
PhTM: Phased Transactional Memory∗

Yossi Lev

Brown University and
Sun Microsystems Laboratories

yosef.lev@sun.com

Mark Moir Dan Nussbaum

Sun Microsystems Laboratories

{mark.moir,dan.nussbaum}@sun.com

Abstract
Hybrid transactional memory (HyTM) [3] works in today’s
systems, and can use future “best effort” hardware trans-
actional memory (HTM) support to improve performance.
Best effort HTM can be substantially simpler than alterna-
tive “unbounded” HTM designs being proposed in the litera-
ture, so HyTM both supports and encourages an incremental
approach to adopting HTM.

We introduce Phased Transactional Memory (PhTM),
which supports switching between different “phases”, each
implemented by a different form of transactional memory
support. This allows us to adapt between a variety of dif-
ferent transactional memory implementations according to
the current environment and workload. We describe a simple
PhTM prototype, and present experimental results showing
that PhTM can match the performance and scalability of
unbounded HTM implementations better than our previous
HyTM prototype when best effort HTM support is available
and effective, and is more competitive with state-of-the-art
software transactional memory implementations when it is
not.

1. Introduction
The multicore revolution currently in progress is making
it increasingly important for applications to be concurrent
in order to take advantage of advances in technology. But
today’s concurrent programming practice, mostly based on
locks and condition variables, is inadequate for this task.
Locks do not compose, and introduce troublesome tradeoffs
between complexity, performance, and scalability. Further-
more, locks are subject to deadlock if not used carefully, re-
sulting in significant software engineering problems.

Transactional Memory [9] is widely considered to be the
most promising avenue for addressing these problems. Us-
ing transactional memory, programmers specifywhat should
be done atomically, rather than specifyinghow this atomicity
should be achieved, as they do today with locks. The transac-
tional memory implementation guarantees atomicity, largely
relieving programmers of the above-mentioned tradeoffs and
software engineering problems.

∗ c© Sun Microsystems, Inc., 2007. All rights reserved.

Transactional memory can be implemented in hardware
[9], in software [16], or in a combination of the two [3,
14, 15]. Hardware transactional memory (HTM) designs
can be unbounded, bounded, or “best effort”. The original
HTM proposal [9] is a bounded HTM: it has a fixed-size,
fully-associative transactional cache, and a transactioncan
be committed if and only if it fits in that cache.

Alternative “best effort” designs, such as those that pig-
gyback on existing caches and other hardware structures
such as store buffers [18], may be able to commit one large
transaction while being unable to commit another signifi-
cantly smaller one, depending on how the transactions hap-
pen to map to the existing structures. Best effort HTMs are
not required to make particular guarantees about what trans-
actions can commit, and are therefore substantially easier
to design, for example because difficult corner cases can be
handled by simply aborting a transaction.

Recently, numerous proposals for “unbounded” HTM [2,
8, 14, 15] have appeared in the literature in an effort to over-
come the shortcomings of bounded and best effort HTM de-
signs. However, all of them entail substantially more com-
plexity than the much simpler best effort implementations,
and therefore it will be much more difficult to integrate un-
bounded HTM solutions into commercial processors in the
near future. We believe that simple best effort HTM sup-
port can be implemented much sooner. However, if used
directly, best effort HTM support can impose unreasonable
constraints on programmers, for example requiring them to
think about the number and distribution of cache lines ac-
cessed by transactions or other architecture-specific imple-
mentation details. These tradeoffs are a large part of the rea-
son HTM has not been embraced by the computer industry
to date.

Software transactional memory (STM) [16] provides
software engineering benefits similar to those of HTM, but
does not require special hardware support, and thus can be
built and used in existing systems today. Because it is in-
dependent of hardware structures such as caches and store
buffers, STM is not subject to the limitations of bounded and
best effort HTMs. Substantial progress in improving STM in
various ways has been made in recent years. Nonetheless, it

1 TRANSACT 2007

remains much slower than what can be expected from HTM,
and a substantial gap will likely always remain.

We previously proposed Hybrid Transactional Memory
(HyTM) [3], which aims to provide the flexibility and gen-
erality of STM, but also to exploit HTM supportif it is
available and when it is effective to boost performance.
A HyTM implementation minimally comprises a fully-
functional STM implementation, because it must work even
if there is no HTM support available. Thus, any transaction
can be executed in software, without special hardware sup-
port. This allows us to develop, test, and run transactional
programs in existing systems, even before any HTM sup-
port is available. Furthermore, a HyTM implementation can
use best effort HTM support to execute transactions if it is
available. This way, significant performance improvements
are possible with HTM support if many transactions can be
committed by the HTM, even if some must be executed in
software due to limitations of the HTM support.

In the prototype HyTM system described in [3], transac-
tions executed using HTM augment every transactional load
and store with code to check for conflicts with concurrent
software transactions. Simulation studies we have conducted
show that while HyTM can perform dramatically better with
HTM support than without, a simulated unbounded HTM
implementation performs significantly better still, because it
does not have to pay the overhead for detecting conflicts with
concurrent software transactions. Furthermore, the need for
transactions executed in software to expose enough informa-
tion to make it possible for transactions executed using HTM
to detect conflicts imposes overhead on and constrains the
design of the STM component of HyTM, making it difficult
to compete with other STMs that do not have this require-
ment. For example, our HyTM prototype used in software-
only mode is outperformed by state-of-the-art STMs, e.g.,
TL2 [4].

In this paper, we introduce Phased Transactional Memory
(PhTM). Our goal is to build a HyTM system in which
transactions successfully executed using best effort HTM
perform (almost) as well as an unbounded HTM would,
while transactions executed in software are competitive with
the fastest STM systems.

Phased Transactional Memory (PhTM)

The key idea behind PhTM is to support various modes that
are optimized for different workload and system support
scenarios, and to allow seamless transitions between these
modes. The name Phased Transactional Memory comes
from the idea that we might operate in one mode for some
time, then switch to another, thus executing the application
in “phases” in which the system is in a particular mode for
each phase. The challenges include:

• identifying efficient modes for various scenarios

• managing correct transitions between modes

• deciding when to switch modes

In this paper, we present options for addressing each of
these issues, describe a prototype we have implemented to
evaluate the potential of this approach, and present perfor-
mance experiments showing that PhTM is a promising ap-
proach. While the PhTM approach is applicable to other
contexts, our prototype is integrated into a C/C++ compiler
based on the one described in [3].

The rest of this paper is organized as follows: Section 2
presents a range of implementation alternatives for PhTM.
Section 3 describes our prototype implementation. Section4
presents experimental results and analysis. We conclude in
Section 5.

2. A General PhTM Framework
The key idea behind PhTM is to use multiple, mostly inde-
pendent transactional memory implementations, and to sup-
port switching between them seamlessly. This way, we can
use the mode best optimized for the current workload and
execution environment, but switch to another in response to
changes in the workload or if a transaction that is not sup-
ported by the current mode is encountered. There is a wide
variety of possible implementations that could be used in a
PhTM system. In this section, we describe some common
scenarios and TM implementations that are appropriate for
them, and discuss how we can integrate and switch between
them. We structure our presentation by focusing on the chal-
lenges described above.

2.1 Identifying efficient modes for various scenarios

Below we identify several likely scenarios and describe exe-
cution modes that are effective for them.

1. HTM is available and almost always effective.

For this scenario, we propose aHARDWARE mode in which
all transactions are executed using HTM support. Be-
cause there is no need to detect conflicts with concurrent
software transactions, we can eliminate the substantial
overhead in our existing HyTM prototype for checking
for such conflicts.

2. HTM is unavailable or is ineffective for the current work-
load.

For this scenario, there is little point in attempting to ex-
ecute transactions using HTM support. Therefore, in this
case we use aSOFTWARE mode, in which all transactions
are executed in software. This way, the STM design is not
constrained to interoperate correctly with HTM transac-
tions, which means we can use state-of-the-art optimized
STMs that have not been designed to interoperate with
HTM.1

1 Not all STMs can be used in this way. In particular, STMs that require
transactional metadata to be co-located with transactionaldata (e.g., [7])
cannot be integrated into a C/C++ compiler, because they interfere with
standard data layout.

2 TRANSACT 2007

3. HTM is available, and is usually effective but often not.

In this scenario, it may be worthwhile to execute HTM-
supported and software transactions concurrently in or-
der to avoid frequent mode changes. In this case the
HTM transactions and software transactions must ensure
that conflicts between them are correctly detected and re-
solved. In thisHYBRID mode, the system behaves like our
current HyTM prototype [3].

4. Workload is single-threaded, or uses few transactions.

This mode (call itSEQUENTIAL) supports the execution
of only one transaction at a time. The thread that causes
a transition into this mode can execute its transaction
with no conflict detection because there are no concurrent
transactions, which can eliminate a significant amount of
overhead.

5. Workload is single-threaded, or uses few transactionsand
some transactions are known not to abort explicitly.

For such transactions, we can use aSEQUENTIAL-NOABORT

mode that essentially eliminates virtually all transactional
memory overhead. As in the previous case, the thread
that causes a transition into this mode can execute its
transaction with no conflict detection. However, because
transactions will not abort due to conflict and will not
abort explicitly, this mode can also elide logging, making
the resulting execution essentially the same as sequential
execution. This mode also allows general functionality
that might not be supported in other modes, for example
executing I/O or system calls within transactions.

We believe that many practical scenarios will fall into cat-
egory 1 or 2 above. If we were always to use our HyTM pro-
totype as it exists today (which essentially always operates
in HYBRID mode), we would be unnecessarily penalizing all
such applications, in effect making them pay overhead to
support unneeded flexibility. By supporting multiple modes
we are able to use the best mode for each given environment
and workload. Furthermore, by supporting dynamic mode
changes, we can adapt to changing workload characteristics,
or make optimistic assumptions and transparently back out
of them if they turn out to be wrong.

2.2 Managing correct transitions between modes

A key challenge in implementing PhTM is in ensuring that
we can change modes effectively when we decide to do
so. Because different modes support different transaction
implementations, it is necessary when switching modes to
prevent transactions executing in the current mode from
compromising the correctness of the transactions executing
in the new mode, and vice versa. One simple approach is
to ensure that all transactions executing in the current mode
are either completed or aborted before allowing transactions
in the new mode to begin. This can be achieved in various
ways, depending on the old and new modes.

In HARDWARE mode (scenario 1 above), it is sufficient to
check once per transaction that the system is in a mode that
allows HTM transactions that do not detect conflicts with
software transactions. This can be done, for example, by
reading (as part of the transaction) a globalmodeIndicator

variable, and confirming that the system is in a mode com-
patible with HTM-only execution. Having performed this
check, it is safe to execute the rest of the transaction without
any additional overhead for conflict checking because either
a) the transaction will complete while the mode remains un-
changed, or b)modeIndicator will change, thus causing
the transaction to fail. This checking entails very low over-
head because it is a single load of a variable that is read-only
until the next mode change, and this check is performed once
per transaction, not once per memory access as are the con-
flict checks in our current HyTM prototype. Transactions ex-
ecuted using HTM inHYBRID mode (scenario 3 above) can
use the same technique to ensure they execute in a compat-
ible mode, but additionally need to check for conflicts with
software transactions.

The situation is more complicated for software transac-
tions. Before switching from a mode that allows software
transactions to a different mode, we must ensure that each
transaction currently executing in software can no longer do
anything to compromise the correctness of transactions to be
executed in the next mode.

One simple approach is to prevent new software transac-
tions from starting, and to wait for all software transactions
already executing to complete. Alternatively, in some cases
it may be preferable to abort some or all transactions exe-
cuting in the current mode in order to facilitate faster mode
switches. This might be achieved by iterating over all ac-
tive software transactions and explicitly aborting them, or
alternatively by a “safe point” mechanism [1] in which, with
compiler support, every transaction is always guaranteed to
check within a short time whether there has been a mode
change and therefore it should abort itself.

2.3 Deciding when to switch modes

Given the ability to switch between modes, a wide range
of policies for deciding when to switch modes and to
which mode is possible. For a simplisitic example, we could
“schedule” phases, spending a fixed amount of time in each
mode in order. But we can likely improve performance in
most cases by monitoring progress of transactions, com-
mit/abort rates, status of transactions with respect to the
current mode, etc. For example, if we find that almost all
transactions succeed inHARDWARE mode, we will generally
prefer to spend most time in that mode. But if we encounter
a transaction that we know or suspect cannever commit
in HARDWARE mode, for example due to limitations of the
HTM support, then we must eventually switch to a mode
that can execute the transaction in software. Once such a
transaction is encountered, we may choose in some cases to
wait for a short time to allow other transactions that require a

3 TRANSACT 2007

SOFTWARE mode to accumulate, or we might switch immedi-
ately to aSOFTWARE mode to avoid delaying the transaction.

Similarly, when we are in a mode that supports software
transactions, we may wish to switch back toHARDWAREmode
in order to again get the performance benefit of executing
transactions using HTM without checking for conflicts with
software transactions. Again, a number of factors, includ-
ing programmer hints about the application or statistics col-
lected perhaps by a contention manager may influence this
decision. We would probably wish to minimally wait for
completion of the transaction that initiated the switch to a
SOFTWARE mode before switching back toHARDWARE mode,
in order to avoid “thrashing” between modes (because such
a transaction, if reexecuted inHARDWARE mode, is likely to
immediately initiate a return to aSOFTWARE mode).

2.4 Example PhTM implementation

For concreteness, in the remainder of this section we de-
scribe an example PhTM implementation that can support
a number of different modes. Before a thread begins a trans-
action, it checks the current mode. It can then either attempt
to execute in that mode or choose to change to a different
mode, depending on policy decisions driven by a host of po-
tential factors such as knowledge of the application or trans-
action (provided by the programmer, compiler or command
line options, or profiling data), knowledge of the success or
otherwise of previous attempts in this mode, etc. We first
explain how mode changes are supported, and then explain
how transactions are executed in various modes.

Mode-changing mechanism

In general it is not safe to change modes without waiting for
some condition to hold, and in some cases it is desirable to
delay mode changes in order to avoid “thrashing” between
modes, as well to ensure that threads that wanted to switch to
a new mode can take advantage of the new mode before the
mode changes again. Below we present a general mechanism
that supports these purposes.

For simplicity of exposition, we base our mode changing
mechanism on a single, globally sharedmodeIndicator
variable, which contains 6 fields, as follows:

modeIndicator = 〈 mode, mustFinishThis,
otherTxns, nextMode, mustFinishNext, version〉

We assume the ability to atomically updatemodeIndicator,
for example by storing its fields in a 64-bit word and us-
ing a 64-bit compare-and-swap (CAS) instruction to mod-
ify it. We later explain some potential shortcomings of this
simple approach, and how to overcome them. The fields in
modeIndicator are described below.

mode indicates the current mode, e.g.,HARDWARE, SOFTWARE,
HYBRID, SEQUENTIAL, SEQUENTIAL-NOABORT.

mustFinishThis is the number of transactions that must
complete in this mode before we switch to the next mode.

otherTxns is used in some modes to count transactions that
are in this mode but arenot included in the
mustFinishThis counter; this field may be used in
modes that require all transactions executing in that mode
to indicate that they have completed or aborted before the
next mode switch.

nextMode indicates the next mode to switch to; it contains
NONE when no mode transition is in progress.

mustFinishNext is the number of transactions involved in
switching to the next mode; these will be the transactions
that must complete innextMode mode (as opposed to
others that may be aborted) after the next mode switch.

version is a version number that is incremented with ev-
ery mode change, to avoid the so-called ABA problem,
in which a transaction twice observes the same value in
all other fields ofmodeIndicator, and incorrectly con-
cludes thatmodeIndicator did not change in between
the two observations.2

Initially, mode is the default starting mode (e.g.,
HARDWARE), nextMode is NONE, and all other fields are zero.

If no mode change is in progress (i.e.,nextMode is
NONE), then a thread caninitiate a mode change by chang-
ing nextMode to the desired mode, while keeping all other
fields unchanged (with the possible exception of setting
mustFinishNext to one; see below). Subsequently, per-
haps after a short delay, this thread or some other thread can
complete the mode change, providedmustFinishThis and
otherTxns are both zero, as follows:

• copynextMode to mode

• setnextMode to NONE

• copymustFinishNext to mustFinishThis

• setmustFinishNext to zero

• incrementversion

Between the initiation and completion of a mode change,
threads that desire the same mode change canjoin the mode
change, by incrementingmustFinishNext. This ensures
that such threads are included in themustFinishThis
counter after the mode change, so the mode does not change
again until these threads complete their transactions and
decrementmustFinishThis.

In some modes, some transactions cannot be completed,
for example because they use functionality not supported by
the current mode. In such cases, in order to allow subsequent
mode changes, a thread joining a mode change to a mode
that is not guaranteed to be able to complete its transaction
should either refrain from incrementingmustFinishNext,

2 The version number may not be strictly necessary in the example de-
scribed here, but nonetheless makes reasoning about the algorithm easier.
Furthermore, implementations that separate the mode indication from other
components of the algorithm (as described later) will likelyrequire a ver-
sion number, e.g., to prevent “old” mode change attempts from succeeding.

4 TRANSACT 2007

or guarantee that, after the mode change, it will eventually
decrementmustFinishThis, even if it does not complete.

Execution modes

Next we describe how transactions execute in each mode.
HARDWARE mode: in this mode, transactions begin a hard-

ware transaction, readmodeIndicator and confirm that it
still indicatesHARDWARE mode (aborting if not), and then ex-
ecute the transaction in the hardware transaction, withoutex-
plicitly checking for conflicts with other transactions. This is
safe because in this mode all transactions are executed using
HTM support, so conflict detection and resolution is han-
dled in hardware. If the mode changes before the transac-
tion completes, the transaction will abort because it has read
modeIndicator.

SOFTWARE mode: in this mode, if the thread didnot incre-
mentmustFinishNext during the transition to this mode,
then it must increment theotherTxns counter while con-
firming that the mode is stillSOFTWARE. In some implemen-
tations, if nextMode is not NONE or mustFinishThis is
zero, the thread waits until the mode changes (or changes
the mode itself). This technique may be used to encourage a
change back to a more efficient mode (e.g.HARDWARE) after
the transactions for which we changed toSOFTWARE mode
have completed.

With some STM algorithms we might choose to only try
to increment theotherTxns counter before the transaction
enters the time period in which it is unsafe to switch modes
(for example, immediately before committing in the STM of
our HyTM prototype). In this case, if we fail to increment
the counter, the transaction must abort and be retried in the
next mode. By delaying the increment ofotherTxns until
we are about to do something incompatible with the next
mode, we can reduce the time we must wait to switch modes.
Furthermore, when using a write set approach as the STM of
our HyTM prototype does, this ensures that we do not wait
for these “other” transactions while they are executing user
code, which may take much longer and be less predictable
than the commit code, which is under our control.

Once a thread has incrementedotherTxns, the mode
will not change before it decrementsotherTxns, which
it will do only when it is guaranteed not to perform any
action that jeopardizes correctness if the mode changes (for
example after it has committed successfully, or has aborted).
This makes it safe for the thread to execute its transaction
using a state-of-the-art STM, regardless of the details of the
inner workings of that STM.

Because no hardware transactions execute inSOFTWARE

mode, there is no need to facilitate the detection of conflicts
between hardware and software transactions, so the design
of the STM is essentially unaffected by its inclusion in our
PhTM system. There are, however, some small changes nec-
essary, which are applicable to any STM system. Specifi-
cally, upon completion, a transaction must report its comple-
tion, either by decrementing themustFinishThis counter

(in case it incrementedmustFinishNext during the transi-
tion to the current mode) or theotherTxns counter (oth-
erwise). Furthermore, to facilitate faster mode changes, it
may be desirable for transactions to abort before completion
upon observing that a mode change has been initiated (i.e.,
nextMode is notNONE). This can be achieved in a number of
possible ways, for example checkingmodeIndicator be-
fore retrying, upon executing a transactional load or store,
on backwards branches, or at compiler-supported safe points
[1], etc. Once the transaction has aborted, it decrements
otherTxns to reflect this.

HYBRID mode: In this mode, transactions can be at-
tempted using either hardware or software transactions, each
modified to facilitate detection and resolution of conflicts
with the other. For example, in our HyTM prototype [3],
hardware transactions are augmented to detect conflicts with
software transactions, and software transactions maintain
state sufficient to facilitate this.

To allow integration with the PhTM system,HYBRID
transactions executed in hardware must additonally read
modeIndicator once at the beginning to confirm theHYBRID
mode (as described above forHARDWARE mode) in or-
der to ensure that they abort upon mode change. Simi-
larly, transactions executed in software coordinate usingthe
mustFinishThis and otherTxns counters as described
above forSOFTWARE mode. This way, we can ensure that
no transaction (hardware or software) executed inHYBRID

mode interferes with transactions executed in subsequent
modes.

SEQUENTIAL andSEQUENTIAL-NOABORT modes: These
modes are similar toSOFTWARE mode, except that they can
use “stripped down” STMs to improve performance: neither
mode requires conflict detection, andSEQUENTIAL-NOABORT
does not require logging for abort either, and can thus exe-
cute almost at the speed of sequential code.

Enhancements to the simple scheme

Because hardware transactions readmodeIndicator to
confirm that the system is executing in a compatible mode,
changes to other fields ofmodeIndicator may cause
them to abort. Therefore, it may be preferable tocoordi-
nate mode changes using different variable(s), and just use
modeIndicator to actually change modes. By keeping ver-
sion numbers in these other variables coordinated with the
version field in modeIndicator, it is not difficult to ar-
range for all transitions other than actual mode changes to
affect other variables, so that only mode changes modify the
modeIndicator variable that indicates the current mode.

The counters formustFinishThis, mustFinishNext,
andotherTxns may introduce bottlenecks that inhibit scal-
ability past a certain number of threads or cores if imple-
mented naively. Fortunately, we observe that these coun-
ters do not generally need to provide the ability to know
the value of the counter, as provided by standard coun-
ters. It is sufficient that they supportArrive, Depart, and

5 TRANSACT 2007

Query operations, where theQuery operation simply re-
ports whether there is any transaction that has arrived and
not yet departed. “Scalable Non-Zero Indicators” (SNZI)
[6] are designed exactly for this purpose. SNZI exploits the
fact that the required semantics is weaker than for standard
counters to allow scalable and efficient implementations.
The SNZI mechanism specifically targets implementations
in which theQuery operation comprises a single read of a
variable that will not change before the number of transac-
tions that have arrived and not yet departed becomes zero
or becomes nonzero. Thus, by using SNZI objects in place
of the above-mentioned counters, we can effectively inte-
grate the above-described mode coordination scheme with
hardware schemes without unrelated events causing aborts
of hardware transactions.

3. Our experimental prototype
There is a virtually endless supply of modes that may make
sense for some scenario, as well as a wide variety of potential
ways to decide when to switch modes and to which mode.
But in practice we prefer to have a small set of modes and
simple but effective policies for switching between them.
We are convinced that we would at least like to have a
HARDWARE mode that is as fast and scalable as possible
when all transactions can be committed using HTM, and a
SOFTWARE mode that is unencumbered by coordination with
concurrent HTM transactions, to ensure that our system can
be competitive with state-of-the-art optimized STMs when
HTM is unavailable or ineffective for a given workload.

In this section, we present a simple PhTM prototype we
have implemented in order to explore the feasibility of inte-
grating multiple implementations, changing between them,
etc., as well as to evaluate the performance improvement
possible by eliminating the need for transactions to check
for conflicts with concurrent transactions executed using dif-
ferent methods. Our prototype supports only theHARDWARE

andSOFTWARE modes mentioned above, with theSOFTWARE
mode configured to allow us to “plug in” a variety of STMs
for experimentation; to date we have experimented with the
STM component of HyTM [3] and a variant on it (see Sec-
tion 4) and with TL2 [4]. We can include additional modes
when and if we are convinced we need them.

3.1 Compiler changes

For prototyping PhTM, we used the HyTM compiler de-
scribed in [3], with some small modifications to support
PhTM. The HyTM compiler generates two code paths for
each atomic block. One path executes the block using a hard-
ware transaction and the other executes it using the STM in
the HyTM library.

Code generated by the HyTM compiler calls a special
HyTM library function before each transaction attempt, and
its return value determines whether the transaction is exe-
cuted using the hardware code path or the software code

path. The same functionality is used in PhTM to decide
which code path to take, with the library modified to make
these decisions based on the current mode, or perhaps to
change the mode before proceeding.

Some modifications to the HyTM compiler are neces-
sary in order to support a “bare bones” hardware transaction
mode. The first change is needed to allow transactions exe-
cuted using HTM to ensure that they run only in appropriate
modes (HARDWARE mode in our simple example). To support
this, the HyTM compiler now supports emitting a call to a
newcheckMode function in the PhTM library after the be-
ginning of a hardware transaction. If this function sees that
we’re not inHARDWARE mode, it aborts the hardware trans-
action (which then retries); otherwise, the transaction pro-
ceeds inHARDWARE mode. This allows us to ensure within a
hardware transaction that we are inHARDWARE mode; if the
mode changes before the transaction completes, it will fail
and retry.

As discussed, there is no need in PhTM for a hardware
transaction to check for conflicts with software transactions.
Therefore, the compiler now supports an option to disable
generation of conflict checking calls in the hardware path.
We found that these calls accounted for the lion’s share of
the overhead of HyTM relative to the unbounded LogTM
system we compared against, even when we modified the
library so that it trivially reports no conflict. This was a
driving factor motivating our work on PhTM.

As in HyTM, transactions executed using the software
path make calls into the library for beginning and com-
mitting software transactions, and for each memory access.
Thus we can use the STM we developed for our HyTM sys-
tem (minus the functions that support conflict checking by
hardware transactions), or other STMs that conform to the
same interface. To compare against a state-of-the-art STM
that is not constrained to interoperate with hardware transac-
tions, we modified the TL2 STM [4] so that it can be plugged
in as the STM component of our PhTM prototype. This was
relatively straightforward, requiring us to change Tl2’s in-
terface to conform to that required by our compiler, and sup-
porting some additional simple functionality, like the ability
to self-abort a transaction, and flattening (lexically and dy-
namically) of nested transactions.

3.2 Implementing PhTM modes

Our simple prototype supports only two modes, which al-
lows a simpler mechanism for coordinating modes than the
more general one described in Section 2.

Initially, the system is inHARDWARE mode, and all trans-
actions execute using the hardware path. If we are lucky, all
transactions can be executed using HTM. However, because
we assume only best-effort HTM, we may encounter a trans-
action that cannot be committed using HTM, in which case
we will need to switch toSOFTWARE mode to complete the
transaction. Depending on workload and environment, it will
most likely be desirable to return toHARDWARE mode at some

6 TRANSACT 2007

point, so that we can again get the performance benefit of us-
ing HTM. In some cases, it may make sense to simply stay in
SOFTWARE mode forever if we determine that the best-effort
HTM is (almost) never successful. However, our simple pro-
totype always eventually goes back toHARDWARE mode.

The modeIndicator variable used to coordinate mode
changes in our simple two-mode prototype has the following
structure:

modeIndicator = 〈 mode, DeferredCount,
UndeferredCount〉

When in HARDWARE mode,DeferredCount represents
the number of transactions that must be executed in software
after the next mode transition; when inSOFTWARE mode, it
represents the number of these transactions that have not yet
succeeded. TheUndeferredCount represents the number
of other transactions currently executing in software (its
value is always zero when inHARDWARE mode).

While the system remains inHARDWARE mode, the library
always directs every transaction to execute using the hard-
ware path, and thecheckMode function reads the global
modeIndicator, confirms that the mode isHARDWARE and
proceeds with the transaction. When a HTM transaction is
unsuccessful for some reason, the library decides whether
to retry in hardware or to initiate a transition toSOFTWARE
mode before retrying. These decisions may be made based
on a variety of factors, including feedback from the HTM
about the reason for failure, such as whether it was caused by
contention or by exceeding the best-effort HTM’s resource
constraints. Experience shows that retrying in hardware (af-
ter a short delay) makes sense when the failure is due to con-
tention, but not when it is due to exceeding the resources of
the best-effort HTM. Our current HTM model does not pro-
vide any such feedback, however, so when a transaction’s
resource needs cause the hardware path to fail, the hardware
path fruitlessly retries several times (currently nine) before
failing over toSOFTWARE mode. This is obviously a bad sit-
uation to be in, and we have seen benchmarks that have a
large number of transactions that encounter these resource-
need failures perform very poorly. In the future, we plan to
enhance our simulated HTM support to give feedback about
reasons for failure so we can make better decisions in this
regard.

When a transaction decides to initiate a transition to
SOFTWARE mode, it attempts to incrementDeferredCount
while confirming that the mode is stillHARDWARE; waits for
a short time or for the mode to change toSOFTWARE; and
then atomically changes the mode toSOFTWARE (if this has
not occurred already) while keepingDeferredCount and
UndeferredCount unchanged. When the mode becomes
SOFTWARE, the library then directs the transaction to retry
using the software path.

Transactions that incrementDeferredCount decrement
it again when they complete. The system remains inSOFTWARE

mode whileDeferredCount is nonzero, and during this

time, additional transactions can execute inSOFTWAREmode.
These transactions first incrementUndeferredCount (while
confirming that the mode isSOFTWARE andDeferredCount
is nonzero); they decrementUndeferredCount when they
complete. Transactions that decrement one of the counters to
zero while the other is zero simultaneously switch the mode
back toHARDWARE. A transaction that attempts to increment
UndeferredCount but cannot becauseDeferredCount is
zero simply waits for the mode to becomeHARDWARE again.
Thus, after the deferred transactions all complete, no new
undeferred transactions begin, so we return toHARDWARE

mode after all undeferred transactions have completed.

4. Performance evaluation
In this section, we present some preliminary performance
experiments, designed to evaluate the benefit of being able
to execute different kinds of transactions in different phases,
rather than requiring the different types of transactions to
correctly coexist.

4.1 Experimental platforms

To simulate HTM support, we started with the Wisconsin
LogTM simulator [14]. This is a multiprocessor simulator
based on Virtutech Simics [12], extended with customized
memory models by Wisconsin GEMS [13], and further ex-
tended to simulate the unbounded LogTM architecture [14].
We added instruction handlers for thetxn begin, txn end

andtxn abort instructions produced by our compiler, map-
ping these to the corresponding LogTM instructions. We
used this simulator for curves labeled “LogTM” in our
graphs, and for simulations not involving HTM.

In LogTM, when a transaction fails, it is retried, trans-
parently to the software (possibly after a short delay to re-
duce contention). To experiment with best-effort HTM sup-
port, we created a variant of the simulator that immediately
branches upon failure to ahandler-addr, specified with the
txn begin instruction. This allows software to decide how
to react to failures, as needed by HyTM and PhTM. We fur-
ther modified the simulator to abort HTM transactions when
either (a) the number of store instructions executed exceeds a
specified number (32 in the experiments presented here), or
(b) a transactional cache line is “spilled” from the L2 cache.

Finally, LogTM has a built-in contention management
mechanism that delays memory requests that conflict with a
transaction, NACK’ing the processor that issued the request.
Memory requests can therefore be repeatedly NACKED for
a very long time, until the transaction commits or aborts.3

This mechanism complicates the hardware design beyond
what we would minimally assume about a best effort HTM,
for which an incoming conflicting memory request would
cause the local transaction to abort. So we further modified
the simulator to do just that.

3 We observed this phenomenon in our early simulations.

7 TRANSACT 2007

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 2 3 4 6 8 12 16 24 32

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

Number of threads

LogTM
phtm
phtm-tl2

hytm
stm
stm-invr

stm-tl2
original

 1000

 10000

 100000

 1e+06

 1e+07

 1 2 3 4 6 8 12 16 24 32 48 64 96 127

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

Number of threads

(a) (b)

 100000

 1e+06

 1e+07

 1 2 3 4 6 8 12 16 24 32

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

Number of threads

 100000

 1e+06

 1e+07

 1 2 3 4 6 8 12 16 24 32 48 64 96 127

O
pe

ra
tio

ns
 p

er
 s

ec
on

d

Number of threads

(c) (d)

Figure 1. Performance experiments: (a) Berkeley DB on simulator (b) Berkeley DB on E25K (c) Red-Black tree on simulator
(d) Red-Black tree on E25K.

Together these changes result in a model that emulates
a best-effort HTM design that uses only on-chip caches
and store buffers, and aborts transactions that exceed these
resources or that encounter any conflict. We used this
“neutered” simulator for all PhTM and HyTM simulations.

The systems we simulated share the same multiproces-
sor architecture described in [14], except that our simulated
processors were run at 1.2GHz, not 1GHz, and we used the
simplerMESI SMP LogTM cache coherence protocol, instead
of theMOESI SMP LogTM protocol.

We also conducted experiments not involving HTM sup-
port on a Sun FireTM E25K [17], a shared memory multi-
processor containing 72 1500MHz UltraSPARCTM IV chips
(with two hardware threads per chip) and 295 GByte of
shared memory, running a 150 MHz system clock. Each pro-
cessor chip has a 64 KBbye instruction cache and a 128
KByte data cache on chip and a 32 MByte level 2 cache
off chip. The processors are organized into nodes containing
four chips (eight hardware threads) each.

In all experiments, both simulated and real, we bound
each thread to a separate processor to eliminate potential
scheduler interactions. Furthermore, while our implementa-
tions support various forms of privatization [5, 10], analysis
of their impact on performance and scalability is beyond the
scope of this work, so we disabled privatization for these ex-
periments.

4.2 Experimental systems

For systems with HTM support, we experimented with
LogTM [14], HyTM [3], and the PhTM system described
in Section 3 instantiated with the STM component of HyTM
(phtm) and with TL2 [4] (phtm-tl2).

For systems without HTM support, we conducted exper-
iments using TL2, the STM component of HyTM (stm),
and a variant of it (stm-invr) that uses invisible reads in-
stead of semi-visible reads. The semi-visible read mecha-
nism thatstm uses records how many (but not which) trans-
actions hold read ownership of a location [3]. Using semi-
visible reads for HyTM allows hardware transactions to de-
tect conflicts with concurrent software transactions cheaply;
and also supports an optimization that often avoids iterat-
ing over the read set when validating a transaction [11]. On
the other hand, the semi-visible read counters are hotly con-
tended under heavy read-sharing. With theinvisible reads
approach, each transaction keeps track of its readsprivately,
which avoids the contention under heavy read sharing but
also requires transactions to iterate over the read set for ev-
ery validation. TL2 also uses invisible reads, but does not re-
quire transactions to iterate over the read set for validation,
instead using a global counter to ensure reads are consistent.
As we will see, different approaches to read sharing are bet-
ter for different workloads and machine sizes.

8 TRANSACT 2007

4.3 Experiments with the Berkeley DB lock subsystem

In these experiments, each ofN threads repeatedly requests
and releases a lock for a different object using the transact-
ified Berkeley DB lock subsystem [3], and we measure the
total number of iterations achieved per second. Because dif-
ferent threads lock different objects, there is no inherentre-
quirement for threads to synchronize with each other, so in
principle we should observe good scalability.

Figure 1(a) shows results achieved with the simulators
described above (axes are log-scale). The curve labelled
original shows the result when using the production
Berkeley DB lock subsystem, which uses one global lock
to protect its data structures. As expected, it exhibits very
poor scalability, delivering steadily lower throughput with
increasing numbers of threads. LogTM consistently deliv-
ers the best performance and scales well across the range.
For these experiments, the resources of the neutered simula-
tor are sufficient to accommodate all transactions, and there
are no conflicts between transactions. As a result, no mode
changes occurred in the PhTM systems and no transactions
were executed in software for HyTM. Thus, the results show
the overhead of beingable to fall back on alternative meth-
ods in case the best-effort HTM is unable to commit a trans-
action, even when it is not necessary to do so. While HyTM
is roughly a factor of three worse than LogTM across the
board,phtm is only a factor of 1.5 worse. This demonstrates
that significant overhead is eliminated by not needing to de-
tect conflicts with concurrent software transactions, which
is exactly what motivated us to develop PhTM. As expected
when no transactions are executed in software,phtm-tl2

performed identically tophtm. This highlights the flexibility
of the PhTM approach as compared to HyTM: the design of
the STM used inSOFTWARE mode is not constrained by and
does not affect the performance of transactions executed in
HARDWARE mode.

Amongst the STMs, HyTM’sstm (with semi-visible
reads) is outperformed by either TL2 or HyTM’sstm-invr
everywhere, indicating that it is not a good choice for
PhTM’sSOFTWARE mode (though it may be the right choice
for a HYBRID mode if most transactions succeed using
HTM). TL2 outperformsstm-invr by about 41% for 1
thread, and continues to outperform it up to 16 threads be-
cause it does not need to iterate over read sets to ensure read
consistency. However, TL2’s global counter begins to im-
pact its performance thereafter, andstm-invr scales better,
outperforming TL2 by about 7% at 32 threads. Combining
the features of these STMs to achieve the best of both would
be difficult and messy, but the PhTM approach allows us to
switch between different modes, keeping their implementa-
tions separate.

We conducted the same experiments on the E25K sys-
tem mentioned above for cases not requiring HTM sup-
port, and observed qualitatively similar results (see Fig-
ure 1(b)). TL2 outperformedstm-invr by about 35% at

1 and 2 threads, butstm-invr outperformed TL2 thereafter.
Finally,stm-invr scaled well to 127 threads (the largest test
we conducted), where it outperformed TL2 by more than a
factor of three.

4.4 Experiments with red-black tree

When transactifying the Berkeley DB lock subsystem, we
took care to eliminate conflicts between operations locking
different objects. Avoiding conflicts is the first priority for
scalable performance. However, we cannot ignore perfor-
mance in the face of conflicts between transactions. For ex-
periments with conflicts, we used a red-black tree data struc-
ture. In these experiments, we initialize the tree so that it
contains about half of the values from the key range 0..4095,
and then measure throughput achieved with each thread re-
peatedly executing operations on the tree, randomly choos-
ing between insert, delete, and lookup from a 20:20:60 dis-
tribution, and a value chosen randomly from 0..4095. (We
chose the key range and tree size precisely in order to yield
significant contention as we increase the number of threads.)
Again we have conducted experiments on the E25K machine
and on the simulator.

For the E25K (Figure 1(d)), all STMs show some scal-
ability up to about 16 threads, withstm doing worst be-
cause of its semi-visible read mechanism, especially because
the validation optimization that this mechanism supports
is much less effective when there are conflicts. This again
demonstrates the advantage of being able to use one of the
STMs that is not compatible with HTM transactions when
HTM support is not available. Beyond 16 threads, our results
are more erratic. We are yet to analyze the reasons for this
in detail, but we note that with a fixed key range, contention
increases with more threads, so it becomes more challenging
to be scalable. We hypothesize that some contention control
adjustments may be necessary to achieve more predictable
performance. We also note that, while the results are erratic,
they do indicate thattl2 andstm-invr are able to maintain
throughput, whilestm predictably drops off dramatically for
the reasons described above.

To understand the simulatedrbtree results (Figure 1(c)),
recall that for now we retry the hardware path nine times
before resorting to software. For both HyTM and the two
PhTM variants, we do see contention, but even for the
highest-contention (32-thread) cases, we rarely end up using
the software path, with about 0.1% of the HyTM transac-
tions and about 0.1% of the PhTM transactions failing over
to software. Furthermore, since all transactions run in soft-
ware when inSOFTWARE mode, a total of about 2% of the
PhTM transactions ran in software. Of the software transac-
tions, around 1/3 were aborted and retried due to contention;
the rest succeeded (in some cases waiting for contention to
abate). In no case did HTM transactions fail due to resource
constraints.

Since the fraction of transactions executed using STM
is very low, these experiments again demonstrate the cost

9 TRANSACT 2007

of beingable to fail to software when it is needed. Unlike
with the BKDB experiments, though, these experiments do
occasionally fail to software, demonstrating that the mode
changes do actually happen without having an inordinate
effect on performance. Furthermore, because we experience
mode changes in these experiments, we can also see the
effects of instantiating our PhTM prototype with different
STMs.

HyTM again outperforms the best of the STMs across the
board. PhTM again provides significant improvement over
HyTM. In contrast to the Berkeley DB experiments,phtm

andphtm-tl2 do perform differently in these experiments—
at 12 or more threads,phtm’s performance starts to degrade
significantly, doing significantly worse even than HyTM at
32 threads. This may be due to a bad interaction between
PhTM’s simple mode-changing policy, which we made very
little effort to tune, andphtm’s STM’s current contention-
management policy, which may be more aggressive about
aborting other software transactions than it ought to be.

4.5 Discussion

It is interesting to ponder what accounts for the remaining
gap in performance between PhTM and LogTM, which is
a factor of 1.5 for large transactions (Berkeley DB); closer
to a factor of two for shorter ones (Red-Black tree). The
need to read themodeIndicator and check that we are in
HARDWARE mode imposes some small overhead that is re-
quired, but there is also still plenty of room to improve the
performance of PhTM. In particular, to keep our compiler
and library independent, we have thus far inlined calls to li-
brary functions in a way that the compiler does not really un-
derstand, making it impossible to for the compiler to perform
some basic optimizations around those calls (better register
allocation, etc.) that it might otherwise perform. We believe
that this and some other simple compilation changes we plan
to investigate will eliminate a significant fraction of the re-
maining gap. (These changes will also improve the perfor-
mance of all of the other systems we compare against, but
we do not expect our conclusions to change as a result.)

Another factor is that LogTM has additional hardware
complexity devoted to built-in contention management,
while (as discussed above), in our system decisions about
how many times to retry are not yet being made as well as
we would expect to be able to do given best-effort HTM that
provides feedback on the reasons for failure. So we are op-
timistic that we can further reduce the gap in various ways.
Nonetheless, it probably is not possible to eliminate it en-
tirely, and the remaining gap would be the price paid for the
benefit of having much simpler hardware.

5. Concluding remarks
We have presented PhTM, which allows us to use different
transactional memory implementations at different times in
the same application. We have demonstrated that, by elimi-

nating the need for transactions executed in different modes
to be compatible with each other, this approach provides a
significant performance and flexibility advantage over our
previous HyTM implementation. In particular, we can exe-
cute transactions using best effort HTM support with perfor-
mance that is much closer to that of a significantly more
complicated unbounded HTM scheme than our previous
HyTM prototype. Furthermore, by eliminating constraints
on the STM we use when HTM support is unavailable or
ineffective for the current workload, we can use state-of-
the-art STMs and even switch between different ones for
different workloads.

While we have demonstrated the feasibility of switch-
ing seamlessly between different modes supporting differ-
ent transactional memory implementations, we have thus far
only experimented with a simple two-mode system, and we
have not yet explored strategies for deciding when to switch
modes, or to which mode we should switch. Designing a sys-
tem that behaves close to optimally across a wide range of
workloads will be challenging. Nonetheless, based on our
results to date, we are confident that we can at least:

• achieve performance very close to what hypothetical un-
bounded HTM could provide given best effort HTM that
is usually effective; and

• be very competitive with state-of-the-art STM-only sys-
tems when HTM support is unavailable or ineffective for
the current workload.

Thus, we improve on the advantages of our previous HyTM
work [3] when HTM support is available, and eliminate the
potential disadvantage when it is not.

Future work includes more comprehensive evaluation
with a wider range of benchmarks, supporting additional
modes, and further improving the performance of our proto-
type in various modes as well as mechanisms for deciding
when to switch to what mode.

Acknowledgments
We are grateful to Sasha Fedorova, Victor Luchangco and
Nir Shavit for useful discussions, to Peter Damron for com-
piler support, and to Brian Whitney for access to the E25K.
We are especially grateful to Kevin Moore, for his help in
supporting the LogTM simulator and for his guidance in
helping us with the significant modifications that we made
to the simulator.

References
[1] O. Agesen. GC points in a threaded environment. Technical

Report SMLI SMLI TR-98-70, Sun Microsystems Laborato-
ries, Dec. 1998.

[2] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson,
and S. Lie. Unbounded transactional memory. InProc. 11th
International Symposium on High-Performance Computer
Architecture, pages 316–327, Feb. 2005.

10 TRANSACT 2007

[3] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and
D. Nussbaum. Hybrid transactional memory. InASPLOS-
XII: Proceedings of the 12th international conference on
Architectural support for programming languages and
operating systems, pages 336–346, New York, NY, USA,
2006. ACM Press.

[4] D. Dice, O. Shalev, and N. Shavit. Transactional locking II.
In Proc. International Symposium on Distributed Computing,
2006. To appear.

[5] D. Dice and N. Shavit. What really makes transactions faster?
In TRANSACT Workshop, June 2006.
http://research.sun.com/scalable/pubs/TRANSACT2006-
TL.pdf.

[6] F. Ellen, Y. Lev, V. Luchangco, and M. Moir. SNZI: Scalable
Non-Zero Indicators. InProc. 26th Annual ACM Symposium
on the Principles of Distributed Computing, Aug. 2007. To
appear.

[7] R. Ennals. Software transactional memory should not
be obstruction-free, 2005. http://www.cambridge.intel-
research.net/ rennals/notlockfree.pdf.

[8] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D.
Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis,
and K. Olukotun. Transactional memory coherence and
consistency. InProc. 31st Annual International Symposium
on Computer Architecture, June 2004.

[9] M. Herlihy and J. E. B. Moss. Transactional memory:
Architectural support for lock-free data structures. In
Proc. 20th Annual International Symposium on Computer
Architecture, pages 289–300, May 1993.

[10] R. L. Hudson, B. Saha, A.-R. Adl-Tabatabai, and B. C.
Hertzberg. Mcrt-malloc: a scalable transactional memory
allocator. InISMM ’06: Proceedings of the 2006 interna-
tional symposium on Memory management, pages 74–83,
New York, NY, USA, 2006. ACM Press.

[11] Y. Lev and M. Moir. Fast read sharing mechanism for
software transactional memory, 2004.
http://research.sun.com/scalable/pubs/PODC04-Poster.pdf.

[12] P. Magnusson, F. Dahlgren, H. Grahn, M. Karlsson, F. Lars-
son, F. Lundholm, A. Moestedt, J. Nilsson, P. Stenstrom, and
B. Werner. SimICS/sun4m: A virtual workstation. InPro-
ceedings of the USENIX 1998 Annual Technical Conference
(USENIX ’98), June 1998.

[13] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty,
M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A.
Wood. Multifacet’s general execution-driven multiprocessor
simulator (GEMS) toolset.SIGARCH Comput. Archit. News,
33(4):92–99, 2005.

[14] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A.
Wood. LogTM: Log-based transactional memory. InProc.
12th Annual International Symposium on High Performance
Computer Architecture, 2006.

[15] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing transactional
memory. InProc. 32nd Annual International Symposium
on Computer Architecture, pages 494–505, Washington, DC,
USA, 2005.

[16] N. Shavit and D. Touitou. Software transactional memory.
Distributed Computing, Special Issue(10):99–116, 1997.

[17] Sun Fire E25K/E20K Systems Overview. Technical Report
817-4136-12, Sun Microsystems, 2005.

[18] M. Tremblay, Q. Jacobson, and S. Chaudhry. Selectively
monitoring stores to support transactional program execution.
US Patent Application 20040187115, Aug. 2003.

11 TRANSACT 2007

