

A FPGA Implementation of a MIPS RISC Processor
for Computer Architecture Education

By:
Victor P. Rubio, B.S.

vrubio@gauss.nmsu.edu

Advisor:
Dr. Jeanine Cook

jecook@gauss.nmsu.edu

New Mexico State University

Las Cruces New Mexico

July 2004

ABSTRACT

A FPGA Implementation of a MIPS RISC Processor
for Computer Architecture Education

By

Victor P. Rubio, B.S.

Master of Science

New Mexico State University
Las Cruces, New Mexico

Chair of Committee:

Dr. Jeanine Cook
Electrical Engineering

Date: July 8, 2004
Room: T & B 104

Time: 1:30 PM

Computer organization and design is a common engineering course where students learn

concepts of modern computer architecture. Students often learn computer design by

implementing individual sections of a computer microprocessor using a simulation-only

approach that limits a students experience to software design. This project targets the computer

architecture courses and presents an FPGA (Field Programmable Gate Array) implementation of

a MIPS (Microprocessor without Interlocked Pipeline Stages) RISC (Reduced Instruction Set

Computer) Processor via VHDL (Very high speed integrated circuit Hardware Description

Language) design. The goal of this project is to enhance the simulator based approach by

integrating some hardware design to help the computer architecture students gain a hands-on

experience in hardware-software integration and achieve a better understanding of both the MIPS

single-cycle and pipelined processors as described in the widely used book, Computer

Organization and Design – The Hardware/Software Interface by David A. Patterson and John L.

Hennessy.

2

CONTENTS

 Page

LIST OF TABLES ... 4
LIST OF FIGURES ... 5

1 INTRODUCTION AND BACKGROUND ... 6

1.1 FPGAS ... 6
1.2 THE MIPS PROCESSOR ... 11
1.3 CAD SOFTWARE .. 12

2 RELATED WORK .. 14
3 FPGA IMPLEMENTATION OF THE PROCESSOR ... 15

3.1 THE MIPS INSTRUCTION SET ARCHITECTURE ... 16
3.2 MIPS SINGLE-CYCLE PROCESSOR .. 18
3.3 MIPS SINGLE-CYCLE PROCESSOR VHDL IMPLEMENTATION 20

3.3.1 INSTRUCTION FETCH UNIT ... 24
3.3.2 INSTRUCTION DECODE UNIT .. 25
3.3.3 THE CONTROL UNIT ... 26
3.3.4 EXECUTION UNIT ... 27
3.3.5 DATA MEMORY UNIT ... 28

3.4 MIPS PIPELINED PROCESSOR VHDL IMPLEMENTATION 29
3.4.1 PIPELINE HAZARDS .. 31

3.5 HARDWARE IMPLEMENTATION .. 36
4 RESULTS AND DISCUSSION .. 38
5 CLASSROOM INTEGRATION ... 42
6 FUTURE WORK .. 44
7 CONCLUSION ... 45
REFERENCES .. 46

APPENDIX .. 47
A. RESOURCES ... 48
B. ACRONYM DEFINITIONS .. 49
C. MIPS SINGLE-CYCLE – VHDL CODE ... 50
D. MIPS SINGLE-CYCLE – SIMULATION .. 63
E. MIPS SINGLE-CYCLE – SIMULATION – SPIM VALIDATION .. 64
F. MIPS PIPELINED – VHDL CODE .. 65
G. MIPS PIPELINED – PIPELINING SIMULATION .. 85
H. MIPS PIPELINED – PIPELINING SIMULATION – SPIM VALIDATION 86
I. MIPS PIPELINED – DATA HAZARD AND FORWARDING SIMULATION 87
J. MIPS PIPELINED – DATA HAZARD AND FORWARDING – SPIM VALIDATION 88
K. MIPS PIPELINED – DATA HAZARDS AND STALLS SIMULATION 89
L. MIPS PIPELINED – DATA HAZARDS AND STALLS – SPIM VALIDATION 90
M. MIPS PIPELINED – BRANCH HAZARD SIMULATION ... 91
N. MIPS PIPELINED – BRANCH HAZARD SIMULATION – SPIM VALIDATION 92
O. MIPS PIPELINED FINAL DATHPATH AND CONTROL .. 93

3

LIST OF TABLES

Table Page
3.1 MIPS Instruction Field Descriptions [11] ... 17
3.2 MIPS Core Instructions .. 18
3.3 MIPS Control Signals ... 27
3.4 FLEX10K70 Device I/O Pin Assignments ... 36
3.5 FLEX10K70 Resource Utilization Table ... 38

4

LIST OF FIGURES

Figure Page
1.1 Xilinx XS-40005XL Development Board .. 7
1.2 Xilinx XC4000 Series CLB Block Diagram[2] .. 8
1.3 Altera UP2 Development Board ... 9
1.4 Altera FLEX10K70 Block Diagram [3] ... 10
1.5 Altera EPM7128S Device Macrocell [4] .. 11
1.6 Altera EPM7128S Block Diagram [4] .. 11
1.7 Altera MAX+PLUS II Applications [7] ... 13
3.1 Altera UP2 Development Board Diagram [10] .. 16
3.2 MIPS Instruction Type [11] .. 17
3.3 MIPS Single-Cycle Processor [1] .. 19
3.4 MIPS Register File... 21
3.5 MIPS Instruction Memory ... 22
3.6 VHDL Implementation of MIPS Instruction Memory ... 22
3.7 MIPS Instruction Memory ... 23
3.8 VHDL Implementation of MIPS Instruction Memory ... 23
3.9 Modularized MIPS Single Cycle .. 24
3.10 MIPS Single-cycle Processor Instruction Fetch Unit ... 25
3.11 MIPS Single-cycle Processor Instruction Decode Unit .. 26
3.12 MIPS Single-cycle Processor Control Unit .. 27
3.13 MIPS Single-cycle Processor Execution Unit .. 28
3.14 MIPS Single-cycle Processor Data Memory Unit .. 29
3.15 Single-cycle non-pipelined vs. Pipelined Execution [1] ... 30
3.16 MIPS Pipelined Processor Datapath [1] ... 31
3.17 Pipelined Data Dependencies [1] .. 32
3.18 Pipelined Data Dependencies Resolved with Forwarding [1] 33
3.19 Pipelined Data Dependencies Requiring Stall [1] .. 34
3.20 Pipelined Data Dependencies Resolved with Stall [1] ... 34
3.21 Pipelined Branch Instruction [1] ... 35
4.1 Instruction Memory Initialization File .. 38
4.2 Altera MAX+PLUS II Waveform Editor and Simulator Screenshot 40
4.3 SPIM Simulator Screenshot .. 41
D.1 MIPS Single-cycle Simulation Waveform .. 63
G.1 MIPS Pipelined Simulation Waveform ... 85
I.1 MIPS Pipelined Data Hazard and Forwarding Simulation Waveform 87
K.1 MIPS Pipelined Data Hazard and Stall Simulation Waveform 89
M.1 MIPS Pipelined Branch Hazard Simulation Waveform ... 91
O.1 MIPS Pipelined Final Datapath and Control .. 93

5

INTRODUCTION

Computer organization and design is a common engineering course where students learn

concepts of modern computer architecture. Students often learn computer design by

implementing individual sections of a computer microprocessor using a simulation-only

approach that limits a students experience to software design. As a result the students are not

given the chance to implement and run their designs in real hardware, thus missing a good

opportunity to gain a complete hands-on experience involves hardware-software integration.

This project targets the computer architecture courses and presents an FPGA (Field

Programmable Gate Array) implementation design of a MIPS (Microprocessor without

Interlocked Pipeline Stages) RISC (Reduced Instruction Set Computer) Processor using VHDL

(Very high speed integrated circuit Hardware Description Language). Furthermore, the goal of

this work is to enhance the simulator-based approach by integrating some hardware design to

help the computer architecture students gain a better understanding of both the MIPS single-

cycle and pipelined processor as described in the widely used book, Computer Organization and

Design – The Hardware/Software Interface by David A. Patterson and John L. Hennessy [1].

FPGAS

An FPGA is a programmable logic device (PLD) that can be reprogrammed any number

of times after it has been manufactured. Internally FPGAs contain gate arrays of pre-

manufactured programmable logic elements called cells. A single cell can implement a network

of several logic gates that are fed into flip-flops. These logic elements are internally arranged in

a matrix configuration and are automatically connected to one another using a programmable

interconnection network. The re-programmable nature of FPGAs makes them ideal for

6

educational purposes because it allows the students to attempt as many iteration as necessary to

correct and optimized their processor design. The FPGAs are very desirable in the academic

community because they can be recycled year after year and can be obtained at a relatively low

cost.

Today there are many different manufacturers of FPGA devices including Actel, Altera,

Atmel, Cypress, Lucent and Xilinx. However the biggest sponsors of the academic community

are Altera and Xilinx, which boast “University Programs” offering discounts on software and

hardware. By providing educational opportunities they promote education and research using

these programmable logic device technologies. Both programs offer different development

boards that come equipped with an FPGA device, oscillator, seven-segment LED display, a PS/2

keyboard/mouse port, a VGA video output display port, a micro-controller, prototyping

connectors, voltage regulators, a parallel port and DC input jack. These development boards

make an excellent resource for students to have available to them to learn digital logic design

using industry-standard development tools and PLDs.

Figure 1.1 Xilinx XS-40005XL

7

The Xilinx University Program has a partnership with the Xess Corporation that offers

the XS-40-0005XL Prototyping Board shown in Figure 1.1. The board comes equipped with an

XC40005XL FPGA, 8031 microcontroller, and 32 KB of static random access memory (SRAM),

which are used to configure the device. The XC40005XL FPGA is part of the Xilinx 4000

device family and has 9,000 usable gates. This device contains a more complex logic element

called a configurable logic block (CLB). These CLBs contain three SRAM based lookup tables

(LUT), which provide inputs into two flip flops and other CLBs as seen in Figure 1.2. The CLBs

are arranged in a square matrix configuration so that they are interconnected via a programmable

hierarchical interconnection network. The Xilinx 4000 device family contains between 100 to

3,136 CLBs.

Figure 1.2 XC4000 Series CLB Block Diagram

8

Figure 1.3 Altera UP2 Development Board

The Altera University Program offers the UP2 Development Board shown in Figure 1.3.

The board comes equipped with both a EPF10K70 FPGA device based on SRAM technology

and an EPM7128S PLD based on erasable programmable read-only memory (EEPROM)

elements. The EPF10K70 is part of Alteras Flexible Logic Element matriX (FLEX) 10K family

that comes with 10,000 to 250,00 gates. The EPF10K70 device equipped on the UP2

development board comes with 70,000 usable gates that use row and column programmable

interconnections. This device contains nine embedded array blocks (EAB) that provide up to

2,048 bits of memory each and can be used to create random access memory (RAM), read only

memory (ROM) or first-in first-out (FIFO) functions used to configure the device. The

EPF10K70 has 3,744 logic elements (LE) each consisting of a four-input LUT, that are used to

model any network of gates with four inputs and one output. The EPF10K70 device internally

combines eight LEs to compose a logic array block (LAB). This device is equipped with 268

LABs. Figure 1.4 shows the block diagram for the FLEX10K70 device.

9

Figure 1.4 Altera FLEX10K70 Block Diagram

The Altera EPM7128S is a PLD device that belongs to the MAX 7000S family and

comes with 2,500 usable gates. This device is configured using an erasable programmable read-

only memory (EEPROM) element, whose configuration is retained even when the power is

removed. The MAX7000S family uses logic elements called macrocells consisting of a

programmable AND/OR network designed to implement Boolean equations as shown in Figure

1.5. The outputs of these networks are fed into programmable flip flops. Macrocells combined

in groups of 16 create the MAX7000S device family LABs. The EPM7128S device contains a

total of 160 macrocells and 8 LABs which are all interconnected via a programmable

interconnect array (PIA). Figure 1.6 shows the Altera EPM7128S device block diagram.

10

Figure 1.5 Altera EPM7128S Device Macrocell

Figure 1.6 Altera EPM7128S Block Diagram

THE MIPS PROCESSOR

The MIPS instruction set architecture (ISA) is a RISC based microprocessor architecture

that was developed by MIPS Computer Systems Inc. in the early 1980s. MIPS is now an

11

industry standard and the performance leader within the embedded industry. Their designs can

be found in Canon digital cameras, Windows CE devices, Cisco Routers, Sony Play Station 2

game consoles, and many more products used in our everyday lives. By the late 1990s it was

estimated that one in three of all RISC chips produced was a MIPS-based design [5]. MIPS

RISC microprocessor architecture characteristics include: fix-length straightforward decoded

instruction format, memory accesses limited to load and store instructions, hardwired control

unit, a large general purpose register file, and all operations are done within the registers of the

microprocessor. Due to these design characteristics, computer architecture courses in university

and technical schools around the world often study the MIPS architecture. One of the most

widely used tools that helps students understand MIPS is SPIM (MIPS spelled backwards) a

software simulator that enables the user to read and write MIPS assembly language programs and

execute them. SPIM is a great tool because it allows the user to execute programs one step or

instruction at a time. This then allows the user to see exactly what is happening during their

program execution. SPIM also provides a window displaying all general purpose registers which

can also be used during the debug of a program. This simulator is another impressive tool that

gives the computer architecture students an opportunity to visually observe how the MIPS

processor works [6].

CAD SOFTWARE

 Using a sophisticated computer aided design (CAD) software tool such as Altera’s

Multiple Array MatriX Programmable Logic User System (MAX+PLUS II), one can design

complex logic circuits such as the MIPS Processor. MAX+PLUS II offers a graphical user

interface including eleven fully integrated applications that offer: a variety of design entry

12

methods for hierarchical design, powerful logic synthesis, timing-driven compilation,

partitioning, function and timing simulation, linked multi-device simulation, timing analysis,

automatic error location, and device programming and verification. Figure 1.7 shows how the

eleven integrated applications are grouped within MAX+PLUS II. The industry-standard design

language VHDL can be used in the MAX+PLUS II text editor to specify logic circuits including

the various components of the single-cycle and pipelined implementation of the MIPS processor.

Once the VHDL code is complete, MAX+PLUS II will translate upon request, optimize,

synthesize and save a text-based representation of a logic diagram. MAX+PLUS II can then fit

the circuit design onto the device’s logic elements and programmable interconnection network.

This allows the designer to perform a simulation using actual logic gate and interconnect timing

delays based on the assigned PLD. The final step is to download and configure the actual PLD

with the program and perform a hardware verification of the design.

Figure 1.7 MAX+PLUS II Applications

13

2 RELATED WORK

In the early 1990s, Professors H. B. Diab and I. Demashkieh from the American

University of Beirut in Beirut, Lebanon where the first to determine new methods of effective

microprocessor architecture education. In their paper A Re-configurable Microprocessor

Teaching Tool [8], they introduced an interactive, flexible, user-friendly software package to

help describe how an 8-bit CPU functions internally as the master of a micro-computer system.

The tool aids students by providing a graphical step by step animation of how the CPU works.

This tool simulates the CPU control logic, internal registers, buses and memory contents at every

clock edge. It can also simulate read and write cycle to/from memory and input/output devices.

The software package also includes an assembler allowing students to choose either assembly

code or machine code to run on the microprocessor, much like the newer SPIM simulator. Such

a tool enables students to see first hand how the different parts of the microprocessor interact and

how they combine into a working microprocessor, thus introducing one of the first simulator-

based approaches to microprocessor instruction.

More recently in early 2000, Jan Gray, a software developer from Gray Research,

initiated a strong campaign to use FPGA implementations in microprocessor instruction [9].

However, his work demonstrates optimizing CPU design to achieve a cost-effective integrated

computer system in an FPGA.

One goal of this project is to use the ideas presented in [8] to create an effective method

to teach microprocessor design by giving the computer architecture students a complete hands-on

experience with hardware-software integration, a technique that several other universities have

implemented to help teach computer design courses. One of the earliest examples of this arises

14

from Cornell University where in 1998 the EE 475 architecture class projects included a VHDL

design and FGPA verification of a simple processor [14]. Most recently, in 2001 at Hiroshima

City University located in Japan it is reported that within a 15 week time period, 7 out of 39

junior students succeeded in implementing hardware description language (HDL) descriptions of

a superscalar RISC processor onto an FPGA. In 2002 in the same 15 week time period, 14 out of

47 junior students implemented varieties of superscalar CISC/RISC processor within an FPGA

[15].

3 FPGA IMPLEMENTATION OF THE MIPS PROCESSOR

The main task of this project is to implement a single-cycle and pipelined representation

of the MIPS processor onto an FPGA so that it models the processor presented in Chapters 5 and

6 of the book Computer Organization and Design – The Hardware/Software Interface by David

A. Patterson and John L. Hennessy [1]. The Altera UP2 Development Board shown in Figure

3.1 was chosen to implement the VHDL design. The development board features one

EPM7128S PLD and one FLEX10K70 FPGA. Each device has the following resources: a JTAG

chain connection for the ByteBlaster II cable (used to program the device), two push-button

switches, dual-digit seven-segment displays, and on-board oscillator (25.175 MHz). The

EPM7128S device also has the following resources available to it: a socket-mounted 84-pin

PLCC package, signal pins that are accessible via female headers, two octal dual inline package

(DIP) switches, 16 LEDs, expansion port with 42 input/output pins and the dedicated global

CLR, OE1, and OE2/GCLK2 pins. The FLEX10K70 device has the additional resources

available to it: a socket for an EPC1 configuration device, one octal DIP switch, VGA video

output display port, PS/2 mouse/keyboard port, three expansion ports each with 42 I/O pins and

15

seven global pins. Altera MAX+PLUS II 10.2 Baseline was the CAD design software chosen

for the design platform.

Figure 3.1 Altera UP2 Development Board [10]

3.1 THE MIPS INSTRUCTION SET ARCHITECTURE

As mentioned before MIPS is a RISC microprocessor architecture. The MIPS

Architecture defines thirty-two, 32-bit general purpose registers (GPRs). Register $r0 is hard-

wired and always contains the value zero. The CPU uses byte addressing for word accesses and

must be aligned on a byte boundary divisible by four (0, 4, 8, …). MIPS only has three

instruction types: I-type is used for the Load and Stores instructions, R-type is used for

Arithmetic instructions, and J-type is used for the Jump instructions as shown in Figure 3.2.

Table 3.1 provides a description of each of the fields used in the three different instruction types.

MIPS is a load/store architecture, meaning that all operations are performed on operands

held in the processor registers and the main memory can only be accessed through the load and

store instructions (e.g lw, sw). A load instruction loads a value from memory into a register. A

store instruction stores a value from a register to memory. The load and store instructions use

16

the sum of the offset value in the address/immediate field and the base register in the $rs field to

address the memory. Arithmetic instructions or R-type include: ALU Immediate (e.g. addi),

three-operand (e.g. add, and, slt), and shift instructions (e.g. sll, srl). The J-type instructions are

used for jump instructions (e.g. j). Branch instructions (e.g. beq, bne) are I-type instructions

which use the addition of an offset value from the current address in the address/immediate field

along with the program counter (PC) to compute the branch target address; this is considered PC-

relative addressing. Table 3.2 shows a summary of the core MIPS instructions.

Table 3.1 MIPS Instruction Fields [11]

Figure 3.2 MIPS Instruction Types [11]

17

Instruction Symbol Format Example Meaning Comments
Add add R add $r1, $r2, $r3 $r1 = $r2 + $r3 overflow

detected
Add

Immediate addi I addi $r1, $r2, 100 $r1 = $r2 + 100 plus constant

Add
Unsigned addu R addu $r1, $r2, $r3 $r1 = $r2 + $r3 overflow

undetected

Subtract sub R sub $r1, $r2, $r3 $r1 = $r2 - $r3 overflow
detected

Subtract
Unsigned subu R subu $r1, $r2, $r3 $r1 = $r2 - $r3 overflow

undetected

And and R and $r1, $r2, $r3 $r1 = $r2 & $r3 bitwise
logical and

Or or R Or $r1, $r2, $r3 $r1 = $r2 | $r3 bitwise
logical or

Shift Left
Logical sll R sll $r1, $r2, 10 $r1 = $r2 << 10 shift left by

constant

Shift
Right

Logical
srl R srl $r1, $r2, 10 $r1 = $r2 >> 10 shift right

by constant

Set Less
Than slt R slt $r1, $r2, $r3 if ($r2 < $r3) $r1

= 1 else 0
compare less

than

Load Word lw I lw $r1, 100($r2) $r1 = mem($r2 + 100)
load word

from mem to
reg

Store Word sw I sw $r1, 100($r2) mem($r2 + 100) = $r1
store word
from reg to

mem

Branch on
Equal beq I beq $r1, $r2, 25

if ($r1 = $r2) goto
PC + 4 + 100 equal test

Branch on
Not Equal bne I bne $r1, $r2, 25

if ($r1 != $r2) goto
PC + 4 + 100

not equal
test

Jump j J j 100 goto 400
jump to
target
address

Table 3.2 MIPS Core Instructions

3.2 MIPS SINGLE-CYCLE PROCESSOR

The MIPS single-cycle processor performs the tasks of instruction fetch, instruction

decode, execution, memory access and write-back all in one clock cycle. First the PC value is

used as an address to index the instruction memory which supplies a 32-bit value of the next

instruction to be executed. This instruction is then divided into the different fields shown in

Table 3.1. The instructions opcode field bits [31-26] are sent to a control unit to determine the

type of instruction to execute. The type of instruction then determines which control signals are

18

to be asserted and what function the ALU is to perform, thus decoding the instruction. The

instruction register address fields $rs bits [25 - 21], $rt bits [20 - 16], and $rd bits[15-11] are used

to address the register file. The register file supports two independent register reads and one

register write in one clock cycle. The register file reads in the requested addresses and outputs

the data values contained in these registers. These data values can then be operated on by the

ALU whose operation is determined by the control unit to either compute a memory address (e.g.

load or store), compute an arithmetic result (e.g. add, and or slt), or perform a compare (e.g.

branch). If the instruction decoded is arithmetic, the ALU result must be written to a register. If

the instruction decoded is a load or a store, the ALU result is then used to address the data

memory. The final step writes the ALU result or memory value back to the register file.

Figure 3.3 MIPS Single-cycle Processor

19

3.3 MIPS SINGLE-CYCLE PROCESSOR VHDL IMPLEMENTATION

The initial task of this project was to implement in VHDL the MIPS single-cycle

processor using Altera MAX+PLUS II Text Editor to model the processor developed in [1]. A

good VHDL reference and tutorial can be found in the appendices to the book Fundamentals of

Digital Logic with VHDL Design by Stephen Brown and Zvonko Vranesic [12]. The IEEE

Standard VHDL Language Reference Manual [13], also helped in the overall design of the

VHDL implementation. The first part of the design was to analyze the single-cycle datapath and

take note of the major function units and their respective connections.

The MIPS implementation as with all processors, consists of two main types of logic

elements: combinational and sequential elements. Combinational elements are elements that

operate on data values, meaning that their outputs depend on the current inputs. Such elements

in the MIPS implementation include the arithmetic logic unit (ALU) and adder. Sequential

elements are elements that contain and hold a state. Each state element has at least two inputs

and one output. The two inputs are the data value to be written and a clock signal. The output

signal provides the data values that were written in an earlier clock cycle. State elements in the

MIPS implementation include the Register File, Instruction Memory, and Data Memory as seen

in Figure 3.3. While many of logic units are straightforward to design and implement in VHDL,

considerable effort was needed to implement the state elements.

It was determined that the full 32-bit version of the MIPS architecture would not fit onto

the chosen FLEX10K70 FPGA. The FLEX10K70 device includes nine embedded array blocks

(EABs) each providing only 2,048 bits of memory for a total of 2 KB memory space. The full

32-bit version of MIPS requires no less than twelve EABs to support the processor’s register file,

instruction memory, and data memory. In order for our design to model that in [1], the data

20

width was reduced to 8-bit while still maintaining a full 32-bit instruction. This new design

allows us to implement all of the processor’s state elements using six EABs, which can be

handled by the FLEX10K70 FPGA device. Even though the data width was reduced, the design

has minimal VHDL source modifications from the full 32-bit version, thus not impacting the

instructional value of the MIPS VHDL model.

 With our new design, the register file is implemented to hold thirty-two, 8-bit general

purpose registers amounting to 32 bytes of memory space. This easily fits into one 256 x 8 EAB

within the FPGA. The full 32-bit version of MIPS will require combining four 256 x 8 EABs to

implement the register file. The register file has two read and one write input ports, meaning that

during one clock cycle, the processor must be able to read two independent data values and write

a separate value into the register file. Figure 3.4 shows the MIPS register file. The register file

was implemented in VHDL by declaring it as a one-dimensional array of 32 elements or registers

each 8-bits wide. (e.g. TYPE register_file IS ARRAY (0 TO 31) OF STD_LOGIC_VECTOR (7 DOWNTO 0)

) By declaring the register file as a one-dimensional array, the requested register address would

need to be converted into an integer to index the register file.(e.g. Read_Data_1 <= register_file (

CONV_INTEGER (read_register_address1 (4 DOWNTO 0)))) Finally, to save from having to load each

register with a value, the registers get initialized to their respective register number when the

Reset signal is asserted. (e.g. $r1 = 1, $r2 = 2, etc.)

Figure 3.4 MIPS Register File

21

 Altera MAX+PLUS II is packaged with a Library of Parameterized Modules (LPM) that

allow one to implement RAM and ROM memory in Altera supported PLD devices. With our

design this library was used to declare the instruction memory as a read only memory (ROM)

and the data memory as a random access memory (RAM). Using the lpm_rom component from

the LPM Library, the Instruction memory is declared as a ROM and the following parameters are

set: the width of the output data port parameter lpm_width is set to 32-bits, the width of the

address port parameter lpm_widthad is set to 8-bits, and the parameter lpm_file is used to

declare a memory initialization file (.mif) that contains ROM initialization data. This allows us

to set the indexed address data width to 8-bits, the instruction output to 32-bits wide, and enables

us to initialize the ROM with the desired MIPS program to test the MIPS processor

implementation. With these settings, four 256 x 8 EABs are required to implement the

instruction memory. An example of the MIPS instruction memory can be seen in Figure 3.5 and

the VHDL code implementation can be seen in Figure 3.6.

22

Figure 3.5 MIPS Instruction Memory Figure 3.6 VHDL – MIPS Instruction Memory

The data memory is declared using the lpm_ram_dq component of the LPM library. This

component is chosen because it requires that the memory address to stabilize before allowing the

write enable to be asserted high. The input Address width (lpm_widthad) and the Read Data

Instr_Memory: LPM_ROM

GENERIC MAP(
LPM_WIDTH => 32,
LPM_WIDTHAD => 8,
LPM_FILE => "instruction_memory.mif",
LPM_OUTDATA => "UNREGISTERED",
LPM_ADDRESS_CONTROL => "UNREGISTERED")

PORT MAP (

address => PC,
q => Instruction);

output width (lpm_width) are both declared as 8-bit wide, in lieu of our altered design. Using

these settings allows us to use one 256 x 8 EAB instead of the 4 combined EABs required for the

full 32-bit version of MIPS. An example of the MIPS data memory can be seen in Figure 3.7

and the VHDL code implementation can be seen in Figure 3.8.

Figure 3.7 MIPS Data Memory

Data_Memory : LPM_RAM_DQ

 GENERIC MAP(
 LPM_WIDTH => 8,
 LPM_WIDTHAD => 8,
 LPM_FILE => "data_memory.mif",
 LPM_INDATA => "REGISTERED",
 LPM_ADDRESS_CONTROL => "UNREGISTERED",
 LPM_OUTDATA => "UNREGISTERED")

 PORT MAP(
 inclock => Clock,
 data => Write_Data,
 address => Address,
 we => LPM_WRITE,
 q => Read_Data);

Figure 3.8. VHDL – MIPS Data Memory

Once we determined how to declare the state elements of the MIPS processor it was time

to implement the rest of the logic devices in VHDL. Because the final task is to pipeline the

single-cycle implementation of the MIPS processor, we decided to modularize the single-cycle

23

implementation into the five different VHDL modules to be fully utilized later in the pipelined

implementation of the MIPS processor. The five modules are: Instruction Fetch, Instruction

Decode, Control Unit, Execution, and Data Memory as shown in Figure 3.9.

Figure 3.9 Modularized MIPS Single Cycle excluding Control Unit and signals.

With the decision to use five different modules to implement the single-cycle MIPS processor,

the VHDL design becomes a two-level hierarchy. The top-level of the hierarchy is a structural

VHDL file that connects the all five components of the single-cycle implementation, while the

bottom-level contains the behavioral VHDL models of the five different components. Appendix

C contains the top-level structural VHDL code for the MIPS single-cycle processor.

3.3.1 INSTRUCTION FETCH UNIT

The function of the instruction fetch unit is to obtain an instruction from the instruction

memory using the current value of the PC and increment the PC value for the next instruction as

24

shown in Figure 3.10. Since this design uses an 8-bit data width we had to implement byte

addressing to access the registers and word address to access the instruction memory. The

instruction fetch component contains the following logic elements that are implemented in

VHDL: 8-bit program counter (PC) register, an adder to increment the PC by four, the

instruction memory, a multiplexor, and an AND gate used to select the value of the next PC.

Appendix C contains the VHDL code used to create the instruction fetch unit of the MIPS single-

cycle processor.

Figure 3.10 MIPS Instruction Fetch Unit

3.3.2 INSTRUCTION DECODE UNIT

The main function of the instruction decode unit is to use the 32-bit instruction provided

from the previous instruction fetch unit to index the register file and obtain the register data

values as seen in Figure 3.11. This unit also sign extends instruction bits [15 - 0] to 32-bit.

However with our design of 8-bit data width, our implementation uses the instruction bits [7 – 0]

bits instead of sign extending the value. The logic elements to be implemented in VHDL include

several multiplexors and the register file, that was described earlier. Appendix C contains the

VHDL code used to create the instruction decode unit of the MIPS single-cycle processor.

25

Figure 3.11 MIPS Instruction Decode Unit

3.3.3 THE CONTROL UNIT

The control unit of the MIPS single-cycle processor examines the instruction opcode bits

[31 – 26] and decodes the instruction to generate nine control signals to be used in the additional

modules as shown in Figure 3.12. The RegDst control signal determines which register is

written to the register file. The Jump control signal selects the jump address to be sent to the PC.

The Branch control signal is used to select the branch address to be sent to the PC. The

MemRead control signal is asserted during a load instruction when the data memory is read to

load a register with its memory contents. The MemtoReg control signal determines if the ALU

result or the data memory output is written to the register file. The ALUOp control signals

determine the function the ALU performs. (e.g. and, or, add, sbu, slt) The MemWrite control

signal is asserted when during a store instruction when a registers value is stored in the data

memory. The ALUSrc control signal determines if the ALU second operand comes from the

register file or the sign extend. The RegWrite control signal is asserted when the register file

26

needs to be written. Table 3.3 shows the control signal values from the instruction decoded.

Appendix C contains the VHDL code for the MIPS single-cycle control unit.

Figure 3.12 MIPS Control Unit

Instruction RegDst ALUSrc MemtoReg RegWrite MemRead MemWrite Branch ALUOp1 ALUOp0

R-type 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

Table 3.3 MIPS Control Signals

3.3.4 EXECUTION UNIT

The execution unit of the MIPS processor contains the arithmetic logic unit (ALU) which

performs the operation determined by the ALUop signal. The branch address is calculated by

adding the PC+4 to the sign extended immediate field shifted left 2 bits by a separate adder. The

logic elements to be implemented in VHDL include a multiplexor, an adder, the ALU and the

ALU control as shown in Figure 3.9 Appendix C contains the VHDL code used to create the

execution unit of the MIPS single-cycle processor.

27

FIGURE 3.13 MIPS EXECUTION UNIT

3.3.5 DATA MEMORY UNIT

The data memory unit is only accessed by the load and store instructions. The load

instruction asserts the MemRead signal and uses the ALU Result value as an address to index the

data memory. The read output data is then subsequently written into the register file. A store

instruction asserts the MemWrite signal and writes the data value previously read from a register

into the computed memory address. The VHDL implementation of the data memory was

described earlier. Figure 3.14 shows the signals used by the memory unit to access the data

memory. Appendix C contains the complete VHDL code used to create the memory state of the

MIPS single-cycle processor. Appendix D shows an example of MIPS single-cycle being

simulated using Altera MAX+PLUS II waveform editor.

28

Figure 3.14 MIPS Data Memory Unit

3.4 MIPS PIPELINED PROCESSOR VHDL IMPLEMENTATION

Once the MIPS single-cycle VHDL implementation was completed, our next task was to

pipeline the MIPS processor. Pipelining, a standard feature in RISC processors, is a technique

used to improve both clock speed and overall performance. Pipelining allows a processor to

work on different steps of the instruction at the same time, thus more instruction can be executed

in a shorter period of time. For example in the VHDL MIPS single-cycle implementation above,

the datapath is divided into different modules, where each module must wait for the previous one

to finish before it can execute, thereby completing one instruction in one long clock cycle.

When the MIPS processor is pipelined, during a single clock cycle each one of those modules or

stages is in use at exactly the same time executing on different instructions in parallel. Figure

3.15 shows an example of a MIPS single-cycle non-pipelined (a.) versus a MIPS pipelined

implementation (b.). The pipelined implementation executes faster, keep in mind that both

implementations use the same hardware components.

29

I n s t r u c t i o n
f e t c h R e g ALU Data

access Reg

8 ns Instruction
fetch Reg ALU Data

acces s R e g

8 ns I n s t r u c t i o n
f e t c h

 8 n s

T i m e

l w $ 1 , 1 0 0 ($ 0)

l w $ 2 , 2 0 0 ($ 0)

l w $ 3 , 3 0 0 ($ 0)

2 4 6 8 10 12 14 1 6 1 8

2 4 6 8 10 12 14

...

P r o g r a m
e x e c u t i o n
o r d e r
(i n i n s t r u c t i o n s)

I n s t r u c t i o n
f e t c h R e g ALU Data

access Reg

T i m e

l w $ 1 , 1 0 0 ($ 0)

l w $ 2 , 2 0 0 ($ 0)

l w $ 3 , 3 0 0 ($ 0)

2 n s I n s t r u c t i on
f e t c h Reg ALU Data

access Reg

2 n s Instruction
fetch Reg ALU Data

access Reg

2 ns 2 ns 2 ns 2 ns 2 ns

 r o g r a m x e c u t i o n
o r d e r
(i n i n s t r u c t i o n s)

a.)

b.) P

e

Figure 3.15. Single-cycle non-pipelined (a) vs. pipelined execution (b)

The MIPS pipelined processor involves five steps, the division of an instruction into five

stages implies a five-stage pipeline:

1. Instruction Fetch (IF): fetching the instruction from the memory
2. Instruction Decode (ID): reading the registers and decoding the instruction
3. Execution (EX): executing an operation or calculating an address
4. Data Memory (MEM): accessing the data memory
5. Write Back (WB): writing the result into a register.

The key to pipelining the single-cycle implementation of the MIPS processor is the introduction

of pipeline registers that are used to separate the datapath into the five sections IF, ID, EX, MEM

and WB. Pipeline registers are used to store the values used by an instruction as it proceeds

through the subsequent stages. The MIPS pipelined registers are labeled according to the stages

they separate. (e.g. IF/ID, ID/EX, EX/MEM, MEM/WB) Figure 3.16 shows and example of a

pipelined datapath excluding the control unit and control signal lines.

30

MEM

WB

P C
I n s t r u c t i o n

m e m o r y

A d d r e s s

I n s t
 r u c

 t i o n

I n s t r u c t i o n
[2 0 – 1 6]

MemtoReg

ALUOp

Branch

RegDst

ALUSrc

4

1 6 32
I n s t r u c t i o n
[1 5 – 0]

0

0
R e g i sters

W r i t e
r e g i s t e r
W r i t e
d a t a

Read
data 1

Read
data 2

R e a d
r e g i s t e r 1
R e a d
r e g i s t e r 2

Sign
extend

M
u
x

1
W r i t e
da t a

R e a d
d a t a M

u
x

1

ALU
control

R e g Write

M e m R e a d

I n s t r u c t i o n
[1 5 – 1 1]

6

I F / I D ID/EX EX/MEM MEM/WB

M e m W r i t e

A d d r e s s
D a t a

m e m o r y

P C S r c

Zero

Add Add
result

Shift
left 2

ALU
result

ALU
Zero

A d d

0

1

M
u
x

0

1

M
u
x

IF

ID EX

Figure 3.16 MIPS Pipelined Processor Datapath [1]

To implement the MIPS pipelined processor, pipeline registers are placed into the

corresponding VHDL modules that generate the input to the particular pipeline register. For

example, the Instruction Fetch component will generate the 32-bit instruction and the PC+4

value and store them into the IF/ID pipeline register. When that instruction moves to the

Instruction Decode stages it extracts those saved values from the IF/ID pipeline register.

Appendix F contains the complete VHDL code used to implement the MIPS pipelined processor

data path. Appendices G shows an example of MIPS processor pipelined being simulated.

3.4.1 PIPELINE HAZARDS

Pipelining the MIPS processor introduces events called hazards, which prevent the next

instruction in the instruction stream from being executing during its designated clock cycle. The

31

types of possible hazards include structural, data and control hazards. Structural hazards arise

when the hardware cannot support the instructions that are ready to execute during the same

clock cycle. Fortunately, MIPS is designed to be pipelined thus no structural hazards exist.

However, if the MIPS processor had been designed with one memory to be shared between both

instructions and data, then a structural hazard would occur.

Data hazards arise when an instruction depends on the result of a previous instruction in a

way that is exposed by the overlapping of the instructions in the pipeline, thus causing the

pipeline to stall until the results are made available. One solution to this type of data hazard is

called forwarding, which supplies the resulting operand to the dependant instruction as soon it

has been computed. Figures 3.17 shows an example of pipelined data dependencies and Figure

3.18 shows how these dependencies are resolved using a forwarding unit. Appendix I MIPS

Pipelined – Data Hazards and Forwarding Simulation, simulates this exact example.

I M R e g

I M Reg

C C 1 C C 2 CC 3 CC 4 CC 5 CC 6

T i m e (i n c l o c k c y c l e s)

s u b , $ 1 , $ 3

P r o g r a m
e x e c u t i o n
o r d e r
(i n i n s t r u c t i o n s)

a n d $ 1 2 , $ 5

IM DM Reg

IM DM R e g

IM D M Reg

CC 7 C C 8 CC 9

1 0 1 0 10 10 10/– 20 – 20 – 20 – 2 0 – 20

o r $ 1 3 , $ 6 ,

a d d $ 1 4 ,

s w $ 1 5 , 1 0 0

V a l u e o f
r e g i s t e r $ 2 :

DM

DM

 $ 2

 $ 2 ,

Reg $ 2

 $ 2 , $ 2

 ($ 2)

Reg

Reg

Reg

Reg

Figure 3.17 Pipelined Data Dependencies [1]

32

I M R e g

I M Reg

C C 1 C C 2 CC 3 CC 4 CC 5 CC 6

T i m e (i n c l o c k c y c l e s)

s u b $ 1 , $ 3

P r o g r a m
e x e c u t i o n o r d e r
(i n i n s t r u c t i o n s)

a n d $ 1 2 , $ 5

IM DM Reg

IM DM R e g

IM D M Reg

CC 7 C C 8 CC 9

1 0 1 0 10 10 10/– 20 – 20 – 20 – 2 0 – 20

o r $ 1 3 , $ 6 ,

a d d $ 1 4 ,

s w $ 1 5 , 1 0 0

V a l u e o f r e g i s t e r $ 2 :

DM

X X X – 20 X X X X XV a l u e o f E X / M E M :
X X X X – 20 X X X XV a l u e o f M E M / W B :

DM

 $ 2 ,

 $ 2 ,

Reg $ 2

 $ 2 , $ 2

 ($ 2)

Reg

Reg

Reg

Reg

Figure 3.18 Pipelined Data Dependencies Resolved with Forwarding [1]

While forwarding is an exceptional solution to data hazards it does not resolve all of

them. One instance is when an instruction attempts to read a register value that is going to be

supplied by a previous load instruction that writes the same register, called a load-use hazard.

At the same time the load instruction is reading data from memory, the subsequent instruction

executing in the execution stage with the wrong data value. The only solution here is to stall the

pipeline and wait for the correct data value being used as an operand. In order to detect such

hazards, MIPS introduces a Hazard Detection Unit during the instruction decode stage so that it

can stall the pipeline between a load instruction and the immediate instruction attempting to use

the same register. Figure 3.19 show an example where the forwarding using can not resolve a

data dependence, the solution is to this type of data hazard it to insert a stall shown in Figure

3.20 as a bubble. Appendix K MIPS Pipelined – Data Hazards and Stalls Simulation, shows this

exact example.

33

I M

Reg

R e g

I M

C C 1 C C 2 CC 3 CC 4 CC 5 CC 6

T i me (i n c l o c k c y c l e s)

l w 2 0 ($1)

P r o g r a m
e x e c u t i o n
o r d e r
(i n i n s t r u c t i o n s)

a n d $ 5

IM DM Reg

IM DM Reg

IM DM R e g

CC 7 CC 8 C C 9

o r $ 8 , $ 6

a d d $ 9,

s l t $ 1 , $ 6 , $ 7

DM

DM

Reg

 $ 2 ,

 $ 4 , $ 2 ,

Reg $ 2 ,

 $ 4 , $ 2

Reg

Reg

Reg

 $ 2 ,

 $ 4 , $ 2 ,

 $ 2 ,

 $ 4 , $ 2

Reg

Reg

Reg

RegReg

Reg

Figure 3.19 Pipelined Data Dependencies Requiring Stall [1]

l w 2 0 ($ 1)

P r o g r a m
e x e c u t i o n
o r d e r
(i n i n s t r u c t i o n s)

a n d $ 5

o r $ 8, $ 6

a d d $ 9,

s l t $ 1 , $ 6 , $ 7

I M

Reg

R e g

I M DM

C C 1 C C 2 CC 3 CC 4 CC 5 CC 6
T i m e (i n c l o c k c y c l e s)

IM DM RegIM

IM DM R e g

IM DM R e g

CC 7 CC 8 CC 9 C C 1 0

DM

bubble

Figure 3.20 Pipelined Data Dependencies Resolved with Stall [1]

The last type of hazard is a control hazard also known as a branch hazard. These hazards

occur when there is a need to make a decision based on the results of one instruction while other

instructions continue executing. For example, a branch on equal instruction will branch to a non-

sequential part of the instruction memory if the two register values compared are equal. While

the register values are compared, other instructions continue to be fetched and decoded. If the

branch is taken, the wrong instructions are fetched into the pipeline and must somehow be

discarded. Figure 3.21 shows three instructions that need to be discarded after it is determined

the branch instruction will be taken. A common solution to these hazards is to continue

instruction execution as if the branch is not taken. If it is later determined that the branch is

34

taken, the instructions that were fetched and decoded must be discarded which can be achieved

by flushing some of the pipeline registers. Flushing means that all values stored in the pipeline

registers are discarded or reset. However in order to reduce the branch hazard to 1 clock cycle,

the branch decision is moved from the memory pipeline stage to the instruction decode stage.

By simply comparing the registers fetch it can be determined if a branch is to be taken or not.

Appendix M MIPS Pipelined – Branch Hazard Simulation, shows an example of a branch

instruction being taken, flushing the IF/ID pipeline register, and loading the new instruction

determined from the branch address.

Reg

Reg

C C 1
T i m e (i n c l o c k c y c l e s)

4 0 b e q $ 1 , $ 3 , 7

P r o g r a m
e x e c u t i o n
o r d e r
(i n i n s t r u c t i o n s)

I M R eg

I M DM

IM DM

IM DM

D M

DM Reg

Reg Reg

Reg

R e g

R e g

4 4 a n d $ 1 2 , $ 2 , $ 5

4 8 o r $ 1 3 , $ 6 , $ 2

5 2 a d d $ 1 4 , $ 2 , $ 2

7 2 l w $ 4 , 5 0 ($ 7)

C C 2 CC 3 CC 4 CC 5 CC 6 CC 7 C C 8 C C 9

Reg

IM

Figure 3.21 Pipelined Branch Instruction [1]

Appendix F MIPS Pipelined – VHDL Code, contains the complete VHDL code used to

implement the MIPS pipelined processor including the solutions to resolve data and branch

hazards. Appendices I, K, and M show example of MIPS pipelined being simulated. Appendix

O MIPS Pipelined Final Dathpath and Control, shows the complete datapath and control that was

implemented in VHDL code.

35

3.5 HARDWARE IMPLEMENTATION

Once the VHDL code was simulated and all operations were verified using Altera

MAX+PLUS II Waveform Editor and Simulator, the design would then need to be prepared for

the hardware implementation on to the Altera UP2 Development board. Preparing the VHDL

design involves assigning VHDL code signals to device pins found on the UP2 board. For

example the reset signal was assigned to an on-board push button (PB) switch allowing us to

manually reset the processor. Table 3.3 shows the UP2 Board FLEX10K70 I/O pin

assignments.

Pin Name Pin Pin Type Function
Clock 91 Input 25.175 MHz System Clock
PB1 28 Input Push-button 1
PB2 29 Input Push-button 2
FLEX_switch_1 41 Input FLEX DIP Switch 1
FLEX_switch_2 40 Input FLEX DIP Switch 2
FLEX_switch_3 39 Input FLEX DIP Switch 3
FLEX_switch_4 38 Input FLEX DIP Switch 4
FLEX_switch_5 36 Input FLEX DIP Switch 5
FLEX_switch_6 35 Input FLEX DIP Switch 6
FLEX_switch_7 34 Input FLEX DIP Switch 7
FLEX_switch_8 33 Input FLEX DIP Switch 8
MSD_dp 14 Output Most Significant Digit of Seven Segment Display

Decimal Point Segment
MSD_a 6 Output MSD Segment a
MSD_b 7 Output MSD Segment b
MSD_c 8 Output MSD Segment c
MSD_d 9 Output MSD Segment d
MSD_e 11 Output MSD Segment e
MSD_f 12 Output MSD Segment f
MSD_g 13 Output MSD Segment g
LSD_dp 25 Output Least Significant Digit of Seven Segment Display

Decimal Point Segment
LSD_a 17 Output LSD Segment a
LSD_b 18 Output LSD Segment b
LSD_c 19 Output LSD Segment c
LSD_d 20 Output LSD Segment d
LSD_e 21 Output LSD Segment e
LSD_f 23 Output LSD Segment f
LSD_g 24 Output LSD Segment g
Blue 238 Output VGA Video Signal – Blue Video Data
Green 237 Output VGA Video Signal – Green Video Data
Red 236 Output VGA Video Signal – Red Video Data
Horizontal_sync 240 Output VGA Video Signal – Horizontal Synchronization
Vertical_sync 239 Output VGA Video Signal – Vertical Synchronization

Table 3.4 FLEX10K70 Device I/O Pin Assignments

36

Programming or downloading the design to a UP2 board requires setting on-board

jumpers that indicate which PLD device to program. The jumpers indicate if you want to

program only the EMP7128S device, program only the FLEX10K70 device, program both

devices or connect multiple UP2 boards together in a chain. The Altera University Program

UP2 Development Kit User Guide [10], explains how to setup the jumpers to program the

desired device. Once the jumpers are set the MAX+PLUS II software must be setup to configure

the devices via a JTAG chain. The JTAG uses boundary-scan technology that allows one to

perform downloading, debugging and diagnostics on a system through a small number of

dedicated test pins. Once the software is properly setup, the design can then easily be

downloaded using the ByteBlaster II download cable, a cable that provides a hardware interface

to the UP2 via JTAG connector and a connection to the computer running MAX+PLUS II via a

standard parallel port. For complete instructions on setting up the MAX+PLUS II software to

program the devices via the ByteBlaster II download cable please see the ByteBlaster MV

Parallel Port Download Cable Data Sheet by Altera [16]. By choosing to program and

configure the FLEX10K70 FPGA device our design of the MIPS single-cycle processor easily fit

onto this device. The VGA video output display on the UP2 board was used to display some

hexadecimal output values of the major functional processor units and the two seven-segment

display were configured to display the hexadecimal output values of the current program counter

(PC). Finally one on-board push button switch was configured to used as the global reset signal

and the other push button switch was configured to simulate a clock cycle when depressed. Both

VHDL implementations of the MIPS single-cycle and pipelined processors were downloaded

and used to configure the Altera FLEX10K70 device with plenty of room and resources to spare.

Table 3.4 shows the number of resources utilized by each VHDL design.

37

Processor Pins Logic Cells Memory Bits EABs
Single-cycle 19/189 1238/3744 9472/18432 5/9
Pipelined 19/189 1423/3744 11240/18432 6/9

Table 3.5 FLEX10K70 Resource Utilization Table

4 RESULTS AND DISCUSSION

The work presented in this paper describes a functional FPGA implementation design of

a MIPS single-cycle and pipelined processor designed using VHDL. The project was to model

Chapters 5 and 6 from the widely used book Computer Organization and Design – The

Hardware/Software Interface by David A. Patterson and John L. Hennessy, to help the computer

architecture students gain a better understanding of the MIPS processor. The VHDL designs of

the MIPS processor were all simulated to ensure that the processors were functional and operated

just as described by Patterson and Hennessy. The Appendices D, G, I, K, and M presented in

this paper show some specific examples presented by Patterson and Hennessy being simulated

by the VHDL designs. The appendices first show the instruction memory initialization file,

which is used to fill the instruction memory with the instructions to be executed as seen in Figure

4.1. The first column of numbers is the hexadecimal memory address of the instructions, which

are indexed by the program counter (PC). The second column of characters is the actual 32-bit

instruction represented using hexadecimal numbers. The third column of numbers is the PC

value used to index the instruction memory to retrieve an instruction. The next four columns are

the MIPS instruction’s mnemonic description. Finally last columns are the pseudo instructions

using the actual values used during the simulation.

 --Initialized Instruction Memory
 --PC Instruction
 00: 8C2A0014; --00: LW $10, 20 ($1) $10 (0x0A) = MEM(0x01+0x14) = MEM(0x15) = 0x15
 01: 00435822; --04: SUB $11, $2, $3 $11 (0x0B) = 0x02 - 0x03 = 0d-1 = 0XFF
 02: 00856024; --08: AND $12, $4, $5 $12 (0x0C) = 0x04 AND 0x05 = 0d 4 = 0x04
 03: 00C76825; --0C: OR $13, $6, $7 $13 (0x0D) = 0x06 OR 0x07 = 0d 7 = 0x07
 04: 01097020; --10: ADD $14, $8, $9 $14 (0x0E) = 0x08 + 0x09 = 0d17 = 0x11

Figure 4.1. Instruction Memory Initialization File

38

Figure 4.2 shows a screenshot of the Altera MAX+PLUS II Waveform Editor and Simulator

results for the instructions shown in Figure 4.1. The first two rows depict the global clock and

reset signals. The following rows are executed during the Instruction Fetch stage of the MIPS

pipelined processor. The signals are the PC value, used to index the instruction memory and the

32-bit instruction that was index out of the instruction memory. Please note that these values

correspond to those shown in Figure 4.1. The next group of signals are executed during the

Instruction Decode stage of the pipelined processor. These values depict the register values

indexed from the register file and various other signals used during hazard detection. The third

group of signals are executed during the Execution stage of the pipelined processor. These

signals show the two values fed into the ALU and the corresponding result. The following group

of signals depict the memory stage of the pipelined processor. These signals are only used for

the load and store instructions to access the data memory. In this example we can see that the

memory address 0x15 was calculate during the execution unit is used to index or read the data

memory and retrieve the value 0x15. In this specific case the data memory for address 0x15 was

initialized with the same value 0x15. Finally the last group of signals are executed during the

write back stage of the pipelined processor. The RegWrite_out signal tells us when the register

file is going to be written. The WriteRegister__out signal is the actual register to be written and

the RegWriteData_out is the value to be written.

39

Figure 4.2 Altera MAX+PLUS II Waveform Editor and Simulator Screenshot

Every simulation shown in the appendices come accompanied by results obtained from

the SPIM Simulator which was used to validate the results obtained by the Altera MAX+PLUS

II Simulator. SPIM is a software simulator that runs programs written for the MIPS processor, it

can read and write MIPS assembly language files to simulate programs. An example of the

SPIM Simulator registers and console are shown in Figure 4.3. Part of SPIMs output is the value

of the thirty two general purpose registers available in the MIPS instruction set architecture

shown as R0 – R31. MIPS architecture developed a convention and suggested guidelines on

how these register showed be used, those are the values seen in the parenthesis. For example

registers $a0 - $a3 are used to pass arguments to routines, $t0 - $t9 are temporary registers and

$s0 - $s7 hold long-lived values. The second part of the output shown is the Console. The

console is SPIMs that displays all characters the program writes as output. In this example I’ve

programmed the instructions shown in Figure 4.1 and outputted the SPIM results on the console.

40

Using the MIPS register convention I have used the registers $s0 - $s7 to save all results. The

results shown in the console can be used to validate the results obtained from the Altera

MAX+PLUS II Simulator.

Registers
=========================
 PC = 00000000 EPC = 00000000 Cause = 00000000 BadVAddr= 00000000
 Status = 00000000 HI = 00000000 LO = 00000000
 General Registers
R0 (r0) = 00000000 R8 (t0) = 00000000 R16 (s0) = 00000015 R24 (t8) = 00000008
R1 (at) = 10010000 R9 (t1) = 00000000 R17 (s1) = ffffffff R25 (t9) = 00000009
R2 (v0) = 0000000a R10 (t2) = 00000002 R18 (s2) = 00000004 R26 (k0) = 00000000
R3 (v1) = 00000000 R11 (t3) = 00000003 R19 (s3) = 00000007 R27 (k1) = 00000000
R4 (a0) = 10010093 R12 (t4) = 00000004 R20 (s4) = 00000011 R28 (gp) = 10008000
R5 (a1) = 00000000 R13 (t5) = 00000005 R21 (s5) = 00000000 R29 (sp) = 7fffe850
R6 (a2) = 7fffe858 R14 (t6) = 00000006 R22 (s6) = 00000000 R30 (s8) = 00000000
R7 (a3) = 00000000 R15 (t7) = 00000007 R23 (s7) = 00000000 R31 (ra) = 00000000

Console
=========================
00: $s0 = 0x15 = 0d21 = 0x00000015
01: $s1 = 0x02 SUB 0x03 = 0d-1 = 0xffffffff
02: $s2 = 0x04 AND 0x05 = 0d4 = 0x00000004
03: $s3 = 0x06 OR 0x07 = 0d7 = 0x00000007
04: $s4 = 0x08 ADD 0x09 = 0d17 = 0x00000011

Figure 4.3 SPIM Simulator Screenshot

The work presented illustrates the results achieved for the VHDL implementation of the

MIPS single-cycle and pipelined processors. The hardest part to this design was learning to

program with the hardware description language (HDL) VHDL. It took time getting used to its

calling conventions and researching more efficient methods of implementing logic elements such

as the instruction and data memory. Other problems I encountered involved getting the MIPS

processor implemented on hardware. For example in order to display the current value of the

program counter some design changes had to be made due to the on-board 25 MHz being to fast

for this design project. My solution was to use an on-board pushbutton to emulate the clock

single, thus every time the pushbutton was pressed one instruction was executed. Another

solution was to include a frequency divider implemented in VHDL to reduce the clock speed

down to 1 Hz, allowing us to see the PC values progress through the test program.

41

I remember the days when I was being taught about the MIPS single-cycle and pipelined

processor and remembering how lost and confused I was with the material presented. The work

presented in this project helped me gain a full and complete understanding of how the MIPS

processor operates, wishing I had made available to me when I was being taught this material.

This work helped me gain that complete hands-on experience of implementing a software design

into actual hardware. No words can express the feelings and sense of pride felt when seeing my

FPGA implementations execute through the instruction stream for the first time. A feeling not

achievable through simulator based approaches or out of a textbook.

5 CLASSROOM INTEGRATION

A possible set of laboratory projects will now be suggested to enhance the hardware-

software integration experience in the computer architecture courses. The first lab project I

would suggest would be an: Introduction to SPIM, a MIPS Simulator. The purpose of this lab is

to familiarize the students with SPIM, the MIPS instruction set, and microprocessor

programming. This project would be advisable to break into 2/3 parts and/or assign homework

assignments allowing the students to simulate MIPS assembly programs to get well acquainted

with the calling conventions and debugging techniques to trace problems and locate errors within

the programs. The paper SPIM S20: A MIPS R2000 Simulator [17] is a good reference manual

to use for the SPIM simulator. An updated reprinted version of this article can also be found in

Appendix A in the book Computer Organization and Design – The Hardware/Software Interface

by David A. Patterson and John L. Hennessy [1]. The next proposed lab project would be an:

Introduction to VHDL and MAX+PLUS II. The objective of this lab is to familiarize the

students with the Altera MAX+PLUS II Text Editor, Waveform Editor and Simulator Tools.

42

The students are given the opportunity to design and implement various combinational logic

circuits that can be loaded onto the prototyping board to test it. It is also advisable to assign

homework assignment or introduce more labs on VHDL to student well familiarized with the

software. An excellent series of VHDL and MAX+PLUS II tutorials can be found in the

appendices to the book Fundamentals of Digital Logic with VHDL Design by Stephen Brown

and Zvonko Vranesic [12]. The following proposed lab project would be more challenging and

would be advisable to break the overall project into three or four different parts. Their goal is to

implement a MIPS Single-cycle Processor in VHDL much like the project presented in this

paper. The first part of the project would be to implement a behavioral VHDL model the control

unit for a single-cycle datapath. The objective of this part is to familiarize the students with

control unit which will used to control the subsequent parts. The next part of the project would

be to implement a behavioral model the ALU and structural model of the register file, instruction

and data memory. The following part of the project would include combining the units

developed in the previous to parts to build a structural model of the MIPS single-cycle datapath.

Other components such as multiplexors, adders, PC will need to be implemented to complete the

datapath. Finally the students can implement their designs onto a development board and use the

on-board resources such seven segment display to show the current program counter or the VGA

video display output to display important signals. Extra credit can be offered to students who

implement a deeper instruction set. The next project can feed off the previous one by

implementing the MIPS Pipelined Processor from the previous single-cycle implementation.

This project can also be divided into a number parts. The first being to implement the pipeline

registers: IF/ID, ID/EX, EX/MEM, MEM/WB. Other parts would involve implementing the

forwarding unit to take care of data hazards, a hazard control unit to take care of load-use

43

hazards and implementing branch flushing to handle branch hazards. Extra credit can be offered

to students who can successfully implement MIPS processor overflow exception hardware.

Additional advanced project can include: porting the design to a new FPGA device architecture,

a VHDL implementation of the MIPS multi-cycle FSM controller, the implementation of a

floating-point co-processor to the MIPS Processor, a VHDL synthesis model of another RISC

processor’s instruction set or implementing a superscalar processor. All of these suggested

projects can be implemented in a computer architecture course to enhance the learning

experience of the students.

6 FUTURE WORK

The main goal of this project was to present the positive effects an FPGA implementation

could have on a students experience by integrating a hands-on approach to a simulation-only

based class. This project was specifically targeted to the computer architecture courses that use

the book Computer Organization and Design – The Hardware/Software Interface, to discuss the

MIPS processor and instruction set. It would be a good idea to research how different courses

like digital design, embedded systems, and digital signal processing could integrate using the

FPGA devices in their courses. It would then be desirable to compromise a set of tutorials,

reference manuals and laboratory projects to help the student grasp the important concepts of

how these tools work. On a different note the VHDL implementations of the MIPS single-cycle

and pipelined processors where download and configured onto the FLEX10K70 FPGA, however

the processors remained in the prototyping stage. In the future it would be interesting to develop

these devices for real world applications. Then one could test and see how the FPGA devices

44

operate in this type of environment. The classroom integration section presented earlier in this

paper also offers different ideas for future course design projects.

7 CONCLUSION

In conclusion, the FPGA implementation of the MIPS processor and tools involved

presented in this paper represent my goal of introducing FPGAs to help teach computer

architecture courses by presenting the students with an enriching hands-on experience. While

simulation is a good effective teaching tool, it can not model the excitement felt when ones own

processor design boots up for the first time and operates in real hardware. The development

board and tools introduced could easily be integrated into the computer architecture classes,

where they could provide students with a enriching hands-on experience formerly unavailable to

them. I am convinced that if professors where to integrate these tools into their classes the

students would display a better understanding of the class lessons as well as an increased

enthusiasm about the work being performed.

“I hear and forget. I see and I remember.
I do and I understand.”

-- Chinese proverb

45

REFERENCES

[1] Patterson, D. A., Hennessy, J. L., Computer Organization and Design: The
Hardware/Software Interface, 2nd edition, Morgan Kaufmann Publishers, San
Francisco, CA, 1998.

[2] Xilinx, XC4000 Series Field Programmable Gate Arrays Product Specification, ver. 1.6,

1999.

[3] Altera, FLEX 10K Embedded Programmable Logic Device Family Data Sheet, ver. 4.2.,

2003.

[4] Altera, MAX 7000 Programmable Logic Device Family Data Sheet, ver. 6.02, 2002.

[5] MIPS Technologies, www.mips.com.

[6] SPIM, http://www.cs.wisc.edu/~larus/spim.html.

[7] Altera, MAX+PLUS II Getting Started Manual, ver. 6.0, 1995.

[8] Diab, H., Demashkieh, I., “A reconfigurable microprocessor teaching tool”, IEEE

Proceedings A, vol. 137, issue 5, September 1990.

[9] Gray, J., Designing a Simple FPGA-Optimized RISC CPU and System-on-a-Chip, 2000.

[10] Altera, University Program UP2 Development Kit User Guide, ver. 3.0, 2003.

[11] MIPS Technologies, MIPS32™ Architecture For Programmers Volume I: Introduction

to the MIPS32™ Architecture, rev. 2.0, 2003.

[12] Brown, S., Vranesic, Z., Fundamentals of Digital Logic with VHDL Design, McGraw-

Hill Publishers, 2002.

[13] IEEE. IEEE Standard VHDL Language Reference Manual. IEEE, New York, NY,

2002. IEEE Standard 1076-2002.

[14] Land. B, Electrical Engineering 475 Microprocessor Architectures,

http://instruct1.cit.cornell.edu/Courses/ee475/

[15] Takahashi, R., Ohiwa, H., “Situated Learning on FPGA for Superscalar

Microprocessor Design Education”, IEEE Proceedings of the 16th Symposium on
Integrated Circuits and System Design, 2003.

[16] Altera, ByteBlaster MV Parallel Port Download Cable, ver. 3.3, 2002.

[17] Larus, J. R., “SPIM S20: A MIPS R2000 Simulator”, 1993.

46

APPENDIX

47

APPENDIX A: RESOURCES

FPGA and PLD Vendors
[1] Altera – http://www.altera.com

[2] Xilinx – http://www.xilinx.com

[3] Actel – http://www.actel.com

[4] Atmel – http://www.atmel.com

FPGA Resources
[1] FPGA CPU News – http://www.fpgacpu.org

[2] FPGA and Programmable Logic Journal - http://www.fpgajournal.com/

[3] FPGA-FAQ - http://www.fpga-faq.com/

MIPS Resources
[1] MIPS Technologies – http://www.mips.com

[2] SPIM a MIPS Simulator – http://www.cs.wisc.edu/~larus/spim.html

VHDL Resources
[1] Hamburg VHDL archive - http://tech-www.informatik.uni-hamburg.de/vhdl/index.html

[2] VHDL Online - http://www.vhdl-online.de/~vhdl/

[3] VHDL Cookbook - http://techwww.informatik.unihamburg.de/vhdl/doc/cookbook/VHDL-Cookbook.pdf

48

APPENDIX B: ACRONYMS DEFINITIONS

1. FPGA - Field Programmable Gate Array
2. MIPS - Microprocessor without Interlocked Pipeline Stages
3. RISC - Reduced Instruction Set Computer
4. CPU - Central Processing Unit
5. VHDL - Very high speed integrated circuit Hardware Description Language
6. PLD - Programmable Logic Device
7. SRAM - Static Random Access Memory
8. CLB - Configurable Logic Block
9. LUT - LookUp Table
10. EEPROM - Erasable Programmable Read-Only Memory
11. FLEX - Flexible Logic Element matriX
12. EAB - Embedded Array Blocks
13. RAM - Random Access Memory
14. ROM - Read Only Memory
15. FIFO - First-In First-Out
16. LE - Logic Elements
17. LAB - Logic Array Block
18. PIA - Programmable Interconnect Array
19. ISA - Instruction Set Architecture
20. CAD - Computer Aided Design
21. HDL - Hardware Description Language
22. MAX+PLUS - Multiple Array matriX Programmable Logic User System
23. DIP - Dual Inline Package
24. GPR - General Purpose Register
25. PC - Program Counter
26. ALU - Arithmetic Logic Unit
27. LPM - Library of Parameterized Modules
28. IF - Instruction Fetch
29. ID - Instruction Decode
30. EX - Execute
31. MEM - MEMory
32. WB - Write Back
33. JTAG - Joint Test Action Group

49

APPENDIX C: MIPS SINGLE-CYCLE – VHDL CODE

--
-- Victor Rubio
-- Graduate Student
-- Klipsch School of Electrical and Computer Engineering
-- New Mexico State University
-- Las Cruces, NM
--
--
-- Filename: mips_sc.vhd
-- Description: VHDL code to implment the structual design of
-- the MIPS Single-cycle processor. The top-level file connects
-- all the units together to complete functional processor.
--
LIBRARY IEEE;
 USE IEEE.STD_LOGIC_1164.ALL;
 USE IEEE.STD_LOGIC_ARITH.ALL;

ENTITY mips_sc IS

--Signals used for Simulation & Debug must be commented out if
--implementing the UP2 Hardware implementation
PORT(PC : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 ALU_Result_out : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 Read_Data1_out : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 Read_Data2_out : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 Write_Data_out : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 Write_Reg_out : OUT STD_LOGIC_VECTOR (4 DOWNTO 0);
 Instruction_out : OUT STD_LOGIC_VECTOR (31 DOWNTO 0);
 Branch_out : OUT STD_LOGIC;
 Branch_NE_out : OUT STD_LOGIC;
 Zero_out : OUT STD_LOGIC;
 Jump_out : OUT STD_LOGIC;
 MemWrite_out : OUT STD_LOGIC;
 RegWrite_out : OUT STD_LOGIC;
 Clock, Reset : IN STD_LOGIC);

--Signals used for UP2 Board Implemntation
--All signals here must be assigned to a pin on
--the FLEX10K70 device.
--PORT(D1_a, D1_b, D1_c, D1_d,
-- D1_e, D1_f, D1_g,D1_pb : OUT STD_LOGIC;
-- D2_a, D2_b, D2_c, D2_d,
-- D2_e, D2_f, D2_g,D2_pb : OUT STD_LOGIC;
-- Clock, Reset, PB : IN STD_LOGIC);
END mips_sc;

ARCHITECTURE structure of mips_sc IS

--Declare all components/units/modules used that
--makeup the MIPS Single-cycle processor.
--COMPONENT debounce
-- PORT (Clock : IN STD_LOGIC;
 -- Pbutton : IN STD_LOGIC;
 -- Pulse : OUT STD_LOGIC);
--END COMPONENT;

COMPONENT instrfetch
 PORT(PC_Out : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
 Instruction : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
 Add_Result : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
 PC_plus_4_out : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
 Branch : IN STD_LOGIC;
 Branch_NE : IN STD_LOGIC;
 Zero : IN STD_LOGIC;
 Jump : IN STD_LOGIC;
 Jump_Address : IN STD_LOGIC_VECTOR(7 DOWNTO 0);

50

 Clock, Reset : IN STD_LOGIC);
END COMPONENT;

COMPONENT operandfetch
 PORT (
 Read_Data_1 : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 Read_Data_2 : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 Write_Reg : OUT STD_LOGIC_VECTOR (4 DOWNTO 0);
 RegWrite : IN STD_LOGIC;
 RegDst : IN STD_LOGIC;
 ALU_Result : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 MemtoReg : IN STD_LOGIC;
 Read_data : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 Instruction : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
 Sign_Extend : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 Jump_Instr : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 Clock, Reset : IN STD_LOGIC);
END COMPONENT;

COMPONENT controlunit IS
PORT(
 Opcode : IN STD_LOGIC_VECTOR (5 DOWNTO 0);
 RegDst : OUT STD_LOGIC;
 Branch : OUT STD_LOGIC;
 Branch_NE : OUT STD_LOGIC;
 MemRead : OUT STD_LOGIC;
 MemtoReg : OUT STD_LOGIC;
 ALU_Op : OUT STD_LOGIC_VECTOR (1 DOWNTO 0);
 MemWrite : OUT STD_LOGIC;
 ALUSrc : OUT STD_LOGIC;
 RegWrite : OUT STD_LOGIC;
 Jump : OUT STD_LOGIC;
 Clock, Reset : IN STD_LOGIC);
END COMPONENT;

COMPONENT execution IS
 PORT(
 Read_Data_1 : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 Read_Data_2 : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 Sign_Extend : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 Jump_Instr : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 Jump_Address : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 ALUSrc : IN STD_LOGIC;
 Zero : OUT STD_LOGIC;
 ALU_Result : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 Funct_field : IN STD_LOGIC_VECTOR (5 DOWNTO 0);
 ALU_Op : IN STD_LOGIC_VECTOR (1 DOWNTO 0);
 Add_Result : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 PC_plus_4 : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 Clock, Reset : IN STD_LOGIC);
END COMPONENT;

COMPONENT datamemory IS
 PORT(
 Read_Data : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 Address : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 Write_Data : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 MemRead : IN STD_LOGIC;
 MemWrite : IN STD_LOGIC;
 Clock, Reset : IN STD_LOGIC);
END COMPONENT;

--COMPONENT sevenseg_display IS
-- PORT(Digit1 : IN STD_LOGIC_VECTOR (3 DOWNTO 0);
-- Digit2 : IN STD_LOGIC_VECTOR (3 DOWNTO 0);
-- D1seg_a : OUT STD_LOGIC;
-- D1seg_b : OUT STD_LOGIC;
-- D1seg_c : OUT STD_LOGIC;
-- D1seg_d : OUT STD_LOGIC;
-- D1seg_e : OUT STD_LOGIC;
-- D1seg_f : OUT STD_LOGIC;

51

-- D1seg_g : OUT STD_LOGIC;
-- D1pb : OUT STD_LOGIC;
-- D2seg_a : OUT STD_LOGIC;
-- D2seg_b : OUT STD_LOGIC;
-- D2seg_c : OUT STD_LOGIC;
-- D2seg_d : OUT STD_LOGIC;
-- D2seg_e : OUT STD_LOGIC;
-- D2seg_f : OUT STD_LOGIC;
-- D2seg_g : OUT STD_LOGIC;
-- D2pb : OUT STD_LOGIC;
-- Clock, Reset : IN STD_LOGIC);
--END COMPONENT;

--Signals used to connect VHDL Components
SIGNAL Add_Result : STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL ALU_Result : STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL ALU_Op : STD_LOGIC_VECTOR (1 DOWNTO 0);
SIGNAL ALUSrc : STD_LOGIC;
SIGNAL Branch : STD_LOGIC;
SIGNAL Branch_NE : STD_LOGIC;
SIGNAL Instruction : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL Jump : STD_LOGIC;
SIGNAL Jump_Address : STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL Jump_Instr : STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL MemRead : STD_LOGIC;
SIGNAL MemtoReg : STD_LOGIC;
SIGNAL MemWrite : STD_LOGIC;
SIGNAL PC_Out : STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL PC_plus_4 : STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL Read_data : STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL Read_Data_1 : STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL Read_Data_2 : STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL RegDst : STD_LOGIC;
SIGNAL RegWrite : STD_LOGIC;
SIGNAL Sign_Extend : STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL Write_Reg : STD_LOGIC_VECTOR (4 DOWNTO 0);
SIGNAL Zero : STD_LOGIC;

--New Clock Signal used when PushButton is used
--to create a clock tick
SIGNAL NClock : STD_LOGIC;

BEGIN

 --Signals assigned to display output pins for simulator
 --These signals must be commented when implementing
 --the UP2 Development board.
 PC <= PC_Out;
 ALU_Result_out <= ALU_Result;
 Read_Data1_out <= Read_Data_1;
 Read_Data2_out <= Read_Data_2;
 Write_Data_out <= Read_data WHEN (MemtoReg = '1') ELSE ALU_Result;
 Write_Reg_out <= Write_Reg;
 Instruction_out<= Instruction;
 Branch_out <= Branch;
 Branch_NE_out <= Branch_NE;
 Zero_out <= Zero;
 Jump_out <= Jump;
 MemWrite_out <= MemWrite;
 RegWrite_out <= '0' WHEN Write_Reg = "00000" ELSE RegWrite;

 --Connect each signal to respective line
 --NCLK: debounce PORT MAP(
 -- Clock => Clock,
 -- PButton => PB,
 -- Pulse => NClock);

 IFE : instrfetch PORT MAP (
 PC_Out => PC_Out,
 Instruction => Instruction,
 Add_Result => Add_Result,

52

 PC_plus_4_out => PC_plus_4,
 Branch => Branch,
 Branch_NE => Branch_NE,
 Zero => Zero,
 Jump => Jump,
 Jump_Address => Jump_Address,
 Clock => Clock,
 Reset => Reset);

 ID : operandfetch PORT MAP (
 Read_Data_1 => Read_Data_1,
 Read_Data_2 => Read_Data_2,
 Write_Reg => Write_Reg,
 RegWrite => RegWrite,
 RegDst => RegDst,
 ALU_Result => ALU_Result,
 MemtoReg => MemtoReg,
 Read_data => Read_data,
 Instruction => Instruction,
 Sign_Extend => Sign_Extend,
 Jump_Instr => Jump_Instr,
 Clock => Clock,
 Reset => Reset);

 CTRL : controlunit PORT MAP (
 Opcode => Instruction (31 DOWNTO 26),
 RegDst => RegDst,
 Jump => Jump,
 Branch => Branch,
 Branch_NE => Branch_NE,
 MemRead => MemRead,
 MemtoReg => MemtoReg,
 ALU_Op => ALU_Op,
 MemWrite => MemWrite,
 ALUSrc => ALUSrc,
 RegWrite => RegWrite,
 Clock => Clock,
 Reset => Reset);

 EX : execution PORT MAP (
 Read_Data_1 => Read_Data_1,
 Read_Data_2 => Read_Data_2,
 Sign_Extend => Sign_Extend,
 ALUSrc => ALUSrc,
 Zero => Zero,
 ALU_Result => ALU_Result,
 Funct_field => Instruction (5 DOWNTO 0),
 ALU_Op => ALU_Op,
 Add_Result => Add_Result,
 PC_plus_4 => PC_plus_4,
 Jump_Address => Jump_Address,
 Jump_Instr => Jump_Instr,
 Clock => Clock,
 Reset => Reset);

 MEM : datamemory PORT MAP (
 Read_Data => Read_Data,
 Address => ALU_Result,
 Write_Data => Read_Data_2,
 MemRead => MemRead,
 MemWrite => MemWrite,
 Clock => Clock,
 Reset => Reset);

-- SSD: sevenseg_display PORT MAP(
-- Digit1 => PC_Out (7 DOWNTO 4),
-- Digit2 => PC_Out (3 DOWNTO 0),
-- D1seg_a => D1_a,
-- D1seg_b => D1_b,
-- D1seg_c => D1_c,
-- D1seg_d => D1_d,

53

-- D1seg_e => D1_e,
-- D1seg_f => D1_f,
-- D1seg_g => D1_g,
-- D1pb => D1_pb,
-- D2seg_a => D2_a,
-- D2seg_b => D2_b,
-- D2seg_c => D2_c,
-- D2seg_d => D2_d,
-- D2seg_e => D2_e,
-- D2seg_f => D2_f,
-- D2seg_g => D2_g,
-- D2pb => D2_pb,
-- Clock => NClock,
-- Reset => Reset);
END structure;

--
-- Victor Rubio
-- Graduate Student
-- Klipsch School of Electrical and Computer Engineering
-- New Mexico State University
-- Las Cruces, NM
--
--
-- Filename: instrfetch.vhd
-- Description: VHDL code to implment the Instruction Fetch unit
-- of the MIPS single-cycle processor as seen in Chapter #5 of
-- Patterson and Hennessy book. This file involves the use of the
-- LPM Components (LPM_ROM) to declare the Instruction Memory
-- as a read only memory (ROM). See MAX+PLUS II Help on
-- "Implementing RAM & ROM (VHDL)" for details.
--
LIBRARY IEEE;
 USE IEEE.STD_LOGIC_1164.ALL;
 USE IEEE.STD_LOGIC_ARITH.ALL;
 USE IEEE.STD_LOGIC_UNSIGNED.ALL;
LIBRARY LPM;
 USE LPM.LPM_COMPONENTS.ALL;

ENTITY instrfetch IS
PORT(SIGNAL PC_Out : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
 SIGNAL Instruction : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
 SIGNAL Add_Result : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
 SIGNAL PC_plus_4_out : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
 SIGNAL Branch : IN STD_LOGIC;
 SIGNAL Branch_NE : IN STD_LOGIC;
 SIGNAL Zero : IN STD_LOGIC;
 SIGNAL Jump : IN STD_LOGIC;
 SIGNAL Jump_Address : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
 SIGNAL Clock, Reset : IN STD_LOGIC);
END instrfetch;

ARCHITECTURE behavior OF instrfetch IS
 SIGNAL PC : STD_LOGIC_VECTOR (9 DOWNTO 0);
 SIGNAL PC_plus_4 : STD_LOGIC_VECTOR (9 DOWNTO 0);
 SIGNAL Next_PC : STD_LOGIC_VECTOR (7 DOWNTO 0);

BEGIN

--Declare Instruction Memory as ROM
Instr_Memory: LPM_ROM

 GENERIC MAP(
 LPM_WIDTH => 32,
 LPM_WIDTHAD => 8,
 -- *.mif FILE used to initialize memory values
 LPM_FILE => "instruction_memory.mif",
 --LPM_FILE => "pipelining_example.mif",
 LPM_OUTDATA => "UNREGISTERED",
 LPM_ADDRESS_CONTROL => "UNREGISTERED")

54

 PORT MAP (
 --Bits (9 DOWNTO 2) used to word-address instructions
 -- e.g. +1 not +4(byte-addressed)
 address => PC(9 DOWNTO 2),
 --Output of Instruction Memory is 32-bit instruction
 q => Instruction);

 -- Output Signals copied
 PC_Out <= PC (7 DOWNTO 0);
 PC_plus_4_out <= PC_plus_4 (7 DOWNTO 0);

 -- Increment PC by 4 by shifting bits
 PC_plus_4 (9 DOWNTO 2) <= PC (9 DOWNTO 2) + 1;
 PC_plus_4 (1 DOWNTO 0) <= "00";

 -- Mux to select NEXT_PC as Branch Address, PC + 4, or Jump
 Next_PC <= Add_result WHEN ((Branch = '1') AND

(Zero = '1') AND (Branch_NE = '0')) OR
((Branch_NE = '1') AND (Zero = '0')) ELSE

 Jump_Address WHEN (Jump = '1') ELSE
 PC_plus_4 (9 DOWNTO 2);

 PROCESS
 BEGIN
 WAIT UNTIL (Clock'EVENT) AND (Clock = '1');
 IF Reset = '1' THEN
 PC <="0000000000";
 ELSE
 PC (9 DOWNTO 2) <= Next_PC;
 END IF;
 END PROCESS;
END behavior;

--
-- Victor Rubio
-- Graduate Student
-- Klipsch School of Electrical and Computer Engineering
-- New Mexico State University
-- Las Cruces, NM
--
--
-- Filename: operandfetch.vhd
-- Description: VHDL code to implment the Operand Fetch unit
-- of the MIPS single-cycle processor as seen in Chapter #5 of
-- Patterson and Hennessy book.
--
--
LIBRARY IEEE;
 USE IEEE.STD_LOGIC_1164.ALL;
 USE IEEE.STD_LOGIC_ARITH.ALL;
 USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY operandfetch IS
 PORT (--Registers & MUX
 Read_Data_1 : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 Read_Data_2 : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 Write_Reg : OUT STD_LOGIC_VECTOR (4 DOWNTO 0);
 RegWrite : IN STD_LOGIC;
 RegDst : IN STD_LOGIC;
 --Data Memory & MUX
 ALU_Result : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 MemtoReg : IN STD_LOGIC;
 Read_data : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 --Misc
 Instruction : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
 Sign_Extend : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 Jump_Instr : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 Clock, Reset : IN STD_LOGIC);
END operandfetch;

55

ARCHITECTURE behavior OF operandfetch IS
--Declare Register File as a one-dimensional array
--Thirty-two Registers each 8-bits wide
TYPE register_file IS ARRAY (0 TO 31) OF STD_LOGIC_VECTOR (7 DOWNTO 0);

 SIGNAL register_array : register_file;
 SIGNAL read_register_address1 : STD_LOGIC_VECTOR (4 DOWNTO 0);
 SIGNAL read_register_address2 : STD_LOGIC_VECTOR (4 DOWNTO 0);
 SIGNAL write_register_address : STD_LOGIC_VECTOR (4 DOWNTO 0);
 SIGNAL write_register_address0: STD_LOGIC_VECTOR (4 DOWNTO 0);
 SIGNAL write_register_address1: STD_LOGIC_VECTOR (4 DOWNTO 0);
 SIGNAL write_data : STD_LOGIC_VECTOR (7 DOWNTO 0);
 SIGNAL instruction_15_0 : STD_LOGIC_VECTOR (15 DOWNTO 0);
 SIGNAL instruction_25_0 : STD_LOGIC_VECTOR (25 DOWNTO 0);

BEGIN

 --Copy Instruction bits to signals
 read_register_address1 <= Instruction (25 DOWNTO 21);
 read_register_address2 <= Instruction (20 DOWNTO 16);
 write_register_address0 <= Instruction (20 DOWNTO 16);
 write_register_address1 <= Instruction (15 DOWNTO 11);
 instruction_15_0 <= Instruction (15 DOWNTO 0);
 instruction_25_0 <= Instruction (25 DOWNTO 0);

 --Register File: Read_Data_1 Output
 Read_Data_1 <= register_array(CONV_INTEGER(read_register_address1 (4 DOWNTO 0)));

 --Register File: Read_Data_2 Output
 Read_Data_2 <= register_array(CONV_INTEGER(read_register_address2 (4 DOWNTO 0)));

 --Register File: MUX to select Write Register Address
 write_register_address <= write_register_address1 WHEN (RegDst = '1')
 ELSE write_register_address0;

 --Register File: MUX to select Write Register Data
 write_data <= ALU_result (7 DOWNTO 0) WHEN (MemtoReg = '0')
 ELSE Read_data;

 --Sign Extend
 --NOTE: Due to 8-bit data width design
 --No sign extension is NEEDED
 Sign_Extend <= instruction_15_0 (7 DOWNTO 0);

 --Jump Instruction
 Jump_Instr <= instruction_25_0 (7 DOWNTO 0);

 --WB - Write Register
 Write_Reg <= write_register_address;

 PROCESS
 BEGIN
 WAIT UNTIL (Clock'EVENT) AND (Clock = '1');
 IF (Reset = '1') THEN
 --Reset Registers to own Register Number
 --Used for testing ease.
 FOR i IN 0 TO 31 LOOP
 register_array(i) <= CONV_STD_LOGIC_VECTOR(i,8);
 END LOOP;

 --Write Register File if RegWrite signal asserted
 ELSIF (RegWrite = '1') AND (write_register_address /= 0) THEN
 register_array(CONV_INTEGER(write_register_address (4 DOWNTO 0)))

<= write_data;
 END IF;
 END PROCESS;
END behavior;

--

56

-- Victor Rubio
-- Graduate Student
-- Klipsch School of Electrical and Computer Engineering
-- New Mexico State University
-- Las Cruces, NM
--
--
-- Filename: control_unit.vhd
-- Description: VHDL code to implement the Control Unit
-- of the MIPS single-cycle processor as seen in Chapter #5 of
-- Patterson and Hennessy book.
--
LIBRARY IEEE;
 USE IEEE.STD_LOGIC_1164.ALL;
 USE IEEE.STD_LOGIC_ARITH.ALL;
 USE IEEE.STD_LOGIC_SIGNED.ALL;

ENTITY controlunit IS
PORT(SIGNAL Opcode : IN STD_LOGIC_VECTOR (5 DOWNTO 0);
 SIGNAL RegDst : OUT STD_LOGIC;
 SIGNAL Branch : OUT STD_LOGIC;
 SIGNAL Branch_NE : OUT STD_LOGIC;
 SIGNAL MemRead : OUT STD_LOGIC;
 SIGNAL MemtoReg : OUT STD_LOGIC;
 SIGNAL ALU_Op : OUT STD_LOGIC_VECTOR (1 DOWNTO 0);
 SIGNAL MemWrite : OUT STD_LOGIC;
 SIGNAL ALUSrc : OUT STD_LOGIC;
 SIGNAL RegWrite : OUT STD_LOGIC;
 SIGNAL Jump : OUT STD_LOGIC;
 SIGNAL Clock, Reset : IN STD_LOGIC);
END controlunit;

ARCHITECTURE behavior OF controlunit IS

 SIGNAL R_format, LW, SW, BEQ, BNE, JMP, ADDI : STD_LOGIC;
 SIGNAL Opcode_Out : STD_LOGIC_VECTOR (5 DOWNTO 0);

BEGIN

 --Decode the Instruction OPCode to determine type
 --and set all corresponding control signals &
 --ALUOP function signals.
 R_format <= '1' WHEN Opcode = "000000" ELSE '0';
 LW <= '1' WHEN Opcode = "100011" ELSE '0';
 SW <= '1' WHEN Opcode = "101011" ELSE '0';
 BEQ <= '1' WHEN Opcode = "000100" ELSE '0';
 BNE <= '1' WHEN Opcode = "000101" ELSE '0';
 JMP <= '1' WHEN Opcode = "000010" ELSE '0';
 ADDI <= '1' WHEN Opcode = "001000" ELSE '0';

 RegDst <= R_format;
 Branch <= BEQ;
 Branch_NE <= BNE;
 Jump <= JMP;
 MemRead <= LW;
 MemtoReg <= LW;
 ALU_Op(1) <= R_format;
 ALU_Op(0) <= BEQ OR BNE;
 MemWrite <= SW;
 ALUSrc <= LW OR SW OR ADDI;
 RegWrite <= R_format OR LW OR ADDI;

END behavior;

--
-- Victor Rubio
-- Graduate Student
-- Klipsch School of Electrical and Computer Engineering
-- New Mexico State University
-- Las Cruces, NM

57

--
--
-- Filename: execution_unit.vhd
-- Description: VHDL code to implment the Execution Unit
-- of the MIPS single-cycle processor as seen in Chapter #5 of
-- Patterson and Hennessy book.
--
LIBRARY IEEE;
 USE IEEE.STD_LOGIC_1164.ALL;
 USE IEEE.STD_LOGIC_ARITH.ALL;
 USE IEEE.STD_LOGIC_SIGNED.ALL;

ENTITY execution IS
PORT(--ALU Signals
 Read_Data_1 : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 Read_Data_2 : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 Sign_Extend : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 ALUSrc : IN STD_LOGIC;
 Zero : OUT STD_LOGIC;
 ALU_Result : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 --ALU Control
 Funct_field : IN STD_LOGIC_VECTOR (5 DOWNTO 0);
 ALU_Op : IN STD_LOGIC_VECTOR (1 DOWNTO 0);
 --Branch Adder
 Add_Result : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 PC_plus_4 : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 --Jump Adress
 Jump_Instr : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 Jump_Address : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 --Misc
 Clock, Reset : IN STD_LOGIC);
END execution;

ARCHITECTURE behavior of execution IS

 SIGNAL A_input, B_input : STD_LOGIC_VECTOR (7 DOWNTO 0);
 SIGNAL ALU_output : STD_LOGIC_VECTOR (7 DOWNTO 0);
 SIGNAL Branch_Add : STD_LOGIC_VECTOR (8 DOWNTO 0);
 SIGNAL Jump_Add : STD_LOGIC_VECTOR (7 DOWNTO 0);
 SIGNAL ALU_Control : STD_LOGIC_VECTOR (2 DOWNTO 0);

BEGIN

 --ALU Input
 A_input <= Read_Data_1;

 --MUX to select second ALU Input
 B_input <= Read_Data_2
 WHEN (ALUSrc = '0')
 ELSE (Sign_Extend (7 DOWNTO 0));

 --Set ALU Control Bits

 ALU_Control(2) <= (Funct_field(1) AND ALU_Op(1)) OR ALU_Op(0);
 ALU_Control(1) <= (NOT Funct_field(2)) OR (NOT ALU_Op(1));
 ALU_Control(0) <= (Funct_field(1) AND Funct_field(3) AND ALU_Op(1)) OR
 (Funct_field(0) AND Funct_field(2) AND ALU_Op(1));

 --Set ALU_Zero
 Zero <= '1' WHEN (ALU_output (7 DOWNTO 0) = "00000000") ELSE '0';

 --ALU Output: Must check for SLT instruction and set correct ALU_output
 ALU_Result <= ("0000000" & ALU_output (7)) WHEN ALU_Control = "111"

ELSE ALU_output (7 DOWNTO 0);

 --Branch Adder
 Branch_Add <= PC_plus_4 (7 DOWNTO 2) + Sign_Extend (7 DOWNTO 0);
 Add_Result <= Branch_Add (7 DOWNTO 0);

 --Jump Address
 Jump_Add <= Jump_Instr (7 DOWNTO 0);

58

 Jump_Address <= Jump_Add;

 --Compute the ALU_output use the ALU_Control signals
 PROCESS (ALU_Control, A_input, B_input)
 BEGIN --ALU Operation
 CASE ALU_Control IS
 --Function: A_input AND B_input
 WHEN "000" => ALU_output <= A_input AND B_input;
 --Function: A_input OR B_input
 WHEN "001" => ALU_output <= A_input OR B_input;
 --Function: A_input ADD B_input
 WHEN "010" => ALU_output <= A_input + B_input;
 --Function: A_input ? B_input
 WHEN "011" => ALU_output <= "00000000";
 --Function: A_input ? B_input
 WHEN "100" => ALU_output <= "00000000";
 --Function: A_input ? B_input
 WHEN "101" => ALU_output <= "00000000";
 --Function: A_input SUB B_input
 WHEN "110" => ALU_output <= A_input - B_input;
 --Function: SLT (set less than)
 WHEN "111" => ALU_output <= A_input - B_input;
 WHEN OTHERS => ALU_output <= "00000000";
 END CASE;
 END PROCESS;
END behavior;

--
-- Victor Rubio
-- Graduate Student
-- Klipsch School of Electrical and Computer Engineering
-- New Mexico State University
-- Las Cruces, NM
--
--
-- Filename: data_memory.vhd
-- Description: VHDL code to implment the Instruction Fetch unit
-- of the MIPS single-cycle processor as seen in Chapter #5 of
-- Patterson and Hennessy book. This file involves the use of the
-- LPM Components (LPM_RAM) to declare the Instruction Memory
-- as a random access memory (RAM). See MAX+PLUS II Help on
-- "Implementing RAM & ROM (VHDL)" for details.
--
LIBRARY IEEE;
 USE IEEE.STD_LOGIC_1164.ALL;
 USE IEEE.STD_LOGIC_ARITH.ALL;
 USE IEEE.STD_LOGIC_SIGNED.ALL;
LIBRARY LPM;
 USE LPM.LPM_COMPONENTS.ALL;

ENTITY datamemory IS
PORT(Read_Data : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 Address : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 Write_Data : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 MemRead : IN STD_LOGIC;
 MemWrite : IN STD_LOGIC;
 Clock, Reset : IN STD_LOGIC);
END datamemory;

ARCHITECTURE behavior OF datamemory IS
SIGNAL LPM_WRITE : STD_LOGIC;

BEGIN
 datamemory : LPM_RAM_DQ
 GENERIC MAP(
 LPM_WIDTH => 8,
 LPM_WIDTHAD => 8,
 LPM_FILE => "data_memory.mif",
 LPM_INDATA => "REGISTERED",
 LPM_ADDRESS_CONTROL => "UNREGISTERED",

59

 LPM_OUTDATA => "UNREGISTERED")

 PORT MAP(
 inclock => Clock,
 data => Write_Data,
 address => Address,
 we => LPM_WRITE,
 q => Read_Data);

 --Write Data Memory
 LPM_WRITE <= MemWrite AND (NOT Clock);

END behavior;

--
-- Victor Rubio
-- Graduate Student
-- Klipsch School of Electrical and Computer Engineering
-- New Mexico State University
-- Las Cruces, NM
--
--
-- Filename: debounce.vhd
-- Description: VHDL code to debounce the UP2 Board push buttons.
-- without this code pushing the button could actually result
-- in multiple contacts due to the spring found in the push button.
-- ONLY USED in HARDWARE IMPLEMENTATION
--
LIBRARY IEEE;
 USE IEEE.STD_LOGIC_1164.ALL;
 USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY debounce IS
PORT (Clock : IN STD_LOGIC;
 PButton : IN STD_LOGIC;
 Pulse : OUT STD_LOGIC);
END debounce;

ARCHITECTURE behavior OF debounce IS
 SIGNAL count : STD_LOGIC_VECTOR (17 DOWNTO 0);

BEGIN
 PROCESS (Clock)
 BEGIN

 IF PButton = '1' THEN
 count <= "000000000000000000";

 ELSIF (Clock'EVENT AND Clock = '1') THEN
 IF (count /= "111111111111111111") THEN
 count <= count + 1;
 END IF;
 END IF;

 IF (count = "111111111111111110") AND (PButton = '0') THEN
 Pulse <= '1';
 ELSE
 Pulse <= '0';
 END IF;

 END PROCESS;
END behavior;

--
-- Victor Rubio
-- Graduate Student
-- Klipsch School of Electrical and Computer Engineering
-- New Mexico State University
-- Las Cruces, NM

60

--
--
-- Filename: sevenseg_display.vhd
-- Description: VHDL code to implment the Most Significant Digit
-- (MSD) and Least Significant Digit (LSD) seven-segment displays
-- on the UP2 Development board. A 4-bit hexidecimal number is
-- decoded and used to the respective MSD/LSD segments.
--
-- NOTE: seven segment display is assserted low
-- The pins are configured as follows:
-- a
-- +---+
-- f | g | b
-- +---+
-- e | | c
-- +---+ . (dp)
-- d
--
LIBRARY IEEE;
 USE IEEE.STD_LOGIC_1164.ALL;
 USE IEEE.STD_LOGIC_ARITH.ALL;
 USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY sevenseg_display IS
PORT(Digit1, Digit2 : IN STD_LOGIC_VECTOR (3 DOWNTO 0);
 D1seg_a,D1seg_b,D1seg_c,D1seg_d,
 D1seg_e,D1seg_f,D1seg_g,D1pb : OUT STD_LOGIC;
 D2seg_a,D2seg_b,D2seg_c,D2seg_d,
 D2seg_e,D2seg_f,D2seg_g,D2pb : OUT STD_LOGIC;
 Clock, Reset : IN STD_LOGIC);
END sevenseg_display;

ARCHITECTURE behavior OF sevenseg_display IS
 SIGNAL data1, data2 : STD_LOGIC_VECTOR (6 DOWNTO 0);

BEGIN

 --Decode the first digit - MSD
 PROCESS (Digit1)
 BEGIN
 CASE Digit1 IS
 WHEN "0000" => data1 <= "1111110";
 WHEN "0001" => data1 <= "0110000";
 WHEN "0010" => data1 <= "1101101";
 WHEN "0011" => data1 <= "1111001";
 WHEN "0100" => data1 <= "0110011";
 WHEN "0101" => data1 <= "1011011";
 WHEN "0110" => data1 <= "1011111";
 WHEN "0111" => data1 <= "1110000";
 WHEN "1000" => data1 <= "1111111";
 WHEN "1001" => data1 <= "1111011";
 WHEN "1010" => data1 <= "1110111";
 WHEN "1011" => data1 <= "0011111";
 WHEN "1100" => data1 <= "1001110";
 WHEN "1101" => data1 <= "0111101";
 WHEN "1110" => data1 <= "1001111";
 WHEN "1111" => data1 <= "1000111";
 WHEN OTHERS => data1 <= "0000001";
 END CASE;
 END PROCESS;

 --Decode the second digit - LSD
 PROCESS (Digit2)
 BEGIN
 CASE Digit2 IS
 WHEN "0000" => data2 <= "1111110";
 WHEN "0001" => data2 <= "0110000";
 WHEN "0010" => data2 <= "1101101";
 WHEN "0011" => data2 <= "1111001";
 WHEN "0100" => data2 <= "0110011";
 WHEN "0101" => data2 <= "1011011";

61

 WHEN "0110" => data2 <= "1011111";
 WHEN "0111" => data2 <= "1110000";
 WHEN "1000" => data2 <= "1111111";
 WHEN "1001" => data2 <= "1111011";
 WHEN "1010" => data2 <= "1110111";
 WHEN "1011" => data2 <= "0011111";
 WHEN "1100" => data2 <= "1001110";
 WHEN "1101" => data2 <= "0111101";
 WHEN "1110" => data2 <= "1001111";
 WHEN "1111" => data2 <= "1000111";
 WHEN OTHERS => data2 <= "0000001";
 END CASE;
 END PROCESS;

 PROCESS
 BEGIN
 WAIT UNTIL (Clock'EVENT) AND (Clock = '1');
 IF (Reset = '1') THEN
 --On Reset display two dases e.g. - -
 D1seg_a <= '1';
 D1seg_b <= '1';
 D1seg_c <= '1';
 D1seg_d <= '1';
 D1seg_e <= '1';
 D1seg_f <= '1';
 D1seg_g <= '0';
 D1pb <= '1';
 D2seg_a <= '1';
 D2seg_b <= '1';
 D2seg_c <= '1';
 D2seg_d <= '1';
 D2seg_e <= '1';
 D2seg_f <= '1';
 D2seg_g <= '0';
 D2pb <= '1';
 ELSE
 --Invert the data signal because
 --seven segment display is assserted low
 D1seg_a <= NOT data1(6);
 D1seg_b <= NOT data1(5);
 D1seg_c <= NOT data1(4);
 D1seg_d <= NOT data1(3);
 D1seg_e <= NOT data1(2);
 D1seg_f <= NOT data1(1);
 D1seg_g <= NOT data1(0);
 D1pb <= '1';
 D2seg_a <= NOT data2(6);
 D2seg_b <= NOT data2(5);
 D2seg_c <= NOT data2(4);
 D2seg_d <= NOT data2(3);
 D2seg_e <= NOT data2(2);
 D2seg_f <= NOT data2(1);
 D2seg_g <= NOT data2(0);
 D2pb <= '1';
 END IF;
 END PROCESS;
END behavior;

62

APPENDIX D: MIPS SINGLE-CYCLE – SIMULATION
--
-- VICTOR RUBIO
-- FILENAME: INSTRUCTION_MEMORY.MIF
-- DESCRIPTION: INSTRUCTION MEMORY INITIALIZATION FILE FOR MIPS
-- SINGLE-CYCLE PROCESSOR
--
--256 X 32 ROM IMPLEMENTED USING
--FOUR EMBEDDED ARRAY BLOCKS ON FLEX10K70 DEVICE
DEPTH = 256;
WIDTH = 32;
--DISPLAY IN HEXIDECIMAL FORMAT
ADDRESS_RADIX = HEX;
DATA_RADIX = HEX;

CONTENT
BEGIN
 --INITIALIZED DATA MEMORY VALUES
 --00 : 55;
 --01 : AA;
 --02 : 11;
 --03 : 33;

 --DEFAULT INSTRUCTION MEMORY
 [00..FF] : 00000000;

 --PC : INSTRUCTION
 00: 8C410001; --00 : LW $1, 1(2) --> $1 = MEM (0X02 + 0X01)
 -- = MEM (03) = 0X33
 01: 00A41822; --04 : SUB $3, $5, $4 --> $3 = 0X05 - 0X04 = 0X01
 02: 00E61024; --08 : AND $2, $7, $6 --> $2 = 0X07 AND 0X06 = 0X06
 03: 00852025; --0C : OR $4, $4, $5 --> $4 = 0X04 OR 0X05 = 0X05
 04: 00C72820; --10 : ADD $5, $6, $7 --> $5 = 0X06 + 0X07 = 0X0D
 05: 1421FFFA; --14 : BNE $1, $1, -24 --> NOT TAKEN
 06: 1022FFFF; --18 : BEQ $1, $2, -4 --> NOT TAKEN
 07: 0062302A; --1C : SLT $6, $3, $2 --> $6 = $3 < $2 = 0X01
 -- = 0X01 < 0X06
 08: 10210002; --20 : BEQ $1, $1, 2 --> TAKEN: 0X33 = 0X33
 09: 00000000; --24 : NOP --> NOP
 0A: 00000000; --28 : NOP --> NOP
 0B: AC010002; --2C : SW $1, 2 --> $1 = 0X33 = MEMORY(02)
 0C: 00232020; --30 ; ADD $4, $1, $3 --> $4= 0X33 + 0X01 = 0X34
 0D: 08000000; --34 : JUMP 0 --> JUMP TO PC = 00
END;

Figure D.1 MIPS Single-cycle Simulation Waveform

63

APPENDIX E: MIPS SINGLE-CYCLE – SIMULATION – SPIM VALIDATION

Registers
=========================
 PC = 00000000 EPC = 00000000 Cause = 00000000 BadVAddr= 00000000
 Status = 00000000 HI = 00000000 LO = 00000000
 General Registers
R0 (r0) = 00000000 R8 (t0) = 00000000 R16 (s0) = 00000033 R24 (t8) = 00000000
R1 (at) = 10010000 R9 (t1) = 00000005 R17 (s1) = 00000001 R25 (t9) = 00000000
R2 (v0) = 0000000a R10 (t2) = 00000004 R18 (s2) = 00000006 R26 (k0) = 00000000
R3 (v1) = 00000000 R11 (t3) = 00000007 R19 (s3) = 00000034 R27 (k1) = 00000000
R4 (a0) = 1001012f R12 (t4) = 00000006 R20 (s4) = 0000000d R28 (gp) = 10008000
R5 (a1) = 00000000 R13 (t5) = 00000003 R21 (s5) = 00000001 R29 (sp) = 7fffe838
R6 (a2) = 7fffe840 R14 (t6) = 00000000 R22 (s6) = 00000000 R30 (s8) = 00000000
R7 (a3) = 00000000 R15 (t7) = 00000000 R23 (s7) = 00000000 R31 (ra) = 00000000
 Double Floating Point Registers
FP0 =00000000,00000000 FP8 =00000000,00000000 FP16=00000000,00000000 FP24=00000000,00000000
FP2 =00000000,00000000 FP10=00000000,00000000 FP18=00000000,00000000 FP26=00000000,00000000
FP4 =00000000,00000000 FP12=00000000,00000000 FP20=00000000,00000000 FP28=00000000,00000000
FP6 =00000000,00000000 FP14=00000000,00000000 FP22=00000000,00000000 FP30=00000000,00000000
 Single Floating Point Registers
FP0 =00000000 FP8 =00000000 FP16=00000000 FP24=00000000
FP1 =00000000 FP9 =00000000 FP17=00000000 FP25=00000000
FP2 =00000000 FP10=00000000 FP18=00000000 FP26=00000000
FP3 =00000000 FP11=00000000 FP19=00000000 FP27=00000000
FP4 =00000000 FP12=00000000 FP20=00000000 FP28=00000000
FP5 =00000000 FP13=00000000 FP21=00000000 FP29=00000000
FP6 =00000000 FP14=00000000 FP22=00000000 FP30=00000000
FP7 =00000000 FP15=00000000 FP23=00000000 FP31=00000000

Console
=========================
00: $s0 = 0x33 = 0d51 = 0x00000033
01: $s1 = 0x05 - 0x04 = 0d1 = 0x00000001
02: $s2 = 0x07 AND 0x06 = 0d6 = 0x00000006
03: $s3 = 0x04 OR 0x05 = 0d5 = 0x00000005
04: $s4 = 0x06 + 0x07 = 0d13 = 0x0000000D
05: BNE Not Taken: 0x33 = 0x33
06: BEQ Not Taken: 0x33 != 0x06
07: $s5 = 0x01 SLT 0x06 = 0d1 = 0x00000001
08: BEQ Taken: 0x33 = 0x33
0C: $s3 = 0x33 + 0x01 = 0d52 = 0x00000034

64

APPENDIX F: MIPS PIPELINED – VHDL CODE

--
-- Victor Rubio
-- Graduate Student
-- Klipsch School of Electrical and Computer Engineering
-- New Mexico State University
-- Las Cruces, NM
--
--
-- Filename: mips_pipe.vhd
-- Description: VHDL code to implment the structual design of
-- the MIPS pipelined processor. The top-level file connects
-- all the behavioral units together to complete functional
-- processor.
--
-- Signals with a _p, _pp, or _ppp sufix designate the number
-- of pipeline registers that signals runs through.
-- e.g. _p = 1 pipeline register, _pp = 2 pipeline registers, etc.
--
LIBRARY IEEE;
USE IEEE.STD_LOGIC_1164.ALL;
USE IEEE.STD_LOGIC_ARITH.ALL;

ENTITY mips_pipe IS

 --THESE SIGNAL ARE USED ONLY FOR THE SIMULATOR
 PORT(--IF
 PC : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 --PC_Plus_4 : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 --Next_PC : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 Instruction_out : OUT STD_LOGIC_VECTOR (31 DOWNTO 0);
 --ID
 Read_Data1_out : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 Read_Data2_out : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 --EX
 ALU_Input_1_out : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 ALU_Input_2_out : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 ALU_Result_out : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 --Add_Result_out : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
 Branch_out : OUT STD_LOGIC;
 Branch_NE_out : OUT STD_LOGIC;
 Zero_out : OUT STD_LOGIC;
 --MEM
 MemRead_out : OUT STD_LOGIC;
 MemReadData_out : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 MemWrite_out : OUT STD_LOGIC;
 Mem_Address_out : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 MemWrite_Data_out : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 --WB
 RegWrite_out : OUT STD_LOGIC;
 WriteRegister_out : OUT STD_LOGIC_VECTOR (4 DOWNTO 0);
 RegWriteData_out : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);

 --FORWARDING UNIT LINES
 --EXMEM_RegWrite_out : OUT STD_LOGIC;
 --EXMEM_ALU_Result_out : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 --EXMEM_Register_Rd_out: OUT STD_LOGIC_VECTOR (4 DOWNTO 0);
 --MEMWB_RegWrite_out : OUT STD_LOGIC;
 --MEMWB_Register_Rd_out: OUT STD_LOGIC_VECTOR (4 DOWNTO 0);
 --MEMWB_Read_Data_out : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 --IDEX_Register_Rs_out : OUT STD_LOGIC_VECTOR (4 DOWNTO 0);
 --IDEX_Register_Rt_out : OUT STD_LOGIC_VECTOR (4 DOWNTO 0);
 ForwardA_out : OUT STD_LOGIC_VECTOR (1 DOWNTO 0);
 ForwardB_out : OUT STD_LOGIC_VECTOR (1 DOWNTO 0);

 --HAZARD DETECTION LINES
 --IDEX_MemRead_out : OUT STD_LOGIC;

65

 --IDEX_Register_Rt_out : OUT STD_LOGIC_VECTOR (4 DOWNTO 0);
 --IFID_Register_Rs_out : OUT STD_LOGIC_VECTOR (4 DOWNTO 0);
 --IFID_Register_Rt_out : OUT STD_LOGIC_VECTOR (4 DOWNTO 0);
 STALL_out : OUT STD_LOGIC;
 --HDU_RegWrite_out : OUT STD_LOGIC;
 --HDU_MemWrite_out : OUT STD_LOGIC;

 --BRACH HAZARD
 IF_Flush_out : OUT STD_LOGIC;
 IF_ReadData1_out : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 IF_ReadData2_out : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 IF_SignExtend_out : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 IF_Branch_out : OUT STD_LOGIC;
 IF_BranchNE_out : OUT STD_LOGIC;
 IF_PCPlus4_out : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 IF_AddResult_out : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 IF_Zero_out : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 Clock, Reset : IN STD_LOGIC);

--Signals used for UP2 Board Implemntation
--All signals here must be assigned to a pin on
--the FLEX10K70 device.
--PORT(D1_a, D1_b, D1_c, D1_d,
-- D1_e, D1_f, D1_g,D1_pb : OUT STD_LOGIC;
-- D2_a, D2_b, D2_c, D2_d,
-- D2_e, D2_f, D2_g,D2_pb : OUT STD_LOGIC;
-- Clock, Reset, PB : IN STD_LOGIC);

END mips_pipe;

ARCHITECTURE structure of mips_pipe IS

--Declare all components/units/modules used that
--makeup the MIPS Pipelined processor.
COMPONENT instrfetch
 PORT(PC_Out : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
 Instruction_p : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
 PC_plus_4_p : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
 NXT_PC : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
 Stall : IN STD_LOGIC;
 --BRANCH HAZARD
 Read_Data_1 : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 Read_Data_2 : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 Sign_Extend : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 Branch : IN STD_LOGIC;
 Branch_NE : IN STD_LOGIC;
 PC_plus_4 : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
 IFFlush : IN STD_LOGIC;
 IFFlush_p : OUT STD_LOGIC;
 IFFlush_pp : IN STD_LOGIC;
 IFFlush_ppp : OUT STD_LOGIC;
 --OUTPUTS FOR branch hazard DEBUG--
 IF_ReadData1 : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 IF_ReadData2 : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 IF_SignExtend : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 IF_Branch : OUT STD_LOGIC;
 IF_BranchNE : OUT STD_LOGIC;
 IF_PCPlus4 : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 IF_AddResult : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 IF_Zero : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 Clock, Reset : IN STD_LOGIC);
END COMPONENT;

COMPONENT operandfetch
 PORT (Read_Data_1_p : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 Read_Data_2_p : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 Write_Data : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 RegWrite_ppp : IN STD_LOGIC;
 RegWriteOut : OUT STD_LOGIC;
 Write_Address_pp : IN STD_LOGIC_VECTOR (4 DOWNTO 0);
 Write_Address_ppp : OUT STD_LOGIC_VECTOR (4 DOWNTO 0);

66

 Read_Data_p : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 MemtoReg_ppp : IN STD_LOGIC;
 ALU_Result_pp : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 Instruction_p : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
 Sign_Extend_p : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 Write_Address_0_p : OUT STD_LOGIC_VECTOR (4 DOWNTO 0);
 Write_Address_1_p : OUT STD_LOGIC_VECTOR (4 DOWNTO 0);
 Write_Address_2_p : OUT STD_LOGIC_VECTOR (4 DOWNTO 0);
 RegWriteData : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 Instruction_pp : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
 PC_plus_4_p : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
 PC_plus_4_pp : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
 --HAZARD DETECTION UNIT
 IDEX_MemRead : IN STD_LOGIC;
 IDEX_Register_Rt : IN STD_LOGIC_VECTOR (4 DOWNTO 0);
 IFID_Register_Rs : IN STD_LOGIC_VECTOR (4 DOWNTO 0);
 IFID_Register_Rt : IN STD_LOGIC_VECTOR (4 DOWNTO 0);
 -------HDU Output lines------
 IDEXMemRead_out : OUT STD_LOGIC;
 IDEXRegister_Rt_out : OUT STD_LOGIC_VECTOR (4 DOWNTO 0);
 IFIDRegister_Rs_out : OUT STD_LOGIC_VECTOR (4 DOWNTO 0);
 IFIDRegister_Rt_out : OUT STD_LOGIC_VECTOR (4 DOWNTO 0);
 --BRANCH HAZARDS (CONTROL HAZARDS)
 Branch_p : IN STD_LOGIC;
 Branch_NE_p : IN STD_LOGIC;
 Add_Result_p : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 --IF_Flush : OUT STD_LOGIC;
 Branch_pp : OUT STD_LOGIC;
 Branch_NE_pp : OUT STD_LOGIC;
 Clock, Reset : IN STD_LOGIC);
END COMPONENT;

COMPONENT controlunit IS
PORT(Opcode : IN STD_LOGIC_VECTOR (5 DOWNTO 0);
 RegDst_p : OUT STD_LOGIC;
 ALU_Op_p : OUT STD_LOGIC_VECTOR (1 DOWNTO 0);
 ALUSrc_p : OUT STD_LOGIC;
 MemWrite_p : OUT STD_LOGIC;
 Branch_p : OUT STD_LOGIC;
 Branch_NE_p : OUT STD_LOGIC;
 MemRead_p : OUT STD_LOGIC;
 MemtoReg_p : OUT STD_LOGIC;
 RegWrite_p : OUT STD_LOGIC;
 IF_Flush : OUT STD_LOGIC;
 --HAZARD DETECTION UNIT
 IDEX_MemRead : IN STD_LOGIC;
 IDEX_Register_Rt : IN STD_LOGIC_VECTOR (4 DOWNTO 0);
 IFID_Register_Rs : IN STD_LOGIC_VECTOR (4 DOWNTO 0);
 IFID_Register_Rt : IN STD_LOGIC_VECTOR (4 DOWNTO 0);
 Stall_out : OUT STD_LOGIC;
 Clock, Reset : IN STD_LOGIC);
END COMPONENT;

COMPONENT execution IS
 PORT(Read_Data_1 : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 Read_Data_2 : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 Sign_Extend_p : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 ALUSrc_p : IN STD_LOGIC;
 Zero_p : OUT STD_LOGIC;
 ALU_Result_p : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 Funct_field : IN STD_LOGIC_VECTOR (5 DOWNTO 0);
 ALU_Op_p : IN STD_LOGIC_VECTOR (1 DOWNTO 0);
 PC_plus_4_pp : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 RegDst_p : IN STD_LOGIC;
 Write_Address_0_p : IN STD_LOGIC_VECTOR (4 DOWNTO 0);
 Write_Address_1_p : IN STD_LOGIC_VECTOR (4 DOWNTO 0);
 Write_Address_p : OUT STD_LOGIC_VECTOR (4 DOWNTO 0);
 MemtoReg_p : IN STD_LOGIC;
 MemtoReg_pp : OUT STD_LOGIC;
 Read_Data_2_pp : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 MemRead_p : IN STD_LOGIC;

67

 RegWrite_p : IN STD_LOGIC;
 MemRead_pp : OUT STD_LOGIC;
 RegWrite_pp : OUT STD_LOGIC;
 MemWrite_p : IN STD_LOGIC;
 MemWrite_pp : OUT STD_LOGIC;
 --FORWARDING UNIT SIGNALS
 EXMEM_RegWrite : IN STD_LOGIC;
 EXMEM_ALU_Result : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 EXMEM_Register_Rd : IN STD_LOGIC_VECTOR (4 DOWNTO 0);
 MEMWB_RegWrite : IN STD_LOGIC;
 MEMWB_Register_Rd : IN STD_LOGIC_VECTOR (4 DOWNTO 0);
 MEMWB_Read_Data : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 IDEX_Register_Rs : IN STD_LOGIC_VECTOR (4 DOWNTO 0);
 IDEX_Register_Rt : IN STD_LOGIC_VECTOR (4 DOWNTO 0);
 ALU1 : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 ALU2 : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 forwardA : OUT STD_LOGIC_VECTOR (1 DOWNTO 0);
 forwardB : OUT STD_LOGIC_VECTOR (1 DOWNTO 0);
 EXMEMRegWrite : OUT STD_LOGIC;
 EXMEMALU_Result : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 EXMEMRegister_Rd : OUT STD_LOGIC_VECTOR (4 DOWNTO 0);
 MEMWBRegWrite : OUT STD_LOGIC;
 MEMWBRegister_Rd : OUT STD_LOGIC_VECTOR (4 DOWNTO 0);
 MEMWBRead_Data : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 IDEXRegister_Rs : OUT STD_LOGIC_VECTOR (4 DOWNTO 0);
 IDEXRegister_Rt : OUT STD_LOGIC_VECTOR (4 DOWNTO 0);
 Clock, Reset : IN STD_LOGIC);
END COMPONENT;

COMPONENT datamemory IS
 PORT(Read_Data_p : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 Address : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 Write_Data : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 Read_Data_2_ppp : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 MemRead_pp : IN STD_LOGIC;
 MemWrite_pp : IN STD_LOGIC;
 MemRead_ppp : OUT STD_LOGIC;
 MemWrite_ppp : OUT STD_LOGIC;
 MemtoReg_pp : IN STD_LOGIC;
 RegWrite_pp : IN STD_LOGIC;
 MemtoReg_ppp : OUT STD_LOGIC;
 RegWrite_ppp : OUT STD_LOGIC;
 ALU_Result_p : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 ALU_Result_pp : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 Write_Address_p : IN STD_LOGIC_VECTOR (4 DOWNTO 0);
 Write_Address_pp : OUT STD_LOGIC_VECTOR (4 DOWNTO 0);
 Reg_WriteData : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 Clock, Reset : IN STD_LOGIC);
END COMPONENT;

COMPONENT debounce
 PORT (Clock : IN STD_LOGIC;
 PButton : IN STD_LOGIC;
 Pulse : OUT STD_LOGIC);
END COMPONENT;

COMPONENT sevenseg_display IS
 PORT(Digit1 : IN STD_LOGIC_VECTOR (3 DOWNTO 0);
 Digit2 : IN STD_LOGIC_VECTOR (3 DOWNTO 0);
 D1seg_a : OUT STD_LOGIC;
 D1seg_b : OUT STD_LOGIC;
 D1seg_c : OUT STD_LOGIC;
 D1seg_d : OUT STD_LOGIC;
 D1seg_e : OUT STD_LOGIC;
 D1seg_f : OUT STD_LOGIC;
 D1seg_g : OUT STD_LOGIC;
 D1pb : OUT STD_LOGIC;
 D2seg_a : OUT STD_LOGIC;
 D2seg_b : OUT STD_LOGIC;
 D2seg_c : OUT STD_LOGIC;
 D2seg_d : OUT STD_LOGIC;

68

 D2seg_e : OUT STD_LOGIC;
 D2seg_f : OUT STD_LOGIC;
 D2seg_g : OUT STD_LOGIC;
 D2pb : OUT STD_LOGIC;
 Clock, Reset : IN STD_LOGIC);
END COMPONENT;

--Signals used to connect VHDL Components
SIGNAL ALU_Op_p : STD_LOGIC_VECTOR (1 DOWNTO 0);
SIGNAL Add_Result_p : STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL Add_Result_pp : STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL ALU_Result_p : STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL ALU_Result_pp : STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL ALU1 : STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL ALU2 : STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL ALUSrc_p : STD_LOGIC;
SIGNAL Branch_p : STD_LOGIC;
SIGNAL Branch_pp : STD_LOGIC;
SIGNAL Branch_NE_p : STD_LOGIC;
SIGNAL Branch_NE_pp : STD_LOGIC;
SIGNAL forwardA : STD_LOGIC_VECTOR (1 DOWNTO 0);
SIGNAL forwardB : STD_LOGIC_VECTOR (1 DOWNTO 0);
SIGNAL Instruction : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL Instruction_p : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL Instruction_pp : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL MemRead_p : STD_LOGIC;
SIGNAL MemRead_pp : STD_LOGIC;
SIGNAL MemRead_ppp : STD_LOGIC;
SIGNAL MemtoReg_p : STD_LOGIC;
SIGNAL MemtoReg_pp : STD_LOGIC;
SIGNAL MemtoReg_ppp : STD_LOGIC;
SIGNAL MemWrite_p : STD_LOGIC;
SIGNAL MemWrite_pp : STD_LOGIC;
SIGNAL MemWrite_ppp : STD_LOGIC;
SIGNAL PC_Out : STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL PC_plus_4_p : STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL PC_plus_4_pp : STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL NXT_PC : STD_LOGIC_VECTOR(7 DOWNTO 0);
SIGNAL Read_Data_1_p : STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL Read_Data_2_p : STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL Read_Data_p : STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL Read_Data_2_pp : STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL Read_Data_2_ppp : STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL RegDst_p : STD_LOGIC;
SIGNAL RegWrite_p : STD_LOGIC;
SIGNAL RegWrite_pp : STD_LOGIC;
SIGNAL RegWrite_ppp : STD_LOGIC;
SIGNAL RegWriteOut : STD_LOGIC;
SIGNAL RegWriteData : STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL Reg_WriteData : STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL Sign_Extend_p : STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL Write_Address_0_p : STD_LOGIC_VECTOR (4 DOWNTO 0); --Rd
SIGNAL Write_Address_1_p : STD_LOGIC_VECTOR (4 DOWNTO 0); --Rt
SIGNAL Write_Address_2_p : STD_LOGIC_VECTOR (4 DOWNTO 0); --Rs
SIGNAL Write_Address_p : STD_LOGIC_VECTOR (4 DOWNTO 0);
SIGNAL Write_Address_pp : STD_LOGIC_VECTOR (4 DOWNTO 0);
SIGNAL Write_Address_ppp : STD_LOGIC_VECTOR (4 DOWNTO 0);
SIGNAL Zero_p : STD_LOGIC;
---FORWARDING UNIT SIGNALS
SIGNAL EXMEMRegWrite : STD_LOGIC;
SIGNAL EXMEMALU_Result : STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL EXMEMRegister_Rd : STD_LOGIC_VECTOR (4 DOWNTO 0);
SIGNAL MEMWBRegWrite : STD_LOGIC;
SIGNAL MEMWBRegister_Rd : STD_LOGIC_VECTOR (4 DOWNTO 0);
SIGNAL MEMWBRead_Data : STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL IDEXRegister_Rs : STD_LOGIC_VECTOR (4 DOWNTO 0);
SIGNAL IDEXRegister_Rt : STD_LOGIC_VECTOR (4 DOWNTO 0);
--HAZARD DETECTION UNIT SIGNALS
SIGNAL STALLout : STD_LOGIC;
SIGNAL IDEXMemRead_out : STD_LOGIC;
SIGNAL IDEXRegister_Rt_out : STD_LOGIC_VECTOR (4 DOWNTO 0);

69

SIGNAL IFIDRegister_Rs_out : STD_LOGIC_VECTOR (4 DOWNTO 0);
SIGNAL IFIDRegister_Rt_out : STD_LOGIC_VECTOR (4 DOWNTO 0);
SIGNAL StallInstruction : STD_LOGIC_VECTOR (31 DOWNTO 0);
--BRANCH HAZARD
SIGNAL IF_Flush : STD_LOGIC;
SIGNAL IF_Flush_p : STD_LOGIC;
SIGNAL IF_Flush_pp : STD_LOGIC;
SIGNAL IF_Flush_ppp : STD_LOGIC;
SIGNAL IF_ReadData1 : STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL IF_ReadData2 : STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL IF_SignExtend : STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL IF_Branch : STD_LOGIC;
SIGNAL IF_BranchNE : STD_LOGIC;
SIGNAL IF_PCPlus4 : STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL IF_AddResult : STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL IF_Zero : STD_LOGIC_VECTOR (7 DOWNTO 0);
--New Clock Signal used when PushButton is used
--to create a clock tick
SIGNAL NClock : STD_LOGIC;

BEGIN

 --Signals to assign to output pins for SIMULATOR
 Instruction_out <= Instruction;
 PC <= PC_Out;
 --PC_Plus_4 <= PC_plus_4_p;
 --Next_PC <= NXT_PC;
 Read_Data1_out <= Read_Data_1_p;
 Read_Data2_out <= Read_Data_2_p;
 ALU_Input_1_out <= ALU1;
 ALU_Input_2_out <= ALU2;
 ALU_Result_out <= ALU_Result_p;
 --Add_Result_out <= Add_Result_p;
 Zero_out <= Zero_p;
 MemRead_out <= MemRead_ppp;
 MemReadData_out <= Read_Data_p WHEN MemRead_ppp = '1' ELSE "00000000";
 MemWrite_out <= MemWrite_ppp;
 Mem_Address_out <= ALU_Result_pp WHEN MemRead_ppp = '1'

 OR MemWrite_ppp = '1' ELSE "00000000";
 MemWrite_Data_out <= Read_Data_2_ppp WHEN MemWrite_ppp = '1' ELSE "00000000";
 RegWrite_out <= '0' WHEN Write_Address_ppp = "00000" ELSE RegWriteOut;
 WriteRegister_out <= Write_Address_ppp;
 RegWriteData_out <= RegWriteData;
 --FORWARDING UNIT LINES
 --EXMEM_RegWrite_out <= EXMEMRegWrite;
 --EXMEM_ALU_Result_out <= EXMEMALU_Result;
 --EXMEM_Register_Rd_out<= EXMEMRegister_Rd;
 --MEMWB_RegWrite_out <= MEMWBRegWrite;
 --MEMWB_Register_Rd_out<= MEMWBRegister_Rd;
 --MEMWB_Read_Data_out <= MEMWBRead_Data;
 --IDEX_Register_Rs_out <= IDEXRegister_Rs;
 --IDEX_Register_Rt_out <= IDEXRegister_Rt;
 ForwardA_out <= forwardA;
 ForwardB_out <= forwardB;
 --HAZARD DETECTION LINES
 --IDEX_MemRead_out <= IDEXMemRead_out;
 --IDEX_Register_Rt_out <= IDEXRegister_Rt_out;
 --IFID_Register_Rs_out <= IFIDRegister_Rs_out;
 --IFID_Register_Rt_out <= IFIDRegister_Rt_out;
 STALL_out <= STALLout;
 StallInstruction <= Instruction WHEN STALLout = '0' ELSE Instruction_pp;
 --HDU_RegWrite_out <= RegWrite_p;
 --HDU_MemWrite_out <= MemWrite_p;
 --BRANCH HAZARD
 IF_Flush_out <= IF_Flush_p;
 Branch_out <= Branch_p;
 Branch_NE_out <= Branch_NE_p;
 IF_ReadData1_out <= IF_ReadData1;
 IF_ReadData2_out <= IF_ReadData2;
 IF_SignExtend_out <= IF_SignExtend;
 IF_Branch_out <= IF_Branch;

70

 IF_BranchNE_out <= IF_BranchNE;
 IF_PCPlus4_out <= IF_PCPlus4;
 IF_AddResult_out <= IF_AddResult;
 IF_Zero_out <= IF_Zero;

 --Connect the MIPS Components
 IFE : instrfetch PORT MAP (
 PC_Out => PC_Out,
 Instruction_p => Instruction,
 PC_plus_4_p => PC_plus_4_p,
 NXT_PC => NXT_PC,
 Stall => STALLout,
 --BRANCH HAZARD
 Read_Data_1 => Read_Data_1_p,
 Read_Data_2 => Read_Data_2_p,
 Sign_Extend => Sign_Extend_p,
 Branch => Branch_p,
 Branch_NE => Branch_NE_p,
 PC_plus_4 => PC_plus_4_p,
 IFFlush => IF_Flush,
 IFFlush_p => IF_Flush_p,
 IFFlush_pp => IF_Flush_p,
 IFFlush_ppp => IF_Flush_ppp,
 IF_ReadData1 => IF_ReadData1,
 IF_ReadData2 => IF_ReadData2,
 IF_SignExtend => IF_SignExtend,
 IF_Branch => IF_Branch,
 IF_BranchNE => IF_BranchNE,
 IF_PCPlus4 => IF_PCPlus4,
 IF_AddResult => IF_AddResult,
 IF_Zero => IF_Zero,
 Clock => Clock,
 Reset => Reset);

 ID : operandfetch PORT MAP (
 Read_Data_1_p => Read_Data_1_p,
 Read_Data_2_p => Read_Data_2_p,
 Write_Data => Reg_WriteData,
 RegWrite_ppp => RegWrite_ppp,
 RegWriteOut => RegWriteOut,
 Write_Address_pp => Write_Address_pp,
 Write_Address_ppp => Write_Address_ppp,
 Read_Data_p => Read_Data_p,
 MemtoReg_ppp => MemtoReg_ppp,
 ALU_Result_pp => ALU_Result_pp,
 Instruction_p => StallInstruction,
 Sign_Extend_p => Sign_Extend_p,
 Write_Address_0_p => Write_Address_0_p,
 Write_Address_1_p => Write_Address_1_p,
 Write_Address_2_p => Write_Address_2_p,
 RegWriteData => RegWriteData,
 Instruction_pp => Instruction_pp,
 PC_plus_4_p => PC_plus_4_p,
 PC_plus_4_pp => PC_plus_4_pp,
 --HAZARD DETECTION UNIT
 IDEX_MemRead => MemRead_p,
 IDEX_Register_Rt => Write_Address_0_p,
 IFID_Register_Rs => Instruction (25 DOWNTO 21), --Rs
 IFID_Register_Rt => Instruction (20 DOWNTO 16), --Rt
 -------HDU Output lines------
 IDEXMemRead_out => IDEXMemRead_out,
 IDEXRegister_Rt_out => IDEXRegister_Rt_out,
 IFIDRegister_Rs_out => IFIDRegister_Rs_out,
 IFIDRegister_Rt_out => IFIDRegister_Rt_out,
 --BRANCH HAZARDS
 Branch_p => Branch_p,
 Branch_NE_p => Branch_NE_p,
 Branch_pp => Branch_pp,
 Branch_NE_pp => Branch_NE_pp,
 Clock => Clock,
 Reset => Reset);

71

 CTRL : controlunit PORT MAP (
 Opcode => Instruction (31 DOWNTO 26),
 RegDst_p => RegDst_p,
 ALU_Op_p => ALU_Op_p,
 ALUSrc_p => ALUSrc_p,
 MemWrite_p => MemWrite_p,
 Branch_p => Branch_p,
 Branch_NE_p => Branch_NE_p,
 MemRead_p => MemRead_p,
 MemtoReg_p => MemtoReg_p,
 RegWrite_p => RegWrite_p,
 IF_Flush => IF_Flush,

 --HAZARD DETECTION UNIT
 IDEX_MemRead => MemRead_p,
 IDEX_Register_Rt => Write_Address_0_p,
 IFID_Register_Rs => Instruction (25 DOWNTO 21), --Rs
 IFID_Register_Rt => Instruction (20 DOWNTO 16), --Rt
 Stall_out => STALLout,

 Clock => Clock,
 Reset => Reset);

 EX : execution PORT MAP (
 Read_Data_1 => Read_Data_1_p,
 Read_Data_2 => Read_Data_2_p,
 Sign_Extend_p => Sign_Extend_p,
 ALUSrc_p => ALUSrc_p,
 Zero_p => Zero_p,
 ALU_Result_p => ALU_Result_p,
 Funct_field => Instruction_pp (5 DOWNTO 0),
 ALU_Op_p => ALU_Op_p,
 PC_plus_4_pp => PC_plus_4_pp,
 RegDst_p => RegDst_p,
 Write_Address_0_p => Write_Address_0_p,
 Write_Address_1_p => Write_Address_1_p,
 Write_Address_p => Write_Address_p,
 MemtoReg_p => MemtoReg_p,
 MemtoReg_pp => MemtoReg_pp,
 Read_Data_2_pp => Read_Data_2_pp,
 MemRead_p => MemRead_p,
 RegWrite_p => RegWrite_p,
 MemRead_pp => MemRead_pp,
 RegWrite_pp => RegWrite_pp,
 MemWrite_p => MemWrite_p,
 MemWrite_pp => MemWrite_pp,
 EXMEM_RegWrite => RegWrite_pp,
 EXMEM_ALU_Result => ALU_Result_p,
 EXMEM_Register_Rd => Write_Address_p,
 MEMWB_RegWrite => RegWrite_ppp,
 MEMWB_Register_Rd => Write_Address_pp,
 MEMWB_Read_Data => Reg_WriteData,
 IDEX_Register_Rs => Write_Address_2_p,
 IDEX_Register_Rt => Write_Address_0_p,
 ALU1 => ALU1,
 ALU2 => ALU2,
 forwardA => forwardA,
 forwardB => forwardB,
 EXMEMRegWrite => EXMEMRegWrite,
 EXMEMALU_Result => EXMEMALU_Result,
 EXMEMRegister_Rd => EXMEMRegister_Rd,
 MEMWBRegWrite => MEMWBRegWrite,
 MEMWBRegister_Rd => MEMWBRegister_Rd,
 MEMWBRead_Data => MEMWBRead_Data,
 IDEXRegister_Rs => IDEXRegister_Rs,
 IDEXRegister_Rt => IDEXRegister_Rt,
 Clock => Clock,
 Reset => Reset);

 MEM : datamemory PORT MAP (

72

 Read_Data_p => Read_Data_p,
 Address => ALU_Result_p,
 Write_Data => Read_Data_2_pp,
 Read_Data_2_ppp => Read_Data_2_ppp,
 MemRead_pp => MemRead_pp,
 MemWrite_pp => MemWrite_pp,
 MemRead_ppp => MemRead_ppp,
 MemWrite_ppp => MemWrite_ppp,
 MemtoReg_pp => MemtoReg_pp,
 RegWrite_pp => RegWrite_pp,
 MemtoReg_ppp => MemtoReg_ppp,
 RegWrite_ppp => RegWrite_ppp,
 ALU_Result_p => ALU_Result_p,
 ALU_Result_pp => ALU_Result_pp,
 Write_Address_p => Write_Address_p,
 Write_Address_pp => Write_Address_pp,
 Reg_WriteData => Reg_WriteData,
 Clock => Clock,
 Reset => Reset);

-- NCLK: Debounce PORT MAP(
-- Clock => Clock,
-- PButton => PB,
-- Pulse => NClock);

-- SSD: sevenseg_display PORT MAP(
-- Digit1 => PC_Out (7 DOWNTO 4),
-- Digit2 => PC_Out (3 DOWNTO 0),
-- D1seg_a => D1_a,
-- D1seg_b => D1_b,
-- D1seg_c => D1_c,
-- D1seg_d => D1_d,
-- D1seg_e => D1_e,
-- D1seg_f => D1_f,
-- D1seg_g => D1_g,
-- D1pb => D1_pb,
-- D2seg_a => D2_a,
-- D2seg_b => D2_b,
-- D2seg_c => D2_c,
-- D2seg_d => D2_d,
-- D2seg_e => D2_e,
-- D2seg_f => D2_f,
-- D2seg_g => D2_g,
-- D2pb => D2_pb,
-- Clock => NClock,
-- Reset => Reset);

END structure;

--
-- Victor Rubio
-- Graduate Student
-- Klipsch School of Electrical and Computer Engineering
-- New Mexico State University
-- Las Cruces, NM
--
-- Filename: instr_fetch.vhd
-- Description: VHDL code to implment the Instruction Fetch unit
-- of the MIPS Pipelined processor as seen in Chapter #6 of
-- Patterson and Hennessy book. This file involves the use of the
-- LPM Components (LPM_ROM) to declare the Instruction Memory
-- as a read only memory (ROM). See MAX+PLUS II Help on
-- "Implementing RAM & ROM (VHDL)" for details.
--
-- Signals with a _p, _pp, or _ppp sufix designate the number
-- of pipeline registers that signals runs through.
-- e.g. _p = 1 pipeline register, _pp = 2 pipeline registers, etc.
--
LIBRARY IEEE;
 USE IEEE.STD_LOGIC_1164.ALL;

73

 USE IEEE.STD_LOGIC_ARITH.ALL;
 USE IEEE.STD_LOGIC_UNSIGNED.ALL;
LIBRARY LPM;
 USE LPM.LPM_COMPONENTS.ALL;

ENTITY instrfetch IS
 PORT(--Program Counter
 PC_Out : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 --Instruction Memory
 Instruction_p : OUT STD_LOGIC_VECTOR (31 DOWNTO 0);
 --PC + 4
 PC_plus_4_p : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 NXT_PC : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 --Hazard Detection Unit
 Stall : IN STD_LOGIC;
 --BRANCH HAZARD
 Read_Data_1 : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 Read_Data_2 : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 Sign_Extend : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 Branch : IN STD_LOGIC;
 Branch_NE : IN STD_LOGIC;
 PC_plus_4 : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 IFFlush : IN STD_LOGIC;
 IFFlush_p : OUT STD_LOGIC;
 IFFlush_pp : IN STD_LOGIC;
 IFFlush_ppp : OUT STD_LOGIC; --Assert if Flush used!
 --OUTPUTS FOR branch hazard DEBUG--
 IF_ReadData1 : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 IF_ReadData2 : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 IF_SignExtend : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 IF_Branch : OUT STD_LOGIC;
 IF_BranchNE : OUT STD_LOGIC;
 IF_PCPlus4 : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 IF_AddResult : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 IF_Zero : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 Clock, Reset : IN STD_LOGIC);
END instrfetch;

ARCHITECTURE behavior OF instrfetch IS
 SIGNAL PC : STD_LOGIC_VECTOR (9 DOWNTO 0);
 SIGNAL PCplus4 : STD_LOGIC_VECTOR (9 DOWNTO 0);
 SIGNAL Next_PC : STD_LOGIC_VECTOR (7 DOWNTO 0);
 SIGNAL Instruction : STD_LOGIC_VECTOR (31 DOWNTO 0);
 SIGNAL zero : STD_LOGIC_VECTOR (7 DOWNTO 0);
 SIGNAL add_result : STD_LOGIC_VECTOR (7 DOWNTO 0);

BEGIN

--Instruction Memory as ROM
Instr_Memory: LPM_ROM

 GENERIC MAP(
 LPM_WIDTH => 32,
 LPM_WIDTHAD => 8,
 -- *.mif FILE used to initialize memory values
 --LPM_FILE => "instruction_memory.mif",
 --LPM_FILE => "pipelining_example.mif",
 LPM_FILE => "dependencies_example.mif",
 --LPM_FILE => "forwarding_example.mif",
 --LPM_FILE => "hazard_detection_example.mif",
 --LPM_FILE => "branch_hazard_detection_example.mif",
 LPM_OUTDATA => "UNREGISTERED",
 LPM_ADDRESS_CONTROL => "UNREGISTERED")

 PORT MAP (
 --Bits (9 DOWNTO 2) used to word-address instructions
 -- e.g. +1 not +4(byte-addressed)
 address => PC (9 DOWNTO 2),
 --Output of Instruction Memory is 32-bit instruction
 q => Instruction);

74

 -- Copy Output Signals
 PC_Out <= PC (7 DOWNTO 0);
 NXT_PC <= Next_PC;

 -- Adder to increment PC by 4 by shifting bits

 PCplus4 (9 DOWNTO 2) <= PC (9 DOWNTO 2) + 1;
 PCplus4 (1 DOWNTO 0) <= "00";

 --New Branch Compare - compare Read_Data_1 XOR Read_Data_2:
 zero <= Read_Data_1 (7 DOWNTO 0) XOR Read_Data_2 (7 DOWNTO 0);
 add_result <= PC_plus_4 (7 DOWNTO 2) + Sign_Extend (7 DOWNTO 0);

 -- Mux to select Branch Address or PC + 4 or Jump (PCSrc Mux)
 Next_PC <= add_result WHEN (IFFlush_pp = '1' AND (zero = "00000000")

AND (Branch = '1')) OR (IFFlush_pp = '1'
AND (zero /= "00000000") AND (Branch_NE = '1'))
ELSE PCplus4 (9 DOWNTO 2);

 IF_ReadData1 <= Read_Data_1;
 IF_ReadData2 <= Read_Data_2;
 IF_SignExtend <= Sign_Extend;
 IF_Branch <= Branch;
 IF_BranchNE <= Branch_NE;
 IF_PCPlus4 <= PC_plus_4;
 IF_AddResult <= add_result;
 IF_Zero <= zero;
 IFFlush_p <= IFFlush;

 --Branch Flushing Unit to flush IF/ID Pipeline Register
 Instruction_p <= "00000000000000000000000000000000"
 WHEN (Reset = '1')

OR (IFFlush_pp = '1' AND (zero = "00000000")
AND (Branch = '1')) OR (IFFlush_pp = '1'
AND (zero /= "00000000") AND (Branch_NE = '1'))

 ELSE Instruction;
 PROCESS
 BEGIN
 WAIT UNTIL (Clock'EVENT) AND (Clock = '1');
 IF Reset = '1' THEN
 PC <= "0000000000";
 PC_plus_4_p <= "00000000";
 IFFlush_ppp <= '0';
 ELSE
 IF (Stall = '1') THEN

 --AVOID Writing any signals for Load-Use Data Hazard
 ELSE
 PC (9 DOWNTO 2) <= Next_PC (7 DOWNTO 0);
 PC_plus_4_p <= PCplus4 (7 DOWNTO 0);

 --Assert if Flush Signal Used!!!
 IF (IFFlush_pp = '1' AND (zero = "00000000")

AND (Branch = '1')) OR
 (IFFlush_pp = '1' AND (zero /= "00000000")

AND (Branch_NE = '1')) THEN
 IFFlush_ppp <= '1';
 ELSE
 IFFlush_ppp <= '0';
 END IF;
 END IF;
 END IF;
 END PROCESS;
END behavior;

--
-- Victor Rubio
-- Graduate Student
-- Klipsch School of Electrical and Computer Engineering
-- New Mexico State University
-- Las Cruces, NM
--

75

--
-- Filename: operand_fetch.vhd
-- Description: VHDL code to implment the Operand Fetch unit
-- of the MIPS pipelined processor as seen in Chapter #6 of
-- Patterson and Hennessy book.
--
-- Signals with a _p, _pp, or _ppp sufix designate the number
-- of pipeline registers that signals runs through.
-- e.g. _p = 1 pipeline register, _pp = 2 pipeline registers, etc.
--
LIBRARY IEEE;
 USE IEEE.STD_LOGIC_1164.ALL;
 USE IEEE.STD_LOGIC_ARITH.ALL;
 USE IEEE.STD_LOGIC_UNSIGNED.ALL;

ENTITY operandfetch IS
 PORT (
 --Registers / MUX
 Read_Data_1_p : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 Read_Data_2_p : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 --Data Memory / MUX --> WRITEBACK (LW/R-format)
 RegWrite_ppp : IN STD_LOGIC;
 RegWriteOut : OUT STD_LOGIC;
 Write_Address_pp : IN STD_LOGIC_VECTOR (4 DOWNTO 0);
 Write_Address_ppp : OUT STD_LOGIC_VECTOR (4 DOWNTO 0);
 Read_Data_p : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 MemtoReg_ppp : IN STD_LOGIC;
 ALU_Result_pp : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 Write_Data : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 --Misc
 Instruction_p : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
 Sign_Extend_p : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 Write_Address_0_p : OUT STD_LOGIC_VECTOR (4 DOWNTO 0);
 Write_Address_1_p : OUT STD_LOGIC_VECTOR (4 DOWNTO 0);
 Write_Address_2_p : OUT STD_LOGIC_VECTOR (4 DOWNTO 0);
 RegWriteData : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 Instruction_pp : OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
 PC_plus_4_p : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
 PC_plus_4_pp : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);
 -------HAZARD DETECTION UNIT-------
 IDEX_MemRead : IN STD_LOGIC;
 IDEX_Register_Rt : IN STD_LOGIC_VECTOR (4 DOWNTO 0);
 IFID_Register_Rs : IN STD_LOGIC_VECTOR (4 DOWNTO 0);
 IFID_Register_Rt : IN STD_LOGIC_VECTOR (4 DOWNTO 0);
 -------HDU Output lines-----
 IDEXMemRead_out : OUT STD_LOGIC;
 IDEXRegister_Rt_out : OUT STD_LOGIC_VECTOR (4 DOWNTO 0);
 IFIDRegister_Rs_out : OUT STD_LOGIC_VECTOR (4 DOWNTO 0);
 IFIDRegister_Rt_out : OUT STD_LOGIC_VECTOR (4 DOWNTO 0);
 ------BRANCH HAZARDS (CONTROL HAZARDS)
 Branch_p : IN STD_LOGIC;
 Branch_NE_p : IN STD_LOGIC;
 --Add_Result_p : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 Branch_pp : OUT STD_LOGIC;
 Branch_NE_pp : OUT STD_LOGIC;
 --Misc.
 Clock, Reset : IN STD_LOGIC);
END operandfetch;

ARCHITECTURE behavior OF operandfetch IS
--Declare Register File as a one-dimensional array
--Thirty-two Registers each 8-bits wide
TYPE register_file IS ARRAY (0 TO 31) OF STD_LOGIC_VECTOR (7 DOWNTO 0);

 SIGNAL register_array : register_file;
 SIGNAL read_register_address1 : STD_LOGIC_VECTOR (4 DOWNTO 0);
 SIGNAL read_register_address2 : STD_LOGIC_VECTOR (4 DOWNTO 0);
 SIGNAL instruction_15_0 : STD_LOGIC_VECTOR (15 DOWNTO 0);
 --PIPELINED SIGNAL
 SIGNAL write_register_address0: STD_LOGIC_VECTOR (4 DOWNTO 0);
 SIGNAL write_register_address1: STD_LOGIC_VECTOR (4 DOWNTO 0);

76

 SIGNAL write_register_address2: STD_LOGIC_VECTOR (4 DOWNTO 0);
 SIGNAL sign_extend : STD_LOGIC_VECTOR (7 DOWNTO 0);
 SIGNAL read_data_1 : STD_LOGIC_VECTOR (7 DOWNTO 0);
 SIGNAL read_data_2 : STD_LOGIC_VECTOR (7 DOWNTO 0);
 SIGNAL writedata : STD_LOGIC_VECTOR (7 DOWNTO 0);
 SIGNAL instruction : STD_LOGIC_VECTOR (31 DOWNTO 0);
 SIGNAL write_address : STD_LOGIC_VECTOR (4 DOWNTO 0);
 SIGNAL stall : STD_LOGIC;
 SIGNAL Branch_Add, ADD_Result : STD_LOGIC_VECTOR (7 DOWNTO 0);
 SIGNAL ifflush : STD_LOGIC;
 SIGNAL bne : STD_LOGIC;
 SIGNAL result : STD_LOGIC_VECTOR (7 DOWNTO 0);

BEGIN

 --Copy Instruction bits to signals
 read_register_address1 <= Instruction_p (25 DOWNTO 21); --Rs
 read_register_address2 <= Instruction_p (20 DOWNTO 16); --Rt
 write_register_address0 <= Instruction_p (20 DOWNTO 16); --Rt
 write_register_address1 <= Instruction_p (15 DOWNTO 11); --Rd
 write_register_address2 <= Instruction_p (25 DOWNTO 21); --Rs
 instruction_15_0 <= Instruction_p (15 DOWNTO 0);
 bne <= Branch_NE_p;

 --Register File: Read_Data_1 Output
 read_data_1 <= register_array(CONV_INTEGER(read_register_address1 (4 DOWNTO 0)));

 --Register File: Read_Data_2 Output
 read_data_2 <= register_array(CONV_INTEGER(read_register_address2 (4 DOWNTO 0)));

 --Sign Extend
 --NOTE: Due to 8-bit data width design
 --No sign extension is NEEDED
 sign_extend <= instruction_15_0 (7 DOWNTO 0);

 --Register File: MUX to select Write Register Data
 writedata <= Read_Data_p WHEN MemtoReg_ppp = '1' ELSE ALU_Result_pp;

 --Copy Instruction
 instruction <= Instruction_p;

 --Process to ensure writes happen on 1st half of clock cycle
 PROCESS (Clock, Reset)
 BEGIN
 IF (Reset = '1') THEN
 --Reset Registers own Register Number
 FOR i IN 0 TO 31 LOOP
 register_array(i) <= CONV_STD_LOGIC_VECTOR(i,8);
 END LOOP;
 ELSIF (Clock'EVENT AND Clock='0') THEN
 --Write Register File if RegWrite signal asserted
 IF ((RegWrite_ppp = '1') AND (Write_Address_pp /= "00000")) THEN
 register_array(CONV_INTEGER(Write_Address_pp (4 DOWNTO 0)))

<= writedata;
 END IF;
 END IF;
 END PROCESS;

 --Process to ensure read happen on 2nd half of clock cycle
 PROCESS
 BEGIN
 WAIT UNTIL (Clock'EVENT AND Clock = '1');
 IF Reset = '1' THEN
 Read_Data_1_p <= "00000000";
 Read_Data_2_p <= "00000000";
 Sign_Extend_p <= "00000000";
 Write_Address_0_p <= "00000";
 Write_Address_1_p <= "00000";
 Write_Address_2_p <= "00000";
 RegWriteData <= "00000000";
 Instruction_pp <= "00000000000000000000000000000000";

77

 Write_Address_ppp <= "00000";
 RegWriteOut <= '0';
 PC_plus_4_pp <= "00000000";
 ELSE
 Read_Data_1_p <= read_data_1;
 Read_Data_2_p <= read_data_2;
 Sign_Extend_p <= sign_extend;
 Write_Address_0_p <= write_register_address0;
 Write_Address_1_p <= write_register_address1;
 Write_Address_2_p <= write_register_address2;
 RegWriteData <= writedata;
 Instruction_pp <= Instruction_p;
 Write_Address_ppp <= Write_Address_pp;
 RegWriteOut <= RegWrite_ppp;
 PC_plus_4_pp <= PC_plus_4_p;
 ----HAZARD DETECTION UNIT OUTPUT LINES----
 IDEXMemRead_out <= IDEX_MemRead;
 IDEXRegister_Rt_out <= IDEX_Register_Rt;
 IFIDRegister_Rs_out <= IFID_Register_Rs;
 IFIDRegister_Rt_out <= IFID_Register_Rt;
 ---BRANCH HAZARD
 Branch_pp <= Branch_p;
 Branch_NE_pp <= Branch_NE_p;
 END IF;
 END PROCESS;
END behavior;

--
-- Victor Rubio
-- Graduate Student
-- Klipsch School of Electrical and Computer Engineering
-- New Mexico State University
-- Las Cruces, NM
--
-- Filename: control_unit.vhd
-- Description: VHDL code to implement the Control Unit
-- of the MIPS pipelined processor as seen in Chapter #6 of
-- Patterson and Hennessy book.
--
-- Signals with a _p, _pp, or _ppp sufix designate the number
-- of pipeline registers that signals runs through.
-- e.g. _p = 1 pipeline register, _pp = 2 pipeline registers, etc.
--
LIBRARY IEEE;
 USE IEEE.STD_LOGIC_1164.ALL;
 USE IEEE.STD_LOGIC_ARITH.ALL;
 USE IEEE.STD_LOGIC_SIGNED.ALL;

ENTITY controlunit IS
PORT(
 SIGNAL Opcode : IN STD_LOGIC_VECTOR (5 DOWNTO 0);
 SIGNAL RegDst_p : OUT STD_LOGIC;
 SIGNAL ALU_Op_p : OUT STD_LOGIC_VECTOR (1 DOWNTO 0);
 SIGNAL ALUSrc_p : OUT STD_LOGIC;
 SIGNAL MemWrite_p : OUT STD_LOGIC;
 SIGNAL Branch_p : OUT STD_LOGIC;
 SIGNAL Branch_NE_p : OUT STD_LOGIC;
 SIGNAL MemRead_p : OUT STD_LOGIC;
 SIGNAL MemtoReg_p : OUT STD_LOGIC;
 SIGNAL RegWrite_p : OUT STD_LOGIC;
 SIGNAL IF_Flush : OUT STD_LOGIC;

 --HAZARD DETECTION UNIT
 IDEX_MemRead : IN STD_LOGIC;
 IDEX_Register_Rt : IN STD_LOGIC_VECTOR (4 DOWNTO 0);
 IFID_Register_Rs : IN STD_LOGIC_VECTOR (4 DOWNTO 0);
 IFID_Register_Rt : IN STD_LOGIC_VECTOR (4 DOWNTO 0);
 SIGNAL Stall_out : OUT STD_LOGIC;
 SIGNAL Clock, Reset : IN STD_LOGIC);
END controlunit;

78

ARCHITECTURE behavior OF controlunit IS
 SIGNAL R_format, LW, SW, BEQ, BNE, ADDI : STD_LOGIC;
 SIGNAL Opcode_Out : STD_LOGIC_VECTOR (5 DOWNTO 0);
 SIGNAL ifflush : STD_LOGIC;
 --PIPELINED SIGNAL
 --EX
 SIGNAL RegDst, ALU_Op0, ALU_Op1, ALUSrc : STD_LOGIC;
 --MEM
 SIGNAL Branch, Branch_NE, MemWrite, MemRead : STD_LOGIC;
 --WB
 SIGNAL MemtoReg, RegWrite : STD_LOGIC;
 --HDU
 SIGNAL stall : STD_LOGIC;

BEGIN

 --Decode the Instruction OPCode to determine type
 --and set all corresponding control signals &
 --ALUOP function signals.
 R_format <= '1' WHEN Opcode = "000000" ELSE '0';
 LW <= '1' WHEN Opcode = "100011" ELSE '0';
 SW <= '1' WHEN Opcode = "101011" ELSE '0';
 BEQ <= '1' WHEN Opcode = "000100" ELSE '0';
 BNE <= '1' WHEN Opcode = "000101" ELSE '0';
 ADDI <= '1' WHEN Opcode = "001000" ELSE '0';
 --EX
 RegDst <= R_format;
 ALU_Op1 <= R_format;
 ALU_Op0 <= BEQ OR BNE;
 ALUSrc <= LW OR SW OR ADDI;
 --MEM
 Branch <= BEQ;
 Branch_NE <= BNE;
 ifflush <= BEQ OR BNE;
 MemRead <= LW;
 MemWrite <= SW;
 --WB
 MemtoReg <= LW;
 RegWrite <= R_format OR LW OR ADDI;

 --HAZARD DETECTION UNIT
 PROCESS
 BEGIN
 --DETECT A LOAD/USE HAZARD e.g. LW $2, 20($1) followed by ADD $4, $2, $1
 IF ((IDEX_MemRead = '1') AND
 ((IDEX_Register_Rt = IFID_Register_Rs) OR
 (IDEX_Register_Rt = IFID_Register_Rt))) THEN
 stall <= '1'; --LOAD/USE HAZARD
 ELSE
 stall <= '0'; --NO HAZARD
 END IF;
 END PROCESS;

 PROCESS
 BEGIN
 WAIT UNTIL (Clock'EVENT) AND (Clock = '1');
 IF (Reset = '1' OR stall = '1') THEN
 --WB
 MemtoReg_p <= '0';
 RegWrite_p <= '0';
 --Mem
 MemWrite_p <= '0';
 MemRead_p <= '0';
 Branch_p <= '0';
 Branch_NE_p <= '0';
 --EX
 RegDst_p <= '0';
 ALU_Op_p(1) <= '0';
 ALU_Op_p(0) <= '0';

79

 ALUSrc_p <= '0';
 IF_Flush <= '0';
 --HDU
 Stall_out <= stall;
 ELSE
 --WB
 MemtoReg_p <= MemtoReg;
 RegWrite_p <= RegWrite;
 --Mem
 MemWrite_p <= MemWrite;
 MemRead_p <= MemRead;
 Branch_p <= Branch;
 Branch_NE_p <= Branch_NE;
 --EX
 RegDst_p <= RegDst;
 ALU_Op_p(1) <= ALU_Op1;
 ALU_Op_p(0) <= ALU_Op0;
 ALUSrc_p <= ALUSrc;
 IF_Flush <= ifflush;
 --HDU
 Stall_out <= stall;
 END IF;
 END PROCESS;
END behavior;

--
-- Victor Rubio
-- Graduate Student
-- Klipsch School of Electrical and Computer Engineering
-- New Mexico State University
-- Las Cruces, NM
--
-- Filename: execution_unit.vhd
-- Description: VHDL code to implment the Execution Unit
-- of the MIPS pipelined processor as seen in Chapter #6 of
-- Patterson and Hennessy book.
--
-- Signals with a _p, _pp, or _ppp sufix designate the number
-- of pipeline registers that signals runs through.
-- e.g. _p = 1 pipeline register, _pp = 2 pipeline registers, etc.
--
LIBRARY IEEE;
 USE IEEE.STD_LOGIC_1164.ALL;
 USE IEEE.STD_LOGIC_ARITH.ALL;
 USE IEEE.STD_LOGIC_SIGNED.ALL;

ENTITY execution IS
 PORT(
 --ALU
 Read_Data_1 : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 Read_Data_2 : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 Sign_Extend_p : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 ALUSrc_p : IN STD_LOGIC;
 Zero_p : OUT STD_LOGIC;
 ALU_Result_p : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 --ALU Control
 Funct_field : IN STD_LOGIC_VECTOR (5 DOWNTO 0);
 ALU_Op_p : IN STD_LOGIC_VECTOR (1 DOWNTO 0);
 PC_plus_4_pp : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 --Register File - Write Address
 RegDst_p : IN STD_LOGIC;
 Write_Address_0_p : IN STD_LOGIC_VECTOR (4 DOWNTO 0); --Rt
 Write_Address_1_p : IN STD_LOGIC_VECTOR (4 DOWNTO 0); --Rd
 Write_Address_p : OUT STD_LOGIC_VECTOR (4 DOWNTO 0);
 --MISC/PIPELINED SIGNALS
 MemtoReg_p : IN STD_LOGIC;
 MemtoReg_pp : OUT STD_LOGIC;
 Read_Data_2_pp : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 MemRead_p : IN STD_LOGIC;
 RegWrite_p : IN STD_LOGIC;
 MemRead_pp : OUT STD_LOGIC;

80

 RegWrite_pp : OUT STD_LOGIC;
 MemWrite_p : IN STD_LOGIC;
 MemWrite_pp : OUT STD_LOGIC;
 --FORWARDING UNIT SIGNALS
 EXMEM_RegWrite : IN STD_LOGIC;
 EXMEM_ALU_Result : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 EXMEM_Register_Rd : IN STD_LOGIC_VECTOR (4 DOWNTO 0);
 MEMWB_RegWrite : IN STD_LOGIC;
 MEMWB_Register_Rd : IN STD_LOGIC_VECTOR (4 DOWNTO 0);
 MEMWB_Read_Data : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 IDEX_Register_Rs : IN STD_LOGIC_VECTOR (4 DOWNTO 0);
 IDEX_Register_Rt : IN STD_LOGIC_VECTOR (4 DOWNTO 0);
 ALU1 : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 ALU2 : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 forwardA : OUT STD_LOGIC_VECTOR (1 DOWNTO 0);
 forwardB : OUT STD_LOGIC_VECTOR (1 DOWNTO 0);
 EXMEMRegWrite : OUT STD_LOGIC;
 EXMEMALU_Result : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 EXMEMRegister_Rd : OUT STD_LOGIC_VECTOR (4 DOWNTO 0);
 MEMWBRegWrite : OUT STD_LOGIC;
 MEMWBRegister_Rd : OUT STD_LOGIC_VECTOR (4 DOWNTO 0);
 MEMWBRead_Data : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 IDEXRegister_Rs : OUT STD_LOGIC_VECTOR (4 DOWNTO 0);
 IDEXRegister_Rt : OUT STD_LOGIC_VECTOR (4 DOWNTO 0);
 ----Misc
 Clock, Reset : IN STD_LOGIC);
END execution;

ARCHITECTURE behavior of execution IS

 SIGNAL A_input, B_input, Binput : STD_LOGIC_VECTOR (7 DOWNTO 0);
 SIGNAL ALU_output : STD_LOGIC_VECTOR (7 DOWNTO 0);
 SIGNAL ALU_Control : STD_LOGIC_VECTOR (2 DOWNTO 0);
 --PIPELINED SIGNALS
 SIGNAL ALU_Result : STD_LOGIC_VECTOR (7 DOWNTO 0);
 SIGNAL Zero : STD_LOGIC;
 SIGNAL Write_Address : STD_LOGIC_VECTOR (4 DOWNTO 0);
 --FORWARDING SIGNALS
 SIGNAL Forward_A, Forward_B : STD_LOGIC_VECTOR (1 DOWNTO 0);

BEGIN

 --FORWARDING UNIT PART II
 PROCESS --(EXMEM_RegWrite, EXMEM_ALU_Result, EXMEM_Register_Rd, MEMWB_RegWrite,
 -- MEMWB_Register_Rd, MEMWB_Read_Data, IDEX_Register_Rs, IDEX_Register_Rt)
 BEGIN
 -- Forward A
 IF ((MEMWB_RegWrite = '1') AND
 (MEMWB_Register_Rd /= "00000") AND
 (EXMEM_Register_Rd /= IDEX_Register_Rs) AND
 (MEMWB_Register_Rd = IDEX_Register_Rs)) THEN
 Forward_A <= "01"; --MEM HAZARD
 ELSIF ((EXMEM_RegWrite = '1') AND
 (EXMEM_Register_Rd /= "00000") AND
 (EXMEM_Register_Rd = IDEX_Register_Rs)) THEN
 Forward_A <= "10"; --EX HAZARD
 ELSE
 Forward_A <= "00"; --NO HAZARD
 END IF;

 -- Forward B
 IF ((MEMWB_RegWrite = '1') AND
 (MEMWB_Register_Rd /= "00000") AND
 (EXMEM_Register_Rd /= IDEX_Register_Rt) AND
 (MEMWB_Register_Rd = IDEX_Register_Rt)) THEN
 Forward_B <= "01"; --MEM HAZARD
 ELSIF ((EXMEM_RegWrite = '1') AND
 (EXMEM_Register_Rd /= "00000") AND
 (EXMEM_Register_Rd = IDEX_Register_Rt)) THEN
 Forward_B <= "10"; --EX HAZARD
 ELSE

81

 Forward_B <= "00"; --NO HAZARD
 END IF;
 END PROCESS;

 -- Mux for A Input
 WITH Forward_A SELECT
 A_input <= Read_Data_1 WHEN "00",
 MEMWB_Read_Data WHEN "01",
 EXMEM_ALU_Result WHEN "10",
 "11111111" WHEN others;

 -- Mux for B Input
 WITH Forward_B SELECT
 Binput <= Read_Data_2 WHEN "00",
 MEMWB_Read_Data WHEN "01",
 EXMEM_ALU_Result WHEN "10",
 "11111111" WHEN others;

 --ALU Input MUX -- Need to Allow ALUSrc to Select Sign_Extend or from ForwardB Mux
 B_input <= (Sign_Extend_p (7 DOWNTO 0)) WHEN (ALUSrc_p = '1') ELSE Binput;

 --ALU Control Bits
 ALU_Control(2) <= (Funct_field(1) AND ALU_Op_p(1)) OR ALU_Op_p(0);
 ALU_Control(1) <= (NOT Funct_field(2)) OR (NOT ALU_Op_p(1));
 ALU_Control(0) <= (Funct_field(1) AND Funct_field(3) AND ALU_Op_p(1)) OR
 (Funct_field(0) AND Funct_field(2) AND ALU_Op_p(1));

 --Set ALU_Zero
 Zero <= '1' WHEN (ALU_output (7 DOWNTO 0) = "00000000") ELSE '0';

 --Register File : Write Address
 Write_Address <= Write_Address_0_p WHEN RegDst_p = '0' ELSE Write_Address_1_p;

 --ALU Output: Must check for SLT instruction and set correct ALU_output
 ALU_Result <= "0000000" & ALU_output (7) WHEN ALU_Control = "111"
 ELSE ALU_output (7 DOWNTO 0);

 --Compute the ALU_output use the ALU_Control signals
 PROCESS (ALU_Control, A_input, B_input)
 BEGIN --ALU Operation
 CASE ALU_Control IS
 --Function: A_input AND B_input
 WHEN "000" => ALU_output <= A_input AND B_input;
 --Function: A_input OR B_input
 WHEN "001" => ALU_output <= A_input OR B_input;
 --Function: A_input ADD B_input
 WHEN "010" => ALU_output <= A_input + B_input;
 --Function: A_input ? B_input
 WHEN "011" => ALU_output <= "00000000";
 --Function: A_input ? B_input
 WHEN "100" => ALU_output <= "00000000";
 --Function: A_input ? B_input
 WHEN "101" => ALU_output <= "00000000";
 --Function: A_input SUB B_input
 WHEN "110" => ALU_output <= A_input - B_input;
 --Function: SLT (set less than)
 WHEN "111" => ALU_output <= A_input - B_input;
 WHEN OTHERS => ALU_output <= "00000000";
 END CASE;
 END PROCESS;

 PROCESS
 BEGIN
 WAIT UNTIL(Clock'EVENT) AND (Clock = '1');
 IF Reset = '1' THEN
 Zero_p <= '0';
 ALU_Result_p <= "00000000";
 Write_Address_p <= "00000";
 MemtoReg_pp <= '0';
 RegWrite_pp <= '0';
 Read_Data_2_pp <= "00000000";

82

 MemRead_pp <= '0';
 MemWrite_pp <= '0';
 ELSE
 Zero_p <= Zero;
 ALU_Result_p <= ALU_Result;
 Write_Address_p <= Write_Address;
 MemtoReg_pp <= MemtoReg_p;
 Read_Data_2_pp <= Read_Data_2;
 MemRead_pp <= MemRead_p;
 RegWrite_pp <= RegWrite_p;
 MemWrite_pp <= MemWrite_p;
 ALU1 <= A_input;
 ALU2 <= B_input;
 forwardA <= Forward_A;
 forwardB <= Forward_B;
 EXMEMRegWrite <= EXMEM_RegWrite;
 EXMEMALU_Result <= EXMEM_ALU_Result;
 EXMEMRegister_Rd <= EXMEM_Register_Rd;
 MEMWBRegWrite <= MEMWB_RegWrite;
 MEMWBRegister_Rd <= MEMWB_Register_Rd;
 MEMWBRead_Data <= MEMWB_Read_Data;
 IDEXRegister_Rs <= IDEX_Register_Rs;
 IDEXRegister_Rt <= IDEX_Register_Rt;
 END IF;
 END PROCESS;
END behavior;

--
-- Victor Rubio
-- Graduate Student
-- Klipsch School of Electrical and Computer Engineering
-- New Mexico State University
-- Las Cruces, NM
--
-- Filename: data_memory.vhd
-- Description: VHDL code to implment the Instruction Fetch unit
-- of the MIPS pipelined processor as seen in Chapter #6 of
-- Patterson and Hennessy book. This file involves the use of the
-- LPM Components (LPM_RAM) to declare the Instruction Memory
-- as a random access memory (RAM). See MAX+PLUS II Help on
-- "Implementing RAM & ROM (VHDL)" for details.
--
-- Signals with a _p, _pp, or _ppp sufix designate the number
-- of pipeline registers that signals runs through.
-- e.g. _p = 1 pipeline register, _pp = 2 pipeline registers, etc.
--
LIBRARY IEEE;
 USE IEEE.STD_LOGIC_1164.ALL;
 USE IEEE.STD_LOGIC_ARITH.ALL;
 USE IEEE.STD_LOGIC_SIGNED.ALL;
LIBRARY LPM;
 USE LPM.LPM_COMPONENTS.ALL;

ENTITY datamemory IS
 PORT(
 Read_Data_p : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 Address : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 Write_Data : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 Read_Data_2_ppp : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 ---Pipelined Signals
 MemRead_pp : IN STD_LOGIC;
 MemRead_ppp : OUT STD_LOGIC;
 MemWrite_pp : IN STD_LOGIC;
 MemWrite_ppp : OUT STD_LOGIC;
 MemtoReg_pp : IN STD_LOGIC;
 MemtoReg_ppp : OUT STD_LOGIC;
 RegWrite_pp : IN STD_LOGIC;
 RegWrite_ppp : OUT STD_LOGIC;
 ALU_Result_p : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 ALU_Result_pp : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);

83

 Write_Address_p : IN STD_LOGIC_VECTOR (4 DOWNTO 0);
 Write_Address_pp : OUT STD_LOGIC_VECTOR (4 DOWNTO 0);
 Reg_WriteData : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
 Clock, Reset : IN STD_LOGIC);
END datamemory;

ARCHITECTURE behavior OF datamemory IS

 --Internal Signals
 SIGNAL LPM_WRITE : STD_LOGIC;
 SIGNAL ReadData : STD_LOGIC_VECTOR (7 DOWNTO 0);

BEGIN
 datamemory : LPM_RAM_DQ
 GENERIC MAP(
 LPM_WIDTH => 8,
 LPM_WIDTHAD => 8,
 LPM_FILE => "data_memory.mif",
 LPM_INDATA => "REGISTERED",
 LPM_ADDRESS_CONTROL => "UNREGISTERED",
 LPM_OUTDATA => "UNREGISTERED")

 --READ DATA MEMORY
 PORT MAP(
 inclock => Clock,
 data => Write_Data,
 address => Address,
 we => LPM_WRITE,
 q => ReadData);

 --WRITE DATA MEMORY (SW)
 LPM_WRITE <= MemWrite_pp AND (NOT Clock);

 PROCESS
 BEGIN
 WAIT UNTIL Clock'EVENT AND Clock = '1';
 IF Reset = '1' THEN
 Read_Data_p <= "00000000";
 MemtoReg_ppp <= '0';
 RegWrite_ppp <= '0';
 ALU_Result_pp <= "00000000";
 Write_Address_pp <= "00000";
 MemRead_ppp <= '0';
 MemWrite_ppp <= '0';
 Read_Data_2_ppp <= "00000000";
 ELSE
 Read_Data_p <= readdata;
 MemtoReg_ppp <= MemtoReg_pp;
 RegWrite_ppp <= RegWrite_pp;
 ALU_Result_pp <= ALU_Result_p;
 Write_Address_pp <= Write_Address_p;
 MemRead_ppp <= MemRead_pp;
 MemWrite_ppp <= MemWrite_pp;
 Read_Data_2_ppp <= Write_Data;

 IF (MemtoReg_pp = '1') THEN
 Reg_WriteData <= ReadData;
 ELSE
 Reg_WriteData <= ALU_Result_p;
 END IF;

 END IF;
 END PROCESS;
END behavior;

84

APPENDIX G: MIPS PIPELINED – PIPELINING SIMULATION

--
-- Victor Rubio
-- Filename: pipelining_example.mif
-- Description: Instruction Memory Initialization file for MIPS
-- Pipelined Processor.
-- Example obtained from P&H pg. #471
--

--256 x 32 ROM implemented using
--four Embedded Array Blocks on Flex10K70 device
DEPTH = 256;
WIDTH = 32;

--Display in Hexidecimal Format
ADDRESS_RADIX = HEX;
DATA_RADIX = HEX;

CONTENT
BEGIN

 --Initialized Instruction Memory
 --PC Instruction
 00: 8C2A0014; --00: LW $10, 20 ($1) $10 (0x0A) = MEM(0x01+0x14) = MEM(0x15) = 0x15
 01: 00435822; --04: SUB $11, $2, $3 $11 (0x0B) = 0x02 - 0x03 = 0d-1 = 0XFF
 02: 00856024; --08: AND $12, $4, $5 $12 (0x0C) = 0x04 AND 0x05 = 0d 4 = 0x04
 03: 00C76825; --0C: OR $13, $6, $7 $13 (0x0D) = 0x06 OR 0x07 = 0d 7 = 0x07
 04: 01097020; --10: ADD $14, $8, $9 $14 (0x0E) = 0x08 + 0x09 = 0d17 = 0x11

 --Initialized Data Memory Values
 --00: 55;
 --01: AA;
 --02: 11;
 --03: 33;
 --15: 15;

END;

Figure G.1 MIPS Pipelined Simulation Waveform

85

APPENDIX H: MIPS PIPELINED – PIPELINING SIMULATION – SPIM VALIDATION

Registers
=========================
 PC = 00000000 EPC = 00000000 Cause = 00000000 BadVAddr= 00000000
 Status = 00000000 HI = 00000000 LO = 00000000
 General Registers
R0 (r0) = 00000000 R8 (t0) = 00000000 R16 (s0) = 00000015 R24 (t8) = 00000008
R1 (at) = 10010000 R9 (t1) = 00000000 R17 (s1) = ffffffff R25 (t9) = 00000009
R2 (v0) = 0000000a R10 (t2) = 00000002 R18 (s2) = 00000004 R26 (k0) = 00000000
R3 (v1) = 00000000 R11 (t3) = 00000003 R19 (s3) = 00000007 R27 (k1) = 00000000
R4 (a0) = 10010093 R12 (t4) = 00000004 R20 (s4) = 00000011 R28 (gp) = 10008000
R5 (a1) = 00000000 R13 (t5) = 00000005 R21 (s5) = 00000000 R29 (sp) = 7fffe850
R6 (a2) = 7fffe858 R14 (t6) = 00000006 R22 (s6) = 00000000 R30 (s8) = 00000000
R7 (a3) = 00000000 R15 (t7) = 00000007 R23 (s7) = 00000000 R31 (ra) = 00000000
 Double Floating Point Registers
FP0 =00000000,00000000 FP8 =00000000,00000000 FP16=00000000,00000000 FP24=00000000,00000000
FP2 =00000000,00000000 FP10=00000000,00000000 FP18=00000000,00000000 FP26=00000000,00000000
FP4 =00000000,00000000 FP12=00000000,00000000 FP20=00000000,00000000 FP28=00000000,00000000
FP6 =00000000,00000000 FP14=00000000,00000000 FP22=00000000,00000000 FP30=00000000,00000000
 Single Floating Point Registers
FP0 =00000000 FP8 =00000000 FP16=00000000 FP24=00000000
FP1 =00000000 FP9 =00000000 FP17=00000000 FP25=00000000
FP2 =00000000 FP10=00000000 FP18=00000000 FP26=00000000
FP3 =00000000 FP11=00000000 FP19=00000000 FP27=00000000
FP4 =00000000 FP12=00000000 FP20=00000000 FP28=00000000
FP5 =00000000 FP13=00000000 FP21=00000000 FP29=00000000
FP6 =00000000 FP14=00000000 FP22=00000000 FP30=00000000
FP7 =00000000 FP15=00000000 FP23=00000000 FP31=00000000

Console
=========================
00: $s0 = 0x15 = 0d21 = 0x00000015
01: $s1 = 0x02 SUB 0x03 = 0d-1 = 0xffffffff
02: $s2 = 0x04 AND 0x05 = 0d4 = 0x00000004
03: $s3 = 0x06 OR 0x07 = 0d7 = 0x00000007
04: $s4 = 0x08 ADD 0x09 = 0d17 = 0x00000011

86

APPENDIX I: MIPS PIPELINED – DATA HAZARDS AND FORWARDING SIMULATION

--
-- Victor Rubio
-- Filename: dependencies_example.mif
-- Description: Instruction Memory Initialization file for MIPS
-- Pipelined Processor.
-- Example obtained from P&H pg. #477-481
--

--256 x 32 ROM implemented using
--four Embedded Array Blocks on Flex10K70 device
DEPTH = 256;
WIDTH = 32;

--Display in Hexidecimal Format
ADDRESS_RADIX = HEX;
DATA_RADIX = HEX;

CONTENT
BEGIN

 --Default Instruction Memory Vales
 [00..FF] : 00000000;

 --Initialized Instruction Memory
 --PC Instruction
 00: 00231022; --00: SUB $2, $1, $3 --> $2 = 0x01 - 0x03 = 0d-2 = 0xFE
 01: 00456024; --04: AND $12, $2, $5 --> $12 = 0xFE and 0x05 = 0x04
 02: 00C26825; --08: OR $13, $6, $2 --> $13 = 0x06 or 0xFE = 0xFE
 03: 00427020; --0C: ADD $14, $2, $2 --> $14 = 0xFE + 0xFE = 0x1FC
 04: AC4F000A; --10: SW $15, 100 ($2) --> mem(100 + $2) = $15 = mem(0x64 + 0xFE)
 -- = mem(0x162) = 0x0F
END;

Figure I.1 MIPS Pipelined Data Hazard and Forwarding Simulation Waveform

87

APPENDIX J: MIPS PIPELINED – DATA HAZARDS AND FORWARDING SIMULATION – SPIM
VALIDATION

Registers
=========================
 PC = 00000000 EPC = 00000000 Cause = 00000000 BadVAddr= 00000000
 Status = 00000000 HI = 00000000 LO = 00000000
 General Registers
R0 (r0) = 00000000 R8 (t0) = 00000001 R16 (s0) = fffffffe R24 (t8) = 00000000
R1 (at) = 10010000 R9 (t1) = 00000003 R17 (s1) = 00000004 R25 (t9) = 00000000
R2 (v0) = 0000000a R10 (t2) = 00000005 R18 (s2) = fffffffe R26 (k0) = 00000000
R3 (v1) = 00000000 R11 (t3) = 00000000 R19 (s3) = 000001fc R27 (k1) = 00000000
R4 (a0) = 10010076 R12 (t4) = 00000000 R20 (s4) = 00000000 R28 (gp) = 10008000
R5 (a1) = 00000000 R13 (t5) = 00000006 R21 (s5) = 00000000 R29 (sp) = 7fffe850
R6 (a2) = 7fffe858 R14 (t6) = 000000fe R22 (s6) = 00000000 R30 (s8) = 00000000
R7 (a3) = 00000000 R15 (t7) = 00000000 R23 (s7) = 00000000 R31 (ra) = 00000000
 Double Floating Point Registers
FP0 =00000000,00000000 FP8 =00000000,00000000 FP16=00000000,00000000 FP24=00000000,00000000
FP2 =00000000,00000000 FP10=00000000,00000000 FP18=00000000,00000000 FP26=00000000,00000000
FP4 =00000000,00000000 FP12=00000000,00000000 FP20=00000000,00000000 FP28=00000000,00000000
FP6 =00000000,00000000 FP14=00000000,00000000 FP22=00000000,00000000 FP30=00000000,00000000
 Single Floating Point Registers
FP0 =00000000 FP8 =00000000 FP16=00000000 FP24=00000000
FP1 =00000000 FP9 =00000000 FP17=00000000 FP25=00000000
FP2 =00000000 FP10=00000000 FP18=00000000 FP26=00000000
FP3 =00000000 FP11=00000000 FP19=00000000 FP27=00000000
FP4 =00000000 FP12=00000000 FP20=00000000 FP28=00000000
FP5 =00000000 FP13=00000000 FP21=00000000 FP29=00000000
FP6 =00000000 FP14=00000000 FP22=00000000 FP30=00000000
FP7 =00000000 FP15=00000000 FP23=00000000 FP31=00000000

Console
=========================
00: $s0 = 0x01 SUB 0x03 = 0d-2 = 0xfffffffe
01: $s1 = 0xFE AND 0x05 = 0d4 = 0x00000004
02: $s2 = 0x06 OR 0xFE = 0d-2 = 0x fffffffe
03: $s3 = 0xFE ADD 0xFE = 0d508 = 0x000001fc

88

APPENDIX K: MIPS PIPELINED – DATA HAZARDS AND STALLS SIMULATION

--
-- Victor Rubio
-- Filename: hazard_stall.mif
-- Description: Instruction Memory Initialization file for MIPS
-- Pipelined Processor.
-- Example obtained from P&H pg. #489 - 496
--

--256 x 32 ROM implemented using
--four Embedded Array Blocks on Flex10K70 device
DEPTH = 256;
WIDTH = 32;
--Display in Hexidecimal Format
ADDRESS_RADIX = HEX;
DATA_RADIX = HEX;

CONTENT
BEGIN
 --Initialized Data Memory Values
 --00 : 55;
 --01 : AA;
 --02 : 11;
 --03 : 33;
 --Default Instruction Memory Vales
 [00..FF] : 00000000;
 --PC: Instruction Description:
00: 8C220014; --00: LW $2, 20($1) $2 = mem(20 + $1) = mem(0x14 + 0x01) = 0x15
01: 00452024; --04: AND $4, $2, $5 $4 = 0x15 AND 0x05 = 0x05
02: 00464025; --08: OR $8, $2, $6 $8 = 0x15 OR 0x06 = 0x17
03: 00824820; --0C: ADD $9, $4, $2 $9 = 0x05 + 0x15 = 0x1A
04: 00C7082A; --10: SLT $1, $6, $7 $1 = 0x06 SLT 0x07 = 0x01

END;

Figure K.1 MIPS Pipelined Data Hazard and Stall Simulation Waveform

89

APPENDIX L: MIPS PIPELINED – DATA HAZARDS AND STALLS SIMULATION – SPIM
VALIDATION

Registers
=========================
 PC = 00000000 EPC = 00000000 Cause = 00000000 BadVAddr= 00000000
 Status = 00000000 HI = 00000000 LO = 00000000
 General Registers
R0 (r0) = 00000000 R8 (t0) = 00000000 R16 (s0) = 00000015 R24 (t8) = 00000006
R1 (at) = 10010000 R9 (t1) = 00000000 R17 (s1) = 00000005 R25 (t9) = 00000007
R2 (v0) = 0000000a R10 (t2) = 00000000 R18 (s2) = 00000017 R26 (k0) = 00000000
R3 (v1) = 00000000 R11 (t3) = 00000005 R19 (s3) = 0000001a R27 (k1) = 00000000
R4 (a0) = 10010098 R12 (t4) = 00000000 R20 (s4) = 00000001 R28 (gp) = 10008000
R5 (a1) = 00000000 R13 (t5) = 00000006 R21 (s5) = 00000000 R29 (sp) = 7fffe850
R6 (a2) = 7fffe858 R14 (t6) = 00000000 R22 (s6) = 00000000 R30 (s8) = 00000000
R7 (a3) = 00000000 R15 (t7) = 00000000 R23 (s7) = 00000000 R31 (ra) = 00000000
 Double Floating Point Registers
FP0 =00000000,00000000 FP8 =00000000,00000000 FP16=00000000,00000000 FP24=00000000,00000000
FP2 =00000000,00000000 FP10=00000000,00000000 FP18=00000000,00000000 FP26=00000000,00000000
FP4 =00000000,00000000 FP12=00000000,00000000 FP20=00000000,00000000 FP28=00000000,00000000
FP6 =00000000,00000000 FP14=00000000,00000000 FP22=00000000,00000000 FP30=00000000,00000000
 Single Floating Point Registers
FP0 =00000000 FP8 =00000000 FP16=00000000 FP24=00000000
FP1 =00000000 FP9 =00000000 FP17=00000000 FP25=00000000
FP2 =00000000 FP10=00000000 FP18=00000000 FP26=00000000
FP3 =00000000 FP11=00000000 FP19=00000000 FP27=00000000
FP4 =00000000 FP12=00000000 FP20=00000000 FP28=00000000
FP5 =00000000 FP13=00000000 FP21=00000000 FP29=00000000
FP6 =00000000 FP14=00000000 FP22=00000000 FP30=00000000
FP7 =00000000 FP15=00000000 FP23=00000000 FP31=00000000

Console
=========================
00: $s0 = 0x15 = 0d21 = 0x00000015
01: $s1 = 0x15 AND 0x05 = 0d5 = 0x00000005
02: $s2 = 0x15 OR 0x06 = 0d23 = 0x00000017
03: $s3 = 0x05 + 0x15 = 0d26 = 0x0000001a
04: $s4 = 1 = if 0x06 < 0x07 = 0d1 = 0x00000001

90

APPENDIX M: MIPS PIPELINED – BRANCH HAZARD SIMULATION

--
-- Victor Rubio
-- Filename: branch_hazard.mif
-- Description: Instruction Memory Initialization file for MIPS
-- Pipelined Processor.
-- Example obtained from P&H pg. #496-500
--

--256 x 32 ROM implemented using
--four Embedded Array Blocks on Flex10K70 device
DEPTH = 256;
WIDTH = 32;
--Display in Hexidecimal Format
ADDRESS_RADIX = HEX;
DATA_RADIX = HEX;

CONTENT
BEGIN
 --Default Instruction Memory Vales
 [00..FF] : 00000000;
 --Initialized Instruction Memory

 --PC Instruction
00: 00885022; --00: SUB $10, $4, $8 --> $10 (A) = $4 - $8 = 0xFC
01: 10630007; --04: BEQ $3, $3, 7 --> if $3 = $3, 03 + 03 + 07 = 09
02: 00456024; --08: AND $12, $2, $5 --> $12 (C)= 2 & 5 = 0
03: 00466825; --0C: OR $13, $2, $6 --> $13 (D)= 2 OR 6 = 0x06
04: 00827020; --10: ADD $14, $4, $2 --> $14 (E)= 4 + 2 = 0x06
05: 00C7782A; --14: SLT $15, $6, $7 --> if 6 < 7 ... $15 (F)= 1
06: 00000020; --18: nop
07: 00000020; --1C: nop
08: 00000020; --20: nop
09: 00452020; --24: ADD $4, $2, $5 --> $4 = 0x02 + 0x05 = 0x07

Figure M.1 MIPS Pipelined Branch Hazard Simulation Waveform

91

APPENDIX N: MIPS PIPELINED – BRANCH HAZARD SIMULATION – SPIM VALIDATION

Registers
=========================
 PC = 00000000 EPC = 00000000 Cause = 00000000 BadVAddr= 00000000
 Status = 00000000 HI = 00000000 LO = 00000000
 General Registers
R0 (r0) = 00000000 R8 (t0) = 00000004 R16 (s0) = fffffffc R24 (t8) = 00000000
R1 (at) = 10010000 R9 (t1) = 00000008 R17 (s1) = 00000000 R25 (t9) = 00000000
R2 (v0) = 0000000a R10 (t2) = 00000003 R18 (s2) = 00000000 R26 (k0) = 00000000
R3 (v1) = 00000000 R11 (t3) = 00000003 R19 (s3) = 00000000 R27 (k1) = 00000000
R4 (a0) = 100100f0 R12 (t4) = 00000002 R20 (s4) = 00000000 R28 (gp) = 10008000
R5 (a1) = 00000000 R13 (t5) = 00000005 R21 (s5) = 00000000 R29 (sp) = 7fffe850
R6 (a2) = 7fffe858 R14 (t6) = 00000000 R22 (s6) = 00000007 R30 (s8) = 00000000
R7 (a3) = 00000000 R15 (t7) = 00000000 R23 (s7) = 00000000 R31 (ra) = 00000000
 Double Floating Point Registers
FP0 =00000000,00000000 FP8 =00000000,00000000 FP16=00000000,00000000 FP24=00000000,00000000
FP2 =00000000,00000000 FP10=00000000,00000000 FP18=00000000,00000000 FP26=00000000,00000000
FP4 =00000000,00000000 FP12=00000000,00000000 FP20=00000000,00000000 FP28=00000000,00000000
FP6 =00000000,00000000 FP14=00000000,00000000 FP22=00000000,00000000 FP30=00000000,00000000
 Single Floating Point Registers
FP0 =00000000 FP8 =00000000 FP16=00000000 FP24=00000000
FP1 =00000000 FP9 =00000000 FP17=00000000 FP25=00000000
FP2 =00000000 FP10=00000000 FP18=00000000 FP26=00000000
FP3 =00000000 FP11=00000000 FP19=00000000 FP27=00000000
FP4 =00000000 FP12=00000000 FP20=00000000 FP28=00000000
FP5 =00000000 FP13=00000000 FP21=00000000 FP29=00000000
FP6 =00000000 FP14=00000000 FP22=00000000 FP30=00000000
FP7 =00000000 FP15=00000000 FP23=00000000 FP31=00000000

Console
=========================
00: $s0 = 0x04 SUB 0x08 = 0d-4 = 0xfffffffc
01: beq $3, $3 ---> TAKEN
06: $s6 = 0x02 ADD 0x05 = 0d7 = 00000007

92

APPENDIX O: MIPS PIPELINED FINAL DATHPATH AND CONTROL

Figure O.1 MIPS Pipelined Final Dathpath and Control

93

