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ABSTRACT 
 

This paper first reviews the history, the economy, the material properties, and the applications of gold. 
Then the geometry of the fcc gold lattice is introduced. Based on the symmetric arrangement of atoms 
the gold lattice has a rich variety of symmetry transformations, that interchange the positions of atoms, 
but leave the lattice as a whole invariant. This begins with the point group symmetry of a single fcc 
lattice cell and is extended by combination with lattice translations to the full space group symmetry of 
the whole (practically infinite) lattice. We use the newly created interactive Space Group Visualizer 
(based on geometric algebra) in order to systematically picture all these symmetries. We can thus 
understand their origin and their relationships. In particular we give a full geometric explanation of the 
192 screw symmetries passing through a single fcc cell of the gold lattice. 

 
 

1. INTRODUCTION 
 

What is gold? It is a metal that occurs as nuggets 
or grains in rocks, underground veins and in 
alluvial (river) deposits. Gold is dense (19.3 
tons/m3), soft, shiny and the most malleable and 
ductile of the known metals. Pure gold has an 
attractive bright yellow color.  
Gold has a rich history. It is mentioned 430 
times in the Bible. First in Genesis a river 
around the Garden of Eden is described as “it 
winds through the entire land of Havilah, where 
there is gold.” (Gen. 2:11). When Jesus was 
born, three magi (wise men) followed a star and 
visited him. Their presents were: “gifts of gold 
and of incense and of myrrh.” (Mat. 2:11). The 
last book of the Bible describes the heavenly 
Jerusalem with “The great street of the city was 
of pure gold, like transparent glass.” (Rev. 
21:21). 
It has been estimated that all the gold in the 
world that has ever been refined would form a 
single cube of 20m on a side. Economic gold 
extraction starts with as little as 0.5g/1000kg 
ore. The deepest gold mines in South Africa, the 
Savuka and TauTona mines reach 3777m depth. 
Only 3 parts per billion of the Earth’s crust is 
gold, making it very rare. The world’s oceans 
hold vast amounts of gold in very low 
concentration of ca. 0.1 parts per billion. The 
largest gold depository is in the US Federal 
Reserve Bank in New York, with about 3% of all 
the gold ever mined. On October 1, 2007, the 

gold price stood high at $743.70 per ounce 
(31.1g). 
Modern industrial uses include dentistry and 
electronics, because of its good conductivity and 
good resistance to oxidative corrosion [8]. Gold 
has been used in some high energy applications. 
It is also used in the connectors of more 
expensive electronic cables, such as audio, video 
and USB cables. Gold is further used for 
electronic sliding contacts in highly humid or 
corrosive atmospheres, and in contacts with very 
high failure cost (certain computers, 
communication equipment, spacecraft, jet air 
engines). 
Gold is a good reflector of infrared and visible 
light. It is used for protective coatings on 
satellites, infrared protective faceplates, thermal 
protection suits and astronaut helmets. 
Automobiles like the McLaren F1 use gold foil 
in the engine compartment for heat insulation. 
Colloidal gold (sols of gold nanoparticles) in 
water are intensely red-colored, used in research 
applications in medicine, biology and material 
science. Colloidal gold is also present in gold 
paint on ceramics prior to firing. 
Gold can be drawn into very thin wires. A single 
gram of gold can be beaten into a gold leaf sheet 
of one square meter. Gold leaf can be beaten thin 
enough to become translucent (light shining 
through). The transmitted light appears greenish 
blue, because gold strongly reflects yellow and 
red. Native gold contains usually eight to ten 
percent silver. Gold readily forms alloys with 
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many other metals. These alloys can increase the 
hardness or produce exotic colors. The Japanese 
Mokume-gane craft exploits color contrasts 
between laminated gold alloys to produce wood-
grain effects.  
The gold content of alloys is measured in carats 
(k), with pure gold having 24k. Blue gold can be 
made by alloying with iron and purple gold can 
be made with aluminium. 14k and 18k gold 
alloys with silver alone appear greenish-yellow 
and are referred to as green gold. In photography 
gold toners are used. 
The Canadian Gold Maple Leaf coin contains 
the highest purity gold of 99.999%. In 2007 the 
Canadian Mint produced a 100 kg gold coin 
with a face value of $1 million, the gold content 
being worth over $2 million. It measures 50 cm 
in diameter and is 3 cm thick. Wedding rings are 
traditionally made of gold. 
Chemically it is a univalent and trivalent 
transition metal with 79 protons (and electrons), 
118 neutrons (stable isotope) and the symbol Au 
(from Latin aurum). Gold does not react with 
most chemicals, but is attacked by chlorine, 
fluorine, aqua regia and cyanide. Gold dissolves 
in mercury, forming amalgam alloys, but does 
not react with it. Gold is insoluble in nitric acid, 
which will dissolve silver and other base metals, 
and this is the basis of the gold refining 
technique inquartation and parting.  
The physical properties of gold are: A melting 
point of 1064.18 C, a heat capacity of 25.418 
J/mol/K, thermal conductivity of 318 W/m/K, 
thermal expansion of 14.2 10-6 m/m/K, Young’s 
modulus of 78 GPa, shear modulus of 27 GPa, 
bulk modulus of 220 GPa, Poisson ratio 0.44, 
Mohs hardness 2.5, Vickers hardness 216 MPa, 
and a Brinell hardness of 2450 MPa.  
Gold solder is used for joining the components 
of gold jewellery by high-temperature hard 
soldering or brazing. Gold solder is usually 
made in at least three melting point ranges 
referred to as Easy, Medium and Hard. By using 
hard first, followed by the solders with 
progressively lower melting points, goldsmiths 
can assemble complex items with several 
separate soldered joints.  
Gold alloys are used in restorative dentistry, for 
crowns and permanent bridges. The gold alloy’s 
slight malleability facilitates the creation of a 
superior molar mating surface with other teeth, 
more satisfactory than surfaces produced by 
porcelain crowns. 
Goldwasser (German for Goldwater) is a 
traditional liqueur produced in Gdansk (Poland) 

and Schwabach (Germany), it contains flakes of 
gold leaf. [8] 
 
2. THE GEOMETRY OF GOLD 
 
Geometrically gold atoms are arranged in a 
cubic face centered (fcc) structure similar to the 
one shown in Fig. 1, also called cubic close 
packed (ccp). The edge lengths of this 
elementary cell cube is |a| = 407.82 pm (1 pm = 
10-12 m) and the cube corner to face center 
distance |b|/2 = 288.4 pm [16]. The atomic 
radius is 135 pm. Other elements with this 
structure are Al, Cu, Ni, Sr, Rh, Pd, Ag, Ce, Tb, 
Ir, Pt, Pb, and Th.  

Fig. 1 A cubic face centered cell as seen in the 
Space Group Visualizer Demo 2.0 [7]. 

 
 

A fcc cell lattice is highly symmetric. That 
means there is an enormous variety of possible 
geometric transformations, that leave the lattice 
as a whole invariant, including all lengths and 
angles.  
These symmetry operations include single cell 
transformations that leave a cell vertex point 
invariant: planes of reflections (through the 
vertex), rotations (with axis trough the vertex, 
and inversions (x à -x, relative to the vertex), 
and rotoinversions (inversions followed by a 
rotation, equivalent to rotations followed by a 
reflection at the rotation plane). This group of 
symmetries of a cell is called its point group 
[3,10,11] and serves for the classification of 
crystals, therefore it is also called crystal class 
[2].  
The 48 symmetry transformations of the full 
cubic point group create 48 symmetric copies of 



a general asymmetric element placed next to the 
invariant point. These small 48 element clusters 
appear in Fig. 1 around each fcc lattice vertex. 
An enlargement is shown in Fig. 2. In pure gold 
one atom is located at the center of this cluster. 

 

Fig. 2 48 general elements in 3D corresponding 
to the full cubic point symmetry. 

 
 
The inclusion of integer lattice translations 
(from vertex to vertex) can lead to new planes of 
reflection. All possible planes of reflection 
passing through a single fcc cell are shown in 
Fig. 3.  

Fig. 3 All reflection planes of the fcc lattice 
passing through a single lattice cell. 

 
 

The combination of a plane of reflection with a 
lattice translation not perpendicular to the plane 
leads to a combined glide reflection. The 
perpendicular translation component displaces 
the reflection plane in normal direction, and the 
parallel translation component creates a glide 
motion parallel to the plane. The set of all such 
glide planes passing through a single fcc cell is 
depicted in Fig. 4. The (red) vectors indicate the 
parallel glide motion.  
 

Fig. 4 All glide planes of the fcc lattice passing 
through a single lattice cell. 

 
 

Fig. 5 All symmetry rotation axis passing 
through a single fcc lattice cell. Angles are 

indicated by colors and arc segments. 
 



A sequence of two reflections at two planes 
results in a rotation. This rotation has the 
intersection line of the two planes as its axis and 
twice the (dihedral) angle between the two 
planes is the resulting rotation angle. All 
symmetry rotations of an fcc lattice cell arise in 
this way, they are depicted in Fig. 5. The relation 
between Fig. 3 of all reflection planes and Fig. 5 
is that all the rotation axis seen in Fig. 5 are lines 
of intersection of reflection planes of Fig. 3.  
 
If we perform a lattice translation perpendicular 
to the rotation axis after a rotation, we 
effectively create another rotation also already 
contained in Fig. 5. But if we perform a 
translation not normal to the rotation axis, with a 
translation component parallel to the rotation 
axis, we get a new transformation, a so-called 
screw. Provided that the parallel component 
itself is shorter as any lattice vector connecting 
any two vertexes. So a screw is a rotation 
followed by a translation along the screw axis, 
resulting in a directed helical motion around the 
screw axis. All (color coded) screws passing 
through a single fcc lattice are shown in Fig. 6. 
There are many more screws than rotations, 
because different translations (not normal to the 
rotation axis) of the same rotation lead to 
different screws.  
 

Fig. 6 All screw symmetry axis passing through 
a single fcc lattice cell. 

 
 
Combining an inversion with a subsequent 
lattice translation yields a new center of 
inversion. All centers of inversion in a single fcc 

lattice cell are depicted in Fig. 7.  
 

Fig. 7 All centers of inversion located in a single 
cell of a fcc lattice. 

 
 
The combination of an inversion with a rotation 
leads to a rotoinversion. Characteristic for the 
fcc lattice are the 90 degree rotoinversions 
depicted in Fig. 8. 
 

Fig. 8 All rotoinversions passing through a 
single fcc lattice cell. 

 
 
The total graphical depiction of these 
symmetries in Fig. 9 gives an idea of the 
intricate complexity of the symmetries possessed 



by the fcc lattice.  
 

Fig. 9 Total depiction of all symmetries located 
in a single fcc cell. 

 
 
The International Tables of Crystallography [2] 
depict the symmetries of a fcc cell by showing a 
quarter of an orthographic 2D projection of a 
side of a cube like in Fig. 10. 
 

Fig. 10 Depiction [19] of the symmetries of an 
fcc lattice cell like in the International Tables of 
Crystallography [2], showing the orthographic 
projection of a lower left quarter of a side face. 

 
 
Only a well-initiated expert can understand how 
the symmetries of Figs. 3 to 9 are all encoded in 
Fig. 10. Fig. 6 has shown the particular 
abundance of screws in fcc cells. We will have a 

detailed look at these screw symmetries in the 
rest of this paper.  
 
3. SCREWS IN FCC CELLS 
 
We will not take a formal coordinate system and 
matrix approach [2]. Instead we first employ the 
Space Group Visualizer [4,5,7,11-15] to literally 
see what screws are present and then try to 
understand [1] their relationship to the rotations 
of Fig. 5.  
 
3.1 Pictorial Atlas of Gold Screws 
 
We now image all screws present in a single fcc 
gold lattice cell beginning with right angle (90º) 
screws, continuing with the more frequent 180º 
screws, and culminating in the very abundant 
120º screws. We use the SGV [7] based on 
CLUCalc [6]. 
 
3.1.1 Screws of 90º 
 
The fcc lattice has altogether 12 screws of 90º 
with screw index 42. That means turning the 
screw two times by 90º will lead to a full lattice 
translation in the direction of the screw axis, i.e. 
turning once by 90º leads to half a lattice 
translation in axis direction. Always four screw 
axis are parallel to one cube edge, located in 
distances of 1/4 along face diagonals from the 
center of the face in all four directions (Fig. 11). 
 

Fig. 11 Complete set of all twelve 90º-screws 
(symbol 42) passing through a single fcc lattice 

cell. 
 



3.1.2 Screws of 180º 
 
All 180º-screws (symbol 21) of a single fcc 
lattice cell are shown in Fig. 12. Repeating the 
screw motion two times gives a full 360º 
rotation combined with a full lattice translation. 
Obviously there are too many to easily count 
them.  
 

Fig. 12 All 180º-screws (symbol 21) passing 
through a single fcc lattice cell. 

 

Fig. 13 All twelve 180º-screws parallel to one 
edge contained in a single fcc lattice cell. 

 
 

We therefore count how many screws are 
parallel to one edge, which is 12 according to 
Fig. 13. Times three we get 36 180º-screws 
parallel to all three edges. We further count how 
many screws are parallel to one face diagonal 
and find eight (Fig. 14). There are 6 face 
diagonals, so we get a total of 4886 =⋅  180º-
screws parallel to face diagonals. Hence there 
are 36+48=84 180º-screws in total.  
 

Fig. 14 All eight 180º-screws parallel to one face 
diagonal contained in a single fcc lattice cell. 

 
 

Fig. 15 All 120º-screws passing through a single 
fcc lattice cell. 

 
 



3.1.3 Screws of 120º 
 
All 120º-screws of a single fcc lattice cell are 
shown in Fig. 15. How many are there? Do they 
all have the same rotation angles and the same 
translation distance (albeit in different 
directions)? A close look at Fig. 15 shows that 
all 120º-screws are parallel to one of the 4 space 
diagonals. Exactly what we expect, because only 
the rotations around the space diagonals are 120º 
rotations. And combinations of these rotations 
with translations must lead to the 120º-screws. 
But even blending out three of the space 
diagonal directions (Fig. 16) makes the counting 
not without ambiguity.  

 
Fig. 16 All 120º-screws parallel to one space 
diagonal passing through a single fcc lattice cell. 
 
 
We therefore employ the orthographic view 
along one of the space diagonals and now we 
can easily count that there are 12 screws of one 
type and 12 screws of another type. 
Experimenting with the interactive animation we 
see that in the visualization all screws turn in the 
same direction by 120º, but the translation 
motion by 1/3 along the space diagonal is in two 
opposite directions. One kind of screw has the 
symbol 31, the other 32. Screws related in this 
way are called enantiomorphic.  
So we have 12+12=24 120º-screws parallel to 
one space diagonal. This leads to a total of 

96244 =⋅  120º-screws passing through a 
single fcc cell. Only four short of hundred, and a 
dozen more than the 84 180º-screws. 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 17 Orthographic view along one space 
diagonal of all 120º-screws parallel to this space 

diagonal, passing through a single fcc lattice 
cell. 

 
 
After we know what and how many screws there 
are, we only need to understand where they 
come from, i.e. how do point group rotations and 
lattice translations together produce this 
abundance of 12 + 84 + 96 = 192 screws of all 
angles and orientations? 
 
3.2 The Origin of Screws 
 
Now we investigate where the 192 screws 
passing through a single fcc cell come from.  
 
3.2.1 Combining Rotations and Translations 
 
When a rotation R is followed by a translation 
T(t), with the translation vector t in the plane of 
the rotation, we will get a shift T(s) of the 
rotation axis in the plane of the rotation, 
depending on the rotation angle. The resulting 
rotation R’=RT(t) can be described in terms of 
the old rotation R by back translation to the old 
axis with T(-s), applying R, and forward 
translation again with T(s) to the new axis. So 
we have 
 

R’ = R T(t) = T(-s) R T(s) .     (1) 
 

The question is now, how can we calculate the 
shift vector s in the plane of rotation? We can 
apply a T(-s) translation to (1) from the right and 
get 
 

R T(t) T(-s) = T(-s) R T(s) T(-s) .  (2) 



 
Combining the translations gives  
 

R T(t-s) = T(-s) R .       (3) 
 
Applying an inverse rotation R-1 from the left we 
get the translator identity 
 

T(t-s) = R-1 T(-s) R = T(- R-1s R) . (4) 
 
So we end up with the translation vector 
relationship 
 

t-s = - R-1s R  .         (5) 
 
Equation (5) is solved in the appendix and gives  
 

s = ( t + cot(θ/2) t’ )/2 ,      (6) 
 
where t’ is obtained by rotating t anticlockwise 
by 90º in the plane of the rotation R. Table 1 lists 
the resulting axis shifts s for the fcc rotation 
angles θ = 90º, −90º, 120º, −120º, and 180º, and 
Fig. 18 illustrates the situation for θ = 90º, 120º, 
and 180º, the rotation centers s for θ = −90º, 
−120º have the same horizontal component, but 
opposite vertical component.  
 

Table 1 Rotation axis shifts s, due to 
combination of rotation R(θ) with lattice 

translation t (in the plane of R). 
θ cot(θ/2) s 

90º 1 (t+t’)/2 
−90º −1 (t−t’)/2 
120º 3/1  2/)3/( tt ′+  

−120º 3/1−  2/)3/( tt ′−  
180º 0 t/2 

 
 

Fig. 18 Combinations of rotations Rθ and 
translations T(t) result in shifted rotation centers 

sθ . Rotation axis vertical to paper plane, 
translations in paper plane. 

 
 
We have dealt with translations in the plane of 
the rotation. Translations perpendicular to the 
plane of rotation (parallel to the rotation axis) 
simply change the rotation into a screw, without 
dislocating the axis.  
 
3.2.2 Explaining 90º Screws 
 

Fig. 19 All nine 90º rotations and all four screws 
parallel to lattice vector a, c face diagonal 

perpendicular to a, b face diagonal at 45º with a. 

 
Fig. 20 Orthographic projection of Fig. 19 

showing all 90º rotations and screws parallel to 
lattice vector a (vertical to paper plane), face 

diagonal c (in paper plane), and projected face 
diagonal b. 

 



 
In Fig. 19 and Fig. 20 we can see how this works 
for the production of 90º screws. The 
orthographic projection in Fig. 20 can be 
directly compared with Fig. 18, θ = 90º. The fcc 
lattice has the side face centering translation 
T(b/2) as symmetry translation. The component 
of b/2 in the plane perpendicular to a leads to the 
diagonal displacements of the rotation axis by 
c/4, the component of b/2 parallel to a is a/2, it 
changes the dislocated rotation at c/4 into a 
screw. 
 
3.2.3 Explaining 180º Screws 
 
We skip details of the less difficult treatment of 
the 180º-screws, because here the axis 
displacements s in the rotation plane is simply 
half the displacement t in the rotation plane 
itself. In Fig. 21 we see the 180º-screws appear 
(compare Fig. 20) between neighboring 90º 
rotations (which are performed twice to produce 
180º rotations before applying the translations).  
 

Fig. 21 Same as Fig. 20, but adding the 180º-
screws generated by applying the face centering 

translations of the two vertical (to the paper 
plane) side faces. 

 
 
3.2.4 Explaining 120º Screws 
 
Now we turn our attention to the 120º-screws. 
Fig. 22 shows in orthographic view all 120º 
rotation axis passing through an fcc cell, parallel 
to one selected space diagonal (this space 
diagonal is perpendicular to the face diagonal 

vectors b and c of Fig. 19). In a simple cubic 
lattice only the axis R120 passing through the 8 
cube vertexes are present, but the additional 
T(b/2) and T(c/2) translations in the plane of Fig. 
22 generate according to Table 1 and Fig. 18 
(s120) the additional twelve 120º rotation axis 
present in Fig. 22. 

 

Fig. 22 All 120º rotations passing through one 
fcc lattice cell, in orthogonal view along the 
selected (one of four) space diagonal axis. 
Vectors b,c in paper plane, vector a not. 

 
 
Combining the translations T(a) and T(−a) with 
all the 120º Rotations of Fig. 22 produces all 
120º-screws of Fig. 17. The component of a in 
the paper plane (plane of rotation) shifts the axis 
according to equation (6) and Table 1 (Fig. 18, 
s120) giving rise to a total of 12 screws. The 
translation component of a along the screw axis 
(perpendicular to the paper plane) points into the 
paper plane.  
The same applies to the component of −a in the 
paper plane (only the sign of the resulting s120 
changes), we therefore get the other 12 screws 
with opposite screw translations along the screw 
axis. The translation component of −a along the 
screw axis (perpendicular to the paper plane) 
points out of the paper plane.  
We have thus accounted for all 24 120º-screws 
parallel to one space diagonal shown in Figs. 17 
and 23. But in the cube all four space diagonals 
and all three edge vectors act as 120º rotation 
axis and as elementary lattice translations, 
respectively. Thus we get the total 96244 =⋅  



120º-screws. 
 

Fig. 23 All 120º rotations and screws (triangles 
with hooks) passing through one fcc lattice cell, 

in orthogonal view along the selected (one of 
four) space diagonal axis. 

 
 
4. CONCLUSIONS 
 
We have given an extensive pictorial overview 
(using the SGV [7]) of the space group 
symmetry of the fcc gold lattice. A color version 
of this paper will be available from [17]. While 
reflections, glide reflections and rotations are 
rather elementary, the abundant presence of 192 
screw axis passing through a single fcc cell for 
space group No. 225 (Hermann-Maugin symbol: 

mFm3 , geometric symbol: F43) justified 
further explanation. Central to understanding the 
origin of screws is the law of combining 
rotations with lattice translations of section 3.2.1. 
Using the SGV we are often amazed by the 
intricate beauty of the combined display of 
symmetries (comp. Fig. 24). Yet looking e.g. at a 
gold ring, we have no perception for the 
tremendous immaterial form of beauty hidden 
inside.  
We hope that the SGV will not only bring space 
group symmetry alive on the computer screen, 
and reveal its laws of geometry, but that it will 
also lead to a new appreciation of its beauty. 
 
 

Fig. 24 Combined view symmetries of several 
gold (fcc) lattice cells. 
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APPENDIX 
We now derive the solution of equation (5) 
 

t-s = - R-1s R  ,         (A1) 
 

using elementary geometric algebra [9,17], as 
introduced in the companion paper [18]. We 
therefore express the rotation operator (rotor) R 
like in equation (22) of [18] by two vectors a,b 
in the plane of rotation, subtending half the 
angle of rotation θ/2: R=ab. Then equation (A1) 
becomes  
 

t-s = - b-1a-1s ab  .        (A2) 
 
Successive geometric multiplication with b and 
a from the left gives 
 

ab (t-s) = abt - abs = - s ab  .  (A3) 
 
Adding bas on both sides and expanding the 
geometric product by babaab ∧+⋅= gives 
 

 
(A4) 

 
 

0=⋅−⋅ bsabsa , because ba ⋅  is a scalar that 
commutes with s. The vectors a,b and s are all in 
the same plane, the bivector 

2/sin|||| θ ibaba =∧  anti-commutes 
therefore with s. So we get 
 

(A5) 
 

Division from the right with ba ∧2  yields 
 

 
(A6) 

 
 
The expression t = i-1t produces an anticlockwise 
90º rotation of t. We thus arrive at solution (6), 
tabulated in Table 1.  

.bsabsabsabsa
btabta

∧+⋅−∧+⋅=
∧+⋅

.2 btabtabsa ⋅+∧=∧


