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Abstract

This presentation reviews interest-rate model-
ing since its advent in the mid 70s, with partic-
ular focus on fixed-income derivatives and their
valuation. We highlight the crucial role played
by practitioners in the evolution of modeling to
the present day. As we argue, the major theo-
retical advances were incited by traders needs
and insistence on model compatibility with liq-
uid instruments. The Gaussian, BDT, HJM,
and Libor Market Models are discussed in some
detail and many other models remarked on.
We conclude with some outstanding issues of
great practical importance that still defy a sat-
isfactory theoretical solution.
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Earlier Models and shortcomings

• In mid 80’s banks and institutional investors
were interested in evaluating callable bonds.

•How to price the embedded option?
• The bond’s call-adjusted duration?
• There were many term structure models.
• But, they were unacceptable to traders:
• They did not incorporate the initial yield

curve and so priced non-callable bonds in-
consistently with the market.

• They were (partial) equilibrium rather than
pure-arbitrage models like Black-Scholes.
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Earlier Short-Rate Models

The instantaneous interest rate rt follows

drt = a(rt)dt + b(rt)dWt,

where Wt is a Brownian motion under the risk-
neutral measure. Then, zero-coupon bonds and
European bond option prices are function C(r, t)
of rt and time that satisfy the PDE

∂C

∂t
+ a(r)

∂C

∂r
+

1

2
b2(r)

∂2C

∂r2
− rC = 0.

•Vasicek : drt = κ(θ − rt)dt + σdWt.
•CIR : drt = κ(θ − rt)dt + σ

√
rtdWt.

•Brennan-Schwartz: drt = κ(θ−rt)dt+
rσdWt.

•Dothan : drt = σdWt.
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Earlier multifactor models:

• Brennan-Schwartz two-factor short rate and
long rate model

• CIR multi-state variable model: rt is a given
function of a multidimensional diffusion pro-
cess.

The problem with all these models was
that they did not calibrate to the yield
curve. In fact, they could not fit an arbitrary
prescribed yield curve because the SDE coeffi-
cients were assumed constant.

Practitioner ad hoc models: mimic the
Black-Scholes or the binomial model with yield
rather than price as the underlying variable:

• Lognormal bond yield
• Binomial bond yield
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Arbitrage-Free Curve-Fitting Models

• CIR (1985) (Cox, et. al.) mentioned an
extension of their model with time-varying
drift to incorporate a given yield curve, but
the idea was not pursued.

• The Ho-Lee Model (1986) was the first
paper that developed this idea prominently.

• It was a binomial model exhibiting ex-
plicitly the curve at each state of the world
in terms of an initially prescribed curve.

• Jamshidian and independently HJM showed
in 1987 that its continuous-time limit was a
term-structure model in which the forward-
rate volatility σ(t, T ) is a constant:

σ(t, T ) = σ.
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• Equivalently, in the continuous-time limit
of Ho-Lee model, the T -maturity forward
rate f (t, T ) was given by

f (t, T ) =
1

2
σ2t2 + f (0, T ) + σWt.

• Equivalently, the short rate rt = f (t, t) fol-
lowed the Gaussian process

drt = (σ2t +
df(0, t)

dt
)dt + σdWt.

• Jamshidian (1987) also generalized this
to include a mean-reversion κ, namely, in-
troduced the extension of Vasicek model
with rt having a time-varying drift θt:

drt = κ(θ(t)− rt)dt + σdWt.

•He showed θ(t) is given in terms of initial
forward curve f (0, t) by

θ(t) = e−κt d

dt
(eκt(f (0, t) +

σ2

2κ2
(1− e−κt)2)).

• In HJM-terms, σ(t, T ) = e−κ(T−t).
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• This mean-reverting Gaussian model also
appeared in the 1988 version of HJM, and
was also studied in 1989 by Hull and
White (who named it after themselves).

• Introducing the concept of forward-risk
adjustment (reportedly also arrived at
by H. Geman in 1989), Jamshidian (1987)
also derived the pricing formula for an op-
tion on a zero-coupon bond, which
was of Black-Scholes/Merton (1973) form.
(Also applied it to options in CIR model).

•Restated in the more polished terminology
of forward measure, he essentially showed
forward prices and forward ares martin-
gales under the forward measure.

•He also showed that (in a single-state vari-
able model) an option on a coupon bond
decomposes into a sum of options on
zero-coupon bonds with appropriate strikes.
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The HJM Approach

• In 1987, Heath, Jarrow and Morton
formulated the joint dynamics of the
entire forward-rate curve f (t, T ) start-
ing from a given initial curve f (0, T ).

• They showed that the curve’s arbitrage-
free risk-neutral dynamics is determined
by the forward-rate volatilities σ(t, T ):

df(t, T ) =

∫ T

t
σ(t, s)dsσ(t, T )dt+σ(t, T )dWt.

• This is effectively an infinite dimensional
SDE, driven by a finite-dimensional Brow-
nian motion. (σ(t, T ) can be stochastic.)

• The model is generally “path dependent”,
requiring Monte-Carlo simulation for deriva-
tives valuation - otherwise discretization re-
sults in non-recombining trees.
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•HJM also showed the flat volatility model
σ(t, T ) = σ is the continuous-time limit of
the Ho-Lee Model.

• They pointed out that the “lognormal” volatil-
ity function σ(t, T ) = σf (t, T ) leads to ex-
plosion of the forward rates, and is hence
inadmissable.

• In a 1988 version, they extended the ap-
proach to multifactors (finite-dimensional
Brownian motion) and exhibited a two-factor
model, with a flat volatility for one factor
and a Vasicek e−κ(T−t) for the other.

• By a lengthly calculation (without use of
forward-risk-adjustment) they derived the
zero-coupon bond option formula for the
above Gaussian example.
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The Gaussian interest-rate model

• The Gaussian model has been studied by
many, particularly by Jamshidian in late
80s and early 90s whom we follow here.

• Its advantage is analytic tractability
and efficient valuation implementation.

• Its drawback is interest-rates are nor-
mally distributed, so can get negative.

• In its general form it assumes all volatili-
ties (e.g., σ(t, T ) and all correlations, in-
cluding with any exchange rates, equities,
and other economies) are deterministic.

•Deterministic volatility results in nice
and simple pricing formulae for Eu-
ropean options, futures convexity
and quantos (Jamshidian (1993)).
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•As discretization is in general non-recombining,
efficient Bermudan option valuation requires
a special form of σ(t, T ): in 1-factor case,

σ(t, T ) = σ(t)e−
∫ T
t κsds.

Equivalently, σ(t, T ) is “separable”, i.e., of
form σ(t, T ) = a(t)b(T ).

• In this case, Jamshidian (1991) showed

drt = (
df(0, t)

dt
+ v(t) + κ(t)(f (t, 0)− rt)) dt

+σ(t)dWt,

where

v(t) :=

∫ t

0
σ2(s, t)ds.

• This implies rt is a diffusion process.
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•Hence bond and option prices C are func-
tions C(r, t) of (r, t) and satisfy the PDE

∂C

∂t
+ (

df(0, t)

dt
+ v(t) + κ(t)(f (t, 0)− r))

∂C

∂r

+
1

2
σ2(t)

∂2C

∂r2
− rC = 0.

• This enables efficient finite-difference im-
plementation.

• Explicit formulae were derived for forward
rates and bond prices as functions of (t, rt):

f (t, T ) = f (t, 0)+

e−
∫ T
t κsds(rt − f (0, t) + v(t)β(t, T )),

where

β(t, T ) :=

∫ T

t
e−

∫ s
t κududs.
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•As for zero-coupon bond prices P (t, T ), they
are by definition related to forward rates by

f (t, T ) = −∂ log(P (t, T ))

∂T
. (P (T, T ) = 1)

•One has

P (t, T ) =
P (0, T )

P (0, t)
eβ(t,T )(f (t,0)−rt)−1

2v(t)β2(t,T ).

• This formula makes valuation of a coupon
bond (as required at each exercise date of
a bermudan option) efficient and exact.

• The fundamental solution of the PDE was
also derived. Namely, for t ≤ T , any solu-
tion C(t, r) of the PDE satisfies

C(rt, t) =

∫ T

t
G(t, R, T )C(R, T )dR,

where

G(t, R, T ) = P (t, T )
e
− (R−f (t,T ))2

2(V (T )−V (t))√
2π(v(T )− v(t))

.
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BDT Model and Forward Induction

• To remedy the negative rates in the Ho-Lee
model, Black, Derman and Toy pro-
posed in 1990 a binomial model with the
volatility of short rate rt proportional to rt.
(An extension with mean reversion was later
proposed by Black and Karisinski.)

• The BDT model no longer had the ana-
lytical tractability of Ho and Lee, and the
authors did not discuss any method for ef-
ficient calibration of the model to a pre-
scribed initial curve.

• Jamshidian (1991) showed the continu-
ous time limit of the BDT model was log-
normal of the form

rt = eA(t)+σ(t)Wt,

for some functions A(t) and σ(t).
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• For discretization, he proposed binomializ-
ing of Wt in the natural way: W0 = 0,

Wt+∆t −Wt ≈ ±
√

∆t,

equal probabilities of 1/2 of up or down.
•At period n (time t = n∆t) there are thus

n + 1 states i = −n,−n + 2, · · · , n− 2, n.
• The discrete version of the fundamental so-

lution of the pricing PDE is known as Arrow-
Debreu prices. Specifically, G(n, i, m, j)
is the price at period n and state i of the
contingent claim with period m payoff of 1
at state j and 0 at other states (n ≤ m).

• Being a price process, it was known G(n, i, m, j)
satisfies the backward induction, namely
the backward equation

G(n, i, m, j) =
1

2
P (n, i)(G(n+1, i+1, m, j)+G(n+1, i−1, m, j)).
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• Jamshidian showed G(n, i, m, j) also sat-
isfies a forward equation, namely,

G(n, i, m+1, j) =
1

2
P (m, j+1)G(n, i, m, j+1)+

1

2
P (m, j − 1)G(n, i, m, j − 1).

• This enabled Forward Induction: an
efficient determination of A(t) consistent
with a given initial curve by a single for-
ward sweep of the binomial tree (given σt).

•Given an initial curve and an initial yield
volatility curve, it similarly enabled in an
efficient single sweep the joint determina-
tion of a consistent A(t) and σ(t).

• The method was equally applicable to a
larger class of models of the form rt =
f (A(t) + σ(t)Wt) with f (x) an increas-
ing function (or more generally of the form
rt = g(Wt, A(t), σ(t))).
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Other analytically tractable models

While, prior to the Libor Market Model, the
Gaussian and BDT models were the most pop-
ular among practitioners due to their intuitive-
ness and efficiency, several other models have
been of theoretical interest, including

•Quadratic interest-rate model: An-
alytic solutions for bond prices and bond
options, Riccati Equation for curve fitting:
Beaglehole Tenney (1991), El Karoui et. al.
(1992), Jamshidian (1996).

• Simple square-root model: An ex-
tended CIR model calibrating the curve
analytically and pricing bond option in terms
of noncentral chi-squared distribution:
Jamshidian (1995).
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•Affine Yield Model: A generalization
of Vasicek and CIR models, Riccati-Equation
based: Duffie and Kan (1996).

•Positive Interest Model: An approach
for constructing positive-rate models: Fle-
saker and Hughston (1993).

•The potential approach : An approach
for deriving bond pricing formulae in sev-
eral models: Rogers (1996).

•Markov-functional model : A low di-
mensional alternative to the Libor-Market
Model: Hunt, et. al. (2000).

•Models with jump: Quite a few papers
since mid 90s, including extensions of HJM
and Libor Market Models to Lévy processes
and general semimartingales.
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Libor Market Model

•As early as 1990, Neuberger provided an
intuitive argument that led to a European
swaption (and as a special case, caplet)
pricing formula destined to become the in-
dustry standard.

• In fact, viewing the swaption as an op-
tion to exchange the swap’s floating and
fixed legs, leads, via Margrabe formula,
to the desired Black-type formula, subject
only to the assumption that the ratio of the
two legs, which is non other than the for-
ward swap rate, has deterministic
volatility.
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•However, it was not generally recognized
until mid 90’s that this Black-type pricing
formula for caplets and swaptions was in
fact theoretically consistent and sound.

•Miltersen et. al. (1997) derived the for-
mula for caplets under a theoretically rec-
ognized approach, demonstrating that it is
arbitrage free and consistent.

•Using an HJM setting under the risk-neutral
measure (which actually turns out to be
inappropriate for LMM), Brace et. al.
(1997) (BGM) formulated a forward-
Libor term structure for Libor rates in
which the Black formula held for caplets.
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•Musiela and Rutkowski (1997) took
the more satisfactory approach of examin-
ing forward Libor rates under the forward
measure.

• They observed the n-th forward Libor rate
Ln

t is a martingale under the Tn+1-forward
measure, leading easily to the Black-type
formula if its volatility σn

t is deterministic.

• They also derived the drift of Ln−1
t un-

der the Tn+1-forward measure, which de-
pended only on Ln

t , thus iteratively con-
structing of the Libor market model.

• But, they neglected actually writing the
SDE system for the forward Libor rates un-
der the final maturity forward measure.
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•Highlighting a finite tenor structure,
0 = T0 < T1 < · · · < Tm, Jamshid-
ian (1997) derived the forward Libor
SDE system under the terminal mea-
sure ( Tm-forward measure).

•He introduced the spot-Libor measure
as the proper analog of risk-neutral mea-
sure for the discrete-tenor model, and de-
rived the SDE system under this measure.

•He introduced the forward swap mea-
sure (useful for valuation of European swap-
tions) and the swap market model, which
models the volatilities of forward swaps rates
and is useful for European calibrated Bermu-
dan swaption valuation.

•He also described various major Libor and
swap derivatives of the time and discussed
the model’s applicability to them.
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•An attraction of the Libor Market Model is
that it can easily calibrate to at-the-money
caplets.

• The simplest way is to equate for all t the
forward Libor volatility σn

t to the (stripped)
implied volatility of the n-th caplet. (Of
course, this might not yield the best model
- for one thing it allows no caplet smile.)

• Following Jamshidian, let Bn denote the
Tn-maturity zero-coupon bond price pro-
cess, and δn ≈ Tn+1 − Tn be given day-
count fractions. For n < m, the forward
Libor rate process Ln is defined by

Ln
t :=

1

δn
(

Bn
t

Bn+1
t

− 1).
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• Since the numeraire of the Tn-forward mea-
sure is by definition Bn, it follows that
Ln−1 is a martingale under the Tn-forward
measure.

•Assuming Ln are continuous, the above eas-
ily implies that the drift of Ln under the
terminal measure is given by

−
m∑

i=n+1

d[Ln, Li]t

1 + δiL
i
t

.

• Thus, e.g., in the 1-factor case, the SDE
under terminal measure is given by

dLn
t

Ln
t

= −
m∑

i=n+1

σn
t σi

tL
i
t

1 + δiL
i
t

dt + σn
t dWm

t ,

where Wm
t is a Brownian motion under the

terminal measure.
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•Next, consider investing 1 dollar at time 0
in the T1-maturity zero-coupon bond, and
at T1 investing the received principal in the
T2-maturity bond, and continuing so on to
roll over the principal to the next maturity.

• Price process B∗ of this asset is clearly

B∗
t = B

η(t)
t

η(t)∏
j=1

1

B
j
Tj−1

,

where η(t) is the integer such that

Tη(t) − 1 < t ≤ Tη(t).

• The spot Libor measure is defined as
the equivalent martingale measure induced
by the above asset as numeraire. So, Bn/B∗

is a martingale under spot Libor measure.
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•Assuming continuity, the drift of Ln under
the spot Libor measure turns out to be

n∑
i=η(t)

d[Ln, Li]t

1 + δiL
i
t

.

• Thus, the forward Libor SDE under
the spot Libor measure is given by

dLn
t

Ln
t

=

n∑
i=η(t)

σn
t σi

tL
i
t

1 + δiL
i
t

dt + σn
t dW ∗

t ,

where W ∗
t is a Brownian motion under the

spot Libor measure.
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• For fixed n < m, the forward swap mea-
sure is defined as the equivalent martingale
measure induced by taking the annuity

m∑
i=n+1

δi−1B
i
t

as numeraire.
•Hence, the forward swap rate

Bn −Bm∑m
i=n+1 δi−1B

i
t

is a martingale under forward swap
measure.

• The Black formula for a European swap-
tion now follows easily if the forward swap
rate volatility is assumed deterministic.
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Some Outstanding Issues

Calibrating to Caplet/swaption volatil-
ity smile. One of the most outstanding chal-
lenges remains calibration to the volatility smile.
Even in the equity case the problem is not easy.
But, in the fixed income case the problem is
compounded by the added dimensionality of
the swaption tenor. As such, one now has to
calibrate to a 3-dimensional “volatility cube”
rather than just a 2-dimensional volatility sur-
face.
Exact fit is practically out of question. The

tradeoff is between the goodness of fit and ef-
ficiency. But, whereas many models have been
proposed that produce a smile, including a CEV
type volatility model by Andersen and Andreasen
(2000), other stochastic volatility models, and
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not least, models with jumps, there still ap-
pears no consensus as to their adequacy and
suitability for smile calibration. Fortunately,
certain practical improvisations are possible.

Valuation of Bermudan options in the
Libor Market Model. Viewing each for-
ward Libor rate Ln as a state variable results
in a Markovian setting and an associated PDE
for prices of options. But the dimensional-
ity will be too large for the finite difference
method. So, save for a low-dimensional Mar-
kovian approximation, the only way to handle
American and Bermudan options in LMM is
by Monte-Carlo simulation. Although the past
two decades have witnessed important strides
in this direction, to our knowledge the jury is
still not out on their effectiveness in the Libor
Market Model.
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For example, one of the most promising Monte-
Carlo techniques is the regression method for
calculating conditional expectation. For this
purpose a suitable set of “basis” functions of
the state variables is chosen to project on the
span of. For two or three state variables, low
degree polynomials are found to provide an ad-
equate approximation. But, when there are
dozens of state variables as in the Libor Mar-
ket Model, such a set will be too large for effi-
cient regression. On the hand hand, too small
a set of basis functions will fail to provide an
adequate approximation. We are not aware of
any resolution of this difficulty.
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