486

Role of glia in synapse development

Frank W Pfrieger

Recent studies suggest that glial cells regulate certain
aspects of synapse development. Neurons can form synapses
without glia, but may require glia-derived cholesterol to form
numerous and efficient synapses. During synapse maturation,
soluble and contact-dependent factors from glia may influence
the composition of the postsynaptic density. Finally, synaptic
connections appear to require glia to support their structural
stability. Given the new evidence, it may be time now to
acknowledge glia as a source for synaptogenesis-promoting
signals. Scrutinizing the molecular mechanisms underlying this
new function of glia and testing its relevance in vivo may help
to understand how synapses develop and why they
degenerate under pathological conditions.
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Abbreviations

ADNF  activity-dependent neurotrophic factor
CNS central nervous system

GCM glia-conditioned medium

NMDA  N-methyl-D-aspartate

NMJs  neuromuscular junctions

PSD postsynaptic density

RGCs retinal ganglion cells

TNFo  tumor necrosis factor a

TSCs  terminal Schwann cells
Introduction

Views on the liaison between synapses and glial cells have
changed within the last few years, with once avantgardistic
opinions on glial function [1] gaining a foothold in main-
stream neuroscience [2-6]. Until recently, synaptogenesis
has been regarded as a purely neuronal affair. Here, |
summarize new evidence that glia-derived signals control
the extent of synapse formation, induce postsynaptic
maturation processes and help to maintain synaptic stability.
Updates on aspects of neuron—glia interactions beyond the
scope of this article can be found elsewhere [7-16].

Synaptic birth control by glia

Within the last years, our understanding of how neurons
establish synaptic connections has greatly expanded.
Genetic, biochemical and cell culture screens as well as
advanced imaging techniques revealed new cellular
components and mechanisms that are involved in this
fundamental process (reviewed in [17-24]). A still unresolved
question is, however, whether neurons form synapses
autonomously or whether they require external signals.

A possible source of such signals is glial cells, which support
different aspects of neuronal differentiation (reviewed

in [25-31]).

A series of recent papers suggests that glia control the
extent of synapse formation (reviewed in [32,33]). They
were prompted by the observation that soluble factors
released by macroglial cells strengthen synaptic transmission
in cultures of highly purified retinal ganglion cells (RGCs)
without affecting neuronal excitability, survival or neurite
outgrowth [34]. This effect was examined in more detail
by two follow-up studies [35°°,36°°], which showed, in
remarkable agreement, that the glial factor increased the
number of synapses by about seven-fold. A subsequent
paper revealed the long-sought identity of the synaptogenic
activity [37°°]. Surprisingly, it turned out to be cholesterol,
which is produced by astrocytes and secreted in
apolipoprotein E-containing lipoproteins.

This finding suggests that neurons require glia-derived
cholesterol to form numerous and efficient synapses.
Importantly, it raises new questions about the link
between cholesterol and synaptogenesis and about brain
cholesterol metabolism in general (for detailed discussions
see [38,39]). Does cholesterol mimic previously described
glial effects in other culture preparations [40-43,44°°]?
How does cholesterol promote synapse formation: does it
act as a synaptogenic signal, possibly after conversion to
steroids [45], or does it serve as building material? Does
synaptogenesis 7z vivo depend on glia-derived cholesterol?
Experimental evidence indicates that synapse formation
per se does not require glial signals: RGCs form ultra-
structurally defined synapses in the complete absence of
glia [34]. The massive increase in synapse number during
postnatal development, however, may require large amounts
of cholesterol that neurons must import from astrocytes.
This may explain why most synapses are formed after
differentiation of astrocytes [1,36°°,46,47], which have
been shown to secrete cholesterol-rich lipoproteins [48].

A next important step will be to test these hypotheses i vivo.
Unfortunately, ablation of astrocytes [49-51] and oligodendro-
cytes [52,53] in living animals causes neurodegeneration, thus
precluding an analysis of synapse development. Consequently,
new transgenic animal models are required to examine the link
between glia-derived cholesterol and synaptogenesis. The
detection of other glial factors that influence central nervous
system (CNS) synaptogenesis relies on the development of
new culture preparations, where glial effects on synapses can
be separated from changes in neuronal survival and growth.

Glia help synapses to mature
Newborn synapses undergo a maturation process, which
endows each connection with its specific transmission



properties. Recent work indicates that glia-derived signals
regulate the maturation of the postsynaptic density (PSD).
The aforementioned studies on purified RGCs showed
that glial cells enhance the quantal size, which represents
the magnitude of postsynaptic responses to individual
quanta of transmitter [34,35°°,36°°]. In principle, this result
can stem from a higher intravesicular transmitter concen-
tration or from an enhanced postsynaptic receptor
clustering. Ullian ez a/. [36°°] reported that glial cells
increase the size of glutamate-induced whole-cell currents
in RGCs, which points clearly to a postsynaptic effect. The
glial signals that promote postsynaptic differentiation in
RGCs are unknown. Neuron—glia contact enhances quantal
size more strongly than do soluble factors from glia-condi-
tioned medium (GCM) [35°°] and the effects of the latter
are not fully mimicked by cholesterol [37°°]. This suggests
that soluble and membrane-delimited factors play a role in
postsynaptic differentiation.

Several interesting candidates for these factors have
appeared on the scene recently. One of them is tumor
necrosis factor o0 (TNFo), which appears to be released
by glial cells and to control the postsynaptic insertion of
functional glutamate receptors in hippocampal neurons
[54°°]. Application and removal of TNFa induced a rapid
increase (within minutes) and a slow decline (within hours)
of the glutamate receptor density at synapses, respectively,
suggesting that its continued presence is necessary to
maintain functional transmission. TNFa probably does
not mediate the GCM-induced increase in quantal size in
RGC cultures, because this effect developed with a much
slower time course [35°°].

Blondel ez a/. [55] recently proposed an intriguing pathway
by which glia may regulate postsynaptic receptor clustering.
They showed that activity-dependent neurotrophic factor
(ADNF), which is released from astrocytes upon treatment
with vasoactive intestinal polypeptide [56], strengthens
glutamatergic synaptic transmission in cultured hippocampal
neurons by increasing the density of postsynaptic N-methyl-
D-aspartate (NMDA) receptors. This pathway may involve
autocrine actions of neurotrophin-3, whose secretion from
neurons is enhanced by ADNF and which mimics the
ADNF-induced effects on NMDA receptors. Future exper-
iments will show whether this complicated neuron—glia
interplay is implemented 7 vivo.

A glia-derived signal that controls the expression of
transmitter receptors has been detected in the chick retina
[57]. Cultured Miiller glia secrete a protein that selectively
raises the expression of the M2 subtype of muscarinic
acetylcholine receptors in retinal neurons #z vitro and
i1 0vo. This may explain why, during development, the M2
receptor appears after differentiation of Miiller glia. To
date, the identity of the glial protein is unknown.

Finally, a recent study suggests a link between glial cells
and the most prominent synaptogenic factor, agrin, which
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is essential for the formation of neuromuscular junctions
(NM]Js) [25] and which may play a role in synaptogenesis
in the CNS [58]. Lesuisse ez @/. [59] showed that glial
signals regulate the expression of agrin. Growing rat
hippocampal neurons in contact with mouse glia led to a
reduction in agrin-encoding mRNA, whereas soluble
factors from mouse glia halved the expression of a specific
isoform, but left the total level of agrin unaffected.
Interestingly, there is also evidence that Schwann cells
produce and secrete agrin isoforms with receptor-clustering
activity during development and after nerve injury [60°],
suggesting that Schwann cells may influence the mainte-
nance of NM]Js and their re-establishment after injury.

"To date, there is little evidence that glia promote presynaptic
maturation. Different growth factors including neuro-
trophins induce this process, but it is not known whether
they are secreted by glial cells 77 vivo. Soluble glial factors
enhanced the efficacy of transmitter release and augmented
the pool of presynaptic vesicles in cultures of purified
RGCs [35°°,36°°]. Mauch ¢z al. [37°°] showed, however,
that these presynaptic effects are mimicked by cholesterol,
possibly by promoting the formation of synaptic vesicles.

Glia live and let die synapses

There is increasing evidence that individual synaptic
connections have an intrinsic lifetime [61°,62,63], which is
modulated by electrical activity and probably other, still
largely unknown factors (for recent reviews see [25,64,65]).
Several papers suggest that glial cells may control synaptic
stability and participate in their elimination. The pioneering
work of Trachtenberg and Thompson [66] showed that, in
young rats, withdrawal of the Schwann cells that cover
NM]Js, also called terminal Schwann cells ('T'SCs), leads to
nerve terminal loss and dispersal of postsynaptic receptor
clusters. Their conclusion that T'SCs are required for
synapse maintenance has been corroborated by a different
line of experiments. Transgenic mice, which do not generate
Schwann cells due to genetic disruption of neuregulin/
ErbB receptor signaling, form ultrastructurally defined
NM]s during the late embryonic stage. However, these
junctions disappear a few days later and the mice die just
after birth. They cannot breathe because of the absence of
neuromuscular transmission [67—69]. The idea that T'SCs
support NM]Js is further underlined by the fact that the
number of T'SCs scales with the size of muscle endplates
during development [70] and after testosterone treatment
[71,72]. 'The observation that T'SCs do not save NM]s
from elimination at androgen-sensitive muscles [72] suggests
that NM]Js (and synapses) may differ in their stability
requirements. Experimental evidence for such differences
at NM]s has been presented recently [73].

A first hint that signals from glial cells stabilize interneuronal
synapses came from Ullian ¢z a/. [36°°]. Removal of glial
feeding layers from cultured RGCs decreased the quantal
content of evoked synaptic transmission and the number
of immunocytochemically defined synapses. Future
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experiments are required to identify the stabilizing factors
and to determine how they work. It appears possible that
they maintain synapses indirectly, for example by supporting
the integrity of axons and dendrites.

Selective elimination of synapses is an important step during
brain development and may contribute to structural
remodeling in the adult brain [65]. A classic example for
synapse elimination has been described in the cerebellum,
where surplus synapses between climbing fibers and
Purkinje cells are pruned to leave all but one input. A
recent study showed that experimentally induced retraction
of Bergmann glia processes from Purkinje cells, which had
attained monosynaptic innervation, leads to reinnervation
by multiple fibers, in a quarter of neurons [74°°]. A still
unanswered question is whether the glial processes also
played a role in the prior fiber elimination. In any case, this
observation supports previous hints that the astrocytic
sheath around neurons limits the density of synaptic inputs
(reviewed in [75-77]). To date, it is not known whether
glia mark synapses for elimination. One could speculate,
however, that glia release soluble factors, for example
proteases, which in turn destroy the extracellular matrix
components that maintain synaptic stability [78,79]. This
would allow glial processes to invade the synaptic cleft and
to eliminate the synapse [80].

Conclusions

Taken together, the results summarized above shed new
light on the synapse—glia affair. The establishment of a
synaptic contact probably relies on neuronal signals, but
the massive increase in synapse number and the diverse
presynaptic and postsynaptic maturation processes appear
to require glia-derived components. Notably, the various
types of synapses may differ in their reliance on glial
components. Clearly, the next step 1s to define the molecular
details of these interactions and to determine their relevance
in vivo. Whatever lies ahead, we have come to realize that
the intimate relationship between glia and synapses starts
much earlier than suspected.
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