
Reprinted from the

Proceedings of the
GCC Developers’ Summit

June 17th–19th, 2008
Ottawa, Ontario

Canada

Conference Organizers

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

C. Craig Ross, Linux Symposium

Review Committee

Andrew J. Hutton, Steamballoon, Inc., Linux Symposium,
Thin Lines Mountaineering

Ben Elliston, IBM
Janis Johnson, IBM
Mark Mitchell, CodeSourcery
Toshi Morita
Diego Novillo, Google
Gerald Pfeifer, Novell
Ian Lance Taylor, Google
C. Craig Ross, Linux Symposium

Proceedings Formatting Team

John W. Lockhart, Red Hat, Inc.

Authors retain copyright to all submitted papers, but have granted unlimited redistribution rights
to all as a condition of submission.

A Superoptimizer Analysis of Multiway Branch Code Generation

Roger Anthony Sayle
OpenEye Scientific Software
roger@eyesopen.com

Abstract

The high level of abstraction of the multi-way branch,
exemplified by C/C++’s switch statement, Pascal/Ada’s
case, and FORTRAN’s computed GOTO and SELECT,
allows an optimizing compiler a large degree of free-
dom in its implementation. Typically compilers gener-
ate code selected from a few common patterns, such as
jump tables and/or trees of conditional branches. How-
ever, for most switch statements there exists a vast num-
ber of possible implementations.

To assess the relative merits of these alternatives, and
evaluate the selection strategies used by different com-
pilers, a switch-statement “superoptimizer” has been de-
veloped. This exhaustively enumerates code sequences
implementing a specified multiway branch. Each se-
quence is evaluated against a simple cost model for
code-size, average and worst-case performance (option-
ally using profile information). Backend timings for
several architectures are parameterized by microbench-
marking. The results and insights from applying this su-
peroptimizer to a corpus of “real-world” examples will
be discussed.

1 Introduction

Although numerous optimizing compilers were imple-
mented prior to its publication, the first paper to describe
the issues of code generation for multiway branches was
published by Arthur Sale in 1981 [Sale81]. This now-
classic paper compared several implementation strate-
gies for the University of Tasmania’s Pascal compiler
for the Burroughs B6700/7700 series. Ultimately this
evaluation recommended the use of either a table jump
or a balanced search tree of comparisons. It is inter-
esting, and perhaps slightly disappointing, that over a
quarter of a century later the switch code generation in
the GNU GCC compiler is little changed from Sale’s
original exposition.

Over the last 25 years, microprocessor architecture has
advanced considerably, the cycle penalties of memory
latency and branch misprediction have changed, and
several novel implementations have been proposed.

2 Definitions

A switch statement (or multiway branch) is a con-
struct found in most high-level languages for selecting
from one of several possible blocks of code or branch
destinations depending on the value of an index expres-
sion. It can be considered a generalization of the if
statement that conditionally selects between two pos-
sible blocks of code depending upon the value of a
Boolean expression. In this work, we restrict the index
expression to be of an integral type.

Mathematically, a switch statement behaves like a func-
tion or mapping, F : Z → M, that for each element of
the set Z, the set of all K-bit values where K is a positive
integer, selects a single outcome from the set M of des-
tination labels. The function F is surjective, such that
|M| ≤ |Z|= 2K .

The semantics of Pascal’s and Algol’s multiway branch,
the case statement, permit that any index value not han-
dled by the case statement may result in undefined be-
havior. We do not consider such partial functions, and
instead restrict F to be a total function, even though this
may restrict some the potential optimizations allowed in
those languages. Instead the function F is made total
by mapping any value z ∈ Z that is not in the original
domain to a unique default label, md ∈M.

By this definition any pure const function of a single in-
teger argument, such as factorial or Fibonacci,
may be represented or canonicalized using a single
switch statement. This ability can be generalized using
a currying-like approach such that any pure const func-
tion can be represented by nested switch statements, or
a single switch statement with a sufficiently large K.

• 103 •

104 • A Superoptimizer Analysis of Multiway Branch Code Generation

When |M|= 1, the switch statement F is said to be un-
conditional. When |M|= 2, then F is said to be binary.

In practice, we are mostly interested in switch state-
ments where the size of the codomain M is small, with
only a few labels, |M| � |Z|. In such cases, a significant
fraction of the elements of Z map to a default label md ∈
M. In such cases, it makes sense to talk of the set of case
values V ⊆ Z that are defined as the values that don’t
map to md , i.e. v ∈ V iff F (v) 6= md . We can thus rep-
resent F as a set of ordered pairs FV ⊆ V × (M−md)
such that for all (vi,mi)∈FV , every vi is associated with
a single label mi, such that F (vi) = mi.

Additionally, when interpreted as either signed or un-
signed integers, sequentially consecutive values in Z of-
ten map to the same destination label. Thus the switch
statement F can also be efficiently represented by the
set of ordered triples FR ⊆ V ×V × (M −md) such
that every (li,hi,mi) ∈FR represents a contiguous case
range, where li ≤ hi and for all vi such that li ≤ vi ≤ hi,
we have F (vi) = mi and the case ranges are maximal,
i.e. F (li−1) 6= mi and F (hi +1) 6= mi.

We shall refer to the number of case values, |FV |, and
the number of case ranges, |FR|.

3 Switch Lowering

This section lists several possible compilation strategies
for implementing a multiway branch. The first few are
well known and commonly employed by existing com-
pilers, whilst the later strategies are perhaps more novel.
For each implementation strategy, the high-level C (pos-
sibly using GCC extensions) and the equivalent Intel
x86 assembler are given. We use the conventions that
the index variable is x, the default label is called L0,
and the case target labels are L1 ... Ln. In this work, we
assume the target labels are opaque, and have no useful
mathematical relationships (though some early compil-
ers could rearrange code to simplify the task of switch
implementation).

3.1 Unconditional Branch

The simplest of switch statement implementations and
one of the fundamental building blocks is the uncondi-
tional jump. This is used for switch statements that con-
tain only a default outcome, or during switch lowering
after all other cases have been handled.

goto L0;

jmp L0

Unconditional jump instructions typically have low
overhead on modern processors, where branch predic-
tion is unnecessary and the instruction prefetch machin-
ery can avoid stalling the execution pipeline. Addition-
ally, basic block reordering can frequently eliminate the
jump altogether, by placing the destination basic block
at the site of the jump (if it has only a single incoming
edge) or by duplicating the basic block otherwise (if it
has more than one incoming edge) [Mueller02].

3.2 Sequential Tests

The simplest universal implementation strategy for
switch statements is to check for equality against each
case value sequentially.

if (x == 1)
goto L1;

if (x == 0)
goto L2;

cmpl $1, %eax
je L1
testl %eax, %eax
je L2

On many architectures, the performance of integer com-
parisons may be dependent on the value being com-
pared. As shown in the assembly example above,
the i386 provides special instructions for comparison
against zero. On MIPS, comparisons against zero and
one are cheaper than comparisons against signed 16-bit
constants, which are cheaper than general 32-bit con-
stants.

3.3 Jump Tables

A common method for implementing a switch statement
is via an indirect jump (also known as a table jump).
This uses the switch variable to index an array of desti-
nation addresses, and then branch to that location.

In the general case, to keep the size of the jump table
reasonable, the minimum case value needs to be sub-
tracted, and the result compared against the table range
(as an array bounds check) before indexing the jump ta-
ble. Fortunately, the minimum case value is often one or
two allowing the subtraction to be omitted for a minor
increase in the size of the jump table [Sayle01].

2008 GCC Developers’ Summit • 105

unsigned int t = x - 10;
if (t > 5)

goto L0;
static const void *T1[6] =

{ &&L1, &&L2, &&L3,
&&L4, &&L5, &&L6 };

goto *T1[t];

subl $10, %eax

cmpl $5, %eax

ja L0

jmp ∗T1(,%eax,4)
T1: .long L1, L2, L3

.long L4, L5, L6

An obvious free parameter and difference between com-
pilers is the density threshold used to decide whether
to use a table jump or not. When the case values are
sequentially consecutive values that each jump to dis-
tinct labels the decision to use a table jump is obvious.
However, as the density (approximately the number of
case values divided by the difference between their up-
per and lower bounds) decreases, the memory to perfor-
mance trade-off eventually reaches a critical limit where
the additional cost in bytes provides insufficient benefit
in clock cycles.

A less obvious difference is the lack of uniformity in the
way that switch table density is calculated. One obvi-
ous approach is to use the number of case values, |FV |,
as the numerator. However, as mentioned in the next
section, ranges of consecutive case values that branch
to the same label can be efficiently as range tests, that
are independent of the number of case values they con-
sider. Hence, density may correlate better with the num-
ber of case ranges than with the number of case values.
The approach currently used by GCC is to count non-
singleton case ranges as twice as expensive as singleton
case ranges. This provides a better measure of density
for comparison against other implementation strategies.
In practice, the real non-singleton to singleton cost ra-
tio is less than two, even approaching one for switches
consisting of consecutive adjoining ranges.

3.4 Range Tests

When two or more consecutive integer values branch to
the same target label, it is possible to test for a range
values rather than each value independently. One obvi-
ous possibility is via a pair of conditional branches such

as (x>=lo) && (x<=hi) where lo and hi are the
lower and upper bounds of the range respectively. An
often more efficient way of doing this is to subtract the
lower bound, and then perform an unsigned comparison
against the integer constant hi-lo which achieves the
same thing with a single comparison. Obviously, if lo is
zero the subtraction can be omitted. Warren [Warren02]
also mentions the efficient use of shifts to perform range
tests for suitable high and low bounds.

if (x < 8)

goto L1;

unsigned int t = x >> 3;
if (t == 0)

goto L1;

3.5 Balanced Binary Trees

A more efficient use of compare and branch compar-
isons than the sequential testing described above is per-
form a binary search on the target case values. By com-
paring against a (median) pivot value, the case values
can be partitioned into those values less than or greater
than the pivot. This reduces the time to perform a multi-
way branch from O(n) with the sequential method to
O(logn), where n is the number of case values.

Each comparison in such a binary search refines the up-
per or lower bounds of the remaining partitions. Whilst
many compilers perform only signed or only unsigned
comparisons depending upon the type of the switch ex-
pression, it is potentially beneficial to use both forms in
a single search. Another more commonly implemented
improvement is to use the established upper and lower
bounds to avoid comparisons. For example, if a bi-
nary search has already confirmed that the index value is
greater than three, but less than five, there is no point in
explicitly comparing against the value four. A naïve im-
plementation of binary tree lowering using these bounds
may inadvertently emit conditional branches to uncon-
ditional branches and similar inefficient idioms. These
may be avoiding by either using the usual CFG jump
optimizations as a clean-up step, or by improvements in
the binary tree lowering code.

Depending upon the architecture, it may be beneficial
(or not) to perform three-way branches at each parti-
tion step, reusing the condition codes (or register) from
a single comparison against an integer constant for both

106 • A Superoptimizer Analysis of Multiway Branch Code Generation

an equality test and an ordering test. Currently, GCC
always performs three-way branches, whilst LLVM al-
ways performs two-way (binary) branching. Even with
three-way branching there is the decision of whether to
perform the equality/inequality comparison before or af-
ter the ordering comparison. Unless the pivot value oc-
curs frequently, it is theoretically better to perform the
partitioning first and incur the cost of the equality com-
parison on only one of the following paths.

On many processors there is a significant asymmetry in
the cycle counts for taken vs. not-taken cycle counts
(occasionally even when the outcome is correctly pre-
dicted). This difference means that a perfectly balanced
binary tree will not have the best worst-case behavior.
Instead appropriately skewed binary trees can lead to
better performance. This is one reason why the sequen-
tial testing strategy described above is sometimes com-
petitive for switches with four or more values.

switch (x) {

case 100: goto L1;

case 200: goto L2;

case 300: goto L3;

case 400: goto L4;

}

if (x == 200)

goto L2;

if (x > 200) {

if (x == 300)

goto L3;

if (x == 400)

goto L4;

}

else {

if (x == 100)

goto L1;

}

cmpl $200, %eax

je L2

jbe LT1

cmpl $300, %eax

je L3

cmpl $400, %eax

je L4

jmp L0

LT1: cmpl $100, %eax

je L1

An often overlooked aspect of performing binary com-
parisons both in sequential comparisons and in binary
search trees is that it can sometimes be advantageous to
compare against integer values (and ranges) not in the
case set, V , i.e. those that map to the default label md .
For example, when ranges on both adjoining sides of
a ‘gap’ branch to the same destination, testing for the
gap allows the adjoining ranges to be merged. Likewise
for binary switch tables, it can occasionally be easier
to identify the (complementary) default values than the
(positive) case values.

3.6 Bit Tests

A relatively recent innovation in switch statement im-
plementation is the use of bit tests [Sayle03a]. This
technique allows several case values that share the same
label to be tested simultaneously by representing each
case by its own bit.

This technique requires that the range of case values not
be larger than the number of bits in a machine word.
Like jump tables, it is often necessary to perform a sub-
traction followed by a bounds check to eliminate values
outside of the allowed range.

if (x > 8)
goto L0;

unsigned int t = 1 << x;
// cases 1, 4, and 8
if ((t & 274) != 0)

goto L1;
// cases 0, 2, and 5
if ((t & 37) != 0)

goto L2;
goto L0;

cmpl $8, %eax
ja L0
movl %eax, %ecx
movl $1, %eax
sall %cl, %eax
testl $274, %eax
je L1
testb $31, %al
je L2

The performance of bit testing can be improved by test-
ing the most frequent bit patterns (masks) first. If all
cases are equally probable, this equates to testing the
masks that have more bits set before those that have a
few bits (or just a single one) set.

2008 GCC Developers’ Summit • 107

3.7 Tabular Methods

For completeness, we briefly describe the applicability
of table-driven methods for implementing switch state-
ments. In these techniques, the task of implement-
ing a multiway branch is reduced to a static search
problem. A good review of tabular methods, includ-
ing linear search, binary search, and multiplicative bi-
nary search, is given by Spuler [Spuler94]. The ma-
jor utility of tabular approaches is in reducing code
size, especially when the table search implementation
can be shared between multiple switches and placed in
the compiler’s run-time library. In the Java virtual ma-
chine, the lookupswitch bytecode provides a tabular
search implementation.

static const int T1[4] =

{ 4, 6, 9, 11 };

static const void ∗T2[4] =

{ &&L1, &&L2, &&L3, &&L4 };

for (int i = 0; i < 4; i++)

if (x == T1[i])

goto ∗T2[i];

3.8 Decrement Chains

An interesting implementation technique implemented
by some compilers, but not previously described in
the literature, is the use of decrement (or subtraction)
chains. On some architectures, a decrement instruction
followed by a test for zero is more convenient than a
comparison against an arbitrary constant. On i386 this
leads to dense code, and on some RISC architectures
this provides a useful instruction for the branch delay
slot.

x−−;
if (x == 0)

goto L1;

x−−;
if (x == 0)

goto L2;

x−−;
if (x == 0)

goto L3;

decl %eax

je L1

decl %eax

je L2

decl %eax

je L3

On MIPS, comparisons against one and zero are cheaper
than other values that require loading of integer con-
stants into registers. Hence on this target, it is conve-
nient for dense sequential cases to place the constant two
into a register, then repeatedly compare against zero and
one between subtractions of two.

This strategy may potentially benefit from the use of
decrement and branch instructions on those architec-
tures that support them.

movl %eax, %ecx

loop LT1

jmp L1

LT1: loop LT2

jmp L2

LT2: loop L0

jmp L3

3.9 Index Mapping

Index mapping is a table-based technique similar to
jump tables but with a wider range of applicability. In-
stead of indexing directly into a sparse table of labels
(typically each four bytes long), this method uses a nar-
rower lockup table of bytes to first transform the index
variable into dense zero-based range.

Switch statements with up to 256 unique labels can be
handled by a byte-wide look-up table. This technique
can also be extended to switch statements with even
more unique labels by using two-byte shorts instead.

unsigned int t = x − 10;

if (t > 7)

goto L0;

static const char T1[8] =

{ 0, 1, 1, 2, 0, 2, 2, 1 };

t = (unsigned char)T1[t];

if (t == 0)

goto L1;

if (t == 1)

goto L2;

movzbl T1(%eax), %eax

Often index mapping is immediately followed by a reg-
ular table jump. This idiom, called double dispatch, has
the advantage that the range of values in the first table

108 • A Superoptimizer Analysis of Multiway Branch Code Generation

is known and therefore the usual bounds test on the fol-
lowing table jump can be omitted. On the SPARC archi-
tecture, which usually needs to multiply the table jump
index by four to access the correct destination word,
this multiplication can be precomputed and stored in the
byte map (provided that the switch statement has less
than 64 unique destinations).

Mathematically, index mapping provides a minimal per-
fect hash function when each target label is unique and
there are no ranges.

On many CISC processors, such as the x86 family, bi-
nary index mapping (i.e. when there is only a single
non-default label and the byte array contains only ones
and zeros) can take advantage of instructions that com-
pare directly against memory. On the i386, for exam-
ple, the cmpb $0, T1(%eax) instruction avoids the
usual load followed by a compare or test.

3.10 Condition Codes

Depending upon the architecture, and upon the fre-
quency of case values, it may be beneficial to manip-
ulate explicit Boolean expressions rather than the more
common ‘short-circuit evaluation’ conditional branches.

char t1 = (x == 6);

char t2 = (x == 11);

if (t1 | t2)

goto L1;

cmpl $6, %eax

sete %dl

cmpl $11, %eax

sete %al

orb %al, %dl

je L1

In the example above, the i386 architecture manipulates
the condition codes as bytes, but on many RISC archi-
tectures with multiple condition code or predicate regis-
ters, they can be manipulated directly. As an example,
the PowerPC architecture provides a suitable cror in-
struction.

3.11 Imperfect Hashing

Hashing functions provide a method of handling sparse
switch statements. By quickly calculating an auxiliary
value and branching or multiway branching on its value,
we can ‘divide and conquer’ the original switch. A re-
view of suitable (i.e., cheap) hash functions is described
by Dietz [Dietz92]. More recently, Erlingsson et al.
have described a practical method for quickly selecting
a suitable bitwise-and hash function called “Multiway
Radix Search Trees (MRST)” [Erlingsson96].

Modern processor architectures contain a number of in-
structions that perform useful hashing functions. Ex-
amples include popcount, ffs (find first set), clz
(count leading zeros), and ctz (count trailing zeros).

One simple use of imperfect hashing is handling switch
statements where the index expression has a multi-word
type (such as long long). In such cases, the im-
plementation could be considered a switch of the high-
word, dispatching to switches on the low-word. This is
especially advantageous on narrow processors such as
AVR.

The MRST scheme that extracts consecutive bits from
the index value for the hash (i.e. where hash functions
of the form t = (x >> C1) & C2) is particularly
well suited to architectures that have bit-field extraction
instructions, such as the ARM and the PowerPC. For the
special case where the field is a single bit, i.e. C2 is one,
the comparison can be performed using a bit-wise ‘and’
instruction, or special-purpose bit-test instruction where
available.

3.12 Perfect Hashing

In the field of switch statement code generation, perfect
hashing describes any transformation of the original in-
teger index expression that is a bijection. A bijective in-
teger operation has the property that every output value
is generated by a unique input value, enabling the ex-
istence of an inverse. Such an operation just permutes
the integer values, but as mentioned above, these per-
muted case values may allow more efficient implemen-
tation than its original isomorphism.

Examples of suitable bijective operations (permuta-
tions) on K-bit words include logical inversion (∼x),
integer negation (-x), addition and subtraction of an in-
teger constant (modulo 2K), bitwise-exclusive-or (xor)

2008 GCC Developers’ Summit∼ • 109

of an integer constant, byte-swap, bitwise rotation, and
even multiplication by any odd number (proof left to the
reader).

switch (x) {
case 0:
case 4192257:
case 8384514:
case 12576771:
case 16769028:
case 20961285:

goto L1;
}

unsigned int t = x ∗ 2049;
if (t < 6)

goto L1;

movl %eax, %edx
sall $11, %eax
addl %edx, %eax
cmpl $5, %eax
ja L1

A far more frequent application of perfect hashing is
the use of rotation (instead of subtraction) to reduce the
range of target case values.

switch (x) {
case 16: goto L1;
case 32: goto L2;
case 48: goto L3;
case 64: goto L4;
}

int t = (x >> 4) | (x << 28);
switch (t) {
case 1: goto L1;
case 2: goto L2;
case 3: goto L3;
case 4: goto L4;
}

rorl $4, %eax

Instruction set support for multimedia functions can
be a rich source of suitable bijective instructions.
For example, the IA-64’s mux1.rev, mux1.mix,
mux1.shuf, and mux1.alt can all potentially be
used to improve the performance of a switch statement
implementation.

It should be clear that the modulo-2K subtractions, used
in range tests as bounds checks for table jumps and bit
tests and functionally in decrement chains, are just a
special case of the use of subtraction as a perfect hash
function.

3.13 Safe Hashing

Somewhere between perfect (bijective) hashing and im-
perfect hashing is safe hashing. These are many-to-one
index transformations with the fortunate property that
all index values that map to the same output value have
the same outcome (target label).

Examples of suitable safe hashing functions are divi-
sion, bitwise logical and arithmetic shifts, bitwise-and,
and bitwise-or.

switch (x) {

case 0:

case 1: goto L1;

case 2:

case 3: goto L2;

case 4:

case 5: goto L3;

}

unsigned int t = x >> 1;

switch (t) {

case 0: goto L1;

case 1: goto L2;

case 2: goto L3;

}

shrl %eax

Another example of the potential benefit of safe hashing
is the classic Has30Days function.

switch (x) {

case 4: // April

case 6: // June

case 9: // September

case 11: // November

return true;

}

unsigned int t = x | 2;
switch (t) {

case 6:

case 11:

return true;

}

110 • A Superoptimizer Analysis of Multiway Branch Code Generation

3.14 Conditional Moves

Modern processors can often avoid the penalty of condi-
tional branching by the use of conditional move instruc-
tions.

void ∗t = &&L0;

if (x == 1)

t = &&L1;

if (x == 2)

t = &&L2;

if (x == 3)

t = &&L3;

goto ∗t;

movl %eax, %ecx

movl $L0, %edx

movl $L1, %eax

cmpl $1, %ecx

cmove %eax, %edx

movl $L2, %eax

cmpl $2, %ecx

cmove %eax, %edx

movl $L3, %eax

cmpl $3, %ecx

cmove %eax, %edx

jmp ∗%edx

4 Superoptimization

The term superoptimization was first coined by Henry
Massalin in [Massalin87] and describes the task of find-
ing the optimal code sequence for a single, loop-free
sequence of instructions. Whilst most compiler opti-
mizations attempt to improve code by applying heuris-
tic transformations, superoptimization performs an ex-
haustive search in the space of valid instruction se-
quences. An outstanding example of superoptimization
is the GNU superoptimizer [Granlund92]. A less rigor-
ous but practical application of superoptimization is the
task of generating instruction sequences for multiplica-
tion by integer constants, known in GCC as the routine
synth_mult [Bernstein86, Lefevre01].

Unlike most traditional superoptimizers, the superopti-
mizer implementation described in this work needs to
handle explicit control flow instructions. In addition to
the strict linear instruction sequences enumerated in pre-
vious efforts, a representation of conditional branches
introduces instructions with two successor instructions;

one for a taken branch and one for a not-taken branch.
In this work, we restrict the representation on control
flow graphs to binary trees. Looping constructs (such
as those in inlined tabular implementation methods) are
represented by a single “macro instruction” hiding the
internal backward edges from the superoptimizer. Al-
though there may be some benefit in extending the cur-
rent enumeration strategy to general directed acyclic
graphs (DAGs), the restriction to binary trees helps limit
the combinatorial explosion associated with exhaustive
search.

The multiway branch superoptimizer works by a divide-
and-conquer approach, repeatedly simplifying or trans-
forming the remaining switch cases that need to be im-
plemented. At each node in the search/tree, the problem
state consists of the set of case nodes that remain to be
considered, and the set of potential values the index ex-
pression may have. At the start of the recursive search,
the root of the tree, the set of case values are those of
the original switch, and the set of potential values are all
2K values representable in the index type. The terminal
nodes at the leaves of the tree are unconditional jump
nodes or table jump nodes. In theory, the value range
propagation pass of a compiler may be able to refine the
initial set of potential index values.

Some example solution trees enumerated by the super-
optimizer are given in Figure 1. These depict some of
the possible balanced binary tree implementations for a
switch statement with four unique case values.

5 Cost Model

An important aspect of superoptimization is the objec-
tive function that is used to assess the merit of each solu-
tion. When optimizing for code size, a size in bytes can
be associated with each node in a solution tree, and the
total code size is simply the sum of each node size in the
tree. When optimizing for performance, a cycle count
can be associated with each edge in the tree. For con-
ditional branches, different timings can be associated
with the taken and the not-taken edges. The worst-case
performance is calculated by determining the maximum
edge cost from the root to any leaf node. By associating
a frequency with each original case value, we can deter-
mine the average or expected cost of a multiway branch.
The expected average cost of a switch statement is the
sum over all leaves of the probability of the leaf multi-
plied by the cost of the leaf. In practice, the use of float-
ing point probabilities can be avoided by using integer

2008 GCC Developers’ Summit • 111

2

=

<

1

=

3

=

4

=

?

��	 @@R

��	

?

��	 @@R

@@R

?

��	 @@R

?

��	 @@R

2

<

1

=

=

3

=

4

=

?

��	

?

��	 @@R

@@R

��	 @@R

?

��	 @@R

?

��	 @@R

3

<

1

=

2

=

=

4

=

?

��	

?

��	 @@R

?

��	 @@R

@@R

��	 @@R

?

��	 @@R

2

≤

=

1

=

3

=

4

=

?

��+

��	 @@R

?

��	 @@R

QQs

?

��	 @@R

?

��	 @@R

Figure 1: Four alternate balanced binary tree solutions for implementing a unique switch statement with case values
one, two, three, and four. Digits represent comparison instructions; relational operators represent conditional branch
instructions with the taken edge below to the left and the not-taken edge below to the right.

frequencies. These frequencies can be taken from pro-
filing information or assumed to be equal when profile
information is not available.

In practice, rather than purely minimize average perfor-
mance, worst-case performance, or code size, it is of-
ten more useful to use Pareto frontier methods to per-
form multiobjective optimization. If two implementa-
tions have the same performance, then the shorter so-
lution is preferable. Often when optimizing for size,
we’re not interested in the absolute shortest code if the
performance is terrible. Likewise, when optimizing for
performance, solutions that use an unrealistic amount of
memory may be inappropriate. The restriction of jump
tables based on density can be seen as an instance of
this. Likewise, if the training data used to generate pro-
file edge data doesn’t cover all of the cases, the per-
formance of cases with a zero frequency are not used
in estimating the average case performance. Whenever
two implementations have the same average case behav-
ior, we can avoid potential issues with pathological input
values by preferring the one with the better worst case
performance.

An interesting additional cost metric not considered in
the present study is the optimization of code to reduce
power consumption [Tiwari94]. Much like microbench-
marking, the cost of each node could be parameterized
by chip-level simulation.

6 Microbenchmarking

In order to both parameterize the cost model described
previously and confirm the predictions made by the su-
peroptimizer, it is possible to measure the performance
of possible code sequences on real hardware.

The use of microbenchmarking is even applicable to tar-
gets where real hardware isn’t available. The methodol-
ogy can be used with virtual machines, such as a JVM,
or with simulators, such as GNU sim or SIMH. One
application of this technique was to evaluate the bene-
fits of the VAX’s casel instruction by running VAX
Net/BSD on SIMH.

The advanced branch prediction and memory caching
strategies performed by modern processors can often
significantly skew and bias the results of microbench-
marks, where memory (for jump tables) is often held in
cache, and where hot branches can often by predicted
from history tables. To avoid (or more accurately to ac-
count for) these effects, explicit cache flushing can be
used [Whaley08].

7 Benchmark Corpus

To evaluate whether the advanced switch statement im-
plementations described above are applicable on real-
world code, a survey of existing switch statement usage
was undertaken. By using a specially instrumented ver-
sion of GCC, the switch statements were extracted from

112 • A Superoptimizer Analysis of Multiway Branch Code Generation

the source code of 5,953 packages of the Debian Linux
distribution.

These 5,953 Debian packages contained, or more ac-
curately compiled, 522,681 switch statements. These
switch statements contained 3,024,896 case ranges, giv-
ing a mean of 5.79 case ranges per switch statement. A
case range is defined a consecutive sequence of case val-
ues that map to the same non-default target label. The
largest switch statement contained 4,541 case ranges.
Table 1 summarizes the distribution of switch sizes, as
measured by the number of case ranges.

Cases Count Fraction
1 61193 11.71%
2 115980 22.19%
3 103623 19.83%
4 65671 12.56%

5–8 102898 19.69%
9–16 48575 9.29%

17–32 17462 3.34%
> 32 7279 1.39%

Table 1: Distribution of Switch Sizes

As shown by these figures, the vast majority of switch
statements contain relatively few case ranges. Over a
third have only one or two cases, and less than two per-
cent have more than 32 cases. However, the distribution
has a long tail with 19 switch statements having more
than a thousand case ranges.

Of the 522,681 switch statements, 424,600 (81.24%)
are unique, where every case range branches to a dis-
tinct destination label. These ‘unique’ switch statements
don’t benefit from bit tests or safe hashing methods.
There were 78,925 (15.10%) binary switch statements
that had a single destination label other than the default.
There were 94,523 (18.08%) switch statements that had
non-singleton ranges, i.e. consecutive case values that
branched to the same non-default destination.

Table 2 is a summary of the ranges or spans of the ob-
served switch statements. These figures show that over
eighty percent of all switch statements span a range of
less than 32 values. This reveals that techniques such
as index mapping and bit testing should frequently be
applicable.

Table 3 provides an overview of switch statement den-
sity. Rather than the more usual (floating point) measure

Range Count Fraction
1 51804 9.91%
2 62757 12.01%
3 70489 13.49%
4 49311 9.43%

5–8 80043 15.31%
9–16 66019 12.63%
17–32 47947 9.17%
33–64 31998 6.12%
> 64 62313 11.92%

Table 2: Distribution of Switch Ranges

of density, calculated as n/r where r is the range of val-
ues and n the number of values, we instead report its
integral reciprocal sparsity, which is defined as dr/ne.
Using this measure, all switch statements with a density
greater than 33.3̇% have a sparsity less than or equal to
3.

Sparsity Count Fraction
1 286427 54.80%
2 85380 16.34%
3 24429 4.67%
4 16701 3.20%
5 16081 3.08%
6 10374 1.98%
7 7509 1.44%
8 5301 1.01%
9 5459 1.04%

10 3271 0.63%
> 10 61749 11.81%

Table 3: Distribution of Switch Densities

These figures show that extending the range of applica-
bility of jump tables by decreasing the density threshold
has rapidly diminishing returns. GCC currently uses a
density threshold of 10% when optimizing for speed,
and 33% when optimizing for size. LLVM currently
uses a more conservative density threshold of 40%.

8 Results

An example x86 solution found by the described super-
optimizer is given below.

switch (x) {

2008 GCC Developers’ Summit • 113

case 20:

case 21:

case 23:

case 24: goto L1;

}

cmpl $22, %eax

je L0

subl $20, %eax

cmpl $4, %eax

ja L0

jmp L1

A more interesting example is taken from compiling the
Linux kernel on IA-64. A frequent idiom is to switch on
powers of two.

switch (x) {

case 1: goto L1;

case 2: goto L2;

case 4: goto L3;

case 8: goto L4;

...

case 16384: goto L15;

case 32768: goto L16;

}

The fastest solution found uses count-trailing-zeros as a
imperfect hash function, which in turn makes use of the
Itanium’s popcount instruction.

int t = __builtin_ctz(x);

static const void ∗T1[32] = {

&<1, &<2, &&<3, ...

&&L0, &&L0, &&L0, &&L0 };

goto ∗T1[t];
LT1:

if (x == 1)

goto L1;

goto L0;

LT2:

if (x == 2)

goto L2;

goto L0;

...

The switch statement lowering code in the current ver-
sion of LLVM differs from that used by the current
version of GCC in several minor respects. Instead of
making the decision whether to use a table jump or se-
quence of bit tests once for the whole switch statement,
LLVM uses a divide-and-conquer approach, allowing a
sequence of binary comparisons to lead to leaf nodes

Method Count Fraction
binary trees 202633 38.77%
(without ranges) 163548 31.29%
(with ranges) 39085 7.48%

table jumps 151893 29.06%
(without delta) 99932 19.12%
(with delta) 51961 9.94%

sequential tests 153211 29.31%
bit tests 14944 2.86%
(without delta) 11575 2.21%
(with delta) 3369 0.64%

Table 4: GCC Implementation Statistics

that perform table jumps or bit tests to implement the re-
maining comparisons. This allows more than one jump
table to be used to implement a single switch statement.
The threshold for switching from comparisons to jump
tables is slightly lower for LLVM, at a maximum of
three comparisons vs. four for GCC. LLVM also has a
stricter density requirement for jump tables than GCC.

Of the 522,681 switch statements in the survey corpus,
5,135 have two singleton case values that branch to the
same label, and of these, 1,564 (0.30%) have case values
that differ by a single bit and are therefore suitable for
ior safe hashing.

Of the GCC table jumps, 1,056 (0.20%) are binary
and have a single non-default label and could therefore
be more efficiently implemented with a Boolean index
map.

When bit testing, when the number of bits set in the im-
mediate constant is more than half of the available bits,
on some architectures it may be cheaper to test the com-
plement bit pattern and reverse the sense of the condi-
tional branch. Analysis of the Debian data set reveals
that this occurs extremely infrequently (62 times for bi-
nary bit tests, and 516 times for multiway bit tests).

Of the switch statement implement by GCC using bi-
nary trees, 29,155 (5.58% of the total) have more than
four case ranges, but failed to be implemented by a table
jump for density reasons. We shall refer to this set as the
difficult subset. The largest difficult switch statement,
found in the conversions.c source file of Debian’s
msort-8.42 package, had 1,080 case ranges, cover-
ing 1,202 case values branching to 320 unique destina-
tion labels.

114 • A Superoptimizer Analysis of Multiway Branch Code Generation

Of this difficult subset, 1,806 (0.35%) were “powers of
two” where each case value had only a single bit set.
There were also 3,083 (0.59%) switch statements where
every case value had trailing zero bits, and in 2,066
(0.40%) of these, rotating by the number of common
trailing zero bits reduced the range (and therefore the
density) enough to be implemented by a table jump.

Index mapping turns out to be a particularly effective
implementation strategy for dealing with these 29,155
difficult cases. Using GCC’s current 10% density crite-
rion, which permits using up to 40 bytes of memory per
case value (on a 32-bit machine), index mapping can ex-
tend the applicability of table jumps to another 15,346
(2.94%) switch statements (or over half of the difficult
cases). Additionally, of the 155,893 switch statements
currently implemented by table jumps, 77,958 (14.92%)
would have reduced memory consumption using “dou-
ble dispatch” index mapping. Likewise, 19,790 (3.79%)
of the current table jumps have fewer than 5 unique des-
tinations, allowing the table jump to be eliminated com-
pletely by index mapping followed by sequential com-
parisons or a binary search tree.

One approach to improving GCC’s implementations of
the difficult subset is to use a binary tree of com-
parisons to split/subset the original switch statement
into partitions that are dense enough to be imple-
mented by table jumps. Analysis of the difficult set re-
veals that 15,131 (2.89%) contain one (or more) sub-
ranges that contain enough case ranges and are dense
enough to satisfy GCC’s table jump criteria. Ta-
ble 5 gives the histogram of the number of table-
jump clusters in the difficult subset. The maximum
number of dense clusters observed in a switch state-
ment is 28, found in both in the inventor_2.1.5
package’s SoFieldConvertors.c++ and in the
netrik_1.15.3 package’s parse-syntax.c.

An area of active research in switch statement lower-
ing is how best to select the pivot element to best parti-
tion switch statements to take advantage of these dense
clusters. An easy-to-implement approach is to use the
existing mechanism of selecting the median case value
(or frequency-weighted median) as is traditionally done
for constructing binary search trees. This has the un-
wanted effect of occasionally splitting dense clusters,
reducing the number of potential jump tables. Bern-
stein [Bernstein85] suggested splitting at the largest gap
between case values. Korobeynikov [Korobeynikov07]
implemented a density-balancing metric used to select a

Clusters Count Fraction
0 14024 48.10%
1 12599 43.21%
2 2005 6.88%
3 356 1.22%
4 67 0.23%

5–8 85 0.29%
9–16 10 0.03%
> 16 9 0.03%

Table 5: Dense Clusters in Difficult Subset

reasonable pivot element in LLVM. A common failing
with these two “greedy” approaches is that they inadver-
tently skew binary search trees even when there are no
dense clusters to be found. These improve the perfor-
mance of the rare (15,131 or 2.89%) binary trees that
contain dense clusters at the expense of the far more
common (187,502 or 35.87%) binary trees that should
attempt to be suitably balanced independently of their
case value’s integer values. A better global approach
has been proposed by Delorie [Delorie04] that initially
identifies the dense clusters and treats these much like
case ranges, as leaves (or potentially internal nodes)
when building a balanced binary search tree. These re-
main heuristics, as optimal switch statement lowering
may occasionally require intentional splitting of dense
clusters, much like testing frequent cases prior to table
jumps can improve average case performance.

9 Future Work

The C# programming language extends the switch state-
ment to allow switching of strings, where each case
contains a constant string literal. The implementation
of string switches is analogous to the classic computer
science problem of keyword recognition. Additional
strategies include perfect and imperfect hashing (as used
by the GNU utility gperf), Patricia tries, or finite
state machines (as used by the UNIX utilities flex and
lex).

In this work, the implementation of a switch statement
has been equated with that of a multiway branch. How-
ever, for many uses of the switch statement in real code,
it is possible avoid branching altogether and replace the
switch with one or more table look-ups. For example,
the Has30Days example presented earlier can be im-
plemented as the following:

2008 GCC Developers’ Summit • 115

if ((unsigned)x > 11)

return 0;

static const int T[12] =

{ 0, 0, 0, 0, 1, 0,

1, 0, 0, 1, 0, 1 };

return T[x];

This mechanism can be extended to more diverse targets
through the use of unification.

switch (x) {

case 0: foo(2,4); break;

case 1: foo(8,3); break;

default: foo(5,9); break;

}

. . . can be implemented as. . .

int t1, t2;

if (x < 2) {

static const int T1[2] = { 2, 8 };

static const int T2[2] = { 4, 3 };

t1 = T1[x];

t2 = T2[x];

} else {

t1 = 5;

t2 = 9;

}

foo(t1,t2);

Another possible area of research is to combine the tab-
ular implementation methods described earlier with dy-
namic data structures such as splay-trees, self-balancing
binary search trees, or move-to-front lists. The advan-
tage of such a hybrid technique is that the performance
of the implementation could dynamically adapt to the
frequency distribution of the index expression.

Finally, to borrow from Newton’s third law, “For ev-
ery optimization, there is an equal and opposite pes-
simization.” For each of the transformations described
in this article, it would be nice to perceive the original
higher-level switch statement from its optimized (low-
ered) equivalent. Programmers by necessity often at-
tempt to hand-optimize code to the current generation of
computer hardware. The ability for a compiler to auto-
matically undo these (premature) optimizations and then
re-lower them using the target’s optimizer could poten-
tially avoid the performance problems frequently asso-
ciated with legacy code.

10 Acknowledgments

The author would like to thank OpenEye Scientific Soft-
ware for the freedom to investigate code generation is-
sues as a hobby; IBM, HP, SGI, Compaq, Apple, SUN,
and Intel for providing hardware; and the GCC com-
munity for inspiring this research. Particularly, Jan Hu-
bička, Andi Kleen, DJ Delorie, Martin Jambor, and
Kazu Hirata have discussed the issue of GCC’s switch
statement generation. The author is especially grate-
ful to Martin Michlmayr for actually running the in-
strumented GCC over the Debian Linux distribution’s
source code repository.

References

[Bernstein85] Robert L. Bernstein, “Producing Good
Code for the Case Statement,” Software – Practice
and Experience, Vol. 15, No. 10, pp. 1021–1024,
October 1985.

[Bernstein86] Robert L. Bernstein, “Multiplication by
Integer Constants,” Software – Practice and
Experience, Vol. 16, No. 7, pp. 641–652, July 1986.

[Delorie04] DJ Delorie, “Case Clustering”
gcc-patches:2004-07/msg01234, July 2004.

[Dietz92] H.G. Dietz, “Coding Multiway Branches
Using Customized Hash Functions,” ECE Technical
Report, School of Electrical Engineering, Purdue
University, 1992.

[Erlingsson96] Ulfar Erlingsson, Mukkai
Krishnamoorthy and T.V. Raman, “Efficient
Multiway Radix Search Trees,” Information
Processing Letters, Vol. 60, No. 3, pp. 115–120,
November 1996.

[Granlund92] Torbjön Granlund and Richard Kenner,
“Eliminating Branches using a Superoptimizer and
the GNU C Compiler,” Proceedings of the
Conference on Programming Language Design and
Implementation (PLDI), ACM SIGPLAN Notices,
Vol. 27, No. 7, pp. 341–352, July 1992.

[Hennessy82] J.L. Hennessy and N. Mendelsohn,
“Compilation of the Pascal Case Statement,”
Software – Practice and Experience, Vol. 12, pp.
879–992, September 1982.

116 • A Superoptimizer Analysis of Multiway Branch Code Generation

[Lefevre01] Vincent Lefèvre, “Multiplication by an
Integer Constant,” citeseer:491491.html,
2001.

[Kannan94] Sampath Kannan and Todd A. Proebsting,
“Correction to ‘Producing Good Code for the Case
Statement’,” Software – Practice and Experience,
Short Communication, Vol. 24, No. 2, pp. 233,
February 1994.

[Korobeynikov07] Anton Korobeynikov, “Improved
Switch Lowering for the LLVM Compiler Compiler
System,” Proceedings of the 2007 Spring Young
Researchers Colloquium on Software Engineering
(SYRCoSE’2007), Moscow, Russia, May 2007.

[Massalin87] Henry Massalin, “Superoptimizer: A
Look at the Smallest Program,” ACM SIGPLAN
Notices, Vol. 22, No. 10, pp. 122–126, October
1987.

[Mueller02] Frank Mueller and David B. Whalley,
“Avoiding Unconditional Jumps by Code
Replication,” Proceedings of the Conference on
Programming Language Design and Implementation
(PLDI), ACM SIGPLAN Notices, Vol. 27, No. 7,
pp. 322–330, July 1992.

[Sale81] Arthur Sale, “The Implementation of Case
Statements in Pascal,” Software – Practice and
Experience, Vol. 11, pp. 929–942, 1981.

[Sayle01] Roger A. Sayle, “Optimize Tablejumps for
Switch Statements,” gcc-patches:2001-10/
msg01234, October 2001.

[Sayle03a] Roger A. Sayle, “Implement Switch
Statements with Bit Tests,” gcc-patches:
2003-01/msg01733, January 2003.

[Sayle03b] Roger A. Sayle, “Tune Jump Tables for
-Os,” gcc-patches:2003-08/msg02054,
August 2003.

[Spuler94] David A. Spuler, “Compiler Code
Generation for Multiway Branch Statements as a
Static Search Problem,” Technical Report,
Department of Computer Science, James Cook
University, Australia, January 1994.

[Tiwari94] Vivek Tiwari, Sharad Malik and Andrew
Wolfe, “Power Analysis of Embedded Software: A
First Step Towards Software Power Minimization,”

IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, Vol. 2, No. 4, pp. 437–445, 1994.

[Warren02] Henry S. Warren, Jr., “Hacker’s Delight,”
Addison-Wesley Publishers, 2002.

[Whaley08] R. Clint Whaley and Anthony M.
Castaldo, “Achieving Accurate and
Context-Sensitive Timing for Code Optimization,”
Software – Practice and Experience, Accepted for
publication, 2008.

[Wienskoski06] Edmar Wienskoski, “Switch
Statement Case Reordering FDO,” GCC Summit
2006, Ottawa, Canada, pp. 235–241, June 2006.

