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1. Thurston’s geometrization conjecture

The main subject of these lectures is the Geometry and Topology of
3-dimensional orientable manifolds and orbifolds. The point of view adopted
is to emphasize their geometric properties.

A major result of the late 19th century is Riemann uniformization theo-
rem for surfaces, i.e. compact connected (orientable) 2-dim manifolds.

Theorem 1. Any surface admits a Riemannian metric of constant curva-
ture k = +1, 0,−1 i.e.

• F = S2/Γ Γ ⊂finite SO(3)
• F = E2/Γ Γ ⊂discrete Isom+ E2

• F = H2/Γ Γ ⊂discrete PSL2(R) .

In other words, any compact surface is either elliptic, Euclidean or hy-
perbolic. Moreover a surface belongs to a unique geometric type according
to the Gauss-Bonnet formula 2πχ(F ) =

∫
F

kds which determines the Euler
characteristic of the surface.

In some sense the topology determines the geometric type. In particular
π1F determines the geometric type, since it determines χ(F ).

In dimension 3 the situation is much more complicated. It is only in
the late 25 years, due mainely to the work of Thurston that an analogous
but much more involved theory has emerged. This theory can be very well
summarized by the following Geometrization conjecture, due to Thurston:

Conjecture 2 (Thurston). The interior of any compact orientable 3-man-
ifold can be split along a finite collection of essential disjoint embedded
spheres and tori into canonical submanifolds whose interior admit a com-
plete homogeneous Riemannian metric after capping off the sphere compo-
nents by balls.

A particular case of this conjecture is the well known Poincaré’s conjec-
ture:
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Conjecture 3 (Poincaré). A closed simply connected 3-manifold is home-
omorphic to S3.

Thurston’s approach to the study of 3-manifolds put forwards a geomet-
ric point of view, in which the Poincaré conjecture becomes a uniformization
problem. Thurston has classified the homogeneous 3-dimensional geometries
that may endow the interior of a compact 3-manifold. There are only height
possible geometries: three geometries with constant curvature, correspond-
ing to the elliptic 3-sphere S3, the Euclidean space E3 and the hyperbolic
space H3; two product geometries modeled on E1×S2, and E1×H2; three
fibered geometries modeled on the Lie groups Nil, S̃L2(R) and Sol.

Among these height 3-dimensional geometries the hyperbolic geometry is
the only one that does not collapse to a 2-dimensional or a 1-dimensional ge-
ometry. Thurston’s work has shown that this robust hyperbolic geometry is
the most common one among geometric 3-manifolds. The topological back-
ground for Thurston’s geometrization conjecture is given by the following
splitting theorem for an orientable compact 3-manifold:

Theorem 4 (Canonical Decomposition). Let M be a compact orientable
3-manifold different from S3.

a) There is a finite (perhaps empty) family of disjoint essential embedded
spheres in M which splits M into prime manifolds different from S3.
Moreover, these prime factors Mi are unique up to homeomorphism.

b) For each irreducible factor Mi, there is a finite (perhaps empty) family
of essential disjoint and non-parallel tori Ti which splits Mi into either
Seifert fibred or atoroidal pieces. Moreover, a minimal such family Ti is
unique up to isotopy in Mi.

Definition 5. • An embedded 2-sphere S2 ↪→ M3 is essential if it
does not bound a ball in M or is not parallel to a sphere in ∂M3.

• An orientable 3-manifold M is irreducible if any embedding of the
2-sphere into M extends to an embedding of the 3-ball into M .

The first stage a) of the Canonical decomposition, due to H. Kneser,
expresses the 3-manifold M as the connected sum of prime factors: M =
M1 ] . . . ]Mh ] S1 × S2 ] . . . ] S1 × S2, where the Mi are irreducible. The
irreducible factor are unique (cf. Hempel’s book [He]).

Definition 6. • An embedded torus T ↪→ M is called essential if
π1T ½ π1M is injective (T is incompressible) and T is not parallel
to ∂M .

• M is atoroidal if any Z⊕Z ↪→ π1M is conjugated to the fundamental
group of a boundary component of ∂M .
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• A compact orientable 3-manifold is Seifert fibred if it admits a foli-
ation by circles such that each circle has a saturated tubular neigh-
borhood. Such a manifold has a geometric structure modelled on
one of the six geometries: S3, E3, E1×S2, E1×H2, Nil, S̃L2(R).

The minimal family of tori Ti in Mi is called the JSJ-family for Mi (Jaco-
Shalen-Johannson). The stage b) of the Canonical decomposition is a result
which follows from the works of F. Waldhausen [Wa2] (1968), W. Jaco and
P. Shalen [JS], K. Johannson [Joh] (1975/76), P. Scott [Sco1, Sco2](1981),
G. Mess [Me] (1986), P. Tukia [Tu] (1986), A. Casson and D. Jungreis [CJ],
D. Gabai [Ga](1990). In particular it implies the following:

Theorem 7 (Torus Theorem). Let M be a compact orientable 3-mad. If
M is not atoroidal then either the JSJ-family of tori T 6= ∅ or M is Seifert
fibered.

From the Kneser-Milnor prime decomposition, the JSJ-decomposition
and the torus theorem one sees that Thurston’s Geometrization Conjecture
reduces to the following uniformization Conjecture.

Conjecture 8 (Uniformization). Let M be a compact orientable irreducible
atoroidal 3-manifold. Then:

• M is hyperbolic if and only if π1M is infinite.
• M is spherical if and only if π1M is finite.

Theses conjectures are still widly open. The main and fundamental con-
tribution of Thurston to his conjecture is the following hyperbolization the-
orem:

Theorem 9 (Thurston’s hyperbolization). Let M be a compact orientable
irreducible and atoroidal 3-manifold. If π1M is not virtually abelian, and
M contains a properly embedded, π1-injective surface (i.e. M is Haken),
then the interior of M admits a complete hyperbolic structure.

For the proof of this theorem we refer to [Th3, Th4, Th5], [McM1, McM2],
[Ka], [Ot1, Ot2].

Example 10. A knot space k ⊂ S3 is hyperbolic iff k is not a (p/q)-torus
knot and is not a satellite.

Definition 11. A 3-manifold is small if it is closed, irreducible, and does
not contain any incompressible surface.

Thurston’s conjecture is open only for small atoroidal 3-manifolds.

Conjecture 12. Every small 3-manifold is geometric.
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It is a deep obsevation by Thurston that in some cases Seifert geometries
may appear as the result of collapsing certain kind of “hyperbolic singular
structures”. This is one of the key points in the proof of the following
theorem which is the goal of theses lectures:

Theorem 13 (Orbifold Theorem). Let M be a small 3-manifold. Let ϕ ∈
Diff+(M) a non trivial periodic diffeomorphism (ϕ 6= Id, ϕn = Id) with a
non empty fixed point set, Fix(ϕ) 6= ∅. Then M admits a 〈ϕ〉-invariant
Hyperbolic or Seifert fibred structure.

Remark 14. The theorem remains true for a atoroidal 3-manifold instead
of a small one.

Here are some corollaries of the orbifold theorem:

Corollary 15. Thurston’s Geometrization Conjecture is true, provided that
there is an orientation preserving, homeomorphism φ : M → M with φ 6= id,
φn = id for some n ≥ 2 and Fix(φ) 6= ∅.
Corollary 16. Any compact orientable 3-manifold of Heegaard genus two
has a geometric decomposition in the sense of Thurston.

Corollary 17. Let k ⊂ S3 be a hyperbolic knot (i.e. S3 \ k admits a
complete hyperbolic structure with finite volume). For n ≥ 3 every n-fold
cyclic covering of S3 branched along k is a hyperbolic 3-manifold except
when n = 3 and k is the figure eight knot where it is Euclidean. Moreover
the covering translations act always isometrically.

Short History. This theorem is a particular case of a theorem on the
geometrization of 3-orbifolds announced by Thurston in the late 1981 [Th2,
Th6]. Unfortunatly he never published a proof.

Recently in 2000, two different proofs of the general case have been an-
nounced. One by D. Cooper, C. Hodgson and S. Kerckhoff: in [CHK] they
present the background material and give an outline of their proof. The
other proof is due to M. Boileau, B. Leeb and J. Porti: it has been an-
nounced in [BLP1] and the complete proof can be found in [BLP2]. A proof
of the cyclic case already appeared in [BoP].

2. Thurston’s eight geometries

There are only eight relevant homogeneous geometries involved in
Thurston’s geometrization conjecture.



GEOMETRIZATION OF 3-MANIFOLDS WITH SYMMETRIES 5

Definition 18. A n-dimensional geometry is a simply connected complete
homogeneous Riemannian n-dimensional manifold X which is maximal.
(i.e. Isom(X) acts transitively on X) and that there is no other Isom(X)-
invariant-Riemannian metric on X with bigger isometry group).

Two geometries are equivalent if there is a diffeomorphism ϕ : X → X ′

which conjugates the action of Isom(X) and Isom(X ′).
Given a n-dimensional geometry X, a n-manifold M admits a X-struc-

ture if int M ∼= X/Γ, where Γ ⊂ Isom+(X) is a discrete (torsion free)
subgroup without fixed points.

We say that X is relevant if it has a quotient of finite volume.

In dimension 2 the homogeneous Riemannian metrics are the metrics
with constant sectional curvature: so, up to rescalling, they are modelled
on S2, E2 or H2.

Proposition 19 (Thurston). [Th7] There are only (up to equivalence) 8
relevant homogeneous geometries in dimension 3.

Here is a list of these geometries according to the size of the stabilizer
Gx ⊂ Isom+

0 (X) of a point x ∈ X, where Isom+
0 (X) is the the component

of the identity in Isom+(X).

Isotropic geometries:Gx
∼= SO(3)

There are, up to equivalence, three isotropic geometries modelled on S3,
E3 or H3.

• Spherical geometry X = S3. Then M is finite quotient of S3 by a
subgroup of O(4).

• Euclidean geometry X = E3. Example: T 3. Then by Bieberlach’s
theorem, every compact Euclidean 3-manifold is a quotient of T 3 or
T 2 × [0, 1] by a finite subgroup of Isom(E3).

• Hyperbolic geometry X = H3. Example: the Seifert-Weber dodec-
ahedral space.

Anisotropic geometries with Gx
∼= SO(2)

Trivial products

• X = S2 × E1. There are only two orientable examples: S2 × S1,
RP 3 ]RP 3, and S1 ×D2.

• X = H2 × E1. Every compact orientable manifold with this ge-
ometry is finitely covered by the product of S1 with a surface of
negative Euler characteristic.
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Twisted products

• X = Nil. Nil is the nilpotent real Lie group of dimension three
(Heisenberg Matrix group)








1 x z
0 1 y
0 0 1


 : x, y, z ∈ R





R→ Nil → R2. Every nilpotente 3-manifold is finitely covered by a
S1-bundle over T 2 with non-zero Euler class.

• X = S̃L2(R). Then M is a finitely covered by a S1-bundle with
non zero Euler class, over a closed surface F of negative Euler char-
acteristic.

Anisotropic geometry with Gx ' {id}

Then X is a unimodular Lie group, and from the classification of 3-
dimensional unimodular Lie groups there is only one possibility.

• X = Sol. Sol is the solvable Lie group given by the split extension
R2 → Sol → R, where t ∈ R acts on R2 by

(
et 0
0 e−t

)
.

Every solvable 3-manifold is finitely covered by a torus bundle with
an Anosov monodromy (i.e. given by a matrix in SL2(R) having
two distinct real eihgen values).

A proof of this classification can be found in [Sco2], [Th7]. In these notes,
we will not use the classification, but mainly the fact that a Seifert fibered
3-manifold admits one (and only one) of the following six geometries: S3,

E3, S̃L2(R), Nil, S2 × R, H2 × R.

Typical representants (up to a finite covering) for hyperbolic 3-manifolds
are not known. According to Thurston, these have to be surface bundles:

Conjecture 20 (Thurston). Any complete orientable hyperbolic 3-manifold
with finite volume is finitely covered by a surface bundle with pseudo-Anosov
monodromy.
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3. Orbifolds

The natural object to consider in the proof of Theorem 13 is the quotient
O = M/〈ϕ〉, equipped with its orbifold structure: that means that we keep
track of the non free group action induced by 〈ϕ〉.
Definition 21. A (smooth) n-orbifold is a metrizable topological space O
endowed with a collection {(Ui, Ũi, φi, Γi)}i, called an atlas, where for each i,
Ui is an open subset of O, Ũi is an open subset of Rn−1×[0,∞), ψi : Ũi → Ui

is a continuous map (called a chart) and Γi is a finite group of orientation
preserving diffeomorphisms of Ũi satisfying the following conditions:

• The Ui’s cover O.
• Each ψi factors through a homeomorphism between Ũi/Γi and Ui.
• The charts are compatible in the following sense: for every x ∈

Ũi and y ∈ Ũj with ψi(x) = ψj(y), there is a diffeomorphism f
between a neighborhood V of x and a neighborhood W of y such
that ψj(f(z)) = ψi(z) for all z ∈ V .

Roughly speaking a n-dimensional orbifold is a metrizable space with a
coherent atlas of neighbourhoods which are diffeomorphic to quotients of
Rn by a finite diffeomorphism group preserving the orientation.

In our case an orbifold is a metrizable space in which each point x ∈ O
has a “neighbourhood modelled” on a ball B3 or on a football B3/Z/pZ
where p divides n.

Note that the notion of orbifold extends the classical notion of mani-
fold. Thus we say that the orbifold O is a manifold if all the Γi’s are trivial.
Sometimes it will be necessary to distinguish between the orbifold O and its
underlying space (i.e. the topological space obtained by forgetting the orb-
ifold structure.) When we want to make the distinction clear, we will denote
this underlying space by |O|. In our case, |O| is a topological manifold. We
say that O is connected (resp. compact) if |O| is connected (resp. compact).

Let M be a manifold and Γ a discrete group acting properly on M by
diffeomorphisms. Then the quotient space M/Γ has a natural orbifold struc-
ture, associated to the branched covering projection M → M/Γ. An orbifold
is called good if it is obtained in this way, and bad otherwise. It is very good
if it is the quotient of a manifold by a finite group. In our case, the orbifold
O is very good.

An orbifold is called spherical (resp. discal, resp. annular, resp. toric) if
it is a quotient of a sphere (resp. a disc, resp. an annulus, resp. a torus)
by an orthogonal action. One defines similarly Euclidean and hyperbolic
orbifolds, extending the definitions of the previous chapter.
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The local group of O at a point x ∈ O is the group Γx defined as follows:
let ψ : Ũ → U 3 x be a chart. Then Γx is the stabilizer of any point of
ψ−1(x) under the action of Γ. It is well defined up to isomorphism. If Γx is
trivial, we say that x is regular, otherwise it is singular. The singular locus is
the set Σ of singular points of O. Note that Σ = ∅ iff O is a manifold. Since
every smooth action of a finite group on a manifold is locally conjugated to
an orthogonal action, local groups are isomorphic to subgroups of SO(n).
This fact can be used to study the structure of the singular locus.

In dimension 3, the singular locus is in general a trivalent graph. In our
case, since the local groups are all cyclic, the singular locus is a link, i.e. a
finite collection of embedded, disjoint circles. It is the image Σ = p(Fix ϕ)
of the fixed point set of ϕ under the natural projection p : M → O. the
orbifold O is said to be a cyclic orbifold (or of cyclic type).

The (topological) pair (|O|,Σ) is called the topological type of the orb-
ifold O.

In the remaining of these notes all 2-orbifolds and 3-orbifolds are assumed
to be connected and orientable unless mentioned otherwise. In general,
2-suborbifolds of 3-orbifolds are assumed to be either properly embedded
or suborbifolds of the boundary. We extend now to the setting of orbifolds
some basic notions of low dimensional manifolds.

Let F0, F1 ⊂ O be 2-suborbifolds (either properly embedded or contained
in ∂O). We say that F0, F1 are parallel if they cobound in O a suborbifold
F × [0, 1] ⊂ O, called a product region such that F × {0} = F0, F × {1} =
F1 and ∂F × [0, 1] ⊂ ∂O. A properly embedded 2-suborbifold F ⊂ O is
∂-parallel (boundary-parallel) if F is parallel to a suborbifold of ∂M .

A 2-suborbifold F ⊂ O is compressible if either F is spherical and bounds
a discal 3-suborbifold, or there exists a discal 2-suborbifold D ⊂ O, called
a compression disk, such that ∂D = D ∩F ⊂ intO does not bound a discal
2-suborbifold in F . Otherwise F is said incompressible. Note that the term
“compression disk” is a slight abuse of language since it might be a disk
with a singular point.

It is obvious that discal 2-suborbifolds, bad 2-suborbifolds and nonspheri-
cal turnovers (i.e. spheres with 3 singular points) are always incompressible,
since they do not have essential curves. A spherical turnover is compressible
if and only if it surrounds a vertex in the singular locus.

A 2-suborbifold F ⊂ O is ∂-compressible if there exists a discal
2-suborbifold D ⊂ O, called a ∂-compression disk, such that ∂D is the
union of two arcs α, β with ∂α = ∂β = α ∩ β, α ⊂ F , β ⊂ ∂O, and α does
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not cobound a discal suborbifold of F with an arc in ∂F . Otherwise F is
said ∂-incompressible.

A 2-suborbifold F ⊂ O is essential if it is incompressible, ∂-incompress-
ible and not ∂-parallel.

Definition 22. • A 3-orbifold O is irreducible if O contains no bad
2-suborbifold, and every (orientable) spherical 2-suborbifold of O
bounds a spherical 3-suborbifold.

• A 3-orbifold is atoroidal if it is irreductible and contains no essential
toric 2-suborbifold.

The Theorem 23 gives a condition for a compact 3-orbifold to be decom-
posed into finitely many irreducible orbifolds.

Theorem 23. Let O be a compact 3-orbifold without bad 2-suborbifold.
There exists a finite collection S of disjoint, embedded and nonparallel spher-
ical 2-suborbifolds in O such that for every component of O\S the 3-orbifold,
obtained from this component by gluing a discal 3-orbifold along each spher-
ical boundary component, is irreducible.

We denote by O\S the orbifold obtained from O by removing a disjoint
union of open product neighborhoods of the components of S. Thus the
study of compact 3-orbifolds without bad 2-suborbifold reduces to the case
of irreducible 3-orbifolds. For these orbifolds there is a toric decomposition,
analogous to the JSJ-decomposition for 3-manifolds:

Theorem 24. Let O be a compact, irreductible 3-orbifold. There exists a
system T of essential, pairwise nonparallel toric 2-suborbifolds of O such
that every component of O\T is Seifert fibered or topologically atoroidal.

Definition 25. An orbifold O is Seifert fibered if it has a partition into 1-
dimensional closed orbifolds (i.e. circles and mirrored intervals) such that
each fibre has a saturated neighbourhood. In particular such an orbifold
fibers over a 2-orbifold with generic fiber a circle or a mirrored interval.

It follows from Theorem 23 that we need only to prove Theorem 13 with
the extra hypothesis O = M/〈ϕ〉 is irreducible. A priori this does not follow
directly from the fact that M is irreducible, since we do not know a priori
that a cyclic quotient B3/Zn of a 3-ball is a discal 3-orbifold.

Let O be a compact, orientable 3-orbifold which admits a finite, regu-
lar, manifold covering M . Any statement about O can be translated into
an “equivariant” statement for M with respect to the covering group of
transformations. For instance, the existence of a compression disc D for a
given 2-suborbifold F ⊂ O is equivalent to the existence of an equivariant
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compression disk D̃ for the preimage F̃ of F in M . Here equivariant means
that for every covering transformation g, either g(D̃) = D or g(D̃)∩D = ∅.
The following equivariant version of the Loop Theorem has been obtained
by Meeks and Yau [MY1, MY2], see also [DD], motivated by the Smith
Conjecture and other questions about group actions on 3-manifolds. Their
proof were based on minimal surfaces, i.e. surfaces that locally minimize
area.

Theorem 26 (Equivariant Dehn Lemma). Let M be a compact, orientable
3-manifold with a smooth action of a finite group Γ. Let F be an equivari-
ant subsurface of ∂M . If F is compressible, then it admits an equivariant
compression disk.

Using the equivariant Dehn Lemma we have:

Proposition 27. Let M be a compact orientable and irreducible 3-manifold
and let p : M → O be a finite regular covering of a compact orientable
3-orbifold O. Then any incompressible 2-submanifold F ↪→ O lifts to an
inconpressible surface in M .

Corollary 28. If M is a small 3-manifold and O = M/〈ϕ〉 is irreducible,
then O does not contain any incompressible 2-suborbifod (i.e. is small).

So, we are reduced to prove the following theorem:

Theorem 29. Let O be an orientable, closed, small 3-orbifold of cyclic
type then O is geometric (i.e. Hyperbolic, Spherical, Euclidean or Seifert
fibred).

The following exercise shows that an orientable, closed, small orbifold of
cyclic type can be obtained as the quotient of a closed 3-manifold by an
action of a finite group of diffeomorphisms.

Exercise 30. Let O be an orientable, closed, small 3-orbifold of cyclic
type, show that there is a finite manifold covering p : M → O. (Hint: The
underlying space of O is a rational homology sphere, by smallness of O.
Then, using the exact sequence

0 → H2(N (Σ), ∂N (Σ);Z) → H1(|O| \ Σ;Z) → H1(|O|,Z) → 0 ,

show that the meridians are linearly independent in H1(O \ Σ,Q).)

4. Reduction to a hyperbolic singular locus

Proposition 31. Either O \ Σ has a complete hyperbolic structure with
finite volume or O \Σ is Seifert fibered. In the last case O is Seifert fibered
and Σ is an union of fibres.
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Proof. This follows from Thurston’s hyperbolization theorem for Haken 3-
manifolds, once we have proved that O\ ◦

N (Σ) is irreducible and topologi-
cally atoroidal. This follows immediatly from the fact that O is small:

• If S2 ↪→ O\ ◦
N (Σ) bounds a discal 3-orbifold in O then it must

bound a ball in O \ Σ.
• If T 2 ↪→ O\Σ is compressible in O, then either it is compressible in
O \ Σ or there is a compression disk ∆ such that ∆ ∩ Σ = 1 point.
By cutting T 2 along ∆ and gluing back two copies of ∆, we get a
spherical 2-suborbifold that bounds a discal 3-orbifold in O, hence
T 2 is parallel to ∂N (Σ).

When O\ ◦
N (Σ) is Seifert fibred, the fibre is not the boundary of a meridian

disc of N (Σ), otherwise O would be reducible. Thus we can extend the
Seifert fibration to N (Σ) with the components of Σ as fibers.

Otherwise, by Thurston’s hyperbolization theorem, O \Σ admits a com-
plete hyperbolic structure with finite volume. ¤

Exercise 32. Show that if O\ ◦
N (Σ) is Seifert fibered and the boundary of

a meridian disc of N (Σ) is isotopic to the fiber, then O is reducible. (Hint:
produce a spherical or bad 2-suborbifold by gluing a vertical annulus with a
discal orbifold bounded by the meridian.)

5. Deformations of Hyperbolic cone 3-manifolds

From now on we assume that O \ Σ is hyperbolic. In this section we
introduce cone manifolds, which are the basic tool for the proof. Then we
study sequences of cone manifolds s and we explain the proof of the orbifold
theorem modulo some results to be proven later. Those are explained in
the remaining sections.

5.1. Cone manifolds. Before defining cone manifolds we recall briefly the
notion of path metric space. In a metric space X one defines the length of a
path ξ as the supremum of the lengths of piecewise geodesic paths inscribed
in ξ. Then X is a path metric space if for all x, y ∈ X, the distance between
x and y is the infimum of the length of paths joining x to y. For instance, a
Riemannian manifold is (by definition) a path metric space. If a topological
space X results from an isometric gluing construction on one or more path
metric spaces, then there is an obvious way to measure lengths of paths in
X, and one can define a metric on X by taking the infimum of lengths of
paths joining two points. We call this the path metric space obtained by
the gluing construction.
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Definition 33. A 3-dimensional cone manifold C of constant curvature
K ≤ 0 is a complete path metric space whose underlying space is a smooth
3-manifold |C| and such that every x ∈ C has a neighborhood Ux that embeds
isometrically in one of the model spaces H3

K(α) defined below.

To define H3
K(α), we first let H3

K denote the complete, simply con-
nected Riemannian manifold of constant sectional curvature K ≤ 0. Thus
H3
−1

∼= H3 and H3
0
∼= E3. For α ∈ (0, 2π), consider in H3

K a solid angu-
lar sector Sα obtained by taking the intersection of two half-spaces, such
that the dihedral angle at its infinite edge is α. Then H3

K(α) is the path
metric space obtained by gluing together the faces of Sα by an isometric
rotation around the edge. Let Σ be the image of the edge in H3

K(α). The in-
duced metric on H3

K(α)\Σ is an incomplete Riemannian metric of constant
curvature K, whose completion is precisely H3

K(α). Points of Σ have no
neighborhood isometric to a ball in a Riemannian manifold. In cylindrical
or Fermi coordinates, the metric on H3

K(α) \ Σ is:

ds2
K =





dr2 +
(

α
2π

sinh(
√−Kr)√−K

)2

dθ2 + cosh2(
√−Kr)dh2 for K < 0

dr2 +
(

α
2π r

)2
dθ2 + dh2 for K = 0

where r ∈ (0, +∞) is the distance from Σ, θ ∈ [0, 2π) is the rescaled angle
parameter around Σ and h ∈ R is the distance along Σ. More generally, if
C is a cone manifold and x ∈ C, we say x is regular if it has a neighborhood
isometric to a subset of H3

K . Otherwise it is singular. The set of singular
points is denoted by ΣC and called the singular locus. It is a 1-dimensional
totally geodesic submanifold.

Remark 34. These definitions are very similar to those for orbifolds, but
there is a fundamental difference betweeen the two concepts: orbifolds are
topological objects which may carry metrics, whereas cone manifolds are by
definition metric spaces.

To every singular point is associated a cone angle, which is the only real
number α ∈ [0, 2π] such that x has a neighborhood isometric to a subset of
H3

K(α). The induced metric on |C| \ΣC is a Riemannian metric of constant
curvature K ≤ 0 whose completion is precisely the cone manifold C with
cone type singularities along ΣC . It is easy to see that the cone angle is
constant along components of ΣC , so we can talk about the cone angle of a
component of ΣC . Here are some useful definitions:

• The topological pair (C, ΣC) is called the topological type of the
cone manifold C.
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• The developping map of C is the developping map of the induced
metric on C \ ΣC :

D : C̃ \ ΣC → H3
K .

It is not a covering map because the metric is incomplete. (C̃ \ ΣC

is the universal covering of C \ ΣC).
• The associated holonomy representation ρ : π1(C\ΣC)→ Isom+(H3

K)
is called the holonomy of C. It is defined by:

D ◦ γ = ρ(γ) ◦D,

where γ acts as a covering translation of the universal covering. The
image ρ(π1(C \ ΣC)) need not be discrete.

• When µ ∈ π1(C \ΣC) is a meridian around a component of Σ, then
ρ(µ) is an elliptic element= rotation of angle α along a geodesic.
We have the equality:

Trρ(µ) = ±2 cos
α

2
.

In the case where K = −1, Isom+(H3
K) = PSL(C).

Note that with our definition, the singular locus of a 3-dimensional cone
manifold is a 1-submanifold. One can give more general definitions where
the cone manifold may have arbitrary dimension, the singular locus may
have a more complex topology, or cone angles may be greater than 2π.
(Compare [BLP2].)

Remark 35. The orbifold O has a metric of constant curvature iff there
exists a cone manifold C with (|C|, ΣC) ∼= (|O|, Σ) and with cone angles
2π
m1

, . . . , 2π
mk

, where m1, . . . , mk are the branching orders of the components
of Σ. This motivates the next definition.

Definition 36. The angles 2π
m1

, . . . , 2π
mk

are called the orbifold angles.

5.2. Deforming cone manifolds. Before proceeding, we have to define
formally hyperbolic cone structures on an orbifold.

Definition 37. Let O be a compact, orientable 3-orbifold of cyclic type. Let
Σ1, . . . , Σk be the components of the singular locus Σ. Let (α1, . . . , αk) be
a k-uple of real numbers belonging to the interval (0, π). A hyperbolic cone
structure on O with cone angles (α1, . . . , αk) is a pair (C, h) where C is
a hyperbolic cone manifold and h is a homeomorphism of pairs (|O|, Σ) →
(|C|, ΣC) such that for all i, the cone angle along h(Σi) is αi. By convention,
we define a hyperbolic cone structure on O with angles (0, . . . , 0) to be the
complete hyperbolic structure of finite volume on the 3-manifold O \ Σ.
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From now on, we fix an order on the components of the singular lo-
cus of our small orbifold O, let mi denote the branching index of the i-th
component, and set:

I :=
{

t ∈ [0, 1]
∣∣∣∣

There exists a hyperbolic cone structure
on O with cone angles ( 2πt

m1
, . . . , 2πt

mk
).

}

Our hypothesis that O \Σ is hyperbolic translates into the fact that 0 ∈ I.
The first step is to deform this structure to get hyperbolic cone structures
with small cone angles on O. A hyperbolic cone structure on O induces a
non-complete hyperbolic structure on O \ Σ. In particular it has a holo-
nomy representation π1(O\Σ) → PSL2(C). The variety of representations
R = Hom(π1(O \ Σ), PSL2(C)) is a finite dimensional affine algebraic set,
possibly reducible, since π1(O \ Σ) is finitly generated (cf. [CS], [GM]).
The group PSL2(C) acts on R by conjugation, and we are interested in
the quotient. The topological quotient is not Hausdorff, and therefore we
consider the algebraic quotient:

X = Hom(π1(O \ Σ), PSL2(C)) //PSL2(C)

which is again an affine algebraic set. Note that the irreducible representa-
tions form a Zariski open subset of R. More precisely, Rirr is the inverse
image of a Zariski open subset Xirr ⊆ X, and Xirr is the topological quo-
tient of Rirr. Notice that the holonomy representation ρ0 of the complete
hyperbolic structure on O \ Σ is irreducible.

Given µ ∈ π1(O \ Σ), we define the function τγ : X(M) → C as the
function induced by

R → C
ρ 7→ trace

(
ρ(µ)2

)
.

Let a = ` + iθ be the complex translation length of ρ(µ). This means
that ρ(µ) is a translation of length ` along it axis plus a rotation of angle θ
around the same axis. Then:

trρ(µ) = ±2 cosh
a

2
.

Let µ1, . . . , µk be a family of meridian curves, one for each component
of Σ.

Theorem 38 (Local parametrization). The map

τµ = (τµ1 , . . . , τµk
) : X → Ck

is locally bianalytic at [ρ0].
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This result is the main step in the proof of Thurston’s hyperbolic Dehn
filling theorem (see [BoP, App. B] or [Ka] for the proof). It implies in
particular the following special case of Thurston’s Generalized Hyperbolic
Dehn Filling Theorem.

Corollary 39 (Generalized hyperbolic Dehn filling). There exists ε > 0,
so that [0, ε) ⊂ I.
Proof. We have τ([ρ0]) = (2, . . . , 2). Consider the path

(1)
γ : [0, ε) → Ck

t 7→
(
2 cos 2πt

m1
, . . . , 2 cos 2πt

mk

)

where ε > 0 is sufficiently small. The composition τ−1
µ ◦ γ gives a path

of conjugacy classes of representations. It can be lifted to a path t 7→ ρt,
because there are slices to the action of PSL2(C) on the representation
variety. The representations ρt are the holonomies of incomplete hyperbolic
structures on O \ Σ. By construction, the holonomies of the meridians are
rotations with angles 2πt/m1, . . . , 2πt/mq. By a classical argument due to
Ereshmann and Thurston, the deformation of holonomies is, locally near
t = 0, induced by a deformation of hyperbolic cone structures on O with
cone angles 2πt/mj . ¤

Lemma 40. There exists a unique irreducible curve D ⊂ Ck such that
γ([0, 1]) ⊂ D.

Proof. For n ∈ N, we consider the Chebyshev-like polynomial

pn(x) = 2 cos(n arccos(x/2)).

It has the following property:

trace(An) = pn(trace(A)), ∀A ∈ SL2(C), ∀n ∈ N.

An easy computation shows that p′n(2) = n, and therefore

{z ∈ Ck | pm1(z1) = · · · = pmk
(zk)}

is an algebraic curve with (2, . . . , 2) as a smooth point. We take D to be
the unique irreducible component containing (2, . . . , 2). Then γ([0, ε)) ⊂ D
for small ε > 0. Since γ is an analytic curve, it remains in D. ¤

We define the algebraic curve C ⊂ X to be the irreducible component of
τ−1
µ (D) that contains [ρ0]. By construction, [ρt] ∈ C for small t ≥ 0.

Theorem 41 (Openness). I is open to the right.
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Proof. Openness of I at t = 0 is a consequence of Thurston’s hyperbolic
Dehn filling, so we only prove openness at t > 0.

Consider the path

γ : [t, t + ε) → D ⊂ Ck

s 7→ (2 cos(s2π/m1), . . . , 2 cos(s2π/mk))

defined for some ε > 0. By construction, the image of γ is contained in the
curve D ⊂ Ck of Lemma 40. Since τµ : C → D is non constant, it is open,
and therefore γ can be lifted to C. We can lift it further to a path

γ̃ : [t, t + ε) → R

s 7→ ρs .

To justify this second lift, notice that the holonomy ρt is irreducible (be-
cause the corresponding cone structure has finite volume) and therefore the
PSL2(C)-action is locally free. By construction, ρs(µi) is a rotation of an-
gle 2πs

mi
. According to Ereshmann and Thurston, a small deformations of

holonomies can be realized by a deformation of cone structures. Therefore,
the cone structure on O with holonomy ρt can be deformed to a continuous
family of cone structures on O with holonomies ρs, and thus [t, t + ε) ⊂ I
for ε > 0 sufficiently small. ¤

The following theorem of Hodgson and Kerckhoff gives a more precise
result about the possible deformations of these hyperbolic cone structures:

Theorem 42 ([HK]). The space of hyperbolic structures on O with cone
angles < 2π is open, and it is locally parametrized by the cone angles
(α1, . . . , αk). ¤

Theorem 42 contains a local ridigity statement: there are no deformations
of hyperbolic cone structures with cone angles fixed. A global rigidity result
as been obtained by Kojima:

Theorem 43 ([Ko]). Two hyperbolic structures on O with the same cone
angles are isometric, provided that their cone angles are < π. ¤

This theorem implies that for each t ∈ I, the hyperbolic cone structure
on O with angles ( 2πt

m1
, . . . , 2πt

mq
) is unique. We denote it by C(t). A crucial

consequence of the openness of the deformation space I is:

Corollary 44. Let t∞ = sup I. Then t∞ ∈ I if and only if t∞ = 1 ∈ I.
In this case O is hyperbolic.

To prove the orbifold theorem it remains to show:
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Theorem 45. When t∞ = sup I 6∈ I, then either O is spherical, Euclidean
or Seifert fibred.

To prove theorem 45 we analyze the accidents that can occur at the limit
of hyperbolicity t∞ = sup I. This is done by looking at sequences of cone
hyperbolic 3-manifolds with increasing cone angles:

Cn = C(tn) , tn ∈ I , tn → t∞ 6∈ I .

So we need first some preliminaries about convergence of sequences of
cone manifolds. The following examples have to be kept in mind while
reading the proof of the Orbifold Theorem.

Example 46. We start with a 2-dimensional example. Consider an equi-
lateral triangle in H2, E2 or S2 with angle α ∈ (0, π]. In the hyperbolic
case (resp. Euclidean, resp. spherical), one has α < π/3 (resp. α = π/3,
resp. α > π/3). Let S(α, α, α) be the double of this triangle, i.e the length
space obtained by gluing two copies of the triangle by an isometry. Then
S(α, α, α) is a cone 2-manifold with underlying space S2 and three cone
points of cone angle 2α. When n = π/α is an integer, it is a hyperbolic
(resp. Euclidean, resp. spherical) structure on an orbifold. We see on this
example how cone manifolds can be seen as “interpolating continuously be-
tween geometric orbifolds”. It is worth noting that when α goes to π/3
from below, the diameter of the hyperbolic cone manifold S(α, α, α) goes to
0. Thus there is a limit angle which corresponds to a degeneration of the
hyperbolic structure.

Example 47. This kind of behavior happens in dimension 3. In [HLM], it
is proved that for every α ∈ (0, π) there is a cone manifold of constant curva-
ture with underlying space S3, singular locus the figure eight knot and angle
α. The structure is explicitly constructed; it is hyperbolic for α < 2π/3,
Euclidean for α = 2π/3 and spherical for 2π/3 < α ≤ π. Again by look-
ing at angles of the form 2π/n, one gets geometric structure on certain
orbifolds. Since orbifold coverings are branched covering, one also gets geo-
metric structures on branched coverings of the figure eight knot.

6. Sequences of cone manifolds

6.1. Geometric convergence.

Definition 48. Let X and Y be two metric spaces. A map f : X → Y is
(1 + ε)-bi-Lipschitz, for ε > 0, if ∀(x, y) ∈ X:

1
1 + ε

≤ d(f(x), f(y)) ≤ (1 + ε) d(x, y) .
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Remark 49. A (1 + ε)-bi-Lipschitz map is always an embedding.

Definition 50. A sequence of pointed cone manifolds (Cn, xx) converges
geometrically to a cone-manifold (C∞, x∞) if for every R > 0 and ε > 0,
there exists an integer n0 such that, for n > n0, there is a (1+ε)-bi-Lipschitz
map fn : BR(x∞) → Cn satisfying:

(1) d(fn(x∞), xn) < ε,
(2) BR−ε(xn) ⊂ fn(BR(x∞)),
(3) fn(BR(x∞) ∩ Σ∞) = Σn ∩ fn(BR(x∞)).

Remark 51. The geometric convergence is the convergence in the Gromov’s
pointed bi-Lipschitz topology. If (Cn, xn) → (C∞, x∞) geometrically and if
the limit C∞ is compact, then for n large enough the pairs (|Cn|, Σn) and
(|C∞|, Σ∞) are homeomorphic.

A standard ball is a metric ball in a model space H3
K(α) which either

does not intersect the singular axis or is centered on it.

Definition 52. The cone injectivity radius of a point p in a cone manifold
is defined as:

cone-inj (x) = sup{r > 0 | Br(p) is contained in a standard ball }
Definition 53. A sequence of cone manifolds Cn collapses if

sup
x∈CN

cone-inj (x) → 0 as n →∞.

If Diam(Cn) goes to 0, then obviously the sequence collapses. For in-
stance, our first 2-dimensional example S(αn, αn, αn) collapses when αn →
π/3. The converse is false. For instance, one obtains a collapsing sequence
of flat metrics on the 2-torus by starting with a product metric and pinching
one factor to a point. In this example the diameter is eventually constant.

If a sequence Cn does not collapse, then by definition there is a sequence
xn ∈ Cn such that for some subsequence, the numbers cone-inj (xn) are uni-
formly bounded away from zero. Thus the following theorem is relevant to
non-collapsing sequences. It is a version of Gromov’s compactness theorem
for Riemannian manifolds with pinched sectionnal curvature, in the setting
of cone 3-manifolds with sectional curvature in [−1, 0] and cone angles ≤ π.

Theorem 54 (Compactness Theorem). Let (Cn, xn) be a sequence of poin-
ted cone manifolds. Suppose that there exist constants a, ω > 0 such that
for all n we have:

(1) cone-inj (xn) > a;
(2) Cn has constant curvature Kn ∈ [−1, 0];
(3) all cone angles of Cn lie in [ω, π].
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Then there is a subsequence (Cnk
, xnk

) which geometrically converges to a
cone 3-manifold (C∞, x∞) with curvature K∞ = limn→+∞Kn and cone
angles that are limit of the cone angles of Cn.

Theorem 54 is proved by using Gromov’s compactness criterion to say
that there is a subsequence that converges to a metric space for the Gromov-
Hausdorff topology. To show that the limit is a cone manifold, one proves
a uniform lower bound for the injectivity radius of points in Cn that are at
bounded distance from xn. This is where the upper bound of cone angle is
used, via convexity of the Dirichlet domain.

Proposition 55 (Uniform decay of injectivity radius). Given R > 0, a > 0
and ω ∈ (0, π), there is a uniform constant b(R, a,w) > 0 such that for any
pointed cone 3-manifold (C, x) with inj(x) ≥ a and cone angles ∈ [ω, π],
then inj(y) ≥ b > 0, ∀y ∈ B(x, R).

This proposition implies in particular that there is a uniform lower bound
for the radius of a tubular neighbourhood of the singular locus Σn of Cn.
When the sequence Cn is not collapsing, the singular locus cannot cut itself,
but it may go to infinity.

6.2. Analyzing C(tn) as tn → t∞. We can now start the proof of the
orbifold theorem. Let (tn) be an increasing sequence in I with limit t∞ =
sup I. Assume that C(tn) does not collapse. Then Theorem 54 implies that
C(tn) subconverges geometrically to a hyperbolic cone manifold C∞.

Theorem 56 (Stability). If C(tn) does not collapse, then C∞ is compact.

We will prove this theorem in Section 7. Assuming it, the bi-Lipschitz
convergence implies that the limit C∞ is a hyperbolic cone structure on O.
Since I is open, it follows that t∞ = 1 ∈ I and hence O is hyperbolic and
we are done. So we are left with the harder case where C(tn) collapses. Our
main tool is the following theorem, whose proof is postponed in Section 8.
A cone manifold C is called δ-thin if supx∈C cone-inj (x) ≤ δ for some δ > 0.

Theorem 57 (Fibration). Let C be a cone manifold structure on O of
constant curvature in [−1, 0] and with cone angles less than or equal to the
orbifold angles of O. For ω > 0 there exists δ(ω) > 0 such that, if C has
cone angles ≥ ω, Diam(C) ≥ 1 and C is δ(ω)-thin, then O is Seifert fibered.

Now the proof of the orbifold theorem goes as follows:

Case 1: Diam(C(tn)) is bounded away from zero. In this case the
fibration theorem (Thm. 57) shows that O is Seifert fibered, hence geomet-
ric.
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Case 2: Diam(C(tn)) → 0. Consider the rescaled sequence

C(tn) =
1

Diam(C(tn))
C(tn)

of cone 3-manifolds with constant curvature Kn = −Diam(C(tn))2 ∈ [−1, 0)
and diameter equal to 1. If C(tn) collapses, then for n sufficiently large the
fibration theorem (Thm. 57) applies again. If it does not, then by Theo-
rem 54, a subsequence converges to a compact Euclidean cone 3-manifold
C∞ with diameter one. Hence C∞ corresponds to a closed Euclidean cone
structure on O. If t∞ = 1, this proves that O is Euclidean. Hence we
assume that t∞ < 1. Our goal is to prove the following:

Proposition 58. If t∞ < 1 then O is spherical.

Proof. Recall that O has a finite, regular, covering which is a manifold.
The Euclidean cone metric C∞ lifts to a Euclidean cone metric on this
finite manifold covering M . The singular locus Σ̃ of this metric is a link
in M and every cone angle equals 2πt∞ < 2π. Moreover, this metric is
invariant by the group of deck transformations of the covering.

One can deform this Euclidean cone metric on M by using a radial
deformation in a tubular neighbourhood of the singular locus Σ̃, to get
an equivariant non flat smooth Riemannian metric with a curvature ≥ 0
(cf. [BoP] or [Zh]). Hamilton’s flow [Ha1, Ha2] allows to deform this Rie-
mannian metric equivariantly to one of constant curvature +1. Since it is
equivariant, this gives a spherical structure on O.

We explain now quickly how to deform the metric.

The singular Euclidean metric in a tubular neighbourhood of Σ̃ is:

ds2 = dr2 + t2r2dθ2 + dh2 , t < 1 .

We replace it by a metric of the form:

ds2 = dr2 + f2(v)dθ2 + dh2

where f : [0, r0−ε) → [0, +∞) is a C∞ function with the following properties:
(1) f(r) = r, ∀r ∈ [0, ε/2)
(2) ∀r ∈ [r0/2, r0 − ε) , f(r) = t(r + ε)
(3) f ′′(r) ≤ 0 , ∀r ∈ [0, r0 − ε), (i.e. it is concave).

From the properties of f we deduce the following properties on the metric:
• Property 1) implies that the new metric is non singular.
• Property 2) implies that the new metric fits with the original one

at ∂Nr0(Σ).
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• Property 3) implies that the sectional curvature is ≥ 0 and even
> 0 at some points.

¤

Remark 59. Using Ricci flow, Hamilton proved first that a metric of > 0
Ricci curvature may be deformed to a spherical one with K ∼= +1.

In a second paper he proved that if a metric has Ricci curvature ≥ 0,
then, appart from two exceptions, there is a deformation to a metric with
Ricci curvature > 0. The exceptions are:

(1) The original metric is flat (Ricci tensor ∼= 0).
(2) After the deformation the Ricci tensor has rank one everywhere and

the metric is modeled on S2 × E1.
The first case is eliminated because the starting metric is not flat.The second
case is ruled out because O is irreducible.

This finishes the proof of the Orbifold Theorem, modulo the Stability
theorem 56 and the fibration theorem (Thm. 57).

7. The stability theorem

We have an increasing sequence tn in I that converges to t∞ and the
corresponding cone manifolds C(tn) converge geometrically to a hyperbolic
cone manifold C∞. We have to prove that C∞ is compact.

Set X := O \ Σ, Csmooth
n := C(tn) \ ΣC(tn), and Csmooth

∞ = C∞ \ ΣC∞ .
By definition of a hyperbolic cone structure on O, there is for each n a
homeomorphism gn : (|O|, ΣO) → (|C(tn)|, ΣC(tn)) such that for all i, the
cone angle along gn(σi) is 2πtn

mi
. Using these homeomorphisms, we can

identify π1X with π1C
smooth
n , and thus consider the holonomy ρn of Csmooth

n

as a representation of π1X. We write χn for the character of this holonomy
in the the character variety X = Hom(π1(X), SL2(C))//SL2(C).

Lemma 60. The singular locus of C∞ is compact.

Proof. Seeking a contradiction, assume that C∞ has a non-compact singular
locus. Using the bi-Lipschitz convergence, it is easy to see that the number
of singular components of C∞ is not greater than that of C(tn); in particular
it is finite. Thus C∞ has a non-compact singular component. Again the
bi-Lipschitz convergence shows that there exists i ∈ {1, . . . , k}, say 1, such
that the length of gn(Σ1) goes to infinity. According to the lemma 40, there
exists an algebraic curve C in the character variety X containing χn for all
n. By passing to a subsequence, we can assume that (χn) converges in C.
The following fact tells us that the limit must be an ideal point. There is an
element λ ∈ π1X such that the real part of the complex length of ρn(λ) goes
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to infinity. In fact λ ∈ H1(T1,Z), where T1 ⊂ ∂(O\ ◦
N (Σ)) corresponds to

the singular component Σ1. Moreover:

• |trace(ρn(λ))| = 2 cosh
(

complex length
2

)
→ +∞

• |trace(ρn(µi))| =
∣∣∣2 cos πtn

mi

∣∣∣ ≤ 2, for any meridian µi of a compo-
nent σi ⊂ Σ.

Then the Culler-Shalen’s theory of valuations [CS], associated to ideal points
of the curve C ⊂ X, gives rise to an incompressible, ∂-incompressible surface
in O\ ◦

N (Σ) with boundary an union of meridians.
This gives an incompressible 2-suborbifold in O contradicting the small-

ness of O. Hence the singular locus of C∞ is compact. ¤

Lemma 61. For every t ∈ I, vol(C(t)) ≤ vol(C(0)).

Proof. The proof uses Schläfli’s formula. For a smooth deformation of a
polyhedron Pt in hyperbolic space, the variation of volume is:

d vol (Pt) = −1
2

∑
e

length (e)dαe

where the sum is taken over all edges e of Pt and αe denotes the dihedral
angle of e. For our family of cone manifolds C(t), we can take a totally
geodesic triangulation that varies smoothly with t (cf. [Por]). By adding
up all contributions of volume, we realize that only edges corresponding to
singularities are relevant, and we have:

d vol (C(t)) = −1
2

k∑

i=1

length (Σi) d(2π/mit) = −π

k∑

i=1

length (Σi)
1

mi
d t,

where Σ1, . . . , Σk denote the components of ΣC . Hence the volume of C(t)
decreases with t. ¤

Assume that C∞ is not compact. By Lemma 61, the volume of C(tn)
is bounded above, thus C∞ has finite volume. Since its singular locus is
compact, the ends of C∞ are smooth and one can apply a local version of
the Margulis Lemma. In particular one can prove (cf.[BLP2]):

Proposition 62. The manifold C∞ has a finite number of ends, which are
smooth cusps.

Lemma 63. The manifold Csmooth
∞ is hyperbolic.

Proof. The incomplete hyperbolic metric can be deformed around the sin-
gularity to have a complete metric of strictly negative curvature, (cf.[Ko]).
The metric is unchanged along the complete smooth cusps of Csmooth

∞ . This
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implies that Csmooth
∞ is irreducible and atoroidal, since strictly negative cur-

vature forbides essential spheres or essential tori (using Cartan-Hadamard
Theorem and minimal surfaces). Then the result follows from Thurston’s
hyperbolization theorem. ¤

Let Y be a compact core of Csmooth
∞ . By convergence, there exists a

(1 + εn)-bi-Lipschitz embedding fn : Y → Csmooth
n with εn → 0.

Lemma 64. C(tn) \ fn(Y ) is a union of smooth or singular solid tori.

Proof. The boundary ∂Y is a union of tori T 2
1 , . . . , T 2

r . Since C(tn)smooth is
hyperbolic, each fn(T 2

i ) is either compressible or end parallel in C(tn)smooth.
Assume first that fn(T 2

i ) is end parallel, i.e. fn(T 2
i ) bounds an end neigh-

borhood U of Csmooth
n homeomorphic to T 2 × [0,+∞). If fn(T 2

i ) separates
fn(Y ) from U , then the component of C(tn) \ fn(Y ) corresponding to T 2

i

is a singular solid torus. Now it is impossible that fn(Y ) ⊂ U for infin-
itely many n, because ρn ◦ fn∗ converges to the holonomy of the incomplete
structure on Csmooth

∞ , which is non-abelian. When fn(T 2
i ) is compressible,

then one of the following occurs:
(1) fn(T 2

i ) bounds a solid torus disjoint from fn(Y ).
(2) fn(T 2

i ) bounds a solid torus that contains fn(Y ).
(3) fn(T 2

i ) is contained in a ball.
As before, an argument with convergence of holonomy representations

eliminates cases (2) and (3), because the holonomy of Csmooth
∞ is non-abelian

and the holonomy of T 2
i is nontrivial. ¤

For each n, let λn
1 , . . . , λn

k be curves on ∂Y such that:
(1) there is one curve λn

i for each component of ∂Y corresponding to a
cusp of C∞.

(2) fn(λn
i ) is a meridian of a possibly singular solid torus lying in C(tn)\

fn(Y ).

Lemma 65. For each i, λn
i →∞.

Proof. Otherwise, for some i the curve λn
i = λi is independent of n. Thus

ρn(fn∗(λi)) converges to the holonomy of λi in Csmooth
∞ , which is parabolic.

This gives a contradiction with the fact that ρn(fn∗(λi)) is either trivial or
a rotation of angle 2π

mi
tn (that converges to 2π

mi
t∞). ¤

For each n we consider the Dehn filling of Y along λn
1 , . . . , λn

k . This man-
ifold is the underlying space of C(tn) minus open regular neighborhoods of
some singular components (the ones that correspond to the singular com-
ponents of C∞). Thus we may assume that topologically this Dehn filling is
independent of n. Now using Lemma 65, Thurston’s hyperbolic Dehn filling



24 MICHEL BOILEAU

theorem, and volume estimates, one can show that those Dehn fillings are
different. This contradiction finishes the proof of Theorem 56. ¤

8. The fibration theorem

First we introduce Gromov’s simplicial volume which a crucial ingredient
used to prove the fibration theorem. It has been introduced by M. Gro-
mov [Gro] and it is connected to volumes of hyperbolic manifolds.

8.1. Gromov’s simplicial volume. Let M be a topological space. Our
first goal is to define a semi-norm on Hk(M,R). A real k-chain on M
is a linear combination c = Σiaiσi, where the ai’s are real numbers and
the σi’s are continuous maps from the standard k-simplex to M . We set
‖c‖ := Σi|ai|. The semi-norm ‖z‖ of an element z ∈ Hk(M,R) can now be
defined as the infimum of the norms of cycles representing z.

If M is a closed n-manifold, then it has a fundamental class [M ] ∈
Hn(M,R). We define the simplicial volume of M , by ‖M‖ := ‖[M ]‖. More
generally:

Definition 66. Let M be a compact orientable n-manifold,

‖M‖ = inf





n∑

i=1

|λi|
∣∣∣∣∣

n∑
i=1

λiσi is a cycle representing a fundamental

class in H3(M,∂M ;R), where σi : ∆3 → M
is a singular simplex and λi ∈ R, i = 1, . . . , n.





A basic idea we will exploit is that nonvanishing of simplicial volume is
associated to some kind of “hyperbolic” behavior. Let us illustrate this on
examples.

Proposition 67. Let M be a closed manifold. If there exists a self-map
f : M → M with | deg(f)| ≥ 2, then ‖M‖ = 0.

Corollary 68. Spheres and tori of any dimension have zero simplicial vol-
ume.

Exercise 69. Prove Proposition 67. (Hint: recall that the degree of a map
f : M → N can be defined by f∗[M ] = deg(f) · [N ].)

By contrast, hyperbolic manifold s have nonzero simplicial volume. More
precisely their simplicial volume is equal to the hyperbolic volume up to a
constant factor:

Theorem 70. For n ≥ 2, let vn be the supremum of volumes of geodesic
simplices in Hn. Then for all hyperbolic n-manifolds we have:

‖M‖ =
volM

vn
.
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Remark 71. Proving≥ is not too hard. It uses the idea of “straightening”
cycles, together with the fact that for any “straight” cycle c representing [M ],
the volume of M is equal to the weighted sum of the volumes of the simplices
of c provided they are counted “algebraically”, i.e. taking into account orien-
tations and multiplicities. The other direction is more involved. See [BeP,
C4] for a detailed proof.

Here are some important properties of the simplicial volume:

Properties

• ||M1]M2|| = ||M1||+ ||M2||.
• For 3-dimensional manifolds, ||M1

⋃
T 2 M2|| ≤ ||M1|| + ||M2|| with

equality if the boundary torus T 2 is incompressible in both M1 and
M2.(cf. [Gro] (see also [Ku]).

Since the simplicial volume is additive with respect to gluing manifolds
along incompressible tor, the following corollary is a consequence of the
JSJ-decomposition of a Haken 3-manifold.

Corollary 72. Let M be a compact, orientable, Haken 3-manifold. Then
‖M‖ 6= 0 if and only if M has at least one hyperbolic piece in its JSJ-
decomposition.

Simplicial volume will be used in the next section to analyze collapses.
We shall use Corollary 72 and the following vanishing theorem of Gromov
(see [Gro] and [Iva]). We say that a covering of a manifold has dimension
k if its nerve has dimension k (i.e. k + 1 is the maximal number of sets of
the covering that contain a given point of the manifold).

We say that a subset S in a manifold M is amenable if the image of
π1S → π1M is amenable. Notice that virtually abelian groups are amenable.

Theorem 73 (Gromov’s Vanishing Theorem). If M is a n-manifold with
a (n− 1)-dimensional covering by amenable sets, then ‖M‖ = 0.

8.2. Strategy of the proof of the fibration theorem. Throughout this
section, we assume that C is a cone manifold structure on O of constant
curvature in [−1, 0], with cone angles between ω and the orbifold angles of
O. We also assume that C is δ-thin (i.e. each point has cone injectivity
radius < δ). We shall show the existence of a constant δ0(ω) > 0 such that
if δ < δ0(ω) then O is Seifert fibered.

The strategy of the proof consists in choosing a Seifert fibered suborbifold
W0 ⊂ O which is a quotient of a solid torus or a thickened torus such that:

(i) O0 := O − int(W0) is irreducible;
(ii) any manifold covering of O0 has trivial simplicial volume.
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Then Corollary 72 implies that any finite regular manifold covering of O0

is a graph manifold, and therefore by Meeks and Scott [MS] O0 itself is a
graph orbifold. Hence O is Seifert fibered by atoroidality.

8.3. Local Euclidean structures. To understand the local geometry of
thin cone manifolds of nonpositive curvature, we need some facts about
non-compact Euclidean cone manifolds. We first give some examples.

Example 74. The following are non-compact Euclidean cone 3-manifolds.

(1) The model spaces H3
0 and H3

0 (α).
(2) Quotients of H3

0 (resp. H3
0 (α)) by an infinite cyclic group generated

by a screw motion (resp. a screw motion respecting the singular
axis.) The underlying space is S1 × R2, and the singular locus is
empty (resp. a core circle).

(3) The product of R with a closed Euclidean cone 2-manifold.
(4) A slightly more complicated example is obtained by taking the quo-

tient of the previous one by a metric involution τ that reverses the
orientation of both factors. For instance T 2 admits an involution
such that the quotient is topologically an annulus. This gives S1×R2

with singular locus two circles of angle π.

Definition 75. A soul S of a non-compact Euclidean cone manifold E is a
totally geodesic compact submanifold with boundary either empty or singular
with cone angle π, such that E is isometric to the normal bundle on E (with
infinite radius).

In example (i) above the soul is a point. In example (ii) it is a circle. We
leave it as an exercise to determine the soul in examples (iii) and (iv).

Proposition 76. Every non-compact Euclidean cone manifold with cone
angles ≤ π has a soul.

This proposition can be used to classify Euclidean cone 3-manifolds. See
[BLP2, BoP, CHK] for a complete list.

Next lemma is the orbifold analogue of [CG, part 2, Proposition 3.4] in
the case of Riemannian manifolds with bounded curvature, which gives a
local description of collapsing manifolds.

Lemma 77. For every ε > 0 and D > 1, there exists δ0 = δ0(ε,D, ω) > 0
such that, if C is a cone 3-manifold satisfying all hypotheses of Theorem 57,
in particular is δ-thin with δ < δ0, then for each x ∈ C there is a neigh-
borhood Ux ⊂ C of x, a number νx ∈ (0, 1) and a (1 + ε)-bi-Lipschitz
homeomorphism fx between Ux and the normal cone fiber bundle of radius
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νx of the soul S of a non-compact Euclidean cone 3-manifold. In addition
dimS = 1 or 2, and

max
(
d(fx(x), S) , Diam(S)

) ≤ νx/D.

Proof. The proof is by contradiction. If the assertion were false, then there
would exist ε > 0, D > 1 and a sequence of cone manifolds Cn with diameter
≥ 1, curvature in [−1, 0] such that Cn is 1

n -thin, and there would exist
points xn ∈ Cn for which the conclusion of the lemma does not hold with
the constants ε,D.

Set λn = cone-inj (xn). By the compactness theorem (Thm. 54), a sub-
sequence of ( 1

λn
Cn, xn) converges to a non-compact Euclidean 3-manifold

(E, x∞). Since cone-inj (x∞) = 1, the soul of E has dimension one or two.
Using the properties of geometric convergence, one can prove that the con-
clusion of the lemma holds for xn provided that n is large (see [BLP2] and
[BoP] for details). ¤

The neighborhoods Ux in this lemma are called (ε,D)-Margulis’ neigh-
borhoods, and the Euclidean cone manifolds with soul S are called local
models. The local models E are described according to the dimension of
the soul S (cf. [BoP]):

– When S is two dimensional and orientable, then E is isometric to
the product S × R. The possible 2-dimensional cone manifolds S
are a torus T 2, a pillow S2(π, π, π, π) and a turnover S2(α, β, γ),
with α + β + γ = 2π.

– When S is two dimensional but non orientable (possibly with mirror
boundary), then E = S̃×R/τ , where S̃ is the orientable covering of
S and τ is an involution that preserves the product structure and
reverses the orientation of each factor. It is a twisted line bundle
over S.

– When dim(S) = 1, then either S = S1 or S is an interval with
mirror boundary (a quotient of S1). In the former case, E is either
a solid torus or a singular solid torus. In the latter, E is a solid
pillow.

We apply this lemma to each point of C with some constants D > 1,
ε > 0 to be specified later. Consider the thickening

Wx := f−1(Nλνx(S))

of the soul of Ux where 0 < λ < 1
D . We will also view Wx as a suborbifold

of O.
The topology of Wx is easily described from the list of all possible non-

compact Euclidean cone manifolds. Moreover, not all the models can occur:
Wx contains no turnover, because O is small and of cyclic type.
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From the classification of noncompact Euclidean cone 3-manifolds, one
can deduce:

Lemma 78. Each Wx admits a Seifert fibration (in the orbifold sense). In
particular, ∂Wx is a union of tori and pillows.

Proof. To prove this, notice that Nνx/D(S) is a Euclidean structure on Wx,
with cone angles ≤ than the orbifold angles. Then the lemma is proved
by looking at all the possible cases for S, using the fact that S is never a
turnover nor a quotient of it. ¤
Lemma 79. If ε = ε(ω) > 0 is small enough, D = D(ω) is large enough
and if Wx ∩ Σ 6= ∅, then O \ int(Wx) is irreducible.

Proof. We have to show that Wx is not contained in a discal suborbifold.
Since the pairs (O,Wx) and (O, Ūx) are homeomorphic, this amounts to
showing that Ux is not contained in a discal suborbifold, and we can use
the metric properties of Ux.

Suppose that Ux meets the singularity and is contained in the discal
suborbifold ∆. Topologically, ∆ is a singular ball with one axis a. Hence
Ux cannot contain an entire singular component. By looking at the possible
local models one can show that Ux contains at least two singular segments
of length > νx whose midpoints m1 and m2 have distance < νx

D (1 + ε).
By developing the smooth part of D into model space, and composing the
developing map with the projection onto the axis fixed by the holonomy
representation, we find a 1-Lipschitz function on D whose restriction to the
axis a is linear with slope 1. It follows that a is distance minimizing inside
∆ and hence d∆(m1,m2) > νx, a contradiction. This finishes the proof of
irreducibility. ¤
8.4. Covering by virtually abelian subsets. We assign a special role
to one of the subsets Wx along which we will cut O later on. We choose
x0 ∈ C with Wx0 ∩ Σ 6= ∅ and:

νx0 ≥
1

1 + ε
sup{νx|Wx ∩ Σ 6= ∅}.

We denote W0 = Wx0 , O0 = O \ int(W0), ν0 = νx0 . In view of Lemma 79,
O0 is irreducible.

Definition 80. We say that a subset S ⊂ O is virtually abelian in O0 =
O \ int(W0) if the image of π1(S \ int(W0)) → π1(O0) is virtually abelian.
Moreover, for x ∈ C we define:

vab(x) = sup{r > 0 | Br(x) is virtually abelian in O0}
and r(x) = inf( vab(x)

8 , 1).
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Lemma 81. Let x, y ∈ C. If Br(x)(x) ∩Br(y)(y) 6= ∅, then
(a) 3/4 ≤ r(x)/r(y) ≤ 4/3;
(b) Br(x)(x) ⊂ B4r(y)(y).

Proof. Assume r(x) ≥ r(y). Either r(y) = 1 or r(y) = vab(y)/8. If r(y) = 1,
then r(x) = 1 and assertion (a) is clear. If r(y) = vab(y)/8, by using the
inclusion B6r(x)(y) ⊂ B8r(x)(x) and the fact that 8r(x) ≤ vab(x), it follows
that B6r(x)(y) is virtually abelian in O0. Hence r(x) ≤ vab(y)/6 ≤ 4r(y)/3
and (a) is proved.

Assertion (b) follows easily from (c) and the inclusion Br(x)(x) ⊂
B2r(x)+r(y)(y). ¤

Lemma 82. For D sufficiently large holds W0 ⊂ B 1
9 r(x0)(x0).

Proof. This follows from the fact that vab(x0) ≥ 1
1+ενx0(1− 1/D) and W0

is contained in the ball of radius 2(1 + ε)ν/D centered at x0. ¤

We have already fixed a point x0 ∈ W0. We consider then a finite se-
quences {x0, x1, . . . , xp} starting with x0, such that:

(2) the balls B 1
4 r(x0)(x0), . . . , B 1

4 r(xp)(xp) are pairwise disjoint.

A sequence satisfying (2) is finite, by Lemma 81 and by compactness. More-
over we have the following property:

Lemma 83. If the sequence {x0, x1, . . . , xp} is maximal for property (2),
then the balls B 2

3 r(x0)(x0), . . . , B 2
3 r(xp)(xp) cover C.

Proof. Let x ∈ C. By maximality, the ball B 1
4 r(x)(x) intersects B 1

4 r(xi)(xi)
for some i ∈ {1, . . . , p}. From property (a) of Lemma 81, r(x) ≤ 4

3r(xi) and
thus x ∈ B

(
xi,

r(xi)+r(x)
4

) ⊂ B 2
3 r(xi)(xi). ¤

Given a sequence {x0, x1, . . . , xp}, maximal for property (2) and starting
with x0 ∈ W0, we consider the covering of C by the following open sets:

• V0 = Br(x0)(x0), and
• Vi = Br(xi)(xi) \W0, for i = 1, . . . , p.

Lemma 83 guarantees that the open sets V0, . . . , Vp cover C.
We put ri = r(xi) and Bi = Br(xi)(xi).
We want to replace the covering {V0, . . . , Vp} by a covering of O still con-

sisting of virtualy abelian subsets, but that has dimension 2 and dimension 0
in W0. To obtain the new covering we prove the following proposition:

Proposition 84. If D is large enough and ε > 0 is sufficiently small, then
there exists a 2-dimensional complex K(2) and a continuous map f : C →
K(2) such that:
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(1) f(W0) is a vertex of K(2).
(2) The inverse image of the open star of each vertex is virtually abelian

in O0.

Notice that by taking the inverse images of the open stars of vertices of
K(2), this proposition tells us that O0 has a covering by virtually abelian
subsets. This covering has dimension 2 (i.e. each point belongs to at most
3 open sets). Moreover, only one open set intersects W0.

We first construct a Lipschitz map f : C → K, where K is the nerve of
the covering (i.e. 0-cells or K correspond to open sets, 1-cells to pairs Vi

and Vj with Vi ∩ Vj 6= ∅, and so on), such that:
(i) If x ∈ C belongs to only an open set Vi of the covering, then f(x)

is the corresponding vertex vi of K.
(ii) For every vertex vi of K, f−1(starvi) ⊂

⋃
Vj∩Vi 6=∅

Vj .

(iii) The Lipschitz constant of f restricted to
⋃

Vj∩Vi 6=∅
Vj is ≤ ξ

ri
for some

uniform constant ξ > 0 depending only on the dimension.

Lemma 85. There is a uniform bound N on the dimension of the nerve of
the covering {V0, . . . , Vp}.
Proof. It suffices to bound the number of balls Bi that can intersect a given
ball Bk. For every ball Bi intersecting Bk holds d(xi, xk) ≤ ri + rk < 3rk.
These points xi are separated from each other: d(xi1 , xi2) ≥ r(xi1 )+r(xi2 )

4 ≥
1
4r(xi). Since rk ≤ 1 it follows that there is a uniform lower bound on the
number of points xi. ¤

We consider the nerve K of the covering. It is a simplicial complex of
dimension k ≤ N that can be canonically embedded in Rp+1, where every
vertex correspond to a vector (0, . . . , 1, . . . 0) and where simplices of positive
dimension are defined by linear extension. || || is the usual norm on Rp+1.

Consider a smooth function τ : R → [0, 1] such that τ((−∞, 0]) = 0,
τ([1/3,+∞)) = 1, and |τ ′(t)| ≤ 4 for every t ∈ R.

We define
τi : V i → R

x 7→ τ(d(x, ∂Vi)/ri) .

Since τi
∼= 0 on ∂Vi, we extend it by 0 on C.

We need the following property of our covering:

Lemma 86. Every x ∈ C belongs to an open set Vi such that d(x, ∂V i) ≥
ri/3.
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Proof. Let x ∈ C, then x ∈ B 2
3 ri

(xi) for some i ∈ {0, . . . , p}; we fix this
index i. If i = 0 or if Bi ∩ W0 = ∅, then Vi = Bi and the lemma holds.
Hence we may assume that i > 0 and Bi ∩ W0 6= ∅. Moreover, we can
suppose d(x, x0) > 2

3r0. In this case Vi = B(xi, ri) \W0 and we claim that
d(x,W0) > 1

3ri.
To prove this claim, we use the inequality:

d(x,W0) ≥ d(x, x0)−Diam(W0) ≥ 2
3r0 − 1

9r0 = 5
9r0,

which is true because d(x, x0) > 2
3r0 and Diam(W0) ≤ 1

9r0.
Since B(x0, r0) ∩ B(xi, ri) 6= ∅, r0 ≥ 3

4ri. Hence d(x,W0) ≥ 5
12ri > 1

3ri,
and the claim is proved. ¤

A consequence of this lemma is that:
p∑

i=0

τi(x) ≥ 1 ∀x ∈ C.

Hence the following application f : C → K(k) is well defined:

f(x) =
1∑p

i=0 τi(x)
(τ0(x), . . . , τp(x)).

Next proposition summarizes the properties of f .

Proposition 87. f : C → K(k) is a Lipschitz map such that:
(1) For every vertex v ∈ K(0), there exists i(v) such that f−1(Star(v)) ⊂⋃

Vj∩Vi(v)6=∅ Vj is virtually abelian in O0.
(2) If x ∈ C belongs to only one open set of the covering, then f(x) ∈

K(0). In particular f(W0) ⊂ K(0).
(3) For all x and y ∈ ⋃

V0∩Vi 6=∅ Vj, ||f(x)− f(y)|| ≤ ξ
ri

d(x, y).

Proof. Properties (1) and (2) follow from the construction and the proper-
ties of the balls Bi.

By definition the function τi are 4
ri

-Lipschitz. Let x ∈ Vi. Then at most
N +1 functions τj are non-zero in x, and all of them have Lipschitz constant
≤ 4

3 · 4
ri

. Now property (3) follows since the functions

(x0, . . . , xN ) 7→ xk∑N
i=0 xi

are Lipschitz on {x ∈ RN+1 | xi ≥ 0 ∀i ∧∑N
i=0 xi ≥ 1}.

More details of the proof can be found in [BoP, 5.3]. ¤

We now homotope f into the 3-skeleton K(3) by an inductive procedure
while controlling the local Lipschitz constant.
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Lemma 88. For d ≥ 4 and ξ > 0, there exists ξ′(d, ξ) > 0 such that the
following is true: a continuous map g : C → K(d) which verifies properties
(1), (2) and (3) of proposition 87 can be homotoped to a map g̃ : C → K(d−1)

with the same properties, but with the Lipschitz constant ξ being replaced
by ξ′.

Proof. It suffices to find a constant θ(d, ξ) > 0 such that every d-dimensional
simplex σ ⊂ K contains a point z at distance ≥ θ from both ∂σ and the
image g(C). To deform g into the (d− 1)-skeleton we compose it on σ with
the central projection from z. This will increase the Lipschitz constant by
a factor bounded in terms of d, and it reduces the inverse images of open
stars of vertices.

If θ does not satisfy the desired property for some d-simplex σ, then
g(C)∩int(σ) must contain a subset of at least λ1(d)· 1

θd points with pairwise
distances ≥ θ. Let A ⊂ C be a set of inverse images, one for each point.
Let vVk

be a vertex of σ. Then A ⊂ Vk ⊆ Bk. Since f is ξ
rk

-Lipschitz on
Vk, the points of A are separated by distance 1

ξ rkθ. Since rk ≤ 1, volume
comparison (using Bishop-Gromov inequality) implies that A contains at
most λ2 · ( ξ

θ )3 points. The inequality λ1(d) · 1
θd ≤ λ2 · ( ξ

θ )3 yields a positive
lower bound θ0(d, ξ) for θ. Hence any constant θ < θ0 has the desired
property. ¤

Now we can further homotope f into the 2-skeleton.

Proposition 89. For suitable constants ε > 0 and D > 1, the map f : C →
K(k) can be homotoped to a map f̃ : C → K(2) that satisfies properties (1)
and (2) of proposition 87.

Proof. Using Lemma 88 repeatedly, we can homotope f to a map f̂ : C →
K(3) which satisfies properties (1), (2) and (3) of proposition 87. Then it
suffices to show that no 3-simplex σ ⊂ K3 is contained in the image of f̂

and therefore f̂ can be deformed into the 2-skeleton by a retraction in each
3-simplex σ.

To show that the image f(C) misses a point from every 3-simplex σ of
K3 we show the following estimate:

Lemma 90. For sufficiently small ε > 0 there exists a constant b = b(ε) > 0
such that for all i:

vol(Vi) ≤ b
1
D

r3
i .

Proof. We first show that W0 does not enter to far into the other sets Uxi .
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Claim 91. There exists a constant c(ε) > 0 such that, for D > 1 is suf-
ficiently large, d(xi, W0) ≥ c νxi for all i 6= 0. In particular ri ≥ c νxi for
all i.

Proof. Using Lemma 81, we obtain:

d(xi,W0) ≥ d(xi, x0)−Diam(W0 ∪ {x0}) ≥

≥ 1
4
r0 − 1

9
r0 >

1
8
r0 ≥ 1

64(1 + ε)
νx0 .

For the last estimate, we use that vab(x0) ≥ 1
1+ε νx0 and, since νx0 ≤ 1,

r0 = inf
(

va(x0)
8 , 1

)
≥ 1

8(1+ε) νx0 .

We now assume that W0 intersects Uxi
because otherwise there is nothing

to show. If W0 ⊂ Uxi then, according to our choice of W0, νx0 ≥ 1
1+ε νxi ,

and the assertion holds with c < (8(1 + ε))−2.

We are left with the case that W0 6⊂ Uxi but intersects the ball of radius,
say, νxi

4 around xi. Then we can bound the ratio Diam(W0)
νxi

from below by:

(1 + ε)
νxi

D
+

νxi

4
+ Diam(W0) ≥ νxi

1 + ε
.

By definition of W0 we have Diam(W0) ≤ (1 + ε) 2
Dνx0 Combining these

estimates, we obtain a lower bound for d(xi,W0)
νxi

, as claimed. ¤

Thus, by Bishop-Gromov inequality

vol(Vi) ≤ volB(xi, ri) ≤ volB(xi, c νxi)
vol−1(ri)

vol−1(c νxi)
.

Since vol−1(t) = π(sinh(t)− t), it follows that there is a constant c1 > 0
such that:

volB(xi, ri) ≤ volB(xi, c νxi)c1
r3
i

(νxi)3
.

On the other hand, since d(fxi(xi), Si) ≤ νi/D, if we choose c < 1
3D , we

get that: fxi

(
B(xi, c νxi)

) ⊂ Nνi(Si).
This inclusion together with the previous inequality gives:

volB(xi, c νxi) ≤ (1 + ε)3 volNνxi
(Si) ≤ 23 volNνi(Si) ≤ 23

(
2π

D

)
ν3

xi

Therefore: vol(Vi) ≤ vol(Bi) ≤ b
D r3

i , with b = 232πc1. ¤
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We finish now the proof of proposition 89.
Since

vol(σ ∩ f̂(C)) ≤
∑

Vj∩Vi(v) 6=∅
vol(f(Vj)) .

By the Lipschitz property 3) of f̂ :

vol(σ ∩ f̂(C)) ≤
∑

Vj∩Vi(v) 6=∅

(
ξ

ri(v)

)3

vol(f(Vj)) .

Since rj/ri(v) ≤ 4
3 , using lemma 90 we obtain:

vol(σ ∩ f̂(C)) ≤
∑

Vj∩Vi(v) 6=∅

(
4
3

ξ

rj

)3

vol(Vj) ≤ (N + 1)
(

4
3

ξ

)3
b

D
.

Hence:
vol(σ ∩ f̂(C)) ≤ a

D
,

for some uniform constant a = (N + 1)
(

4
3 ξ

)3
b > 0. By choosing D > 1

sufficiently large we get

vol(σ ∩ f̂(C)) < vol(∆3) .

¤

Remark 92. If we forget about the singular locus Σ and consider orbifolds
O such that || |O| || 6= 0, then the proof shows that there is no collapse and
therefore O is hyperbolic.

8.5. Vanishing of simplicial volume. The orbifold O has a finite, regular
covering which is a manifold M . There is an induced finite, regular covering
p : M0 → O0, where M0 is an irreducible manifold, by the equivariant sphere
Lemma, and whose boundary ∂M is an union of tori. Therefore M0 is Haken
and has a JSJ-splitting into Seifert fibered and hyperbolic submanifolds.

Proposition 93. All components in the JSJ-splitting of M0 are Seifert
fibered.

Proof. We may assume that the boundary of M0 is incompressible because
otherwise M0 is a solid torus and the assertion holds. We construct a closed
manifold M0 by Dehn filling on M0 as follows. Let Y ⊂ M0 be a component
of the JSJ-splitting which meets the boundary, Y ∩ ∂M0 6= ∅. When Y
is hyperbolic we choose, using the Hyperbolic Dehn Filling Theorem, the
Dehn fillings at the tori of Y ∩∂M0 in such a way that the resulting manifold
Y remains hyperbolic. When Y is Seifert fibered, we fill so that Y is Seifert
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fibered and the components of ∂Y − ∂M0 remain incompressible (i.e. the
surgery slope meets the fiber in at least two points). This can be done
because the base of the Seifert fibration of Y is neither an annulus nor a
disk with zero or one cone point. The manifold M0 has a JSJ-splitting
along the same tori as M and with the same number of hyperbolic (and
also Seifert fibered) components.

It suffices to show that M0 has zero simplicial volume, because then
Corollary 72 imply that M0 contains no hyperbolic component in its
JSJ-splitting. To this purpose we will apply Gromov’s vanishing theorem
(Thm. 73).

We compose the map of Proposition 84 f̃ : O → K(2) with the projection
p and extend the resulting map M0 → K(2) to a map h : M0 → K(2) by
mapping the filling solid tori to the vertex vV0 . Notice that h is continuous
because f̃(∂O0) = {vV0}. The inverse images under h of open stars of
vertices are virtually abelian as subsets of M0. These subsets yield an open
covering of M0 with covering dimension ≤ 2. By Gromov’s theorem, the
simplicial volume of M0 vanishes. ¤

Conclusion of the proof of Theorem 57.

Since M0 is a graph manifold and M results from M0 by gluing in a
Seifert manifold, M is itself a graph manifold (cf. [Wa1]). Since p : M →
O is a regular covering, it follows from Meeks and Scott work [MS] that
there is a graph structure on M which is invariant by the group of covering
translations. Hence O is a graph orbifold. As O is atoroidal, it must be
Seifert fibered. ¤
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