k′)c†kαck′β (14.187)

whereAαβ(k, k′) = 〈kα|Â|k′β〉 are the electron matrix elements of the operatorÂ. For example, for the
charge operatorρq = e

∑
kσ c†k+qσckσ, Aαβ(k, k′) = eδαβδk−(k′+q). (See table 15.1). Let us now re-write this

expression in terms of Boguilubov quasiparticle operators, substitutingc†kα = ukakα−sgn(α)vka†−k−α (where
we have taken the gap,uk andvk to be real), so that the operator expands into the long expression

Â =
∑

kαk′β

Aαβ(k, k′)
[
(uu′a†kαak′β − vv′α̃β̃a−k−αa†−k′−β) − (uv′β̃a†kαa†−k′−β + H.c)

]
, (14.188)
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Table
14.1 Coherence
Fac-
tors

Name Â Aαβ(k, k′) θ Coherence factor

Density ρ̂q δαβδk−(k′+q) +1 uu′ − vv′

Magnetization ~Mq

(
gµB

2

)
~σαβδk−(k′+q) -1 uu′ + vv′

Current ~Jq δαβ[(k′ + q/2)− e~A]δk−(k′+q) -1 uu′ + vv′

where we have used the short-hand ˜α = sgn(α), β̃ = sgn(β) andu ≡ uk , u′ ≡ uk′ and so on. This expression can
be simplified by taking account of the time-reversal properties of Â. Under time-reversal,A→ −iσ2AT iσ2 =

θA, whereθ = ±1 is the parity of the operator under time-reversal. In long hand6,

Aαβ(k, k′)→ α̃β̃A−β −α(−k′,−k) = θAαβ(k, k′) (14.189)

Using this property, we can rewritêA as

Â =
∑

kα,k′β

A(k, k′)αβ

[
(uu′ − θvv′)a†kαak′β +

1
2

(
(uv′ − θvu′)a†kαa†−k−β β̃ + H.c.

)]
(14.190)

We see that in the pair condensate, the matrix element for quasiparticle scattering is renormalized by the
“coherence factor”

Aαβ(k, k′)→ Aαβ(k, k′) × (ukuk′ − θvkvk′ ), (14.191)

while the matrix element for creating a pair of quasiparticles has been modified by the factor

Aαβ(k, k′)→ Aαβ(k, k′) × (ukvk′ − θvkuk′ ) (14.192)

Remarks

6 For example, for the magnetization density at wavevectorq where~A(k, k′) = ~σδk−(k′+q), using the result~σT = iσ2~σiσ2, we obtain

−iσ2 ~AT (−k′,−k)iσ2 = −iσ2~σiσ2δ−k′−(−k+q) = −~σδk−(k′+q), corresponding to an odd time-reversal parity,θ = −1.
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• At the Fermi energy,|uk | = |vk | = 1√
2
, so that for time-reverse even operators (θ = 1) the coherence factors

vanish on the Fermi surface.
• If we square the quasiparticle scattering coherence factor, we obtain

(uu′ − θvv′)2 = u2(u′)2 + v2(v′)2 − 2θ(uv)(u′v′)

=
1
4

(1+
ǫ

E
)(1+

ǫ′

E′
) +

1
4

(1− ǫ

E
)(1− ǫ′

E′
) − 2θ

(
∆2

4EE′

)

=
1
2

(
1+

ǫǫ′

EE′
− θ ∆

2

EE′

)
(14.193)

with the notationǫ = ǫk , ǫ′ = ǫk′ , E = Ek andE′ = Ek′ .
• If we employ the semiconductor analogy, using positive (λ = +) and negative energy quasiparticles (λ = −)

(see Example 15.6), with energiesEkλ = sgn (λ)Ek (λ = ±) and modified Boguilubov coefficients,

ukλ =

√
1
2

(
1+

ǫk

Ekλ

)
, vkλ =

√
1
2

(
1− ǫk

Ekλ

)
, (14.194)

then

(ukvk′ − θvkuk′ )a
†

kσa†−k′ = (uk+uk′− − θvk+vk′−)α
†

kσ+ak′σ′−, (14.195)

so that the creation of a pair of quasiparticles can be regarded as an “interband” scattering of a “valence”
negative energy quasiparticle into a “conduction” positive energy quasiparticle state. This has the ad-
vantage that all processes can be regarded as quasiparticlescattering, with a single coherent factor for
all processes:

Â =
1
2

∑

kσλ, k′σ′λ′
Aσσ′ (k, k′)(uu′ − θvv′) × α†kσλαkσ′λ′ . (14.196)

Once the condensate forms, the coherence factors renormalize the charge, spin and current matrix elements
of a superconductor. For example, in a metal, the NMR relaxation rate is determined by the thermal average
of the density of states,

1
T1T

∝
∫ (
− d f

dE

)
N(E)2|〈E ↑ |S+|E ↓〉|2 =

∫ (
− d f

dE

)
N(E)2 = N(0)2. (14.197)

at temperatures much smaller than the Fermi energy. However, in a superconductor, we need to take account
of the strongly energy dependent quasiparticle density of states

N(E)→ N(0)
|E|

√
E2 − ∆2

(14.198)

while in this case, the matrix elements

|〈E ↑ |S+|E ↓〉|2→ |〈E ↑ |S+|E ↓〉|2(u(E)2 + v(E)2) = 1

are unrenormalized, so that the NMR relaxation rate becomes
(

1
T1T

)

s

/ (
1

T1T

)

n

=

∫
dE

(
− d f

dE

)
E2

E2 − ∆2
θ(|E| − ∆) =

1
2

∫ ∞

∆

dE

(
− d f

dE

)
E2

E2 − ∆2
(14.199)

The NMR relaxation rate is thus sensitive to the coherence peak in the density of states, which leads to a
sharp peak in the NMR relaxation rate just below the transition temperature, known as the “Hebel Slichter”
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peak (Fig. 14.15)7. By contrast, the absorption coefficient for ultrasound is proportional to the imaginary part
of the charge susceptibility atq = 0, which in a normal metal is given by

αn(T) ∝
∫

dE

(
− d f

dE

)
N(E)

=1︷         ︸︸         ︷
|〈E|ρq=0|E〉|2 ∼ N(0) (14.200)

but in the superconductor, this becomes

αs(T) ∝
∫

dE

(
− d f

dE

)
Ns(E)|〈E|ρq=0|E〉|2 × (u(E)2 − v(E)2), (14.201)

but in this case, the renormalization of the matrix elements, identitically cancels the renormalization of the
density of states,

Ns(E)(u2 − v2) = N(0)θ(|E| − ∆)

so there is no net coherence factor effect and

αs(T) ∝ N(0)
∫ ∞

−∞
dE

(
− d f

dE

)
θ(|E| − ∆) = N(0)2f (∆) (14.202)

so that
αs(T)
αn(T)

=
2

e∆/T + 1
(14.203)

Fig. 14.15 contrasts the temperature dependence of NMR withthe ultrasound attenuation for a BCS super-
conductor.

Example 14.7:

a) Calculate the dynamical spin susceptibility of a superconductor using theNambu Green’s function,
and show it takes the formχab(q) = δabχ(q), where

χ(q) = 2
∑

k,η,η′
(uu′ + vv′)2 f (E′) − f (E)

ν − (E′ − E)

= 2
∑

k,η,η′

(
1
2

(
1+

ǫǫ′ + ∆2

EE′

))2
f (E′) − f (E)
ν − (E′ − E)

(14.204)

whereη = ±, η′ = ± and we have employed the (semi-conductor analogy) notationu ≡ ukη, u′ ≡
uk+qη′ , E ≡ Eksgn (η), E′ ≡ Ek+qsgn (η′) and so on.

b) Assuming that the NMR relaxation rate is given by the expression

1
T1T

∝
∑

q

χ′′(q, ν − iδ)
ν

∣∣∣∣∣∣∣
ν→0

(14.205)

show that
1

T1T
∝

∫ (
− d f

dE

)
N(E)2. (14.206)

Solution:

7 Equation 14.199 contains a logarithmic divergence from the coherence peak. In practice, this is cut-off by the quasiparticle scattering.
To obtain a finite result, one can replaceE → E − i/(2τ) and use the expressionN(E) = Im(E/

√
∆2 − (E − i/(2τ))2) to regulate the

logarithmic divergence.
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tFig. 14.15 Showing the effect of coherence factors NMR and ultrasonic attenuation in a
superconductor, calculated in BCS theory. Orange line displays the NMR relaxation
rate, showing the Hebel Slichter peak. Blue line, the ultrasound attenuation. The
integrals entering the NMR relaxation rate are formally divergent for T < Tc and were
regulated by introducing a small imaginary damping rate iδ to the frequency where
δ/∆ = 0.005.

a) The dynamical susceptibility in imaginary time is given by

χab(q, iνn) = 〈Ma(q)Mb(−q)〉 =
∫ β

0
dτ〈T Ma(q, τ)Mb(−q,0)〉eiνnτ (14.207)

Now since the system is spin isotropic, we can writeχab(q) = δabχ(q), using thez− component of
the magnetic susceptibility to calculateχ(q) = 〈Mz(q)Mz(−q)〉. Now in Nambu notation,

Mz(−q) =
∑

k

(c†k+q↑ck,↑ − c†k+q↓ck,↓) =
∑

k

(c†k+q↑ck↑ + ck↓c
†

k+q↓)

=
∑

k

(c†k+q↑ck↑ + c−k−q↓c
†
−k↓)

=
∑

k

ψk+q
† · ψk (14.208)

where we have anticommuted the down fermion operators and relabelledk → −k + q. Thus thez−
component of the magnetization is a unit matrix in Nambu space. The vertexfor the magnetization
is thus

k

k+q

= Mz(−q) (14.209)
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and we can guess that the Feynman diagram for the susceptibility is

〈Mz(q)Mz(−q)〉 =

k

k+q

= −1
β

∑

k

Tr
[G(k+ q)G(k)

]

where the fermion lines represent the Nambu propagator.
Let us confirm this result. The dynamical susceptibility is written

χ(q, τ) =
∑

k,k′
〈Tψk′−q

†(τ) · ψk′ (τ) ψ
†

k+q(0) · ψk(0)〉 (14.210)

Since the mean-field describes a non-interacting system, we can evalute this expression using Wick’s
theorem :

χ(q, τ) =
∑

k,k′
〈Tψ k′−qα

†(τ)ψ k′α(τ)ψ†k+qβ(0)ψkβ(0)〉

= −
∑

k

Gαβ(k + q, τ)Gβα(k,−τ)

= −
∑

k

Tr[G(k + q, τ)G(k,−τ)]. (14.211)

Notice that the “anomalous” contractions of the Nambu spinors, such as〈Tψkα(τ)ψk′β(0)〉 = 0 be-
cause these terms describe “triplet” correlations that vanish in a singlet superconductor. For example,
〈Tψk1(τ)ψk′2(0)〉 = 〈Tck↑(τ)c†k′↓(0)〉 = 0.

If we Fourier analyze this,χ(q) ≡ χ(q, iνr ) =
∫ β

0
χ(q, τ)eiνr τ, we obtain

χ(q, iνr ) = −T2
∑

k,n,m

∫ β

0
dτTr

[G(k + q, iωm)G(k, iωn)
]
ei(νr−ωm+ωn)τ

= −T
∑

k,iωn

Tr
[G(k + q, iωn + iνr )G(k, iωn)

]

= −T
∑

k

Tr
[G(k+ q)G(k)

]
(14.212)

Now if we choose a real gap,

G(k, z) =
z+ ǫkτ3 + ∆τ1

z2 − E2
k

(14.213)

we deduce that

Tr
[G(k′)G(k)

]
= Tr

[
z′ + ǫk′τ3 + ∆τ1

z′2 − E2
k

z+ ǫkτ3 + ∆τ1

z2 − E2
k

]

= 2

[
zz′ + ǫkǫk′ + ∆

2

(z2 − E2
k)(z′2 − E2

k′ )

]
(14.214)

If we first carry out the Matsubara summation in the expression of the susceptibility, then by con-
verting the summation to a contour integral, we obtain

χ(q) = −2
∑

k

∮
dz
2πi

f (z)


z(z+ iνr ) + ǫkǫk+q + ∆

2

(z2 − E2
k)((z+ iνr )2 − E2

k+q)

 (14.215)

where the contour passes clockwise around the poles in the Green’s functions.
To do this integral, it is useful to rewrite the denominators of the Green functions using the relation

1

z2 − E2
k

=
1

2Ek

1
z− Ek

− 1
2Ek

1
z+ Ek
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=
∑

λ=±1

1
z− Ekλ

1
2Ekλ

(14.216)

where we have introduced (c.f “Semiconductor picture”)Ekλ = sgn(λ)Ek . Similarly,

z

z2 − E2
k

=
∑

λ=±

1
2(z− Ekλ)

With this device, the integral becomes

χ(q) = −2
∑

k,λ=±,λ′=±

∮
dz
2πi

f (z)

[
1
4
+

ǫkǫk+q + ∆
2

(4EkλEk+qλ′ )

]
1

(z− Ekλ)(z+ iνr − Ek+qλ′ )

=
∑

k,λ=±,λ′=±

(uu′+vv′)2︷                 ︸︸                 ︷[
1
2
+
ǫkǫk+q + ∆

2

2EkλEk+qλ′

]
f (Ek+qλ′ ) − f (Ekλ)

iνr − (Ek+qλ′ − Ekλ)

=
∑

k,λ=±,λ′=±
(ukλuk+qλ′ + vkλvk+qλ′ )

2 f (Ek+qλ′ ) − f (Ekλ)

iνr − (Ek+qλ′ − Ekλ)
(14.217)

Thereby proving result (14.204).
b) If we analytically continue the susceptibility onto the real axis, then

χ(q, ν − iδ) =
∑

k,λ=±,λ′=±
(ukλuk+qλ′ + vkλvk+qλ′ )

2 f (Ek+qλ′ ) − f (Ekλ)

ν − iδ − (Ek+qλ′ − Ekλ)
(14.218)

Taking the imaginary part,

χ′′(q, ν − iδ)
ν

= π
∑

k,λ=±,λ′=±
(uu′ + vv′)2 f (Ekλ + ν) − f (Ekλ)

ν
δ(Ek+qλ′ − Ekλ) (14.219)

so that
χ′′(q, ν − iδ)

ν

∣∣∣∣∣
ν→0
= π

∑

k,λ=±,λ′=±

(
−d f(Ekλ)

dEkλ

)
δ(Ek+qλ′ − Ekλ) (14.220)

Summing over momentum,

1
T1T

∝
∑

q

χ′′(q, ν − iδ)
ν

∣∣∣∣∣
ν→0

= π
∑

k,λ=±

∑

k′ ,λ=±′

(
−d f(Ekλ)

dEkλ

)
δ(Ek+qλ′ − Ekλ)

= πN(0)2
∫

dE

(
|E|

√
E2 − ∆2

)2 (
−d f(E)

dE

)
(14.221)

where we have replaced the summation over momentum and “semiconductor” indexλ by an integral
over the quasiparticle and quasihole density of states:

∑

k,λ=±
→

∫
dENs(|E|) = N(0)

∫
dE

(
|E|

√
E2 − ∆2

)
. (14.222)
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14.8 Twisting the phase: the superfluid stiffness

One of the key features in a superconductor is the appearanceof a complex order parameter, with a phase. It
is the rigidity of this phase that endows the superconductorwith its ability to sustain a superflow of electrons.
This feature is held in common between superfluids and superconductors - and indeed, the liquidHe− 3
undergoes a pairing instability around 3mK, involving a condensation of triplet Cooper pairs.

The feature of superconductors that makes them stand apart from their neutral counterparts, is our ability to
couple to the phase of the condensate with the electromagnetic field. The important point here, as we saw in
Chapter 12, is that the phase of the order parameter, and the vector potential are linked by gauge invariance,
so that a twisted phase and a uniform vector are gauge-equivalent. This feature implies that once a gauge
stiffness develops, the electromagnetic field acquires a mass. Weshall now derive these features from the
microscopic perspective of BCS theory. To explore a twistedphase, we need to allow the order parameter
to become a function of position, so that now the interactionthat gives rise to superconductivity can not be
infinitely long-ranged. For this purpose we use Gor’kov’s continuum version of BCS theory, where

H =
∫

d3x

[
ψσ
†
(

1
2m

(−i~∇ − e~A
)2 − µ

)
ψσ − g(ψ†↑ψ

†
↓ψ↓ψ↑)

]
. (14.223)

where for compactness we have dropped the position arguments of the fieldsψσ(x)→ ψσ. Under the Hubbard
Stratonovich transformation, the interaction becomes

−g(ψ†↑ψ
†
↓ψ↓ψ↑)→ ∆̄ψ↓ψ↑ + ψ†↑ψ†↓∆ +

∆̄∆

g
(14.224)

where the gap function∆(x) can acquire spatial dependence. The transformed Hamiltonian is then

H =
∫

d3x

[
ψσ
†
(

1
2m

(−i~∇ − e~A
)2 − µ

)
ψσ + ∆̄ψ↓ψ↑ + ψ

†
↑ψ
†
↓∆ +

∆̄∆

g

]
(14.225)

where at the mean-field saddle point,∆(x) = −g〈ψ↓(x)ψ↑(x). The curious thing, is that once the interaction is
factorized in this way, we must take account of the transformation of the charged condensate field under the
gauge transformation. The kinetic energy part of the Hamiltonian is invariant under the gauge transformations

ψσ(x)→ eiα(x)ψσ(x)

~A(x)→ ~A(x) +
~

e
~∇α(x) (14.226)

However, in order that the Andreev relfection terms remain invariant we must also transform

∆(x)→ ∆(x)e2iα(x).

This makes sense, because the gap∆(x) ∼ 〈ψ↓(x)ψ↑(x)〉 is made up of two electron fields. If we write the gap
in terms of its amplitude and phase,∆(x) = |∆(x)|eiφ(x), then under a gauge transformation,

φ(x)→ φ(x) + 2α(x) (14.227)

Now if the phase becomes “rigid” beneathTc, so that there is an energetic cost to bending to phase, then the
overall energy of the superconductor must acquire a phase stiffness term of the form

F ∼
∫

x

ρs

2
(∇φ)2 (14.228)

487

Chapter 14. c©Piers Coleman 2011

However, such a coupling term is not gauge invariant under the combined transformation

φ→ φ + 2α,

~A→ ~A+
~

e
~∇α(x) (14.229)

Indeed, in order that the Free energy gauge invariant, the phase stiffness must take the form

F ∼
∫

x

ρs

2

(
~∇φ(x) − 2e

~

~A(x)

)2

+ Fem[A]

=

∫

x

Q
2

(
~A(x) − ~

2e
~∇φ(x)

)2

+ Fem[A] (14.230)

whereFem[A] is the Free energy of the electromagnetic field and we have substituted

Q =
(2e)2

~2
ρs (14.231)

SinceFem is invariant under gauge transformations, it becomes possible to redefine the vector potential

A(x)→ ~A(x) − ~
2e
~∇φ(x) (14.232)

to “absorb” the phase of the order parameter. Once the phase of the order parameter is absorbed into the
electromagnetic field,

F ∼
∫

x

4e2ρs

2~2
~A(x)2 + Fem[A], (14.233)

and the vector potential has acquired a mass. This phenomenon whereby the gauge field, “eats up” the phase
of a condensate, losing manifest gauge invariance by acquiring a mass is called the “Anderson-Higgs” mech-
anism. This is the root mechanism by which gauge fields acquire a mass in particle physics. (See Chapter
12.)

If we now look back at (14.230), we see that the electrical current carried by the condensate is

~j(x) = − δF
δ~A(x)

= −Q

(
~A(x) − ~

2e
~∇φ(x)

)
. (14.234)

This permits us to identifyQ with the “London Kernel” introduced earlier in the study of electron transport.
What is different here, is that this quantity is now finite in the DC, zero frequency limit. Thus, once a charged
order parameter develops a rigidity, the matter becomes a perfect diamagnet, developing superconductivity.

Let us now continue to calculate the phase stiffness or “superfluid density” of a BCS superconductor.
We’ll imagine a superconductor on a torus in which the phase of the order parameter is twisted, so that
∆(L) = ei∆φ∆(0). Let us consider a uniform twist, so that

∆(x) = e−i~a·~x∆0, (14.235)

where~a = ∆φ
L x̂. Now by gauge invariance, this twist of the order parameter can be removed by a gauge

transformation,

∆(x)→ ei~a·~x∆(x) = ∆0

~A = ~A+
~

2e
~a (14.236)

so a twist in the order parameter is gauge equivalent to a uniform vector potential~A = ~

2e~a, and vice versa- a
uniform vector potential is gauge equivalent to a twisted order parameter field.
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So to calculate the stiffness we need to compute the Free energy in the presence of a uniform vector
potential. On a taurus, this implies a threaded magnetic flux. Indeed, the total change in the phase of the order
paramter is given by

∆φ = αL =
2e
~

AL =
2e
~
Φ = 2π


Φ

h
2e

 (14.237)

whereΦ is the magnetic flux through the torus. The twist angle can by written

∆φ = 2π
Φ

Φ0
, (14.238)

where

Φ0 =
~

2e
(14.239)

is known as the superconducting flux quantum. Each time the flux through the taurus increases byΦ0, the
superconducting order parameter is twisted by an additional 2π.

In momentum space, the introduction of vector potential changes the dispersion according toǫ~k → ǫ~k−e~A,
so insidehk

ǫ~kτ3→
(
ǫ~k−e~A

−ǫ−~k−e~A

)
=

(
ǫ~k−e~A

−ǫ~k+e~A

)
≡ ǫ~k−e~Aτ3 (14.240)

i.e ,

h~k → h~k−e ~Aτ3
= ǫ~k−e~Aτ3

τ + ∆τ1 (14.241)

The Free energy in a field is then

F = −T
∑

k,iωn

Tr ln[ǫ~k−e~Aτ3
τ + ∆τ1 − iωn] +

∆2

g
(14.242)

We need to calculate

Qab = −
1
V

∂2F
∂Aa∂Ab

(14.243)

Taking the first derivative with respect to the vector potential gives us the steady-state diamagnetic current

−〈Ja〉 =
1
V
∂F
∂Aa
= − 1

βV

∑

k≡(k,iωn)

Tr
[
e∇aǫ~k−e~Aτ3

G(k− eA)
]

(14.244)

where we have introduced the shorthandG(k− eA) = [iωn − h~k−e ~Aτ3
]−1 = [iωn − ǫ~k−e~Aτ3

τ3 − ∆τ1]−1.

Taking one more derivative,

Qab =
1
V

∂2F
∂Aa∂Ab

∣∣∣∣∣∣
A=0

=
e2

βV

∑

k



diamagnetic part︷               ︸︸               ︷
∇2

abǫ~kTr [τ3G(k)] +

paramagnetic part︷                       ︸︸                       ︷
∇aǫ~k∇bǫ~kTr [G(k)G(k)]


(14.245)

where we first used the relation∂
∂Ab

G(k − eA) = e∇bǫ~kG(k − eA)2 and then setA = 0. We may identify the
above expression as a sum of the diamagnetic, and paramagnetic parts, respectively, of the superfluid stiffness.
The diamagnetic part of the response can be integrated by parts, to give

e2

βV

∑

k,n

∇2
abǫ~kTr [τ3G(k)] = − e2

βV

∑

k,n

∇aǫ~kTr [τ3∇bG(k)]
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= − e2

βV

∑

k,n

∇aǫ~k∇bǫ~kTr [τ3G(k)τ3G(k)] (14.246)

Notice how this term is identical to the paramagnetic term, apart from theτ3 insertions. We now add these
two terms, to obtain

Qab = −
e2

βV

∑

k

∇aǫ~k∇bǫ~k



diamagnetic part︷                 ︸︸                 ︷
Tr [τ3G(k)τ3G(k)] −

paramagnetic part︷          ︸︸          ︷
Tr [G(k)G(k)]


. (14.247)

Notice, that when pairing is absent, theτ3 commute withG(k), and the diamagnetic and paramagnetic contri-
butions exactly cancel. We can make this explicit, by writing

Qab = −
e2

2βV

∑

k

∇aǫ~k∇bǫ~kTr
[
[τ3,G(k)]2

]
. (14.248)

Now

[τ3,G(k)] = 2i
∆τ2

(iωn)2 − E2
k

(14.249)

so

−Tr
[
[τ3,G(k)]2

]
= 8

∆2

[(ωn)2 + ǫ2
k + ∆

2]2
. (14.250)

so that

Qab =
4e2

βV

∑

k

∇aǫ~k∇bǫ~k
∆2

[(ωn)2 + ǫ2
k + ∆

2]2
.. (14.251)

Remarkably, although the diamagnetic and paramagnetic parts of the superfluid stiffness involve electrons
far away from the Fermi surface, the difference between the two is dominated by electrons near the Fermi
surface. This enables us to replace

2
V

∑

k

∇aǫ~k∇bǫ~k {. . . } = N(0)
∫ ∞

−∞
dǫ

∫
1
3 v2

Fδab︷     ︸︸     ︷
dΩk̂

4π
vavb {. . . } =

δab

3
N(0)v2

F

∫ ∞

−∞
dǫ {. . . } . (14.252)

Note that the factor of two is absorbed into the total densityof states of up and down electrons. We have taken
advantage of the rapid convergence of the integrand to extend the limits of the integral over energy to infinity.
Replacing1

3N(0)v2
F =

n
m, we can now writeQab = Qδab, where

Q(T) =
ne2

m
T

∑

n

∫ ∞

−∞
dǫ

2∆2

(ǫ2 + ω2
n + ∆

2)2
=

(
ne2

m

)
πT

∑

n

∆2

(ω2
n + ∆

2)
3
2

(14.253)

To evaluate this expression, it is useful to note that the argument of the summation is a total derivative so that

Q(T) =

(
ne2

m

)
πT

∑

n

∂

∂ωn

(
ωn

(ω2
n + ∆

2)1/2

)
(14.254)

Now at absolute zero, we can replaceT
∑

n→
∫

dω
2π , so that

Q(0) ≡ Q0 =

(
ne2

m

)
=1︷                             ︸︸                             ︷∫ ∞

−∞

dω
2

d
∂ω

(
ω

(ω2 + ∆2)1/2

)
=

(
ne2

m

)
. (14.255)
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In other words, allof the electrons have condensed to form a perfect diamagnet.To evaluate the stiffness at
a finite temperature, we rewrite the Matsubara sum as a clockwise contour integral around the poles of the
Fermi function

Q(T) = πQ0




Im axis

dz
2πi

f (z)
d
dz

(
z

√
∆2 − z2

)
(14.256)

By deforming the integral to run anti-clockwise around the branch-cuts along the real axis, and then integrat-
ing by parts we obtain:

Q(T) = Q0π

�

real axis

dz
2πi

f (z)
d
dz

(
z

√
∆2 − z2

)

= Q0

∫ ∞

−∞
dω f (ω)

d
dω

Im

(
z

√
∆2 − z2

)

z=ω−iδ

= Q0

 f (ω)Im

(
z

√
∆2 − z2

)

z=ω−iδ


∞

−∞
+ Q0

∫ ∞

−∞
dω

(
−d f(ω)

dω

)
Im

(
z

√
∆2 − z2

)

z=ω−iδ

. (14.257)

Now a careful calculation of the imaginary part of the integrand gives

Im


ω√

∆2 − (ω − iδ)2

 = Im


ω√

−(ω2 − ∆2) + iδ sgn(ω)

 =
(
− |ω|
√
ω2 − ∆2

)
θ(ω2 − ∆2) (14.258)

so the finite temperature stiffness can then be written

Q(T) = Q0

[
1− 2

∫ ∞

∆(T)
dω

(
−d f(ω)

dω

) (
ω

√
ω2 − ∆2

)]
(14.259)

where the factor of two derives from folding over the contribution from the negative region of the integral.
The second term in this expression is nothing more that the thermal average of the quasiparticle density of
statesNqp(E) = N(0) E√

E2−∆2
. This term can thus be interpreted as the reduction in the condensate fraction due

to a thermal depopulation of the condensate into quasiparticles. We can alternatively re-write this expression
as a formula for the temperature dependent penetration depth

1

λ2
L(T)

=
1

λ2
L(0)

1− 2

(
Nqp(E)

N(0)

) . (14.260)

where 1/λ2
L(0) = µ0ne2

m

Exercises

Exercise 14.1 Show, using the Cooper wavefunction, that the mean-squaredradius of a Cooper pair is
given by

ξ2 =

∫
d3r r 2|φ(r )|2
∫

d3r |φ(r )|2
=

4
3

(vF

E

)3
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Solution:
If we Fourier transform the above integrals, replacingrφ(r)→ i∇k then

ξ2 =

∫
d3r r 2|φ(r )|2
∫

d3r |φ(r )|2
=

∑
k |∇kφk |2∑

k |φk |2

Inserting

φk ≡ φ(ǫk) =
g0

2ǫk − E
(14.261)

then
∑

k

|φk |2 = N(0)
∫ ωD

0
dǫ

1
(2ǫ − E)2

=
N(0)
2E

∑

k

|∇kφk |2 = N(0)
∫ ωD

0
dǫ

4v2
F

(2ǫ − E)4
=

2N(0)v2
F

3E3
(14.262)

so that

ξ2 =
4
3

(vF

E

)2

Exercise 14.2 Generalize the Cooper pair calculation to higher angular momenta. Consider an interaction
that has an attractive component in a higher angular momentum channel, such as

Vk,k′ =

{
− gl

V [(2l + 1)Pl(k̂ · k̂′), (|ǫk |, |ǫ′k | < ω0),
0, otherwise

(14.263)

where you may assumel is even.

(a) By decomposing the Legendre Polynomial in terms of spherical harmonics, (2l + 1)Pl(k̂, k̂′) =
4π

∑
m Ylm(k)Y∗lm(k̂), show that this interaction gives rise to bound Cooper pairs with a finite angu-

lar momentum, given by

|ψP〉 =
∑

k

φkmYlm(k̂)c†k↑c
†
−k↓|0〉

with a bound-state energy given by

E = −2ω0 exp

[
− 2

glN(0)

]

(b) A general interaction will have several harmonics:

Vk,k′ =
∑

l

gl

V
[(2l + 1)Pl ,

not all of them attractive. In which channel will the pairs tend to condense?
(c) Why can’t you use this derivation for the case whenl is odd?

Exercise 14.3 Generalize the BCS solution to the case where the gap has a finite phase∆ = |∆|eiφ. Show
that in this case, the eigenvectors of the BCS mean-field hamiltonian are

uk = eiφ/2

(
1+

ǫk

Ek

) 1
2
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vk = e−iφ/2

(
1− ǫk

Ek

) 1
2

(14.264)

while the BCS ground-state is given by

|BCS(φ)〉 =
∏

k

(u∗k + v∗kc†−k↓c
†

k↑)|0〉. (14.265)

Solution:
Suppose initially we start with a solution with a real gap (nophase), so that

hk =

(
ǫk |∆|
|∆| −ǫk

)
,

(
u(0)

k
v(0)

k

)
=


[1 + ǫk

Ek
]

1
2

[1 − ǫk
Ek

]
1
2

 . (14.266)

Now apply a gauge transformation,

hk → eiφτ3/2hke−iφτ3/2 =

(
ǫk |∆|eiφ

|∆|e−iφ −ǫk

)
, (14.267)

so that now∆ = |∆|eiφ. Under this transformation
(
uk

vk

)
→ eiφτ3/2

(
u(0)

k
v(0)

k

)
=

(
eiφ/2u(0)

k
e−iφ/2v(0)

k

)
, (14.268)

so that the new eigenvector is
(
uk

vk

)
=


eiφ/2[1 + ǫk

Ek
]

1
2

e−iφ/2[1 − ǫk
Ek

]
1
2

 .

To construct the ground-state, note that the quasiparticleoperators now have complex coefficients
and we must write

αkσ = u∗kckσ + sgn(σ)v∗kc†−k−σ

To construct the BCS ground-state, annihilate the vacuum with these quasiparticle states, so that

|BCS(φ)〉 ∝
∏

k

α−k↓αk↑|0〉

=
∏

k

(u∗k c−k↓ − v∗k c†k↑)(✟✟✟u∗kck↑ + v∗k c †−k↓)|0〉

=
∏

k

(u∗kv∗kc−k↓c
†
−k↓ − (v∗k)2c†k↑c

†
−k↓)|0〉

=
∏

k

v∗k ×
∏

k

(u∗k + v∗kc†−k↓c
†

k↑)|0〉 (14.269)

The normalized state is obtained by dropping the prefactor,

|BCS(φ)〉 =
∏

k

(u∗k + v∗kc†−k↓c
†

k↑)|0〉 =
∏

k

(e−iφ/2u(0)
k + eiφ/2v(0)

k c†−k↓c
†

k↑)|0〉 (14.270)

Note that in this state

∆ = −g0

V

∑

k

〈c−k↓ck↑〉 =
g0

V

∑

k

ukv∗k = eiφ


g0

V

∑

k

|∆|
Ek

 (14.271)

confirming that the gap has acquired a definite phase.
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Exercise 14.4 Explicit calculation of the Free energy.

(a) Assuming that the Debye frequency is a small fraction of the band-width, show that the difference
between the superconducting and normal state Free energy can be written as the integral

FS − FN = −2T N(0)
∫ ωD

−ωD

dǫ ln



cosh

( √
ǫ2+|∆|2
2T

)

cosh
(
ǫ

2T

)


+ V
|∆|2
g0

.

Why is this free energy invariant under changes in the phase ofthe gap parameter∆→ ∆eiφ?
(b) By differentiating the above expression with respect to∆, confirm the zero temperature gap equation,

V
gN(0)

=

∫ ωD

0

dǫ√
ǫ2 + ∆2

0

,

where∆0 = ∆(T = 0) = is the zero temperature gap and use this result to eliminateg0, to show
that the free energy can be written

FS − FN = N(0)∆2
0 Φ

[
∆

∆0
,

T
∆0

]

where the dimensionless function

Φ(δ, t) =
∫ ∞

0
dx


−4t ln



cosh
( √

x2+δ2

2t

)

cosh
(

x
2t

)


+

δ2

√
x2 + 1


.

Here, the limit of integration have been moved to infinity. Whycan we do this without loss of
accuracy?

(c) Use Mathematica or Maple to plot the Free energy obtainedfrom the above result, confirming that
the minimum is at∆/∆0 = 1 and the transition occurs atTc = 2∆0/3.53.

Exercise 14.5 The standard two-component Nambu spinor approach does not allow a rotationally invariant
treatment of the electron spin and the Zeeman coupling of fermions to a magnetic field. This drawback
can be overcome by switching to a four-component “Balian Werthammer” spinor, denoted by

ψk =

(
c†k

−iσ2(c†k)T

)
=



ck↑
ck↓
−c†−k↓
c†−k↑


. (14.272)

(a) Show using this notation that the total electron spin canbe written

~S =
1
4

∑

k

ψ†k~σ(4)ψk (14.273)

where

~σ4 =

(
~σ 0
0 ~σ

)
(14.274)

is the four component Pauli matrix. (You may find it useful to use the relationship~σT = iσ2~σiσ2).
In practical usage, the subscript “4” is normally dropped.
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(b) Show that in a Zeeman field, the BCS Hamiltonian

HMFT =
∑

kσ

c†kα[ǫkδαβ − ~σαβ · ~B]ckβ +
∑

k

[
∆̄c−k↓ck↑ + c†k↑c

†
−k↓∆

]
+

V
g0
∆̄∆ (14.275)

can be re-written using Balian Werthammer spinors in the compact form

HMFT =
1
2

∑

k

ψ†k
[
hk − ~σ4 · ~B

]
ψk +

V
g0
∆̄∆ (14.276)

wherehk = ǫkτ1 + ∆1τ1 + ∆2τ2 as before, but the~τ now refer to the four-dimensional Nambu
matrices

~τ =

([
0 1
1 0

]
,

[
0 −i1
i1 0

]
,

[
1 0
0 −1

])
. (14.277)

(c) Show that the quasiparticle energies in a field are given by ±Ek − σB.

Exercise 14.6 Pauli limited superconductors. The Free energy introducedin the last problem describes a
“Pauli Limited” superconductor, in which the Zeeman coupling of the paired electrons with the mag-
netic field dominates over the orbital coupling to the magnetic field. In the Flux lattice of a Pauli limited
superconductor, the magnetic field penetrates the condensate and can be considered to be uniform.

(a) Assuming that the orbital coupling of the electron to themagnetic field is negligible, use the Balian
Werthammer approach developed in the previous problem to formulateBCS theory in a uniform
Zeeman field, as a path integral. Show that the free energy canbe written

F = −T
2

∑

k

Tr ln[∂τ + hk − ~σ4 · ~B] +
V
g0
∆̄∆

= −T
2

∑

k,iωn,σ

ln
[
E2

k − (iωn − σB)2
]
+

V
g0
∆̄∆ (14.278)

(b) Show that the gap equation for a Pauli limited superconductor becomes
and show that the upper critical field is given by
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15
Local Moments and the Kondo effect.

15.1 Strongly Correlated Electrons

One of the fascinating growth areas in condensed matter physics concerns “strongly correlated systems”:
states of matter in which the many body interaction energiesdominate the kinetic energies, becoming large
enough to qualitatively transform the macroscopic properties of the medium. Some of the growing list of
strongly correlated systems include

• Cuprate superconductors, where interactions amongst electrons in localized 3d-shells form an antiferro-
magnetic “Mott” insulator, which develops high temperature superconductivity when doped.

• Heavy electron compounds, in which localized magnetic moments immersed within the metal give rise to
electron quasiparticles with effective masses in excess of 1000 bare electron masses.

• Fractional Quantum Hall systems, where the interactions between electrons in the lowest Landau level of
a two-dimensional electron fluid generate a incompressiblestate with quasiparticles of fractional charge
and statistics.

• “Quantum Dots”, which are tiny pools of electrons in semiconductors that act as artificial atoms. As the
gate voltage is changed, the Coulomb repulsion between electrons in the dot leads to the a “Coulomb
Blockade”, whereby electrons can be added one by one to the quantum dot.

• Cold atomic gases, in which the interactions between the neutral atoms governed by two-body resonances,
can be tuned by external magnetic fields to create a whole new world of strongly correlated quantum
fluids.

In each case, the interactions between the particles have been tuned - by electronic or nuclear chemistry,
by geometry or nanofabrication, to give rise to a state of condensed matter in which the interactions between
the particles are large compared with their typical kineticenergy. The next two chapters will introduce a
corner strongly correlated electron physics: the physics of local moments and heavy fermion compounds. A
large class of strongly correlated materials contain atomswith partially filled d, or f orbitals. Heavy electron
materials are an extreme example, in in which one component of the electron fluid is highly localized, usually
inside f-orbitals giving rise to the formation of magnetic moments. The interaction of localized magnetic
moments with the conduction sea provides the driving force for the strongly correlated electron physics in
these materials.

Within the periodic table, there are broad trends that govern strongly correlated electron behavior. The
most strongly interacting electrons tend to reside in partially filled orbitals that are well-localized around the
nucleus. The weak overlap between these orbitals and the orbitals of other nearby atoms promotes the forma-
tion of narrow electron bands, while the interactions between electrons are maximized when they occupy the
same, highly localized orbital.
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In order of increasing degree of localization, the unfilled electron orbitals of the central rows of the periodic
table may be ordered

5d < 4d < 3d < 5 f < 4 f .

There are two trends operating here: first, orbitals with higher principle quantum numbers tending to be more
delocalized, so that 5d < 4d < 3d and 5f < 4 f . Second, as we move from d to f orbitals, or along a particular
row of the periodic table, the increasing nuclear charge reduces the size of the orbitals. These trends are
summarized by the Kmetko-Smith diagram in Fig 15.1, in whichthe central rows of the periodic table are
stacked in order of increasing localization. Moving up and to the right in this diagram leads to increasingly
localized atoms In metals lying on the bottom-left hand sideof this diagram, the d-orbitals are highly itinerant
giving rise to the metals exhibit conventional superconductivity at low temperatures. By contrast, in metals
towards the top right hand side of the diagram, the electronsin the rare earth or actinide ions are localized,
forming magnets, or more typically, antiferromagnets.

The materials that lie in the cross-over between these two regions are particularly interesting, for these
materials are “on the brink of magnetism”. With some exceptions, it is in this region that the the cerium and
uranium heavy fermion materials, and the iron based superconductors are found.

tFig. 15.1 The Kmetko-Smith diagram, showing the broad trends towards increasing electron
localization in the d- and f-electron compounds.
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15.2 Local moments

To understand heavy electron materials, we need to understand how electrons form local moments, and how
those local moments interact with the electrons in the conduction sea. The simplest example of a localized
moment is an unpaired electron bound in an isolated atom, or ion (15.2 (a)). At temperatures far below the
ionization energy|E f |, the only remaining degree of freedom of this localized electron is its magnetic moment,
described by the operator

~M = µB~σ

where~σ denotes the Pauli matrices andµB =
e~
2m is the Bohr magneton. In a magnetic field, the Hamiltonian

describing low energy physics is simplyH = − ~M · ~B = −µB~σ · ~B, giving rise giving rise to a “Curie”
susceptibility

χ(T) =
∂M
∂B
= −∂

2F
∂B2
=
µ2

B

T

The classic signature of local moments is the appearance of Curie paramagnetism with a high-temperature
magnetic susceptibility of the form

χ ≈ ni
M2

3(T + θ)
M2 = g2µ2

BJ(J + 1), (15.1)

where,ni is the concentration of magnetic moments whileM is the magnetic moment with total angular
momentum quantum numberJ and gyro-magnetic ratio (“g-factor”)g. θ is the “Curie Weiss” temperature,
a phenomenological scale which takes account of interactions between spins1. For a pure spin,J = S is the
total spin andg = 2, but for rare earth and actinide ions, the orbital and spin angular momentum combine
into a single entity with angular momentum~J = ~L + ~S for whichg lies between one and two. For example, a
Ce3+ ion contains a single unpaired 4f-electron in the state 4f 1, with l = 3 ands = 1/2. Spin-orbit coupling
gives rise to low-lying multiplet withj = 3− 1

2 =
5
2, consisting of 2j + 1 = 6 degenerate orbitals|4 f 1 : Jm〉,

(mJ ∈ [− 5
2 ,

5
2]) with an associated magnetic momentM = 2.64µB.

Though the concept of localized moments was employed in the earliest applications of quantum theory
to condensed matter2, a theoretical understanding of themechanismof moment formation did not develop
until the early sixties, when experimentalists began to systematically study impurities in metals.3 In the early
1960s, Clogston, Mathias and collaborators[?] showed that when small concentrationsni of magnetic ions,
such as iron are added to a metallic host, they do not always form magnetic moments. For example, iron
impurities in pure niobium do not develop a local moment, butthey do so in the niobium-molybdenum alloy,
Nb1−xMox once the concentration of molybdeneum exceeds 40% (x > 0.4). It was these observations that led
Anderson to develop his model for local moment formation.

1 A positiveθ > 0 indicates an antiferromagnetic interaction between spins, while a negativeθ < 0 is associated with ferromagnetic
interactions. giving rise to a divergence of the susceptibility at the Curie temperatureTc = −θ.

2 The concept of a local moment appears in Heisenberg’s originalpaper on ferromagnetism[?]. Landau and Ńeel invoked the notion of
the localized moment in their 1932 papers on antiferromagnetism, and in 1933, Kramers used this idea again in his theory of magnetic
superexchange.

3 It was not until the sixties that materials physicists could control the concentration of magnetic impurities in the parts per million
range required for the study of individual impurities. The control of purity evolved during the 1950s, with the development of new
techniques needed for semiconductor physics, such as zone refining.
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tFig. 15.2 (a) In isolation, the localized atomic states of an atom form a stable, sharp excitation
lying below the continuum. (b) The inverse of the Curie-Weiss susceptibility of local
moments χ−1 is a linear function of temperature, intersecting zero at T = −θ.

15.3 Anderson’s Model of Local Moment Formation

Anderson’s model for moment formation, proposed in 1963, combines two essential ideas[?]:

• the localizing influence of Coulomb interactions. Peierls and Mott [?, ?] had reasoned in the 1940s that
strong-enough Coulomb repulsion between electrons in an atomic state would blockade the passage of
electrons, converting a metal into what is now called a “Mottinsulator”. These ideas were independently
explored by Van Vleck and Hurvitz in an early attempt to understand magnetic ions in metals[?].

• the formation of an electronic resonance. In the 1950’s Friedel and Blandin [?, ?, ?] proposed that electrons
in the core states of magnetic atoms tunnel out into the conduction sea, forming a resonance.

Anderson unified these ideas in a second-quantized Hamiltonian

H =

Hresonance︷                                                                ︸︸                                                                ︷∑

k,σ

ǫknkσ +
∑

k,σ

[
V(k)c†kσ fσ + V∗(k) f †σckσ

]
+E f nf + Unf↑nf↓︸              ︷︷              ︸

Hatomic

, (15.2)

Anderson model.

whereHatomic describes the atomic limit of an isolated magnetic ion containing a Kramer’s doublet of energy
E f . The engine of magnetism in the Anderson model is the Coulombinteraction

U =
e2

4πǫ0

∫

r ,r ′

1
|r − r ′|ρ f (r )ρ f (r ′)
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of a doubly occupied f-state, whereρ f (r ) = |Ψ f (r )|2 is the electron density in a single atomic orbitalψ f (r ).
The operatorc†kσ creates a conduction electron of momentumk, spinσ and energyǫk = Ek − µ, while

f †σ =
∫

r
Ψ f (r )ψ̂†σ(r), (15.3)

creates an f-electron in the atomic f-state. Unlike the electron continuum in a vacuum, a conduction band in
a metal has a finite energy width, so in the model, the energiesare taken lying in the rangeǫk ∈ [−D,D].
Hresonancedescribes the hybridization with the Bloch waves of the conduction sea that develops when the ion
is immersed in a metal. The quantity

V(k) = 〈k|Vion| f 〉 =
∫

d3re−ik·r Vion(r)Ψ f (~r). (15.4)

is the hybridization between the ionic potential and a planewave. This term is the result of applying first
order perturbation theory to the degenerate states of the conduction sea and the atomic f-orbital.

A competition between localization and hybridization.

To understand the formation and properties of local moments, we need to examine the two limiting types of
behaviour in the Anderson model:

• Localized moment behavior, described by the limiting case where the hybridization vanishes.

• Virtual bound-state formation, described by the limiting case where the interaction is negligible.

tFig. 15.3 Phase diagram for Anderson impurity model in the atomic Limit. For U > |E f + U/2,
the ground-state is a magnetic doublet. When U < 0, the ground-state is degenerate
charge doublet provided E f + U/2 = 0.
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15.3.1 The Atomic limit.

The atomic physics of an isolated ion, described by

Hatomic= E f nf + Unf↑nf↓. (15.5)

is the engine at the heart of the Anderson model that drives moment formation. The four atomic quantum
states are

| f 2〉
| f 0〉

E( f 2) = 2E f + U
E( f 0) = 0

}
non-magnetic

| f 1 ↑〉, | f 1 ↓〉 E( f 1) = E f . magnetic.

(15.6)

The cost of adding or removing to the magneticf 1 state is given by

adding: E( f 2) − E( f 1) = U + E f

removing: E( f 0) − E( f 1) = −E f

}
⇒ ∆E =

U
2
± (E f +

U
2

) (15.7)

In other words, provided (Fig. 15.3)

U/2 > |E f + U/2| (15.8)

the ground-state of the atom is a two-fold degenerate magnetic doublet. Indeed, provided it is probed at
energies below the smallest charge excitation energy,∆Emin = U/2 − |E f + U/2|, only the spin degrees of
freedom remain, and the system behaves as a local moment - a “quantum top”. The interaction between such
a local moment and the conduction sea gives rise to the “Kondoeffect” that will be the main topic of this
chapter.

Although we shall be mainly interested in positive, repulsive U, we note that in the attractive region of
the phase diagram (U < 0) the atomic ground-state can form a degenerate “charge” doublet (| f 0〉, | f 2〉) or
“isospin”. ForU < 0, whenE f + U/2 = 0 the doubly occupied state| f 2〉 and the empty state| f 0〉 become
degenerate. This is the charge analog of the magnetic doublet that exists forU > 0, and when coupled to the
sea of electrons, gives rise to an effect known as the “charge Kondo effect”. Such charge doublets are thought
to be important in certain “negativeU” materials, such asTl dopedPbTe.

Example 15.1: Derivation of the non-interacting Anderson model
Consider an isolated ion, where the f-state is a solution of the one-particle Schrödinger equation

[
−∇2 + V̂ion

]
| f 〉 = Eion

f | f 〉, (15.9)

whereVion(r) is the ionic potential andEion
f < 0 is the energy of the atomic f-level. In a metal, the

positive ionic background draws the continuum downwards to become degenerate with the f-level as
shown in Fig. 15.4. A convenient way to model this situation is to use “muffin tin potential”,4

V(r) = (Vion(r) +W) θ(R0 − r) (15.10)

equal to the ionic potential, shifted upwards by an amountW inside the muffin tin radiusR0. The f-state
is now an approximate eigenstate ofH = −∇2 + V̂ that is degenerate with the continuum.
Derive the non-interacting component of the Anderson model using degenerate perturbation theory,
evaluating the matrix elements ofH between the conduction states|k〉 and the local f-state| f 〉. You
may assume that the muffin tin R0 is much smaller than the Fermi wavelength, so that the conduction
electron matrix elementsVk,k′ = 〈k|V|k′〉 are negligible.
Solution:
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To carry out degenerate perturbation theory onH we must first orthogonalize the f-state to the contin-
uum | f̃ 〉 = | f 〉 − ∑

ǫk∈[−D,D] |k〉〈k| f 〉, whereD is the conduction electron band-width. Now we need to
evaluate the matrix elements ofH = −∇2 + V. If we set

Vk,k′ =

∫

r<R0

d3rei(k′−k)·r (Vion(r) +W), (15.11)

then the conduction electron matrix elements are

〈k|H|k′〉 = Ekδk,k′ + Vk,k′ ≈ Ekδk,k′ (15.12)

while 〈 f̃ |H| f̃ 〉 ≈ Eion
f is the f-level energy.

The hybridization is given by the off-diagonal matrix element,

V(k) = 〈k|H| f̃ 〉 = 〈k| − ∇2 + V̂| f̃ 〉 = Ek〈k| f̃ 〉 + 〈k|V̂| f̃ 〉 = 〈k|V̂| f̃ 〉, (15.13)

where we have used the orthogonality〈k| f̃ 〉 = 0 to eliminate the kinetic energy. Infact, since the f-state
is highly localized, its overlap with the conduction electron states is small〈k| f 〉 ≈ 0, so we can now
drop the tilde, approximating〈k|V̂| f̃ 〉 ≈ 〈k|V̂ion +W| f 〉 ≈ 〈k|V̂ion| f 〉, so that

V(k) ≈ 〈k|Vion| f 〉 =
∫

d3re−ik.r Vion(r)ψ f (r ). (15.14)

In this way, the only surviving term contributing to the hybridization is the atomicpotential - only
this term has the high-momentum Fourier components to create a significantoverlap between the low
momentum conduction electrons and the localized f-state.
Putting these results together, the non-interacting Anderson model can then be written

Ĥresonance=
∑

k

ǫk︷          ︸︸          ︷
(Ek +W− µ) c†kσckσ +

∑

kσ

(V(k)c†kσ fσ + H.c)+

E f︷     ︸︸     ︷
(Eion

f − µ) nf .

tFig. 15.4 (a) The immersion of an atomic f state in a conduction sea leads to hybridization
between the localized f-state and the degenerate conduction electron continuum,
forming (b) a resonance in the density of states.

504



bk.pdf April 29, 2012 257

c©2011 Piers Coleman Chapter 15.

15.3.2 Virtual bound-state formation: the non-interacting reson ance.

When the magnetic ion is immersed in a sea of electrons, the f-electrons within the core of the atom can
tunnel out, hybridizing with the Bloch states of surrounding electron sea [?] as shown in Fig. 15.4.

In the absence of interactions, this physics is described by

Hresonance=
∑

k,σ

ǫknkσ +
∑

kσ

[
V(k)c†kσ fσ + H.c.

]
+ E f nf , (15.15)

wherec†kσ creates an electron of momentumk, spinσ and energyǫk = Ek − µ in the conduction band. The
hybridization broadens the localized f-state, and in the absence of interactions, gives rise to a resonance of
width ∆ given by Fermi’s Golden Rule.

∆ = π
∑

~k

|V(k)|2δ(ǫk − E f ) (15.16)

This is really an average of the density of statesρ(ǫ) =
∑

k δ(ω− ǫk) with the hybridization|V(k)|2. For future
reference, we shall define

∆(ǫ) = π
∑

~k

|V(k)|2δ(ǫk − ǫ) = πρ(ǫ)V2(ǫ) (15.17)

as the “hybridization” function.
Let us now examine the resonant scattering off a non-interacting f-level, using Feynman diagrams. We’ll

denote the propagator of the bare f-electron by a full line, and that of the conduction electron by a dashed
line, as follows:

f , ω
G(0)

f (ω) =
1

ω − E f

k, ω
G(0)(k, ω) =

1
ω − ǫk

. (15.18)

For simplicity, we will ignore the momentum dependence of the hybridization, takingV(k) = V(k)∗ ≡ V.
The hybridization is a kind of off-diagonal potential scattering which we denote by a filled dot, as follows:

f k

V

k f

V (15.19)

Now the hybridization permits the f-electron to tunnel backand forth into the continuum, a process we can
associate with the “self-energy” diagram

k, ω

V V
= Σc(ω) =

∑

k

V2

ω − ǫk
. (15.20)

We can view this term as an effective scattering potential for the f-electrons, one that is frequency dependent
and hence retarded in time, reflecting the fact that an f-electron can spend large amounts of time out in the

505

Chapter 15. c©Piers Coleman 2011

conduction band. The Feynman diagrams describing the multiple scattering of the f-electron off this potential
are then:

f
= +

k′
+

k′ k′′
+ . . .

(15.21)

Each time the electron tunnels into the conduction band, it does so with a different momentum, so the mo-
menta of the conduction electrons are independently summedover in the intermediate states. As in previous
chapters, we can sum these terms as a geometric series to obtain a familiar-looking self-energy correction to
the f-propagator.

G f (ω) = G(0)
f

[
1+ ΣcG

(0)
f +

(
ΣcG

(0)
f

)2
+ . . .

]
= [ω − E f − Σc(ω)]−1 (15.22)

Now for a broad conduction band there is a very useful approximation forΣc. To derive it, we re-write the
momentum sum in the self-energy as an energy integral with the density of states, replacing

∑
k →

∫
dǫρ(ǫ),

so that

Σc(ω) =
∫

dǫ
π
ρ(ǫ)

πV2

ω − ǫ =
∫

dǫ
π

∆(ǫ)
ω − ǫ , (15.23)

where∆(ǫ) = πρ(ǫ)V2. In the complex plane,Σc(ω) has a branch cut along the real axis with a discontinuity
in its imaginary part proportional to the hybridization:

ImΣc(ω ± iδ) =
∫

dǫ
π
∆(ǫ)

∓iπδ(ω−ǫ)︷          ︸︸          ︷
Im

1
ω − ǫ ± iδ

,= ∓∆(ω). (15.24)

Consider the particular case where∆(ǫ) = ∆ is constant forǫ ∈ [−D,D], so that

Σ(ω ± iδ) =
∆

π

∫ D

−D

dǫ
ω − ǫ ± iδ

=
∆

π
ln

[
ω ± iδ + D
ω ± iδ − D

]

=
∆

π

O(ω/D)︷      ︸︸      ︷
ln

∣∣∣∣∣
ω + D
ω − D

∣∣∣∣∣∓i∆θ(D − |ω|) (15.25)

which is a function with a branch-cut stretching fromω = −D to ω = +D. The frequency dependent part of
ReΣc = O(ω/D) is negligible in a broad band. We can extend this observation to more general functions∆(ω)
that vary slowly over the width of the resonance (lumping anyconstant part ofΣc into a shift ofE f .) With
this observation, for a broad band, we drop the real part ofΣc, writing it in the form

Σc(ω + iω′) = −i∆sgn(ω′), (15.26)

whereω′ is the imaginary part of the frequency. (at the Matsubara frequencies,Σc(iωn) = −i∆sgnωn). On the
real axis, the f-propagator takes a particularly simple form

G f (ω − iδ) =
1

(ω − E f − i∆)
, (15.27)

that describes a resonance with a width∆, centered around energyE f , with a Lorentzian density of states

ρ f (ω) =
1
π

ImGf (ω − iδ) =
∆

(ω − E f )2 + ∆2
.
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Now let us turn to see how the conduction electrons scatter off this resonance. Consider the repeated
scattering of the conduction electrons, represented by thedashed line, off the f-level as follows:

k k ′
=

k
+

k k′
+

k k′′ k′
+ . . .

Now using (15.21) we see that third and higher terms can be concisely absorbed into the second term by
replacing the bare f-propagator by the full (broadened) f-propagator, as follows

k k ′
=

k
+

k k′

G(k′, k, ω) = δk′,kG(0)(k, ω) + G(0)(k, ω)V2G f (ω)G(0)(k′, ω)

. (15.28)

We can identify

t(ω) = V2G f (ω) (15.29)

as the scattering t-matrix of the resonance. Infact, this relationship holds quite generally, even when interac-
tions are present, because the only way conduction electrons can scatter, is by passing through the localized
f-state. The full conduction electron propagator can then be written

G(k′, k, ω) = δk′,kG(0)(k, ω) +G(0)(k, ω)t(ω)G(0)(k′, ω). (15.30)

Scattering theory tells us that the t-matrix is related to the S-matrixS(ω) = e2iδ(ω), whereδ(ω) is the scattering
phase shift, by the relationS = 1− 2πiρ t(ω + iη)(here we useη as the infinitesimal to avoid confusion with
the notation for the phase shift), or

t(ω + iη) =
1

−2πiρ
(S(ω) − 1) = − 1

πρ
× 1

cotδ(ω) − i
. (15.31)

Substituting our explicit form of the f-Green’s function,

t(ω + iδ) = V2G f (ω + iη) =
1
πρ
×

∆︷︸︸︷
πρV2

ω − E f + i∆
= − 1

πρ
× 1

( E f−ω
∆

) − i
(15.32)

Comparing (15.31) and (15.32), we see that scattering phaseshift is given by

δ f (ω) = cot−1

(
E f − ω
∆

)
= tan−1

(
∆

E f − ω

)
. (15.33)

δ f (ω) is a monotonically increasing function, rising fromδ f = 0 atω << 0 to δ f = π at high energies. On
resonance,δ(E f ) = π/2, corresponding to the strongest kind of “unitary scattering”.

The Friedel Sum Rule

Remarkably, the phase shiftδ f ≡ δ f (0) at the Fermi surface determines sets the amount of chargebound
inside the resonance. Here, we can see this by using the f-spectral function to calculate the ground-state
occupancy:

nf = 2
∫ 0

−∞
dωρ f (ω) = 2

∫ 0

−∞

dω
π

∆

(ω − E f )2 + ∆2
=

2
π

cot−1

(
E f

∆

)
≡ 2×

δ f

π
, (15.34)
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Note that whenδ(0) = π/2, nf = 1. This is a particular example of the “Friedel sum rule”, - a very general
relation between the number of particles∆n bound in a potential well and the sum of the scattering phase
shifts at the Fermi surface

∆n =
∑

λ

δλ

π
(15.35)

whereδλ denotes the scattering phase shift in the partial wave statelabelled by the orbital quantum numbers
λ. 5

tFig. 15.5 Illustrating the Friedel sum rule. As the scattering phase shift grows, the nodes of the
eigenstates at the Fermi surface are drawn into the potential well. Each time the
phase shift passes through π one more node passes into the well, leading to one
more bound-electron.

We can understand the Friedel sum rule by looking at the scattering wavefunction far from the impurity.
The asymptotic radial wavefunctions of the incoming and thephase-shifted outgoing electrons on the Fermi
surface take the form

ψ(r) ∼
[
e−ikF r

r
+ e2iδ f

eikF r

r

]
∼

eiδ sin(kFr + δ f )

r

which corresponds to a radial wave in which the wavefunctionof the electrons is shifted by an amount

∆r = −
δ f

kF
= −λF

2
×
δ f

π
.

Thus for a positive phase shift, electrons aredrawn inwardsby the scattering process. Each timeδ f passes
throughπ, one more node of the wavefunction passes through the boundary at infinity, corresponding to an
additional bound electron. Anderson has called Friedel’s sum rule a “node counting theorem”.

5 For a spherical atom, without spin-orbit couplingλ = (l,m, σ), wherel, m andσ are the angular momentum and spin quantum
numbers. With spin orbit coupling,λ = ( j,m) denote the quantum numbers of total angular momentumj.
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Example 15.2: Anderson Model as a path integral
Formulate the Anderson model as a path integral and show that the conduction electrons can be “inte-
grated out”, giving rise to an action of the following form[?]

SF =
∑

σ,iωn

f̄σn

{
−iωn + E f − i∆sgn(ωn)

}
fσn +

∫ β

0
dτUn↑n↓. (15.36)

where fσn ≡ β−
1
2

∫ β

0
dτeiωnτ fσ(τ) is the Fourier transform of the f-electron field.

Solution: We begin by writing the partition function of the Anderson model as a path integral

Z =
∫
D[ f , c]e−S (15.37)

where the actionS = SA + SB is the sum of two terms, an atomic term

SA =

∫ β

0
dτ[

∑

σ

f̄σ(∂τ + E f ) fσ + Unf↑nf↓]

and a bath term

SB =

∫ β

0
dτ


∑

kσ

c̄kσ(∂τ + ǫkσ)ckσ + V
[
f̄σckσ + c̄kσ fσ

] (15.38)

describing the hybridization with the surrounding sea of conduction electrons.
We can re-arrange the path integral so that the conduction electron integral is carried out first,

Z =
∫
D[ f ]e−SF

ZB[{ f }]︷         ︸︸         ︷∫
D[c]e−SB , (15.39)

whereZB[{ f }] contains the change to the f-electron induced by “integrating out” the conduction elec-
trons. The bath action is free of interactions and can be written schematicallyas a quadratic form

SB = c̄ · A · c+ c̄ · j + j̄ · c (15.40)

whereA ≡ (∂τ + ǫk)δ(τ − τ′) is the matrix acting on the fields between the fieldsc ≡ ckσ(τ) and
c̄ = c̄kσ(τ), while j(τ) = V fσ(τ) and j̄ = f̄σ(τ)V are source terms. You may find it reassuring to recast
SB in Fourier space, whereA = (−iωn + ǫk) is explicitly diagonal.
Using the standard result for Gaussian fermion integrals,

ZB =

∫
D[c]e−c̄Ac− j̄c+c̄ j = detA× exp[ j̄.A−1. j].

or explicitly,

ZB[{ f }] =
ZC=e−βFC︷        ︸︸        ︷

det[∂τ + ǫk ] exp


∫ β

0
dτ f̄σ


∑

k

V2

∂τ + ǫk

 fσ

 (15.41)

The first term is the partition functionZC of the conduction sea in the absence of the magnetic ion.
SubstitutingZB[{ f }] back into the full path integral (15.39) and combining the quadratic termsthen
gives

Z = ZC ×
∫
D[ f ] exp

−
∫

dτ

 f̄σ
(
∂τ + E f −

∑

k

V2

∂τ + ǫk

)
fσ + Un↑n↓



 .

If we transform the first term into Fourier space, substitutingfσ(τ) = β−1/2 ∑
n fσne−iωnτ, f̄σ(τ) =

β−1/2 ∑
n f̄σneiωnτ so that∂τ → −iωn, the action can be written

SF =
∑

σ,iωn

f̄σn

{
−iωn + E f +

−i∆sgn(ωn)︷         ︸︸         ︷
∑

k

V2

iωn − ǫk

}

︸                              ︷︷                              ︸
−G−1

f (iωn)

fσn +

∫ β

0
dτUn↑n↓ (15.42)
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The quadratic coefficient of the f-electrons is the inverse f-electron propagator of the non-interacting
resonance. We immediately recognize the self-energy termΣc(iωn) = −i∆sgn(ωn) introduced in (15.20).
From this path integral derivation, we can see that this term accounts for the effect of the conduction
bath electrons, even in the presence of interactions. If we now use the large band-width approximation
Σ(iωn) = −i∆sgnωn introduced in the (15.26), the action can be compactly written

SF =
∑

σ,iωn

f̄σn

{
−iωn + E f − i∆sgn(ωn)

}
fσn +

∫ β

0
dτUn↑n↓. (15.43)

tFig. 15.6 Mean field phase diagram of the Anderson model, illustrating how the f-electron
resonance splits to form a local moment. A) U < π∆, single half-filled resonance. B)
U > π∆, up and down components of the resonance are split by an energy U.

15.3.3 Mean-field theory

In the Anderson model, the Coulomb interaction and hybridization compete with one-another. Crudely speak-
ing, we expect that when the Coulomb interaction exceeds thehybridization, local moments will develop. To
gain an initial insight into the effect of hybridization on local moment formation, Anderson originally devel-
oped a Hartree mean-field treatment of the repulsiveU interaction, decoupling

Un↑n↓ → Un↑〈n↓〉 + U〈n↑〉n↓ − U〈n↑〉〈n↓〉 +O(δn2). (15.44)

We can understand this kind of decoupling procedure as the result of a saddle point description of the path
integral, treated in more detail in the following excerciseEx 16.3. Using this mean-field approximation,
Anderson concluded that for the symmetric Anderson model, local moments would develop provided

U >
˜

Uc = π∆. (15.45)
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Let us now rederive his result. From (15.44), the mean-field effect of the interactions produces a shift the
f-level position,

E f → E fσ = E f + U〈nf−σ〉 (15.46)

which, using (15.34) implies that the scattering phase shift for the up and down channels are no-longer equal,
but given by

δ fσ = cot−1

(
E fσ

∆

)
. (15.47)

Using the “Friedel sum rule” (15.34), we then obtain the mean-field equations

〈nfσ〉 =
δ fσ

π
=

1
π

cot−1

(
E f + U〈nf−σ〉

∆

)
(15.48)

It is convenient to introduce an occupancynf =
∑
σ〈nfσ〉 and magnetizationM = 〈nf↑〉 − 〈nf↓〉, so that

〈nfσ〉 = 1
2(nf + σM) (σ = ±1). The mean-field equation for the occupancy and magnetization are then

nf =
1
π

∑

σ=±1

cot−1

(
E f + U/2(nf − σM)

∆

)
(15.49)

M =
1
π

∑

σ=±1

σ cot−1

(
E f + U/2(nf − σM)

∆

)
(15.50)

To find the critical size of the interaction strength where a local moment develops, we setM → 0+ in (15.49)
to obtainE f+Ucnf /2

∆
= cot

(
πnf

2

)
. Linearing (15.50) inM, we obtain

1 =
Uc

π∆

1

1+
(E f+Unf /2

∆

)2
=

Uc

π∆
sin2

(πnf

2

)
. (15.51)

so that fornf = 1,

Uc = π∆ (15.52)

For larger values ofU > Uc, there are two solutions, corresponding to an “up” or “down”spin polarization
of the f-state. We will see that this is an over-simplified description of the local moment, but it gives us a
approximate picture of the physics. The total density of states now contains two Lorentzian peaks, located at
E f ± UM:

ρ f (ω) =
1
π

[
∆

(ω − E f − UM)2 + ∆2
+

∆

(ω − E f + UM)2 + ∆2

]

The critical curve obtained by plottingUc andE f as a parametric function ofnf is shown in Fig. 15.6.
The Anderson mean-field theory allows a qualitatively understand the experimentally observed formation

of local moments. When dilute magnetic ions are dissolved in ametal to form an alloy, the formation of
a local moment is dependent on whether the ratioU/π∆ is larger than, or smaller than zero. When iron is
dissolved in pure niobium, the failure of the moment to form reflects the higher density of states and larger
value of∆ in this alloy. When iron is dissolved in molybdenum, the lowerdensity of states causesU > Uc,
and local moments form. [?]
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Example 15.3: Factorizing the interaction in the Anderson model

a) Show that the interaction in the Anderson model can be decoupled via a Hubbard Stratonovich
decoupling to yield

∫ β

0
dτUn↑n↓ →

∫ β

0
dτ

[
φ↑n↑ + φ↓n↓ −

φ↑φ↓

U

]
(15.53)

whereφσ = φ0 + iλ(τ) − σh(τ) is the sum of a real and an imaginary field.
b) Derive the mean-field partition function obtained by assuming that the path-integral overφ can be

approximated by the saddle point configuration whereφσ is independent of time, given by

ZMF =

∫
D[ f ]e−SMF [φσ , f ]

SMF =
∑

σ,iωn

f̄σn
[−G−1

fσ(iωn)
]
fσn +

β

U
φ↑φ↓. (15.54)

where

G−1
fσ(iωn) = iωn − E f − φσ + i∆sgn(ωn)

is the inverse mean-field f-propagator
c) Carry out the Gaussian integral in (15.54) to show that the mean-fieldfree energy is

FMF = −kBT
∑

σ,iωn

ln
[
−G−1

fσ(iωn)
]
− 1

U
φ↑φ↓.

and by setting∂F/∂φσ = 0, derive the mean-field equations

φ−σ = U〈nfσ〉 = U
∫ ∞

−∞

dω
π

f (ω)
∆

(ω − E f − φσ)2 + ∆2
.

Solution:

a) The interaction in the Anderson model can be rewritten as a sum of two terms,

Un↑n↓ =

“charge”︷         ︸︸         ︷
U
4

(n↑ + n↓)
2−

“spin”︷         ︸︸         ︷
U
4

(n↑ − n↓)
2

that we can loosely interpret as a repulsiion between charge fluctuations and an attraction between
spin fluctuations. Following the results of Section **.*, inside the path integral, the attractive mag-
netic interaction can be decoupled in terms of a fluctuating Weissh(τ) field, while the the repulsive
charge interaction can be decoupled in terms of a fluctuating potential fieldφ(τ) = φ0 + iλ(τ), as
follows

−1
2
× U

2
(n↓ − n↑)

2 → −h(n↑ − n↓) +
h2

2× (U/2)
,

+
1
2
× U

2
(n↑ + n↓)

2 → φ(n↑ + n↓) −
φ2

2× (U/2)
, (15.55)

with the understanding that for repulsiveU > 0, fluctuations ofφ(τ) are integrated along the imagi-
nary axis,φ(τ) = φ0 + iλ(τ). Adding these terms gives

∫ β

0
dτUn↑n↓ →

∫ β

0
dτ

[
(φ − σh)nσ +

h2 − φ2

U

]
=

∫ β

0
dτ

[
φ↑n↑ + φ↓n↓ +

φ↑φ↓

U

]
(15.56)

whereφσ = φ − σh. The decoupled path integral then takes the form

ZF =

∫
D[φσ]

∫
D[ f ]e−SF [φσ , f ]
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SF =

∫
dτ

 f̄σ
(
∂τ + E f + φσ −

∑

k

V2

∂τ + ǫk

)
fσ −

1
U
φ↑φ↓

 . (15.57)

Note how the Weiss fieldsφσ shift the f-level position:E f → E f + φσ(τ). In this way, the Anderson
model can be regarded as a resonant level immsersed in a white noise magnetic field that modulates
the splitting between the up and down spin resonances.

b) Anderson’s mean-field treatment corresponds to to a saddle point approximation to the integral over
theφσ fields. At the saddle point,〈δS/δφσ〉 = 0 . From (15.57), we obtain

δSF

δφσ
= f̄σ fσ −

1
U
φ−σ

so the saddle point condition〈δSF/δφσ〉 = 0 impliesφ−σ = U〈nfσ〉, recovering the Hartree mean
field theory. We can clearly seek solutions in whichφσ(τ) = φ(0)

σ is a constant. With this understand-
ing, the saddle point approximation is

ZF ≈ ZMF =

∫
D[ f ]e−SF [φ(0)

σ , f ] (15.58)

where

SMF =

∫
dτ

 f̄σ
(
∂τ + E f + φ

(0)
σ −

∑

k

V2

∂τ + ǫk

)
fσ −

1
U
φ(0)
↑ φ

(0)
↓

 . (15.59)

Now sinceφ(0) is a constant, we can Fourier transform the first term in this expression, replacing
∂τ → −iωn, to obtain

SMF =
∑

σ, iωn

f̄σn

−G−1
fσ(iωn)

︷                                        ︸︸                                        ︷(
−iωn + E f + φ

(0)
σ −

∑

k

V2

−iωn + ǫk
︸           ︷︷           ︸
−isgn(ωn)∆

)
fσn −

β

U
φ(0)
↑ φ

(0)
↓ , (15.60)

where in the broad-band width limit, we can replace

G−1
fσ(iωn) = iωn − E f − φ(0)

σ + isgn(ωn)∆. (15.61)

c) Carrying out the Gaussian integral in (15.58), we obtain

ZMF = det[−G−1
fσ(iωn)]e

β
U φ↑φ↓ =

∏

σ,iωn

[−G−1
fσ(iωn)]e

β
U φ↑φ↓ ,

or

FMF = −kBT ln ZMF = −kBT
∑

σ,iωn

ln
[
−G−1

fσ(iωn)
]
eiωn0+ − 1

U
φ↑φ↓. (15.62)

where we have included the convergence factoreiωn0+ . By (15.61),
∂G−1

fσ(iωn)

∂φσ
= −1, so differentiating

(15.62 ) with respect toφσ, we obtain

0 = kBT
∑

iωn

G fσ(iωn)e
iωn0+ − 1

U
φ−σ, (15.63)

or

φ−σ = U〈nfσ〉 = UkBT
∑

iωn

G fσ(iωn)e
iωn0+ .

Carrying out the sum over the Matsubara frequencies by the standard contour integral method, we
obtain

φ−σ = −U
�

Im axis

dz
2πi

f (z)G fσ(z) = U
�

Re axis

dz
2πi

f (z)G fσ(z)
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= U
∫ ∞

−∞

dω
π

f (ω)ImG fσ(ω − iδ)

= U
∫ ∞

−∞

dω
π

f (ω)
∆

(ω − E f − φ0σ)2 + ∆2
. (15.64)

15.3.4 The Coulomb Blockade: local moments in quantum dots

A modern realization of the physics of local moments is foundwithin quantum dots. Quantum dots are a tiny
electron pools in a doped semi-conductor, small enough so that the electron states inside the dot are quantized,
loosely resembling the electronic states of an atom. Quantum dot behavior also occurs in nanotubes. Unlike a
conventional atom, the separation of the electronic statesin quantum dot is of the order of milli-electron volts,
rather than volts. The overall position of the quantum dot energy levels can be changed by applying a gate
voltage to the dot. It is then possible to pass a small currentthrough the dot by placing it between two leads.
The differential conductanceG = dI/dV is directly proportional to the density of statesρ(ω) inside the dot
G ∝ ρ(0). Experimentally, when G is measured as a function of gatevoltageVg, the differential conductance
is observed to develop a periodic structure, with a period ofa few milli-electron volts. [?]

This phenomenon is known as the “Coulomb blockade”[?, ?] and it results from precisely the same physics
that is responsible for moment formation. A simple model fora quantum dot considers it as a sequence of
single particle levels at energiesǫλ, interacting via a single Coulomb potentialU, according to the model

Hdot =
∑

λ

(ǫλ + eVg)nλσ +
U
2

N(N − 1) (15.65)

wherenλσ is the occupancy of the spinσ state of theλ level,N =
∑
λσ nλσ is the total number of electrons in

the dot andVg the gate voltage. This is a simple generalization of the single atom part of the Anderson model.
Notice that the capacitance of the dot isC = e2/U.

The energy difference between then electron andn+ 1 electron state of the dot is given by

E(n+ 1)− E(n) = nU + ǫλn − |e|Vg,

whereλn is the one-particle state into which the n-th electron is being added. As the gate voltage is raised, the
quantum dot fills each level sequentially, as illustrated inFig. 15.7, and when|e|Vg = nU + ǫλn, the n-th level
becomes degenerate with the Fermi energy of each lead. At this point, electrons can pass coherently through
the resonance giving rise to a sharp peak in the conductance.At maximum conductance, the transmission
and reflection of electrons is unitary, and the conductance of the quantum dot will reach a substantial fraction
of the quantum of conductance,e2/h per spin. A calculation of the zero-temperature conductance through a
single non-interacting resonance coupled symmetrically to two leads gives

G(Vg) =
2e2

h
∆2

(ǫλ − |e|Vg)2 + ∆2
(15.66)

where the factor of two derives from two spin channels. This gives rise to a conductance peak when the gate
voltage|e|Vg = ǫλ. At a finite temperature, the Fermi distribution of the electrons in the leads is thermally
broadened, and the conductance involves a thermal average about the Fermi energy

G(Vg,T) =
2e2

h

∫
dǫ

(
−∂ f
∂ǫ

)
∆2

(ǫλ − |e|Vg − ǫ)2 + ∆2
(15.67)
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tFig. 15.7 Variation of zero bias conductance G = dI/dV with gate voltage in a quantum dot.
Coulomb interactions mean that for each additional electron in the dot, the energy to
add one electron increases by U. When the charge on the dot is integral, the
Coulomb interaction blocks the addition of electrons and the conductance is
suppressed. When the energy to add an electron is degenerate with the Fermi energy
of the leads, unitary transmission occurs, and for symmetric leads, G = 2e2/h.

where f (ǫ) = 1/(eβǫ + 1) is the Fermi function. When there are multiple levels, the each successive level
contributes to the conductance, to give

G(Vg,T) =
∑

n≥0

2e2

h

∫
dǫ

(
−∂ f
∂ǫ

)
∆2

(nU + ǫλn − |e|Vg − ǫ)2 + ∆2

where the n-th level is shifted by the Coulomb blockade.
The effect of a bias voltage on these results is interesting. In thissituation, the energy distribution function

of the two leads are now shifted relative to one-another. An crude model for the effect of a voltage is obtained
replacing the Fermi function by an average over both leads, so that f ′(ǫ) → 1

2

∑
± f ′(ǫ ± eVsd

2 ), which has the
effect of splitting the conductance peaks into two, peaked at voltages

|e|Vg = ǫλn + nU ± |e|Vsd/2 (15.68)

as shown in Fig. 15.8.
It is remarkable that the physics of moment formation and the“Coulomb blockade” operate in both artificial

mesoscopic devices and naturally occurring magnetic ions.
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tFig. 15.8 Experimentally measured conductance for a voltage-biased quantum dot after [?],
showing the splitting of the Coulomb blockade into two components, shifted up and
down by the voltage bias, ±eVsd/2. In the white diamond-shaped regions, G(Vsd) ≈ 0
as a result of Coulomb blockade. The number of particles N is fixed in each of the
diamond regions. The lines outside the diamonds, running parallel to the sides,
identify excited states.

15.4 The Kondo Effect

Although Anderson’s mean-field theory provides a mechanismfor moment formation, it raises new questions.
While the mean-field treatment of the local moment would be appropriate for an ordered magnet involving a
macroscopic number of spins, rigidly locked together, for asingle magnetic impurity there will will always
be a finite quantum mechanical amplitude for the spin to tunnel between an up and down configuration.

e−↓ + f 1
↑ ⇋ e−↑ + f 1

↓

This tunneling rateτ−1
s f defines a temperature scale

kBTK =
~

τs f

called the Kondo temperature, which sets the cross-over between local moment behavior, where the spin is
free, and the low temperature physics, where the spin and conduction electrons are entangled. Historically,
the physics of this cross-over posed a major problem for the theoretical physics community that took about
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a decade to resolve. It turns out that the process by which a local moment disappears or “quenches” at low
temperatures is analagous to the physics of quark confinement. Today we name it the “Kondo effect” after the
Japanese physicist Jun Kondo who calculated the leading logarithmic contribution that signals this unusual
behavior[?].

The Kondo effect has a many manifestations in condensed matter physics: not only does it govern the
quenching of magnetic moments in a magnetic alloy or a quantum dot[?], it is responsible for the formation of
heavy fermions in dense Kondo lattice materials (heavy fermion compounds) where the local moments trans-
form into composite quasiparticles with masses sometimes in excess of a thousand bare electron masses.[?]
We will see that the Kondo temperature depends exponentially on the strength of the Anderson interaction
parameterU. In the symmetric Anderson model, whereE f = −U/2,

TK =

√
2U∆
π2

exp
(
−πU

8∆

)
. (15.69)

We will derive the key elements of this basic result using perturbative renormalization group reasoning [?],
but it is also obtained from the exact Bethe ansatz solution of the Anderson model [?, ?, ?].
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One can view the physics of local moments from two complimentary perspectives (see Fig. (15.9)):

• an “adiabatic picture” which starts with the non-interacting resonant ground-state (U = 0) of the Anderson
model, and then considers the effect of dialing up the interaction termU.

• a “scaling approach”, which starts with the interacting, but isolated atom (V(k) = 0), and considers the
effect of immersing it in an electron sea, gradually “integrating out” lower and lower energy electrons.

tFig. 15.9 The phase diagram of the symmetric Anderson model. Below a scale T ∼ U local
moments develop. The Kondo temperature TK plays the role of the renormalized
resonant level width. Below a temperature T ∼ TK , the local moments become
screened by the conduction sea via the Kondo effect, to form a Fermi liquid.

The adiabatic approach involves dialing up the interaction, as shown by the horizontal arrow in figure
(15.9). From the adiabatic perspective, the ground-state remains in a Fermi liquid. In principle, one might
imagine the possibiity of a phase transition at some finite interaction strengthU, but in a single impurity
model, with a finite number of local degrees of freedom, we don’t expect any symmetry breaking phase
transitions. In the scaling approach, we follow the physicsas a function of ever-decreasing energy scale, is
loosely equivalent to dialing down the temperature, as shown by the vertical arrow in figure (15.9) The scaling
approach starts from an atomic perspective: it allows us to understand the formation of local moments, and at
lower temperatures, how a Fermi liquid can develop through the interaction of an isolated magnetic moment
with a electron sea.

We shall first discuss one of the most basic manifestations ofthe Kondo effect: the appearance of a a
Kondo resonance in the spectral function of the localized electron. This part of our analysis will involve
rather qualitative reasoning based on the ideas of adiabaticity introduced in earlier chapters. Afterwards we
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adopt the scaling apporach, first deriving derive the Kondo model, describing low-energy coupling between
the local moments and conduction electrons by using a “Schrieffer Wolff” transformation of the Anderson
model. Finally, we shall discuss the concept of renormalization and apply it to the Kondo model, following
the evolution of the physics from the local moment to the Fermi liquid.

15.4.1 Adiabaticity and the Kondo resonance

The adiabatic approach allows us to qualitatively understand the emergence of a remarkable resonance in
the excitation spectrum of the localized f-electron - the “Kondo resonance”. This resonance is simply the
adiabatic renormalization of the Friedel-Anderson resonance seen in the non-interacting Anderson model. Its
existence was first infered by Abrikosov and Suhl [?, ?], but today it is colloquially refered to as the“Kondo
resonance”.

To understand the Kondo resonance we shall study the effects of interactions on the f-spectral function

Af (ω) =
1
π

ImG f (ω + iη) (15.70)

whereG f (ω − iδ) = is the advanced f-Green’s function. From a spectral decomposition (10.7.1) we know
that:

Af (ω) =



Energy distribution for adding one f-electron.︷                                       ︸︸                                       ︷∑

λ

∣∣∣〈λ| f †σ|φ0〉
∣∣∣2 δ(ω − [Eλ − E0]), (ω > 0)

∑

λ

|〈λ| fσ|φ0〉|2 δ(ω − [E0 − Eλ]),

︸                                     ︷︷                                     ︸
Energy distribution for removing f-electron

(ω < 0)
(15.71)

whereEλ and E0 are the excited and ground-state energies. For negative energiesω < 0, this spectrum
corresponds to the energy spectrum of electrons emitted in X-ray photo-emission, while for positive energies
(ω > 0), the spectral function can be measured from inverse X-rayphoto-emission [?, ?]. The weight beneath
the Fermi energy determines the f-charge of the ion

〈nf 〉 = 2
∫ 0

−∞
dωAf (ω) (15.72)

In a magnetic ion, such as a Cerium atom in a 4f 1 state, this quantity is just a little below unity.
Fig. (15.16.) illustrates the effect of the interaction on the f-spectral function. In the non-interacting limit

(U = 0), the f-spectral function is a Lorentzian of width∆. If we turn on the interactionU, being careful
to shifting the f-level position beneath the Fermi energy tomaintain a constant occupancy, the resonance
splits into three peaks, two at energiesω = E f andω = E f + U corresponding to the energies for a valence
fluctuation, plus an additional central “Kondo resonance” associated with the spin-fluctuations of the local
moment.

When the interaction is much larger than the hybridization width, U >> ∆, one might expect no spectral
weight left at low energies. But it turns out that the spectral function at the Fermi energy is an adiabatic
invariant determined by the scattering phase shiftδ f :

Af (ω = 0) =
sin2 δ f

π∆
. (15.73)

This result, due to Langreth[?, ?], guarantees that a “Kondo resonance” is always present at the Fermi energy.
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Af (ω)

ω

0

U
ω = Ef + U

∆ TK

ω = Ef

Kondo

Infinite U Anderson

e− + f1 → f2

f 1→ f0+e−

tFig. 15.10 Schematic illustrating the formation of a Kondo resonance in the f-spectral function
Af (ω) as interaction strength U is turned on. Here, the interaction is turned on while
maintaining a constant f-occupancy, by shifting the bare f-level position beneath the
Fermi energy. The lower part of diagram is the density plot of f-spectral function,
showing how the non-interacting resonance at U = 0 splits into an upper and lower
atomic peak at ω = E f and ω = E f + U.

Now the total spectral weight
∫ ∞
−∞ dωAf (ω) = 1 is conserved, so if|E f | andU are both large compared with

∆, most of this weight will be lie far from the Fermi energy, leaving a small residueZ << 1 in the Kondo
resonance. If the area under the Kondo resonance isZ, since the height of Kondo resonance is fixed∼ 1/∆,
the renormalized hybridization width∆∗ must be of orderZ∆. This scale is set by the Kondo temperature, so
thatZ∆ ∼ TK .

The Langreth relation (15.73) follows from the analytic form of the f-Green’s function near the Fermi
energy. For a single magnetic ion, we expect that the interactions between electrons can be increased con-
tinuously, without any risk of instabilities, so that the excitations of the strongly interacting case remain in
one-to-one correspondence with the excitations of the non-interacting caseU = 0, forming a “local Fermi
liquid”. In this local Fermi liquid, the interactions give rise to an f-electron self-energy, which at zero tem-
perature, takes the form

ΣI (ω − iη) = ΣI (0)+ (1− Z−1)ω + iAω2, (15.74)
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at low energies. As discussed in chapter 8, The quadratic energy dependence ofΣI (ω) ∼ ω2 follows from the
Pauli exclusion principle, which forces a quadratic energydependence of the phase space for the emission of
a particle-hole pair. The “wavefunction” renormalizationZ, representing the overlap with the state containing
one additional f-quasiparticle, is less than unity,Z < 1. Using this result (15.74), the low energy form of the
f-electron propagator is

G−1
f (ω − iη) = ω − E f − i∆ − ΣI (ω) = Z−1[ω −

E∗f︷           ︸︸           ︷
Z(E f + ΣI (0))−i

∆∗

︷︸︸︷
Z∆ −iO(ω2)

]

G f (ω − iη) =
Z

ω − E∗f − i∆∗ − iO(ω2)
. (15.75)

This corresponds to a renormalized resonance of reduced weight Z < 1, located at postionE∗f with renor-
malized width∆∗ = Z∆. Now by (15.29) and (15.31 ), the f-Green’s function determines the t-matrix of the
conduction electronst(ω+ iη) = V2G f (ω+ iη) = −(πρ)−1eiδ(ω) sinδ(ω), so the phase of the f-Green’s function
at the Fermi energy determines the scattering phase shift,δ f , henceG f (0+ iη) = (G f (0− iη))∗ = −|G f (0)|eiδ f .
This implies that the scattering phase shift at the Fermi energy is

δ f = Im
(
ln[−G−1

f (ω − iη)]
)∣∣∣∣
ω=0
= tan−1


∆∗

E∗f

 . (15.76)

EliminatingE∗f = ∆
∗ cotδ f from (15.75), we obtain

G f (0+ iη) = − Z
∆∗

e−iδ f sinδ f = −
1
∆

e−iδ f sinδ f , (15.77)

so that

Af (0) =
1
π

ImG f (0− iη) =
sin2 δ f

π∆
. (15.78)

is an adiabatic invariant.
Photo-emission studies do reveal the three-peaked structure characteristic of the Anderson model in many

Ce systems, such asCeIr2 andCeRu2 [?] (see Fig. 16.1). Materials in which the Kondo resonance is wide
enough to be resolved are more “mixed valent” materials in which the f- valence departs significantly from
unity. Three peaked structures have also been observed in certain U 5f materials such asUPt3 andUAl2
[?]materials, but it has not yet been resolved inUBe13. A three peaked structure has recently been observed
in 4f Ybmaterials, such asYbPd3, where the 4f 13 configuration contains a singlef hole, so that the positions
of the three peaks are reversed relative to Ce [?].

15.4.2 Renormalization concept

The Anderson model illustrates a central theme of condensedmatter physics - the existence of physics on
several widely spaced energy scales. In particular, the scale at which local moments form is of order the
Coulomb energyU, a scale of order 10eV, while the Kondo effect occurs on a scale a thousand times smaller
of order 10K ∼ 1meV. When energy scales are well-separated like this, we use the “renormalization group”
to fold the key effects of the high energy physics into a small set of parametersthat control the low energy
physics. [?, ?, ?, ?]

Renormalization is built on the idea that the low energy physics of a system only depend on certain gross
features of the high energy physics. The family of systems with the same low energy excitation spectrum
constitute a “universality class” of models. (Fig. 15.12) We need the concept of universality, for without
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tFig. 15.11 Spectral functions for three different Cerium f-electron materials, measured using
X-ray photoemission (below the Fermi energy ) and inverse X-ray photoemission
(above the Fermi energy) after [?]. CeAl is an antiferromagnet and does not display a
Kondo resonance.

without it we would be lost, for we could not hope to capture the physics of real-world systems with our
simplified Hamiltonian models. The Anderson model, is itself a renormalized Hamiltonian, notionally derived
from the elimination of high energy excitations from “the” microscopic Hamiltonian.

To carry out renormalization, the Hamiltonian of interestH(D) is parameterized by its cutoff energy scale,
D, the energy of the largest excitations. Renormalization involves reducing gthe cutoff to a slightly smaller
valueD → D′ = D/b whereb > 1. The excitations in the energy windowE ∈ [D′,D] that are removed
by this process, are said to have been integrated out of the Hilbert space, and in so doing they give rise to a
new “effective” HamiltonianH̃L that continues to faithfully describe the the remaining low-energy degrees
of freedom. The energy scales are then rescaled, to obtain a new H(D′) = bH̃L and the whole process is
repeated.

Generically, the Hamiltonian can be divided into a block-diagonal form

H =

[
HL

V

∣∣∣∣∣∣
V†

HH

]
(15.79)

whereHL and HH act on states in the low-energy and high-energy subspaces respectively, andV andV†

provide the matrix elements between them. The high energy degrees of freedom may be “integrated out”6 by

6 The term “integrating out” is originally derived from the path integral formulation of the renormalization group, in which high energy
degrees of freedom are removed by integrating over these variables inside the path integral.
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carrying out a canonical transformation that eliminates the off-diagonal elements in this HamiltoniañHL

H(D)→ H̃ = UH(D)U† =


H̃L

0

∣∣∣∣∣∣
0

H̃H

 (15.80)

One then projects out the low energy component of the block-diagonalized HamiltoniañHL = PH̃P. Finally,
by rescaling

H(D′) = bH̃L (15.81)

one arrives at a new Hamiltonian describing the physics on the reduced scale. The transformation fromH(D)
to H(D′) is referred to as a “renormalization group” (RG) transformation. This term was coined long ago,
even though the transformation does not form a real group, since there is no inverse transformation.

Repeated application of the RG procedure leads to a family ofHamiltoniansH(D). By taking the limit

tFig. 15.12 Scaling concept. Low energy model Hamiltonians are obtained from the detailed
original model by integrating out the high energy degrees of freedom. At each stage,
the physics described by the model spans a successively lower frequency window in
the excitation spectrum.

b → 1, these Hamiltonians evolve, or “flow” continuously withD. Typically, H will contain a series of
dimensionless parameters (coupling constants){gi} which denote the strength of various interaction terms in
the Hamiltonian. The evolution of these parameters with cut-off is given by a scaling equation. In the the
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simplest case

∂g j

∂ ln D
= β j({gi})

A negativeβ function denotes a “relevant” parameter which grows as the cut-off is reduced. A positiveβ
function denotes an “irrelevant” parameter constant which shrinks towards zero as the cut-off is reduced.
There are two types of event that can occur in such a scaling procedure (Fig. 15.14):

• A crossover. When the cut-off energy scaleD passes the characteristic energy scale of a particular class of
high frequency excitations, then at lower energies, these excitations may only occur via a virtual process.
When the effects of the virtual fluctuations associated with these high energy process are included into
the Hamiltonian, it changes its structure.

• Fixed Point. If the cut-off energy scale drops below the lowest energy scale in the problem, then there
are no further changes to occur in the Hamiltonian, which will now remain invariant under the scaling
procedure (so that theβ function of all remaining parameters in the Hamiltonian must vanish). This
“Fixed Point Hamiltonian”describes the essence of the low energy physics.

Local moment physics involves a sequence of such cross-overs (Fig. 15.12.). The highest energy scales in
the Anderson model, are associated with “valence fluctuations” into the empty and doubly occupied states

f 1
⇌ f 2 ∆EI = U + E f > 0

f 1
⇌ f 0 ∆EII = −E f > 0 (15.82)

The successive elimination of these processes leads to two cross-overs. Suppose∆EI is the largest scale,
then onceD < ∆EI , charge fluctuations into the doubly occupied state are eliminated and the remaining low
energy Hilbert space of the atom is

D < E f + U : | f 0〉, | f 1, σ〉 (σ = ±1/2) (15.83)

The operators that span this space are called “Hubbard operators”[?], and they are denoted as follows

Xσ0 = | f 1, σ〉〈 f 0| = P f†σ, X0σ = | f 0〉〈 f 1, σ| = f †σP,
Xσσ′ = | f 1, σ〉〈 f 1, σ′| (15.84)

whereP = (1− nf↑nf↓) projects out doubly occupied states. (Note that the Hubbard operatorsXσ0 = P f†σ,
can not be treated as simple creation operators, for they do not satisfy the canonical anticommutation algebra.)
The corresponding renormalized Hamiltonian is the “Infinite U Anderson model”,

H =
∑

k,σ

ǫknkσ +
[
V(k)c†kσX0σ + V(k)∗Xσ0ckσ

]
+ E f

∑

σ

Xσσ. (15.85)

Infinite U Anderson model

In this model, all the interactions are hidden inside the Hubbard operators.
Finally, onceD < ∆EII , the low-energy Hilbert space no longer involves thef 2 or f 0, states. The object

left behind is a quantum top - a quantum mechanical object with purely spin degrees of freedom and a two
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dimensional7 Hilbert space

| f 1, σ〉, (σ = ±1/2).

Now the residual spin degrees of freedom still interact withthe surrounding conduction sea, for virtual charge
fluctuations, in which an electron temporarily migrates off, or onto the ion lead, to spin-exchange between
the local moment and the conduction sea. There are two such virtual processes:

e↑ + f 1
↓ ↔ f 2↔ e↓ + f 1

↑ ∆EI ∼ U + E f

e↑ + f 1
↓ ↔ e↑ + e↓ ↔ e↓ + f 1

↑ ∆EII ∼ −E f (15.86)

In both cases, spin exchange only takes place in the singlet channel,S = 0 state. From second-order pertur-
bation theory, we know that these virtual charge fluctuations will selectively lower the energy of the singlet
configurations by an amount of order∆E = −J, where

J ∼ V2

[
1
∆E1

+
1
∆E2

]
= V2

[
1
−E f

+
1

E f + U

]
. (15.87)

HereV is the size of the hybridization matrix element near the Fermi surface. The selective reduction in the
energy of the singlet channel constitutes an effective antiferromagnetic interaction between the conduction
electrons and the local moment. If we introduce~σ(0) =

∑
k,k′ c

†
kα~σαβck′β, measuring the the electron spin

at the origin, then the effective interaction that lowers the energy of singlet combinations of conduction and
f-electrons will have the formHe f f ∼ J~σ(0) · ~S f . The resulting low-energy Hamiltonian that describes the
interaction of a spin with a conduction sea is the deceptively simple “Kondo model”

H =
∑

kσ

ǫkc
†

kσckσ +

Hint︷                ︸︸                ︷
Jψ†(0)~σψ(0) · ~S f . (15.88)

Kondo model

This heuristic argument was ventured in Anderson’s paper onlocal moment formation in 1961. At the
time, the antiferromagnetic sign in this interaction was entirely unexpected, for it had long been that ex-
change forces always induce a ferromagnetic interaction between the conduction sea and local moments. The
innocuous-looking sign difference has deep consequences for the physics of local moments at low temper-
atures, giving rise to an interaction that grows as the temperature is lowered ultimately leading to a final
cross-over into a low-energy Fermi liquid fixed point. The remaining sections of the chapter are devoted to
following this process in detail.

15.4.3 Schrieffer-Wolff transformation

We now carry out the transformation that links the Anderson and Kondo models via a canonical transforma-
tion, first introduced by Schrieffer and Wolff[?, ?]. This transformation is a kind of one-step renormalization

7 In the simplest version of the Anderson model, the local moment isa S = 1/2, but in more realistic atoms much large moments can
be produced. For example, an electron in a CeriumCe3+ ion atom lives in a 4f 1 state. Here spin-orbit coupling combines orbital and
spin angular momentum into a total angular momentj = l −1/2 = 5/2. The Cerium ion that forms thus has a spinj = 5/2 with a spin
degeneracy of 2j + 1 = 6. In multi-electron atoms, the situation can become still more complex, involving Hund’s coupling between
atoms.
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process in which the valence fluctuations are integrated outof the Anderson model. When a local moment
forms, hybridization with the conduction sea induces virtual charge fluctuations. It’s useful to consider divid-
ing the Hamiltonian into two terms

H = H1 + λV

whereλ is an expansion parameter. Here,

H1 = Hband+ Hatomic=

[
HL

0

∣∣∣∣∣
0

HH

]

is diagonal in the low energyf 1 (HL) and the high energyf 2 or f 0 (HH) subspaces, whereas the hybridization
term

V = Hmix =
∑

jσ

[
V~kc

†
kσ fσ + H.c.

]
=

[
0

V

∣∣∣∣∣∣
V†

0

]

provides the off-diagonal matrix elements between these two subspaces. Theidea of the Schrieffer Wolff
transformation is to carry out a canonical transformation that returns the Hamiltonian to block-diagonal form:

U
[
HL

λV

∣∣∣∣∣∣
λV†

HH

]
U† =

[
H∗

0

∣∣∣∣∣∣
0

H′

]
. (15.89)

This is a “renormalized” Hamiltonian, and the block-diagonal part of this matrixH∗ = PLH′PL in the low
energy subspace provides aneffective Hamiltonian for the low energy physics. If we setU = eS, then
U† = U−1 = e−S (which impliesS† = −S is anti-hermitian). WritingS as a power series inλ,

S = λS1 + λ
2S2 + . . . ,

then by using the identity,eABe−A = B+ [A, B] + 1
2! [A, [A, B]] . . . , (15.89) can also be expanded in powers of

λ as follows

eS(H1 + λV)e−S = H1 + λ
(
V + [S1,H1]

)
+ λ2

(
1
2

[S1, [S1,H]] + [S1,V] + [S2,H1]

)
+ . . . .

SinceV is not diagonal, by requiring

[S1,H1] = −V, (15.90)

we can eliminate all off-diagonal components to leading order inλ. To second order

eS(H1 + λV)e−S = H1 + λ
2

(
1
2

[S1,V] + [S2,H1]

)
+ . . . .

Since [S1,V] is block-diagonal, we can satisfy (15.89 ) to second order by requiringS2 = 0, so that to this
order, the renormalized Hamiltonian has the form

H∗ = HL + λ
2Hint

where

Hint =
1
2

PL[S1,V]PL + . . .

is an interaction term induced by virtual fluctuations into the high-energy manifold. Writing

S =

[
0

s

∣∣∣∣∣∣
−s†

0

]
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and substituting into (15.90), we obtainV = −sHL + HH s. Now since (HL)ab = EL
aδab and (HH)ab = EH

a δab

are diagonal, it follows that

sab =
Vab

EH
a − EL

b

, −s†ab =
V†ab

EL
a − EH

b

, . (15.91)

From (15.91), we obtain

(Hint)ab = −
1
2

(V†s+ s†V)ab =
1
2

∑

λ∈|H〉


V†aλVλb

EL
a − EH

λ

+
V†aλVλb

EL
b − EH

λ



Some important points about this result

• We recognize this result as a simple generalization of second-order perturbation theory to encompass both
diagonal and off-diagonal matrix elements.

• Hint can also be written

Hint =
1
2

[T(Ea) + T(Eb)]

whereT is given by

T̂(E) = PLV
PH

E − H1
VPL

Tab(E) =
∑

λ∈|H〉


V†aλVλb

E − EH
λ

 (15.92)

is the leading order expression for the many-body scattering T-matrix induced by scattering off V. We
can thus relateHint to a scattering amplitude, and schematically represent it by a Feynman diagram,
illustrated in Fig. 15.13.

tFig. 15.13 T-matrix representation of interaction induced between states |b〉 and |a〉 by integrating
out the virtual fluctuations into the high-energy states |λ〉.

• If the separation of the low and high energy subspaces is large, then the energy denominators in the above
expression will not depend on the initial and final statesa andb, so that this expression can be simplified
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to the form

Hint = −
∑

λ∈|H〉

V†P[λ]V
∆Eλ

(15.93)

where∆Eλ = EH
λ −EL is the excitation energy in the high energy subspace labeledbyλ, and the projector

P[λ] =
∑
|a〉∈|λ〉 |a〉〈a| .

We now apply this method to the Anderson model for which the atomic ground-state is a local moment
f 1 configuration. In this case, there are two high-energy intermediate states corresponding tof 0 and f 2

configurations. When a conduction electron or hole is excitedinto the localized f-state to create these excited
state configurations, the corresponding excitation energies are∆E( f 1 → f 0) = −E f and∆E( f 1 → f 2) =
E f + U. The hybridizationV = ∑

kσ

[
V(k)c†kσ fσ + H.c

]
generates virtual fluctuations into these excited

states. Using (15.93), the interaction induced by these fluctuations is given by

Hint = −
VP[ f 2]V
E f + U

− VP[ f 0]V
−E f

= −
∑

kα,k′β

V∗k′Vk

[
f 1+e−↔ f 2

︷               ︸︸               ︷
(c†kα fα)( f †βck′β)

E f + U
+

f 1↔ f 0+e−︷               ︸︸               ︷
( f †βck′β)(c†kα fα)

−E f

]
Pnf=1 (15.94)

wherePnf=1 = (nf↑ − nf↓)2 projects into the subspace of unit occupancy. Using the Fierz identity8 2δαγδηβ =
δαβδηγ + ~σαβ · ~σηγ we may recast the spin exchange terms in terms of Pauli matrices as follows

(c†kα fα)( f †βck′β) = (c†kα fγ)( f †ηck′β) ×

1
2 (δαβδηγ+~σαβ·~σηγ)︷   ︸︸   ︷

(δαγδηβ)

=
1
2

c†kαck′α − (ckα
†~σαβck′β) · ~S f , (15.95)

and similarly

( f †βck′β)(c
†

kα fα) = −1
2

c†kαck′α − (ckα
†~σαβck′β) · ~S f . (15.96)

(where we have replacednf = 1 and dropped residual constants in both cases). The operator

~S f ≡ f †σ

(
~σαβ

2

)
fβ, (nf = 1) (15.97)

describes the spin of the f-electron. The renormalized Hamiltonian then becomes

Hint =
∑

kα,k′β

Jk,k′c
†

kα~σck′β · ~S f + H′

Jk,k′ = V∗k′Vk

[
f 1+e−↔ f 2

︷   ︸︸   ︷
1

E f + U
+

f 1↔ f 0+e−︷︸︸︷
1
−E f

]
. (15.98)

8 This identity is obtained by expanding an arbitrary two dimensional matrixA in terms of Pauli matrices. If we writeAαβ =
1
2Tr[A1]δαβ + 1

2Tr[A~σ] · ~σαβ and read off the coefficients ofA inside the traces, we obtain the inequality.
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Notice how, in the low energy subspace, the occupancy of the f-state is constrained tonf = 1. This fermionic
representation (15.97) of the spin operator proves to be very useful. Apart from a constant, the second term

H′ = −1
2

∑

k,k′σ

V∗k′Vk

[
1

E f + U
+

1
E f

]
c†kσck′σ

is a residual potential scattering term off the local moment. This term vanishes for the particle-hole symmetric
caseE f = −(E f +U) and will be dropped, since it does not involve the internal dynamics of the local moment.
Summarizing, the effect of the high-frequency valence fluctuations is to induce an antiferromagnetic coupling
between the local spin density of the conduction electrons and the local moment:

H =
∑

kσ

ǫkc
†

kσckσ +
∑

k,k′
Jk,k′c

†
kα~σck′β · ~S f (15.99)

This is the famous “Kondo model”. For many purposes, thek dependence of the coupling constant can be
dropped, so that the Kondo model takes the deceptively simple form

H =
∑

kσ

ǫkc
†

kσckσ +

Hint︷      ︸︸      ︷
J~σ(0) · ~S f . (15.100)

Kondo model

whereψα(0)
∑

ckα is the electron operator at the origin andψ†(0)~σψ(0) is the spin density at the origin. In
other words, there is a simple point-interaction between the spin density of the metal at the origin and the
local moment.

15.4.4 “Poor Man” Scaling

We now apply the scaling concept to the Kondo model. This was originally carried out by Anderson and
Yuval[?, ?, ?] using a method formulated in the time, rather than energy domain. The method presented here
follows Anderson’s “ Poor Man’s” scaling approach[?, ?], in which the evolution of the coupling constant is
followed as the band-width of the conduction sea is reduced.The Kondo model is written

H =
∑

|ǫk|<D

ǫkc
†

kσckσ + H(I )

H(I ) = J(D)
∑

|ǫk|,|ǫk′ |<D

c†kα~σαβck′β · ~S f (15.101)

where the density of conduction electron statesρ(ǫ) is taken to be constant. The Poor Man’s renormalization
procedure follows the evolution ofJ(D) that results from reducingD by progressively integrating out the
electron states at the edge of the conduction band. In the Poor Man’s procedure, the band-width is not rescaled
to its original size after each renormalization, which avoids the need to renormalize the electron operators so
that instead of Eq. (15.81),H(D′) = H̃L.
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To carry out the renormalization procedure, we integrate out the high-energy spin fluctuations using the
t-matrix formulation for the induced interactionHint, derived in the last section. Formally, the induced inter-
action is given by

δHint
ab =

1
2

[Tab(Ea) + Tab(Eb)]

where

Tab(E) =
∑

λ∈|H〉


H(I )

aλH(I )
λb

E − EH
λ



where the energy of state|λ〉 lies in the range [D′,D]. There are two possible intermediate states that can be
produced by the action ofH(I ) on a one-electron state: (I) either the electron state is scattered directly, or (II)
a virtual electron hole-pair is created in the intermediatestate. In process (I), the T-matrix can be represented
by the Feynman diagram

’σ’’σ

k
k’’

σ

λ
α βk’

for which the T-matrix for scattering into a high energy electron state is

T(I )(E)k′βσ′;kασ =
∑

ǫk′′∈[D−δD,D]

[
1

E − ǫk′′

]
J2(σaσb)βα(SaSb)σ′σ

≈ J2ρδD

[
1

E − D

]
(σaσb)βα(SaSb)σ′σ (15.102)

In process (II),

kα

’’σ
σ ’σ

βk’

k’’λ

the formation of a particle-hole pair involves a conductionelectron line that crosses itself, leading to a negative
sign. Notice how the spin operators of the conduction sea andantiferromagnet reverse their relative order in
process II, so that the T-matrix for scattering into a high-energy hole-state is given by

T(II )(E)k′βσ′;kασ = −
∑

ǫk′′∈[−D,−D+δD]

[
1

E − (ǫk + ǫk′ − ǫk′′ )

]
J2(σbσa)βα(SaSb)σ′σ

= −J2ρδD

[
1

E − D

]
(σbσa)βα(SaSb)σ′σ (15.103)

where we have assumed that the energiesǫk andǫk′ are negligible compared withD. Adding (Eq. 15.102) and
(Eq. 15.103) gives

δHint
k′βσ′;kασ = T̂ I + T̂ II = − J2ρδD

D
[σa, σb]βαSaSb

=
J2ρδD

D
~σβα~Sσ′σ. (15.104)
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In this way we see that the virtual emission of a high energy electron and hole generates an antiferromagnetic
correction to the original Kondo coupling constant

J(D′) = J(D) + 2J2ρ
δD
D

High frequency spin fluctuations thusantiscreenthe antiferrromagnetic interaction. If we introduce the cou-
pling constantg = ρJ, we see that it satisfies

∂g
∂ ln D

= β(g) = −2g2 +O(g3).

This is an example of a negativeβ function: a signature of an interaction which is weak at highfrequencies,
but which grows as the energy scale is reduced. The local moment coupled to the conduction sea is said to be
asymptotically free. The solution to this scaling equation is

g(D′) =
go

1− 2go ln(D/D′)
(15.105)

and if we introduce the scale

TK = D exp

[
− 1

2go

]
(15.106)

we see that this can be written

2g(D′) =
1

ln(D′/TK)

This is an example of a running coupling constant- a couplingconstant whose strength depends on the scale
at which it is measured. (See Fig. 15.14).

tFig. 15.14 Schematic illustration of renormalization group flow from a repulsive “weak coupling”
fixed point, via a crossover to an attractive “strong coupling” fixed point.

Were we to take this equation literally, we would say thatg diverges at the scaleD′ = TK . This interpre-
tation is too literal, because the above scaling equation has only been calculated to orderg2, nevertheless,

531

Chapter 15. c©Piers Coleman 2011

this result does show us that the Kondo interaction can only be treated perturbatively at energy scales large
compared with the Kondo temperature. We also see that once wehave written the coupling constant in terms
of the Kondo temperature, all reference to the original cut-off energy scale vanishes from the expression. This
cut-off independence of the problem is an indication that the physics of the Kondo problem does not depend
on the high energy details of the model: there is only one relevant energy scale, the Kondo temperature.

It is possible to extend the above leading order renormalization calculation to higher order ing. To do this
requires a more systematic method of calculating higher order scattering effects. One tool that is particularly
useful in this respect, is to use the Abrikosov pseudo-fermion representation of the spin, writing

~S = f †α

(
~σ

2

)

αβ

fβ

nf = 1. (15.107)

This has the advantage that the spin operator, which does notsatisfy Wick’s theorem, is now factorized in
terms of conventional fermions. Unfortunately, the secondconstraint is required to enforce the condition that
S2 = 3/4. This constraint proves very awkward for the development of a Feynman diagram approach. One
way around this problem, is to use the Popov trick, whereby the f-electron is associated with a complex
chemical potential

µ = −iπ
T
2

The partition function of the Hamiltonian is written as an unconstrained trace over the conduction and pseud-
ofermion Fock spaces,

Z = Tr
[
e−β(H+iπ T

2 (nf−1))
]

(15.108)

Now since the Hamiltonian conservesnf , we can divide this trace up into contributions from thed0, d1 and
d2 subspaces, as follows:

Z = eiπ/2Z( f 0) + Z( f 1) + e−iπ/2Z( f 2)

But sinceS f = 0 in the f 2andd0 subspaces,Z( f 0) = Z( f 2) so that the contributions to the partition function
from these two unwanted subspaces exactly cancel. You can test this method by applying it to a free spin in
a magnetic field. (see exercise)

tFig. 15.15 Diagrams contributing to the third-order term in the beta function. A “crossed”
propagator line indicates that the contribution from high-energy electrons with
energies |ǫk| ∈ [D − δD,D] is taken from this line.
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By calculating the higher order diagrams shown in fig 15.15 , it is straightforward, though laborious to
show that the beta-function to orderg3 is given by

∂g
∂ ln D

= β(g) = −2g2 + 2g3 +O(g4) (15.109)

One can integrate this equation to obtain

ln

(
D′

D

)
=

∫ g

go

dg′

β(g′)
= −1

2

∫ g

go

dg

[
1

g′2
+

1
g′
+O(1)

]

A better estimate of the temperatureTK where the system scales to strong coupling is obtained by setting
D′ = TK andg = 1 in this equation, which gives

ln
(TK

D̃

)
= − 1

2go
+

1
2

ln 2go +O(1), (15.110)

where for convenience, we have absorbed a factor
√ e

2 into the cut-off, writing D̃ = D
√ e

2. Thus,

TK = D̃
√

2goe−
1

2go (15.111)

up to a constant factor. The square-root pre-factor inTK is often dropped in qualitative discussion, but it is
important for more quantitative comparison.

15.4.5 Universality and the resistance minimum

Provided the Kondo temperature is far smaller than the cut-off, then at low energies it is the only scale
governing the physics of the Kondo effect. For this reason, we expect all physical quantities to beexpressed
in terms of universal functions involving the ratio of the temperature or field to the Kondo scale. For example,
the susceptibility

χ(T) =
1

4T
F(

T
TK

), (15.112)

and the quasiparticle scattering rate
1

τ(T)
=

1
τo
G(

T
TK

) (15.113)

both display universal behavior.
We can confirm the existence of universality by examining these properties in the weak coupling limit,

whereT >> TK . Here, we find

1
τ(T)

= 2πJ2ρS(S + 1)ni , (S =
1
2

)

χ(T) =
ni

4T
[
1− 2Jρ

]

whereni is the density of impurities. Scaling implies that at lower temperaturesJρ → Jρ + 2(Jρ)2 ln D
T , so

that to next leading order we expect

1
τ(T)

= ni
2π
ρ

S(S + 1)[Jρ + 2(Jρ)2 ln
D
T

]2, (15.114)

χ(T) =
ni

4T

[
1− 2Jρ − 4(Jρ)2 ln

D
T
+O((Jρ)3)

]
(15.115)
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results that are confirmed from second-order perturbation theory. The first result was obtained by Jun Kondo.
Kondo was looking for a consequence of the antiferromagnetic interaction predicted by the Anderson model,
so he computed the electron scattering rate to third order inthe magnetic coupling. The logarithm which
appears in the electron scattering rate means that as the temperature is lowered, the rate at which electrons
scatter off magnetic impurities rises. It is this phenomenon that givesrise to the famous Kondo “resistance
minimum” .

Since we know the form ofTK , we can use this result to deduce that the weak coupling limitof the scaling
forms. If we take equation (15.110), and replace the cut-off by the temperatureD→ T, and replacego by the
running coupling constantgo→ g(T), we obtain

g(T) =
1

2 ln
(

T
TK

)
+ ln 2g(T)

(15.116)

which we may iterate to obtain

2g(T) =
1

ln
(

T
TK

) + ln(ln(T/TK))

2 ln2
(

T
TK

) . (15.117)

Using this expression to make the replacementJρ→ g(T) in (15.114) and (15.115), we obtain

χ(T) =
ni

4T

[
1− 1

ln(T/TK)
− 1

2
ln(ln(T/TK))

ln2(T/TK)
+ . . .

]
(15.118)

1
τ(T)

= ni
πS(S + 1)

2ρ

[
1

ln2(T/TK)
+

ln(ln(T/TK))

ln3(T/TK)
+ . . .

]
(15.119)

From the second result, we see that the electron scattering rate has the scale-invariant form

1
τ(T)

=
ni

ρ
G(T/TK). (15.120)

whereG(x) is a universal function. The pre-factor in the electron scattering rate is essentially the Fermi energy
of the electron gas: it is the “unitary scattering” rate, themaximum possible scattering rate that is obtained
when an electron experiences a resonantπ/2 scattering phase shift. From this result, we see that at absolute
zero, the electron scattering rate will rise to the value1

τ
(T) = ni

ρ
G(0), indicating that at strong coupling, the

scattering rate is of the same order as the unitary scattering limit. We shall now see how this same result
comes naturally out of a strong coupling analysis.

15.4.6 Nozi ères Fermi Liquid Theory of the Kondo Ground-state

The weak-coupling analysis tells us that at scales of order the Kondo temperature, the Kondo coupling con-
stantg scales to a value of orderO(1). Although perturbative renormalization group methodscan not go past
this point, Anderson and Yuval[?, ?, ?]pointed out that it is not unreasonable to suppose that the Kondo cou-
pling constant scales to a fixed point where it is large compared to the conduction electron band-widthD.
This assumption is the simplest possibility and if true, it means that the strong-coupling limit is an attractive
fixed point, being stable under the renormalization group. Anderson and Yuval conjectured that the Kondo
singlet would be paramagnetic, with a temperature independent magnetic susceptibility and a universal linear
specific heat given byCV = γK

T
TK

at low temperatures.
The first controlled treatment of this cross-over regime wascarried out by Wilson using a numerical renor-

malization group method. Wilson’s numerical renormalization method was able to confirm the conjectured
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renormalization of the Kondo coupling constant to infinity.This limit is called the “strong coupling” limit of
the Kondo problem. Wilson carried out an analysis of the strong-coupling limit, and was able to show that
the specific heat would be a linear function of temperature, like a Fermi liquid. Wilson showed that the linear
specific heat could be written in a universal form

CV = γT,

γ =
π2

3
0.4128± 0.002

8TK
(15.121)

Wilson also compared the ratio between the magnetic susceptibility and the linear specific heat with the
corresponding value in a non-interacting system, computing

W =
χ/χ0

γ/γ0
=
χ

γ


π2k2

B

3(µB)2

 = 2 (15.122)

within the accuracy of the numerical calculation.
Remarkably, the second result of Wilson’s can be re-derivedusing an exceptionally elegant set of arguments

due to Nozìeres[?] that leads to an explicit form for the strong coupling fixed point Hamiltonian. Nozìeres
began by considering an electron in a one-dimensional chainas illustrated in Fig. 15.16. The Hamiltonian for
this situation is

J

0 1 2 3

S
d

t

tFig. 15.16 Illustrating the strong-coupling limit of the Kondo model

Hlattice = −t
∑

j=0,∞
[c†σ( j + 1)cσ( j) + H.c] + Jc†α(0)~σαβcβ(0) · ~S f . (15.123)

Nozières argued that the strong coupling fixed point will be described by the situationJ >> t. In this limit,
the kinetic energy of the electrons in the band can be treatedas a perturbation to the Kondo singlet. The local
moment couples to an electron at the origin, forming a “Kondosinglet” denoted by

|GS〉 = 1
√

2
(| ⇑↓〉 − | ⇓↑〉) (15.124)

where the thick arrow refers to the spin state of the local moment and the thin arrow refers to the spin state of
the electron at site 0. Any electron which migrates from site1 to site 0 will automatically break this singlet
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state, raising its energy by 3J/4. This will have the effect of excludingelectrons (or holes) from the origin.
The fixed point Hamiltonian must then take the form

Hlattice = −t
∑

j=1,∞
[c†σ( j + 1)cσ( j) + H.c] + weak interaction (15.125)

where the second-term refers to the weak-interactions induced in the conduction sea by virtual fluctuations
onto site 0. If the wavefunction of electrons far from the impurity has the formψ(x) ∼ sin(kF x), wherekF is
the Fermi momentum, then the exclusion of electrons from site 1 has the effect of phase-shifting the electron
wavefunctions by one the lattice spacinga, so that nowψ(x) ∼ sin(kF x− δ) whereδ = kFa. But if there is one
electron per site, then 2(2kFa/(2π)) = 1 by the Luttinger sum rule, so thatkF = π/(2a) and hence the Kondo
singlet acts as a spinless, elastic scattering center with scattering phase shift

δ = π/2. (15.126)

The appearance ofδ = π/2 could also be deduced by appealing to the Friedel sum rule, which states that the
number of bound-electrons at the magnetic impurity site is

∑
σ
δσ=±1
π
= 2δ/π, so thatδ = π/2. By considering

virtual fluctuations of electrons between site 1 and 0, Nozières argued that the induced interaction at site 1
must take the form

Hint ∼
t4

J3
n1↑n1↓ (15.127)

because fourth order hopping processes lower the energy of the singly occupied state, but they do not occur
for the doubly occupied state. This is a repulsive interaction amongst the conduction electrons, and it is
known to be a marginal operator under the renormalization group, leading to the conclusion that the effective
Hamiltonian describes a weakly interacting “local” Fermi liquid.

Nozières formulated this local Fermi liquid in the language of anoccupancy-dependent phase shift. Sup-
pose thekσ scattering state has occupancynkσ, then the the ground-state energy will be a functional of these
occupanciesE[{nkσ}]. The differential of this quantity with respect to occupancies defines aphase shiftas
follows

δE
δnkσ

= ǫk −
∆ǫ

π
δ({nk′σ′ }, ǫk). (15.128)

The first term is just the energy of an unscattered conductionelectron, whileδ({nk′σ′ }, ǫk) is the scattering
phase shift of the Fermi liquid. This phase shift can be expanded

δ({nk′σ′ }, ǫk) =
π

2
+ α(ǫk − µ) + Φ

∑

k

δnk,−σ (15.129)

where the term with coefficientΦ describes the interaction between opposite spin states of the Fermi liquid.
Nozières argued that when the chemical potential of the conduction sea is changed, the occupancy of the
localizedd state will not change, which implies that the phase shift is invariant under changes inµ. Now
under a shiftδµ, the change in the occupancy

∑
k δnkσ → δµρ, so that changing the chemical potential

modifies the phase shift by an amount

∆δ = (α + Φρ)∆µ = 0 (15.130)

so thatα = −ρΦ. We are now in a position to calculate the impurity contribution to the magnetic susceptibility
and specific heat. First note that the density of quasiparticle states is given by

ρ =
dN
dE
= ρo +

1
π

∂δ

∂ǫ
= ρo +

α

π
(15.131)

536



bk.pdf April 29, 2012 273

c©2011 Piers Coleman Chapter 15.

so that the low temperature specific heat is given byCV = (γbulk + γi) where

γi = 2


π2k2

B

3


α

π
(15.132)

where the prefactor “2” is derived from the spin up and spin-down bands. Now in a magnetic field, the
impurity magnetization is given by

M =
δ↑
π
− δ↓
π

(15.133)

Since the Fermi energies of the up and down quasiparticles are shifted toǫFσ → ǫF −σB, we have
∑

k δnkσ =

σρB, so that the phase-shift at the Fermi surface in the up and down scattering channels becomes

δσ =
π

2
+ αδǫFσ + Φ(

∑

k

δnkσ

=
π

2
+ ασB− ΦρσB

=
π

2
+ 2ασB (15.134)

so that the presence of the interaction term doublesthe size of the change in the phase shift due to a magnetic
field. The impurity magnetization then becomes

Mi = χi B = 2

(
2α
π

)
µ2

BB (15.135)

where we have reinstated the magnetic moment of the electron. This is twice the value expected for a “rigid”
resonance, and it means that the Wilson ratio is

W =
χiπ

2k2
B

γi3(µB)2
= 2 (15.136)

15.4.7 Experimental observation of Kondo effect

Experimentally, there is now a wealth of observations that confirm our understanding of the single impurity
Kondo effect. Here is a brief itemization of some of the most importantobservations. (Fig. 15.17.)

• A resistance minimum appears when local moments develop in amaterial. For example, inNb1−xMox

alloys, a local moment develops forx > 0.4, and the resistance is seen to develop a minimum beyond
this point.[?, ?]

• Universality seen in the specific heatCV =
ni

T F(T/TK) of metals doped with dilute concentrations of
impurities. Thus the specific heat ofCu− Fe (iron impurities in copper) can be superimposed on the
specific heat ofCu−Cr, with a suitable rescaling of the temperature scale. [?, ?]

• Universality is observed in the differential conductance of quantum dots[?, ?] and spin-fluctuation resistiv-
ity of metals with a dilute concentration of impurities.[?] Actually, both properties are dependent on the
same thermal average of the imaginary part of the scatteringT-matrix

ρi = ni
ne2

m

∫
dω

(
− ∂ f
∂ω

)
2Im[T(ω)]

G =
2e2

~

∫
dω

(
− ∂ f
∂ω

)
πρIm[T(ω)]. (15.137)
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Puttingπρ
∫

dω
(
− ∂ f
∂ω

)
ImT(ω) = t(ω/TK ,T/TK), we see that both properties have the form

ρi = ni
2ne2

πmρ
t(T/TK)

G =
2e2

~
t(T/TK) (15.138)

wheret(T/TK) is a universal function. This result is born out by experiment.

Exercises

Exercise 15.1 (a) Using the identityn2
fσ = nfσ, show that the atomic part of the Anderson model can be

written in the form

Hatomic= (E f +
U
2

)nf +
U
2

[
(nf − 1)2 − 1

]
, (15.139)

What happens whenE f + U/2 = 0?
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(b) Using the completeness relation

| f 0〉〈 f 0|+| f 2〉〈 f 2|︷   ︸︸   ︷
(nf − 1)2 +

|↑〉〈↑|+|↓〉〈↓|︷     ︸︸     ︷
S2

S(S + 1)
= 1. (S = 1/2)

show that the interaction can also be written in the form

Hatomic= (E f +
U
2

)nf −
2U
3

S2 (15.140)

which makes it clear that the repulsive U term induces a “magnetic attraction” that favors formation of
a local moment.

(c) Derive the Hubbard Stratonovich decoupling for (16.54).
Exercise 15.2 By expanding a plane wave state in terms of spherical harmonics:

〈r |k〉 = eik·r = 4π
∑

l,m

i l j l(kr)Y∗lm(k̂)Ylm(r̂ )

show that the overlap between a state|ψ〉 with wavefunction〈~x|ψ〉 = R(r)Ylm(r̂) with a plane wave is
given byV(~k) = 〈~k|V|ψ〉 = V(k)Ylm(k̂) where

V(k) = 4πi−l
∫

drr2V(r)R(r) j l(kr) (15.141)

Exercise 15.3 (i) Show thatδ = cot−1
(

Ed

∆

)
is the scattering phase shift for scattering off a resonant level at

positionEd.
(ii) Show that the energy of states in the continuum is shifted by an amount−∆ǫδ(ǫ)/π, where∆ǫ is the

separation of states in the continuum.
(iii) Show that the increase in density of states is given by∂δ/∂E = ρd(E). (See chapter 3.)

Exercise 15.4 Generalize the scaling equations to the anisotropic Kondo model with an anisotropic inter-
action

HI =
∑

|ǫk|,|ǫk′ ,a=(x,y,z)

Jac†kασ
a
αβck′β · Sa

d (15.142)

and show that the scaling equations take the form

∂Ja

∂ ln D
= −2JbJcρ +O(J3),

where and (a,b, c) are a cyclic permutation of (x, y, z). Show that in the special case whereJx = Jy = J⊥,
the scaling equations become

∂J⊥
∂ ln D

= −2JzJ⊥ρ +O(J3),

∂Jz

∂ ln D
= −2(Jz)

2ρ +O(J3), (15.143)

so thatJ2
z − J2

⊥ = constant. Draw the corresponding scaling diagram.
Exercise 15.5 Consider the symmetric Anderson model, with a symmetric band-structure at half filling. In

this model, thed0 andd2 states are degenerate and there is the possibility of a “charged Kondo effect”
when the interactionU is negative. Show that under the “particle-hole” transformation

ck↑ → ck↑, d↑ → d↑
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ck↓ → −c†k↓, d↓ → −d†↓ (15.144)

the positiveU model is transformed to the negativeU model. Show that the spin operators of the local
moment are transformed into Nambu “isospin operators” which describe the charge and pair degrees
of freedom of the d-state. Use this transformation to argue that when U is negative, a charged Kondo
effect will occur at exactly half-filling involving quantum fluctuations between the degenerated0 and
d2 configurations.

Exercise 15.6 What happens to the Schrieffer-Wolff transformation in the infinite U limit? Rederive the
Schrieffer-Wolff transformation for an N-fold degenerate version of the infinite U Anderson model.
This is actually valid for Ce and Yb ions.

Exercise 15.7 Rederive the Nozières Fermi liquid picture for an SU (N) degenerate Kondo model. Explain
why this picture is relevant for magnetic rare earth ions such asCe3+ or Yb3+.

Exercise 15.8 Check the Popov trick works for a magnetic moment in an external field. Derive the partition
function for a spin in a magnetic field using this method.

Exercise 15.9 Use the Popov trick to calculate the T-matrix diagrams for the leading Kondo renormaliza-
tion diagramatically.

Exercise 15.10 Derive the formula (15.66) for the conductance of a single isolated resonance.

Exercise 15.11 1 Directly confirm the Read-Newn’s gauge transformation (16.41).

2 Directly calculate the “phase stiffness”ρφ = − d2F
dλ2 of the largeN Kondo model and show that at

T = 0.

ρφ =
N
π

(
sin(πq)

TK

)
.

Exercise 15.12 1 Introduce a simple relaxation time into the conduction electron propagator, writing

G(~k, iωn)−1 = iωn + isgn(ωn)/2τ +
V2

iωn − λ
(15.145)

Show that the poles of this Greens function occur at

ω = Ek ±
i

2τ∗

where

τ∗ =
m∗

m
τ

is the renormalized elestic scattering time.

2 The Kubo formula for the optical conductivity of an isotropic one-band system is

σ(ν) = −Ne2

3

∑

k

v2
k
Π(ν)
iν

where we have used theN fold spin degeneracy, andΠ(ν) is the analytic extension of

Π(iνn) = T
∑

m

G(~k, iωm)
[
G(~k, iωm + iνn) −G(~k, iωm)

]

where in our case,G(~k, iωn) is the conduction electron propagator. Using (16.59), andapproximating
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the momentum sum by an integral over energy, show that the lowfrequency conductivity of the large
N Kondo lattice is given by

σ(ν) =
ne2

m∗
1

(τ∗)−1 − iν
.
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16 Heavy electrons

16.1 Doniach’s Kondo lattice hypothesis

Although the single impurity Kondo problem was essentiallysolved by the early seventies, it took a further
decade before the physics community was ready to accept the notion that the same phenomenon could occur
within a dense lattice environment. This resistance to change was rooted in a number of popular misconcep-
tions about the spin physics and the Kondo effect.

At the beginning of the seventies, it was well known that local magnetic moments severely suppress super-
conductivity, so that typically, a few percent is all that isrequired to destroy the superconductivity. Conven-
tional superconductivity is largely immune to the effects of non-magnetic disorder1 but highly sensitive to
magnetic impurities, which destroy the time-reversal symmetry necessary for s-wave pairing. The arrival of a
new class of superconducting material containing dense arrays of local moments took the physics community
completely by surprise. Indeed, the first observations of superconductivity inUBe13, made in 1973 [1] were
dismissed as an artifact and had to await a further ten years before they were revisited and acclaimed as heavy
fermion superconductivity. [2, 3]

Normally, local moment systems develop antiferromagneticorder at low temperatures. When a magnetic
moment is introduced into a metal it induces Friedel oscillations in the spin density around the magnetic ion,
given by

〈 ~M(x)〉 = −Jχ(~x− ~x′)〈~S(~x′)〉

whereJ is the strength of the Kondo coupling and

χ(x) =
∑

~q

χ(~q)ei~q·~x

χ(~q) = 2
∑

~k

f (ǫ~k) − f (ǫ~k+~q)

ǫ~k+~q − ǫ~k
(16.1)

is the the non-local susceptibility of the metal. If a secondlocal moment is introduced at location~x, then it
couples to〈M(~x)〉 giving rise to a long-range magnetic interaction called the“RKKY”[4] interaction, 2

HRKKY =

JRKKY(~x−~x′)︷          ︸︸          ︷
−J2χ(~x− ~x′) ~S(x) · ~S(x′). (16.2)

1 Anderson argued in his “dirty superconductor theorem” that BCS superconductivity involves pairing of electrons in states that are
the time-reverse transform of one another. Non-magnetic disorder does not break time reversal symmetry, and so the one particle
eigenstates of a dirty system can still be grouped into time-reverse pairs from which s-wave pairs can be constructed. Forthis reason,
s-wave pairing is largely unaffected by non-magnetic disorder.

2 named after Ruderman, Kittel, Kasuya and Yosida
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tFig. 16.1 Illustrating how the polarization of spin around a magnetic impurity gives rise to
Friedel oscillations and induces an RKKY interaction between the spins

The sharp discontinuity in the occupancies at the Fermi surface produces slowly decaying Friedel oscillations
in the RKKY interaction given by

JRKKY(r) ∼ −J2ρ
cos 2kFr
|kFr |3 (16.3)

whereρ is the conduction electron density of states andr is the distance from the impurity, so the RKKY
interaction oscillates in sign, depending on the distance between impurities. The approximate size of the
RKKY interaction is given byERKKY ∼ J2ρ.

Normally, the oscillatory nature of this magnetic interaction favors the development of antiferromagnetism.
In alloys containing a dilute concentration of magnetic transition metal ions, the RKKY interaction gives rise
to a frustrated, glassy magnetic state known as a spin glass in which the magnetic moments freeze into a
fixed, but random orientation. In dense systems, the RKKY interaction typically gives rise to an ordered
antiferromagnetic state with a Néel temperatureTN ∼ J2ρ.

In 1976 Andres, Ott and Graebner discovered the heavy fermion metalCeAl3. [?] This metal has the
following features:

• A Curie susceptibilityχ−1 ∼ T at high temperatures.
• A paramagnetic spin susceptibilityχ ∼ constantat low temperatures.
• A linear specific heat capacityCV = γT, whereγ ∼ 1600mJ/mol/K2 is approximately 1600 times larger

than in a conventional metal.
• A quadratic temperature dependence of the low temperature resistivityρ = ρo + AT2

Andres, Ott and Grabner pointed out that the low temperatureproperties are those of a Fermi liquid, but one
in which the effective masses of the quasiparticles are approximately 1000larger than the bare electron mass.
The Fermi liquid expressions for the magnetic susceptibility χ and the linear specific heat coefficientγ are

χ = (µB)2 N∗(0)
1+ Fa

o

γ =
π2k2

B

3
N∗(0) (16.4)

whereN∗(0) = m∗

m N(0) is the renormalized density of states andFa
0 is the spin-dependent part of the s-

wave interaction between quasiparticles. What could be the origin of this huge mass renormalization? Like
other Cerium heavy fermion materials, the Cerium atoms in this metal are in aCe3+(4 f 1) configuration, and
because they are spin-orbit coupled, they form huge local moments with a spin ofJ = 5/2. In their paper,
Andres, Ott and Graebner suggested that a lattice version ofthe Kondo effect might be responsible.
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tFig. 16.2 (a) Single impurity Kondo effect builds a single fermionic level into the conduction sea,
which gives rise to a resonance in the conduction electron density of states (b) Lattice
Kondo effect builds a fermionic resonance into the conduction sea in each unit cell.
The elastic scattering off this lattice of resonances leads to formation of a heavy
electron band, of width TK .

This discovery prompted Sebastian Doniach[?] to propose that the origin of these heavy electrons derived
from a dense version of the Kondo effect. Doniach proposed that heavy electron systems should bemodeled
by the “Kondo-lattice Hamiltonian” where a dense array of local moments interact with the conduction sea.
For a Kondo lattice with spin 1/2 local moments, the Kondo lattice Hamiltonian[?] takes the form

H =
∑

~kσ

ǫ~kc
†
~kσc~kσ + J

∑

j

~S j · c†~kα
(
~σ

2

)

αβ

c~k′βe
i(~k′−~k)·~Rj (16.5)

Doniach argued that there are two scales in the Kondo lattice, the Kondo temperatureTK andERKKY, given
by

TK = De−1/2Jρ

ERKKY = J2ρ (16.6)

When Jρ is small, thenERKKY >> TK , and an antiferromagnetic state is formed, but when the Kondo
temperature is larger than the RKKY interaction scale,TK >> ERKKY, Doniach argued that a dense Kondo
lattice ground-state is formed in which each site resonantly scatters electrons. Bloch’s theorem then insures
that the resonant elastic scattering at each site will form ahighly renormalized band, of width∼ TK . By
contrast to the single impurity Kondo effect, in the heavy electron phase of the Kondo lattice the strong
elastic scattering at each site acts in a coherent fashion, and does not give rise to a resistance. For this reason,
as the heavy electron state forms, the resistance of the system drops towards zero. One of the fascinating
aspects of the Kondo lattice concerns the Luttinger sum rule. This aspect was first discussed in detail by
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J J
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ρ ρc

TN � J2�TK � Dexp[�1=J�℄
?

AFM

Liquid
Fermi

tFig. 16.3 Doniach diagram, illustrating the antiferromagnetic regime, where TK < TRKKY and the
heavy fermion regime, where TK > TRKKY. Experiment has told us in recent times that
the transition between these two regimes is a quantum critical point. The effective
Fermi temperature of the heavy Fermi liquid is indicated as a solid line. Circumstantial
experimental evidence suggests that this scale drops to zero at the antiferromagnetic
quantum critical point, but this is still a matter of controversy.

Martin[5], who pointed out that the Kondo model can be regarded as the result of adiabatically increasing the
interaction strengthU in the Anderson model, whilst preserving the valence of the magnetic ion. During this
process, one expects sum rules to be preserved. In the impurity, the scattering phase shift at the Fermi energy
counts the number of localized electrons, according to the Friedel sum rule

∑

σ

δσ

π
= nf = 1

This sum rule survives to largeU, and reappears as the constraint on the scattering phase shift created by
the Abrikosov Suhl resonance. In the lattice, the corresponding sum rule is the Luttinger sum rule, which
states that the Fermi surface volume counts the number of electrons, which at smallU is just the number of
localized (4f, 5f or 3d) and conduction electrons. WhenU becomes large, number of localized electrons is
now the number of spins, so that

2
VFS

(2π)3
= ne + nspins

This sum rule is thought to hold for the Kondo lattice Hamiltonian, independently of the origin of the localized
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moments. Such a sum rule would work, for example, even if the spins in the model were derived from nuclear
spins, provided the Kondo temperature were large enough to guarantee a paramagnetic state.

Experimentally, there is a great deal of support for the above picture. It is possible, for example, to examine
the effect of progressively increasing the concentration ofCein the non-magnetic hostLaCu6.(16.4 ) At dilute
concentrations, the resistivity rises to a maximum at low temperatures. At dense concentrations, the resistivity
shows the same high temperature behavior, but at low temperatures coherence between the sites leads to a
dramatic drop in the resistivity. The thermodynamics of thedense and dilute system are essentially identical,
but the transport properties display the effects of coherence.

There are many indications that the Fermi surface of heavy electron systems has a volume which counts
both spins and conduction electrons. The most direct evidence derives from Fermi surface studies made from
accurate measurements of de Haas van Alphen oscillations [?, ?]. Typically, in the heavy Fermi liquid, the
measured de Haas van Alphen orbits are consistent with band-structure calculations in which the f-electrons
are assumed to be delocalized. By contrast, the measured masses of the heavy electrons often exceed the
band-structure calculated masses of the narrow f-band by anorder of magnitude or more. Perhaps the most
remarkable discovery of recent years, is the observation that the volume of the f-electron Fermi surface
appears to “jump” to a much smaller value when the f-electrons anti-ferro magnetically order, indicating that
once the Kondo effect is interupted by magnetism, the heavy f-electrons become localized again[?]

Yet Doniach scenario for heavy fermion development is fundamentally a comparison of energy scales: it
does not tell us how the heavy fermion phase evolves from the antiferromagnet, nor does it explain the nature
of the heavy f-electron. Amongst the early objections to Doniach’s hypothesis and were of particular concern:

• Size of the Kondo temperatureTK . Simple estimates of the value ofJρ required for heavy electron behavior
give a valueJρ ∼ 1. Yet in the Anderson model,Jρ ∼ 1 would imply a mixed valent situation, with no
local moment formation.
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• Exhaustion paradox. The naive picture of the Kondo model imagines that the local moment is screened
by conduction electrons within an energy rangeTK of the Fermi energy. The number of conduction
electrons in this range is of orderTK/D << 1 per unit cell, whereD is the band-width of the conduction
electrons, suggesting that there are not enough conductionelectrons to screen the local moments.

The resolution of these two issues are quite intriguing.

Enhancement of the Kondo temperature by spin degeneracy

The resolution of the first issue has its origins in the large spin-orbit coupling of the rare earth or actinide ions
in heavy electron systems. This protects the orbital angular momentum against quenching by the crystal fields.
Rare earth and actinide ions consequently display a large total angular momentum degeneracyN = 2 j + 1,
which has the effect of dramatically enhancing the Kondo temperature. Take for example the case of the
Cerium ion, where the 4f 1 electron is spin-orbit coupled into a state withj = 5/2, giving a spin degeneracy
of N = 2 j + 1 = 6. Ytterbium heavy fermion materials involve theYb : 4 f 13 configuration, which has an
angular momentumj = 7/2, orN = 8.

To take account of these large spin degeneracies, we need to generalize the Kondo model. This was done
in the mid-sixties by Coqblin and Schrieffer[6]. Coqblin and Schrieffer considered a degenerate version of
the infiniteU Anderson model in which the spin component of the electrons runs from− j to j,

H =
∑

kσ

ǫkc
†

kσckσ + E f

∑

σ

| f 1 : σ〉〈 f 1 : σ| +
∑

k,σ

V
[
c†kσ| f 0〉〈 f 1 : σ| + H.c.

]
.

Here the conduction electron states are also labeled by spinindices that run from− j to j. This is because
the spin-orbit coupledf states couple to partial wave states of the conduction electrons in which the orbital
and spin angular momentum are combined into a state of definite j. Suppose|~kσ〉 represents a plane wave of
momentum~k, then one can construct a state of definite orbital angular momentuml by integrating the plane
wave with a spherical harmonic, as follows:

|klmσ〉 =
∫

dΩ
4π
|~kσ〉Y∗lm(k̂)

When spin orbit interactions are strong, one must work with a partial wave of definitej, obtained by combin-
ing these states in the following linear combinations. Thusfor the casej = l + 1/2 (relevant for Ytterbium
ions), we have

|km〉 =
∑

σ=±1

√
l + σm+ 1

2

2l + 1
|klm− σ

2
,
σ

2
〉.

An electron creation operator is constructed in a similar way. This construction is unfortunately, not simulta-
neously possible at more than one site.

WhenE f << 0, the valence of the ion approaches unity andnf → 1. In this limit, one can integrate out the
virtual fluctuationsf 1

⇋ f 0 + e− via a Schrieffer Wolff transformation. This leads to the Coqblin Schrieffer
model

HCS =
∑

kσ

ǫkc
†

kσckσ + J
∑

k,k′,αβ

c†kβck′αΓαβ, (σ, α, β ∈ [− j, j]).

whereJ = V2/|E f | is the induced antiferromagnetic interaction strength. This interaction is understood as the
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result of virtual charge fluctuations into thef 0 state,f 1
⇋ f 0+e−. The spin indices run from− j to j, and we

have introduced the notation

Γαβ ≡ f †α fβ = | f 1 : α〉〈 f 1 : β|

Notice that the chargeQ = nf of the f−electron, normally taken to be unity, is conserved by the spin-exchange
interaction in this Hamiltonian.

To get an idea of how the Kondo effect is modified by the larger degeneracy, consider the renormalization
of the interaction, which is given by the diagram

Je f f(D
′) =

J

+

J

N

J

= J + NJ2ρ ln
( D
D′

)
(16.7)

( where the cross on the intermediate conduction electron state indicates that all states with energy|ǫk| ∈
[D′,D] are integrate over). From this result, we see thatβ(g) = ∂g(D)/∂ ln D = −Ng2, whereg = Jρ has an
N− fold enhancement, derived from theN intermediate hole states. A more extensive calculation shows that
the beta function to third order takes the form

β(g) = −Ng2 + Ng3. (16.8)

This then leads to the Kondo temperature

TK = D(NJρ)
1
N exp

[
− 1

NJρ

]

so that large degeneracy enhances the Kondo temperature in the exponential factor. By contrast, the RKKY
interaction strength is given byTRKKY ∼ J2ρ, and it does not involve anyN fold enhancement factors, thus in
systems with large spin degeneracy, the enhancement of the Kondo temperature favors the formation of the
heavy fermion ground-state.

In practice, rare-earth ions are exposed to the crystal fields of their host, which splits theN = 2 j + 1 fold
degeneracy into many multiplets. Even in this case, the large degeneracy is helpful, because the crystal field
splitting is small compared with the band-width. At energiesD′ large compared with the crystal field splitting
Tx, D′ >> Tx, the physics is that of anN fold degenerate ion, whereas at energiesD′ small compared with
the crystal field splitting, the physics is typically that ofa Kramers doublet, i.e.

N−2

2

XT

∂g
∂ ln D

=

{
−Ng2 (D >> Tx)
−2g2 (D << Tx)

(16.9)

from which we see that at low energy scales, the leading orderrenormalization ofg is given by

1
g(D′)

=
1
go
− N ln

(
D
Tx

)
− 2 ln

(Tx

D′

)
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where the first logarithm describes the high energy screening with spin degeneracyN, and the second loga-
rithm describes the low-energy screening, with spin degeneracy 2. This expression is∼ 0 whenD′ ∼ T∗K , the
Kondo temperature, so that

0 =
1
go
− N ln

(
D
Tx

)
− 2 ln

(
Tx

T∗K

)

from which we deduce that the renormalized Kondo temperature has the form[7]

T∗K = D exp

(
− 1

2Joρ

) (
D
Tx

) N
2 −1

.

Here the first term is the expression for the Kondo temperature of a spin 1/2 Kondo model. The second term
captures the enhancement of the Kondo temperature coming from the renormalization effects at scales larger
than the crystal field splitting. SupposeTx ∼ 100K, andD ∼ 1000K, andN = 6, then the enhancement factor
is order 100. This effect enhances the Kondo temperature of rare earth heavy fermion systems to values that
are indeed, up to a hundred times bigger than those in transition metal systems. This is the simple reason
why heavy fermion behavior is rare in transition metal systems. [?] In short- spin-orbit coupling, even in the
presence of crystal fields, substantially enhances the Kondo temperature.

The exhaustion problem

At temperaturesT <
˜ TK , a local moment is “screened” by conduction electrons. What does this actually mean?

The conventional view of the Kondo effect interprets it in terms of the formation of a “magnetic screening
cloud” around the local moment. According to the screening cloud picture, the electrons which magnetically
screen each local moment are confined within an energy range of orderδǫ ∼ TK around the Fermi surface,
giving rise to a spatially extended screening cloud of dimensionl = vF/TK ∼ a ǫF

TK
, wherea is a lattice constant

andǫF is the Fermi temperature. In a typical heavy fermion system,this length would extend over hundreds
of lattice constants. This leads to the following two dilemmas

1 It suggests that when the density of magnetic ions is greater thanρ ∼ 1/l3, the screening clouds will
interfere. Experimentally no such interference is observed, and features of single ion Kondo behavior are
seen at much higher densities.

2 “ The exhaustion paradox” The number of “screening”electrons per unit cell within energyTK of the Fermi
surface roughlyTK/W, whereW is the bandwidth, so there would never be enough low energy electrons
to screen a dense array of local moments.

In this lecture I shall argue that the screening cloud picture of the Kondo effect is conceptually incorrect.
Although the Kondo effect does involve a binding of local moments to electrons, thebinding process takes
place between the local moment and high energy electrons, spanning decades of energy from the Kondo
temperature up to the band-width. (Fig. 16.5) I shall argue that the key physics of the Kondo effect, both in
the dilute impurity and dense Kondo lattice, involves the formation of a composite heavy fermionformed by
binding electrons on logarithmically large energy scales out to the band-width. These new electronic states
are injected into the conduction electron sea near the Fermienergy. For a single impurity, this leads to a single
isolated resonance. In the lattice, the presence of a new multiplet of fermionic states at each site leads to the
formation of a coherent heavy electron band with an expandedFermi surface. ( 16.5)
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tFig. 16.5 Contrasting (a) the “screening cloud” picture of the Kondo effect with (b) the
composite fermion picture. In (a), low energy electrons form the Kondo singlet,
leading to the exhaustion problem. In (b) the composite heavy electron is a highly
localized bound-state between local moments and high energy electrons which injects
new electronic states into the conduction sea at the chemical potential. Hybridization
of these states with conduction electrons produces a singlet ground-state, forming a
Kondo resonance in the single impurity, and a coherent heavy electron band in the
Kondo lattice.

16.1.1 Large N Approach

We shall now solve the Kondo model, both the single impurity and the lattice, in the largeN limit. In the early
eighties, Anderson[?] pointed out that the large spin degeneracyN = 2 j + 1 furnishes a small parameter 1/N
which might be used to develop a controlled expansion about the limit N → ∞. Anderson’s observation im-
mediately provided a new tool for examining the heavy fermion problem: the so called “largeN expansion”.
[8].

The basic idea behind the largeN expansion, is to take a limit where every term in the Hamiltonian grows
extensively withN. In this limit, quantum fluctuations in intensive variables, such as the electron density,
become smaller and smaller, scaling as 1/N, and in this sense,

1
N
∼ ~e f f

behaves as an effective Planck’s constant for the theory. In this sense, a largeN expansion is a semi-classical
treatment of the quantum mechanics, but instead of expanding around~ = 0, one can obtain new, non trivial
results by expanding around the non trivial solvable limit1

N = 0. For the Kondo model, we are lucky, because
the important physics of the Kondo effect is already captured by the largeN limit as we shall now see.
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Our model for a Kondo lattice or an ensemble of Kondo impurities localized at sitesj is

H =
∑

~kσ

ǫ~kc
†
~kσc~kσ +

∑

j

HI ( j) (16.10)

where

HI ( j) =
J
N
Γαβ( j)ψ†β( j)ψα( j)

is the interaction Hamiltonian between the local moment andconduction sea. Here, the spin of the local
moment at sitej is represented using pseudo-fermions

Γαβ( j) = f † jα f jβ,

and

ψ†α( j) =
∑

~k

c†~kαe−i~k·~Rj

creates an electron localized at sitej.
There are a number of technical points about this model that need to be discussed:

• The spherical cow approximation. For simplicity, we assume that electrons have a spin degeneracyN =
2 j + 1. This is a theorists’ idealization- a “spherical cow approximation” which can only be strictly
justified for a single impurity. Nevertheless, the basic properties of this toy model allow us to understand
how the Kondo effect works in a Kondo lattice. With anN-fold conduction electron degeneracy, it is
clear that the Kinetic energy will grow asO(N).

• Scaling the interaction.Now the interaction part of the HamiltonianHI ( j) involves two sums over the
spin variables, giving rise to a contribution that scales asO(N2). To ensure that the interaction energy
grows extensively withN, we need to scale the coupling constant asO(1/N).

• Constraint nf = Q. Irreducible representations of the rotation group SU (N) require that the number of
f−electrons at a given site is constrained to equal tonf = Q. In the largeN limit, it is sufficient to apply
this constraint on the average〈nf 〉 = Q, though at finiteN a time dependent Lagrange multiplier coupled
to the differencenf − Q is required to enforce the constraint dynamically. WithQ f−electrons, the spin
operatorsΓab = f †a fb provide an irreducibleantisymmetric representation ofS U(N) that is described
by column Young Tableau withQ boxes. AsN is made large, we need to ensure thatq = Q/N remains
fixed, so thatQ ∼ O(N) is an extensive variable. Thus, for instance, if we are interested inN = 2, this
corresponds toq = nf /N = 1

2. We may obtain insight into this case by considering the large N limit with
q = 1/2.

The next step in the largeN limit is to carry out a “Hubbard Stratonovich” transformation on the interaction.
We first write

HI ( j) = − J
N

(
ψ† jβ f jβ

) (
f † jαψ jα

)
,

with a summation convention on the spin indices. We now factorize this[9, 10] as

HI ( j)→ HI [V, j] = V̄ j

(
ψ† jα f jα

)
+

(
f † jαψ jα

)
V j + N

V̄ jV j

J
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This is an exact transformation, provided the hybridization variablesV j(τ) are regarded as fluctuating vari-
ables inside a path integral, so formally,

Z =
∫
D[V, λ]

Z[λ,V]︷                           ︸︸                           ︷

Tr[T exp

[
−

∫ β

0
H[V, λ]

]
] (16.11)

where

H[V, λ] =
∑

~kσ

ǫ~kc
†
~kσc~kσ +

∑

j

(
HI [V j , j] + λ j [nf ( j) − Q]

)
, (16.12)

is exact. In this expression,D[V, λ] denotes a path integral over all possible time-dependences ofV j andλ j(τ),
andT denotes time ordering. The important point for our discussion here however, is that in the largeN limit,
the Hamiltonian entering into this path integral grows extensively withN, so that we may write the partition
function in the form

Z =
∫
D[V, λ]Tr[T exp

[
−N

∫ β

0
H [V, λ]

]
(16.13)

whereH [V, λ] = 1
N H[V, λ] ∼ O(1) is an intensive variable inN. The appearance of a large factorN in the

exponential means that this path integral becomes dominated by its saddle points in the largeN limit- i.e, if
we choose

V j = Vo, λ j = λo

where the saddle point valuesVo andλo are chosen so that

∂ ln Z[V, λ]
∂V

∣∣∣∣∣
V j=Vo,λ j=λo

=
∂ ln Z[V, λ]

∂λ

∣∣∣∣∣
V j=Vo,λ j=λo

= 0

then in the largeN limit,

Z = Tre−βH[Vo,λo]

In this way, we have converted the problem to a mean-field theory, in which the fluctuating variablesV j(τ)
andλ j(τ) are replaced by their saddle-point values. Our mean-field Hamiltonian is then

HMFT =
∑

~kσ

ǫ~kc
†
~kσc~kσ +

∑

j,α

(
f † jαψ jαVo + V̄oψ

†
jβ f jβ + λo f † jα f jα

)
+ Nn

(
V̄oVo

J
− λoq

)
,

where n is the number of sites in the lattice. We shall now illustrate the use of this mean-field theory in two
cases- the Kondo impurity, and the Kondo lattice. In the former, there is just one site; in the latter, translational
invariance permits us to setV j = Vo at every site, and for convenience we shall choose this valueto be real.

16.1.2 Mean-field theory of the Kondo impurity

Diagonalization of MF Hamiltonian

The Kondo effect is at heart, the formation of a many body resonance. To understand this phenomenon at
its conceptually simplest, we begin with the impurity model. We shall begin by writing down the mean-field
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Hamiltonian for a single Kondo ion

H =
∑

kσ

ǫkc
†

kσckσ +
∑

kσ

V[c†kσ fσ + f †σckσ] + λ
∑

σ

nfσ − λQ+
NV2

J
(16.14)

By making a mean-field approximation, we have reduced the problem to one of a self-consistently determined
resonant level model. Now, suppose we diagonalize this Hamiltonian, writing it in the form

H =
∑

γσ

Eγa
†
γσaγσ +

NV2

J
− λQ (16.15)

where the “quasiparticle operators”αγ are related via a unitary transformation to the original operators

a†γσ =
∑

k

αkc
†

kσ + β f †σ. (16.16)

commutinga†γσ with H, we obtain

[H, a†γσ] = Eγa
† (16.17)

Expanding the right and left-hand side of (16.17) in terms of(16.16) and (16.14), we obtain,

(Eγ − ǫk)αk − Vβ = 0

−V
∑

k

αk + (Eγ − λ)β = 0 (16.18)

Solving forαk using the first equation, and substituting into the second equation, we obtain

Eγ − λ −
∑

k

V2

Eγ − ǫk
= 0 (16.19)

We could have equally well obtained these eigenvalue equations by noting the electron eigenvaluesEγ must
correspond to the poles of the f-Green function,G f (Eγ)−1 = 0, where from an earlier subsection,

G−1
f (ω) =

ω − λ −
∑

k

V2

ω − ǫk

 (16.20)

Either way, the one-particle excitation energiesEγ must satisfy

Eγ = λ +
∑

k

V2
o

Eγ − ǫk
(16.21)

The solutions of this eigenvalue equation are illustrated graphically in Fig. (16.6). Suppose the energies of
the conduction sea are given by the 2M discrete values

ǫk = (k+
1
2

)∆ǫ, k ∈ {−M, . . . ,M − 1}

Suppose we restrict our attention to the particle-hole casewhen the f-state is exactly half filled, i.e. when
Q = N/2. In this situation,λ = 0. We see that one solution to the eigenvalue equation corresponds toEγ = 0.
The original band-electron energies are now displaced to both lower and higher energies, forming a band of
2M + 1 eigenvalues. Clearly, the effect of the hybridization is to inject one new fermionic eigenstate into the
band. Notice however, that the electron states are displaced symmetrically either-side of the new bound-state
at Eγ = 0.
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ω

δ

π

π/2

(b)

(a)

ω

New bound state

y

k= −4 −3 −2  −1
0 1 2 3

tFig. 16.6 (a) Graphical solution of the equation y = −∑
k

V2

y−ǫk , for eight equally spaced
conduction electron energies. Notice how the introduction of a new bound-state at
y = 0 displaces electron band-states both up and down in energy. In this way, the
Kondo effect injects new bound-state fermion states into the conduction sea. (b)
Energy dependence of the scattering phase shift.

Each new eigenvalue is shifted relative to the original conduction electron energy by an amount of order
∆ǫ. Let us write

Eγ = ǫγ − ∆ǫ
δγ

π

whereδ ∈ [0, π] is called the “phase shift”. Substituting this into the eigenvalue equation, we obtain

Eγ = λ +

γ+M∑

n=γ+1−M

Vo2

∆ǫ(n− δ
π
)

Now if M is large, we can replace the sum over states in the above equation by an unbounded sum

Eγ = λ +
V2

o

∆ǫ

∞∑

n=−∞

1

(n− δ
π
)
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Using contour integration methods, one can readily show that

∞∑

n=−∞

1

(n− δ
π
)
= −π cotδ

so that the phase shift is given byδγ = δ(Eγ), where

tanδ[ǫ] =
πρV2

o

λ − ǫ
where we have replacedρ = 1

∆ǫ
as the density of conduction electron states. This can also be written

δ(ǫ) = tan−1

[
∆

λ − ǫ

]
= Im ln[λ + i∆ − ǫ] (16.22)

where∆ = πρV2
o is the width of the resonant level induced by the Kondo effect. Notice that forλ = 0,δ = π/2

at the Fermi energy.

• The phase shift varies fromδ = 0 atEγ = −∞ to δ = π at Eγ = ∞ , passing throughδ = π/2 at the Fermi
energy.

• An extra state has been insertedinto the band, squeezing the original electron states both down and up
in energy to accommodate the additional state: states beneath the Fermi sea are pushed downwards,
whereas states above the Fermi energy are pushed upwards. From the relation

Eγ = ǫγ −
∆ǫ

π
δ(Eγ)

we deduce that

dǫ
dE
= 1+

∆ǫ

π

dδ(E)
dE

= 1+
1
πρ

dδ(E)
dE

(16.23)

whereρ = 1/∆ǫ is the density of states in the continuum. The new density of statesρ∗(E)is given by
ρ∗(E)dE = ρdǫ, so that

ρ∗(E) = ρ(0)
dǫ
dE
= ρ + ρi(E) (16.24)

where

ρi(E) =
1
π

dδ(E)
dE

=
1
π

∆2

(E − λ)2 + ∆2
(16.25)

corresponds to the enhancement of the conduction electron density of states due to injection of resonant
bound-state.

Minimization of Free energy

With these results, let us now calculate the Free energy and minimize it to self-consistently evaluateλ and∆.
The Free energy is given by

F = −NT
∑

γ

ln[1 + e−βEγ ] − λQ+
NV2

o

J
. (16.26)
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In the continuum limit, whereǫ → 0, we can use the relationEγ = ǫγ − ∆ǫ δπ to write

−T ln[1 + e−βEγ ] = −T ln[1 + e−β(ǫγ−∆ǫ δπ )]

=

→F0︷              ︸︸              ︷
−T ln[1 + e−βǫγ ] −∆ǫ

π
δ(ǫγ) f (ǫγ) (16.27)

where f (x) = 1/(eβx + 1) is the Fermi function. The first term in (16.27) is the Free energy associated with a
state in the continuum. The second term results from the displacement of continuum states due to the injection
of a resonance into the continuum. Inserting this result into (16.26), we obtain

F = F0 − N
∑

γ

∆ǫ

π
δ(ǫγ) f (ǫγ) − λQ+

NV2
o

J

= F0 − N
∫ ∞

−∞

dǫ
π

f (ǫ)δ(ǫ) − λQ+
NV2

o

J
(16.28)

The shift in the Free energy due to the Kondo effect is then

∆F = −N
∫ ∞

−∞

dǫ
π

f (ǫ)Im ln[ζ − ǫ] − λQ+
N∆
πJρ

(16.29)

where we have introducedζ = λ + i∆. This integral can be done at finite temperature, but for simplicity, let
us carry it out atT = 0, when the Fermi function is just at step function,f (x) = θ(−x). This gives

∆E =
N
π

Im
[
(ζ − ǫ) ln

[
ζ − ǫ

e

]]0

−D
− λQ+

N∆
πJρ

=
N
π

Im
[
ζ ln

[
ζ

eD

]
− D ln

[D
e

]]
− λQ+

N∆
πJρ

(16.30)

where we have expanded (ζ + D) ln
[

D+ζ
e

]
→ D ln

[
D
e

]
+ ζ ln D to obtain the second line. We can further

simplify this expression by noting that

−λQ+
N∆
πJρ
= −N

π
Im

[
ζ ln

[
e−

1
ρJ+iπq

]]
(16.31)

whereq = Q/N. With this simplification, the shift in the ground-state energy due to the Kondo effect is

∆E =
N
π

Im
[
ζ ln

[
ζ

eTKeiπq

]]
(16.32)

where we have dropped the constant term and introduced the Kondo temperatureTK = De−
1
Jρ . The stationary

point∂E/∂ζ = 0 is given by

ζ = λ + i∆ = TKeiπq

{
TK =

√
λ2 + ∆2

tan(πq) = ∆

λ

Notice that

• The phase shiftδ = πq is the same in each spin scattering channel, reflecting the singlet nature of the
ground state. The relationship between the filling of the resonance and the phase shiftQ =

∑
σ
δσ
π
= N δ

π

is nothing more than Friedel’s sum rule.
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• The energy is stationary with respect to small variations inλ and∆. It is only a local minimum once the
condition∂E/∂λ, corresponding to the constraint〈n̂f 〉 = Q, orλ = ∆ cot(πq) is imposed. It is instructive
to study the energy for the special caseq = 1

2, λ = 0 which is physically closest to theS = 1/2, N = 2
case. In this case, the energy takes the simplified form

∆E =
N
π

[
∆ ln

[
∆

eTK

]]
(16.33)

Plotted as a function ofV, this is the classic “Mexican Hat” potential, with a minimumwhere∂E/∂V = 0
at∆ = πρ|V|2 = TK . (Fig. 16.7)

• According to (16.24), the enhancement of the density of states at the Fermi energy is

ρ∗(0) = ρ +
∆

π(∆2 + λ2)

= ρ +
sin2(πq)
πTK

(16.34)

per spin channel. When the temperature is changed or a magnetic field introduced, one can neglect
changes in∆ andλ, since the Free energy is stationary. This implies that in the largeN limit, the suscep-
tibility and linear specific heat are those of a non-interacting resonance of width∆. The change in linear
specific heat∆CV = ∆γT and the change in the paramagnetic susceptibility∆χ are given by

∆γ =


Nπ2k2

B

3

 ρi(0) =


Nπ2k2

B

3


sin2(πq)
πTK

∆χ =

[
N

j( j + 1)(gµB)2

3

]
ρi(0) =

[
N

j( j + 1)(gµB)2

3

]
sin2(πq)
πTK

(16.35)

Notice how it is the Kondo temperature that determines the size of these two quantities. The dimension-
less “Wilson” ratio of these two quantities is

W =

[
(πkB)2

(gµB)2 j( j + 1)

]
∆χ

∆γ
= 1

At finite N, fluctuations in the mean-field theory can no longer be ignored. These fluctuations induce
interactionsamongst the quasiparticles, and the Wilson ratio becomes

W =
1

1− 1
N

.

The dimensionless Wilson ratio of a large variety of heavy electron materials lies remarkably close to
this value.

16.1.3 Gauge invariance and the composite nature of the f−electron

We now discuss the nature of thef−electron. In particular, we shall discuss how

• the f−electron is actually a composite object, formed from the binding of high-energy conduction electrons
to the local moment.

• although the broken symmetry associated with the largeN mean-field theory does not persist to finiteN,
the phase stiffness associated with the mean-field theory continues to finite N. This phase stiffness is
responsible for the charge of the compositef electron.
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Composite nature of the heavy f−electron

Let us begin by discussing the composite structure of thef−electron. In real materials, the Kondo effect we
have described involves spins formed from localized f- or d-electrons. Though it is tempting to associate the
compositef−electron in the Kondo effect with the thef−electron locked inside the local moment, we should
also bear in mind that the Kondo effect could have occurred equally well with a nuclearspin! Nuclear spins
do couple antiferromagnetically with a conduction electron, but the coupling is far too small for an observable
nuclear Kondo effect. Nevertheless, we could conduct a thought experiment where a nuclear spin is coupled
to conduction electrons via a strong antiferromagnetic coupling. In this case, a resonant bound-state would
also form from the nuclear spin. The composite bound-state formed in the Kondo effect clearly does not
depend on the origin of the spin partaking in the Kondo effect.

There are some useful analogies between the formation of thecompositef−electron in the Kondo problem
and the formation of Cooper pairs in superconductivity, which we shall try to draw upon. One of the best
examples of a composite bound-state is the Cooper pair. Inside a superconductor, pairs of electrons behave as
composite bosonic particles. One of the signatures of pair formation, is the fact that Cooper pairs of electron
operators behave as a single composite at low energies,

ψ↑(x)ψ↓(x
′) ≡ F(x− x′)

The Cooper pair operator is a boson, and it behaves as a c-number because the Cooper pairs condense. The
Cooper pair wavefunction is extremely extended in space, extending out to distances of orderξ ∼ vF/Tc.
A similar phenomenon takes place in the Kondo effect, but here the bound-state is afermionand it does not
condense For the Kondo effect the fermionic composite (~σ · ~S(x))αβψβ(x) behaves as a single charged electron
operator. The analogy between superconductivity and the Kondo effect involves the temporal correlation
between spin-flips of the conduction sea and spin-flips of thelocal moment, so that at low energies

[~σαβ · ~S(t)]ψβ(t
′) ∼ ∆(t − t′) fα(t′).

The function∆(t − t′) is the analog of the Cooper pair wavefunction, and it extends out to timesτK ∼ ~/TK .
To see this in a more detailed fashion, consider how the interaction term behaves. In the path integral we

factorize the interaction as follows

HI =
J
N
ψ†βΓαβψα −→ V̄

(
ψ†α fα

)
+

(
f †αψα

)
V + N

V̄V
J

By comparing these two terms, we see that the composite operatorΓαβ( j)ψα( j) behaves as a single fermi field:

1
N
Γαβ(t)ψα(t) −→

(
V̄
J

)
fα(t)

Evidently, a localized conduction electron is bound to a spin-flip of the local moment at the same site, cre-
ating a new independentfermionic excitation. The correlated action of adding a conduction electron with a
simultaneous spin flip of the local moment at the same site creates a compositef−electron.

It is worth noting that this fermionic object only hybridizes with conduction electrons at a single point: it is
thus localin space.

Let us now try to decompose the composite fermion in terms of the electrons that contribute to the bound-
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state amplitude. We start by writing the local moment in the fermionic representation,3

1
N
Γαβψα = −

1
N

f †βψα fα −→ −
1
N
〈 f †βψβ〉 fβ

where we have replaced the bilinear product between the conduction andf−electron by its expectation value.
We can evaluate this “bound-state amplitude” from the corresponding Green-function

−V
J
=

1
N
〈 f †βψβ〉 =

∫
dω
π

f (ω)ImGψ f (ω − iδ)

= Vo

∫
f (ω)

dω
π

Im


∑

k

1
ω − ǫk − iδ

1
ω − i∆

 (16.36)

where we have chosen the half-filled caseQ/N = 1/2, λ = 0. In the large band-width limit, the main
contribution to this integral is obtained by neglecting theprincipal part of the conduction electron propagator
1/(ω − ǫk − iδ)→ iπδ(ω − ǫk), so that

1
N
〈 f †βψβ〉 =

∑

k

f (ǫk)


ǫk

ǫ2
k + ∆

2

 (16.37)

From this expression, we can see that the contribution of a givenk state in the Fermi sea to the bound-state
amplitude is given by

1
N
〈 f †βckβ〉 = f (ǫk)


ǫk

ǫ2
k + ∆

2



This function decays with the inverse of the energy, right out to the band-width. Indeed, if we break-down
the contribution to the overall bound-state amplitude, we see that each decade of energy counts equally. Let
us takeT = 0 and divide the band on a logarithmic scale inton equal parts, where the ratio of the lower and
upper energies iss> 1, then

Vo

J
= ρVo

∫ 0

−D
dǫ

−ǫ
ǫ2 + ∆2

∼ ρVo

∫ D

∆

dǫ
1
ǫ

= ρVo



∫ D

D/s
+

∫ D/s

D/s2
+ . . .

∫ D/sn−1

D/sn
+

∫ D/sn

∆


dǫ
ǫ

= ρV0

{
ln s+ ln s+ . . . ln s+ ln

Ds−n

∆

}
(16.38)

This demonstrates that the composite bound-state involveselectrons on spread out over decades of energy
out to the band-width. If we complete the integral, we find that

Vo

J
= ρVo ln

D
∆
⇒ ∆ = De−

1
Jρ = TK

as expected from the minimization of the energy. Another wayof presenting this discussion, is to write the
composite bound-state in the time-domain, as

1
N
Γαβ(t

′)ψα(t) −→ ∆(t − t′) fα(t′) (16.39)

3 Important and subtle point: The emergence of a composite fermiondoes not depend on a fermionic representation of the spin. The
fermionic representation for the spin is simply the most convenient because it naturally furnishes us with an operator in the theory
that represents the composite bound-state.
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where now

∆(t − t′) =
1
N
〈 fβ†(t)ψβ(t′)〉

This is the direct analog of Cooper pair bound-state wavefunction, except that the relevant variable is time,
rather than space. If one evaluates the function∆(t) at a finitet, we find that

∆(t − t′) =
∑

k

f (ǫk)


ǫk

ǫ2
k + ∆

2

 e−iǫk(t−t′)

Heuristically, the finite time cuts off the energy integral over the Fermi surface at an energy of order ~/t, so
that

∆(t) ∼

ρVo ln

(
Dt
~

)
(t << ~/TK)

ρVo ln
(

D
TK

)
(t >> ~/TK)

emphasizing the fact that the Kondo effect involves a correlation between the spin-flips of the conduction
sea and the local moment over decades of time scales from the the inverse band-width up to the Kondo time
~/TK .

From these discussions, we see that the Kondo effect is

• entirely localized in space.
• extremely non-local in time and energy.

This picture of the Kondo effect as a temporal, rather than a spatial bound-state is vitalif we are to understand
the extension of the Kondo effect from the single impurity to the lattice.

Gauge invariance and the charge of the f−electron

One of the interesting points to emerge from the mean-field theory is that the energy of mean-field theory
does not depend on the phase of the bound-state amplitudeV = |V|eiθ. This is analogous to the gauge invari-
ance in superconductivity, which derives from the conservation of the total electronic charge. Here, gauge
invariance arises because there are no charge fluctuations at the site of the local moment, a fact encoded by
the conservation of the total f-chargeQ. Let us look at the full Lagrangian for thef−electron and interaction
term

LI = fσ
†(i∂t − λ) fσ − HI

HI = V̄
(
ψ†α fα

)
+

(
f †αψα

)
V + N

V̄V
J

(16.40)

This is invariant under the “Read-Newns”[10] transformation

f → f eiφ,

V → Veiφ, (θ → θ + φ),

λ→ λ +
∂φ

∂t
. (16.41)

where the last relation arises from a consideration of the gauge invariance of the dynamic partf †(i∂t − λ) f
of the Lagrangian. Now ifV(t) = |V(t)|eθ(t), wherer(t) is real, Read and Newns observed that by making the
gauge choiceφ(t) = −θ(t), the resultingV = |V|ei(θ+φ) = |V| is real. In this way, once the Kondo effect takes
place the phase ofV = |V|eiθ is dynamically absorbed into the constraint fieldλ : effectivelyλ ≡ ∂tφ represents
the phase precession rate of the hybridization field. The absorption of the phase of an order parameter into a
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dynamical gauge field is called the “Anderson Higg’s” mechanism.[?] By this mechanism, once the Kondo
effect takes place,V behaves as a real, and hence neutral object under gauge transformations, this in turn
implies that the compositef−electron has to transform under real electromagnetic gaugetransformations, in
other words the Anderson Higgs effect in the Kondo problem endows the compositef−electron with charge.

E

V=V  e0
ιφ

φ

tFig. 16.7 “Mexican Hat Potential” which determines minimum of Free energy, and
self-consistently determines the width of the Kondo resonance. The Free energy
displays this form provided the constraint ∂F/∂λ = 〈nf 〉 − Q = 0 is imposed.

There is a paradox here, for in the Kondo effect, there can actually be no true broken symmetry, since
we are dealing with a system where the number of local degreesof freedom is finite. Nevertheless, the
phaseφ does develop a stiffness- a stiffness against variation in time, and the order parameter consequently
develops infinite range correlations in time. There is a direct analogy between the spatial phase stiffness of a
superconductor and the temporal phase stiffness in the Kondo effect. In superconductivity, the energy depends
on spatial derivatives of the phase

E ∝ ρs

2
(∇φ − 2e~A)2⇒ 1

λL

2

∝ ρs

( where we have set~ = 1.) Gauge invariance links this stiffness to the mass of the photon field, which
generates the Meissner effect; the inverse squared penetration depth is directly proportional to the phase
stiffness. In an analogous fashion, in the Kondo effect, the energy depends on temporal derivatives of the
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Table
16.1 Parallels
be-
tween
Su-
per-
con-
duc-
tiv-
ity
and
the
Kondo
ef-
fect
.

Superconductivity Kondo effect

Bound State ψ↑(x)ψ↓(x′) = F(x− x′)
(
~σαβ · ~S(t′)

)
ψβ(t) = ∆(t − t′) fα(t′)

Bosonic Fermionic

Characteristic energy Tc = ωDe−1/gρ TK = D
√

Jρe−1/Jρ

Energy range contributing E ∈ [Tc, ωD] E ∈ [TK ,D]
to bound state

Extended in space time
ξ ∼ vF/Tc τ ∼ ~/TK

Conserved Quantity Total electron charge Charge of local moment

Long Range Order LROd > 2 Powerlaw in time
Powerlaw in spaced ≤ 2

Phase stiffness ρs ρφ

Consequences of Meissner effect Formation of charged
Phase stiffness heavy electron
(Anderson- Higgs) 2 ∆VF

(2π)3
= ne + nspins

Quantity related 1
λ2

L
∝ ρs

1
U∗ = ρφ

to phase stiffness
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phase and the phase stiffness is4

E ∝
ρφ

2
(∂tφ)2

For a Kondo lattice, there is one independent Kondo phase foreach spin site, and the independent con-
servation ofQ at each site guarantees that there is no spatial phase stiffness associated withφ. The temporal
phase stiffness leads to a slow logarithmic growth in the phase -phase correlation functions, which in turn
leads to power-law temporal correlations in the order parameterV(τ):

〈δφ(τ)δφ(τ′)〉 ∼ 1
N

ln(τ − τ′), 〈V̄(τ)V(τ′)〉 ∼ e−〈δφ(τ)δφ(τ′)〉 ∼ (τ − τ′)− 1
N .

In this respect, the Kondo ground-state resembles a two dimensional superconductor, or a one dimensional
metal: it is critical but has no true long-range order. As in the superconductor, the development of phase
stiffness involves real physics. When we make a gauge transformation of the electromagnetic field,

eΦ(x, t)→ eΦ(x, t) + ∂tα(x, t),
e~A(x, t)→ e~A(x, t) + ∇α,
ψ(x)→ ψ(x)e−iα(x,t) (16.42)

Because of the Anderson - Higg’s effect, the hybridization is real and the only way to keepLI invariant under
the above transformation, is by gauge transforming thef−electron and the constraint field

fσ( j)→ fσ( j)e−iα(x j ,t)

λ→ λ + ∂tα (16.43)

( Notice howλ transforms in exactly the same way as the potentialeΦ.)

The non-trivial transformation of thef−electron under electromagnetic gauge transformations confirm that
it has acquired a charge. Rigidity of the Kondo phase is thus intimately related to the formation of a composite
charged fermion. The gauge invariant form for the energy dependence of the Kondo effect on the Kondo phase
φ must then be

E ∝
ρφ

2
(∂tφ − eΦ)2

From the coefficient ofΦ2, we see that the Kondo cloud has an intrinsic capacitanceC = e2ρφ (E ∼ CΦ2/2).
But since the energy can also be written (enf )2/2C ∼ U∗n2

f /2 we see that the stiffness of the Kondo phase
can also be associated with an interaction between thef−electrons of strengthU∗, where

1
U∗
= C/e2 = ρφ

16.1.4 Mean-field theory of the Kondo Lattice

Diagonalization of the Hamiltonian

We can now make the bold jump from the single impurity problem, to the lattice. Most of the methods
described in the last subsection generalize very naturallyfrom the impurity to the lattice: the main difficulty

4 Note that becauseλ ∼ ∂tφ, the phase stiffness is given byρφ = ∂2F/∂λ2
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is to understand the underlying physics. The mean-field Hamiltonian for the lattice[11,?] takes the form

HMFT =
∑

~kσ

ǫ~kc
†
~kσc~kσ +

∑

j,α

(
f † jαψ jαVo + V̄oψ

†
jβ f jβ + λo f † jα f jα

)
+ Nn

(
V̄oVo

J
− λoq

)
,

where n is the number of sites in the lattice. Notice, before we begin, that the composite f-state at each site
of the lattice is entirely local, in that hybridization occurs at one site only. Were the composite f-state to be in
any way non-local, we would expect that the hybridization ofone f-state would involve conduction electrons
at different sites. We begin by rewriting the mean field Hamiltonianin momentum space, as follows

HMFT =
∑

~kσ

(
c†~kσ, f †~kσ

) ( ǫ~k Vo

Vo λo

) (
c~kσ
f~kσ

)
+ Nn

(
V̄oVo

J
− λoq

)

where

f †~kσ =
1
√

n

∑

j

f † jσei~k·~Rj

is the Fourier transform of thef−electron field. The absence ofk− dependence in the hybridization is evident
that each compositef−electron is spatially local. This Hamiltonian can be diagonalized in the form

HMFT =
∑

~kσ

(
a†~kσ,b

†
~kσ

) (E~k+ 0
0 E~k−

) (
a~kσ
b~kσ

)
+ Nn

(
V̄oVo

J
− λoq

)

wherea†~kσ andb†~kσ are linear combinations ofc†~kσ and f †~kσ, playing the role of “quasiparticle operators”
of the theory and the momentum state eigenvaluesE ~k± of this Hamiltonian are determined by the condition

Det

[
E ~k±1−

(
ǫ~k Vo

Vo λo

)]
= 0,

which gives

E~k± =
ǫ~k + λo

2
±


(
ǫ~k − λo

2

)2

+ |Vo|2


1
2

(16.44)

are the energies of the upper and lower bands. The dispersiondescribed by these energies is shown in Fig.
16.8 . A number of points can be made about this dispersion:

• We see that the Kondo effect injectsnew fermionic states into the the original conduction band.Hybridiza-
tion between the heavy electron states and the conduction electrons builds an upper and lower Fermi
band separated by a “hybridization gap” of width∆g = Eg(+) − Eg(−), such that energies in the range

Eg(−) < E < λo + Eg(+)

Eg(±) = λo ±
V2

0

D∓
(16.45)

are forbidden. Here±D± are the top and bottom of the conduction band. In the special case whereλo = 0,
corresponding to half filling, a Kondoinsulator is formed.

• The effective mass of the Fermi surface has the opposite signto the original conduction sea from which it
is built, so naively, the Hall constant should change sign when coherence develops.
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(a) (b)

(c)

λ
µ

E(k)

k

Light small
electron FS

Heavy fermion
"hole" Fermi surface

E

 ρ(   )E

g∆

tFig. 16.8 (a) Dispersion produced by the injection of a composite fermion into the conduction
sea. (b) Renormalized density of states, showing “hybridization gap” (∆g). (c)
Transformation of the Fermi surface from a light electron Fermi surface into a heavy
“hole”-like Fermi surface.

• The Fermi surface volume expandsin response to the presence of the new heavy electron bands. The new
Fermi surface volume now counts the total number of particles. To see this note that

Ntot = 〈
∑

kλσ

nkλσ〉 = 〈n̂f + nc〉

wherenkλσ = a†kλσakλσ is the number operator for the quasiparticles andnc is the total number of
conduction electrons. This means

Ntot = N
VFS

(2π)3
= Q+ nc.

This expansion of the Fermi surface is a direct manifestation of the creation of new states by the Kondo
effect. It is perhaps worth stressing that these new states would form, even if the local moments were nuclear in origin.
In other words, they are electronic states that have only depend on the rotational degrees of freedom of
the local moments.
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The Free energy of this system is then

F
N
= −T

∑

~k,±

ln
[
1+ e−βE~k±

]
+ ns

(
V̄V
J
− λq

)

Let us discuss the ground-state energy,Eo- the limiting T → 0 of this expression. We can write this in the
form

Eo

Nns
=

∫ 0

−∞
ρ∗(E)E +

(
V̄V
J
− λq

)

where we have introduced the density of heavy electron statesρ∗(E) =
∑
~k,± δ(E−E(±)

~k
). Now the relationship

between the energy of the heavy electrons (E) and the energy of the conduction electrons (ǫ) is given by

E = ǫ +
V2

E − λ
so that the density of heavy electron states related to the conduction electron density of statesρ by

ρ∗(E) = ρ
dǫ
dE
= ρ

(
1+

V2

(E − λ)2

)
(16.46)

The originally flat conduction electron density of states isnow replaced by a “hybridization gap”, flanked
by two sharp peaks of width approximatelyπρV2 ∼ TK . With this information, we can carry out the integral
over the energies, to obtain

Eo

Nns
=

D2ρ

2
+

∫ 0

−D
dEρV̄V

E
(E − λ)2

+

(
V̄V
J
− λq

)
(16.47)

where we have assumed that the upper band is empty, and the lower band is partially filled. If we impose the
constraint∂F

∂λ
= 〈nf 〉 − Q = 0 we obtain

∆

πλ
− q = 0

so that the ground-state energy can be written

Eo

Nns
=
∆

π
ln

(
∆e
πqTK

)
(16.48)

whereTK = De−
1
Jρ as before.

Let us pause for a moment to consider this energy functional qualitatively. The Free energy surface has the
form of “Mexican Hat” at low temperatures. The minimum of this functional will then determine a familiy of
saddle point valuesV = Voeiθ, whereθ can have any value. If we differentiate the ground-state energy with
respect toV2, we obtain

0 =
1
π

ln

(
∆e2

πqTK

)

or

∆ =
πq
e2

TK

confirming that∆ ∼ TK .
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Composite Nature of the heavy quasiparticle in the Kondo lattice.

We now turn to discuss the nature of the heavy quasiparticlesin the Kondo lattice. Clearly, at an operational
level, the compositef−electrons are formed in the same way as in the impurity model,but at each site, i.e

1
N
Γαβ( j, t)ψ jα(t) −→

(
V̄
J

)
f jα(t)

This composite object admixes with conduction electrons ata single site- site j. The bound-state amplitude in
this expression can be written

−Vo

J
=

1
N
〈 f †βψβ〉 (16.49)

To evaluate the contributions to this sum, it is useful to notice that the condition∂E/∂V̄ = 0 can be written

1
N
∂E

∂V̄o
= 0 =

Vo

J
+

1
N
〈 f †βψβ〉

=
Vo

J
+ Vo

∫ 0

−D
dEρ

E
(E − λ)2

(16.50)

where we have used (16.47) to evaluate the derivative. From this we see that we can write

Vo

J
= −Vo

∫ 0

−D
dEρ

(
1

E − λ +
λ

(E − λ)2

)

= −Voρ ln
[
λe
D

]
(16.51)

It is clear that as in the impurity, the compositef−electrons in the Kondo lattice are formed fromhigh
energyelectron states all the way out to the bandwidth. In a similarfashion to the impurity, each decade
of energy betweenTK andD contributes equally to the overall bound-state amplitude. The above expression
only differs from the corresponding impurity expression (16.36) at low energies, showing that low energy
electrons play a comparatively unimportant role in formingthe composite heavy electron. It is this feature
that permits a dense array of composite fermions to co-existthroughout the crystal lattice.

These compositef−electrons admix with the conduction electrons to produce a heavy electron band with
a density of states given by (16.46),

ρ∗(E) = ρ
dǫ
dE
= ρ

(
1+

V2

(E − λ)2

)

which becomes

ρ∗(0) = ρ +
q

TK

at the Fermi energy. The mass enhancement of the heavy electrons is then

m∗

m
= 1+

q
ρTK

∼ qD
TK

This large factor in the effective mass enhancement can be as much as 1000 in the most severely renormalized
heavy electron systems.

567

Chapter 16. c©Piers Coleman 2011

Consequences of mass renormalization

The effective mass enhancement of heavy electrons can be directly observed in a wide range of experimental
quantities including

• The large renormalization of the linear specific heat coefficientγ∗ ∼ m∗

m γ and Pauli susceptibilityχ∗ ∼ m∗

m χ.

• The quadratic temperature (“ A” ) coefficient of the resistivity. At low temperatures the resistivity of a

Fermi liquid has a quadratic temperature dependence,ρ ∼ ρo + AT2, whereA ∼
(

1
TF

)2 ∼
(

m∗

m

)2 ∼ γ2 is

related to the density of three-particle excitations. The approximate constancy of the ratioA/γ2 in heavy
fermion systems is known as the “Kadowaki-Woods” relation.[12]

• The renormalization of the effective mass as measured by dHvA measurements of heavy electron Fermi
surfaces.[?, ?, ?]

• The appearance of a heavy quasiparticle Drude feature in thefrequency dependent optical conductivity
σ(ω). (See discussion below).

ne2

m
τ

T  DK~

(    )−1
τ * τ −1

*
m
m

=

2m
neπ 2

1f  = 

2m
ne

∗

2πf  = 2

T  DK~∆ω∼      V

"Interband"

σ(ω)

ω
tFig. 16.9 Separation of the optical sum rule in a heavy fermion system into a high energy

“inter-band” component of weight f2 ∼ ne2/m and a low energy Drude peak of weight
f1 ∼ ne2/m∗.
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The optical conductivity of heavy fermion metals deserves special discussion. According to the f-sum rule,
the total integrated optical conductivity is determined bythe plasma frequency

∫ ∞

0

dω
π
σ(ω) = f1 =

π

2

(
ne2

m

)

wheren is the density of electrons.5 In the absence of local moments, this is the total spectral weight inside
the Drude peak of the optical conductivity.

What happens to this spectral weight when the heavy electron fluid forms? Whilst we expect this sum rule
to be preserved, we also expect a new “quasiparticle” Drude peak to form in which

∫
dωσ(ω) = f2

π

2
ne2

m∗
= f1

m
m∗

In other words, we expect the total spectral weight to divideup into a tiny “heavy fermion” Drude peak, of
total weight f2, where

σ(ω) =
ne2

m∗
1

(τ∗)−1 − iω

separated off by an energy of orderV ∼
√

TKD from an “inter-band” component associated with excitations
between the lower and upper Kondo bands.[13, 14] This secondterm carries the bulk∼ f1 of the spectral
weight. (Fig. 16.9 ).

Simple calculations, based on the Kubo formula confirm this basic expectation,[13, 14] showing that the
relationship between the original relaxation rate of the conduction sea and the heavy electron relaxation rate
τ∗ is

(τ∗)−1 =
m
m∗

(τ)−1. (16.52)

Notice that this means that the residual resistivity

ρo =
m∗

ne2τ∗
=

m
ne2τ

is unaffected by the effects of mass renormalization. This can be understood by observing that the heavy
electron Fermi velocity is also renormalized by the effective mass,v∗F =

m
m∗ , so that the mean-free path of the

heavy electron quasiparticles is unaffected by the Kondo effect.

l∗ = v∗Fτ
∗ = vFτ

This is yet one more reminder that the Kondo effect is local in space, yet non-local in time.
These basic features- the formation of a narrow Drude peak, and the presence of a hybridization gap, have

been seen in optical measurements on heavy electron systems[?, 15,?]

5 The f-sum rule is a statement about the instantaneous, or short-time diamagnetic response of the metal. At short timesd j/dt =

(ne2/m)E, so the high frequency limit of the conductivity isσ(ω) = ne2

m
1

δ−iω . But using the Kramer’s Kr̈onig relation

σ(ω) =
∫

dx
iπ

σ(x)
x− ω − iδ

at large frequencies,

ω(ω) =
1

δ − iω

∫
dx
π
σ(x)

so that the short-time diamagnetic response implies the f-sum rule.
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16.1.5 Summary

In this lecture we have presented Doniach’s argument that the enhancement of the Kondo temperature over
and above the characteristic RKKY magnetic interaction energy between spins leads to the formation of a
heavy electron ground-state. This enhancement is thought to be generated by the large spin degeneracies
of rare earth, or actinide ions. A simple mean-field theory ofthe Kondo model and Kondo lattice, which
ignores the RKKY interactions, provides a unified picture ofheavy electron formation and the Kondo effect,
in terms of the formation of a composite quasiparticle between high energy conduction band electrons and
local moments. This basic physical effect is local in space, but non-local in time. Certain analogies can be
struck between Cooper pair formation, and the formation of the heavy electron bound-state, in particular, the
charge on thef−electron can be seen as a direct consequence of the temporal phase stiffness of the Kondo
bound-state. This bound-state hybridizes with conductionelectrons- producing a single isolated resonance in
a Kondo impurity, and an entire renormalized Fermi surface in the Kondo lattice.

Exercises

Exercise 16.1 (a) Using the identityn2
fσ = nfσ, show that the atomic part of the Anderson model can be

written in the form

Hatomic= (E f +
U
2

)nf +
U
2

[
(nf − 1)2 − 1

]
, (16.53)

What happens whenE f + U/2 = 0?
(b) Using the completeness relation

| f 0〉〈 f 0|+| f 2〉〈 f 2|︷   ︸︸   ︷
(nf − 1)2 +

|↑〉〈↑|+|↓〉〈↓|︷     ︸︸     ︷
S2

S(S + 1)
= 1. (S = 1/2)

show that the interaction can also be written in the form

Hatomic= (E f +
U
2

)nf −
2U
3

S2 (16.54)

which makes it clear that the repulsive U term induces a “magnetic attraction” that favors formation of
a local moment.

(c) Derive the Hubbard Stratonovich decoupling for (16.54).
Exercise 16.2 By expanding a plane wave state in terms of spherical harmonics:

〈r |k〉 = eik·r = 4π
∑

l,m

i l j l(kr)Y∗lm(k̂)Ylm(r̂ )

show that the overlap between a state|ψ〉 with wavefunction〈~x|ψ〉 = R(r)Ylm(r̂) with a plane wave is
given byV(~k) = 〈~k|V|ψ〉 = V(k)Ylm(k̂) where

V(k) = 4πi−l
∫

drr2V(r)R(r) j l(kr) (16.55)

Exercise 16.3 (i) Show thatδ = cot−1
(

Ed

∆

)
is the scattering phase shift for scattering off a resonant level at

positionEd.
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(ii) Show that the energy of states in the continuum is shifted by an amount−∆ǫδ(ǫ)/π, where∆ǫ is the
separation of states in the continuum.

(iii) Show that the increase in density of states is given by∂δ/∂E = ρd(E). (See chapter 3.)
Exercise 16.4 Generalize the scaling equations to the anisotropic Kondo model with an anisotropic inter-

action

HI =
∑

|ǫk|,|ǫk′ ,a=(x,y,z)

Jac†kασ
a
αβck′β · Sa

d (16.56)

and show that the scaling equations take the form

∂Ja

∂ ln D
= −2JbJcρ +O(J3),

where and (a,b, c) are a cyclic permutation of (x, y, z). Show that in the special case whereJx = Jy = J⊥,
the scaling equations become

∂J⊥
∂ ln D

= −2JzJ⊥ρ +O(J3),

∂Jz

∂ ln D
= −2(Jz)

2ρ +O(J3), (16.57)

so thatJ2
z − J2

⊥ = constant. Draw the corresponding scaling diagram.
Exercise 16.5 Consider the symmetric Anderson model, with a symmetric band-structure at half filling. In

this model, thed0 andd2 states are degenerate and there is the possibility of a “charged Kondo effect”
when the interactionU is negative. Show that under the “particle-hole” transformation

ck↑ → ck↑, d↑ → d↑
ck↓ → −c†k↓, d↓ → −d†↓ (16.58)

the positiveU model is transformed to the negativeU model. Show that the spin operators of the local
moment are transformed into Nambu “isospin operators” which describe the charge and pair degrees
of freedom of the d-state. Use this transformation to argue that when U is negative, a charged Kondo
effect will occur at exactly half-filling involving quantum fluctuations between the degenerated0 and
d2 configurations.

Exercise 16.6 What happens to the Schrieffer-Wolff transformation in the infinite U limit? Rederive the
Schrieffer-Wolff transformation for an N-fold degenerate version of the infinite U Anderson model.
This is actually valid for Ce and Yb ions.

Exercise 16.7 Rederive the Nozières Fermi liquid picture for an SU (N) degenerate Kondo model. Explain
why this picture is relevant for magnetic rare earth ions such asCe3+ or Yb3+.

Exercise 16.8 Check the Popov trick works for a magnetic moment in an external field. Derive the partition
function for a spin in a magnetic field using this method.

Exercise 16.9 Use the Popov trick to calculate the T-matrix diagrams for the leading Kondo renormaliza-
tion diagramatically.

Exercise 16.10 Derive the formula (15.66) for the conductance of a single isolated resonance.
Exercise 16.11 1 Directly confirm the Read-Newn’s gauge transformation (16.41).

2 Directly calculate the “phase stiffness”ρφ = − d2F
dλ2 of the largeN Kondo model and show that at

T = 0.

ρφ =
N
π

(
sin(πq)

TK

)
.
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Exercise 16.12 1 Introduce a simple relaxation time into the conduction electron propagator, writing

G(~k, iωn)−1 = iωn + isgn(ωn)/2τ +
V2

iωn − λ
(16.59)

Show that the poles of this Greens function occur at

ω = Ek ±
i

2τ∗

where

τ∗ =
m∗

m
τ

is the renormalized elestic scattering time.
2 The Kubo formula for the optical conductivity of an isotropic one-band system is

σ(ν) = −Ne2

3

∑

k

v2
k
Π(ν)
iν

where we have used theN fold spin degeneracy, andΠ(ν) is the analytic extension of

Π(iνn) = T
∑

m

G(~k, iωm)
[
G(~k, iωm + iνn) −G(~k, iωm)

]

where in our case,G(~k, iωn) is the conduction electron propagator. Using (16.59), andapproximating
the momentum sum by an integral over energy, show that the lowfrequency conductivity of the large
N Kondo lattice is given by

σ(ν) =
ne2

m∗
1

(τ∗)−1 − iν
.

572



bk.pdf April 29, 2012 291

References

[1] E. Bucher, J. P. Maita, G. W. Hull, R. C. Fulton, and A. S. Cooper,Phys. Rev. B, vol. 11, pp. 440, 1975.
[2] F. Steglich, J. Aarts, C. D. Bredl, W. Leike, D. E. MeshidaW. Franz, and H. Scḧafer, Phys. Rev. Lett,
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[48] H. Fröhlich. Proc. Roy. Soc., A215:291, 1952.
[49] John Bardeen and David Pines. Electron-phonon interaction in metals. Phys. Rev., 99:1140–1150,

1955.
[50] A. A. Migdal. Interaction between electron and latticevibrations in a normal metal.Sov. Phys, JETP,

7:996–1001, 1958.
[51] F. London.Superfluids. Dover Publications, New York, 1961-64.
[52] L. D. Landau. Theory of phase transformations.Phys. Z. SowjUn, 11(26):545, 1937.
[53] Steven Weinberg. A model of leptons.Phys. Rev. Lett., 19(21):1264–1266, Nov 1967.
[54] N. Goldenfeld.Lectures on Phase Transitions and the Renormalization Group. Perseus Publishing,

1992.

575

Chapter 16. c©Piers Coleman 2011

[55] L. S. Ornstein and F. Zernike.Proc. Sect. Sci. K. Akad. Wet. Amsterdam, 17:793, 1914.
[56] V. L. Ginzburg and L. D. Landau. On the theory of superconductivity. Zh. Eksp. Teor. Fiz, 20:1064,

1950.
[57] O. Penrose. On the quantum mechanics of helium ii.Phil Mag., 42:1373, 1951.
[58] O. Penrose and L. Onsager. Bose einstein condensation and liquid helium.Phys. Rev., 104:576, 1956.
[59] P. W. Anderson. Considerations on the flow of superfluid heii. Rev. Mod. Phys., 38:298, 1966.
[60] C. N. Yang. Concept of off-diagonal long-range order and the quantum phases of liquidhe and of

superconductors.Rev. Mod. Phys., 34:694, 1962.
[61] L. Onsager. Statistical hydrodynamics.Nuovo Cimento, Suppl. 6:279, 1949.
[62] R. P. Feynman.Progress in Low Temperature PHysics, volume 1. North Holland, Amsterdam, 1955.
[63] L. Onsager. Proceedings of the international conference on theoretical physics, kyoto and tokyo,

september 1953.Science Council of Japan, Tokyo.
[64] B. S. Deaver and W. M. Fairbank. Experimental evidence for quantized flux in superconducting

cylinders.Phys Rev Lett, 7:43, 1961.
[65] R. Doll and M. N̈abauer. Experimental proof of magnetic flux quantization ina superconducting ring.

Phys Rev Lett, 7:51, 1961.
[66] Sheldon Glashow. Partial-symmetries of weak interactions. Nuclear Physics, 22(4):579–588, Feb

1961.
[67] A. Salam and J. C. Ward. Electromagnetic and weak interactions.Phys. Lett, 13:168, 1964.
[68] Marcela S. Carena and Howard E. Haber. Higgs boson theory and phenomenology.Prog. Part. Nucl.

Phys, 50:63–152, 2003.
[69] A. P. Levanyuk.Sov. Phys. JETP, 36:571, 1959.
[70] V. L. Ginzburg. Some remarks on phase transitions of thesecond kind and the microscopic theory of

ferroelectric.Sov. Phys. JETP-Solid St, 2:1824, 1960.
[71] W. Heisenberg.Z. Physik, 49:619, 1928.
[72] A. M. Clogston, B. T. Mathias, M. Peter, H. J. Williams, E. Corenzwit, and R. C. Sherwood.Phys.

Rev., 125:541, 1962.
[73] P. W. Anderson.Rev. Mod. Phys., 50, 1978.
[74] N. F. Mott and R. Peierls.Proc. Royal Society, 49:72–73, 1937.
[75] N. F. Mott. Proc. Phys. Society (London), A62:416, 1949.
[76] J. H. Van Vleck.Rev. Mod. Phys., 25, 1953.
[77] J. Friedel.Can . J. Phys, 34, 1956.
[78] J. Friedel.Nuovo Cimento Suppl., VII, 1958.
[79] A. Blandin and J. Friedel.J. Phys. Radium, 19:573, 1958.
[80] M. Peter H. J. Williams E. Corenzwit A. M. Clogston, B.T.Matthias and R. C. Sherwood.Phys. Rev.

B, 1962.
[81] Leo Kouwenhoven and Leonid Glazman. The revival of the kondo effect. Physics World, 2001.
[82] T. E. Kopley, P. L. McEuen, and R. G. Wheeler. Resonant tunneling through single electronic states

and its suppression in a magnetic field.Phys. Rev. Lett., 61(14):1654–1657, Oct 1988.
[83] Single Charge Tunneling Coulomb Blockade Phenomena in Nanostructures.
[84] M. W. S. Danoesastro M. Eto D. G. Austing T. Honda L. P. Kouwenhoven, T. H. Oosterkamp and

S. Tarucha. Excitation spectra of circular, few-electron quantum dot.Science, 5:1788–1792, 1997.
[85] J. Kondo.Prof. Theo. Phys., 28:772, 1962.
[86] G. Stewart. ”heavy-fermion systems”.Rev. Mod. Phys., 56:755, 1984.

576



bk.pdf April 29, 2012 293

c©2011 Piers Coleman Chapter 16.

[87] F. D and M. Haldane.Phys. Rev. Lett, 40:416, 1978.
[88] P. B. Wiegmann.Phys. Lett., 80A:163, 1980.
[89] P. B. Wiegmann.Phys. Lett., 80A:163, 1980.
[90] A. Okiji and N. Kawakami.Phys. Rev. Lett, 50:1157, 1983.
[91] A. A. Abrikosov. Physics, 2:5, 1965.
[92] H. Suhl.Phys. Rev., 38A:515, 1965.
[93] J.W. Allen, S.J. Oh, O. Gunnarsson, K. Schönhammer, M.B. Maple, M.S. Torikachvili, and I. Lindau.

Advances in Physics, 35:275, 1986.
[94] J. W. Allen, S. J. Oh, M. B. Maple, and M. S. Torikachvili.Phys. Rev., 28:5347, 1983.
[95] D. Langreth.Phys. Rev., 150:516, 1966.
[96] J. S. Langer and V. Ambegaokar.Phys. Rev., 121:1090, 1961.
[97] J. W. Allen, S. J. Oh, L. E. Cox, W. P. Ellis, S. Wire, Z. Fisk, J. L. Smith, B. B. Pate, I. Lindau, and

J. Arko. Phys. Rev. Lett., 2635:54, 1985.
[98] L. Z. Liu, J. W. Allen, C. L. Seaman, M. B. Maple, Y. Dalichaouch, J. S. Kang, M. S. Torikachvili,

and M. A. Lopez de laTorre.Phys. Rev. Lett, 68:1034, 1992.
[99] P. W. Anderson and G. Yuval.Phys. Rev. Lett., 45:370, 1969.

[100] P. W. Anderson.Comm. S. St. Phys., 5:72, 1973.
[101] K. G. Wilson.Rev. Mod. Phys., 47:773, 1976.
[102]
[103] J. R. Schrieffer and P. Wolff. Phys. Rev., 149:491, 1966.
[104] B. Coqblin and J. R. Schrieffer. Phys. Rev., 185:847, 1969.
[105] P. W. Anderson and G. Yuval.Phys. Rev. B, 1:1522, 1970.
[106] P. W. Anderson and G. Yuval.J. Phys. C, 4:607, 1971.
[107] P. W. Anderson.J. Phys. C, 3:2346, 1970.
[108] M. Sarachik, E. Corenzwit, and L. D. Longinotti.Phys Rev., 135:A1041, 1964.
[109] E. Bucher, J. P. Maita, G. W. Hull, R. C. Fulton, and A. S.Cooper.Phys. Rev. B, 11:440, 1975.
[110] F. Steglich, J. Aarts, C. D. Bredl, W. Leike, D. E. Meshida W. Franz, and H. Schäfer. Phys. Rev. Lett,

43:1892, 1976.
[111] K. Andres, J. Graebner, and H. R. Ott.Phys. Rev. Lett., 35:1779, 1975.
[112] M. A. Ruderman and C. Kittel.Phys. Rev, 78:275, 1950.
[113] R. M. Martin. Phys. Rev. Lett., 48:362, 1982.
[114] M. Mekata, S. Ito, N. Sato, T. Satoh, and N. Sato.Journal of Magnetism and Magnetic Materials,

54:433, 1986.
[115] E. Witten.Nucl. Phys. B, 145:110, 1978.
[116] C. Lacroix and M. Cyrot.Phys. Rev. B, 43:12906, 1981.
[117] N. Read and D.M. Newns.J. Phys. C, 16:3274, 1983.
[118] A. Auerbach and K. Levin.Phys. Rev. Lett., 57:877, 1986.
[119] K. Kadowaki and S. Woods.Solid State Comm, 58:507, 1986.
[120] A. J. Millis. Phys. Rev. B, 48:7183, 1993.
[121] L. Degiorgi, F.Anders, G. Gruner, and European Physical Society.Journal B, 19:167, 2001.
[122] W. P. Beyerman, G. Gruner, Y. Dlicheouch, and M. B. Maple. Phys. Rev. B, 37:10353, 1988.

577

References

[1] E Broda and L Gray, “Ludwig Boltzmann : man, physicist, philosopher”, (Woodbridge, 1983).
[2] P.W. Anderson, “More is Different”,Science177, 393, (1972).
[3] Robert March, “Physics for Poets”, McGraw Hill, (1992)
[4] Abraham Pais, “Inward Bound: Of Matter and Forces in the Physical World ”, Oxford Univer-

sity Press (1986). Chapters 1 and 12 provides a marvelous discussion about the early history
surrounding the electron, and the development of quantum mechanics.

[5] L. Hoddeson, G. Baym and M. Eckert, “The Development of the quantum-mechanical electron
theory of metals: 1928-1933”,Rev Mod. Phys.59, 287–327 (1987).

[6] M. Riordan and L. Hoddeson, “Crystal Fire”, Norton Books, (1997) gives a wonderful account of
the discovery of the transistor.

[7] L. Hoddeson and Vicki Daitch, “True Genius: The Life and Science of John Bardeen”, (2002).
[8] R. Feynman, R. B. Leighton and M. Sands, “The Feynman Lectures on Physics”, vol III, Ch. 1.,

Addison Wesley, (1965).
[9] C. Kittel, “Introduction to Solid State Physics”, Wiley, New York (1986), sixth edition.

[10] A. Hermann, K. von Meyenn and V. F. Weisskopf, 1979, Eds,“Wolfang Pauli, Scientific Corre-
spondence with Bohr, Einstein Heisenberg and others”. Vol I. 1919-1929 (Springer, New York).
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