
A proof of correctness for the Hindley-Milner

type inference algorithm

Jeff Vaughan
vaughan2@cis.upenn.edu

May 5, 2005 (Revised July 23, 2008)

1 Introduction

This report details a proof that the Hindley-Milner type inference algorithm is sound and complete with
respect to a declarative formulation of let polymorphism. Let polymorphism is a decidable type system,
which allows polymorphic types to be introduced to type contexts only in let expressions, and is the basis
of the ML and Haskell type systems.

1.1 Road map

I will show that that the both the declarative type system are sound and complete with respect to an
intermediate syntax directed system. Section 2 provides definitions for the type systems and supporting
mathematical structures. The proofs and auxiliary lemmas are located in section 3.

2 Definitions

2.1 Preliminaries

2.1.1 Sequences, sets and bar notation

I use the notation x (“bar notation”) to denote a finite ordered sequence of objects: x1x2x3 . . . xn. Discussion
of an arbitrary element is a shorthand for quantification over all elements (e.g. P (xi) instead of ∀i ∈
{1 . . . n}.P (xi)). Here n is a fixed number, which is potentially different for each sequence; bar notation is
clearly not appropriate when we care about n’s value.

I freely convert between sets and sequences. For example, I use a ∈ x as shorthand for a ∈ {xj |j ∈
{1 . . . n}}, or y = Y to make y an arbitrary sequence of the elements in Y .

The notation [τ/α] is a shorthand for the substitution [τ1/α1] ◦ [τ2/α2] ◦ . . . [τn/αn].

2.1.2 Type convention

This report includes both quantified and unquantified types. We denote unquantified types using τ and
potentially quantified types with σ. The grammar of types is

τ ::= α | τ → τ
σ ::= τ | ∀α.σ

Type equality is syntactic up to alpha renaming. For monotypes, equality is purely structural. Polymor-
phic equality is defined using substitution (section 2.1.3). Types ∀α.τ and ∀β.τ ′ are equal iff τ = [αi/βj]τ ′.
This relation is obviously transitive, reflexive and symmetric.

1

The ftv function evaluates to the set of free type variables of its argument. Formally,

ftv(α) = {α}
ftv(τ → τ ′) = ftv(τ) ∪ ftv(τ ′)
ftv(∀α.σ) = ftv(σ) \ {α}

2.1.3 Substitution

Substitution is defined as usual. Substitution over quantified types is capture avoiding. We write τ replaces
α as [τ/α] and the null substitution as [−]. Substitutions R and S are defined to be equal iff ∀x.R(x) = S(x).

As functions, substitutions can be composed and applied. I use RSτ as shorthand for (R ◦ S)(τ).
When α = α1α2 . . . αn, I use notation Sα to denote mapping S over α, i.e. (Sα1)(Sα2) . . . (Sαn).
The domain and range of a substitution are defined as follows

dom(S) = {α : α 6= S(α)}
range(S) = {S(α) : α ∈ dom(S)}

These definitions allow us to prove S = S′ implies dom(S) = dom(S′) and range(S) = range(S′). Addition-
ally, we define the derived form vars(S) = dom(S) ∪ ftv(range(S)). We say type variable α is fresh for S
when α /∈ vars(S).

I define a domain restriction operator, |¬, as

S|¬X(β) =
{

β β /∈ X
S(β) otherwise

Domain restriction binds less tightly than composition, and S′ ◦ S|¬X reads as (S′ ◦ S)|¬X. We will use the
following domain restriction properties:

• S ◦ T |¬X = S ◦ (T |¬X)|¬X

• S ◦ T |¬X = (S|¬X) ◦ (T |¬X) where X ∩ range(T) = ∅

• [τ/α]|¬{α} = [−]

• S|¬X = S where X ∩ dom(S) = ∅

• S|¬X∪Y = (S|¬X)|¬Y

2.1.4 Ordering on types

We order types with the v operator which is defined as follows:

βi /∈ ftv(∀α.τ) τ ′ = [τ/α]τ

∀α.τ v ∀β.τ ′

Generally, |α| 6= |β|. Intuitively σ v σ′ means σ′ is more specific than σ. For example,

∀β.β → β v ∀α.(α→ α)→ (α→ α) v (γ → γ)→ (γ → γ)

Since there is only a single rule, this judgment is invertible. Additionally, since the rule is purely syntactic,
for all instantiations of σ and σ′, if σ v σ′, we can prove it with a derivation of height one. Lastly, the v
relation is transitive.

2

2.1.5 Contexts and generalization

We define typing contexts in the usual fashion,

Γ ::= ∅ | Γ, x : σ

The free type variables of a context are defined as the union of the free type variables in all bindings.

ftv(∅) = ∅
ftv(Γ, x : σ) = ftv(Γ) ∪ ftv(σ)

Substitution over a context is defined by

S(∅) = ∅
S(Γ, x : σ) = S(Γ), x : S(σ)

We also define a generalization operator which is a function from a context and a type to a new type.
Intuitively, type Γ(τ) is τ with all free variables quantified. Formally,

Γ(τ) = ∀α.τ where α = ftv(τ) \ ftv(Γ)

2.1.6 Unification

We suppose the existence of a unification algorithm, U , with the following properties.

• U(τ, τ ′) = V such that V (τ) = V (τ ′) or no such substitution exists and U(τ, τ ′) is undefined.

• vars(U(τ, τ ′)) ⊆ ftv(τ) ∪ ftv(τ ′)

• R(τ) = R(τ ′) implies there exists S such that R = S ◦U(τ, τ ′). That is, U(τ, τ ′) is the the most general
unifier.

2.2 Declarative Typing Rules

x : σ ∈ Γ
Γ `D x : σ

D-Var

Γ `D e : σ′ σ′ v σ
Γ `D e : σ

D-Inst

Γ `D e : σ α /∈ ftv(Γ)
Γ `D e : ∀α.σ

D-Gen

Γ `D e : τ ′ → τ Γ `D e′ : τ ′

Γ `D ee′ : τ
D-App

Γ, x : τ `D e : τ ′

Γ `D λx.e : τ → τ ′
D-Abs

Γ `D e : σ Γ, x : σ `D e′ : τ
Γ `D let x = e in e′ : τ

D-Let

3

2.3 Syntax Directed Typing Rules

x : σ ∈ Γ σ v τ
Γ `S x : τ

SD-Var

Γ `S e : τ Γ, x : Γ(τ) `S e′ : τ ′

Γ `S let x = e in e′ : τ ′
SD-Let

Γ `S e : τ ′ → τ Γ `S e′ : τ ′

Γ `S ee′ : τ
SD-App

Γ, x : τ `S e : τ ′

Γ `S λx.e : τ → τ ′
SD-Abs

2.4 Algorithmic Typing Rules

The algorithmic typing rules are a bit trickier. The Hindley-Milner algorithm is based on unification, and
occasionally needs fresh type variables. To avoid the messiness that would accompany formalizing a symbol
generator, we thread a sequence, or “tape,” of type variables through the judgment.

We write typing judgments in the algorithmic system as:

Γ; AX `W e ↑ (S, τ,A)

This means that running the Hindley-Milner algorithm on expression e in context Γ with tape AX finds e : τ .
Additionally, the algorithm returns substitution S and tape prefix A. Substitution S is used to transmit the
results of unifications performed by the algorithm to the enclosing context.

x : ∀α.τ ∈ Γ

Γ; Aβ `W e ↑ (∅, [β/α]τ,A)
WA-Var

Γ; AβYX `W e1 ↑ (S1, τ1,AβY) S1(Γ); AβY `W e2 ↑ (S2, τ2,Aβ) V = U(S2τ1, τ2 → β)
Γ; AβYX `W e1e2 ↑ (V ◦ S2 ◦ S1, V (β),A)

WA-App

Γ, x : β; AX `W e ↑ (S, τ,AX)
Γ; AXβ `W λx.e ↑ (S, S(β)→ τ,A)

WA-Abs

Γ; AYX `W e0 ↑ (S0, τ0,AY) S0(Γ), x : S0(Γ)(τ0); AY `W e1 ↑ (S1, τ1,A)
Γ; AYX `W let x = e0 in e1 ↑ (S1 ◦ S0, τ1,A)

WA-Let

3 Theorems

3.1 Soundness of the syntax directed declarative rules

The statement of soundness for the syntax directed system is simple: Γ `S e : τ =⇒ Γ `D e : τ . This
statement is strong enough to be proved by induction. However, first will need the following lemma:

4

3.1.1 Generalization lemma

Lemma: Γ `D e : τ and σ = Γ(τ) implies Γ `D e : σ.
Proof: I will show that Γ `D e : ∀α1 . . . αn.τ where αi ∈ ftv(τ) \ ftv(Γ) by induction on the length of the

sequence of unique quantification variables. Case analysis on the number of quantification variables:

• n = 0: ∀α1 . . . αn.τ is identical to τ , and Γ `D e : ∀α1 . . . αn.τ trivially.

• n > 0: By the inductive hypothesis, Γ `D e : ∀α1 . . . αn−1.τ

Recall αi ∈ ftv(τ) \ ftv(Γ).

From these, rule D-Gen gives
Γ `D e : ∀α1 . . . αn.τ

Taking α = ftv(τ) \ ftv(Γ) shows Γ `D e : Γ(τ).

QED

3.1.2 Proof of soundness for the syntax directed system

We will show Γ `S e : τ =⇒ Γ `D e : τ . Proof is by induction on the height of the typing judgment
Γ `S e : τ . We do case analysis on the final step of the syntax directed proof.

• SD-Var: e = x

By the premises of SD-Var, x : σ ∈ Γ and σ v τ . In the declarative system we derive:

D-Inst

D-Var
x : σ ∈ Γ

Γ `D x : σ σ v τ
Γ `D x : τ

• SD-Let: e = let x = e0 in e1 and τ = τ1

The premises of SD-Let give Γ `S e0 : τ0 and Γ, x : Γ(τ0) `S e1 : τ1
By the induction hypothesis, we know Γ `D e0 : τ0 and Γ, x : σ `D e1 : τ1. By the generalization
lemma proved in section 3.1.1, Γ `D e0 : Γ(τ0).

We can now apply D-Let

Γ `D e0 : σ Γ, x : σ `D e1 : τ1
Γ `D let x = e0 in e1 : τ1

D-Let

• SD-App and SD-Abs. These rules are identical to their declarative counterparts.

QED

3.2 Completeness of the syntax directed system

While the declarative system can assign polytypes to terms, the syntax directed one cannot. Therefore, it’s
clearly not the case that Γ `D e : σ implies Γ `S e : σ. We state a completeness differently, and require that
the syntax directed system can assign a type which, when generalized, is at least as general as σ. That is,
Γ `S e : τ with Γ(τ) v σ.

Fortunately this is provable using straightforward induction and the following lemma.

5

3.2.1 Context generalization lemma

Lemma: σ v σ′ and Γ, x : σ′ `S e : τ implies Γ, x : σ `S e : τ with a derivation no larger than the first.
Proof: By induction on the height of the first derivation. We apply case analysis of the final step this

derivation.

• SD-Var

The premises of SD-Var give x : σ′ ∈ Γ, x : σ′ and σ′ v τ . Additionally we use transitivity of v to
realize, σ v τ . By the form of the definition of v (section 2.1.4) that sub derivation can be written
with height one.

We can write the following proof:
x : σ ∈ Γ, x : σ σ v τ

Γ, x : τ
SD-Var

• SD-Let, SD-App, and SD-Abs do not make specific reference to the contents of their context. Each
conclusion follows directly from the inductive hypotheses.

QED

3.2.2 Proof of completeness of the syntax directed system

We will show Γ `D e : σ =⇒ Γ `S e : τ where Γ(τ) v σ. Proof is by induction on the height of the
declarative typing judgment and uses case analysis on its final step.

• D-Inst

The premises of D-Inst give Γ `D e : σ′.

By the inductive hypothesis, Γ `S e : τ and Γ(τ) v σ′. By the transitivity of the type ordering relation,
we have Γ(τ) v σ.

• D-Var: e = x and σ = ∀α.τ where, by alpha renaming, αi /∈ ftv(Γ)

The premise of D-Var gives x : σ ∈ Γ.

As σ v τ , we can use SD-Var to find Γ `S x : τ .

Now we want to show Γ(τ) v σ.

ftv(Γ(τ)) = ftv(Γ) ∩ ftv(τ)

Therefore αi /∈ ftv(Γ(τ)), and

αi /∈ ftv(Γ(τ)) τ = [−]τ
Γ(τ) v σ

Defn. of v

• D-Gen: σ = ∀β′.σ = ∀β′, β.τ ′

The derivation ends with

Γ `D e : σ β′ /∈ ftv(Γ)
Γ `D e : ∀β′.σ

D-Gen

By the inductive hypothesis we know Γ `S e : τ where Γ(τ) = ∀α.τ v σ.

Inverting the definition of v we have βi /∈ ftv(Γ(τ)) and τ ′ = [τ/α]τ .

6

As β′ /∈ ftv(Γ), we know β′ /∈ ftv(Γ(τ)).

β′, βi /∈ ftv(Γ(τ)) τ ′ = [τ/α]τ

∀α v ∀β′, β.τ ′
Defn. of v

Rewriting the final statement in the derivation gives us Γ(τ) v σ.

• D-Let: e = let x = e0 in e1, τ = τ1, and σ = σ1

Premises give Γ `D e0 : σ0 and Γ, x : σ0 `D e1 : σ1.

Invoking the the inductive hypothesis we have Γ `S e0 : τ0 and Γ, x : σ0 `S e1 : τ1, where Γ(τ0) v σ0

and Γ(τ1) v σ1.

Applying the context generalization lemma (3.2.1), yields Γ, x : Γ(τ0) `S e1 : τ1. Putting this together:

Γ `S e0 : τ0 Γ, x : Γ(τ0) `S e1 : τ1
Γ `S let x = e0 in e1 : τ1

SD-LET

• Rules D-App and D-Abs are identical to their syntax directed counterparts. These cases are trivial.

QED

3.3 Soundness of the algorithmic relation

As for the syntax directed system, soundness of the algorithmic relation is easy to state: Γ; A `W e ↑ (S, τ,A′)
implies SΓ `S τ . We will perform induction directly on this statement, and find the following two lemmas
helpful.

3.3.1 Renaming trick lemma

Lemma: ∀Γ, S, τ.∃S′.SΓ(S ◦ S′τ) v SΓ(τ) and S′(Γ) = Γ.
Proof: By constructing S′.
Let γ = ftv(τ) \ ftv(Γ)
Pick disjoint sets of fresh variables δ and ζ such that δi, ζi /∈ vars(S) ∪ ftv(τ) ∪ ftv(Γ) and δi 6= ζj .
By the definition of generalization:

SΓ(τ) = S∀γ.τ = S∀ζ.[ζ/γ]τ = ∀ζ.S ◦ [ζ/γ]τ

Defining S′ = [δ/γ] and applying the definition of generalization:

SΓ(S ◦ S′τ) = ∀δβ.S ◦ S′τ

where βi 6= δj .
Because ftv(SΓ(SS′τ)) ⊆ δ ∪ range(S) ∪ ftv(τ),

ζi /∈ ftv(SΓ(S ◦ S′τ))

and
ζi /∈ ftv(SΓ(S ◦ S′τ)) S ◦ [ζ/γ]τ = [ζ/δ] ◦ S ◦ [δ/γ]τ

SΓ(S ◦ S′τ) v SΓ(τ)
Defn. of v

As vars(S′) ∩ ftv(Γ) = ∅, we also conclude S′(Γ) = Γ.

QED

7

3.3.2 Substitution Lemma

Lemma: Γ `S e : τ implies SΓ `S e : Sτ
Proof: By induction on the height of the judgment.

• SD-Var

x : σ ∈ Γ σ v τ
Γ `S x : τ

SD-Var

Noting Sσ ∈ SΓ and Sσ v Sτ , we use SD-Var to conclude SΓ `S x : Sτ .

• SD-Let

Γ `S e : τ Γ, x : Γ(τ) `S e′ : τ ′

Γ `S let x = e in e′ : τ ′
SD-Let

By the induction hypothesis:
SΓ, x : SΓ(τ) `S e′ : Sτ ′

However, we need a judgment of the form SΓ, x : SΓ(τb) `S τ ′

Picking S′ as the existential witness to lemma 3.3.1 gives SΓ(S ◦ S′τ) v SΓ(τ) and S′(Γ) = Γ.

Thus, by the context generalization lemma (3.2.1),

SΓ, SΓ(S ◦ S′τ) `S Sτ ′

By the induction hypothesis and Γ = S′Γ:

SS′Γ `S e : S ◦ S′τ

SΓ `S e : S ◦ S′τ

Applying SD-Let gives SΓ `S let x = e in e′ : Sτ ′

• SD-App and SD-Abs: These cases are trivial. The conclusions follow directly from the induction
hypotheses.

QED

3.3.3 Proof of soundness of the algorithmic relation

We will show Γ; A `W e ↑ (S, τ,A′) implies SΓ `S τ . Proof is by induction on the derivation of the
algorithmic judgment. Case analysis on the final rule used:

• WA-Var: e = x, τ = [β/α]τ0 and S = [−].

By the premise of WA-Var, we find x : ∀α.τ0 ∈ Γ

x : ∀α.τ0 ∈ Γ

[β/α]τ0 = [β/α]τ0
∀α.τ0 v [β/α]τ0

Defn. of v

Γ `S [β/α]τ0
SD-Var

As Γ = [−]Γ, this case is concluded.

8

• WA-Abs: e = λx.e0 and τ = S(β)→ τ0

By the premise of WA-Abs,
Γ, x : β; AX `W λx.e0 ↑ (S, τ0,A)

By the induction hypothesis and definition of substitution,

SΓ, x : Sβ `S e0 : τ0

Applying SD-Abs to the above judgment, we derive:

SΓ `S λx.e0 : S(β)→ τ0

• WA-Let: e = let x = e0 in e1, S=S1 ◦ S2

The algorithmic derivation ends with

Γ; AYX `W e0 ↑ (S0, τ0,AY) S0(Γ), x : S0(Γ)(τ0); AY `W e1 ↑ (S1, τ1,A)
Γ; AYX `W let x = e0 in e1 ↑ (S1 ◦ S0, τ1,A)

WA-Let

We want to show:
S1S0Γ `S let x = e0 in e1 : τ1

This requires the following two judgments (for some τb):

S1S0Γ `S e0 : τb

S1S0Γ, x : S1S0Γ(τb) `S e1 : τ1

Observe that the inductive hypothesis gives

S0Γ `S e0 : τ0

and
S1S0Γ, x : S1S0Γ(τ0) `S e1 : τ1

By lemma 3.3.1 we can pick S� such that

S1S0Γ(S1S
�τ0) v S1S0Γ(τ0)

and S�(S0Γ) = S0Γ

By the substitution lemma (lemma 3.3.2) and the first invocation of the induction hypothesis:

S1S
�S0Γ `S e0 : S1S

�τ0

and
S1S0Γ `S e0 : S1S

�τ0

Applying context generalization (lemma 3.2.1) to the induction hypothesis’s second claim gives

S1S0Γ, x : S1S0Γ(S1S
�τ0) `S e : τ1

Putting this all together gives

S1S0Γ `S e0 : S1S
�τ0 S1S0Γ, x : S1S0Γ(S1S

�τ0) `S e : τ1
S1S0Γ `S let x = e0 in e1τ1

SD-Let

9

• WA-App: e = e1e2, S=V ◦ S2 ◦ S1 and τ = V (β)

From the premises of WA-App we have

Γ; AβYX `W e1 ↑ (S1, τ1,AβY)

S1Γ, AβY;`W e2 ↑ (S2, τ2, Aβ)

and
V = U(S2(τ1), τ2 → β)

Applying the induction hypothesis to the first two premises gives S1Γ `S e1 : τ1 and S2S1Γ `S e2 : τ2
Using the substitution lemma (3.3.2) on the above judgments yields: V S2S1Γ `S e1 : V S2τ1 and
V S2S1Γ `S e2 : V τ2
From the definition of unification and the third WA-App premise:

V S2(τ1) = V (τ2 → β) = V (τ2)→ V (β)

Hence
V S2S1Γ `S e1 : V (τ2)→ V (β)

and

V S2S1Γ `S e1 : V (τ2)→ V (β) V S2S1Γ `S e2 : V (τ2)
V ◦ S2 ◦ S1Γ `S e1e2 : V (β)

SD-App

QED

3.4 Completeness of the algorithmic system

We want to show that the algorithmic system is complete with respect to the syntax directed type system.
Completeness here does not mean that we can algorithmically find any type valid in the syntax directed
system. As the syntax directed system can assign many types to an expression and the algorithmic system
can only assign one, this is clearly not possible. Instead, I claim that the Hindley-Milner algorithm assigns
principal types; that is, any type given by the syntax directed system is a substitution of the type found
algorithmically.

The claim above is too weak to use directly for induction, so I will prove that, given some Γ and e, for
all substitutions Q,

QΓ `S e : τ ′ =⇒ ∃R.∀AX.AX ∩ (ftv(Γ) ∪ ftv(τ ′) ∪ vars(Q)) = ∅ implies
(i) Γ; AX `W e ↑ (S, τ, A)
(ii) (R ◦ S)|¬X = Q
(iii) τ ′ = R(τ)

Although this statement is complicated, it makes sense. Given QΓ `S e : τ , we expect (but do not prove
directly) Γ `S e : τ , as Γ v QΓ. Thus claim (i) is reasonable. Claim (ii) is a technical detail required for the
SD-Let case, and claim (iii) is the statement we actually want.

Additionally the main proof will require new lemmas. Lemmas 3.4.1 and 3.4.4 are used directly, while
3.4.2 and 3.4.3 needed to prove 3.4.4.

10

3.4.1 Algorithmic substitution variables lemma

Lemma: Γ; AX `W e ↑ (S, τ, A) implies ftv(τ) ∪ vars(S) ⊆ ftv(Γ) ∪X
Proof: By induction on the height of the algorithmic derivation.

• WA-Var:

x : ∀α.τ ∈ Γ

Γ; Aβ `W e ↑ (∅, [β/α]τ,A)
WA-Var

vars([−]) ∪ ftv([β/α]τ) = (ftv(τ) \ α) ∪ β = ftv(∀α.τ) ∪ β ⊆ ftv(Γ) ∪ β

• WA-App:

Γ; AβYX `W e1 ↑ (S1, τ1,AβY) S1(Γ); AβY `W e2 ↑ (S2, τ2,Aβ) V = U(S2τ1, τ2 → β)
Γ; AβYX `W e1e2 ↑ (V ◦ S2 ◦ S1, V (β),A)

WA-App

By the induction hypothesis,
ftv(τ1) ∪ vars(S1) ⊆ ftv(Γ) ∪X

ftv(τ2) ∪ vars(S2) ⊆ ftv(S1Γ) ∪Y ⊆ ftv(Γ) ∪XY

Hence ftv(S2(τ1)) ⊆ ftv(Γ) ∪XY.

By the definition of unification, vars(V) ⊆ ftv(S2(τ1)) ∪ ftv(τ2) ∪ {β}.
Therefore ftv(V (β)) ∪ vars(V ◦ S2 ◦ S1) ⊆ ftv(Γ) ∪XYβ.

• WA-Abs:

Γ, x : β; AX `W e ↑ (S, τ,AX)
Γ; AXβ `W λx.e ↑ (S, S(β)→ τ,A)

WA-Abs

By the induction hypothesis,

vars(S) ∪ ftv(τ) ⊆ ftv(Γ, x : β) ∪X ⊆ ftv(Γ) ∪Xβ

Therefore
vars(S) ∪ ftv(S(β)→ τ) ⊆ ftv(Γ) ∪Xβ

• WA-Let:
Γ; AYX `W e0 ↑ (S0, τ0,AY) S0(Γ), x : S0(Γ)(τ0); AY `W e1 ↑ (S1, τ1,A)

Γ; AYX `W let x = e0 in e1 ↑ (S1 ◦ S0, τ1,A)
WA-Let

By the induction hypothesis,
ftv(τ0) ∪ vars(S0) ⊆ ftv(Γ) ∪X

ftv(τ1) ∪ vars(S1) ⊆ ftv(S0Γ, x : S0Γ(τ0)) ∪XY ⊆ ftv(Γ) ∪ vars(S0) ∪ ftv(τ0) ∪XY ⊆ ftv(Γ) ∪XY

Therefore
vars(S0 ◦ S1) ∪ ftv(τ1) ⊆ ftv(Γ) ∪XY

QED

11

3.4.2 Lemma: Substitution of renamed variables

Lemma: Assume δ is contains fresh, pairwise-disjoint type variables—that is δi /∈ vars(S)∪ ftv(τ) and δi = δj
only when i = j. Then

Sτ = [S(α)/δ] ◦ S ◦ [δ/α]τ.

Proof: Proof is by induction on structure of τ .

• Case τ = x

– Subcase x = αi ∈ α

Sτ = Sαi

= [S(αi)/δi]δi
= [S(α)/δ]δi as elements δ disjoint

= [S(α)/δ] ◦ Sδi as δi /∈ vars(S)

= [S(α)/δ] ◦ S ◦ [δ/α]αi
= [S(α)/δ] ◦ S ◦ [δ/α]τ

– Subcase x /∈ α

Sτ = Sx

= [S(α)/δ] ◦ Sx by freshness of δ

= [S(α)/δ] ◦ S ◦ [δ/α]x as x /∈ α

• Case τ = τ1 → τ2

Immediate from the induction hypotheses.

QED

3.4.3 Lemma: Free variables of an applied substitution

Lemma: ftv(Sτ) = ∪{ftv(Sx) | x ∈ ftv(τ)}.
Proof: Proof is by induction on the structure of τ .

• Case τ = y

ftv(Sτ) = ftv(Sy) = ∪{ftv(Sy)} = ∪{ftv(Sx) | x ∈ {y}} = ∪{ftv(Sx) | x ∈ ftv(τ)}

• Case τ = τ1 → τ2

ftv(S(τ1 → τ2)) = ftv(Sτ1 → Sτ2)
= ftv(Sτ1)→ ftv(Sτ2)
= (∪{ftv(Sx) | x ∈ ftv(τ1)}) ∪ (∪{ftv(Sx) | x ∈ ftv(τ2)}) by the induction hypothesis
= ∪{ftv(Sx) | x ∈ ftv(τ1) ∪ ftv(τ2)}
= ∪{ftv(Sx) | x ∈ ftv(τ1 → τ2)}

QED

12

3.4.4 Lemma: Substitution through generalization

Lemma: SΓ(τ) v SΓ(Sτ)
Proof: Begin by rewriting the above types.

SΓ(τ) = S(∀α.τ)

= ∀δ.S ◦ [δ/α]τ

SΓ(Sτ) = ∀β.Sτ

where α = ftv(τ) \ ftv(Γ) and β = ftv(Sτ) \ ftv(SΓ). The δ are defined to be fresh and pairwise disjoint—
δi /∈ ftv(τ) ∪ vars(S) ∪ ftv(Γ) and δi = δj only when i = j.

By the definition of v it suffices to show the following.

(i) βi /∈ ftv(∀δ.S ◦ [δ/α]τ), for every βi ∈ β

(ii) Sτ = [τ ′′/δ] ◦ S ◦ [δ/α]τ , for some sequence, τ ′′.

Proposition (ii) is immediate from Lemma 3.4.2.
We now demonstrate (i).
Suppose β = ∅. Then (i) is vacuously true and we’re done. Otherwise consider an arbitrary βi ∈ β. We

can conservatively approximate the free variables of ∀δ.S ◦ [δ/α]τ as follows.

ftv(∀δ.S ◦ [δ/α]τ) = ftv(S ◦ [δ/α]τ) \ δ
= ftv(S([δ/α]τ)) \ δ
= ∪{ftv(Sx) | x ∈ ftv([δ/α]τ)} \ δ by Lemma 3.4.3

⊆ ∪{ftv(Sx) | x ∈ (ftv(τ) \ α) ∪ δ} \ δ
= (∪{ftv(Sx) | x ∈ (ftv(τ) \ α)}) ∪ (∪{ftv(Sx) | x ∈ δ}) \ δ
= ∪{ftv(Sx) | x ∈ (ftv(τ) \ α)} ∪ δ \ δ as δ fresh from S

⊆ ∪{ftv(Sx) | x ∈ (ftv(τ) \ α)}

It suffices to show βi /∈ ∪{ftv(Sx) | x ∈ (ftv(τ) \ α)}.
For a contradiction, assume βi is in the set. Then, for some x, βi ∈ ftv(Sx) and x ∈ (ftv(τ) \ α).

Expanding the definition of α gives x ∈ ftv(τ) \ (ftv(τ) \ ftv(Γ)). So x ∈ ftv(Γ), and ftv(Sx) ⊆ ftv(SΓ). As
βi ∈ ftv(Sx), we see βi ∈ ftv(SΓ). This is a contradiction with the definition of β.

QED

3.4.5 Proof of completeness for the algorithmic system

∀Γ, e.∀Q.QΓ `S e : τ ′ =⇒ ∃R.∀AX.AX ∩ (ftv(Γ) ∪ ftv(τ ′) ∪ vars(Q)) = ∅ implies
(i) Γ; AX `W e ↑ (S, τ, A)
(ii) (R ◦ S)|¬X = Q
(iii) τ ′ = R(τ)

Proof will be by induction on the height of the syntax directed judgment. We proceed with case analysis
on the final step of the proof tree.

• SD-Var Given e = x, S = [−] and Γ = Γ0, x : ∀α′.τ ′0
The syntax directed judgment looks like

13

x : Q∀α′.τ ′0 ∈ QΓ Q∀α′.τ ′0 v τ ′

QΓ `S x : τ ′
SD-Var

Let ∀α.τ0 = ∀α′.τ ′0 where αi /∈ vars(Q). Therefore ∀α.Qτ0 = Q∀α′ and

x : ∀α.Qτ0 ∈ QΓ

∀α.Qτ0 v τ ′

(i) Algorithm succeeds
x : ∀α.τ0 ∈ Γ

Γ; Aβ `W x ↑ ([−], [β/α],A)
SD-Var

(ii) ∃R.R ◦ S|¬β = Q

We need to find a substitution R, to fulfill both the above condition and requirement (iii).
Inverting the proof that ∀α.Qτ0 v τ ′ gives τ ′ = [τ/α]τ0.
Propose R = [τ/β] ◦Q
Noting βi /∈ vars(Q):

R ◦ S|¬β = [τ/β] ◦Q ◦ [−]|¬β = Q ◦ [τ/β]|¬β = Q

(iii) Want to show R[β/α]τ0 = τ ′

R[β/α]τ0 = [τ/β]Q[β/α]τ0
= [τ/β][β/α]Qτ0
= [τ/α]Qτ0
= τ ′

• SD-Abs

The syntax directed judgment ends in

QΓ, x : τ `S e : τ ′

QΓ `S λx.e : τ → τ ′
SD-Abs

(i) We want to show the algorithm succeeds for term λx.e in context Γ.
Pick a tape satisfying the assumptions, AXβ, and let Q′ = [τ/β] ◦Q. As β /∈ range(Q), we know
Q′(Γ, x : β) = Γ, x : τ and

Q′(Γ, x : β) `S e : τ ′

with a derivation identical to that in the premise of the given instance of SD-Abs.
Apply the induction hypothesis to find:

Γ, x : β; AX `W (S, τ ′w,A)

as well as ∃R.R ◦ S|¬X and τ ′ = Rτ ′w.
Hence, by WA-Abs,

Γ; AXβ `W λx.e ↑ (S, S(β)→ τ ′w,A)

(ii) Want to show ∃R.R ◦ S|¬Xβ = Q. Let R be a witness to the existential statement in (i).
By the I.H. we have

R ◦ S|¬X = Q′ = [τ/β] ◦Q
Therefore

R ◦ S|¬Xβ = Q

14

(iii) Want to show R(S(β)→ τ ′w) = τ → τ ′

From R ◦ S|¬X = Q′, we see RS(β) = Q′(β) = τ

By the inductive hypothesis, R(τ ′w) = τ ′

Therefore R(S(β)→ τ ′w) = τ → τ ′

• SD-Let: The syntax directed judgment ends with:

QΓ `S e0 : τ0 QΓ, x : QΓ(τ0) `S e1 : τ1
QΓ `S let x = e0 in e1 : τ1

SD-Let

(i) Algorithm succeeds
Applying the inductive hypothesis to the left hand premise gives

Γ;AXY `W e0 ↑ (S0, τ
w
0 ,AY)

where R ◦ S0|¬Y = Q and τ0 = R(τw
0).

We want to use WA-Let:

Γ; AXY `W e0 ↑ (S0, τ
w
0 ,AY) S0Γ, x : S0Γ; AX `W e1 ↑ (S1, τ

w
1 ,A)

Γ; AXY `W let x = e0 in e1 ↑ (S1 ◦ S0, τ
w
1 ,A)

WA-Let

While the left premise followed directly from our induction hypothesis, the right premise will
require a little more work.
By the premises

QΓ, x : QΓ(τ0) `S e1 : τ1

Using the inductive hypothesis, we substitute R ◦ S0 for Q and Rτw
0 for τ0

R ◦ S0Γ, x : R ◦ S0Γ(Rτw
0) `S e1 : τ1

By lemma 3.4.4, RS0Γ(τw
0) v R ◦ S0Γ(Rτw

0) and by context generalization (lemma 3.2.1) we have

R ◦ S0Γ, x : RS0Γ(τw
0) `S e1 : τ1

Applying the inductive hypothesis (with context S0Γ and substitution R) gives

S0Γ, x : S0Γ(τw
0); AX `W e1 ↑ (S1, τ

w
1 ,A)

and R′ such that R′ ◦ S1|¬X = R and τ1 = R′τw
1

Immediately we use WA-Let to conclude

Γ; AXY `W let x = e0 in e1 ↑ (S1 ◦ S0, τ
w
1 ,A)

(ii) Picking R′ as our existential witness, want to show R′ ◦ (S1 ◦ S0)|¬XY = Q.
Note that by lemma 3.4.1, vars(S0) ⊆ ftv(Γ) ∪Y, so ((R′ ◦ S1) ◦ S0)|¬X = (R′ ◦ S1)|¬X ◦ S0.

(R′ ◦ (S1 ◦ S0))|¬XY = ((R′ ◦ S1) ◦ S0)|¬XY

= ((R′ ◦ S1)|¬X ◦ S0)|¬Y

= (R ◦ S0)|¬Y
= Q

(iii) τ1 = R′(τw
1) by the inductive hypothesis.

15

• SD-App

QΓ `S e1 : τ2 → τ QΓ `S e2 : τ2
QΓ `S e1e2 : τ

SD-App

(i) Want to show that the algorithm succeeds
Applying the induction hypothesis to left premise gives

Γ; AβYX `W e1 ↑ (S1, τ
w
1 ,AβY)

with R1 ◦ S1|¬X = Q and τ2 → τ = R1τ
w
1 .

Now we can rewrite the right premise as R1S1Γ `S e2 : τ2 and use the inductive hypothesis to
find

S1Γ; AβY `W e2 ↑ (S2, τ
w
2 ,Aβ)

with R2 ◦ S2|¬Y = R1 and τ2 = R2τ
w
2 .

If we can unify S2τ
w
1 and τw

2 → β, we will be able to use WA-App. Note that (by lemma 3.4.1),
ftv(τw

1) ∩ βY = ∅ and β /∈ ftv(τw
2).

As R2 ◦ S2|¬Y ◦ S1|¬X(β) = Q(β) = β and β /∈ X ∪Y ∪ vars(S1) ∪ vars(S2), we know R2(β) = β.
Using the above, we derive:

[τ/β]R2S2τ
w
1 = [τ/β]R1τ

w
1 = [τ/β](τ2 → τ) = τ2 → τ

and
[τ/β]R2(τw

2 → β) = [τ/β]R2τ
w
2 → [τ/β]R2β = [τ/β]τ2 → [τ/β]β = τ2 → τ

Therefore these types can be unified. As unification returns a most general unifier, V = U(Sτw
1 , τ

w
2 →

β) implies there exists R∗ such that [τ/β]R2 = R∗ ◦ V .
Finally, we conclude

Γ; AβYX `W e1e2 ↑ (S1, V (β),A)

(ii) Picking R∗ as the existential witness for claims (i) and (ii), we want to show R∗◦V ◦S2◦S1|¬βXY =
Q.

R∗ ◦ V ◦ S2 ◦ S1|¬βXY = [τ/β] ◦R2 ◦ S2 ◦ S1|¬βXY

= [τ/β] ◦ (R2 ◦ S2)|¬Y ◦ S1|¬Xβ

= [τ/β] ◦R1 ◦ S1|¬Xβ

= [τ/β] ◦Q|¬β
= Q

(iii) We want to show R∗ ◦ V (β) = τ .

R∗ ◦ V (β) = [τ/β] ◦R2(β) = [τ/β](β) = τ

4 Conclusion

Combining our proofs of soundness gives

Γ; A `W e ↑ (S, τ,A′)⇒ Γ `D e : τ

Likewise, chaining completeness yields

Γ;`D e : σ ⇒ Γ; A `W e ↑ (S, τ,A′)

where Γ(τ) v σ. Hence, up to type generalization, the Hindley-Milner and algorithmic systems are equivalent.

16

5 Acknowledgments

Dimitrios Vytiniotis provided invaluable guidance on substitution semantics and their roll in tricky inductive
proofs. Christian Urban pointed out a bug in the original proof of Lemma 3.4.4.

17

