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specified by the contract. So if interest accrues at rate R, then
cvg(tst, tend , dcb)R is the interest accruing in the interval tst to tend .

1.1 Deal definition
Consider a CMS swap leg paying, say, the N year swap rate plus a margin
m. Let t0, t1, . . . , tm be the dates of the CMS leg specified in the contract.
(These dates are usually quarterly). For each period j, the CMS leg pays

δ j(R j + m) paid at t j for j = 1, 2, . . . , m, (1.3a)

where R j is the N year swap rate and

δ j = cvg(t j−1, t j, dcbpay ) (1.3b)

is the coverage of interval j. If the CMS leg is set-in-advance (this is stan-
dard), then R j is the rate for a standard swap that begins at t j−1 and ends
N years later. This swap rate is fixed on the date τ j that is spot lag business
days before the interval begins at t j−1, and pertains throughout the inter-
val, with the accrued interest δ j(R j + m) being paid on the interval’s end

1 Introduction
I’m sure we’ve all been there: We’re in hot competition with another
bank over a deal. As the deal evolves, our trading team starts getting
pushed around the market, and it dawns on us that the other bank’s
pricing is better than ours, at least for this class of deals. We could fix
this problem by inventing a universal method for achieving the best
possible prices for all deal types. That topic will be covered in a future
column, next to the column on Elvis sightings. Here we focus on a sin-
gle class of deals, the constant maturity swaps, caps, and floors. We
develop a framework that leads to the standard methodology for pric-
ing these deals, and then use this framework to systematically improve
the pricing.

Let us start by agreeing on basic notation. In our notation, today is
always t = 0. We use

Z(t; T) = value at date t of a zero coupon bond with maturity T ,  (1.1a)

D(T) ≡ Z(0, T) = today ’s discount factor for maturity T. (1.1b)

We distinguish between zero coupon bonds and discount factors to
remind ourselves that discount factors are not random, we can always
obtain the current discount factors D(T) by stripping the yield curve,
while zero coupon bonds Z(t, T) remain random until the present catches
up to date t. We also use

cvg(tst, tend , dcb) (1.2)

to denote the coverage (also called the year fraction or day count fraction) of
the period tst to tend , where dcb is the day count basis (Act360, 30360, . . .)
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date, t j . Although set-in-advance is the market standard, it is not
uncommon for contracts to specify CMS legs set-in-arrears. Then R j is the
N year swap rate for the swap that begins on the end date t j of the inter-
val, not the start date, and the fixing date τ j for R j is spot lag business
days before the interval ends at t j . As before, δ j is the coverage for the jth

interval using the day count basis dcbpay specified in the contract. Stan-
dard practice is to use the 30360 basis for USD CMS legs.

CMS caps and floors are constructed in an almost identical fashion.
For CMS caps and floors on the N year swap rate, the payments are

δ j[R j − K]+ paid at t j for j = 1, 2, . . . , m, (cap), (1.4a)

δ j[K − R j]
+ paid at t j for j = 1, 2, . . . , m, (floor), (1.4b)

where the N year swap rate is set-in-advance or set-in-arrears, as specified
in the contract.

1.2 Reference swap
The value of the CMS swap, cap, or floor is just the sum of the values of
each payment. Any margin payments m can also be valued easily. So all
we need do is value a single payment of the three types,

Rs paid at tp, (1.5a)

[Rs − K]+ paid at tp, (1.5b)

[K − Rs]
+ paid at tp. (1.5c)

Here the reference rate Rs is the par rate for a standard swap that
starts at date s0, and ends N years later at sn . To express this rate mathe-
matically, let s1, s2, . . . , sn be the swap’s (fixed leg) pay dates. Then a swap
with rate Rfix has the fixed leg payments

α jRfix paid at s j for j = 1, 2, . . . , n, (1.6a)

where
α j = cvg(tj−1, t j, dcbsw) (1.6b)

is the coverage (fraction of a year) for each period j, and dcbsw is the stan-
dard swap basis. In return for making these payments, the payer receives
the floating leg payments. Neglecting any basis spread, the floating leg is
worth 1 paid at the start date s0, minus 1 paid at the end date sn . At any
date t, then, the value of the swap to the payer is

Vsw(t) = Z(t; s0) − Z(t; sn) − Rfix

n∑
j=1

α jZ(t; s j). (1.7)

The level of the swap (also called the annuity, PV01, DV01, or numerical dura-
tion) is defined as

L(t) =
n∑

j=1

α jZ(t; s j). (1.8)

Crudely speaking, the level L(t) represents the value at time t of receiving
$1 per year (paid annually or semiannually, according to the swap’s fre-
quency) for N years. With this definition, the value of the swap is

Vsw(t) = [Rs(t) − Rfix ]L(t), (1.9a)

where
Rs(t) = Z(t; s0) − Z(t; sn)

L(t)
. (1.9b)

Clearly the swap is worth zero when Rfix equals Rs(t), so Rs(t) is the par
swap rate at date t. In particular, today’s level

L0 = L(0) =
n∑

j=1

α jD j =
n∑

j=1

α jD(s j), (1.10a)

and today’s (forward) swap rate

R0
s = Rs(0) = D0 − Dn

L0
(1.10b)

are both determined by today’s discount factors.

2 Valuation
According to the theory of arbitrage free pricing, we can choose any
freely tradeable instrument as our numeraire. Examining 1.8 shows that
the level L(t) is just the value of a collection zero coupon bonds, since the
coverages α j are just fixed numbers. These are clearly freely tradeable
instruments, so we can choose the level L(t) as our numeraire.1 The usual
theorems then guarantee that there exists a probability measure such
that the value V(t) of any freely tradeable deal divided by the numeraire
is a Martingale. So

V(t) = L(t)E

{
V(T)

L(T)

∣∣∣∣Ft

}
for any T > t, (2.1)

provided there are no cash flows between t and T. 
It is helpful to examine the valuation of a plain vanilla swaption. Con-

sider a standard European option on the reference swap. The exercise
date of such an option is the swap’s fixing date τ , which is spot-lag busi-
ness days before the start date s0. At this exercise date, the payoff is the
value of the swap, provided this value is positive, so 

Vopt (τ ) = [Rs(τ ) − Rfix ]+L(τ ) (2.2)

on date τ . Since the Martingale formula 2.1 holds for any T > t, we can
evaluate it at T = τ , obtaining 

Vopt (t) = L(t)E

{
Vopt (τ )

L(τ )

∣∣∣∣Ft

}
= L(t)E

{
[Rs(τ ) − Rfix ]+

∣∣Ft

}
. (2.3)

In particular, today’s value of the swaption is 

Vopt (t) = L0E
{

[Rs(τ ) − Rfix ]+
∣∣F0

}
. (2.4a)
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Moreover, 1.9b shows that the par swap rate Rs(t) is the value of a freely
tradable instrument (two zero coupon bonds) divided by our numeraire.
So the swap rate must also a Martingale, and 

E {Rs(τ )|F0} = Rs(0) ≡ R0
s . (2.4b)

To complete the pricing, one now has to invoke a mathematical
model (Black’s model, Heston’s model, the SABR model, . . . ) for how Rs(τ )

is distributed around its mean value R0
s . In Black’s model, for example,

the swap rate is distributed according to 

Rs(τ ) = R0
s eσ x

√
τ− 1

2 σ 2 τ
, (2.5)

where x is a normal variable with mean zero and unit variance. One
completes the pricing by integrating to calculate the expected value. 

2.1 CMS caplets
The payoff of a CMS caplet is 

[Rs(τ ) − K]+ paid at tp. (2.6)

On the swap’s fixing date τ , the par swap rate Rs is set and the payoff is
known to be [Rs(τ ) − K]+Z(τ ; tp), since the payment is made on tp . Evalu-
ating 2.1 at T = τ yields 

VCMS
cap (t) = L(t)E

{
[Rs(τ ) − K]+Z(τ ; tp)

L(τ )

∣∣∣∣Ft

}
. (2.7a)

In particular, today’s value is 

VCMS
cap (0) = L0E

{
[Rs(τ ) − K]+Z(τ ; tp)

L(τ )

∣∣∣∣F0

}
. (2.7b)

The ratio Z(τ ; tp)/L(τ ) is (yet another!) Martingale, so it’s average value
is today’s value:

E
{

Z(τ ; tp)/L(τ )
∣∣F0

} = D(tp)/L0. (2.8)

By dividing Z(τ ; tp)/L(τ ) by its mean, we obtain 

VCMS
cap (0) = D(tp)E

{
[Rs(τ ) − K]+

Z(τ ; tp)/L(τ )

D(tp)/L0

∣∣∣∣F0

}
, (2.9)

which can be written more evocatively as

VCMS
cap (0) = D(tp)E

{
[Rs(τ ) − K]+

∣∣F0

}
+ D(tp)E

{
[Rs(τ ) − K]+

(
Z(τ ; tp)/L(τ )

D(tp)/L0
− 1

)∣∣∣∣F0

}
.

(2.10)

The first term is exactly the price of a European swaption with
notional D(tp)/L0 , regardless of how the swap rate Rs(τ ) is modeled. The

last term is the “convexity correction”. Since Rs(τ ) is a Martingale and[
Z(τ ; tp)/L(τ )

]
/
[
Z(t; tp)/L(t)

] − 1 is zero on average, this term goes to zero
linearly with the variance of the swap rate Rs(τ ), and is much, much
smaller than the first term. 

There are two steps in evaluating the convexity correction. The first
step is to model the yield curve movements in a way that allows us to re-
write the level L(τ ) and the zero coupon bond Z(τ ; tp) in terms of the
swap rate Rs . (One obvious model is to allow only parallel shifts of the
yield curve.) Then we can write

Z(τ ; tp)/L(τ ) = G(Rs(τ )), (2.11a)

D(tp)/L0 = G(R0
s ), (2.11b)

for some function G(Rs). The convexity correction is then just the expect-
ed value

cc = D(tp)E

{
[Rs(τ ) − K]+

(
G(Rs(τ ))

G(R0
s )

− 1

)∣∣∣∣F0

}
(2.12)

over the swap rate Rs(τ ). The second step is to evaluate this expected
value. 

In the appendix we start with the street-standard model for express-
ing L(τ ) and Z(τ ; tp) in terms of the swap rate Rs . This model uses bond
math to obtain

G(Rs) = Rs

(1 + Rs/q)�

1

1 − 1

(1 + Rs/q)n

. (2.13a)

Here q is the number of periods per year (1 if the reference swap is annu-
al, 2 if it is semi-annual, . . .), and 

� = tp − s0

s1 − s0
(2.13b)

is the fraction of a period between the swap’s start date s0 and the pay
date tp . For deals “set-in-arrears” � = 0. For deals “set-in-advance,” if the
CMS leg dates t0, t1, . . . are quarterly, then tp is 3 months after the start
date s0, so � = 1

2 if the swap is semiannual and � = 1
4 if it is annual. 

In the apprendix we also consider increasingly sophisticated models
for expressing L(τ ) and Z(τ ; tp) in terms of the swap rate Rs, and obtain
increasingly sophisticated functions G(Rs). 

We can carry out the second step by replicating the payoff in 2.12 in
terms of payer swaptions. For any smooth function f (Rs) with f (K) = 0,
we can write

f ′(K)[Rs − K]+ +
∫ ∞

K
[Rs − x]+ f ′′(x)dx =

{
f (Rs) for Rs > K

0 for Rs < K
. (2.14)

Choosing 

f (x) ≡ [x − K]

(
G(x)

G(R0
s )

− 1

)
, (2.15)
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and substituting this into 2.12, we find that

cc = D(tp)

{
f ′(K) E

{
[Rs(τ ) − K]+

∣∣F0

}
+
∫ ∞

K
f ′′(x) E

{
[Rs(τ ) − x]+

∣∣F0

}
dx

}
.

(2.16)

Together with the first term, this yields

VCMS
cap (0) = D(tp)

L0

{[
1 + f ′(K)

]
C(K) +

∫ ∞

K
C(x)f ′′(x)dx

}
, (2.17a)

as the value of the CMS caplet, where

C(x) = L0E
{

[Rs(τ ) − x]+
∣∣F0

}
(2.17b)

is the value of an ordinary payer swaption with strike x. 
This formula replicates the value of the CMS caplet in terms of Euro-

pean swaptions at different strikes x. At this point some pricing systems
break the integral up into 10bp or so buckets, and re-write the convexity
correction as the sum of European swaptions centered in each bucket.
These swaptions are then consolidated with the other European swap-
tions in the vanilla book, and priced in the vanilla pricing system. This
“replication method” is the most accurate method of evaluating CMS legs.
It also has the advantage of automatically making the CMS pricing and
hedging consistent with the desk’s handling of the rest of its vanilla book.
In particular, it incorporates the desk’s smile/skew corrections into the
CMS pricing. However, this method is opaque and compute intensive.
After briefly considering CMS floorlets and CMS swaplets, we develop sim-
pler approximate formulas for the convexity correction, as an alternative
to the replication method.

2.2 CMS floorlets and swaplets
Repeating the above arguments shows that the value of a CMS floorlet is
given by

VCMS
floor (0) = D(tp)

L0

{[
1 + f ′(K)

]
P(K) −

∫ K

−∞
P(x)f ′′(x)dx

}
, (2.18a)

where f (x) is the same function as before (see 2.15), and where

P(x) = L0E
{

[x − Rs(τ )]+
∣∣F0

}
(2.18b)

is the value of the ordinary receiver swaption with strike x. Thus, the
CMS floolets can also be priced through replication with vanilla
receivers. Similarly, the value of a single CMS swap payment is

VCMS
swap (0) = D(tp)R

0
s + D(tp)

L0

{∫ ∞

R0
s

C(x)f ′′
atm (x)dx +

∫ R0
s

−∞
P(x)f ′′

atm (x)dx

}
,

(2.19a)

where

fatm (x) ≡ [x − R0
s ]

(
G(x)

G(R0
s )

− 1

)
(2.19b)

is the same as f (x) with the strike K replaced by the par swap rate R0
s .

Here, the first term in 2.19a is the value if the payment were exactly
equal to the forward swap rate R0

s as seen today. The other terms repre-
sent the convexity correction, written in terms of vanilla payer and
receiver swaptions. These too can be evaluated by replication. 

It should be noted that CMS caplets and floorlets satisfy call-put pari-
ty. Since 

[Rs(τ ) − K]+ − [K − Rs(τ )]+ = Rs(τ ) − K paid at tp, (2.20)

the payoff of a CMS caplet minus a CMS floorlet is equal to the payoff of a
CMS swaplet minus K . Therefore, the value of this combination must be
equal at all earlier times as well:

VCMS
cap (t) − VCMS

floor (t) = VCMS
swap (t) − KZ(t; tp) (2.21a)

In particular,

VCMS
cap (0) − VCMS

floor (0) = VCMS
swap (0) − KD(tp). (2.21b)

Accordingly, we can price an in-the-money caplet or floorlet as a swaplet
plus an out-of-the-money floorlet or caplet. 

3 Analytical formulas
The function G(x) is smooth and slowly varying, regardless of the model
used to obtain it. Since the probable swap rates Rs(τ ) are heavily concen-
trated around R0

s , it makes sense to expand G(x) as

G(x) ≈ G(R0
s ) + G′(R0

s )(x − R0
s ) + · · · . (3.1a)

For the moment, let us limit the expansion to the linear term. This makes
f (x) a quadratic function,

f (x) ≈ G′(R0
s )

G(R0
s )

(x − R0
s )(x − K), (3.1b)

and f ′′(x) a constant. Substituting this into our formula for a CMS caplet
(2.17a), we obtain 

VCMS
cap (0) = D(tp)

L0
C(K) + G′(R0

s )

{
(K − R0

s )C(K) + 2
∫ ∞

K
C(x)dx

}
, (3.2)

where we have used G(R0
s ) = D(tp)/L0 . Now, for any K the value of the

payer swaption is

C(K) = L0E
{

[Rs(τ ) − K]+
∣∣F0

}
, (3.3a) ^
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so the integral can be re-written as 

∫ ∞

K
C(x)dx = L0E

{∫ ∞

K
[Rs(τ ) − x]+dx

∣∣∣∣F0

}

= 1

2
L0E

{ (
[Rs(τ ) − K]+

)2
∣∣∣F0

}
.

(3.3b)

Putting this together yields

VCMS
cap (0) = D(tp)

L0
C(K) + G′(R0

s )L0E
{ [

Rs(τ ) − R0
s

]
[Rs(τ ) − K]+

∣∣F0

}
(3.4a)

for the value of a CMS caplet, where the convexity correction is now the
expected value of a quadratic “payoff”. An identical arguments yields the
formula

VCMS
floor (0) = D(tp)

L0
P(K) − G′(R0

s )L0E
{ [

R0
s − Rs(τ )

]
[K − Rs(τ )]+

∣∣F0

}
(3.4b)

for the value of a CMS floorlet. Similarly, the value of a CMS swap pay-
ment works out to be

VCMS
swap (0) = D(tp)R

0
s + G′(R0

s )L0E
{ (

Rs(τ ) − R0
s

)2
∣∣∣F0

}
. (3.4c)

To finish the calculation, one needs an explicit model for the swap
rate Rs(τ ). The simplest model is Black’s model, which assumes that the
swap rate Rs(τ ) is log normal with a volatility σ . With this model, one
obtains

VCMS
swap (0) = D(tp)R

0
s + G′(R0

s )L0

(
R0

s

)2
[
eσ 2 τ − 1

]
(3.5a)

for the CMS swaplets, 

VCMS
cap (0) = D(tp)

L0
C(K) + G′(R0

s )L0

[
(R0

s )
2eσ 2 τN (d3/2)

−R0
s (R

0
s + K)N (d1/2) + R0

s KN (d−1/2)

] (3.5b)

for CMS caplets, and

VCMS
floor (0) = D(tp)

L0
P(K) − G′(R0

s )L0

[
(R0

s )
2eσ 2 τN (−d3/2)

− R0
s (R

0
s + K)N (−d1/2) + R0

s KN (−d−1/2)

] (3.5c)

for CMS floorlets. Here 

dλ = ln R0
s /K + λσ 2τ

σ
√

τ
. (3.5d)

The key concern with Black’s model is that it does not address the
smiles and/or skews seen in the marketplace. This can be partially miti-
gated by using the correct volatilities. For CMS swaps, the volatility σATM

for at-the-money swaptions should be used, since the expected value 3.4c
includes high and low strike swaptions equally. For out-of-the-money

caplets and floorlets, the volatility σK for strike K should be used, since
the swap rates Rs(τ ) near K provide the largest contribution to the
expected value. For in-the-money options, the largest contributions come
from swap rates Rs(τ ) near the mean value R0

s .  Accordingly, call-put pari-
ty should be used to evaluate in-the-money caplets and floorlets as a CMS
swap payment plus an out-of-the-money floorlet or caplet. 

4 Conclusions
The standard pricing for CMS legs is given by 3.5a–3.5d with G(Rs) given
by 2.13a. These formulas are adequate for many purposes. When finer
pricing is required, one can systematically improve these formulas by
using the more sophisticated models for G(Rs) developed in the Appen-
dix, and by adding the quadratic and higher order terms in the expan-
sion 3.1a. In addition, 3.4a–3.4b show that the convexity corrections are
essentially swaptions with “quadratic” payoffs. These payoffs emphasize
away-from-the-money rates more than standard swaptions, so the con-
vexity corrections can be quite sensitive to the market’s skew and smile.
CMS pricing can be improved by replacing Black’s model with a model
that matches the market smile, such as Heston’s model or the SABR
model. Alternatively, when the very highest accuracy is needed, replica-
tion can be used to obtain near perfect results. 

Appendix A. Models of the yield curve
A.1 Model 1: Standard model
The standard method for computing convexity corrections uses bond
math approximations: payments are discounted at a flat rate, and the
coverage (day count fraction) for each period is assumed to be 1/q, where
q is the number of periods per year (1 for annual, 2 for semi-annual, etc).
At any date t, the level is approximated as 

L(t) = Z(t, s0)

n∑
j=1

α j
Z(t, s j)

Z(t, s0)
≈ Z(t, s0)

n∑
j=1

1/q

[1 + Rs(t)/q] j
, (A.1)

which works out to

L(t) = Z(t, s0)

Rs(t)

[
1 − 1

(1 + Rs(t)/q)n

]
. (A.2a)

Here the par swap rate Rs(t) is used as the discount rate, since it repre-
sents the average rate over the life of the reference swap. In a similar
spirit, the zero coupon bond for the pay date tp is approximated as

Z(t; tp) ≈ Z(t, s0)

(1 + Rs(t)/q)�
, (A.2b)

where 

� = tp − s0

s1 − s0
(A.2c)
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is the fraction of a period between the swap’s start date s0 and the pay
date tp . Thus the standard  “bond math model”  leads to 

G(Rs) = Z(t; tp)

L(t)
≈ Rs

(1 + Rs/q)�

1

1 − 1

(1 + Rs/q)n

. (A.3)

This method a) approximates the schedule and coverages for the ref-
erence swaption; b) assumes that the initial and final yield curves are
flat, at least over the tenor of the reference swaption; and c) assumes a
correlation of 100% between rates of differing maturities. 

A.2 Model 2: “Exact yield” model
We can account for the reference swaption’s schedule and day count
exactly by approximating

Z(t; s j) ≈ Z(t; s0)

j∏
k=1

1

1 + αkRs(t)
, (A.4)

where αk is the coverage of the kth period of the reference swaption. At
any date t, the level is then

L(t) =
n∑

j=1

α jZ(t; s j) = Z(t; s0)

n∑
j=1

α j

(
j∏

k=1

1

1 + αkRs(t)

)
. (A.5)

We can establish the following identity by induction:

L(t) = Z(t; s0)

Rs(t)

(
1 −

n∏
k=1

1

[1 + αkRs(t)]

)
. (A.6)

In the same spirit, we can approximate

Z(t; tp) = Z(t; s0)
1

(1 + α1Rs(t))�
, (A.7)

where � = (tp − s0)/(s1 − s0) as before. Then

G(Rs) = Z(t; tp)

L(t)
≈ Rs

(1 + α1Rs)
�

1

1 −
n∏

k=1

1

(1 + α jRs)

. (A.8)

This approximates the yield curve as flat and only allows parallel shifts,
but has the schedule right. 

A.3 Model 3: Parallel shifts
This model takes into account the initial yield curve shape, which can be
significant in steep yield curve environments. We still only allow parallel
yield curve shifts, so we approximate

Z(t; s j)

Z(t; s0)
≈ D(s j)

D(s0)
e−(s j−s0 )x for j = 1, 2, . . . , n (A.9)

where x is the amount of the parallel shift. The level and swap rate Rs are
given by 

L(t)

Z(t; s0)
=

n∑
j=1

α j
D(s j)

D(s0)
e−(s j−s0 )x (A.10a)

Rs(t) = D(s0) − D(sn)e−(sn −s0 )x

n∑
j=1

α jD(s j)e−(s j−s0 )x

. (A.10b)

Turning this around,

Rs

n∑
j=1

α jD(s j)e
−(s j−s0 )x + D(sn)e

−(sn −s0 )x = D(s0) (A.11a)

determines the parallel shift x implicitly in terms of the swap rate Rs .
With x determined by Rs, the level is given by 

L(Rs)

Z(t; s0)
= D(s0) − D(sn)e−(sn −s0 )x

D(s0)Rs
(A.11b)

in terms of the swap rate. Thus this model yields 

G(Rs) = Z(t; tp)

L(t)
≈ Rse−(tp −s0 )x

1 − D(sn )

D(s0 )
e−(sn −s0 )x

, (A.12a)

where x is determined implicitly in terms of Rs by

Rs

n∑
j=1

α jD(s j)e
−(s j−s0 )x + D(sn)e

−(sn −s0 )x = D(s0). (A.12b)

This model’s limitations are that it allows only parallel shifts of the yield
curve and it presumes perfect correlation between long and short term
rates. 

A.4 Model 4: Non-parallel shifts
We can allow non-parallel shifts by approximating

Z(t; s j)

Z(t; s0)
≈ D(s j)

D(s0)
e−[h(s j)−h(s0 )]x, (A.13)

where x is the amount of the shift, and h(s) is the effect of the shift on
maturity s. As above, the shift x is determined implicitly in terms of the
swap rate Rs via

Rs

n∑
j=1

α jD(s j)e
−[h(s j)−h(s0 )]x + D(sn)e

−[h(sn )−h(s0 )]x = D(s0). (A.14a)

Then

L(Rs)

Z(t; s0)
= D(s0) − D(sn)e−[h(sn )−h(s0 )]x

D(s0)Rs
(A.14b) ^
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determines the level in terms of the swap rate. This model then yields

G(Rs) = Z(t; tp)

L(t)
≈ Rse−[h(tp )−h(s0 )]x

1 − D(sn )

D(s0 )
e−[h(sn )−h(s0 )]x

, (A.15a)

where x is determined implicitly in terms of Rs by

Rs

n∑
j=1

α jD(s j)e
−[h(s j)−h(s0 )]x + D(sn)e

−[h(sn )−h(s0 )]x = D(s0). (A.15b)

To continue further requires selecting the function h(s j) which deter-
mines the shape of the non-parallel shift. This is often done by postulat-
ing a constant mean reversion,

h(s) − h(s0) = 1

κ

[
1 − e−κ(s−s0 )

]
. (A.16)

Alternatively, one can choose h(s j) by calibrating the vanilla swaptions
which have the same start date s0 and varying end dates to their market
prices. 

PATRICK S.HAGAN

1. We follow the standard (if bad) practice of referring to both the physical instrument
and its value as the “numeraire”. 

FOOTNOTE
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