
2 Nuclear Size and ShapeThe unit of nuclear length is called the \fermi", (fm)1 fm = 10�15 m:There are deviations from the Rutherford scattering formula when the energy of theincident �-particle becomes too large, so that the distance of closest approach is of order afew fermi's.The reason for this is that the Rutherford scattering formula was derived assuming thatthe nucleus was a point particle. In reality it has a �nite size with a radius R of order10�15 m.The nucleus therefore has a charge distribution, �(r). In terms of quantum mechanicswe have �(r) = Zej	(r)j2;where Z is the atomic mass number and is equal to the number of protons in the nucleus,and 	 is the wave-function for one of these protons. (j	(r)j2 is therefore the probabilitydensity for one proton). Nuclear `radius' is not really a very precise term - it is the extentover which the electric charge distribution of the proton, and therefore its wavefunction, isnot too small, although in principle the wave-function extends throughout all space.It is di�cult to produce �-particles with su�cient energy to probe the charge distributionof the nucleus, so we use high energy electrons instead.For electrons the projectile charge z is replaced by 1 in the Rutherford scattering for-mula. There is one further change which is due to the fact that these electrons are movingrelativistically with a velocity v close to c. This correction was �rst calculated by Mott andwe have d�d
 jMott = d�d
 jRutherford 1 � v2c2 sin2  �2!!We account for the charge distribution of the electron by writing the di�erential cross-section as d�d
 = d�d
 jMottjF (q2)j2: (2.1)The correction factor F (q2) is called the \electric form-factor". q is the momentumtransferedby the electron in the scattering and its magnitude is related to the scattering angle by (seethe Appendix to the previous section)q = 2 p sin �2! ;where p is the momentum of the incident electron.To understand the structure of the electric form-factor we need to recall that the electronhas a de Broglie wavelength � = h=p, and when this wavelength is of the order of the nuclear`radius' we get a di�raction pattern. 8



As a simple example suppose that the nucleus were a solid sphere of radius R with anin�nite potential inside the sphere and zero potential outside, so that the electron cannotpenetrate the sphere. �
The wave that passes over the nucleus travels a distance 2R sin � further than the wavethat passes below the nucleus. If this di�erence is equal to �=2; 3�=2 � � � then we getdestructive interference. At these angles the di�erential cross-section vanishes.The real case is a little more complicated than that. A proper quantummechanical treat-ment (which is exactly analogous to di�raction in optics) shows that the electric form-factoris actually the Fourier transform of the charge distribution. For a spherically symmetriccharge distribution this leads toF (q2) = 4� �hZ e q Z r �(r) sin�qr�h � dr: (2.2)�r
Qualitatively, the reason for this is that the part of the wavefront that passes through thenucleus at a distance r from the centre and is scattered through an angle � travels a further9



distance than the part of the wave that passes through the centre, by an amount proportionalto r and therefore su�ers a phase change (relative to the part of the wave passing throughthe centre). This phase change also depends on the scattering angle � and is equal to qr=�h.This means that di�erent parts of the wavefront su�er a di�erent phase change (just as inoptical di�raction) - these di�erent amplitudes are summed to get the total amplitude atsome scattering angle � and this gives rise to the di�raction pattern. The contribution to theamplitude from the part of the wavefront which passes at a distance r from the centre of thenucleus is proportional to the charge density, �(r), at r. The total scattering amplitude istherefore the sum of the amplitudes from all these di�erent parts, which is what the integralin eq.(2.2) means.Thus we see that a study of the di�ractive scattering of electrons from a nucleus can giveus information about the charge distribution inside the nucleus.For example, if we assume that the charge distribution is a constant for r < a and zerooutside �(r) = 3Ze4�R3 ; r < R= 0 r > R;the integral in the Fourier transform eq.(2.2) can be done analytically to giveF (q2) = 3�h3 (sin(qR=�h)� qR=�h cos(qR=�h))q3R3 :Feeding this back into eq.(2.1) for the di�ractive di�erential cross-section we get
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This is not quite what is observed in experiment which is more like this example ofscattering of electrons of energy 1.04 GeV against a Ca nucleus10



We see that although there are oscillations in the di�erential cross-section, it never ac-tually vanishes. The reason for the discrepancy is that the square-well model for the chargedistribution is unrealistic. The charge distribution rapidly becomes small as r exceeds a fewfermi's, but never goes to zero.A rough (to with about 30%) estimate of the nuclear radius R can be obtained from the�rst minimum of the di�raction pattern and assuming that this occurs whenqR�h � �In the above case this occurs at q=�h � 1fm�1 (the x-scale is given in fm�1 which means itis really q=�h), giving an approximate nuclear radius of about 3 fm.A more realistic charge distribution is the Saxon-Woods model for which�(r) / 11 + exp((r �R)=� ;which looks like 11
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We can interpret R as the nuclear `radius' and � as the `surface depth' - it measures therange in r over which the charge distribution changes from the order of its value at the centreto much smaller than this value.This leads to a di�erential cross-section which looks like
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This has dips but no zeros and is much more similar in shape to the experimental results.In fact, the Saxon-Woods model �ts data from most nuclei rather well with empiricalvalues for R and � depending on the atomic mass number, A (the total number of protonsand neutrons in the nucleus): R = (1:18A1=3 � 0:48) fm� = 0:4 � 0:5 fm for A > 40The �rst term in the expression for R is easily understandable as one would expect thevolume occupied by a nucleus to be proportional to A, so that the radius is proportional toA1=3. 12



2.1 Electric Quadrupole MomentsSo far, we have assumed that the charge distribution is spherically symmetric. If that werethe case we would have < x2 > = < y2 > = < z2 > = 13 < r2 >;where < x2 > = 1Ze Z x2�(r)d3retc.However, for many nuclei this is not the case and they possess an \electric quadrupolemoment" de�ned (with respect to an axis z) asQ = Z (3z2 � r2)�(r)d3rThe Q=e has dimensions of area and is therefore usually quoted in barnes.Nuclei that possess and electric quadrupole moment have a shape which is an oblatespheroid for Q < 0 and a prolate spheroid for Q > 0.Q < 0 z Q > 0 zOn the other hand, the electric dipole moment, which is a vector de�ned byd = Z r�(r)d3r;is almost zero. The reason for this that to a very good approximation, the wavefunction ofa proton in a nucleus is a parity eigenstate, i.e.	(r) = �	(�r)which implies �(r) = �(�r);so that the electric dipole moment vanishes by symmetric integration.2.2 Strong Force DistributionThe protons and neutrons inside a nucleus are held together by a strong nuclear force. Thishas to be strong enough to overcome the Coulomb repulsion between the protons, but unlikethe Coulomb force, it extends only over a short range of a few fermi's.13



Electron di�ractive scattering is used to examine the distribution of electric charge (i.e.the protons) within the nucleus. Similar experiments are performed using high energy neu-trons in order to probe the distribution of the strong force, i.e the distribution of all \nucle-ons" (neutrons and protons). In this case the form factor F (q) is not the electric form-factorbut the form-factor associated with the strong force.For example the scattering of neutrons with energy of 14 MeV against a Ni target yields:
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14 MeV Neutron scattering on Nixx xx xx xx xx xx xx xx x xx xx xx xx xx xx xx xx xx xx x xx xThe Saxon-Woods model is also useful for the analyses of these data and yields a nuclearradius (for large A), given by R = 1:2A1=3 fmand � = 0:75 fm:We see that the strong force extends over approximately the same region as the nuclearcharge, and that the `volume' of the nucleus is proportional to the number of nucleons.
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