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The Bernoulli Conundrum

Abstract

Bernoulli’s principle is typically stated in the form that increasing the speed of a gas lowers
the pressure.  This illogical interpretation casts aspersions on Bernoulli’s equation, which is a
direct application of Newton’s second law.  Consequently, authors have sought alternative
explanations, including an isoergic model and the “bounce” model, inconsistent with physics.  The
difficulties are removed by recognizing that Bernoulli’s equation tells us that a pressure difference
causes a change in speed, and pressure differences are caused by curvature of flow, interpreted
locally as producing a centrifugal force.

Subject headings:
Bernoulli
gases 
lift
centrifugal force
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   An attempted simplification of the equation suggests that it is a sum of energy terms1

and that because energy is preserved in the flow, the sum should be constant.  The physics is
seriously flawed.  The integral of (constant) volume times the change in pressure is not equal to
work and is not a change of energy.  As shown many times, it is enthalpy, H = E + PV, that is
constant in the flow, not energy.  One cannot have both H and E constant when PV is changing.

2/12/07                                                                     2                                                               
RPB

The Bernoulli Conundrum
 

Robert P. Bauman
Professor of Physics Emeritus

University of Alabama at Birmingham

Occasionally, phenomena are discovered in nature that seem to be counterintuitive —
apparently correct yet seemingly impossible.  Bernoulli’s equation is an example of such a
conundrum.  The principle, first stated by Daniel Bernoulli in 1738 in his Hydrodynamica,
is often stated in the abbreviated form

Moving fluids have a lower pressure.

The explanatory equation,

in which P is the pressure of the fluid of density ρ and speed u, can be easily derived from
Newton’s second law, which states that the net force acting on any body is equal to the mass of
the body times its acceleration.  Even so, the result appears unexpected, if not absurd.  Many
physicists have denied its validity and/or spent much time looking for alternative explanations.1

The equation is important in practice, with applications running from reading a newspaper to
sailing and flying.

Background
Daniel Bernoulli was a member of a distinguished family of mathematicians from Basle,

Switzerland.  Jacques (1654-1705) and  Jean (1667-1748), his brother, working together and in
competition, contributed to the development of calculus.  Daniel (1700-1782), son of Jean,
applied Newtonian mechanics and Leibnitz’ vis viva to hydrostatics and hydrodynamics  In part 5
of section 12 of Hydrodynamica he gave the relationship between the pressure of a gas and the
speed of the gas, now known as Bernoulli’s theorem.  This was accomplished more than 60 years
before “energy” was defined (by Thomas Young) and nearly a century before Coriolis properly
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defined kinetic energy.

Derivation
Derivation of Bernoulli’s equation is simply a sum, or integration, of mass times acceleration,

under the action of a pressure differential, or force.  Newton’s second law, applied to a fluid
element of density ρ, cross-sectional area A, and length ∆z, gives

where u is the speed of the fluid along the z axis.  Pressure gradient is opposite in direction to the
force, requiring the change of sign before ∆P in the equation.  This is generally known as Euler’s
equation for one-dimensional flow.  Dividing by area gives

                                                 

for the change in speed ∆u (or du) over a distance for which the pressure changes by ∆P (or dP). 
If we make the typical, but unnecessary, assumption that density, ρ, is constant, we can

integrate over speed and pressure to obtain

                                                     
                             
which is Bernoulli’s equation.

Adding a change in hydrostatic pressure with change in height gives the change in pressure,
dP, in terms of the density of the fluid, ρ, the speed, u, and change in speed, du, and the change in
height, dh.

                                        
           

                                          
and therefore, again assuming constant density,

                                      

with g the gravitational field strength (or “free-fall acceleration due to gravity”, 9.8 m/s per
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second, or 32 ft/s ).2

Compressible Fluids
Although this is adequate for liquids, it is an unsatisfactory derivation for gases because gases

are compressible.  A complete analysis should at least consider, in addition to isochoric (i.e.,
constant volume) flow, flows that are isothermal and adiabatic.  To do so it is convenient to define
a parameter, r, which is essentially of the form r = ∆E/E, the change in energy divided by a
reference energy level,

                                   
                           

 
and then integrate Euler’s equation with appropriate assumptions about the flow conditions.

If the flow is isochoric (incompressible fluid), the integration gives:

                                                                       
                                     

which is the previous result (5) when we replace P  with NkT /V.  If the flow is isothermalo o

(difficult to achieve in practice),

                                                  
                             

If the flow is adiabatic (Q = 0; no “heat” exchange, or transfer of thermal energy, which is
most probable),

                                  
                   

with γ the ratio of heat capacities, C /C  .P V

For adiabatic flow, temperature varies as

                                                 
                                                 

     

and density varies as
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  For more details see Robert P. Bauman and Rolf Schwaneberg, "Interpretation of2

Bernoulli's Equation", Phys. Teach. 32, 478-488 (November 1994).

     Robert P. Bauman,  “An Alternative Derivation of Bernoulli’s Principle”, Am. J.3

Phys., 68, 288-289 (March, 2000).
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The difference between these results is small for speeds that are not close to the speed of sound.
Calculated for a diatomic gas (γ = 7/5), convergence of formulas occurs at approximately r = 0.25
(speed along the direction of flow).  Obviously, agreement between expressions for pressure under
isochoric, isothermal, and adiabatic conditions does not imply similarity of isochoric, isothermal,
and adiabatic conditions.  2

Derivation by Equivalence
A second, alternative derivation shows there should be a pressure decrease along the direction

of flow, and shows a form of symmetry between the two otherwise disparate terms (speed and
height) of the equation.   If a fluid of density ρ, initially at rest, is given a uniform acceleration, a,3

over a distance s, to a final speed u, the standard kinematic equations tell us that

                                                       a = u /2s                                                                 (12)2

Replacing the gravitational field strength, g, with acceleration we obtain, by analogy with the
equation for change of density with depth, 

                                                      - ∆P = ρgh                                                                 (13)

an additional term which adds to give

                                         - ∆P = ρgh + ρas = ρgh + ½ ρu                                              (14)2

It is also clear that ∆P increases in magnitude with a and s, so that P may (in principle) go as low
as zero.  (A negative pressure would be meaningless.  A zero pressure would require zero ambient
pressure opposing the flow.)

We need not assume acceleration is constant.  More generally,

                                         - dP = ρ a ds =  ρ du/dt ds =  ρ u du                                      (15)



 This was first recognized by D’Alembert, about 1746.4
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and integration with constant density gives 

                                                        - ∆ P = ½ ρ ∆(u )                                                  (16)2

Criticisms
There are many criticisms of Bernoulli’s equation that are frequently expressed.  For example:
1.  The equation is derived for motion along a streamline, a line of flow of fluid without

turbulence or viscosity, so it should only be applied along a single streamline.
However, in almost every instance, the fluid at either end of the flow has a uniform pressure,

so the initial and final pressures along different streamlines are the same and there is no error in
comparing intermediate pressures along different flow lines.

2.  Real fluids (liquids or gases) do have viscosity (fluid drag).
However, a fluid without viscosity may be considered a limiting case, and corrections can be

added for the (generally small, although not negligible) effects of viscosity.
3.  One should distinguish between pressure measured in different directions in the moving

fluid.  But we must keep in mind the principle of relativity, which tells us that absolute motion
cannot be detected.  The effects must be the same whether a wing is passing through stationary air
or the wing is stationary in air flowing through a wind tunnel.  This, again, is confirmed by
experiment.  We know that pressure in stationary air must be isotropic (the same in all directions),
so the same must be true for pressure in freely flowing air.

4.  It doesn’t make sense that just because a fluid gains speed, it loses pressure.  This is
probably the main reason that many people disbelieve Bernoulli’s equation, even though
Bernoulli’s equation is a necessary conclusion from Newton’s fundamental law of physics.

Re-examination of the equation, as expressed above, shows that such uncertainties of
reference speed, or reference frame, are inherently absorbed into the constant on the right hand
side of the equation, so the equation expresses only changes of pressure associated with changes
of speed.

5.  Bernoulli’s theorem is often obscured by demonstrations involving non-Bernoulli forces. 
For example, a ball may be supported on an upward jet of air or water, because any fluid (the air
and water) has viscosity, which retards the slippage of one part of the fluid moving past another
part of the fluid.  In the absence of viscosity — often loosely referred to as “thickness” of the
moving fluid, as exhibited by syrup or by cold motor oil — all parts of the stream in linear motion
would move at the same speed and there would be no force exerted by the fluid along the
direction of flow.4

Bernoulli’s effect is important for the supported body, but in a much more subtle way, as
discussed below.

Experimental Evidence for Bernoulli’s Equation
1.  The Wright brothers, and earlier experimenters with gliders, gave us the prime example of

the Bernoulli effect.  Air pressure above a wing surface (where the air is moving faster relative to



  The reducto ad absurdum is given by Landis (Fred Landis, Encarta, 2007; Bernoulli’s5

Principle) who states “...the principle technically only applies to systems that do not produce a
net force.”

  An accurate qualitative argument of pressure as cause and speed as effect was given by6

S. Brusca, “Buttressing Bernoulli”, Phys. Educ. 21, 14-12, 262-263 (1986).

 See reference 2, or Robert P. Bauman,  Modern Thermodynamics with Statistical7

Mechanics, Macmillan Publishing Co., New York, 1992; p. 150.
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the wing) is lower than the pressure below the wing.  Pressure difference multiplied by wing area
is equal to a force, which for an airplane is directed upward.  This force is called “lift” and is the
explanation for why airplanes can fly.5

2.  If a large beach ball is held in a nearly horizontal flow of air, as the ball sinks it is pushed
back upward into the flow region, by the higher pressure beneath, out of the flow, and by lower
pressure in the main stream of the flow.  This provides lift that keeps the ball suspended in the
nearly horizontal flow.

Support of the ball on a vertical jet of fluid provides a variation.  The push of the fluid on the
ball, in the direction of the flow (which keeps the ball from balling straight downward) arises from
the non-Bernoulli viscous forces, but it is the Bernoulli effect that keeps that ball more or less
centered along the primary line of flow, so it doesn’t “fall off” the jet. 

Interpretation:  Why Does it Work?
If you ask the wrong question, you may force the wrong answer.  The question has often been

asked (especially in recent years), “Why does increasing the speed of a gas lower its pressure?”  
Because the question seems to have no logical answer, many physicists have attacked the
equation, which is equivalent to saying that Newton was wrong and that the conclusions drawn
from Bernoulli’s equation in aerodynamics are wrong.  (Can planes really fly?)

The difficulty lies in the assumption implied in formulating the question.  The appropriate
question is, “Why does lowering pressure in a gas cause an increase in gas speed?”  The answer  is
then apparent from Newton’s second law.  The pressure difference between two points in a fluid
causes an acceleration.6

Only quite recently has the equation been studied in sufficient depth to lead to a clear
understanding.  We make the usual assumptions that the effects of viscosity can be ignored
(certainly not rigorously true, but a satisfactory first approximation) and that we can ignore
boundary effects — that is, ignore effects related to the presence of wind tunnel walls or the
ground (usually a reasonable starting point).   

Careful analysis shows that if the fluid is a gas, a significant effect is the conversion of random
kinetic energy of the molecules to collective flow.  That is, there is a drop in temperature of the air
as the speed increases.  That temperature drop lowers the pressure.   However, this effect is small7

compared to the very large pressure changes typically recorded, and is absent in liquids.  So this
conversion is not a major part of “the Bernoulli effect”.



 This distinction has been drawn by Evan Jones, private communication.  An equivalent8

point has been made by Holger Babinsky, “How do wings work?”, Phys. Educ. 32, 497-507
(November, 2003); see especially the Appendix.

  A more sophisticated description of the same process assigns a centrifugal force9

(“fleeing the center”) to the moving fluid in what appears to be a rotating reference frame and,
because there is no counterbalancing central force (Latin “centripetal” force), a pressure
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The remaining question, then, is what is it, along the path of a flowing liquid or gas, that
causes the pressure to drop (and thus causes the fluid to gain speed)?  A typical cause of a change
in speed is a simple fan, or the equivalent.  Moving fan blades push the (viscous) fluid, increasing
its speed as it escapes from the high-pressure region.  Further down stream, a restriction in the
flow may cause a decrease in speed and increase in pressure, followed by an increase in speed and
decrease in pressure as the fluid passes beyond the constriction.  The flow stops when the
opposing pressure is sufficient to decelerate the fluid.  This is called the static pressure or the ram
pressure.  It is approximately equal to the pressure that initiated the flow.

The key to understanding Bernoulli’s equation in typical applications is a pair of experiments
with a simple manometer, or pressure gauge.  If one leg of a U-tube manometer (e.g., with water
as the indicating fluid) is thrust into the air flow from a fan, as shown in Figure 1, the reaction is
strong, showing that the pressure read within the flowing air is much lower than the pressure of
ambient air outside the flow.

If, however, the end of the manometer is fitted inside a flat surface so that the air flows
smoothly across the open end, no pressure difference is shown.  The difference is a contrast
between linear flow and curved flow.  8

Figure 1.  A simple open-end manometer,
thrust into moving air, shows a much lower
pressure in the region of higher speed.  The
effect disappears if curvature of flow around
the end of the tube is eliminated.  (Curvature
of flow is important but is ignored in the
schematic drawing.)

Lift
As is well known, and understood, moving bodies, including fluids, tend to move at a

constant speed in a straight line.  If the flow is across a curved surface, the “preferred” straight-
line trajectory of the fluid carries it away from the curved surface, leaving a relative vacuum (i.e.,
a low-pressure region) along the surface.   The low-pressure region is precisely what is required to9



difference is produced.
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cause acceleration of the fluid coming behind.  Thus a low-pressure region is produced by the
curvature of flow and has caused the fluid to move faster, all in agreement with Newton’s laws of
motion and hence with Bernoulli’s equation (Figure 2).  Over an airfoil, the decrease in pressure
may be sufficient that the flow may reach supersonic speeds.  Calculated pressures show that any
other major cause of pressure drop or speed change is likely to lead to excessive values when
added to this anticipated effect of curvature of flow.  The art and science of aerodynamics is to
refine the calculations to include both the effect of wing shape and the known secondary effects of
turbulence, viscosity, and higher speeds (leading to deviations from equation 9).

Figure 2.  Points A correspond to ambient
pressure.  Point B is a low pressure region. 
Centrifugal force on flowing air creates a
low-pressure region around B which
accelerates the air flow and causes lift on
the wing.  Air reaches the normal plane, N,
at C before it reaches C’.  (Representation
is schematic.)

Superficial arguments claiming that airplanes should not be able to fly with flat wings (even
when made of balsa or paper) or upside down, ignore the curvature of flow that is determined by
the angle of attack.  The argument is not as pretty as with cambered wings, but it is basically the
same argument.

Complications
It is tempting to argue that the time of flow should be the same along each of the stream lines,

starting from a vertical line perpendicular to the air flow (or relative flow, for a wing in stationary
air) and ending, for investigative purposes, along a line perpendicular to the flow below and
behind the wing where the air is again moving uniformly.  This can be tested in wind tunnels by
injecting small bubbles or puffs of smoke as tracers.  In a typical experiment, the upper stream
arrives at the “termination” plane before the other streams, showing that it travels sufficiently
faster to go farther but arrive sooner.

There is nothing in Bernoulli’s equation that implies equal times of transit.  Therefore failure
to find equal times casts no aspersions on the equation.  On the other hand, the time difference is
generally small, and may be a second-order effect.  To maintain steady flow it seems reasonable



  An explicit example is given by Encarta (Aerodynamics, unsigned article; Microsoft,10

2007), where lift is ascribed to Newton’s third law and the illustration shows the flow passing
entirely below the wing.
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that the flow times above and below should be the same.  In practice, viscosity enters for real air
to eventually dampen the disturbance behind the wing and avoid accumulation of air along either
path.

Perhaps the most common fallacy, which seems to reappear with each generation that studies
Bernoulli’s equation, is that lift arises primarily from “air bounce” off the lower wing surface.  10

There is such an effect (although it is better represented by the smooth curved flow of Figure 3),
but it is smaller than usually expected.  Furthermore, the downward deflection has already been
fully included in the analysis based on Bernoulli’s equation.  Because of decreased pressure above,
where the air is moving faster, the air pressure below pushes the wing up.  This, of course,
produces a reaction force on the air, causing the air to move downward.  The Bernoulli effect is a
Newtonian force and subject to all the Newtonian rules.  This downwash is particularly obvious
from the airfoils of helicopter blades, or to pilots as they attempt to land and experience reflection
of the air from the ground.

Figure 3.  Air bounce off the lower
surface of a wing is an alternative,
misleading description of lift.  The
pressure increase caused by the
deflection off the lower surface is much
less than the pressure decrease above
the wing surface associated with
increased fluid speed.  The effect of the
air deflection below is already
included in Bernoulli’s equation which
considers the pressure difference
between surfaces.

To observe lift, it is not even necessary that the air flow include the lower surface of the wing,
or of a beach ball suspended in a nearly horizontal air flow.  Because the fluid curves as it passes
over the upper surface (e.g., in the popular demonstration of blowing over the top of a sheet of
paper held “horizontally”), the pressure is less than ambient above the curved surface and the air
foil or ball is subject to lift.  If the “bounce” were in addition to the pressure differential, the lift on
the wing would be substantially greater than expected or observed.

The Coanda effect is another “add on” that must be considered in quantitative analyses of
airfoil performance, but is typically neglected in initial analyses.  As for syrup pouring from a
pitcher, viscous drag at the surface gives a rotation to the fluid, producing a typical curved path as
it leaves the surface.  This is included among the effects of viscosity in real air.  Viscosity adds
other important side effects, including drag on a wing or other object (a force in the direction of
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the flow) and turbulence.

Demonstrations
Bernoulli’s equation explains why you can separate two sheets of paper by blowing at the

edge.  The pressure is less on the outside, where the air is moving, than between sheets where the
air is static.  To us, the distance from static air at the center to flowing air around the outside
seems very small, but to an air molecule the distance is far from negligible, and the path around the
outside necessarily involves curvature.

A propeller in water causes high speeds of water around the tips of the blades, which may
produce pressures below the vapor pressure of the water (about 1/30 atm at room temperature). 
Bubbles of water vapor form, an effect called cavitation.  Resulting forces cause severe wear on
propeller blades, including possible destruction.

The aerodynamic “lift” of a sail is well known to most sailors.  The sail assumes an airfoil
contour that gives a force roughly perpendicular to the direction of air flow past the sail.  Bulging
tops of convertibles are a similar familiar sight, produced by curvature of air flow over the top. 
Lift on racing cars is well known and counteracted by wings set for negative lift.

Aspirator vacuum pumps in laboratory sinks have effectively produced low pressures for
many decades, and spray cans and bottles with pumps have delivered insecticides, waxes, and
perfumes on demand, although Evans has shown that if the curvature of flow is eliminated, an
aspirator no longer works. 

Conclusion
In short, Bernoulli’s equation is a straight-forward application of Newton’s laws, often

misinterpreted.  There are other details that must be included in a full treatment of
aerodynamic/hydrodynamic flow, including viscous drag and turbulence, but there should be no
surprises in Bernoulli’s equation.  

The difficulties are removed by recognizing that Bernoulli’s equation tell us that a pressure
difference causes a change in speed, and pressure differences are caused by curvature of flow,
interpreted locally as producing a centrifugal force.

For those who wish to avoid the details, it is only necessary to point out that where there is
curved fluid flow, there is a pressure difference (i.e., lift), and from Bernoulli’s equation (simply
and properly interpreted) the existence of the pressure difference tells us there must be a speed
difference.


