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Abstract
A glimpse into modern paleoanthropology In the last
decades, paleoanthropology has been deeply modified,
changing from a descriptive and historical science to a
more quantitative and analytical discipline. The covariation
of multiple traits is investigated to study the evolutionary
changes of the underlying anatomical models, mostly
through the introduction of digital biomedical imaging
procedures and of computed geometrical analyses sup-
ported by multivariate statistics.
Functional craniology The evolution of the human cranium
is consequently considered in terms of functional and
structural relationships between its components, largely
influenced by the allometric variations associated with the
increase in the relative cranial capacity. In the human
genus, the changes in the face, base, and neurocranium are
characterised by a mosaic variation, in which adaptations,

secondary consequences, and stochastic factors concur to
generate a set of anatomical possibilities and constraints.
Systemic perspectives to the evolution of the human cranial
morphology Concepts like morphological modularity, ana-
tomical integration, and heterochrony represent key issues in
the development of the current human evolutionary studies.
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A glimpse into modern paleoanthropology

Human paleontology has a relatively recent historical
origin, officially becoming a debated subject in the second
half of the nineteenth century. In 1856, the first Neandertal
vault was recovered in Germany, although some human
fossils had already been discovered (but not recognised as
such) before. The Feldhofer Neandertal calotte, interpreted
in turn as a modern human ancestor, an independent and
extinct human form or a pathologic modern individual,
originated the debate on human evolution. In 1891, the first
Homo erectus cranial remain was recovered in the Javanese
fossil record, and in 1924, the first australopithecus was
described in South Africa. Since then, anatomists, morphol-
ogists, statisticians, and anthropologists have attempted to
quantify and qualify the biological diversity expressed by
extinct hominid forms.

If humans evolved, paleoanthropology has likewise
shown marked changes over 150 years and more of
scientific and social development. Although the media too
often tend to provide a conservative view of this discipline,
human paleontology has undergone (especially in the last
20 years) a definite reorganisation of its targets, perspec-
tives, and tools.
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The phenotypic variability is perceived in a different
way in comparison with its perception in the early
historical stages. Firstly, the analysis of single traits has
been substituted by the analysis of multiple traits, moving
from a merely descriptive approach to a more proper
analytical approach. Secondly, the analysis of simple
diameters has been changed into the analysis of the
spatial relationships between different structures. Thirdly,
the analysis of the variation of the characters has changed
into the study of the covariation of anatomical and
morphological traits through the integration of univariate/
bivariate statistics and multivariate approaches. These
three conceptual and methodological transformations
represent a single epistemological revolution, in which
the phenotype is no longer intended as sum of features,
but is instead viewed as an integrate model of functional
and structural systems. Such changes can clearly be
intended as historical consequences of a more complex
framework, which largely depends upon technology. In
the last decades, this refers in particular to the develop-
ment of digital tools.

The first major advance in paleoanthropology was the
application of biomedical imaging to the analysis of fossil
remains [39, 40, 55, 80, 93, 96] (Fig. 1). Computed
tomography is currently used to reconstruct fragmented
specimens [95], to analyse inner anatomical structures like
the paranasal sinuses [52, 70] or the vestibular system of
the inner ear [79], to consider the preservation of the fossil
remains [16], and to produce stereolithographic models
useful for museology and didactics [29]. The study of the
cortical brain morphology of extinct species through the
reconstruction of the endocranial casts (paleoneurology)

[24, 30, 32] has been particularly facilitated by the
application of such digital tools [13, 69, 88].

The second revolution was represented by the develop-
ment of geometric morphometrics and other landmark-
based approaches in the late 1980s [9, 56, 63, 78].
Geometric morphometrics relies upon the multivariate
analysis of geometric two- or three-dimensional models
representing anatomical structures [57, 92]. Systems of
coordinates from different specimens are registered and
normalised by using superimposition procedures involving
translation, rotation, and scaling of the geometrical models.
The residuals of such transformation (that is, the remaining
spatial differences between individuals) are used in multi-
variate ordination techniques, aimed at revealing the
patterns of covariance between the different anatomical
components (Fig. 2). Such approach is able to quantify the
morphological differences and to describe the functional
and structural relationships underlying the observed ana-
tomical variation. Clearly, such patterns of covariation
between structures are consequences of the biological
network organising the morphogenesis, involving the
interaction of growing tissues, tendons, and organs.

The application of these techniques to the study of fossil
records lead to consider human evolution not merely as a
process of changing features but rather as a process of
changing biological models.

Functional craniology

In 1960, the term functional craniology was proposed to
indicate an approach to the study of the human skull based

Fig. 1 Computed tomography represented one of the major advances
in current paleoanthropology, improving the reconstruction of frag-
mented specimens and allowing the anatomical and morphological
analysis of the inner structures (endocranium, paranasal sinuses,

semicircular canals, tooth, diploe, etc.). Here, the endocasts and other
features are shown on the digital replicas of an australopithecus (left)
and of an early Neandertals (right)

1358 Childs Nerv Syst (2007) 23:1357–1365



on the structural and functional relationships between the
different cranial components [48]. The skull is an object
formed by anatomical structures arranged into a physical
network, in which the final result of the morphogenesis (both
in ontogeny and phylogeny) depends upon the interaction of
forces and constraints among the different parts involved.
The morphogenetic process is based on changes in size
(growth) and changes in shape (development) of the
anatomical structures. These two components can be split
conceptually and thus analysed separately, primarily to
understand the degree of their reciprocal dependence. In
terms of physical interaction, cranial morphology is the result
of pressures and tensions associated with expanding organs
(such as the brain), binding connectives (such as the falx
cerebri or the tentorium cerebelli), contacting sutures, bone
displacements, and muscular influences. Each cranial district
interacts directly with its neighbouring structures according
to the counterpart principle [23], thereby generating a
complex system in which the whole organisation is not the
mere sum of each single process. Such interaction occurs at
different levels, within genes, tissues, bones, and organs. For
example, cranial growth patterns at the sutures are influenced
by the strains associated with the brain pressure, perhaps by
means of angiogenetic processes or of dura connective layers
[28]. It is therefore clear that minor random or selective
changes in one of the components of such network
(distribution of the intracranial pressure, composition of the
dura layers, strains distribution, bone response) will involve
major evolutionary changes in the neurocranial morphology.

Clearly, this network, based on forces and constraints,
relies upon a genetic program, in which patterns of
deposition and reabsorption of tissue (growth fields) are
the result of species-specific evolutionary pathways [22].

It is worth noting that such growth fields can also be found
on fossil surfaces by recognising the traces left by
osteoblasts and osteoclasts. This is the basic principle of
paleohistology [44].

Interestingly, beyond the information made available
from the bones themselves, the vascular structures also
leave their imprints on the endocranial walls, providing
support for hypotheses regarding physiological processes
[20, 34].

The approach of functional craniology can be also used
in an experimental setting, studying the influence of the
physical/physiological environment or the genetic compo-
nents in animal models. Interestingly, because of the
impossibility of using a similar experimental approach on
the human cranial matrix, relevant evidence comes from
the artificial cranial deformations deriving from cultural
and ethnic practices or from the craniosynostotic individ-
uals [4, 5, 33, 47, 49]. This is particularly true when
dealing with the relationship between brain and braincase
[3, 58].

A general framework on encephalisation and human
evolution

As soon as the evolutionary process was acknowledged for
the human lineage, it was described as linear, gradual, and
progressive. Namely, evolution was supposed to move from
more imperfect to more efficient species through continu-
ous and directional changes. The current interpretation of
human evolution is quite different, describing a “bush” of
species, representing alternatives of similar models, evolv-
ing sometimes more gradually and other times more

Fig. 2 Shape analysis and morphometrics have been deeply improved
by the development of geometric computed approaches (landmark-
based techniques and geometric morphometrics). Coordinates from
different specimens can be superimposed according to iterative and
standardised criterions, and the resulting differences can be analysed
by using multivariate statistics. The patterns of covariance among and
within structures are therefore described and quantified, revealing the
underlying biological model (morphogenesis, functional relationships,

etc.). Here, a bi-dimensional cranial configuration in right lateral view
is compared in one modern human (black) and one Neandertal
specimen (blue) through baseline superimposition according to the
maximum neurocranial length (a) and least-square superimposition
(Generalised Procrustes Superimposition) to minimise the shape
differences (b). The spatial deformation from the modern to the
Neandertal configuration is visualised by using the thin-plate spline
interpolant function
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abruptly, and not necessarily according to a directional
criterion of change [90, 91]. Hominids are conventionally
divided into two subfamilies, the Australopithecines (in-
cluding the genera Australopithecus and Paranthropus,
with about eight to ten species described) and the
Hominines (including only the genus Homo, with five to
six species described). The human genus is found in East
Africa around 2 million years ago (Ma), and moves towards
Asia after 1.7 Ma and to Europe at least about 1 Ma [42].
The first species to be fully recognised as representative of
the human lineage was found in East Africa, and it is
currently referred to as H. ergaster. The relationships
between the subsequent African, European, and Asian
morphs are still debated, with hypotheses suggesting a
unique worldwide genetic population leading to modern
humans or alternatively suggesting independent species that
were finally replaced and substituted by the present human
groups [86]. Nonetheless, the earliest populations of the
three continents displayed geographical peculiarities, and
this induces many authors to recognise at least three
different derived human species: H. sapiens in Africa, H.
neanderthalensis in Europe, and H. erectus in Asia (Fig. 3).
Modern humans and Neandertals are related to a rather
heterogeneous ancestral species named H. heidelbergensis

[59, 60], which inhabited Europe and Africa in the Middle
Pleistocene.

All these different lineages underwent a process of
encephalisation, namely, a relative increase in the cranial
capacity. The exact data are not available because cranial
capacity should be considered as a relative figure with
respect to other variables such as body size or metabolism
that can only be hypothesised in fossil species. Nonetheless,
the absolute endocranial volume increased from about
800 cc in the early humans to 1,000–1,200 cc in the
species of Middle Pleistocene, and further to 1,500 cc and
more in Neandertals and modern humans [32, 61].

Because of the structural relationships within an anatom-
ical system (surface to volume ratios, biomechanical forces,
and ontogenetic constraints), when size changes, shape must
change accordingly. This is the basic assumption underlying
allometry, namely, the changes in shape related to changes
in size [25, 26, 35, 76]. During evolution, a selective
pressure determining changes in one of these components
(size or shape) involves secondary changes in the other.
Such secondary changes are not necessarily adaptive but
may be merely consequences of the adjustment within the
structural system. It is clearly also possible for these
secondary changes to uncover some interesting new

Fig. 3 The first recognised fossil record of the genus Homo can be
found in East Africa, around 2 million years ago, and referred to as H.
ergaster. Early humans soon moved to Asia, generating a variation
presently described with the term H. erectus. A second dispersal is
associated with a heterogeneous Afro-European group, called H.

heidelbergensis, related to the following evolution of modern humans
(in Africa) and Neandertals (in Europe). The relationship among these
different evolutionary lineages are represented with their general
chronology (Ma Million years ago; ka thousand years ago) and
average cranial capacity (cc cubic centimeters)
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functions. Finally, brand new allometric relationships can
evolve from the actual reorganisation of the structural and
functional networks, thus changing the biological model.

Back to the encephalisation process, if different lineages
display similar size changes, a certain percentage of their
similarities and differences will simply be a consequence of
the allometric variation. One of the most important topics in
human evolution is to investigate which anatomical and
morphological traits are allometric differences and (more
interestingly) which are not.

Some major cranial changes in the human genus

Since the early recovery of the first paleoanthropological
remains, cranial variation has represented the main issue of
investigation in this field, including studies on macro and
micro anatomy, tissue organisation, metrics, and biome-
chanical models. In general, the cranial system is divided
into three distinguished but related structural components:
the vault, the face, and the base.

Neurocranial morphogenesis largely depends upon brain
pressure for its size changes and upon endocranial
connective tissues for its shape changes [23, 48]. Conse-
quently, the morphological evolution of the braincase—and
of the vault bones above all—is directly linked to the
endocranial dynamics related to the ontogeny and phylog-
eny of the underlying soft tissues. It has been hypothesised
that in the human genus the enlargement of the brain is
associated with a relative widening of the frontal lobes and
relative reduction in the parietal areas [14]. Neandertals
show the maximum expression of this pattern, displaying
also supernumerary ossicles at the parieto-occipital bound-
ary on the ectocranial surface. This hypostotic feature was
described as “morphological instability” [73–75] or as
“ontogenetic stress” [41, 43], to hypothesise a lack of
balance between size and shape variation during the
morphogenesis, which would require additional centres of
ossification. Modern humans depart from this allometric
trajectory, displaying a marked development of the entire
parietal volumes which involves a general convolution and
globularisation of the brain [14, 18] and consequently of the
braincase [19, 38]. Whether this change is primarily a
structural adjustment or a cognitive adaptation has yet to be
determined, recognising the role of the parietal cortex in
visuo-spatial integration [21, 77], tool use [82], and
possibly generation of an inner reality. Recently, single
genes have been hypothesised to be responsible for the
gyrification of large cortical areas, suggesting the possibil-
ity of discrete and rapid evolutionary changes in the
endocranial organisation [54].

The allometric widening of the frontal lobes deserves
further attention. A modern-like frontal morphology at the

Broca’s area is recognised in fossils dated back to 2 Ma [31,
87]. After such early changes, no further differences have
been described both with respect to the gross appearance of
the Broca’s area and—at least in the last 500,000 years—
with respect to the midsagittal shape of the anterior cranial
fossa [10]. Nonetheless, within human evolution, bigger
brains show relatively wider frontal lobes, with the frontal
breadth at the Broca’s cap increasingly more comparable to
the maximum (temporal) brain width. This allometric trend
has been hypothesised to be the result of available lateral
space with respect to the frontal area (because of the orbit
frontation and reduction in the temporal muscle) and of
constraints in the vertical dimension (because of the under-
rotation of the underlying facial components and of the
loading on the orbital roof) [14]. Although this positive
allometric widening of the frontal lobes is rather confirmed,
whether or not modern humans and Neandertals show a
further frontal widening, beyond what expected for the
Homo pattern, remains to be tested [15, 17]. A molecular
difference in the myosin of the temporal muscle between
modern humans and apes has been hypothesised to be
involved in a decrease in lateral pressure with respect to the
anterior braincase, thus allowing a further brain enlarge-
ment [81]. Although this hypothesis is rather debated [46], it
is useful to consider and discuss the cranial morphogenesis
in terms of its structural matrix. Clearly, where the
morphological evolution of the frontal lobes may be said
to be rather subtle and the volumetric enlargement only
based on allometric variations [71, 72], the soft tissues
nevertheless evidence some remarkable reorganisation
associated with neural wiring and connectivity in modern
humans [62].

The evolution and development of the frontal bone
cannot be merely interpreted as a function of brain
influences. Because of the close contact between the
anterior cranial fossa and the underlying facial structures,
the browridge and the frontal squama are particularly
interesting to analyse when considering the evolution of
the relationship between splanchnocranium and neuro-
cranium. For example, more archaic human morphs had
the frontal lobes behind the orbital roofs, while later species
had the frontal lobes lying on them [15, 70]. The
browridge, which acts like a hinge between the face and
the braincase [37], shows a very large variation within the
human genus [10]. In more derived species the browridge
shows greater continuity with respect to the frontal squama,
while it is more separated in their ancestors [15].
Furthermore, archaic humans probably displayed small
frontal sinuses [15], which were dramatically enlarged
within the frontal squama in the Middle Pleistocene [52,
70] and again reduced in more derived species like modern
humans and Neandertals. All these variations suggest that
the relationship between face and braincase has evolved in
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a mosaic fashion within the human genus, under the
potentialities and constraints of a complex structural
network.

The facial morphology has also undergone some local
morphological evolution and adaptations. The encephalisa-
tion process is associated with a general reduction in the
splanchnocranial complex [11, 19, 38], extreme in modern
humans. However, with respect to facial morphology,
Neandertals represented the more specialised group, dis-
playing a marked projection of the middle face, called
midfacial prognathism, or oncognathism [53, 64; but see
also 89]. This process involved changes in the face,
mandible, teeth, and probably in the organisation of the
lateral cranial base [7]. Evolutionary hypotheses regarding
this feature are heterogeneous and not well-established,
ranging from climatic adaptations, to the use of teeth as
handling tools, or of stochastic changes. Nevertheless, it
seems that the two more encephalised groups evolved in
opposite directions: modern humans with a less-derived
face but a derived neurocranial organisation, and Nean-
dertals with derived faces but with a less-derived neuro-
cranial arrangement [19, 85].

Finally, the role of the cranial base, linking the facial and
neural components and representing the main determinant
of the cranial architecture [66, 67], needs to be considered.
The organisation of the cranial base is influenced by
locomotion and posture, as well as diet and biomechanics
of the mandibular structures [84]. By contrast, the skull
architecture largely depends upon the regulation of the
cranial base morphogenesis [23, 38], and structures such as

the spheno-occipital synchondrosis probably acted as a
major evolutionary source of variation, both in terms of
genetics and of biomechanics. In primates, the more a
species is encephalised, the more the cranial base is flexed
to accommodate brain development [65]. Currently, wheth-
er or not the cranial base in humans is flexed as or more
than expected based upon the pattern presented by non-
human primates is debated [45]. Moreover, beyond the
cortical components of the brain, the sub-cortical structures
may also have had a role in generating constraints able to
direct the evolution of the cranial base anatomy [83].

The variation within the four to five currently recognised
species of the human genus is sometimes remarkable and
other times subtle. Differences go beyond the main topics
described in this synthetic review, ranging from the overall
cranial architecture to a large number of very small and
detailed anatomical features. Nonetheless, the important
factor that remains noteworthy is the need to focus on the
structural and functional relationships between the cranial
components, evolving together as a single morphogenetic
unit rather than on single traits (Fig. 4). This approach leads
to the development of “organismic models” in human
evolution [64].

Systemic perspectives to the evolution of the human
cranial morphology

Cranial anatomy is the result of a functional and structural
network formed by genetically determined growth fields,
developmental and biomechanical interactions, and physi-
cal constraints, both in terms of morphogenesis and
evolution. It therefore should be investigated as a system.
Within the cranial matrix, the networks of causes and
consequences are linked by feedbacks and loops that render
any linear interpretation of the evolutionary or morphoge-
netic processes useless and misleading.

Two lines of investigation may help to approach the
evolution of the cranial variation within this framework:
heterochrony and modularity.

Heterochrony refers to evolutionary changes in the time
or rate of the ontogenetic processes [25, 26, 35]. A given
ontogenetic trajectory can be under-expressed (pedomor-
phosis) or over-expressed (peramorphosis), generating
morphological variations on the basis of the actual
allometric relationships. Growth and development are
forced to covary within a fixed structural model, changing
size and shape according to selective pressures. On the
other hand, the allometric relationships may be altered, un-
coupling size and shape variation (such as in neoteny,
where only the rate of the shape changes is delayed).
Heterochrony is known as one of the major determinants in
evolutionary biology, accounting for morphological trans-

Fig. 4 The braincase, the cranial base, and the facial district, represent a
structural network in which integration (the relationship within the whole
system) and modularity (the partition of the whole system into sub-unities
with high covariance, thus related in term of morphogenesis) must be
carefully considered when analysing the evolutionary variation of single
traits. Each single feature has its proper function, but in terms of structure,
it is associated with the neighbour parts of the anatomical network.
Therefore, the evolution of the whole system is constrained, characterised
by adaptive pressures but also by structural and functional secondary
consequences, as well as stochastic changes
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formations (of the whole body, or of a part of it) based on
different version of the same model through minor
molecular and physiological changes [76].

Modularity refers to the localisation of given structural
units more strongly constrained within the morphogenetic
and evolutionary processes [36, 68]. “Modules” are
anatomical regions within which the variation of each part
is highly dependent upon the variation of the others because
of structural or functional relationships. Integration is the
opposite of modularity, thus a strong level of covariation
within the whole structure. Such organisation represents
both a constraint and a potentiality for the evolutionary
processes. Cranial integration and modularity can be
investigated both by comparing the patterns in different
species [50] and by studying the patterns within the
functional matrix of the modern human skull [6–8]. Such
approach was successfully applied in studies considering
the hominid craniofacial [1, 2] and basicranial [84]
variation. A similar pattern of integration was described as
responsible for the high vault and flattened occipital bones
in modern humans with respect to the low vault and
projecting occipital in Neandertals: different phenotypes
resulting from a morphological continuum based on the
same shared structural relationships [27]. Similarly, extinct
species can be characterised not only in terms of morpho-
logical traits but also of developing models which take into
accounts differences in the ontogenetic changes [51]. Once
more, craniosynostosis are particularly relevant in the study
of morphological integration and cranial evolution, mostly
when considering the relationship between brain and
braincase [3]. The analyses of craniosynostotic phenotypes
suggest that, because of the structural and embryological
influence between cranial bones, brain, and connective
tissues, morphological changes can extend far from the
areas directly and primarily involved in genetic or func-
tional variations [58].

Considered together, heterochrony and modularity form
the conceptual and analytical framework of the current
evolutionary developmental biology (or “evo-devo”), as the
functional and structural study of biological variations in
terms of ontogeny and phylogeny [12, 94].

The evolution of the human cranial morphology is
finally represented by a mosaic and complex process, in
which similar heterochronic changes, allometric relation-
ships, and modular organisation have been moulded by
different selective forces in different human lineages. Some
changes are strictly adaptive, others are mere consequences,
which can eventually be reinvested in new functions.
Finally, some may be simply related to casual variations
associated with the small numbers of humans that it is often
assumed to move in new territories (founder effect) or of
residual populations after some marked climatic changes
(bottlenecks).

In this framework, paleoanthropology may learn from
the current biomedical knowledge how to interpret some of
these variations and may in turn suggest how and why
some of these variations may have become important to the
current biomedical environment.
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