
 
Discovery Guides 

 

©2008 ProQuest Released September 2008 

1 
 

Multicore Processors – A Necessity 
By Bryan Schauer 

 

Abstract 

  
As personal computers have become more prevalent and more applications have been designed for 
them, the end-user has seen the need for a faster, more capable system to keep up. Speedup has been 
achieved by increasing clock speeds and, more recently, adding multiple processing cores to the same 
chip. Although chip speed has increased exponentially over the years, that time is ending and manufac-
turers have shifted toward multicore processing. However, by increasing the number of cores on a single 
chip challenges arise with memory and cache coherence as well as communication between the cores. 
Coherence protocols and interconnection networks have resolved some issues, but until programmers 
learn to write parallel applications, the full benefit and efficiency of multicore processors will not be at-
tained. 

 

Background 

  

The trend of increasing a processor‟s speed to get a boost in 

performance is a way of the past. Multicore processors are 

the new direction manufacturers are focusing on. Using 

multiple cores on a single chip is advantageous in raw 

processing power, but nothing comes for free. 

  

With additional cores, power consumption and heat dissi-

pation become a concern and must be simulated before lay-

out to determine the best floorplan which distributes heat 

across the chip, while being careful not to form any hot 

spots. Distributed and shared caches on the chip must adhere to coherence protocols to make sure 

that when a core reads from memory it is reading the current piece of data and not a value that 

has been updated by a different core. 

 

With multicore processors come issues that were previously unforeseen. How will multiple cores 

communicate? Should all cores be homogenous, or are highly specialized cores more efficient? 

And most importantly, will programmers be able to write multithreaded code that can run across 

multiple cores? 

 

1.1 A Brief History of Microprocessors 

 

Intel manufactured the first microprocessor, the 4-bit 4004, in the early 1970s which was basi-

cally just a number-crunching machine. Shortly afterwards they developed the 8008 and 8080, 

both 8-bit, and Motorola followed suit with their 6800 which was equivalent to Intel‟s 8080. The 

companies then fabricated 16-bit microprocessors, Motorola had their 68000 and Intel the 8086 

and 8088; the former would be the basis for Intel‟s 80386 32-bit and later their popular Pentium 

lineup which were in the first consumer-based PCs. [18, 19] Each generation of processors grew 

smaller, faster, dissipated more heat, and consumed more power. 

 

 
New Scientist Blogs 
http://www.newscientist.com/blog/tech
nology/2008_01_01_archive.html 



 Schauer: Multicore Processors 

 

  
ProQuest Discovery Guides 
http://www.csa.com/discoveryguides/discoveryguides-main.php Released September 2008 

2 
 

1.2 Moore‟s Law 

 

One of the guiding principles of computer architecture is 

known as Moore‟s Law. In 1965 Gordon Moore stated that 

the number of transistors on a chip will roughly double each 

year (he later refined this, in 1975, to every two years). 

What is often quoted as Moore‟s Law is Dave House‟s revi-

sion that computer performance will double every 18 

months. [20] The graph in Figure 1 plots many of the early 

microprocessors briefly discussed in Section 1.1 against the 

number of transistors per chip. 

  

 
Figure 1: Depiction of Moore’s Law [21] 

 

As shown in Figure 1, the number of transistors has roughly doubled every 2 years. Moore‟s law 

continues to reign; for example, Intel is set to produce the „world‟s first 2 billion transistor 

microprocessor‟ “Tukwila” later in 2008. [22] House‟s prediction, however, needs another cor-

rection. Throughout the 1990‟s and the earlier part of this decade microprocessor frequency was 

synonymous with performance; higher frequency meant a faster, more capable computer. Since 

processor frequency has reached a plateau, we must now consider other aspects of the overall 

performance of a system: power consumption, temperature dissipation, frequency, and number of 

cores. Multicore processors are often run at slower frequencies, but have much better perform-

ance than a single-core processor because „two heads are better than one‟. 

 
The world's first single-chip 
processor. Netrino Institute 
http://www.netrino.com/node/91 



 Schauer: Multicore Processors 

 

  
ProQuest Discovery Guides 
http://www.csa.com/discoveryguides/discoveryguides-main.php Released September 2008 

3 
 

 

1.3 Past Efforts to Increase Efficiency 

 

As touched upon above, from the introduction of 

Intel‟s 8086 through the Pentium 4 an increase in 

performance, from one generation to the next, was 

seen as an increase in processor frequency. For ex-

ample, the Pentium 4 ranged in speed (frequency) 

from 1.3 to 3.8 GHz over its 8 year lifetime. The 

physical size of chips decreased while the number 

of transistors per chip increased; clock speeds in-

creased which boosted the heat dissipation across 

the chip to a dangerous level. [1] 

 

To gain performance within a single core many 

techniques are used. Superscalar processors with 

the ability to issue multiple instructions concur-

rently are the standard. In these pipelines, instruc-

tions are pre-fetched, split into sub-components 

and executed out-of-order. A major focus of computer architects is the branch instruction. 

Branch instructions are the equivalent of a fork in the road; the processor has to gather all neces-

sary information before making a decision. In order to speed up this process, the processor pre-

dicts which path will be taken; if the wrong path is chosen the processor must throw out any data 

computed while taking the wrong path and backtrack to take the correct path. Often even when 

an incorrect branch is taken the effect is equivalent to having waited to take the correct path. 

Branches are also removed using loop unrolling and sophisticated neural network-based predic-

tors are used to minimize the misprediction rate. Other techniques used for performance en-

hancement include register renaming, trace caches, reorder buffers, dynamic/software schedul-

ing, and data value prediction. 

 

There have also been advances in power- and temperature-aware architectures. There are two 

flavors of power-sensitive architectures: low-power and power-aware designs. Low-power ar-

chitectures minimize power consumption while satisfying performance constraints, e.g. embed-

ded systems where low-power and real-time performance are vital. Power-aware architectures 

maximize performance parameters while satisfying power constraints. Temperature-aware 

design uses simulation to determine where hot spots lie on the chips and revises the architecture 

to decrease the number and effect of hot spots. 

 

1.4 The Need for Multicore 

Due to advances in circuit technology and performance limitation in wide-issue, super-

speculative processors, Chip-Multiprocessors (CMP) or multi-core technology has be-

come the mainstream in CPU designs. [5] 

 

 
Apple II, an early personal computer 
Solar Navigator 
http://www.solarnavigator.net/computers.htm 



 Schauer: Multicore Processors 

 

  
ProQuest Discovery Guides 
http://www.csa.com/discoveryguides/discoveryguides-main.php Released September 2008 

4 
 

Speeding up processor frequency had run its course in the earlier part of this decade; computer 

architects needed a new approach to improve performance. Adding an additional processing core 

to the same chip would, in theory, result in twice the performance and dissipate less heat, though 

in practice the actual speed of each core is slower than the fastest single core processor. In Sep-

tember 2005 the IEE Review noted that “power consumption increases by 60% with every 

400MHz rise in clock speed…But the dual-core approach means you can get a significant boost 

in performance without the need to run at ruinous clock rates.” [1] 

 

Multicore is not a new concept, as the idea has been used in embedded systems and for special-

ized applications for some time, but recently the technology has become mainstream with Intel 

and Advanced Micro Devices (AMD) introducing many commercially available multicore chips. 

In contrast to commercially available two and four core machines in 2008, some experts believe 

that “by 2017 embedded processors could sport 4,096 cores, server CPUs might have 512 cores 

and desktop chips could use 128 cores.” [2] This rate of growth is astounding considering that 

current desktop chips are on the cusp of using four cores and a single core has been used for the 

past 30 years. 

 

2. Multicore Basics 
 

The following isn‟t specific to any one multicore design, but rather is a basic overview of multi-

core architecture. Although manufacturer designs differ from one another, multicore architec-

tures need to adhere to certain aspects. The basic configuration of a microprocessor is seen in 

Figure 2.  

 

Closest to the processor is Level 1 (L1) cache; this is very fast 

memory used to store data frequently used by the processor. Level 

2 (L2) cache is just off-chip, slower than L1 cache, but still much 

faster than main memory; L2 cache is larger than L1 cache and 

used for the same purpose. Main memory is very large and slower 

than cache and is used, for example, to store a file currently being 

edited in Microsoft Word. Most systems have between 1GB to 

4GB of main memory compared to approximately 32KB of L1 

and 2MB of L2 cache. Finally, when data isn‟t located in cache or 

main memory the system must retrieve it from the hard disk, 

which takes exponentially more time than reading from the mem-

ory system. 

 

 If we set two cores side-by-side, one can see that a method 

of communication between the cores, and to main memory, is 

necessary. This is usually accomplished either using a single 

communication bus or an interconnection network. The bus ap-

proach is used with a shared memory model, whereas the inter-

connection network approach is used with a distributed memory 

model. After approximately 32 cores the bus is overloaded with the amount of processing, com-

 
Figure 2: Generic Modern 
Processor Configuration 

text
Processor

Main Memory

L2 Cache

Hard Disk

L1 
Cache

Input/
Output

Core



 Schauer: Multicore Processors 

 

  
ProQuest Discovery Guides 
http://www.csa.com/discoveryguides/discoveryguides-main.php Released September 2008 

5 
 

munication, and competition, which leads to diminished performance; therefore, a communica-

tion bus has a limited scalability. 

  
(a)      (b) 
Figure 3: (a) Shared Memory Model, (b) Distributed Memory Model [23] 

 

Multicore processors seem to answer the deficiencies of single core processors, by increasing 

bandwidth while decreasing power consumption. Table 1, below, shows a comparison of a single 

and multicore (8 cores in this case) processor used by the Packaging Research Center at Georgia 

Tech. With the same source voltage and multiple cores run at a lower frequency we see an al-

most tenfold increase in bandwidth while the total power consumption is reduced by a factor of 

four. 

 

 
Table 1: Single Core vs. Multicore [16] 

 

3. Multicore Implementations  
 

As with any technology, multicore architectures from different manufacturers vary greatly. 

Along with differences in communication and memory configuration another variance comes in 

the form of how many cores the microprocessor has. And in some multicore architectures differ-

ent cores have different functions, hence they are heterogeneous. Differences in architectures are 

discussed below for Intel‟s Core 2 Duo, Advanced Micro Devices‟ Athlon 64 X2, Sony-Toshiba-

IBM‟s CELL Processor, and finally Tilera‟s TILE64. 

 

Cache

Processor

Cache

Processor

Cache

Processor

Single bus

Memory I/O

Network

Cache

Processor

Cache

Processor

Cache

Processor

Memory Memory Memory



 Schauer: Multicore Processors 

 

  
ProQuest Discovery Guides 
http://www.csa.com/discoveryguides/discoveryguides-main.php Released September 2008 

6 
 

3.1 Intel and AMD Dual-Core Processors 

 

Intel and AMD are the mainstream manufacturers of microprocessors. Intel produces many dif-

ferent flavors of multicore processors: the Pentium D is used in desktops, Core 2 Duo is used in 

both laptop and desktop environments, and the Xeon processor is used in servers. AMD has the 

Althon lineup for desktops, Turion for laptops, and Opteron for servers/workstations. Although 

the Core 2 Duo and Athlon 64 X2 run on the same platforms their architectures differ greatly. 

 

 
 (a)      (b) 
Figure 4: (a) Intel Core 2 Duo, (b) AMD Athlon 64 X2 [5] 

 

Figure 4 shows block diagrams for the Core 2 Duo and Athlon 64 X2, respectively. Both archi-

tectures are homogenous dual-core processors. The Core 2 Duo adheres to a shared memory 

model with private L1 caches and a shared L2 cache which “provides a peak transfer rate of 96 

GB/sec.” [25] If a L1 cache miss occurs both the L2 cache and the second core‟s L1 cache are 

traversed in parallel before sending a request to main memory. In contrast, the Athlon follows a 

distributed memory model with discrete L2 caches. These L2 caches share a system request in-

terface, eliminating the need for a bus. 

 

The system request interface also connects the cores with an on-chip memory controller and an 

interconnect called HyperTransport. HyperTransport effectively reduces the number of buses re-

quired in a system, reducing bottlenecks and increasing bandwidth. The Core 2 Duo instead uses 

a bus interface. The Core 2 Duo also has explicit thermal and power control units on-chip. There 

is no definitive performance advantage of a bus vs. an interconnect, and the Core 2 Duo and 

Athlon 64 X2 achieve similar performance measures, each using a different communication 

protocol. 

 

  

 



 Schauer: Multicore Processors 

 

  
ProQuest Discovery Guides 
http://www.csa.com/discoveryguides/discoveryguides-main.php Released September 2008 

7 
 

3.2 CELL Processor 

 

A Sony-Toshiba-IBM 

partnership (STI) built 

the CELL processor for 

use in Sony‟s 

PlayStation 3, therefore, 

CELL is highly 

customized for 

gaming/graphics 

rendering which means 

superior processing 

power for gaming 

applications. The CELL 

is a heterogeneous 

multicore processor 

consisting of nine cores, 

one Power Processing 

Element (PPE) and 

eight Synergistic 

Processing Elements 

(SPEs), as can be seen 

in Figure 5. With CELL‟s real-time broadband architecture, 128 concurrent transactions to 

memory per processor are possible.  

 

The PPE is an extension of the 64-bit PowerPC architecture and manages the operating system 

and control functions. Each SPE has simplified instruction sets which use 128-bit SIMD 

instructions and have 256KB of local storage. Direct Memory Access is used to transfer data 

between local storage and main memory which allows for the high number of concurrent 

memory transactions. The PPE and SPEs are connected via the Element Interconnect Bus 

providing internal communication. 

 

Other interesting features of the CELL are the Power Management Unit and Thermal Manage-

ment Unit. Power and temperature are fundamental concerns in microprocessor design. The 

PMU allows for power reduction in the form of slowing, pausing, or completely stopping a unit. 

The TMU consists of one linear sensor and ten digital thermal sensors used to monitor tempera-

ture throughout the chip and provide an early warning if temperatures are rising in a certain area 

of the chip. The ability to measure and account for power and temperature changes has a great 

advantage in that the processor should never overheat or draw too much power. 

 

  

Error! Reference source not found. 
Figure 5: CELL Processor [6] 



 Schauer: Multicore Processors 

 

  
ProQuest Discovery Guides 
http://www.csa.com/discoveryguides/discoveryguides-main.php Released September 2008 

8 
 

3.3 Tilera TILE64 

 

Tilera has developed a multicore chip 

with 64 homogeneous cores set up in a 

grid, shown in Figure 6. An application 

that is written to take advantage of these 

additional cores will run far faster than if 

it were run on a single core. Imagine 

having a project to finish, but instead of 

having to work on it alone you have 64 

people to work for you. Each processor 

has its own L1 and L2 cache for a total 

of 5MB on-chip and a switch that con-

nects the core into the mesh network 

rather than a bus or interconnect. The 

TILE64 also includes on-chip memory 

and I/O controllers. Like the CELL 

processor, unused tiles (cores) can be put 

into a sleep mode to further decrease 

power consumption. The TILE64 uses a 

3-way VLIW (very long instruction 

word) pipeline to deliver 12 times the 

instructions as a single-issue, single-core 

processor. When VLIW is combined 

with the MIMD (multiple instruction, multiple data) processors, multiple operating systems can 

be run simultaneously and advanced multimedia applications such as video conferencing and 

video-on-demand can be run efficiently. [26]  

 

4. Multicore Challenges 
 

Having multiple cores on a single chip gives rise to some problems and challenges. Power and 

temperature management are two concerns that can increase exponentially with the addition of 

multiple cores. Memory/cache coherence is another challenge, since all designs discussed above 

have distributed L1 and in some cases L2 caches which must be coordinated. And finally, using a 

multicore processor to its full potential is another issue. If programmers don‟t write applications 

that take advantage of multiple cores there is no gain, and in some cases there is a loss of 

performance. Application need to be written so that different parts can be run concurrently 

(without any ties to another part of the application that is being run simultaneously). 

 

4.1 Power and Temperature 

 

If two cores were placed on a single chip without any modification, the chip would, in theory, 

consume twice as much power and generate a large amount of heat. In the extreme case, if a 

 
Figure 6: Tilera TILE64 [28] 



 Schauer: Multicore Processors 

 

  
ProQuest Discovery Guides 
http://www.csa.com/discoveryguides/discoveryguides-main.php Released September 2008 

9 
 

processor overheats your computer may even combust. To account for this each design above 

runs the multiple cores at a lower frequency to reduce power consumption. 

 

To combat unnecessary power consumption many designs also incorporate a power control unit 

that has the authority to shut down unused cores or limit the amount of power. By powering off 

unused cores and using clock gating the amount of leakage in the chip is reduced. 

 

To lessen the heat generated by multiple cores on a 

single chip, the chip is architected so that the num-

ber of hot spots doesn‟t grow too large and the heat 

is spread out across the chip. As seen in Figure 7, 

the majority of the heat in the CELL processor is 

dissipated in the Power Processing Element and 

the rest is spread across the Synergistic Processing 

Elements. The CELL processor follows a common 

trend to build temperature monitoring into the 

system, with its one linear sensor and ten internal 

digital sensors. 

 

 

4.2 Cache Coherence 

 

Cache coherence is a concern in a multicore environment because of distributed L1 and L2 

cache. Since each core has its own cache, the copy of the data in that cache may not always be 

the most up-to-date version. For example, imagine a dual-core processor where each core 

brought a block of memory into its private cache. One core writes a value to a specific location; 

when the second core attempts to read that value from its cache it won‟t have the updated copy 

unless its cache entry is invalidated and a cache miss occurs. This cache miss forces the second 

core‟s cache entry to be updated. If this coherence policy wasn‟t in place garbage data would be 

read and invalid results would be produced, possibly crashing the program or the entire com-

puter. 

 

In general there are two schemes for cache coherence, a snooping protocol and a directory-based 

protocol. The snooping protocol only works with a bus-based system, and uses a number of 

states to determine whether or not it needs to update cache entries and if it has control over writ-

ing to the block. The directory-based protocol can be used on an arbitrary network and is, there-

fore, scalable to many processors or cores, in contrast to snooping which isn‟t scalable. In this 

scheme a directory is used that holds information about which memory locations are being 

shared in multiple caches and which are used exclusively by one core‟s cache. The directory 

knows when a block needs to be updated or invalidated. [23] 

 

Intel‟s Core 2 Duo tries to speed up cache coherence by being able to query the second core‟s L1 

cache and the shared L2 cache simultaneously. Having a shared L2 cache also has an added 

benefit since a coherence protocol doesn‟t need to be set for this level. AMD‟s Athlon 64 X2, 

 
Figure 7: CELL Thermal Diagram [6] 



 Schauer: Multicore Processors 

 

  
ProQuest Discovery Guides 
http://www.csa.com/discoveryguides/discoveryguides-main.php Released September 2008 

10 
 

however, has to monitor cache coherence in both L1 and L2 caches. This is sped up using the 

HyperTransport connection, but still has more overhead than Intel‟s model. 

 

4.3 Multithreading 

 

The last, and most important, issue is using multithreading or other parallel processing tech-

niques to get the most performance out of the multicore processor. “With the possible exception 

of Java, there are no widely used commercial development languages with [multithreaded] ex-

tensions.” [12] Rebuilding applications to be multithreaded means a complete rework by pro-

grammers in most cases. Programmers have to write applications with subroutines able to be run 

in different cores, meaning that data dependencies will have to be resolved or accounted for (e.g. 

latency in communication or using a shared cache). Applications should be balanced. If one core 

is being used much more than another, the programmer is not taking full advantage of the multi-

core system. Some companies have heard the call and designed new products with multicore 

capabilities; Microsoft and Apple‟s newest operating systems can run on up to 4 cores, for ex-

ample. [12, 11]   

 

5. Open Issues 
5.1 Improved Memory System 

 

With numerous cores on a single chip there is an enormous need for increased memory. 32-bit 

processors, such as the Pentium 4, can address up to 4GB of main memory. With cores now 

using 64-bit addresses the amount of addressable memory is almost infinite. An improved mem-

ory system is a necessity; more main memory and larger caches are needed for multithreaded 

multiprocessors. 

 

5.2 System Bus and Interconnection Networks 

 

Extra memory will be useless if the amount of 

time required for memory requests doesn‟t im-

prove as well.  Redesigning the interconnection 

network between cores is a major focus of chip 

manufacturers. A faster network means a lower 

latency in inter-core communication and mem-

ory transactions. Intel is developing their 

Quickpath interconnect, which is a 20-bit wide 

bus running between 4.8 and 6.4 GHz; AMD‟s 

new HyperTransport 3.0 is a 32-bit wide bus 

and runs at 5.2 GHz [14].  A different kind of 

interconnect is seen in the TILE64‟s iMesh, 

which consists of five networks used to fulfill 

I/O and off-chip memory communication. 

Using five mesh networks gives the Tile architecture a per tile (or core) bandwidth of up to 1.28 

Tbps (terabits per second). [27]  

 
Sun Microsystems 
http://docs.sun.com/source/819-7989-
10/figures/2_Overview-5.gif 



 Schauer: Multicore Processors 

 

  
ProQuest Discovery Guides 
http://www.csa.com/discoveryguides/discoveryguides-main.php Released September 2008 

11 
 

 

The question remains though, which type of interconnect is best suited for multicore processors? 

Is a bus-based approach better than an interconnection network? Or is there a hybrid like the 

mesh network that would work best? 

 

5.3 Parallel Programming 

To use multicore, you really have to use multiple threads. If you know how to do 

it, it's not bad. But the first time you do it there are lots of ways to shoot yourself 

in the foot. The bugs you introduce with multithreading are so much harder to 

find. [36] 

 

In May 2007, Intel fellow Shekhar Borkar stated that “The software has to also start following 

Moore‟s Law, software has to double the amount of parallelism that it can support every two 

years.” [35] Since the number of cores in a processor is set to double every 18 months, it only 

makes sense that the software running on these cores takes this into account. Ultimately, pro-

grammers need to learn how to write parallel programs that can be split up and run concurrently 

on multiple cores instead of trying to exploit single-core hardware to increase parallelism of se-

quential programs. 

 

Developing software for multicore processors brings up some latent concerns. How does a pro-

grammer ensure that a high-priority task gets priority across the processor, not just a core? In 

theory even if a thread had the highest priority within the core on which it is running it might not 

have a high priority in the system as a whole. Another necessary tool for developers is debug-

ging. However, how do we guarantee that the entire system stops and not just the core on which 

an application is running? 

 

These issues need to be addressed along with teaching good parallel programming practices for 

developers. Once programmers have a basic grasp on how to multithread and program in paral-

lel, instead of sequentially, ramping up to follow Moore‟s law will be easier. 

 

5.4 Starvation 

 

If a program isn‟t developed correctly for use in a multicore processor one or more of the cores 

may starve for data. This would be seen if a single-threaded application is run in a multicore 

system. The thread would simply run in one of the cores while the other cores sat idle. This is an 

extreme case, but illustrates the problem. 

 

With a shared cache, for example Intel Core 2 Duo‟s shared L2 cache, if a proper replacement 

policy isn‟t in place one core may starve for cache usage and continually make costly calls out to 

main memory. The replacement policy should include stipulations for evicting cache entries that 

other cores have recently loaded. This becomes more difficult with an increased number of cores 

effectively reducing the amount of evictable cache space without increasing cache misses. 

 

  



 Schauer: Multicore Processors 

 

  
ProQuest Discovery Guides 
http://www.csa.com/discoveryguides/discoveryguides-main.php Released September 2008 

12 
 

5.5 Homogeneous vs. Heterogeneous Cores 

 

Architects have debated whether the cores in a multicore environment should be homogeneous 

or heterogeneous, and there is no definitive answer…yet. Homogenous cores are all exactly the 

same: equivalent frequencies, cache sizes, functions, etc. However, each core in a heterogeneous 

system may have a different function, frequency, memory model, etc. There is an apparent trade-

off between processor complexity and customization. All of the designs discussed above have 

used homogeneous cores except for the CELL processor, which has one Power Processing Ele-

ment and eight Synergistic Processing Elements.  

 

Homogeneous cores are easier to produce since the same instruction set is used across all cores 

and each core contains the same hardware. But are they the most efficient use of multicore tech-

nology? 

 

Each core in a heterogeneous environment could have a specific function and run its own spe-

cialized instruction set. Building on the CELL example, a heterogeneous model could have a 

large centralized core built for generic processing and running an OS, a core for graphics, a 

communications core, an enhanced mathematics core, an audio core, a cryptographic core, and 

the list goes on. [33] This model is more complex, but may have efficiency, power, and thermal 

benefits that outweigh its complexity. With major manufacturers on both sides of this issue, this 

debate will stretch on for years to come; it will be interesting to see which side comes out on top.  

 

6. Conclusion 
 

Before multicore processors the performance increase from 

generation to generation was easy to see, an increase in fre-

quency. This model broke when the high frequencies 

caused processors to run at speeds that caused increased 

power consumption and heat dissipation at detrimental lev-

els. Adding multiple cores within a processor gave the so-

lution of running at lower frequencies, but added interesting 

new problems. 

 

Multicore processors are architected to adhere to reasonable 

power consumption, heat dissipation, and cache coherence 

protocols. However, many issues remain unsolved. In order 

to use a multicore processor at full capacity the applications 

run on the system must be multithreaded. There are rela-

tively few applications (and more importantly few pro-

grammers with the know-how) written with any level of 

parallelism. The memory systems and interconnection net-

works also need improvement. And finally, it is still unclear 

whether homogeneous or heterogeneous cores are more ef-

ficient. 

 
Intel's Japanese subsidiary President 
Kazumasa Yoshida unveils the new 
processor "Core 2 Duo" 
Getty Images, Agence France Presse 
07-27-2006 



 Schauer: Multicore Processors 

 

  
ProQuest Discovery Guides 
http://www.csa.com/discoveryguides/discoveryguides-main.php Released September 2008 

13 
 

 

With so many different designs (and potential for even more) it is nearly impossible to set any 

standard for cache coherence, interconnections, and layout. The greatest difficulty remains in 

teaching parallel programming techniques (since most programmers are so versed in sequential 

programming) and in redesigning current applications to run optimally on a multicore system. 

 

Multicore processors are an important innovation in the microprocessor timeline. With skilled 

programmers capable of writing parallelized applications multicore efficiency could be increased 

dramatically. In years to come we will see much in the way of improvements to these systems. 

These improvements will provide faster programs and a better computing experience. 

 

References 

 

[1] W. Knight, “Two Heads Are Better Than One”, IEEE Review, September 2005 

[2] R. Merritt, “CPU Designers Debate Multi-core Future”, EETimes Online, February 2008, 

http://www.eetimes.com/showArticle.jhtml?articleID=206105179 

[3] P. Frost Gorder, “Multicore Processors for Science and Engineering”, IEEE CS, 

March/April 2007 

[4] D. Geer, “Chip Makers Turn to Multicore Processors”, Computer, IEEE Computer 

Society, May 2005 

[5] L. Peng et al, “Memory Performance and Scalability of Intel‟s and AMD‟s Dual-Core 

Processors: A Case Study”, IEEE, 2007 

[6] D. Pham et al, “The Design and Implementation of a First-Generation CELL Processor”, 

ISSCC 

[7] P. Hofstee and M. Day, “Hardware and Software Architecture for the CELL Processor”, 

CODES+ISSS ‟05, September 2005 

[8] J. Kahle, “The Cell Processor Architecture”, MICRO-38 Keynote, 2005 

[9] D. Stasiak et al, “Cell Processor Low-Power Design Methodology”, IEEE MICRO, 2005 

[10] D. Pham et al, “Overview of the Architecture, Circuit Design, and Physical 

Implementation of a First-Generation Cell Processor”, IEEE Journal of Solid-State 

Circuits, Vol. 41, No. 1, January 2006 

[11] D. Geer, “For Programmers, Multicore Chips Mean Multiple Challenges”, Computer, 

September 2007 

[12] M. Creeger, “Multicore CPUs for the Masses”, QUEUE, September 2005 

[13] R. Merritt, “Multicore Puts Screws to Parallel-Programming Models”, EETimes Online, 

February 2008, 

http://www.eetimes.com/news/latest/showArticle.jtml?articleID=206504466 

[14] R. Merritt, “X86 Cuts to the Cores”, EETimes Online, September 2007, 

http://www.eetimes.com/showArticle.jtml?articleID=202100022 

[15] R. Merritt, “Multicore Goals Mesh at Hot Chips”, EETimes Online, August 2007, 

http://www.eetimes.com/showArticle.jtml?articleID=201800925 

[16] P. Muthana et al, “Packaging of Multi-Core Microprocessors: Tradeoffs and Potential 

Solutions”, 2005 Electronic Components and Technology Conference, 2005 



 Schauer: Multicore Processors 

 

  
ProQuest Discovery Guides 
http://www.csa.com/discoveryguides/discoveryguides-main.php Released September 2008 

14 
 

[17] S. Balakrishnan et al, “The Impact of Performance Asymmetry in Emergng Multicore 

Architectures”, Proceedings of the 32
nd

 International Symposium on Computer 

Architecture, 2005 

[18] “A Brief History of Microprocessors”, Microelectronics Industrial Centre, Northumbria 

University, 2002, http://mic.unn.ac.uk/miclearning/modules/micros/ch1/micro01hist.html 

[19] B. Brey, “The Intel Microprocessors”, Sixth Edition, Prentice Hall, 2003 

[20] Video Transcript, “Excerpts from a Conversation with Gordon Moore: Moore‟s Law”, 

Intel Corporation, 2005 

[21] Wikipedia, “Moore‟s Law”, 

http://upload.wikimedia.org/wikipedia/commons/0/06/Moore_Law_diagram_(2004).png 

[22] Intel, “World‟s First 2-Billion Transistor Microprocessor”, 

http://www.intel.com/technology/architecture-

silicon/2billion.htm?id=tech_mooreslaw+rhc_2b 

[23] M. Franklin, “Notes from ENEE759M: Microarchitecture”, Spring 2008 

[24] U. Nawathe et al, “An 8-core, 64-thread, 64-bit, power efficient SPARC SoC (Niagara 

2)”, ISSCC, http://www.opensparc.net/pubs/preszo/07/n2isscc.pdf 

[25] J. Dowdeck, “Inside Intel Core Microarchitecture and Smart Memory Access”, Intel, 

2006, http://download.intel.com/technology/architecture/sma.pdf 

[26] Tilera, “Tile 64 Product Brief”, Tilera, 2008, 

http://www.tilera.com/pdf/ProductBrief_Tile64_Web_v3.pdf 

[27] D. Wentzlaff et al, “On-Chip Interconnection Architecture of the Tile Processor”, IEEE 

Micro, 2007 

[28] Tilera, “TILE64 Processor Family”, http://www.tilera.com/products/processors.php 

[29] D. Olson, “Intel Announces Plan for up to 8-core Processor”, Slippery Brick, March 

2008, http://www.slipperybrick.com/2008/03/intel-dunnington-nehalem-processor-chips/ 

[30] K. Shi and D. Howard, “Sleep Transistor Design and Implementation – Simple Concepts 

Yet Challenges To Be Optimum”, Synopsys, 

http://www.synopsys.com/sps/pdf/optimum_sleep_transistor_vlsi_dat06.pdf 

[31] W. Huang et al, “An Improved Block-Based Thermal Model in HotSpot 4.0 with 

Granularity 

Considerations”, University of Virginia, April 2007 

[32] S. Mukherjee and M. Hill, “Using Prediction to Accelerate Coherence Protocols”, 

Proceedings of the 25
th

 Annual International Symposium on Computer Architecture 

(ISCA), 1998 

[33] R. Alderman, “Multicore Disparities”, VME Now, December 2007, 

http://vmenow.com/c/index.php?option=com_content&task=view&id=105&Itemid=46 

[34] R. Kumar et al, “Single-ISA Heterogeneous Multi-core Architectures with Multithreaded 

Workload Performance”, Proceedings of the 31
st
 Annual International Symposium on 

Computer Architecture, June 2004 

[35] T. Holwerda, “Intel: Software Needs to Heed Moore‟s Law”, 

http://www.osnews.com/story/17983/Intel-Software-Needs-to-Heed-Moores-Law/ 

[36] R. Goering, “Panel Confronts Multicore Pros and Cons”, 

http://www.eetimes.com/news/design/showArticle.jhtml?articleID=183702416 


