Locating the centre of mass by mechanical means
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This article discussesoment planimeters, which are mechanical devices with which is it possible
to locate the centre of mass of an irregular plane shape bhan@al and graphical methods. They
are a type of analogue computing device. In addition to théy tmay be used to find the static

moment (first moment) and moment of inertia (second moméiatsbape about a fixed line. Moment

planimeters, sometimes calladegrometers or integrators, are direct developments of the planimeter
which is a mechanical device used to directly measure tre@ra plane shape. While planimeters
are reasonably well known, linear planimeters are less comtiman the polar planimeters of Amsler.

Hence in this article we explain how planimeters work thiodige example of a linear planimeter,

and then consider how these may be adapted to find the centnass. More detailed comparisons
between other types of area measuring planimeters may bd fouhe comprehensive survey article
of [2].

1 Areaand centre of mass

Consider the region enclosed by the closed curve in Figutleraugh which we have drawn the

axis. We consider the area to be split into two regions byadkis, and these regions are described
by the the two functionsf;(x) and f2(x). Since a general plane shape cannot be described in this
way the assumption represents a considerable loss of digndrance we shall provide alternative
explanation in a moment. The area of this shape will be

b
/ Fi@) — fo() da.

In the linear planimeter a rigid straight line of lengtlis constrained to move so that one ey,
traces around the boundary of the region. The other @nis constrained to move along theaxis.
This is shown in Figure 1. Note that

y = fi(z) = Isin(0). (1)

As is usual for a planimeter, we fix a freely rotating disc gsthis line as an axel, an example of
which is shown in Figure 3. In this arrangement the roll of thec will be the component of the
motion perpendicular to the line. If we consider an infiritedly thin vertical strip of widthdz and
height f1(x), then during the horizontal motion fromto x + dz, the wheel will record a roll of

dw = sin(#) dz. 2



Figure 1: An irregular plane regiom®

/abfl(a:) dz :l/absin(ﬂ)da: - l/abdw.

If we denote the the total roll recorded on the wheel arousdtbundary of the regioR from xz = a
to z = b along f1, and back along> by 3%1% we have that

/abfl(az) = o) d = zng dw,

This illustrates that multiplied by the total roll recorded whil®€ traces around the boundary will be
equal to the area of the shape. This is the fundamental gyopiplanimeters.

Hence

Next we turn attention to the centre of mass. Imagine a thifoun strip of widthdzx, and highty.
The contribution this strip makes to the distance of thereeot mass of the whole shape from the
z-axis will be
ygdx.
2

And hencey, the distance of the centre of mass from thaxis will be given by

1[fy*de [ [ydyds
2 [ydx N [ [dydz
From this it apparent that it will be sufficient to contrivelamimeter capable of being able to measure
i y? dz, since we are already capable of measuring the area.

5= 3)

Let us assume that we can attach another whegl ahich is at an angle of — 20 to the z-axis.
Then the roll recorded will be

sin( — 20) = cos(20) = 1 — 2sin?(9).

Considering the motion from = a to x = b along the functiory = fi(x) we have,

b b b
12/ dw = / 1?2 — 21% sin?(F) dz = / 1 —2y° du.

If we the integrate back alongy, thel? terms in the two integrals cancel, so that

—2 5
— dw= [ y°dz,
2 Jsr R
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Figure 2: A small element

and so 2
g— 4 Jor dw_
[yda
By this procedure we have calculatgdnd hence the line parallel to theaxis on which the centre of
mass lies. We choose another line for thaxis, not parallel to the original, and repeat this procedu

The intersection of the two lines thus obtained locates émre of mass.

2 Small e ements

In this section we take a slightly different approach anstdad of considering integration of functions
representing the boundary of the curve, we assume that éime pegion has been decomposed into
small curvy-parallelograms such &= ABCD shown in Figure 2. Here, the linBQ is of fixed
length/, the pointP moves around the boundary of the regiBrand the other end runs along the
z-axis and so is constrained to move aldng, yo) = (x,0). We note that forABC D, the area
equalsdzdy and the distance of the centre of massid&C D from thez-axis is

. 2y+dy

Yy = B .
The pointP moves around the perimeter frafy which has coordinateg:, y), to B, C, D and back
to A. In each portion of this movement we examine the roll rectalethe two wheels considered in
the previous Section and relate these to the area and cémirass.

We consider first a wheel using the lid&) as an axel. As this moves frorh to B, the pointQ is
fixed and the roll recorded 4 is a pure roll proportional to the arc lengtttd. This is equal and
opposite to that as the line moves fr@ro D, iewap = —wep. As P moves fromB to C the angle
P makes with thec-axis is constant a + d# with the horizontal and

wpc = sin(6 + db)dz
so that
lwpe = lsin(0 + db)dz = (y + dy)d=.

Similarly
lwpa = —lsin(f)dx = —ydzx.

If we define the roll around the perimeter of this small eletteedw := wap+wpc+wep+wpa
then
ldw = dz dy.
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Figure 3: Details of the roll recording wheel on a planimeter

Every reasonable plane regidhcan be decomposed into small elements consisting of suely cur
parallelograms. When doing this the rolls along internge=dof this decomposition cancel leaving
only the roll around the outside perimeter to consider. ldame have that

l?é dw://dazdy,
OR R

where 9%3 dw is the total roll asP moves around the (piecewise smooth) boundary of the regjon
and the right hand side is nothing but the area.

The second wheel is dt on an axel at an angl® — 26 to the horizonal. As beforeyap = —wep.
Furthermore,
Pwpe = Psin(5 — 20 — 2d0)dz = I°dz — 2(y + dy)*da,

and
l2wDA =2 sin(g — 20)(1;1; = —2dz + 2y2da;,

Define, as beforejw := wap + wpc + wep + wpa then

2
Pdw = —4Y ;“ Y 1z ay.
Again,
—I? 2y +d
—dw = vt ydazdy = ydx dy.
4 2
Hence,
—]2
g _ = Rdw ‘
J Jpdedy

3 Green’'s Theorem for the plane

A justification of the polar planimeter of Amsler was giveringsGreen’s Theorem in [1]. We justify
the results of the informal arguments in the previous sestigsing a similar approach. Assume we
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have a vector field’ (z,y) = (Va(z,y), Vy(z,y)). Green’s Theorem states that

j{ Vedy +V,dz = // curl(V') dz dy,
SR R

Wheref(m is the line integral around the (piecewise smooth) bound#mpe regionR. Imagine a
vector field of unit vectors in the plane, which we denotelhy If a wheel is attached & which
is constrained to always point in the direction of this figltk roll of the wheel will record the total
component of the vector field in the direction of the motidfeaively measuring this integral. If we
denote the roll of the wheel bjw we have

j{ dw = j{ Vedy+V,de = // curl(V) dz dy.
R R R

For the linear planimeter we imagine a vector field generaiedttaching a unit vector perpendic-
ular to the end of the lind>Q, of fixed lengthi, at P. It remains to find this vector field, and the
corresponding curl.

As before in Figure 2, assume that whernis at A it has coordinateéz, y) and the other end runs
along thez-axis and so is constrained to move aldng, yo) = (x9,0). Then we have

P =(z—20)*+ (y — %),

so that

T — 19 = /12 — 12

and furthermore,
T — T 12

sin(f) = i _l % - % and cos(f) = = 1- ok

The planimeter vector field, which of course does not depentth@x-coordinate, is then

e () - (- (it )

Since oV oV
(V)= _-—*2 4
curl(V) = 5t = 5% (4)
a trivial calculation shows that )
curl(V) = 7

Hence

lj{ dw://d:ndy.
6R R

Turning attention to the centre of mass we have the vectat fiblere the unit vector points points at
an angle ofj — 26 to the horizontal. Hence,

2

(T . Y
Vx(%Q) == —SIH(E — 29) = 2sm2(9) — 1= 2l_2 _ 17



Figure 4: An example of a Koizumi linear roller planimeter

and
Vy(2,y) = cos(§ — 20) = 2cos(0) sin(0) = oY [1- ¥,
By (4) we have that

4y

curl(V) = Tk

Hence, by Green’s Theorem we have that

2
—l?{ dwz//ydxdy,
4 Jsr R

as required by (3) to find the centre of mass.
These are both rather trivial applications of Green’s Tasor

4 Further generalizations

In the previous sections we have considered how to calcylgtez and [ y? dz. Further general-
izations naturally occur withf y3 dz, [ y* dz and so on. To calculatg y* dz, for example, we note
that

3 1
-3 _ 2 T
sin®(0) = 4sm(9) 4:s1n(3c9),

and so it will be sufficient to have an instrument with wheealpable of recording the motion of a
wheel at an angl8d. Further generalizations are possible, and devices alwggtlines were indeed
made and used. It is the practical considerations we tum tfoei next section.

5 Practical implementations

The most popular practical implementation of a planimegethe polar planimeter of Amsler. The
essential difference between this and the linear planiniethat the point) is constrained to move in
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Figure 5: A moment planimeter schematic

a circular arc rather than a straight line. Linear planimseteere produced commercially, an example
of which is shown in Figure 4. The poi® can be located in the circular magnifying glass, &nhd
is constrained to move in a vertical straight line by thelénglrather than along the-axis as in our
examples. Notice that the wheel need not actually bE,dbut may be at any convenient position
using an axel offset from, but parallel to, the liR&).

Perhaps the simplest moment planimeter is an extensioredingar planimeter, and a schematic of
such a device is given in Figure 5. The pofptis constrained to move in a straight line, marked as
the z-axis, by an arm which is mounted upon a trolley. The whH&eshown is used to measure the
area of the shape around whi¢htraces. At the poin®), fixed to the trolley is a gear wheel, which
acts on the second gear wheel attached to theHiQan such a way as to ensure that the angle of the
recording wheelV’ is at . — 26 to the horizontal as required by the theory. A direct readihthe

moment can be obtained if the whé#&! is calibrated to take account of the factéﬁ.

Such a device is shown in Figure 6. The whole instrument igvaho the left of the figure. The top
of the figure comprises a trolley, constraining the devicenawve horizontally. The poinP is below

the arm to the bottom right, and the ability to move this peifieéctively changes the lengthNotice

the three wheels, together with their Vernier scales fronthvh reading is taken. One markeds

for area, the othem for centre of mass and the thiidfor moments of inertia. The details of the
gear wheels are shown in the figure to the right which showsdbherse of the instrument. Other
configurations were possible, such as the Hele-Shaw Iritegnahich employs three glass spheres
upon which the roll recording wheels run, thus eliminatingdcuracies caused by inconsistencies of
the contact of the paper with the wheels.

In mechanical engineering, it is common to want to find thekwmne in each stroke of an engine. It
is relatively easy to measure the instantaneous presstine cylinder, and by finding the area under
the graph of pressure against time the work done can be atdul A linear planimeter specifically
for this task is that of [4]. Finding the centre of mass was @bfam of particular importance to
navel architects, who needed to ensure that the centre af ofiasship was below the water line. An
interesting essay on this topic is given by Robb, A. M. in [ 206-217].
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Figure 6: An Amsler moment planimeter
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