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This article discussesmoment planimeters, which are mechanical devices with which is it possible
to locate the centre of mass of an irregular plane shape by mechanical and graphical methods. They
are a type of analogue computing device. In addition to this they may be used to find the static
moment (first moment) and moment of inertia (second moment) of a shape about a fixed line. Moment
planimeters, sometimes calledintegrometers or integrators, are direct developments of the planimeter
which is a mechanical device used to directly measure the area of a plane shape. While planimeters
are reasonably well known, linear planimeters are less common than the polar planimeters of Amsler.
Hence in this article we explain how planimeters work through the example of a linear planimeter,
and then consider how these may be adapted to find the centre ofmass. More detailed comparisons
between other types of area measuring planimeters may be found in the comprehensive survey article
of [2].

1 Area and centre of mass

Consider the region enclosed by the closed curve in Figure 1,through which we have drawn thex-
axis. We consider the area to be split into two regions by thisaxis, and these regions are described
by the the two functions,f1(x) andf2(x). Since a general plane shape cannot be described in this
way the assumption represents a considerable loss of generality, hence we shall provide alternative
explanation in a moment. The area of this shape will be

∫ b

a

f1(x) − f2(x) dx.

In the linear planimeter a rigid straight line of lengthl is constrained to move so that one end,P ,
traces around the boundary of the region. The other end,Q, is constrained to move along thex-axis.
This is shown in Figure 1. Note that

y = f1(x) = l sin(θ). (1)

As is usual for a planimeter, we fix a freely rotating disc using this line as an axel, an example of
which is shown in Figure 3. In this arrangement the roll of thedisc will be the component of the
motion perpendicular to the line. If we consider an infinitesimally thin vertical strip of widthdx and
heightf1(x), then during the horizontal motion fromx to x + dx, the wheel will record a roll of

dw = sin(θ) dx. (2)
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Figure 1: An irregular plane region,R

Hence
∫ b

a

f1(x) dx = l

∫ b

a

sin(θ)dx = l

∫ b

a

dw.

If we denote the the total roll recorded on the wheel around the boundary of the regionR from x = a

to x = b alongf1, and back alongf2 by
∮

δR
we have that

∫ b

a

f1(x) − f2(x) dx = l

∮

δR

dw.

This illustrates thatl multiplied by the total roll recorded whileP traces around the boundary will be
equal to the area of the shape. This is the fundamental property of planimeters.

Next we turn attention to the centre of mass. Imagine a thin uniform strip of widthdx, and highty.
The contribution this strip makes to the distance of the centre of mass of the whole shape from the
x-axis will be

y
y

2
dx.

And hence,̄y, the distance of the centre of mass from thex-axis will be given by

ȳ =
1

2

∫

y2 dx
∫

y dx
=

∫ ∫

y dy dx
∫ ∫

dy dx
. (3)

From this it apparent that it will be sufficient to contrive a planimeter capable of being able to measure
∫

y2 dx, since we are already capable of measuring the area.

Let us assume that we can attach another wheel atP which is at an angle ofπ
2
− 2θ to thex-axis.

Then the roll recorded will be

sin(π
2
− 2θ) = cos(2θ) = 1 − 2 sin2(θ).

Considering the motion fromx = a to x = b along the functiony = f1(x) we have,

l2
∫ b

a

dw =

∫ b

a

l2 − 2l2 sin2(θ) dx =

∫ b

a

l2 − 2y2 dx.

If we the integrate back alongf2, thel2 terms in the two integrals cancel, so that

−l2

2

∮

δR

dw =

∫

R

y2 dx,
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Figure 2: A small element

and so

ȳ =
−l2

4

∮

δR
dw

∫

y dx
.

By this procedure we have calculatedȳ and hence the line parallel to thex-axis on which the centre of
mass lies. We choose another line for thex-axis, not parallel to the original, and repeat this procedure.
The intersection of the two lines thus obtained locates the centre of mass.

2 Small elements

In this section we take a slightly different approach and, instead of considering integration of functions
representing the boundary of the curve, we assume that the plane region has been decomposed into
small curvy-parallelograms such asR = ABCD shown in Figure 2. Here, the linePQ is of fixed
lengthl, the pointP moves around the boundary of the regionR and the other endQ runs along the
x-axis and so is constrained to move along(x0, y0) = (x0, 0). We note that forABCD, the area
equalsdxdy and the distance of the centre of mass ofABCD from thex-axis is

ȳ =
2y + dy

2
.

The pointP moves around the perimeter fromA, which has coordinates(x, y), to B, C, D and back
to A. In each portion of this movement we examine the roll recorded by the two wheels considered in
the previous Section and relate these to the area and centre of mass.

We consider first a wheel using the linePQ as an axel. As this moves fromA to B, the pointQ is
fixed and the roll recordedwAB is a pure roll proportional to the arc lengthldθ. This is equal and
opposite to that as the line moves fromC to D, iewAB = −wCD. AsP moves fromB to C the angle
PQ makes with thex-axis is constant atθ + dθ with the horizontal and

wBC = sin(θ + dθ)dx

so that
lwBC = l sin(θ + dθ)dx = (y + dy)dx.

Similarly
lwDA = −l sin(θ)dx = −ydx.

If we define the roll around the perimeter of this small element to bedw := wAB+wBC +wCD+wDA

then
ldw = dxdy.
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Figure 3: Details of the roll recording wheel on a planimeter

Every reasonable plane regionR can be decomposed into small elements consisting of such curvy
parallelograms. When doing this the rolls along internal edges of this decomposition cancel leaving
only the roll around the outside perimeter to consider. Hence we have that

l

∮

δR

dw =

∫ ∫

R

dxdy,

where
∮

δR
dw is the total roll asP moves around the (piecewise smooth) boundary of the regionR,

and the right hand side is nothing but the area.

The second wheel is atP on an axel at an angleπ
2
− 2θ to the horizonal. As before,wAB = −wCD.

Furthermore,
l2wBC = l2 sin(π

2
− 2θ − 2dθ)dx = l2dx − 2(y + dy)2dx,

and
l2wDA = −l2 sin(π

2
− 2θ)dx = −l2dx + 2y2dx,

Define, as before,dw := wAB + wBC + wCD + wDA then

l2dw = −4
2y + dy

2
dxdy.

Again,
−l2

4
dw =

2y + dy

2
dxdy = ȳdxdy.

Hence,

ȳ =
−l2

4

∮

R
dw

∫ ∫

R
dxdy

.

3 Green’s Theorem for the plane

A justification of the polar planimeter of Amsler was given using Green’s Theorem in [1]. We justify
the results of the informal arguments in the previous sections using a similar approach. Assume we
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have a vector fieldV (x, y) = (Vx(x, y), Vy(x, y)). Green’s Theorem states that
∮

δR

Vx dy + Vy dx =

∫ ∫

R

curl(V ) dxdy,

where
∮

δR
is the line integral around the (piecewise smooth) boundaryof the regionR. Imagine a

vector field of unit vectors in the plane, which we denote byV . If a wheel is attached atP which
is constrained to always point in the direction of this field,the roll of the wheel will record the total
component of the vector field in the direction of the motion, effectively measuring this integral. If we
denote the roll of the wheel bydw we have

∮

δR

dw =

∮

δR

Vx dy + Vy dx =

∫ ∫

R

curl(V ) dxdy.

For the linear planimeter we imagine a vector field generatedby attaching a unit vector perpendic-
ular to the end of the linePQ, of fixed lengthl, at P . It remains to find this vector field, and the
corresponding curl.

As before in Figure 2, assume that whenP is atA it has coordinates(x, y) and the other endQ runs
along thex-axis and so is constrained to move along(x0, y0) = (x0, 0). Then we have

l2 = (x − x0)
2 + (y − y0)

2,

so that
x − x0 =

√

l2 − y2

and furthermore,

sin(θ) =
y − y0

l
=

y

l
and cos(θ) =

x − x0

l
=

√

1 −

y2

l2
.

The planimeter vector field, which of course does not depend on thex-coordinate, is then

V =

(

Vx(x, y)
Vy(x, y)

)

=

(

− sin(θ)
cos(θ)

)

=

(

−

y
l

√

1 −

y2

l2

)

.

Since

curl(V ) =
∂Vy

∂x
−

∂Vx

∂y
, (4)

a trivial calculation shows that

curl(V ) =
1

l
.

Hence

l

∮

δR

dw =

∫ ∫

R

dxdy.

Turning attention to the centre of mass we have the vector field where the unit vector points points at
an angle ofπ

2
− 2θ to the horizontal. Hence,

Vx(x, y) = − sin(π
2
− 2θ) = 2 sin2(θ) − 1 = 2

y2

l2
− 1,
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Figure 4: An example of a Koizumi linear roller planimeter

and

Vy(x, y) = cos(π
2
− 2θ) = 2 cos(θ) sin(θ) = 2

y

l

√

1 −

y2

l2
.

By (4) we have that

curl(V ) = −

4y

l2
.

Hence, by Green’s Theorem we have that

−l2

4

∮

δR

dw =

∫ ∫

R

y dxdy,

as required by (3) to find the centre of mass.

These are both rather trivial applications of Green’s Theorem.

4 Further generalizations

In the previous sections we have considered how to calculate
∫

y dx and
∫

y2 dx. Further general-
izations naturally occur with

∫

y3 dx,
∫

y4 dx and so on. To calculate
∫

y3 dx, for example, we note
that

sin3(θ) =
3

4
sin(θ) −

1

4
sin(3θ),

and so it will be sufficient to have an instrument with wheels capable of recording the motion of a
wheel at an angle3θ. Further generalizations are possible, and devices along these lines were indeed
made and used. It is the practical considerations we turn to in the next section.

5 Practical implementations

The most popular practical implementation of a planimeter is the polar planimeter of Amsler. The
essential difference between this and the linear planimeter is that the pointQ is constrained to move in
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Figure 5: A moment planimeter schematic

a circular arc rather than a straight line. Linear planimeters were produced commercially, an example
of which is shown in Figure 4. The pointP can be located in the circular magnifying glass, andQ

is constrained to move in a vertical straight line by the trolley, rather than along thex-axis as in our
examples. Notice that the wheel need not actually be atP , but may be at any convenient position
using an axel offset from, but parallel to, the linePQ.

Perhaps the simplest moment planimeter is an extension of the linear planimeter, and a schematic of
such a device is given in Figure 5. The pointQ is constrained to move in a straight line, marked as
thex-axis, by an arm which is mounted upon a trolley. The wheelW shown is used to measure the
area of the shape around whichP traces. At the pointQ, fixed to the trolley is a gear wheel, which
acts on the second gear wheel attached to the linePQ in such a way as to ensure that the angle of the
recording wheelW ′ is at π

2
− 2θ to the horizontal as required by the theory. A direct readingof the

moment can be obtained if the wheelW ′ is calibrated to take account of the factor−l2

4
.

Such a device is shown in Figure 6. The whole instrument is shown to the left of the figure. The top
of the figure comprises a trolley, constraining the device tomove horizontally. The pointP is below
the arm to the bottom right, and the ability to move this pointeffectively changes the lengthl. Notice
the three wheels, together with their Vernier scales from which a reading is taken. One markeda is
for area, the otherm for centre of mass and the thirdi for moments of inertia. The details of the
gear wheels are shown in the figure to the right which shows thereverse of the instrument. Other
configurations were possible, such as the Hele-Shaw Integrator which employs three glass spheres
upon which the roll recording wheels run, thus eliminating inaccuracies caused by inconsistencies of
the contact of the paper with the wheels.

In mechanical engineering, it is common to want to find the work done in each stroke of an engine. It
is relatively easy to measure the instantaneous pressure inthe cylinder, and by finding the area under
the graph of pressure against time the work done can be calculated. A linear planimeter specifically
for this task is that of [4]. Finding the centre of mass was a problem of particular importance to
navel architects, who needed to ensure that the centre of mass of a ship was below the water line. An
interesting essay on this topic is given by Robb, A. M. in [3, pg 206–217].
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Figure 6: An Amsler moment planimeter
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