
Some Derivations of E = mc2
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1 Rest Energy Using Quantum

Imagine a photon with a velocity c, effective mass m, momentum p, energy E,
wavelength λ, frequency f. From the classical definition of momentum, and from
the classical definition of frequency and wavelength we have

p = mc

and
c = λf.

From quantum mechanics, Planck’s energy-frequency equation and De-Broglie’s
wavelength-momentum equation

E = hf

and
λ = h/p.

These four equations can be used to obtain E = mc2. Plug and chug and these
equations mesh nicely:

c/f = λ = h/p = h/mc

and
c/f = c/(E/h) = hc/E

therefore
hc/E = h/mc

thus
c/E = 1/mc

yields
E = mc2

This quantum hand-waving derivation has little physical grounds backing it my
opinion. Though its simplicity is hard to beat.

2 Rest Energy Using Binomial Expansion

This short derivation is dependent upon the reader’s acceptance of the Lorentz
factor and that mass is a relativistic quantity.

γ =
√

1− β2
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and

m‘ = mγ

With these two formulae in hand, an approximation using the binomial ex-
pansion is made. This leads to the strong suggestion that the rest energy of a
particle is E = mc2.
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This can be approximated to:

γ = 1 +
1
2

v2

c2

Using relativisitc mass we can say:

m‘ = mγ = m(1 +
1
2

v2

c2
)

m‘c2 = mc2 +
1
2
mv2

This is total relativisitc mass equal to the kinetic energy plus the rest energy
of the particle. Thus the rest energy part is:

E = mc2

I find this particularly simple and mindless derivation of the famous rest
energy formula. For teaching purposes there exists better derivations, though
this can be used to hit the target quickly.

3 Rest Energy using Calculus

This derivation of E = mc2 can be very enlightening to the student who has
not been introduced to special relativity. For this derivation, both the Lorentz
factor and relativistic mass must be accepted before we can proceed.

γ =
√

1− β2

and

m = m0γ

Where

β =
v

c
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With non-relativistic mass, or Newtonian mechanics, kinetic energy equal
to 1

2mv2 can be shown to come from this sloppy mathematical derivation but
physically consistent result:

E =
∫

Fdx =
∫

d

dt
(mv)dx

E =
∫

vd(mv) =
∫

(vm)dv =
1
2
mv2

Now, proceeding the same way only with relativistic masss, we can see one
method of obtaining E = mc2 by treating mass as a variable under the differ-
ential:

E =
∫

Fdx =
∫

d

dt
(mv)dx =

∫
d(mv)v

Where this time the mass cannot move outside the differential, but is variable
under the integral sign.

E =
∫

d(mv)v =
∫

(mdv + vdm)v =
∫

vmdv + v2dm

At this point it would be nice to find a substitution for the vmdv + v2dm
and this can found by acceptance of the Lorentz transformation for mass.

m =
m0√
1− v2

c2

Some simple algebraic manipulation, square both sides, and times by c2 will
yield:

m2c2 −m2v2 = m2
0c

2

Take the differential:

d(m2c2 −m2v2) = d(m2
0c

2)

2mc2dm +−m2(2v)dv + v2(−2m)dm = 0

2mc2dm = 2vm2dv + 2mv2dm

c2dm = vmdv + v2dm

This is the substitution we where looking for, plug this in and the integral
changes to something more familiar:

E =
∫

vmdv + v2dm =
∫

c2dm

E = mc2
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