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(NIRS) is a non-invasive method to measure brain activity via changes in the
degree of hemoglobin oxygenation through the intact skull. As optically measured hemoglobin signals
strongly correlate with BOLD signals, simultaneous measurement using NIRS and fMRI promises a significant
mutual enhancement of temporal and spatial resolutions. Although there exists a powerful statistical
parametric mapping tool in fMRI, current public domain statistical tools for NIRS have several limitations
related to the quantitative analysis of simultaneous recording studies with fMRI. In this paper, a new public
domain statistical toolbox known as NIRS-SPM is described. It enables the quantitative analysis of NIRS
signal. More specifically, NIRS data are statistically analyzed based on the general linear model (GLM) and
Sun's tube formula. The p-values are calculated as the excursion probability of an inhomogeneous random
field on a representation manifold that is dependent on the structure of the error covariance matrix and the
interpolating kernels. NIRS-SPM not only enables the calculation of activation maps of oxy-, deoxy-
hemoglobin and total hemoglobin, but also allows for the super-resolution localization, which is not possible
using conventional analysis tools. Extensive experimental results using finger tapping and memory tasks
confirm the viability of the proposed method.

© 2008 Elsevier Inc. All rights reserved.
Introduction
Near-infrared spectroscopy (NIRS) is a non-invasive method to
monitor brain activity by measuring the absorption of the near-
infrared light between 650 nm and 950 nm through the intact skull
(Villringer and Dirnafl, 1995). Specifically, the absorption spectra of
oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) are distinct in
this region; thus, it is possible to determine concentration changes of
oxy- and deoxy-hemoglobin from diffusely scattered light measure-
ments (Jobsis, 1977). NIRS has many advantages over other neuroima-
ging modalities such as positron emission tomography (PET),
functional magnetic resonance imaging (fMRI) or magnetoencepha-
lography (MEG). One of its main advantages is the ability to directly
measure a wide range of functional contrasts such as oxy-hemoglo-
bin, deoxy-hemoglobin, and total hemoglobin directly with very high
temporal resolution. This enables the study of the temporal behaviors
of the hemodynamic response to neural activation. In contrast, the
fMRI BOLD signal is physiologically ambiguous due to the coupling of
the cerebral blood flow (CBF), oxidative metabolism, and the cerebral
blood volume (CBV) (Logothetis, 2003; Hoge et al., 2005). Another
advantage of NIRS is the high degree of flexibility in its experimental
use, as NIRS requires only a compact measurement system and is
robust to the motion artifact compared to fMRI. However, NIRS lacks
rights reserved.
anatomical information, making it difficult to localize the brain area
from which the NIRS signal originates (Homan et al., 1987; Okamoto
et al., 2004a). Moreover, NIRS has poor spatial resolution and limited
penetration depth due to the high level of light scattering within the
tissue.

Simultaneous recording with NIRS and fMRI can provide a solution
to overcome these disadvantages. Over the past ten years, several
groups have conducted extensive researches in this area (Kleinsch-
midt et al., 1996; Benaron et al., 2000; Hess et al., 2000; Toronov et al.,
2001; Cannestra et al., 2001; Murata et al., 2002; Strangman et al.,
2002; Yamamoto and Kato, 2002; Mehagnoul-Schipper et al., 2002;
Toronov et al., 2003; Boas et al., 2003; Chen et al., 2003; MacIntosh et
al., 2003; Siegel et al., 2003; Mandeville et al., 1999; Okamoto et al.,
2004b; Fujiwara et al., 2004). An excellent review of these methods is
available in Steinbrink et al. (2006). Most of these studies found that
an optically measured hemoglobin signal strongly correlates with the
fMRI BOLD signal, although the exact oxygen species with the best
correlation remains controversial.2 Furthermore, the integration of
NIRS with fMRI can reveal not only the hemodynamic aspects of brain
activation but also metabolic variables such as the oxygen extraction
fraction (OEF) and the cerebral metabolic rate for oxygen consumption
(CMRO2) (Hoge et al., 2005).
2 Currently, it is generally agreed that the oxy-hemoglobin signal has a higher
signal-to-noise ratio, whereas the deoxy-hemoglobin signal is more specific to the
activation area and follows the BOLD signal more closely (Huppert et al., 2006).
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However, several technical challenges remain for quantitative
analyses of simultaneous NIRS and fMRI recordings. First, the diffe-
rential path length factor (DPF) in the modified Beer–Lambert law
(MBLL) (Cope and Delpy, 1988) is highly variable depending on the
subject or the measurement system (Zhao et al., 2002). It is well-
known that an incorrect DPF not only results in quantitatively incor-
rect estimates of the oxy- and deoxy-hemoglobin concentrations, but
also introduces crosstalk between the two measurements (Hoshi,
2007). Although a DPF parameter can be measured using time domain
or frequency domain systems by calculating the temporal point spread
function (Zhao et al., 2002), this information is not obtainable in
commonly available continuous wave (CW) systems. As an alternative,
the diffuse optical tomography (DOT) technique has been investigated.
In this technique, the DPF is not necessary due to the nature of the
tomographic reconstruction frommulti-channel measurements (Boas
et al., 2001). While several promising DOT reconstruction techniques
have been demonstrated for brain imaging (Boas et al., 2004), most
often require a priori knowledge of the optical parameters for the
detailed anatomical structure of brain, and the imaging problem is a
significant problem due to the limited amount of light penetration.
Therefore, further investigations must be conducted before wide
acceptance of DOT for brain mapping occurs.

Moreover, unlike PET and fMRI, no standard methods of NIRS data
analyses are currently available, and different groups have performed
an analysis based on different sophisticated analysis tools. The clas-
sical approach is a paired t-test that examines whether or not the
signal changes due to activation are statistically significant. One of the
most popular tools in this regard is a custom Matlab program known
as HomER (available at http://www.nmr.mgh.harvard.edu/PMI/). In
HomER, no fixed canonic hemodynamic response is assumed in order
to avoid any systemic errors from an incorrect model. Rather, the
individual hemodynamic response is calculated using ordinary least-
squared linear deconvolution. However, these approaches also rely on
time-line analysis approaches (Obrig and Villringer, 2003) for which
specific differential path length factors (DPF) should be assumed.

Currently, many research groups are developing statistical analysis
toolboxes for NIRS that are based on the generalized linear model
(GLM) (Schroeter et al., 2004; Plichta et al., 2007; Koh et al., 2007). GLM
is a statistical linearmodel that explains data as a linear combination of
an explanatory variable plus an error term. As GLM measures the
temporal variational pattern of signals rather than their absolute
magnitude, GLM is robust in many cases, even in cases with incorrect
DPF and severe optical signal attenuation due to scattering or poor
contact. In an event-related paradigm, Plichta et al. (2007) showed that
the GLM-based approach provides a statistically more powerful test of
the activation compared to the conventional approaches. Furthermore,
as GLM has become the standard method for analyzing the fMRI data
(Worsley and Friston,1995), an integration of NIRS and fMRIwithin the
same GLM framework may have an advantage when modeling both
types of data in the same mathematical framework to make an
inference. For example, Koh et al. (2007) developed extensive statis-
tical NIRS analysis tools termed functional optical signal analysis
(fOSA). This tool applies the SPM method to NIRS data.

However, several fundamental issues remain to be addressed. For
example, a measure of concern regarding the GLM approach exists, as
the canonical hemodynamic response or box car functions are used as
predictors for both HbR and HbO without accounting for both their
differences and the dependency on individual subjects (Hoshi, 2007).
Furthermore, the basic assumption of the Gaussian random field
model in fOSA breaks down in NIRS. It is important to note that SPM
for an fMRI analysis assumes that the residuals after the GLM fitting
are dense samples on lattice representations from an underlying
homogeneous Gaussian random field due to Gaussian kernel smooth-
ing (Friston et al., 1996). However, as the distance between each
channel of NIRS is great and because the number of measurements is
small, it is not feasible to use homogeneous Gaussian random field
theory when making inferences of NIRS data. Finally, the resolution of
fOSA is limited by the distance between the optodes, which makes it
difficult to co-registrate with the fMRI activation map. In order to
address the co-registration problem, Schroeter et al. (2004) applied
spectral analysis methods to calculate a map of the power spectral
density, coherence and phase. Here, pixels with less than 50%
coherence to the most activated pixel were declared non-active, and
the phase values were calculated for only the active pixels. Other type
of exact channel-wise statistics have been also used in literature
(Plichta et al., 2006, 2007; Okamoto et al., 2006; Hofmann et al., 2008).
However, we are not aware of any approach that addresses the exact
excursion probability for the interpolated random fields in between
channels.

The main contribution of the present article is the presentation of
new statistical parameter mapping for NIRS. The corresponding
software known as NIRS-SPM is publicly available at the website of
the authors (http://bisp.kaist.ac.kr/NIRS-SPM). NIRS signal analysis
requires the excursion probability of the inhomogeneous Gaussian
random field that is generated by the interpolated samples from spar-
sely and irregularly distributed optode measurements. The situation is
drastically different from a SPM analysis for EEG/MEG, in which a
three-dimensional dense map of source distribution is initially
obtained by solving an inverse problem. Rather than resorting to a
full 3-D reconstruction using DOT, this study focuses on a topographic
2-D reconstruction of the cortical cortex. Interestingly, the resultant
reconstruction is an interpolation from the results of each channel SPM
using inhomogeneous interpolation kernels. The resultant random
field from such an interpolation is an inhomogeneous Gaussian ran-
dom field, similar to those encountered voxel based morphometry
(VBM) studies. Non-stationary random field theory is used to find
accurate p-values for local maxima. For example, Taylor and Worsley
(2007, 2008) showed that the Gaussian random field theory can be
accurately extended to non-isotropic cases by replacing the intrinsic
volume expression in Euler characteristics with Lipschitz–Killing
curvature that incorporates the information from the local correlation
function of the underlying inhomogeneous Gaussian random fields.
Similar results have been reported elsewhere (Worsley et al.,1999).We
have also found that 3-D parametric shape estimation problem in a
computer vision problem (Ye et al., 2006) has also a striking similarity
to the current problem setup. Ye et al. (2006) use Sun's tube formula
(Sun, 1993; Cao and Worsley, 1999a) for calculating the excursion
probability of an inhomogeneous Gaussian random field that origi-
nates from interpolated parametric surface estimates from sparse
noisy measurements. In the Gaussian SPMs, Sun's tube formula and
random field theory give the same solution (Takemura and Kuriki,
2002). Due to these powerful tools for calculating the excursion
probability, NIRS-SPMnot onlyenables a calculation of activationmaps
for HbO, HbR and HbT, but also allows super-resolution localization,
which was not possible when using other conventional methods.

This paper also describes several additional techniques for opti-
mizing NIRS-SPM. First, in an estimation of the temporal correlations,
the precoloring (Worsley and Friston, 1995) and prewhitening
methods (Bullmore et al., 1996; Friston et al., 2002) originally intro-
duced in the fMRI model are compared. Although the prewhitening
method adapted from fMRI-SPM (Friston et al., 2006) is, in theory,
statistically the most efficient approach and has been employed in
most of the NIRS-GLM analyses for temporal correlation correction
(Plichta et al., 2006, 2007; Koh et al., 2007; Hofmann et al., 2008), the
difference between the assume and the actual correlations due to the
small number of channels in NIRS can produce bias that has effects on
the inference. Hence, an appropriate method of estimating the tem-
poral correlations in NIRS data is proposed. Second, distinct predictor
models for oxy- and deoxy-hemoglobin are derived and analyzed.
Finally, in order to localize the NIRS signal to the cerebral cortex of an
anatomical T1 image obtained from MRI, Horn's algorithm (Horn,
1987) is implemented in NIRS-SPM. Finding the relationship between
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the actual 3-D space and the MR image domain using pairs of coor-
dinates in both systems is a well-known problem known as absolute
orientation. A closed-form, least-square solution for this problem is
implemented as described in Horn (1987).

This paper is organized as follows. In Theory section, the theory of
NIRS-SPM is discussed in detail. Method section provides additional
implementation issues of NIRS-SPM, which is followed by the expe-
rimental results regarding finger tapping and working memory tasks
in Experimental results section. Discussion section discusses the limi-
tation of the NIRS-SPM. Conclusions are presented in Conclusion
section.

Theory

Measurement model for NIRS

According to the modified Beer–Lambert law (MBLL) (Cope and
Delpy, 1988), the optical density variation Δφ(r, s; λ, t) (unitless
quantity) at time t due to HbO and HbR concentration changes (ΔcHbO,
ΔcHbR) [μM] is described as

Δ/ðr; s;λ; tÞ = − lnUðr; s;λ; tÞ
Uoðr; s;λÞ

= ½aHbOðλÞΔcHbOðr; tÞ + aHbRðλÞΔcHbRðr; tÞ�d rð Þl rð Þ

ð1Þ

where (r,s) denotes the detector and source position, λ is the
wavelength of the laser source,U(r,s;λ,t) denotes themeasured photon
flux at time t, Uo(r,s;λ) denotes the initial photon flux, aHbO(λ) [μM−1

mm−1] and aHbR(λ)[μM−1 mm−1] are the extinction coefficients of the
HbO and HbR, d(r) is the unitless differential path length factor (DPF),
and l(r)[mm] is the distance between the source and the detector at the
position r, respectively.

The MBLL indicates that HbO and HbR concentration changes can
be estimated using the optical density measurements at two wave-
lengths. More specifically, let {(ri, si)}i =1K denotes the set of detector
and source pairs in this case. Initially defined is

Δ/HbO ri; si; tð Þ
Δ/HbR ri; si; tð Þ

� �
= aHbO λ1ð Þ aHbR λ1ð Þ

aHbO λ2ð Þ aHbR λ2ð Þ
� �−1 Δ/ ri; si;λ1; tð Þ

Δ/ ri; si;λ2; tð Þ
� �

: ð2Þ

The HbX (i.e., HbO or HbR) concentration changes are then ob-
tained by

ΔcHbX ri; si; tð Þ = Δ/HbX ri; si; tð Þ
d rð Þl rð Þ : ð3Þ

Here, ambiguities exist that are related to the calculated HbX variation
in Eq. (3), as the distances between the source and detector are
relatively large and the hemoglobin concentration changes could
locate at any point between source and detectors. Moreover, there
exists only a small number of optodes that are distributed irregularly,
which makes the NIRS imaging of the brain very difficult.

Although Eq. (1) is used extensively, this is merely a first-order
approximation of diffusive light scattering. More specifically, in a
highly scattering media such as the brain, the photon path from CW
illumination can be described using the following diffusion equation
(Boas et al., 1997):

D0j
2U0 r; s;λð Þ−μ0

a r;λð ÞU0 r; s;λð Þ = −δ r−sð Þ : ð4Þ
Here, U0(r, s; λ) denotes the photon flux at r when the laser source of
wavelength λ with unit intensity is located at s, μa0 (r; λ) denotes the
absorption coefficient at the rest stage, and D0 represents the homo-
genous diffusion coefficients. Here, the HbO and HbR concentration
changes the results of the absorption coefficient.

Δμa r;λ; tð Þ = aHbO λð ÞΔcHbO r; tð Þ + aHbR λð ÞΔcHbR r; tð Þ ð5Þ
Under the first order Rytov approximation, the optical density
change can then be approximated as follows (O'Leary et al., 1995):

Δ/ r; s;λ; tð Þ=− ln U r; s;λ; tð Þ
U0 r; s;λð Þ g∫dr′U0 r; r′;λð ÞU0 r′; s;λð Þ

U0 r; s;λð Þ Δμa r′;λ; tð Þ :

ð6Þ
Here, U0(r, r′; λ) denotes the homogenous Green's function from Eq.
(10) by putting the source at r′. In a comparison of Eq. (1) with Eq. (12),
the MBLL is shown to be an approximation of Eq. (12) when the
absorption change is local, i.e. Δμa(r′; λ, t)=Δμa(r′; t)δ(r−r′).

Interestingly, the Rytov approximation in Eq. (6) provides a
solution that addresses the drawbacks of theMBLL-based conventional
approaches.More specifically, in a case inwhich {(ri, si)}i =1K denotes the
detector and source pairs, Appendix A shows that the estimate of HbX
(i.e. HbO or HbR) changes at any position r can be interpolated using
the {ΔϕHbX(ri,si;t)}i =1K :

ΔcHbX r; tð Þ = ∑
K

i = 1
Bi rð ÞΔ/HbX ri; si; tð Þ ð7Þ

where Bi(·) corresponds to the inhomogeneous interpolation kernel
derived from the diffusion equation and spatial correlation with adja-
cent channel hemoglobin status. Due to the interpolation relationship
in Eq. (7), the statistical testing ofΔcHbX (r, t) can be directly transferred
from the statistical testing of ΔϕHbX(ri, si , t). This will be discussed in
the sequel.

General linear model

This section focuses on the GLM of ΔϕHbX(ri, si; t). The GLM can be
easily transferred to the interpolated measurement ΔcHbX(r,t) due to
the interpolation relationship of Eq. (7).

Here, y ið ÞaRN and e ið ÞaRN are temporal samples given by

y ið Þ = Δ/HbX ri; si; t1ð Þ Δ/HbX ri; si; t2ð Þ : : : Δ/HbX ri; si; tNð Þ½ �T ; ð8Þ

e ið Þ = e ri; si; t1ð Þ e ri; si; t2ð Þ : : : e ri; si; tNð Þ½ �T ; ð9Þ

where ɛ(ri,si;t) denotes the zero-mean Gaussian noise at time t. The
corresponding GLM model is then given by

y ið Þ = Xβ ið Þ + e ið Þ ð10Þ
where XaRN×M denotes the design matrices, and β ið ÞaRM is the cor-
responding response signal strength at the i-th channel. Stacking the
measurements from all K channels gives

y = IK � Xð Þβ + e ð11Þ

where IK denotes the K×K identity matrix,⊗ is the Kronecker product,
and the following equation holds:

y =

y 1ð Þ

y 2ð Þ

v
y Kð Þ

2
664

3
775; β =

β 1ð Þ

β 2ð Þ

v
β Kð Þ

2
664

3
775; e =

e 1ð Þ

e 2ð Þ

v
e Kð Þ

2
664

3
775 : ð12Þ

As described in Appendix B, the noise covariance matrix from the
SPM assumption is given by

Ce = E eeT
� �

=

σ 1ð Þ2Λ O : : : O
O σ 2ð Þ2Λ : : : O
v v O v
O O : : : σ Kð Þ2Λ

2
664

3
775 =Σ� Λ ð13Þ



Fig.1. Comparison between the conventional SPM and NIRS-SPM. The Gaussian random field (GRF) assumption in fMRI analysis is based on the Gaussian kernel smoothing on a dense
lattice. However, the situation is drastically different in NIRS since only a sparse number of optodes are located irregularly. NIRS-SPM first interpolates the data using inhomogeneous
interpolation kernel and calculates the excursion probability using inhomogeneous Gaussian random field theory.
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where Λ denotes the common temporal correlation matrix for all
channels and

Σ =

σ 1ð Þ2 O : : : O
O σ 2ð Þ2 : : : O
v v O v
O O : : : σ Kð Þ2

2
664

3
775 ð14Þ

Then, the least-square estimation of β and its error covariance
matrix are given by

β̂ = IK � X†
� �

y ; C ^

β
=Σ� X†ΛX†T

� �
; ð15Þ

where X† denotes the pseudo-inverse of X. The response signal
strength α(r) at the any location r then can be estimated from β as
described in Appendix C:

^α rð Þ = b rð ÞT�IM

� �
β̂ aℝM : ð16Þ

Here, the basis vector b(r) is given by stacking Bi(r) into a vector:

b rð Þ = B1 rð Þ B2 rð Þ : : : BK rð Þ½ �TaℝK : ð17Þ

Furthermore, its error covariance is given by

C
^α
= b rð ÞT∑b rð Þ
� �

� X†ΛX†T
� �

aℝM×M: ð18Þ

Inference

Usually, the response of the signal of interest here is calculated by
an inner product with a contrast vector caℝM

^χ rð Þ = cT ^α rð Þ ð19Þ

Using Eq. (18), the corresponding error variance is

C ^

χ
rð Þ = b rð ÞT∑b rð Þ

� �
cTX†ΛX†Tc

� �
ð20Þ
Under the null hypothesis the response signal χ̂ rð Þ is distributed as
a zero-mean Gaussian distribution:

χ̂ rð ÞfN 0;C ^χ
rð Þ

� �
ð21Þ

Hence, the corresponding t-statistics is given by

T rð Þ = cT
^α rð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b rð ÞT∑b rð Þ
� �

cTX†ΛX†Tc
� �r ð22Þ

where the effective degrees of freedom is given by:

df =
trace RΛð Þ2
trace RΛRΛð Þ : ð23Þ

with the residual forming matrix R= I−X(XTX)−1 XT (Worsley and
Friston, 1995).

At this point, the goal is to calculate the p-value for which the null
hypothesis can be abandoned. This can be calculated as an excursion
probability of the resultant random field. More specifically, the
interest here is in calculating the following excursion probabilities:

One side t-test: P{maxr∈ΨT(r)≥z}.
While the form of the excursion probability appears similar to that

of the excursionprobability of aGaussian randomfield in SPM for fMRI,
fundamental differences exist. As illustrated in Fig. 1, the Gaussian
random field in fMRI comes from the Gaussian kernel smoothing of
discrete signals on a dense lattice, whereas the proposed excursion
probability comes from the random field that is interpolated from
sparsely and irregularly distributed measurements. The interpolation
step from irregularly distributed samples through diffusive medium
causes the resultant random field to become inhomogeneous; hence, it
is not possible to use a p-value that is tailored to the homogeneous
Gaussian random field. The situation is slightly different in EEG/MEG,
where all of the channel measurements can be used for interpolating
the measurement at r, as electro- magnetic signals can be transmitted
through the brain. In this case, it can be expected that the resultant



Table 2
NIRS and fMRI results of three excluded subjects in block-designed working memory
task

Subject 1 Subject 2 Subject 3

Oxy-hemoglobin × △ ×
Deoxy-hemoglobin × × ×
Total-hemoglobin × △ ×
fMRI ○ ○ ○

○: Activation in the target region. △: Activation in non-target region. ×: No significant
activation (pb0.05, NIRS: tube formula correction, fMRI: uncorrected).
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random field is homogeneous. However, in NIRS, the signal is highly
attenuated, and the interpolation steps of Eq. (13) only use the
information from adjacent channels. Hence, the resultant random field
is inhomogeneous.

We then use random field theory results, which are in fact available
for practically any non-homogeneous randomfield, even onmanifolds,
provided that it is smooth (Worsley et al.,1999; Taylor and Adler, 2003;
Taylor and Worsley, 2008; Ye et al., 2006). Among these methods, we
follow Ye et al. (2006) and employ Sun's tube formula (Sun, 1993; Cao
and Worsley, 1999b) to calculate the excursion statistics of the
resultant inhomogeneous random field since the formulation is
strikingly similiar. More specifically, the resultant p-value can be
calculated as described in Appendix D:

p = P max
raW

T rð Þzz
n o

g
κ0

ωD
1−Γ

D + 1
2

;
z2

2

	 
	 

ð24Þ

where ωD = 2π D + 1ð Þ=2=C D + 1
2

� �
denotes the surface area of the (D+1)-

dimensional unit sphere, and κ0 is given by

κ0 = ∫W
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdet ju rð ÞjTu

� �j
q

dr ð25Þ

for the unit vector uaℝK :

u =
C

1=2
^

β
b rð ÞT�IM

� �
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b rð ÞT∑b rð Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cTX†ΛX†Tc

p ð26Þ

Method

Behavior protocol

To evaluate the practicality of the proposed methods, NIRS-SPM
was applied to a right finger tapping (RFT) exercise and to working
memory experimental data. For the RFT tasks, the block paradigm and
the event-related paradigm were used. For the working memory
experiment, only the block paradigm was used. As the target area of
the finger tapping task and the working memory experiments were
within the primary motor cortex and prefrontal/Broca's area,
respectively, these tasks are within the limit of the penetration
depth of NIRS; hence, they are used fairly often in NIRS experiments
(Kleinschmidt et al., 1996; Toronov et al., 2001; Murata et al., 2002;
Strangman et al., 2002; Yamamoto and Kato, 2002; Mehagnoul-
Schipper et al., 2002; Toronov et al., 2003; Boas et al., 2003; Tsujimoto
et al., 2004; Hoshi et al., 2003).

In the case of block design finger tapping, a 21-second period of
activation alternated with a 30-second period of rest. This was
repeated 10 times for each subject. The total recording timewas 552 s.
For the event-related finger tapping task, the task periodswere 2 s and
the interstimulus interval was pseudo-randomly chosen with an
average of 12 s (ranging from 4 to 20 s) (Huppert et al., 2006). The total
recording time was 650 s. During the task period, subjects were
instructed to perform a finger flexion and extension action repeatedly.
Table 1
NIRS and fMRI results of three excluded subjects in block-designed finger tapping task

Subject 1 Subject 2 Subject 3

Oxy-hemoglobin × × △

Deoxy-hemoglobin × × ×
Totalhemoglobin × × △

fMRI × ○ ○

○: Activation in the target region. △: Activation in non-target region. ×: No significant
activation (pb0.05, NIRS: tube formula correction, fMRI: random field correction).
In order to avoid eye and head movements, subjects were instructed
to focus on a fixed point in the rest condition.

The paradigm of the working memory task was designed based on
Wei et al. (2004), Smith et al. (1998). The experiment consisted of 16
task blocks (8 blocks for 2-back, 8 blocks for 0-back) and 16 rest
blocks. Each block was 30 s. The total recording timewas 522 s. During
task period, a random series of single-digit numbers (1-9) was
presented at the rate of one number every 2 s. During the 2-back task,
subjects were instructed to press a key when each digit was identical
to the one presented two digits previously in the series.

Subject selection

For block design finger tapping task, a total of 12 subjects were
examined (mean age=26.4±2.5 years). Three subjects were exclu-
ded; one subject had no activated region from NIRS and fMRI,
another had no activation in NIRS but has activation in fMRI, and the
other subject had no activation in HbR, non-ROI activation in HbO
and HbT, and activation in fMRI (See Table 1). All of the remaining 9
subjects were included for further analysis. For the event-related RFT
task, a total of 9 subjects were examined (mean age=23±2.2 years).
For the block design working memory task, a total of 11 subjects
were examined (mean age=25.8±2.5 years). Three subjects were
excluded (See Table 2). All of the remaining 8 subjects were included
for further analysis.

All subjects were strongly right-handed. No subjects had a history
of any neurological disorder. After all of the subjects were given ins-
truction concerning the experimental environment and the operating
mode of NIRS andMRI, signed informed consent formswere obtained.
This study was approved by the Institutional Review Board of the
Korea Advanced Institute of Science and Technology (KAIST).

Data acquisition

A continuous wave NIRS instrument (Oxymon MK III, Artinis, Ne-
therlands) was used to measure changes in the optical density. The
sampling ratewas approximately 10Hz. TheNIRS systememits 781nm
and 856 nm laser lights at each source fiber. The NIRS system has 24
channels with eight sources and four detectors, as shown in Fig. 2, and
it measures optical density variation in Eq. (1) for each channel. A
holder cap to fix the distance between the source and detector optodes
was attached to the scalp around the left primary motor cortex, dor-
solateral prefrontal cortex, and Broca's area. The distance between the
source and the detector was 3.5 cm. The fiber length was 10 m to
connect the optodes in the MR scanner to the NIRS instrument in the
MR control room.

A 3.0 T MRI system (ISOL, Republic of Korea) was used to measure
the BOLD response. During the blocked task paradigm, the echo planar
imaging (EPI) sequence was used with TR/TE=3000/35 ms, flip
angle=80°, 35 slices, 4 mm slice thickness. In the event-related task
paradigm, the EPI sequencewas used aswell (with TR/TE=2000/35ms,
flip angle=80°, 24 slices, 4 mm slice thickness). In the subsequent
anatomical scanning session, T1-weighted structural images were
acquired using the same scanner.



Fig. 2. (a) Schematic diagram of the 24 NIRS channels. Red circles are illuminators, and blue circles are detectors. Numbers between red and blue circles corresponds to NIRS channel
index. (b) The holder cap of 16 optodes covering the primary motor cortex, dorsolateral prefrontal cortex, and Broca's area.

Fig. 3. Schematics describing the NIRS-SPM framework.
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NIRS-fMRI alignment

In order to localize the NIRS signal with respect to the cerebral
cortex of an anatomical MR image, the relationship between the MR
coordinates and the real coordinates in a 3-D digitizer needs to be
investigated. Horn's algorithm (Horn, 1987), which provides a closed-
form and least-square solution for this absolute orientation problem,
is typically employed.

Here, pMR,i and pNIRS,i denote a measured coordinate in the MR
and 3-D digitizer system, respectively, where i=1,2,…K indexes the
coordinates. In addition, s is a scale parameter, t is a translation
vector, and R is a rotation matrix. Thus, this problem seeks to find
the maximum likelihood estimate for the following rigid transform
parameters:

pMR = sR pNIRSð Þ + t: ð27Þ

First, all measured coordinates are redefined with respect to cen-
troids of their systems:

p′MR;i = pMR;i−pMR;
p′NIRS;i = pNIRS;i−pNIRS;

pMR =
1
K

∑
K

i = 1
pMR;i;

pNIRS =
1
K

∑
K

i = 1
pNIRS;i: ð28Þ

Then, the translation vector and the scale factor are given by

^t = pMR−sR pNIRSð Þ;

s^=
∑n

i = 1 p′′MR;i � R p′′NIRS;i
� �

∑n
i = 1jjp′′NIRS;ijj 2:

ð29Þ
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Let pi′=(xi′, yi′, zi′)T and

AMR;i =

0 −χi′ −yi′ −zi′
χi′ 0 −zi′ yi′
yi′ zi′ 0 −χi′
zi′ −yi′ χi′ 0

2
664

3
775; BNIRS;i =

0 −χi′ −yi′ −zi′
χi′ 0 zi′ −yi′
yi′ −zi′ 0 χi′
zi′ yi′ −χi′ 0

2
664

3
775: ð30Þ

If we define the matrix N as

N = ∑
K

i = 1
BT

NIRS;iAMR;i: ð31Þ

The vector q, which is directly related to the rotation parameters, is
the eigenvector corresponding to the maximum eigenvalue of the
Fig. 4. (a) Ten blocks of HbO, HbR, HbTand BOLD signals from a finger tapping task are average
intensity, and HbR signals were inverted. HbR signal follows BOLD very closely. Correlat
determination (R2) as well as the signal patterns between NIRS and BOLD signals shows tha
matrix N. When q is the quaternion (q0, qx, qy, qz)T (Korn and Korn,
1968), the rotation matrix is obtained as follows:

R =

q20 + q
2
χ−q2y−q2z

� �
2 qχqy−q0qz
� �

2 qχqz + q0qy
� �

2 qyqχ + q0qz
� �

q20−q
2
χ + q2y−q2z

� �
2 qyqz−q0qχ
� �

2 qzqχ−q0qy
� �

2 qzqy + q0qχ
� �

q20−q
2
χ−q2y + q2z

� �

2
6664

3
7775 ð32Þ

After the relationship between the MR coordinates and real
coordinates in 3-D digitizer is elicited based on the measured
coordinates of marker capsules, the locations of the optodes in the
MR coordinate can be calculated. Each position of the optodes is
projected onto the point which has the minimum distance with
cortical cortex obtained from the segmented MR images.

Preprocessing

In NIRS experiments, there often exist global drifts of the optical
signal measurements for a variety of reasons, including subject
d to obtain average time courses. The intensity of the signals was normalized to the peak
ion analysis of BOLD with (b) HbO, (c) HbR, and (d) HbT, respectively. Coefficient of
t HbR concentration changes are highly correlated with the BOLD signal.
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movement during the experiment, vasomotion, blood pressure
variation, long-term physiological changes or instrumental instability.
Moreover, the amplitude of the global drift is often comparable to that
of the signal from a brain activation process. In order to eliminate the
global trend and to improve the signal-to-noise ratio, a highpass filter
based on a discrete cosine transform (DCT) was employed, as is
currently implemented in SPM (Friston et al., 2006). For the NIRS data
of the finger tapping task, a cutoff frequency of 1/60 Hz was used. For
the NIRS data of the working memory task, a cutoff frequency of
1/128 Hz was used, as the task related frequency was 1/120 Hz.

After detrending, “short-range” temporal correlation continues to
exist in NIRS data. This means that the residual signal at the specific
time is correlated with its temporal neighbors. In order to obtain the
correct t-statistics in Eq. (22), the temporal correlation structure of
NIRS should be investigated. The “precoloring” method (Worsley and
Friston, 1995) was compared with the “prewhitening” method
(Bullmore et al., 1996; Friston et al., 2002), both initially proposed for
the fMRI model (Friston et al., 2006). Currently, most of the NIRS-GLM
analysis have employed the prewhiteningmethod (Plichta et al., 2006,
2007; Koh et al., 2007; Hofmann et al., 2008). In cases where the
temporal smoothing is strong enough to swamp any intrinsic temporal
Fig. 5. (a) Paired t-test results to compare two paired group among the following four data se
HbR within ROI (wROI) and prewhitened HbR outside ROI (wOUT). (b) Paired t-test results to
is downsampled after anti-aliasing filteringwithin ROI (wdaROI), outside ROI (wdaOUT), prew
outside ROI (wdOUT). Downsampling factor was 10. (c) Paired t-test results to compare two p
precolored HbO outside ROI (cOUT–HbO), prewhitened HbO which is downsampled after a
significant difference was observed in cROI and cOUT (pb0.035), such significant differenc
significant difference betweenwdROI and wdOUT (pb0.389) was not observed because of th
significant difference between wdaROI and wdaOUT (pb0.042) was detected. Note that in ca
the t-map within and outside ROI, whereas the precolored HbO still provide statistically mea
to prewhitening method in estimating the temporal correlations. In these figures, the t-valu
correlation, the precoloringmethod is preferred. Specifically, if the full-
width-at-half-maximum (FWHM) value of the smoothing kernel is
sufficiently large, temporal correlation induced by the smoothing
process can be obtained without an intrinsic temporal correlation:

Λ = SVST≈SST : ð33Þ

Here, Λ is a temporal correlation matrix, V is an intrinsic temporal
correlation and S is a smoothing matrix that is typically derived from
the canonical HRF or Gaussian smoothing kernel (Friston et al., 2000).
As the transfer function of HRF is in the frequencies of modeled
neuronal signals, the canonical HRF was employed for the temporal
smoothing of the NIRS time-series. An alternative way method,
prewhitening involveswhitening the data using the smoothingmatrix
S that is derived from the intrinsic temporal correlation V:

S =K−1; ð34Þ

where KKT=V and V is estimated via restricted maximum likelihood
(ReML) (Friston et al., 2002). If the estimated intrinsic temporal
ts: precolored HbR within ROI (cROI), precolored HbR outside ROI (cOUT), prewhitened
compare two paired group among the following four data sets: prewhitened HbR which
hitened HbRwhich is downsampledwithout anti-aliasing filteringwithin ROI (wdROI),

aired group among the following four data sets: precolored HbOwithin ROI (cROI–HbO),
nti-aliasing filtering within ROI (wdaROI–HbO), outside ROI (wdaROI–HbO). Although
e was not observed in wROI and wOUT (pb0.086). In case of downsampled HbR, any
e aliasing effect. However, when the antialiasing filter was used before downsampling, a
se of the prewhitened HbO, no significant difference (pb0.070) was observed between
ning full differences (pb0.038). This result supports that precoloring method is superior
es indicate the averaged t-value within and outside ROI.



Fig. 6. (a) NIRS time series which is overlaid with the predictor model. NIRS time series was detrended using DCT basis set. The predictor model was generated by convolving the
canonical HRF (+ temporal and dispersion derivatives) with the experimental protocol. Note that the predictor model adequately follows the task-related NIRS time series. (b) fMRI
time series. The NIRS signal simultaneously recorded with fMRI has very low SNR, compared with the fMRI signal.
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correlation is correct, the temporal correlation structure induced by
smoothing can be an identity matrix, as follows:

Λ = SVST = I ð35Þ

In the whitened model, as the error is identically and independent
distributed, the least-square estimate β corresponds to the maximum
likelihood estimate.

Note that the spatial covariance between each channel measure-
ment in NIRS is the result of (i) the overlap of the spatial sensitivity
profiles per source-detector channel, and (ii) spatial covariance at the
voxel level between hemoglobin states.3 Hence, it is assumed that all
of the correlation comes from the overlapped spatial sensitivity profile
as well as spatial correlation between hemoglobin states. This is in
contrast with fMRI, where fMRI observations contain the assumption
of no overlapping sensitivity profiles and address the spatial
covariance in functional activity. One of the advantages of an SPM
analysis is that such spatial covariance can be addressed during the
inference step rather than during the estimation process, with the
help of p-value correction with random field theory. Thus, a spatial
preprocessing step for spatial covariance other than random field
theory was not implemented in NIRS-SPM.

Group analysis

In fMRI, the group analysis is usually done after all the individual
session data are aligned on a global template. However, the situation is
different inNIRS, since there exist only a fewnumberof optodes and the
global alignments of the channel positions between individual sessions
are difficult. Rather than using inter-subject alignments of optodes, this
paper proposes a global alignment between the interpolatedmaps onto
a brain template before facilitating group analysis. More specifically, the
summary statistics χ̂ rð Þ of Eq. (19) and C

χ̂
rð Þ of Eq. (20) are first obtained

from each individual session. Since these summary statistics are already
interpolated on the global template, calculating the second level
statistics is quite straightforward. Methods already in use in the main
statistical packages can now be used.
3 The authors acknowledge the anonymous reviewer who pointed out this issue.
This sentence was borrowed from the comment of this reviewer.
More specifically, let χ̂ lð Þ rð Þ; l = 1;: : :; L rð Þ denote the interpolated
response signal from the l-th individual session, where L(r) denotes
the maximum number of individual sessions at position r. Note that
the individual anatomical variation often results in a different L(r),
especially at the border areas of the maps. Let the first-level within-
subject covariances be subject-specific and given by

C lð Þ rð Þ = b lð Þ rð ÞTΣ lð Þb lð Þ rð Þ
� �

cTχ†
lð ÞΛ lð Þχ

†T
lð Þc

� �
ð36Þ

where subscript (l) denotes the subject specific quantities. The
between-subject variances (from the group mean) are usually modeled
as equal across the group and given by σs

2 (Beckmann et al., 2003):

CG rð Þ =
Cχ 1ð Þ rð Þ O : : : O

O Cχ 2ð Þ rð Þ : : : O
v v O v
O O : : : Cχ L rð Þð Þ rð Þ

2
664

3
775 + σ2

s rð ÞI ð37Þ

Then, the estimate of the global parameter is given by (Beckmann et al.,
2003):

χ̂G rð Þ = XT
GC

−1
G rð ÞXT

G

� �−1
XT

GC
−1
G rð Þχ̂I rð Þ =

∑L rð Þ
l = 1

χ̂ lð Þ rð Þ
C lð Þ rð Þ +σ2

s rð Þ

∑L rð Þ
l = 1

1^

C lð Þ rð Þ +σ2
s rð Þ

ð38Þ

where XG=[1⋯1]T denotes the design matrix for group mean activation
and χ̂I rð Þ = χ̂ 1ð Þ rð Þ: : : χ̂ L rð Þð Þ rð Þ

h i
. The corresponding covariance is

CχG
rð Þ = XT

GC
−1
G rð ÞXT

G

� �−1
=

1

∑L rð Þ
l = 1

1^

C lð Þ rð Þ +σ2
s rð Þ

: ð39Þ

Hence, the corresponding t-statistics is given by

T rð Þ =
∑L rð Þ

l = 1
χ̂ lð Þ rð Þ

C lð Þ rð Þ +σ2
s rð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑L rð Þ
l = 1

1^

C lð Þ rð Þ +σ2
s rð Þ

r ; ð40Þ

Applying the inhomogeneous random field theory to group analysis
of NIRS data is quite complicated due to the mismatch of channel
positions between individual sessions. In this paper, uncorrected p-
values are therefore used in group analysis of NIRS data for simplicity.



Fig. 8. The number of pixels over the threshold plotted against the p-values. Red line:
The tube formula corrected p-values were applied in the t-statistic map obtained from
the proposed method. Blue line: The Bonferroni corrected p-values were applied in the
t-statistic map obtained from the classical interpolation method. Green line: The
uncorrected p-values were applied in the t-statistic map obtained from the classical
interpolation method. While the Bonferroni correction is too conservative and the
uncorrected p-value is too liberal, the tube formula correction appears reasonable.
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NIRS-SPM: a new SPM toolbox for NIRS

A new SPM appropriate for NIRS was implemented as a “NIRS-SPM
toolbox” based on the SPM5 package (Wellcome Department of
Cognitive Neurology, London, UK). The toolbox runs under MATLAB
(Mathworks, Natick, MA), providing various computational processes
from detrending to statistical analysis. Its statistical results are
superimposed onto a 3-D rendered SPM brain map and can be
compared with fMRI results, integrating the conventional SPM for
fMRI. Fig. 3 shows a schematic illustrating the NIRS-SPM framework.

Experimental results

Block design analysis of right finger tapping

In order to study the correlation of hemodynamic responses of
NIRS and BOLD signals, ten blocks of HbO, HbR, HbT and BOLD signals
from a finger tapping task are averaged out. The intensity of the
signals were normalized to the peak intensity, and HbR signals were
inverted. Fig. 4a illustrates the average time courses of HbO, HbR, HbT,
and BOLD concentration from nine subject NIRS data. We performed
the statistical correlation analysis of oxygen species and fMRI BOLD
time courses. Regression analysis shown in Figs. 4b–d indicates that
BOLD is highly correlated with HbR signal (R2=0.971, pb0.001),
whereas there are relatively weak correlations between BOLD and
HbO (R2=0.767, pb0.001) and between BOLD and HbT (R2=0.724,
pb0.001), respectively.

Quantitative comparison between precoloring with prewhitening
procedure was performed using the paired t-test. Specifically, we first
defined a ROI from fMRI group activation analysis at p=0.005. Then,
for the individual session, the t-statistics within the ROI and outside
the ROI are separately averaged. We used the paired t-test to compare
two paired groups among the following four data sets: precolored HbR
within ROI (cROI), precolored HbR outside ROI (cOUT), prewhitened
HbR within ROI (wROI) and prewhitened HbR outside ROI (wOUT). As
illustrated in Fig. 5a, no significant difference was observed either
Fig. 7. Individual t-statistic maps from finger tapping task. (a) The t-statistic maps from HbR u
(d) HbT using NIRS-SPM. Note that the HbR-t-statistic values from the proposed method ar
between cROI and wROI (pb0.237), or cOUT and wOUT (pb0.473).
Although a significant difference was observed in cROI and cOUT
(pb0.035), such significant difference was not observed in wROI and
wOUT (pb0.086). The results indicated that the t-statistics of non-ROI
in prewhitening cases has more variation than that of the precoloring
method.

Next, we used the paired t-test to compare two paired groups among
the following four data sets: prewhitened HbR which is downsampled
sing the classical interpolation method. The t-statistic maps from (b) HbO, (c) HbR, and
e higher than the HbR t-statistic values from the classical interpolation.



Fig. 9. Individual activationmaps from finger tapping task. (a) Activationmap of BOLD (pb0.05, random field correction, the size of designmatrix (sX)=184×4, the degrees of freedom
df=172). Activation map from (b) HbO, (c) HbR and (d) HbT using NIRS-SPM (pb0.05, tube formula correction, sX=5384×4, df=82.4705). Activation areas fromHbO, HbR, and HbT are
localized to the primary motor cortex very tightly and consistent with the activation areas obtained by BOLD.
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after anti-aliasing filtering within ROI (wdaROI), outside ROI (wdaOUT),
prewhitened HbRwhich is downsampled without anti-aliasing filtering
within ROI (wdROI), outside ROI (wdOUT). Downsampling factorwas 10.
Because of the aliasing effect and low SNR, any significant difference
Fig. 10. Activation maps found by group analysis of finger tapping task data (9 subjects). (a) A
(c) HbR and (d) HbT using NIRS-SPM (pb0.05, uncorrected). Activated regions found by group
by HbR is more consistent with that of BOLD.
between wdROI and wdOUT (pb0.389) was not observed. The mean t-
value of wdROI was too low (0.346). However, when the anti-aliasing
filter was used before downsampling, a significant difference between
wdaROI and wdaOUT (pb0.042) was detected.
ctivation map found by BOLD (pb0.05, uncorrected). Activation maps found by (b) HbO,
analysis of NIRS data are localized to the primary motor cortex. Note that activated area



Fig. 12. Receiver operation characteristics (ROC) for HbO, HbR, and HbT. The primary
motor cortex (BA4) is used as a ground-truth, and the false alarm ratio and hit ratio are
calculated by changing the threshold values for the group t-map. The primary motor
cortex in the SPM-brain template was depicted using the WFR PickAtlas toolbox (www.
ansir.wfubmc.edu). The ROC analysis showed that the area under the ROC curve for HbR
was almost same as the area under the ROC curve for HbO. This result indicated that the
ratio of HbR's activation area in primary motor cortex is similar to the ratio of HbOs
activation area in primary motor cortex.
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Since the precolored HbR and downsampled prewhitened HbO
with anti-aliasing filter both provide the significant differences in t-
maps between ROI and outside ROI (pb0.035 and pb0.042, respec-
tively), we again conducted another experiment using oxy-hemoglo-
bin species (HbO) since HbO also provides useful information about
neuronal activation. Fig. 5c shows that the precolored HbO still
provides statistically meaningful differences between ROI and outside
ROI (pb0.038), whereas no significant difference exists in the latter
cases (pb0.07). This result led us to choose the precoloring method.

There are several factors that can explain why precoloring is more
appropriate for NIRS than prewhitening. First, sufficient temporal
smoothing of the precoloring method is required in the NIRS time
series as NIRS data simultaneously recorded with fMRI have a very low
SNR compared to fMRI, as shown in Fig. 6. The relatively long optical
fibers that connect the optode and NIRS equipment in the MRI control
room account for such significant signal attenuation. Thus, in order to
improve the SNR, sufficient temporal smoothing is necessary in the
preprocessing step. In case of prewhitening method, the temporal
smoothing matrix is derived from the intrinsic temporal correlation
using unsmoothed NIRS data that have a poor SNR. These increases the
probability that prewhitening produces some bias due to the difference
between the estimated and actual temporal correlations. The results in
Fig. 5b also confirm the importance of smoothing since the anti-aliasing
filter is basically a low pass filter that improves the SNR. Second, the
precoloring method obtains a temporal correlation without ReML. In
ReML as employed in the prewhitening method, the precision of the
hyperparameter estimates increases linearly with the number of
measurements (Friston et al., 2006). As the number of channels in
NIRS data ismuch smaller than in fMRI data, it is not feasible to estimate
the intrinsic temporal correlation accurately using ReML. Furthermore,
due to the computational burden of ReML, a considerable amount of
time is required to obtain the estimated temporal correlation in NIRS
since the number of time courses ismuch larger than that of fMRI. Based
on these observations, the precoloring method is more appropriate for
NIRS data compared to the prewhitening method. Therefore, in the
sequel, we only illustrate the results from the precoloring.

In order to compensate for the individual variation, we follow
Plichta et al. (2007) and construct the design matrix by including the
canonical HRF, and its temporal and dispersion derivatives, and
constant term. Fig. 6a shows that the estimated time course using
these HRF model adequately follows the task-related NIRS signal. In
Fig. 11. Receiver operation characteristics (ROC) for HbO, HbR, and HbT. The fMRI
activation map at p=0.005 is used as a ground-truth, and the false alarm ratio and hit
ratio are calculated by changing the threshold values for the group t-map. The ROC
analysis showed that the area under the ROC curve for HbR was largest, indicating that
HbR activation map can predict the BOLD activation map more reliably.
order to support the superiority of the proposed method, we
compared our results with that of classic interpolation technique.4

Fig. 7a shows a t-statistic map from HbR using the classical
interpolation method. More specifically, the t-values between the
channels were calculated using cubic interpolation. In contrast, the t-
statistic maps from HbO, HbR, and HbT using NIRS-SPM were
calculated using the optimal interpolation scheme given by Eq. (22)
and illustrated in Fig. 7(b)(c)(d), respectively. Note that the t-statistic
values of HbR using the proposed method are higher than that of the
classical interpolation even though the t-values at each channel
locations are identical. The main reason for such increases in t-
statistics is that our interpolation scheme in Eq. (22) is non-linear due
to the interpolated variance terms in the denominator. Furthermore,
in order to address the accuracy of the tube formula for the activation
detection, we compared it with the two classical methods in Fig. 8.
Here, the number of pixels over the threshold is plotted against the p-
values for various correction method. While the Bonferroni correction
using the classical interpolation is too conservative and the uncor-
rected p- value is too liberal, our tube formula correction appears to be
reasonable for a wide range of p-values.

Fig. 9a shows activated areas found by BOLD signal (pb0.05,
random field correction, the size of design matrix (sX)=184×4, and the
effective degrees of freedom (df)=172), which were acquired simulta-
neously. The activated areas are localized to the primary motor cortex
very tightly. For the same subject, Figs. 9b–d show activation areas
found by HbO, HbR, HbT, respectively (pb0.05, tube formula correc-
tion, sX=5384×4, and df=82.4705). Note that the activation areas are
also localized to the primarymotor cortex which is the target region of
the finger tapping task. Furthermore, there is a strong correlation
between the activation areas found by BOLD and by HbO, HbR, and
HbT. Activation areas found by group analysis of BOLD, HbO, HbR, and
HbT, are shown in Fig. 10a–d, respectively. Total number of subjects
used in group analysis was nine. Again, the activated regions found by
group analysis of NIRS data are fairly consistent with the BOLD result.
Quantitative comparisons between NIRS and fMRI activation maps
4 Since fOSA cannot analyze the interpolated random field, we do not include it for
comparison.

http://www.ansir.wfubmc.edu
http://www.ansir.wfubmc.edu


Fig. 13. Activation maps found by group analysis of event-related finger tapping task (9 subjects). Activation maps found by (a) BOLD (pb0.05, uncorrected), (b) HbO, (c) HbR and (d)
HbT (pb0.05, uncorrected). Even though the t-value of HbR is relatively low, the activated area found by group analysis of HbR has an excellent spatial consistence with highly
activated area from BOLD, compared with HbO and HbT.
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were performed by calculating receiver operation characteristics
(ROC) for HbO, HbR, and HbT, respectively. Since the goal of this
study was to show spatial correlation between NIRS activation maps
and that of fMRI, an fMRI activation map at p=0.005 was used as a
ground-truth in this study. Then, the false alarm ratio and hit ratio are
calculated by changing the threshold values for the group analysis of
Fig. 14. Individual activation maps fromworking memory task. Activation maps found by (a)
tube formula correction, sX=5067×7, df=83.8212). Activated regions by HbO, HbR, and HbT
HbO, HbR, and HbT data. The ROC analysis in Fig. 11 showed that the
area under the ROC curve for HbR was largest, indicating that HbR
activation map can predict the BOLD activation map more reliably.

In another experiment, rather than assuming fMRI activationmap as
the ground-truth, the absolute coordinates of primary motor cortex
(BA4) were assumed as ground-truth, and the similar experiment was
BOLD (pb0.05, uncorrected, sX=174×7, df=159), (b) HbO, (c) HbR and (d) HbT (pb0.05,
are localized to dorsolateral prefrontal cortex and Broca's area.



Fig. 15. Activation maps found by group analysis of working memory task (8 subjects). Activation maps found by (a) BOLD (pb0.01, uncorrected), (b) HbO, and (c) HbT (pb0.01,
uncorrected).
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also performed by calculating ROC for HbO, HbR and HbT, respectively.
The primarymotor cortex in the SPM-brain templatewasdepictedusing
the WFR PickAtlas toolbox (www.ansir.wfubmc.edu). The ROC analysis
in Fig. 12 showed that the area under the ROC curve for HbR was almost
the same as the area under the ROC curve for HbO. This result suggests
some interesting future research direction. More specifically, other
oxygen species like HbO might have other information of neural
activation that cannot be captured by the fMRI BOLD measurement.

Event-related right finger tapping task

In order to show the advantages of the GLM, an event-related
finger tapping tasks were also performed. Figs. 13a–d show the
activation maps found by group analysis of BOLD, HbO, HbR, and HbT
data (pb0.05, uncorrected). Total number of subjects used in the
group analysis was nine. Because most of the interpolated individual
maps occupied the similar positions, we restricted the region of group
analysis to the overlapped area of all individual subjects. Even though
the t-value of HbR is relatively low, the activated area found by group
analysis of HbR has an excellent spatial consistence with the activated
area from BOLD, compared with HbO and HbT.

Block design working memory task

Activated areas found by BOLD (pb0.05, random field correction,
sX=174×7, df=159) using an individual subject during working
memory task are shown in Fig. 14a. For the same subject, Figs. 14b–d
show activation areas found by HbO, HbR, and HbT (pb0.5, tube
formula correction, sX=5067×7, df=83.8212), respectively.
Fig. 16. (a) Activation map of HbR found by group analysis of working memory task (8 sub
statistics is [−45.9385 37.1334 27.9298]. (b) Brain template overlaid with dorsolateral prefr
channel which has the maximum t-value. Dorsolateral prefrontal cortex (BA46/9) in the bra
com). The positions of highly activated channels are overlapped with the dorsolateral prefr
Since there are many target activation regions such as dorsolateral
prefrontal area, Broca's area and supplementary motor area, indivi-
dual activation results are not localized to one specific area. However,
still most of the activation areas are localized to dorsolateral prefrontal
area and Broca's area. Fig. 15 shows the group activated regions from
working memory task (pb0.01, uncorrected). Total number of subjects
used in the group analysis was eight. Activation regions found by
group analysis of BOLD, HbO, and HbT data are shown in Figs. 15a–c,
respectively. Figs. 16a, b show the activated region from HbR signal
and brain template overlaid with dorsolateral prefrontal cortex. The
Montreal Neurological Institute (MNI) coordinate of the maximum t-
value channel was [−45.9385 37.1334 27.9298] and represented as the
red point in Fig. 16b. Again, activated regions found by HbR signal are
fairly consistent with that of BOLD signal and are localized to the
dorsolateral prefrontal cortex.

Discussion

Optimal predictor for GLM

In pursuit of the optimal predictor models for HbO, HbR, and HbT,
we conducted the statistical correlation analysis of their time courses
and different set of predictor models. Regression analysis in Table 3
indicates that there is a strong correlation between the canonical HRF
and BOLD/HbR (R2=0.932 and R2=0.913, respectively), but relatively a
weak correlation between the canonical HRF and HbO/HbT (R2=0.685
and R2=0.665, respectively). If the temporal and dispersion deriva-
tives are included, there is an increase in the correlation with HbO or
HbT (R2 =0.836 and R2 =0.834, respectively). Furthermore, we
jects, pb0.01, uncorrected). MNI coordinate of the channel which has the maximum t-
ontal cortex region (roughly equivalent to BA 9 and BA 46). The red point denotes the
in template was depicted using the BrainVoyager software (http://www.brainvoyager.
ontal cortex.

http://www.ansir.wfubmc.edu
http://www.brainvoyager.com
http://www.brainvoyager.com


Fig. 17. Estimated hemodynamic responses for HbO, HbR, HbT, and BOLD using (a) two
gamma function basis and (b) four gamma function basis. (cHRF: canonical HRF). Note
that the approximated HRFs with four gamma function basis are more correlated with
low pass filtered NIRS signal (See Table 3).

Table 3
Correlation coefficients of low pass filtered time course with several hemodynamic
response models

cHRF cHRF+2
deriv.

Gamma functions

4 basis 3 basis 2 basis

Oxy-hemoglibin 0.685 0.836 0.980 0.922 0.822
Deoxy-hemoglobin 0.913 0.942 0.977 0.942 0.942
Total- hemoglobin 0.665 0.834 0.940 0.887 0.824
fMRI BOLD 0.932 0.948 0.971 0.948 0.940

(cHRF: canonical hemodynamic response. cHRF+2 deriv.: canonical hemodynamic
response with temporal and dispersion derivatives. Gamma function: gamma function
fitting with different number of gamma function basis.)
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observed a significant increase of the correlation if the HRF is
approximated with multiple gamma function basis as shown in Figs.
17a–b. More specifically, we fixed the scale parameter of the gamma
function to unity and searched a set of shape parameters as well as
weighting parameters for each gamma functions:

h
^
tð Þ = ∑

p

i = 1
Aitki−1

e−t

ki−1ð Þ! ð41Þ

where h tð Þ denotes the estimate HRF, and Ai, ki and p are a weighting
parameter, a shape parameter and a model order, respectively.

Fig. 18 shows the group activation maps from finger tapping task
using HRF models of two gamma function basis. Compared with the t-
statistic values from the conventional canonical HRF (Fig. 10), the t-
statistic values of BOLD and HbO increased, and the activated regions
from HbO and HbT are more localized to the primary motor cortex.
Note that the suspicious HbT activated regions outside of the primary
motor cortex in Fig. 10d are removed, as shown in Fig. 18d. We have
also conducted same experiment with the HRF models using four
gamma function. Nearly identical results are obtained (Figs. not
shown). In working memory experiments in Fig. 19, the activated
regions using HRF models with two gamma function basis also show
the spatial correspondence with that from the conventional canonical
HRF, and the t-statistic values are improved. Furthermore, the
activated areas from HbT become more correlated with that from
HbO and are localized at the target region. In Fig. 19a, the fMRI-BOLD
HRF is also modeled using two gamma functions, which shows
improved activation map compared to Fig. 15a.

Optimal interpolator and classical interpolation

In NIRS, only a small number of measurement channels are
available from sparsely and irregularly distributed optodes. In order to
acquire the activation map over whole brain cortex using NIRS, we
therefore need some form of interpolation scheme.

Classically, interpolation have been performed in various domains,
such as raw optical measurement domain, β parameter domain, or t-
statistics, without addressing their optimality. Furthermore, we are
not aware of any theoretical analysis on the optimal choice of the
interpolation kernel, or systematic way of calculating the summary
statistics (such as mean and variance) at the interpolated location for
group analysis. While these heuristic approaches might still provide
seemingly meaningful form of activation maps, the correctness of the
resultant activation map is not clear.

One of the main advantages of NIRS-SPM over the classical
interpolation approaches is the systematic way of optimizing the
interpolation kernel and calculating the optimal statistical inference.
More specifically, the main novelties of this paper are:

• to demonstrate that the optimal interpolation kernel can be
obtained by considering light scattering and spatial correlation of
adjacent hemoglobin states,
• to prove that the t-map should be calculated as a ratio between
interpolated signal response strength and interpolated covariance,
rather than direct interpolation in t-map space, or measurement
space,

• to show how to calculate the “correct” p-value by considering the
effect of the resultant inhomogeneous interpolation kernel.

Currently, we employ the cubic interpolator rather than fully
considering light scattering model. This is because the optical
parameters for brain tissue are not often available for each individual,
and the optimal interpolation should take into account of spatial
domain regularization since the direct inverse mapping is not stable.
However, light scattering based regularized optimal interpolation
scheme is by itself important and will be addressed elsewhere.

Expected Euler characteristics vs. tube formula

Mathematically, p-value can be calculated as excursion probability
of underlying random fields over a threshold. Currently, two
approaches are available: the expected Euler characteristics (EC) and
the tube formula.

The expected EC approach has been extensively studied by Adler
(Adler, 1981, 2000; Adler and Taylor, 2007), Worsley (Worsley, 1994,
1995; Cao and Worsley, 1999b) and more recently by Taylor et al.



Fig. 18. Group activation maps using a HRF model of two gamma function basis (finger tapping task). Activation maps found by (a) BOLD (pb0.05, uncorrected), (b) HbO, (c) HbR, and
(d) HbT (pb0.05, uncorrected). The t-statistic values of BOLD and HbO are slightly increased, compared with the t-values from canonical HRF. Furthermore, activated regions from
HbO and HbT are more localized on the primary motor cortex. Note that suspicious HbT activation in non target area in Fig. 10(d) are now mostly removed.
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(Taylor and Adler, 2003; Taylor and Worsley, 2007, 2008). A heuristic
explanation of the expected EC approach for a p-value calculation is as
following: if a threshold is high enough, the excursion sets over the
threshold only contains isolated blobs that contain one local
maximum. So the EC counts the number of excursion sets—the
Fig. 19. Group activation maps using a HRF model of two gamma function basis (working me
HbR, and (d) HbT (pb0.01, uncorrected). The t-statistic values of BOLD, HbO, and HbT are sl
quantity essential for calculating the excursion probability. The
approach has been recently generalized to inhomogeneous random
fields on general manifolds with boundaries. For example, in
neuroscience applications, such generalization enables quantitative
analysis cortical thickness variation (Taylor and Worsley, 2007).
mory task). Activation maps found by (a) BOLD (pb0.01, uncorrected, df=7), (b) HbO, (c)
ightly increased, compared with the t-values from canonical HRF.
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Currently, major statistical packages such as fMRISTAT (available at
http://www.math.mcgill.ca/keith/fmristat/) include inference engine
based on this.

The tube formula (Johansen and Johnstone, 1990; Sun, 1993; Sun
and Loader, 1994) is another approach to calculate the p-value of the
maximum of a random field. As described in Appendix D, the tube
formula is based on the finite expansion of Karhunen–Loeve
expansion of the random field, whose basis functions consist of
independent zero mean unit variance Gaussian random variables.
Then, the p-value of the maximum of the first m terms of the
Karhunen–Loeve expansion corresponds to ratio of the measure of a
“tube” to the measure of the m-dimensional unit sphere, where the
radius of the tube depends on the threshold of the random field. The
tube formula does not assume any isotropy; hence, it can be applied to
inhomogeneous Gaussian random fields. Furthermroe, according to
Taylor and Worsley (2008), “in an unpublished manuscript by Sun, it
was generalized to include more general boundary cases”. In the case
of Gaussian random fields, Takemura and Kuriki (2002) show that the
tube formula and the expected EC essentially give the same results.

The expected EC approach can be now applied to non-Gaussian
random fields such as t- and F-statistics with the help of the union-
intersection principle (Taylor and Worsley, 2008). However, the
application of union-intersection principle to the tube formula may
appear difficult in general since the required high dimensional
embedding may complicate the Karhunen–Loeve expansion of the
resultant higher dimensional random fields.

Interestingly, for the case of interpolated random fields described
in NIRS-SPM, Appendix D shows that the union-intersection trick can
be still applied to calculate the excursion probability of the t-statistic
without altering the finiteness of Karhunen–Loeve expansion.
Furthermore, p-value can be calculated directly using the close form
expression of the derivatives of the basis and the noise covariance
matrix, without resorting to the mesh map as in the expected EC
approach. Hence, even though the two approaches provide the
essentially same p-values, the tube formula appears easier for NIRS-
SPM.

Stand-alone NIRS vs. simultaneous fMRI/NIRS

In most of the cases when noMRI record is available, onewill place
the optodes with a priori knowledge and may define ROIs based on
their localization. Here no information of interpolation will enter the
calculated mean values.5 For these stand-alone applications, the
accurate localization property of NIRS-SPM may not be noticeable
since the exact location of the optodes are not available. However, if a
separately acquired MR image can provide the MNI coordinate of each
optode, NIRS-SPM can still provide useful spatial information of the
activation map. Furthermore, the recent study (Tsuzuki et al., 2007)
showed that the spatial registration of stand-alone NIRS data onto
MNI space without any anatomical information of MRI. If exact optode
positions in MNI space can be obtained, NIRS-SPM framework is still
useful for obtaining the high resolution activation maps.

The effective degrees of freedom

In order to calculate the p-value of the t-statistics using Sun's tube
formula, t-statistics should be reasonably approximated by the z-
score. How well the t-statistics is approximated by the z-score is
determined by the degrees of freedom. The larger the degrees of
freedom are, the better the z-approximation of the t-statistics. As
shown in Figs. 6a,b, the length of NIRS time series (NN5000) is
significantly larger than that of fMRI time series (NN183), implying
5 The authors acknowledge the anonymous reviewer who pointed out this issue.
This sentence was borrowed from the comment of this reviewer.
significantly large degree of freedom. However, the existence of
temporal correlations decreases the effective degrees of freedom
defined by Eq. (23). From this perspective, the precoloring method is
not as effective as prewhitening method in providing large effective
degrees of freedom (df=82.47 vs df=5364 for finger tapping experi-
ment), since the resultant temporal correlation of precoloring is
mainly dominated by the cannonical HRF filter (see Eq. (55) for the
exact expression of serial correlation). However, the experimentally
measured effective degrees of freedom by the precoloring is still in a
reasonable range considering that Worsley and Friston (1995)
indicated the z-approximation of t-statistics is accurate as long as
dfN40.

Conclusion

A new public domain statistical toolbox known as NIRS-SPM is
introduced in this study. In the main framework, NIRS-SPM success-
fully analyzed NIRS data using GLM and calculated the p-value as the
excursion probability for an inhomogeneous Gaussian random field
that is interpolated from sparsely distributed measurements. When
estimating the temporal correlation of NIRS, it was found that the
precoloring method is more appropriate for NIRS compared to the
prewhitening method due to the sufficient temporal smoothing and
computational efficiency of this method. In the spatial preprocess,
NIRS-SPM accurately localized the NIRS signal onto the cerebral cortex
of an anatomical MR image using Horn's algorithm. Experimental
results from right finger tapping and working memory tasks showed
that the activation pattern of NIRS from the proposed software
program was fairly consistent with that of fMRI. Furthermore, NIRS-
SPM allowed superresolution localization of the activated area.
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Appendix A

For given wavelength λ1 and λ2, Eq. (6) can be represented by

Δ/ r; s;λ1; tð Þ
Δ/ r; s;λ2; tð Þ

� �
g

R
dr′

U0 r; r′;λ1ð ÞU0 r′; s;λ1ð Þ
U0 r; s;λ1ð Þ Δμa r′;λ1; tð ÞR

dr′
U0 r; r′;λ2ð ÞU0 r′; s;λ2ð Þ

U0 r; s;λ2ð Þ Δμa r′;λ2; tð ÞÞ

2
664

3
775: ð42Þ

One of the basic assumption of NIRS is that other than oxy- and
deoxy-hemoglobin variation, the optical parameters are independent
of the wavelength; hence, the corresponding Green's function is
identical, i.e. U0(r,r′;λ1)=U0(r,r′;λ2). In such a case, the following
holds:

Δ/ r; s;λ1; tð Þ
Δ/ r; s;λ2; tð Þ

� �
g

Z
dr′

U0 r; r′;λ1ð ÞU0 r′; s;λ1ð Þ
U0 r; s;λ1ð Þ

Δμa r′;λ1; tð Þ
Δμa r′;λ2; tð ÞÞ

� �
ð43Þ

Multiplying the inverse of the extinction coefficient matrix that is
similar to Eq. (2) results in the optical density variationwith respect to
the HbX variation:

Δ/HbX r; s; tð Þg
Z

dr′
U0 r; r′;λ1ð ÞU0 r′; s;λ1ð Þ

U0 r; s;λ1ð Þ ΔcHbX r′; tð Þ ð44Þ

where HbX denotes HbO or HbR. As the mapping from ΔcHbX(r′;t)
to ΔϕHbX(r,s;t) is compact, stable inverse operator does not exist.
If we take into consideration of the spatial correlation of adjacent

http://www.math.mcgill.ca/keith/fmristat/
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hemoglobin states, a regularized inverse mapping B(r′;r,s) exists
and is given by:

ΔcHbX r′; tð Þg
Z Z

drds B r′; r; sð ÞΔ/HbX r; s; tð Þ ð45Þ

Given that the number of detector and source combinations is
equal to the channel number K, Eq. (45) can be written in summation
form:

ΔcHbX r′; tð Þg ∑
K

i = 1
Bi r′ð ÞΔ/HbX ri; si; tð Þ ð46Þ

where Bi(r′)=B(r′;ri,si) corresponds to the inhomogeneous interpola-
tion kernel.

Appendix B

The following properties of the Kronecker product� are often used
(Jain, 1989):

A� Bð ÞT = AT � BT� � ð47Þ

A� Bð Þ−1 = A−1 � B−1
� �

ð48Þ

A� Bð Þ C� Dð Þ = AC� BDð Þ: ð49Þ

Then, the least-square estimation of β is given by

β^ = IK � Xð Þ†y = IK � X†
� �

y ð50Þ

where X†=(XTX)−1XT denotes the pseudo-inverse of X. The corres-
ponding estimation error covariance matrix is then given by

C
β
^ = E β^β^

H
i
= IK � X†
� �

E
h
yyH

i
IK � X†T

� �
= IK � X†
� �

Ce IK � X†T
� �

:
h

ð51Þ

In an estimation of the error covariance matrix, SPM assumes that
the temporal correlation matrix is identical at all voxels, but the
variance is different (Friston et al., 2006). Hence, the error covariance
matrix at the ith channel is given by:

Ce ið Þ = E e ið Þe ið ÞT
h i

= σ ið Þ
� �2

Λ ð52Þ

where Λ is the temporal correlation matrix and (σ(i))2 denotes the
variance, respectively. The variance (σ(i))2 at the ith channel can be
estimated using the usual estimator in a least squares mass-univariate
scheme:

σ ið Þ
� �2

=
y ið ÞTRy ið Þ

trace RΛð Þ ; ð53Þ

where R= I−X(XTX)−1XT is the residual forming matrix (Worsley and
Friston, 1995).

Based on this model, the following holds:

Ce =

σ 1ð Þ2Λ O : : : O
O σ 2ð Þ2Λ : : : O
v v O v
O O : : : σ Kð Þ2Λ

2
664

3
775 =∑� Λ ð54Þ

where

∑ =

σ 1ð Þ2 O : : : O
O σ 2ð Þ2 : : : O
v v O v
O O : : : σ Kð Þ2

2
664

3
775 ð55Þ
Therefore, the final form of the error covariance matrix is given by

C
β^
= IK � X†
� �

∑� Λð Þ IK � X†T
� �

=∑� X†ΛX†T
� �

ð56Þ

Appendix C

In this section, the GLM model is derived for ΔcHbX(r;t) in Eq. (46).
Stacking {ΔcHbX(r;ti)}i =1N into a vector ΔcHbX(r) gives the following:

ΔcHbX rð Þ = b rð ÞT�IN

� �
y : ð57Þ

Here, b(r) denotes the basis vector given in Eq. (17) and y is given
by Eq. (11), respectively. The GLM model is then given by

ΔcHbχ rð Þ = b rð ÞT�IN

� �
y = IK � Xð Þα rð Þ + e : ð58Þ

Then, with the property of the Kronecker delta product, the
following is true:

α̂ rð Þ = bT � X†
� �

ΔcHbX rð Þ = bT � IN
� �

IK � X†
� �

ΔcHbX rð Þ = b rð ÞT�IN

� �
β^

ð59Þ

This implies that the response signal strength for the interpolated
measurement is equivalent to the interpolated response signal
strength with the same interpolation kernel. Similarly, it is possible
to obtain the error covariance matrix for α̂:

C
α̂
= b rð ÞT�IN

� �
C

β
^ b� INð Þ

= b rð ÞT∑b rð ÞT
� �

� X†ΛX†T
� �

: ð60Þ

Appendix D

Here, the p-value of the t-statistics to abandon null hypothesis is
given by:

p = P max
raW

T rð Þzz
n o

=
1
2
P max

raW
jT rð Þj2zz2

n o
ð61Þ

due to the symmetry of the T(r) around zero. Furthermore, the
following equalities hold:

P max
raW

jT rð Þj2zz2
n o

= P max
raW

cT α̂ rð Þ
� �T

Cχ rð Þ−1 cT α̂ rð Þ
� �

zz2
 �

= P max
raW

β^TB rð Þ B rð ÞTC
β
^B rð Þ

� �−1
B rð ÞTβ^zz2

 �

= P max
raW

ZTC
1=2

β
^ B rð Þ B rð ÞTC

β
^B rð Þ

� �−1
B rð ÞTC1=2

β
^ Zzz2

 �

= P max
raW

ZTP rð ÞZzz2
n o

ð62Þ

where

BJcT b rð ÞT�IN

� �

ZJC
−1=2

β
^ βaR

KM

ð63Þ

P rð ÞJC
1=2

β
^ B rð Þ BT rð ÞC

β
^ B rð Þ

� �−1
BT rð ÞC1=2

β
^ ð64Þ

where ZfN O; IKMð Þ denotes the zero-mean independent Gaussian
random vector and P(r) is the KM×KM projection matrix onto the
range space of C1=2

β
^ B rð Þ, which is well defined for all r∈Ψ. Hence,

using Eqs. (19) and (20), the following decomposition holds true:

P rð Þ = u rð Þu rð ÞT : ð65Þ
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The unit vector u in this case is given by

u =
C

1=2

β
^
;HbO2

b rð ÞT�IM

� �
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b rð ÞT∑b rð Þ

� �r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cTX†ΛX†Tc

� �r ð66Þ

The excursion probability in Eq. (62) can be calculated using the
excursion probability of the zero-mean unit variance inhomogeneous
Gaussian random field:

p =
1
2
P max

raW
ZTP rð ÞZzz2

n o
= P max

raW
χ rð Þzz

n o
: ð67Þ

where the excursion probability of an non-Gaussian random field can
be converted into a Gaussian random field using the similar technique
in Taylor and Worsley (2008):

χ rð Þ = u rð ÞHZ : ð68Þ

At this point, inhomogeneous Gaussian random field theory such
as expected EC (Taylor and Adler, 2003; Taylor and Worsley, 2007,
2008) or tube formula (Sun, 1993; Cao and Worsley, 1999b) can be
applied to calculate the p-value. In this paper, we prefer the tube
formula thanks to the finite Karhunen–Loève expansion of the
resultant covariance matrix.

More specifically, a case in which Ψ is a compact subset of ℝN and
X(r), r∈Ψ is a non-singular Gaussian random field with zero mean,
unit variance, and covariance function CX(r,r′) is considered. If CX(r,r′)
has finite Karhunen–Loève expansion

Cχ r; r′ð Þ = ∑
M

i = 1
ui rð Þui r′ð Þ; ð69Þ

and the manifold U={[ui(r),⋯,uM(r)]T, r∈Ψ} has no boundary, then

P sup
raW

χ rð Þzz
 �

= κ0ψ0 zð Þ +: : : + κ D̃ψD̃ βð Þ + o ψD̃ zð Þ� � ð70Þ

where D̃=D for an even value of D and D̃=D−1 for an odd value of D,
respectively. Here

ψn zð Þ = 1

21 + n=2π D + 1ð Þ=2

Z ∞

z2=2
u D + 1−nð Þ=2−1e−udu ; ð71Þ

where n = 0;2;: : :;D
~
. In Eq. (70), κ0;: : :; κD

~ are the constants in Weyl's
formula (Weyl, 1939) for the manifold U.

Interestingly, the covariance matrix for Eq. (68) can be simply
represented as a finite Karhunen–Loève expansion:

Cχ r; r′ð Þ = ∑
KM

i = 1
ui rð Þui r′ð Þ ð72Þ

where ui(r) denotes the i-th elements of u rð ÞaℝKM . Therefore, Sun's
tube formula can be utilized. While κ0;: : :κ D̃ are important constants
fromWeyl's formula, the most important constant to calculate simply
is κ0. This constant is related to the metric tensor of the manifold U:

R rð ÞJE jχ rð ÞjTχ rð Þ� � ð73Þ

and

κ0 = jUj =
Z
W

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jdet R rð Þð Þj

q
dr ð74Þ

Therefore, the p-value for the activation map can be approximated
by

p = P maxraWT rð Þzzf gg κ0

ωD
1−Γ

D + 1
2

;
z2

2

	 
	 

1 +O z−2

� �� � ð75Þ
where κ0 is given by Eq. (74) and

ωD =
2π D + 1ð Þ=2

C D + 1
2

� � ð76Þ

denotes the surface area of the (D+1)-dimensional unit sphere, and
the incomplete Gamma function as

C a;χð Þ = 1
C að Þ

Z χ

0
e−yya−1dy; aaℝ; χz0: ð77Þ

Here,C 1=2ð Þ = ffiffiffi
π

p
and Γ(a+1)=aΓ(a). Using the asymptotic formula

for the incomplete gamma function

1−Γ a;χð Þ˜
1

Γ að Þχ
a−1e−χ as χ→∞: ð78Þ

for D=3 the following equation can be derived:

pf
κ0

2πð Þ2
z2exp −

z2

2

	 

: ð79Þ

This implies that the present formula is an extension of the
homogenous Gaussian random field formula due to the equality
κ0=V|Λ|−1/2 for homogeneous Gaussian random field, where V is the
volume and Λ denotes the 3×3 variance matrix of the partial
derivatives of the underlying Gaussian random field.

In real measurement scenario, the interpolation function Bi(r) is
three-dimensional, i.e. Woℝ3 and D=3. However, the NIRS optode
coverage is on a two dimensional manifold and the representation
over the fMRI map has to be two dimensional. Hence, the two
dimensional interpolation function is sufficient to represent the
interpolated NIRS signals. Therefore, the resultant random field is
assumed two dimensional.
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