THE STRUCTURE AND REACTIONS OF
NEUTRON-RICH NUCLEI

Carlos A. BERTULANI

National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing,
MI 48824-1321, USA

L. Felipe CANTO
Instituto de Fisica, Universidade Federal do Rio de Janeiro, 21945 Rio de Janeiro, R.J., Brazil

and

Mahir S. HUSSEIN

Nuclear Theory and Elementary Particle Phenomenology Group, Instituto de Fisica da Universidade
de Sao Paulo, C.P. 20516, 01498 Sdo Paulo, S.P., Brazil

NORTH-HOLLAND



PHYSICS REPORTS (Review Section of Physics Letters) 226, No. 6 (1993) 281-376. PHYSICS REPORTS
North-Holland

The structure and reactions of neutron-rich nuclei*

Carlos A. Bertulani®, L. Felipe Canto® and Mahir S. Hussein®

* National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321, USA

® Instituto de Fisica, Universidade Federal do Rio de Janeiro, 21945 Rio de Janeiro, R.J., Brazil

¢ Nuclear Theory and Elementary Particle Phenomenology Group, Instituto de Fisica da Universidade de Sdo Paulo, C.P. 20516,
01498 Sdo Paulo, S.P., Brazil

Received September 1992; editor: G.E. Brown

Contents:

1. Introduction 283 4.1. Inclusive n* and n~ production cross sections 339
1.1. Generalities 283 4.2. Pion energy spectra 344
1.2. Reactions of exotic nuclei 284 5. Near-barrier fusion of exotic nuclei 346
1.3. Three-body considerations of the structure of 5.1. Effects of the coupling to the pygmy resonance 347

exotic nuclei 288 5.2. Effects of the coupling to the breakup channel 348

2. Reaction cross section 291 5.3. Application to the fusion of !'Li with 2°®Pb and
2.1. Cluster model 291 238(J at near-barrier energies 349
2.2. Hybrid RPA-Cluster model for the dipole 6. Nuclear astrophysics and exotic nuclei 351

strength function of ''Li 298 6.1. Coulomb dissociation experiments 351
2.3. Low-energy behaviour of !!Li dissociation cross 6.2. Direct measurements 355
section 301 7. Momentum and angular distributions in exotic beam
2.4. Nonperturbative character of Coulomb breakup induced reactions 357
of weakly bound nuclei 304 7.1. Momentum distribution 357

3. Elastic scattering 314 7.2. Angular distribution of neutrons 362
3.1. Optical-model analysis 314 8. Conclusions 362
3.2. Multiple-scattering theory approach 322 Appendix A. Theory of the primary yield 363
3.3. Polarization potentials 332 Appendix B. Uniform approximation for K,,(¢) 366

4. Pion production with radioactive nuclei 339 References 372

Note added in poof 375

Abstract:

This article aims at reviewing the present status of the understanding of the structure and reactions of neutron-rich nuclei. The
properties of the low-lying soft giant dipole resonance in *'Li are discussed within several models proposed for the purpose. The
existence of this collective mode in heavier neutron-rich nuclei is considered. The question of the separation energy of a single neutron
and a dineutron is discussed.

The nuclear and Coulomb dissociation cross sections for !'Li on several targets are calculated and compared to the available data.
The question of the neutron halo is then considered in detail.

The elastic scattering of *!Li and other unstable nuclei on several stable targets (p, 2°5Pb, etc.) is discussed in detail. The signature of
the halo on the elastic cross section o, is then assessed. Proposed experiments are discussed in the light of the theoretical prediction. The
effect of the break-up channel (2n + °Li in !'Li) on o, is thoroughly analysed. The total reaction cross section and total nuclear reaction
cross section is also calculated using the microscopic tp4 p,-Glauber theory. The production of n’s is considered and model calculations
are performed.

The low-energy fusion of neutron-rich nuclei with heavy targets is analysed. Having in mind the possibility that the low-lying soft
giant-dipole resonance may greatly aid the system to fuse even at sub-barrier energies, the viability of produing superheavy elements are
studied. The astrophysical implications of exotic nuclei are assessed and discussed. Finally, the momentum and angular distributions of
fragments from ''Li breakup are calculated and compared to the available data.

* Supported in part by the CNPg-Brazil and the NSF-USA.
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1. Introduction
1.1. Generalities

The recent interest in drip-line nuclei only appeared after these nuclei could be studied in nuclear
reactions, in particular due to the series of experiments carried out at Berkeley by Tanihata et al.
[Ta85a,b; Ko 88,89]. Such experiments have also been performed at GANIL and at Michigan
State University with intermediate energy beams [Mi87; SL89; An90; Or92; Ie93]. In this
introduction we shall concentrate on the most relevant aspects of the data and study especially the
fragmentation of '!Li. We shall closely follow the ideas discussed by Bertulani and Hussein
[BH90a]. The fragmentation of other neutron-rich nuclei, like *Be, should follow the same
scheme. Among the several distinctive features of the experimental results, an intriguing one is
related to the momentum distribution of the °Li fragments originating in the reaction
111i + target - °Li + X. These fragments originate from peripheral reactions and give informa-
tion about the nuclear matter distribution near the surface of the !'Li isotope.
The perpendicular momentum distribution of the °Li fragments shows a “two-peak” structure
[Ta85a,b], with a narrow peak on top of a wider one (see fig. 1). The widths of gaussian fits to
these peaks are given by 6,4 = 95 + 12 MeV/c for the wider peak, and 6,,;0w = 23 + 5 MeV/c
for the narrower one. Such structure has also been found in the reaction '*Be + target — ?Be + X.
In the case of 1Li it is known that the separation energy of the last two neutrons is [Th 75; Wo 88]
S, = 0.25 + 0.08 MeV, while '°Li is unbound by S;, = 0.8 + 0.25 MeV.

Hansen and Jonson [HJ 87] have argued that it is the strength of the neutron pairing which is
responsible for the differences in the separation energies of ''Li and of other neutron-rich nuclei.

T T vT*ﬁ T T T ]
8of . 3
Li

&0 -

“wof .

0k /- ""\\ 3

0 ”./’I 1 ‘._r. ] :;

VT T

40F *Li =

30 =

20F =
: ¢

10+ -]
Al I I A

90 "o 100 200

0
p, (MeV/C)
Fig. 1. (a) Calculated transverse momentum distribution of °Li in the reaction *'Li + !2C — °Li + 2n + X. The dashed (dotted) line is
obtained by assuming knock-out of two neutrons from the core (halo) of !!Li. The solid line represents the weighted sum of the two.

(b) Comparison with the experimental data (for more details see chapter 4).
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This pairing makes the bond between the two loosely bound neutrons much stronger than the
respective bonds between each of them and the °Li core. That is, the !Li is much like a cluster
nucleus with a dineutron system bound to the °Li core. In this general introduction we show that
both the widths of the momentum distributions as well as the total cross sections can be explained
by assuming a simple cluster-like structure for 1!Li as a dineutron bound to a °Li core. But we also
show that analogous results can be obtained by considering the excitation of a soft vibration of the
protons against the neutrons in ''Li. The presently available data do not unambiguously distin-
guish between the two models. We also discuss some qualitative three-body dynamical effects
in 1Li.

1.2. Reactions of exotic nuclei

Due to the low energy necessary to remove the neutron pair, the reaction process is of
peripheral nature. The fragmentation then originates due to the nuclear field when the tails of the
nucleonic distributions just touch each other, or the Coulomb field even when the nuclei pass
several tens of fermis far from each other. The scattering angle 0 is therefore very small, and the
momentum transfer in the reaction, Ap, is related to energy transfer by

Ap = pscos@ — p; = E*/v, (1.1)

where v is the projectile velocity. Since the energy E* transferred in peripheral processes is typically
of order of few MeV, it cannot be absorbed by a single nucleon. The nucleon would carry
a momentum ~ (2mE*)'/2, which is appreciably larger than that of eq. (1.1) for v ~ c. However,
such energy could be absorbed by a nucleon pair, or a pair of clusters, which can have high kinetic
energy and small total momentum, when the nucleons move approximately with opposite direc-
tions. The relation (1.1) can also be satisfied if collective excitations, like vibrational modes, are
excited.

Let us assume that the energy E* deposited in the nucleus with mass number A leads to its
fragmentation into two pieces which fly apart with opposite momenta with the same magnitude p.
If one of the fragments has mass number a, the following relations holds

E* — e =p2/2(A — a)mn + p?/2amy , (1.2)

where my, is the nucleon mass and ¢ is the binding energy between the two clusters. The momentum
width of the fragments is obtained, after an average of (1.2), as

(p?> =2mn(K>a(A—a)/A, (K)=(E*)—<e), (1.3)

with ( K) the average kinetic energy of the fragments.

This formula is very much like the one obtained by Goldhaber [Go 74] for the momentum width
of a fragment of mass number a in the fragmentation of a nucleus of mass number A. No wonder,
because both approaches rely on momentum and energy conservation. Goldhaber assumes that
the momentum width results from an average of the net momentum obtained by adding the
individual momenta of the nucleons inside the fragment at the exact moment it flies off the nucleus.
This procedure relates {p?) to the Fermi momentum Py of nucleus A. The final result (which
assumes { E*> ~ 0) is eq. (1.3) with 2my<{ K ) replaced by $ PZ.
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Since the transferred energy depends on the specification of the target, as well as on the beam
energy, then by means of a variation of these parameters the measurement of {p2) yields valuable
information about (E*). In the case of !!Li— °Li+ 2n, the narrow peak with width
{p*>Y?* =23 + 5MeV/c, gives (K> = 0.17 £+ 0.08 MeV, while for the wide peak with width
{p?>Y? =95 + 12 MeV/c one obtains (K> = 2.9 + 0.8 MeV. Since the binding energy ¢ of any
pair of neutrons in !'Li cannot be larger than some MeV (one could imagine that at least one of the
neutrons comes from the inner part of !'Li, where it is more tightly bound), the above results show
that the energy E* transferred in the process cannot be larger than some MeV, too. This means that
the dissociation is very soft and occurs at very large impact parameters, probing the tail of the
nuclear matter distribution in ''Li. The average kinetic energy { K ) associated with the narrow
peak is of the same magnitude as the binding energy of the loosely bound neutrons. Then, it may
give information about the correlation distance between the dineutron system and the °Li core,
within the cluster-like hypothesis. On the other hand, the wider peak reveals that a more tightly
bound neutron is taken out of !'Li. An analysis of the dissociation cross section as a function of the
relative final momentum of the fragments confirms the above hypothesis as we show next.

Assuming that the '!'Li possesses a binary cluster structure (dineutron + °Li), one can make
simple estimates of the cross sections for its dissociation. Using a deuteron-like wave function for
the pair of clusters and a strong absorption model, simple expressions were obtained by Bertulani
and Baur [BB88a]. The nuclear contribution to the differential cross section, in the limit that
g — 0, is obtained as

don/dq = Rrq?/(n? + %)%, (1.4

where q is the relative momentum of the clusters after the dissociation, Ry is the target radius, and
n = ./ 2ue/h, with p equal to the reduced mass of the clusters.

The Coulomb contribution to the differential cross section (taking only the El-multipole
contribution) in the same limit, is given by ref. [BB 88a]

doc , (N[ Z1A;— A Z,\*  ng? , 02

where y = (1 — v%/c?) /2 is the relativistic Lorentz factor, § = 0.891 and hw = #%(n% + ¢q3)/2u.
Ai(Z;) refers to the mass (charge) number of cluster i (4 = 4; + A;) and R = Rt + Rp.

The above expressions reveal that the spread in g2 is of order of {g?) = 5. This means that the
relative kinetic energy of the clusters after the dissociation has on the average the same value as
their binding energies. This is indeed what we obtained above for {( K> associated with the narrow
momentum component. Therefore, the narrow momentum component can be interpreted as
originating from the removal of two neutrons weakly bound in ''Li. The root-mean-square radius
for 1'Li, supposed to be a deuteron-like system, is {r2)1/2 = (1/\/5 )n ~ 5.8 fm. The experimental
value [Ta85a,b] for the r.m.s. radius of the °Li core is about 2.5 fm. Therefore, the dineutron
system forms a neutron halo around the °Li core.

As has been pointed out by Tanihata [Ta 88], the amount of kinetic energy associated with the
broad momentum width ( ~ 3 MeV) s related to the binding energy of neutrons in the °Li core. As
in the case of the °Li + 2n described above, a pair of neutrons in the °Li core can also absorb the
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transferred energy in the reaction with their final relative momentum and energy obeying eq. (1.1).
In this case the decay constant # in egs. (1.4) and (1.5) can be related to the average binding energy

of neutrons in the °Li core as n = ./mye./h. Taking e, ~ 3 MeV, this yields a r.m.s radius of about
2.65 fm, which agrees well with the r.m.s. radius of °Li.

Neutrons coming out of the °Li core can also originate from its collective excitation. The most
effective way of creating such excitations is by means of the Coulomb interaction. It gives the same
“kick” to all Z protons inside °Li, leading to their collective motion. For collisions with impact
parameter b, this kick leads to an energy transfer which can easily be calculated as [BB 87a]
AE, = 2Z(Zye?)?/myb?v?, where Zq is the target charge. But the protons are not free and they
pull the neutrons together. This leads to the motion of the whole nucleus, and the Coulomb recoil
that one obtains by assuming that the nucleus with mass number A4 is a rigid body is
AE, = 2(ZZre?)?/Amyb?v2. The difference between these energies goes to the vibration of the
Z protons against the N neutrons, and is

E* = AE, — AE; = 2A(NZ/A)(Zre?)? /myb?v? . (1.6)

If we assume that only the protons and neutrons in the °Li participate in these vibrations (N = 6,
Z = 3),and for !'Li beams (0.8 GeV A4) incident on Pb, one finds E* = 0.26 MeV in a collision with
b = 15 fm. This energy is fairly below the excitation energy of giant dipole resonances (GDR) in
normal nuclei, which means that the excitation cross section of a giant dipole mode in the °Li core
is small.

Indeed, assuming that this dipole resonance excited on the °Li core can be accounted for
in the same way as a normal giant dipole resonance positioned at Egg, and using the
Thomas—-Reiche-Kuhn (TRK) sum rule, one finds for the total Coulomb cross section

2r2

2 SR
Z%a<f) ~S—[§K0Kl—"27(1<%—1<g)]mb, (1.7)

Ior = Egr(MeV)

AN

SR = 60 (NZ/A),

where all modified Bessel functions, K,, are functions of ¢ = Egg R/yhv, and N, Z and A refer to the
neutron, charge and mass number of the °Li core (6, 3 and 9, respectively). Assuming that the
resonance lies in the energy range Egg = 10-20 MeV, and for beams with 0.8 GeV A incident on
Pb, one finds g >~ 50 mb.

One could think of other vibration modes in !'Li, like all protons vibrating against all neutrons,
or a °Li core vibrating against the dineutron system (such type of motion has been recently studied
by Suzuki et al. [Tk 88; SI90], which they called a pygmy resonance). For the former case (N = 8,
Z =3and A = 11) we find E* = 0.29 MeV, while for the latter case one makes the substitution of
Z by Z%/(A — 2) in the equation for AE; and obtains E* = 0.02 MeV. From these values one sees
that it is very improbable that the latter vibration mode could be excited. It is much more
reasonable to think that another possible way for the !Li to absorb energy is by the excitation of
vibrations of all protons against all neutrons in it. Due to the existence of the neutron halo, one
might think that the protons move almost freely inside the ''Li and that the excitation of such
dipole vibrations will occur at very small energies (soft dipole mode). Nonetheless, these con-
clusions are based on the idea that the coupling of the last two neutrons in 1!Li and the core is very



C.A. Bertulani et al., Structure and reactions of neutron-rich nuclei 287

strong. In fact, due to their low separation energy we expect the contrary to be true. Therefore, the
excitation of the pigmy resonance might be attainable.

Kobayashi et al. [Ko 89] have measured the total cross section for the dissociation of !!Li (into
9Li + 2n) incident on several targets (Pb, Cu and C) with 0.8 GeV A beams. We shall refer to their
particular result for Pb targets which has the advantage of having a large Z, and induces a large
Coulomb cross section. They obtained the value o¢c = 1.31 + 0.13 b. In the °Li + 2n cluster model,
the total cross section for direct Coulomb dissociation is obtained by an integration of (1.5) which
results in

c\*(Z,A,—A,Z,\* 1 v? :
GCD=%nz%a2<;) (—[—) F<ln(yhv/5eR)2—?)- (19)

For the reaction cited above it gives ocp ~ 1.44 + 0.3 b, where the uncertainties are due to the error
in the binding energy.

The nuclear contribution to the direct break-up cannot be obtained by an integration of (1.4)
because it was based on the impulse approximation, neglecting the interference with an eclipse
term. Including such an effect the cross section is well described by the Glauber formula [G155]

onp = 47(2In2 — 3)Rq/n . (1.9)

In addition to this (diffractional) dissociation one has to account for the absorption of the 2n
system by the target (stripping). The cross section for this process was obtained for the deuteron by
Serber [Se 47]. For other cluster-like a + (4 — a) nuclei one has

ONs = %n(a/A)(RT/_n) . (1.10)

For the reaction !'Li + target — °Li + X one obtains oxp = 270 13° mb and ong = 165753 mb,
respectively. One then sees that the Coulomb dissociation accounts for the main part of the
measured cross section, although the nuclear contribution is not negligible. At this point we
observe that the Coulomb-nuclear interference in these reactions may be neglected for the
following reason. The nuclear contribution to the total cross section can at most come from those
impact parameters (from b,y;,, t0 by, ) for which the neutron halo of !Li touches the nuclear matter
distribution of Pb. The contribution of the Coulomb field to the total cross section from this
interval of impact parameters is, percentually, given by

4 = In(bmax/bmin)/In(yhv/debrmin) . (1.11)

Using typical values of b, ~ 10 fm and b,,,, ~ 13 fm, one finds 4 ~ 5%. This means that only
about 5% of the Coulomb contribution should interfere with the nuclear contribution. The reason
is that, although the fragmentation induced by the Coulomb interaction may be small in a single
collision, the interval of impact parameters contributing to the total cross section is very large, up
to some hundreds of fermi. Therefore, we can write oy ~ on + 6c. Adding the Coulomb
dissociation, the nuclear diffraction dissociation, and the stripping cross sections one can repro-
duce quite well the experimental value of Kobayashi et al. [Ko 89] for the total cross sections for
two-neutron removal from secondary beams of !'Li incident on Pb.
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If we now restrict our study to the Coulomb contribution to the dissociation, which is the
dominant part of the cross sections, we find that the excitation of giant resonances as described
above can also lead to large values of the cross sections. In fact, if we assume that the energy of
excitation, Egg, of a soft vibration mode in '!Li is of order of 1 MeV, and that the contribution of
this soft mode to the sum rule SR is of about 10%, we find (using N =8, Z =3 and 4 = 11)
ogr =~ 1.3 b. Due to its low binding energy, one of the main channels for the decay of this resonance
must be the emission of the two neutrons. This indicates that the excitation of this soft dipole mode
is another possible mechanism to explain the narrow momentum component in the data for
M1i—%Li + X, as well as the total cross section for the fragmentation.

From the present available data it seems impossible to find out whether the fragmentation
HM1i—%Li + X in secondary beam reactions proceeds via the direct break-up of a two-cluster
system or by the excitation of a soft dipole mode. But note that the two mechanisms assume very
distinct structures for ''Li. The direct breakup assumes that the dissociation is a simple transition
to the free continuum, while the excitation of a soft dipole mode is a sequential process for which
the dissociation time depends on the width of this state. Since the Coulomb kick to the protons
does not depend on either hypothesis, only one of the two mechanisms could be responsible for the
measured cross sections. Due to the large errors in the knowledge of the binding energy of two
neutrons in ''Li, and also due to lack of information about the energy location as well as of the
strength of the photonuclear cross section for '!Li at the energies involved, precise theoretical
calculations based on either of these models are not conclusive, and the agreement with the
experimental data is not unique. Certainly, more experimental results and theoretical discussions
are needed in order to determine which of the nuclear models are adequate.

The questions raised above are just examples of the subtle richness of reactions involving
radioactive secondary beams. In the next sections of this chapter we make a closer inspection of the
reaction mechanisms and nuclear models necessary to explain the reaction cross sections in
radioactive secondary beam interactions.

1.3. Three-body considerations of the structure of exotic nuclei

It is obvious from the discussion presented in section 1.2 that subtle three-body dynamics is
involved in generating the halo structure of !Li. In particular, we remind the reader that a bound
2n system in free space does not exist, a bound °Li + n system does not exist, and yet the °Li + 2n
system is bound, albeit slightly. Migdal [Mi 73], back in 1973, addressed a question related to the
above. It is of importance to reexamine the above, and eventually to understand the mechanism
that generates the effective binding of the halo dineutron system in ''Li. The purpose of this
subsection is to summarize the recent study of Frederico and Hussein [FH 93] concerning the
above questions.

Let us for the moment, take °Li to be structureless. The Hamiltonian that describes !!Li then is
given by

H=Ho+ Upspi + Upori + Vi (1.12)

where U, is the mean field felt by neutron n, and V- is the nn’ interaction (we call the two halo
neutrons n and n’). The background Hamiltonian H, contains the kinetic-energy operators of the
assumed structureless three particles. In what follows, we use arguments given by Landau and
Lifshitz [LL 75] and Efimov [Ef70; 81].
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If the nn’ system forms a quasibound state, then the wave function of the bound °Li + 2n system
is given by

YusieLi +2m * @(R) e ™7/r)/2/2n = ¢(R)Y2n (1.13)

where R is the distance between the core and the center of mass of the dineutron and r is the relative
coordinate of the 2n system. a is related to the binding energy &,, of the 2n system, vis.
o = (mneza/h?)"2.

The effective Schrédinger equation for ¢(R) is then obtained by multiplying the full three-body
Schrédinger equation Hyi; = Eyiiq; from the left by ,,(r) and integrating over r,

h2

e—Zur
~ 2 Vio(R) +_Jd3rr—2[UnA(|R +3r)) + Una (IR — 3 r)1@(R)

2
=(E — a*h*/my)@(R) , (1.14)
p=1iimy.

Therefore an effective dineutron—core interaction can be defined from the above equation by

Uetr(R) = (a/2n)Jd3r(e'“’/rz)[UnA(lR +4rD) + Un a(IR = 3r)] (1.15)

~ U,(R) + (1/8¢) U.(R)/R . (1.16)

Equation (1.16) was obtained by taking the limit R/r > 1 and keeping the lowest-order term. No
restriction on the value of o was assumed. In the limit « — 0, however, a different effective
interaction is obtained [TDA 87],

4<r2y 167?64 (r)?
UG(R) ~ R? d3r[UnA(r)+Un’A(r)]<1+§ R2 +? R* ?S—R‘— o)
(1.17)

where (r2>'/? is the r.m.s. radius of °Li.

In obtaining eq. (1.17), the following steps were followed (a — O):

e—Zazr B e—4a|c R} 1 1 26 2
fdr > U(|R+%r|)—f8dé4|£ R] U() ~ jdéﬁ[l+§<f) + -~-:|U(§).

The terms odd in &- R average to zero.
A similar treatment is applied to [dr(e”2*/r?)U(|R + %r|).
The radial Schrédinger equation for the radial component of @(R), ¢(R), then takes the form

[ —d?/dR?* + Us(R)1@(R)/R = (2u/h*)e@(R)/R , (1.18)

where ¢ is the binding energy of the 2n—°Li system, which we drop.
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With eq. (1.17) the effective potential U.(R) becomes, to leading order,

Usge(R)= —A/R? for large enough R , (1.19)
20
A= ﬁmNdesr[lUnA(r)l F | Una(MI1—UI+ 1), Usg= —|Unal. (1.20)

The solution to eq. (1.18) is given in Landau and Lifshitz and we give here the results. If 1 > 1, the
potential U produces an infinite number of bound states condensed at zero energy. This
condition on the value of A, supplies us with the following condition on the parameter o:

a>15-4h2n[1 + 4l(1 + 1)](mde3r[|UnA(r)| + |U,,;A(r)l]>_l . (1.21)

Using (1.21) we can estimate the value of the binding energy of the !'Li nucleus. The volume
integral {d3r|U,4(r)| is calculated by taking for |U,4| = Uy p4(r)/p4(0) with Uy = 50 MeV and
p(r) being the matter density of °Li, which we take to be a Gaussian p 4(r) = p,(0)exp( —r?/a?).
From the Hartree—Fock calculation of Bertsch et al. [BBS 89], we have verified that the Gaussian
form for p, is quite reasonable. The r.ms. radius of °Li is taken to be 2.224 fm. This then
fixes a = \/2% -2.224 = 1.82 fm. The value of the volume integral thus comes out to be
Uo(na?)3? = 1667 MeV fm3.

Writing now a = [2(my/2)e2./h2] /2, where my/2 is the reduced mass of the dineutron, we have
from eq. (1.21)

11\2 [ 2 \ 22 [l dlld )32
"'2“><i§> (m”) 162[Ug(ra?) 212 ) (122
or
620 > 0.379[1 + 41(1 + 1)]2 (keV) . (1.23)

Note that the orbital angular momentum, /, refers to that of the Rydberg state.

Note further that taking approximately into account the higher-order terms in U {3}, eq. (1.17), by
replacing R which appears inside the large parentheses by the radius of the halo ( ~ 8 fm), results in
lowering the numerical factor in eq. (1.23), from 0.379 to 0.379/1.40 = 0.271. We have finally

&30 > 0.271[1 + 41(] + 1)1 (keV) . (1.24)

It is interesting to mention at this point that the experimentally determined value of the
dineutron pairing energy is about 870 KeV. This fact together with egs. (1.23) and (1.24) points out
that the observed halo-like structure of the ground state of !'Li may be a Rydberg state with
a relative angular-momentum content of 0, 1,2 and 3! (see table 1).

A “normal” *'Li nucleus, mainly describable with the usual spherical shell model, would have
the dineutron system occupying the 1p,,, single particle level. There seems to be acting here a very
intriguing mechanism that makes the 2n system occupy partially the 1ds,, level or even the 1f;),
level (of course we cannot be assured of the value of the total angular momentum j).
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Table 1
Lower bounds on the dineutron energy versus
orbital angular momentum. &4 refers to
eq. (1.22) while &2 refers to eq. (1.23). The
experimental dineutron pairing energy is

870 keV
! &4 (keV) &5 (keV)
0 0.379 0.271
1 30.699 24.661
2 236.875 169.375
3 909.98 650.671
4 2486.62 1778.031

To recapitulate, we see from the above discussion that just a slight change in the binding energy
of the dineutron is enough to produce these Rydberg states in !'Li. It would also seem possible that
other Rydberg states with lower binding energies would appear in the ''Li nucleus due to the
long-range nature of the effective potential. Finally, it is found that values of the orbital angular
momentum of up to 34 may contribute to the structure of the ground state.

We should stress that the Pauli principle between the neutron and the core is taken into account
in the n—core interaction potential; the n—n state is in the singlet S state and the Pauli principle is
satisfied. The only contribution from the Pauli principle that we do not include is the one from the
part of the three-body wave function where the two neutrons are simultaneously inside the core.
But because we are considering weakly bound states this component of the wave function must be
very small and consequently does not give rise to major changes in our results.

Before ending, we mention that extensive three-body calculations for 1! Li and other light exotic
nuclei have appeared recently in the literature. In particular we mention the work of Esbensen and
Bertsch [EB 92], Bang et al. [Ba92], Johannsen et al. [JJH 90] and Zhukov et al. [Zh91a,b].

2. Reaction cross section
2.1. Cluster model

As has been already mentioned, the fragmentation of neutron-rich nuclei has led to many
unusual speculative ideas about their structure. Perhaps, the most interesting one is due to Hansen
and Jonson [HJ 87], who proposed a cluster-like structure for !Li as composed of a dineutron
system loosely bound to a °Li core. This hypothesis has had general support from several other
authors [Mi 73; BB 88a; BH 90a; TS 90; JJH 90]. It seems that such a cluster structure occurs very
often in light neutron-rich nuclei and results from a delicate balance between the neutron—neutron
and neutron—core interactions [Mi73]. The Hansen-Jonson model is supported by several
facts. Firstly, the separation energy of two neutrons from '!'Li is very low [Th75; Wo 88],
S,n = 250 + 80 KeV. Otherwise, the nucleus °Li would not exist [Wi75], having a resonant
continuum state at 800 + 250 KeV. This means that the neutron—neutron interaction acquires
a stronger attractive character in the presence of the °Li core. Secondly, the measurements of total
reaction cross sections [Ko 89] of neutron-rich nuclei incident on several targets at 0.8 GeV 4
reveal a r.m.s. radius of 3.14 4+ 0.06 fm for !'Li, compared to a r.m.s. radius of 2.41 + 0.02 fm for
°Li. A large increase of the matter radius from '?Be to !*Be, and possibly from 3B to !"B, is also
observed. The last two neutrons are responsible for the unusual increase of the matter radius and
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for the appearance of a “neutron halo” in these nuclei. In the cluster model the existence of such
a halo can be easily explained as due to the low binding energy of the dineutron system. In fact, by
assuming a deuteron-like wave function for *'Li and adjusting it to reproduce the binding energy
of the dineutron system, an approximate r.m.s. distance of the dineutron to the core of 6 fm
is obtained. This would essentially explain the r.m.s. radius of !'Li as roughly given by
#HREY + &ZREY, =2x6/11 +9x241/11 = 3.1 fm.

Another support for the cluster model for !*Li is that the experimentally determined [Ko 89]
electromagnetic dissociation cross sections for !'Li can be well described theoretically [HJ 87;
BB 88a; BH 90a; TS 90; JJH 90]. The momentum distribution of the °Li fragments also fits well
within this model, as shown in the last section. On the other hand, conventional shell-model
calculations performed by Bertsch and collaborators [BF 89; BBS 89; BE 90] were able to produce
an amount of electric dipole strength in *!Li which is about 20% less than the reported value of the
electromagnetic dissociation cross section of 0.9 b. The above result was obtained with a very small
value of the binding of the 1P, level. As concluded by Bertsch and Foxwell [BF 89], it may be
essential to take cluster aspects into account. The still remaining difference between model
calculations leading to 0.7b and the reported experimental value of 0.9b has led Bertsch et al.
[BE90] to question whether the experimental values of the electromagnetic dissociation cross
sections [Ko 89] have been correctly extracted from the total cross sections.

Kobayashi et al. [Ko 89] assume that the nuclear cross section scales as oy = 2n(Rp + Ryp)4
which is characteristic of a peripheral process concentrated in a small ring of width 4 at the surface
of the projectile. By adjusting the parameters of this scalling law for '2C targets, where the
Coulomb contribution to the total cross section is negligible, the “experimental” values of oy were
obtained for other targets, and the Coulomb contribution o¢ to the cross section was inferred by
subtraction. But since ''Li has a long tail in its matter distribution, such a procedure is dubious.
Assuming that the target is a “black disk”, the nuclear striping of the outer nucleons in !'Li should be

ox ~ 27(Rp + Rr)AP(Ry), 2.1)

where P(Ry) is the probability that the outer neutrons will be removed from ''Li. Due to long
matter tail, this probability is not independent of Ry. Actually it should be approximately
proportional to the area 4 of overlap between the target and the neutron halo in *'Li. From simple
geometrical considerations it is possible to show that 4 «c Ry. That is, o should increase like R,
which has also as a consequence that ¢&® should be smaller than the values determined by
Kobayashi et al. [Ko 89], and would come closer to the RPA calculations of Bertsch and Foxwell
[BF 89] and Teruya et al. [Te 91] for o¢. This is indeed a very relevant point since the electromag-
netic dissociation of neutron-rich nuclei reveals important aspects of their intrinsic structure.
We analyse the interplay of the nuclear and the Coulomb interaction in the reaction process

11 + target — °Li + anything , (22)

at kinetic energies of 800 MeV A, following the discussions by Bertulani, Baur and Hussein
[BBH91]. As shown in the last section the nuclear-Coulomb interference for the process (2.2)
should be at most 5% of the total cross section. Then, we may write the cross section as

+ gc, (23)

o= oﬁ)N) + o(sN)

where o is the elastic (diffractive) nuclear breakup of *'Li — °Li + (2n) by the target and o is

the inelastic (stripping) cross section arising when the (2n) system suffers an inelastic collision with
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the target, while °Li survives intact. o¢ is the electromagnetic dissociation (Coulomb) cross section
for 1'Li — °Li + (2n).

Nuclear peripheral processes in high-energy collisions involve the calculation of eikonal phases
which are dependent on the nuclear densities at the surface and on the nucleon—nucleon scattering
amplitudes. For a projectile a incident on a target A, the cross sections for peripherally induced
processes are well described by adjusting the tails of the density functions so as to reproduce the
correct values of the eikonal phases. This procedure results in an effective optical potential [Ka 75;
RC86] of the form

Uis = <tNN>7t3/ZPA(O)Pa(0)(asai/a3)3_'2/a2 ) (2.4)
where the nucleon parameters are given by

a=./aZ+a%, a?=(4Rit+1%)/4In5; R, =1074}fm, t=24fm, 2.5

pi(0) = [34;exp(R?%/a?)/8nR}][1 + (n?t%/19.36RZ)] 1.

The free nucleon—nucleon amplitude (tyn(E)) at forward direction (§ = 0°) can be deduced from
the experiment. It can be written as

Ctnn(E)) = — $ho (o) (Kannd +1)

where the brackets mean an isospin average of tyy(E) and ayn over the projectile and target
nucleons. For 800 MeV A, one may use [Ra 75]

dpp=473mb, 0, =379mb, a, =006, amu=—02. (2.6)

One observes that at such an energy the nucleon—nucleon scattering amplitude is almost totally
imaginary, meaning that the optical potential (2.4) is almost completely absorptive.
The transition matrix element for the elastic (diffractive) breakup in DWBA is

Tei = <k, (R)Do x(P [Usa(tea) + Upa(roa) — Usa (R (R) G5 2.7

where ¢,,, is the wavefunction for the relative motion of x + b clusters (in our case b = dineutron,
a = ''Li, and x = °Li), and (" is the distorted wave for a. In the final state 147 represents the
distorted wave in the c.m. of x + b. In the way (2.7) is written, the matrix element of U, , is zero
because < pyo.r|broi> = 0.

We use the c.m. distorted waves

Xai (R) = exp(iKi-R)exp( — = | Un(zibydz + i¢c(b)> , (2.82)
Xar'* = exp(—iK;- R)exp( — = | Usa(z,b)dz’ + i¢c(b)) : (2.8b)

where ¢c(b) = (Z,Za)(v/c) ' In(kb) is the Coulomb phase, and « = 1/137.
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For the relative-motion wave functions i:,)i and ¢§(;,)f we use simple Yukawa and plane-wave
functions as in ref. [BB 88a]. All coordinates are referred to the lab system, with the target origin.
The coordinates r, , and r 4 are defined by

Fxa = R — (mb/ma)r ’ Foq = R + (mx/ma)r .

Most of the integrals involved in (2.7) may be calculated analytically and the details of the
calculations are shown elsewhere [BH 91a]. The breakup cross section is obtained by standard
integrations over the phase space of the fragments. For Ru;, Rs; and R,, we use, 5.8, 2.41 and
1.6 fm, respectively. These values are compatible with the cluster wave function of 1Li, adjusted to
reproduce the binding energy of the dineutron. The three-body calculations of ref. [JJH 907 have
shown that the most probable separation between these neutrons is 3.3 fm.

The “stripping” (inelastic breakup) cross section is given by [HM 85]

o8 = l//l—;fdszlsx(bx)lzjdzbzn|¢nu(|bx — b3a1)1?[1 — [S2a(b2a)171 , (2.9)

where |S,(b,)|? is to be interpreted as the probability that the fragment x (°Li) will survive when
hitting the target at an impact parameter b,. Otherwise, 1 — S,;(b,,)? is the probability that the 2n
system will suffer an inelastic collision with the target, and d®ra,|@1ip;(|bx — Ban|)|? is the
probability that the 2n system is found at distance |b, — b,,| from °Li. The factor in front of (2.9)
comes from the assumption that ¢.1; can be described by a gaussian wave function, so that

|pupi|? = (A3/n/m)exp[ — A%(z, — 220)*Texp[ — A%(b, — b,,)?] . (2.10)

Equation (2.10) was obtained after an integration over z, and z,,. The parameter A was chosen so
that the stripping cross sections obtained by using (2.10) do not differ appreciably from what is
obtained by using Yukawa-type wave functions. The proper value of A was found to be given by
A = (11.2 fm) ~ . This parametrization allows us to write the stripping cross section in the elegant
form (See appendix A)

n &2 n .
SN=A_ Z — T$™(A)1THA) , (2.11a)
. 2(A3)*1 ro
Tj.”(A)=T—Jb§f“exp(—Azb,?)ls,.(binzdb,., i=xb. (2.11b)
[¢]

Expression (2.11b) is obtained by means of a series expansion of the Bessel function which results
from the integration of (2.9) over the azimuthal angle. The factors |S;(b;)|* are given by

1S:(bi)1* = exp( -2 f [Im Ui(bi,z.-)ldz.-) : 212)

where U, are the optical potentials for 2n + target and °Li + target, parametrized by eq. (2.4).
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In addition to the nuclear fragmentation there is an important contribution from Coulomb
dissociation, especially for large Z targets. We can use the formulas obtained by Bertulani and Baur
[BB88a] for the Coulomb dissociation of cluster nuclei, which in the limit of very low binding
energy, can be written as

2 2 2
_ 2.2 ¢ mZ, — myZ, i yhv v
Og1 = %TEZTd (U) (—ma ) 1’,2 In _58R _2C2 s (2138.)
e \* [ m? m2 2 2 2 p2\2 o
Op2 = %nz%a2(5> (m_gzb + m_EZ*> 1% he)? |: J2E2 + ( 2— c_z) In(1/6¢) — _2(:4] ;
(2.13b)
y=0—=0%/c?)"Y2 §=0891 .., e=02n?/Qus), &= ebmm/vhv .

The total Coulomb cross section is given quite accurately by (M1 does not contribute significantly)
Oc = 0gy + O3 . (213C)

In the above equations ¢ is the binding energy of the cluster nucleus. We use b,;, = Ru; + Ry, with
Ry = 1.2443 fm. The total nuclear reaction cross section is given by

a0

aRN=2andb[1 —1S(b)171, (2.14)

0

where |S(b)|? is given by the eq. (2.12), but with the potential Uy; 4, constructed in the way of
egs. (2.4)—(2.6). To this reaction cross section one should add the contribution of the Coulomb
interaction. The most important channel in this case is the two-neutron emission, which can be
obtained within an RPA approach as in ref. [BF 89] and [Te91], or within the cluster-model
approach, as described above.

The cross section of the nuclear elastic breakup og'), stripping agN), electric dipole ¢§; and
electric quadrupole o5, are given in table 2 together with the experimental data for the two-
neutron removal of *'Li incident on *2C, 63 Cu and 2°8Pb. The ¢%° and ¢ for ¢ = 0.2 MeV were
multiplied by a factor 1.23 in order that their sum with the Coulomb contribution would result in
the experimental value for *?C, which is 220 mb. The cross sections were also calculated for several
other binding energies, from 0.17 MeV to 0.33 MeV.

The elastic breakup, and particularly the total Coulomb cross section, decreases appreciably
with the binding energy, whereas the stripping cross section, having a geometrical character, does
not depend on ¢ (if one assumes that the ''Li radius is fixed).

In figure 2 we plot the nuclear contribution to the two-neutron removal cross section as
compared to the experimental data. Due to the uncertainty of the binding energy of the dineutron,
the calculated values lie between the two solid curves. One indeed observes that the calculated cross
sections grow faster than the 4 /3 law, a result that was also obtained by Bertsch et al. [BE 90] with
a different method.
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Table 2
The elastic (o§**), inelastic (oc§f®"), nuclear (oy = of* + oif*!), electric dipole (og,), electric
quadrupole (og,;), Coulomb (6¢ = 6g; + 0g;), nuclear experimental (¢5P), and Coulomb exper-
imental (6&®) cross sections in mb for the dissociation of !!Li (0.8 GeV/nucleon) projectiles
incident on several targets, as a function of the binding energy of the °Li + dineutron system;
H11j 4 X - °Li + anything

exp exp

€ Ollan Olhel ON Og1 Og2 Oc ON oc
ULj+ 12C

0.17 79 136 215 9.1 0.5 9.6

0.2 76 136 212 7.6 04 8.0 220 0
0.25 73 136 209 59 0.3 6.2 +10

0.3 70 136 206 4.8 0.2 5.0

0.33 69 136 205 4.3 02 4.5

HLji 4 %3Cu

0.17 187 223 410 203 8 211

0.2 180 223 403 169 6 175 320 210
0.25 170 223 393 131 5 136 120 +40
03 162 223 385 105 4 109

0.33 158 223 381 94 3 97

1] j 4 208pp

0.17 339 315 654 1565 43 1608

0.2 324 315 639 1295 33 3128 420 890
0.25 304 315 619 996 24 1020 +30 +100
0.3 289 315 604 803 17 820

033 281 315 596 717 15 732

By choosing the binding energy of ¢ = 0.2 MeV, we find the following parametrization of
on = o) + o} with Aq:

on = (aA1? + bAY? + c)mb ; a=987, b=2284, c= —2589. (2.15a,b)

For large values of A, the above equation results in an appreciable deviation from the 41/ scaling
law.

In contrast to the above results, the nuclear contribution to the total reaction cross section
agrees perfectly with the experimental data, as shown in table 3, for five different targets. Data are
from Kobayashi et al. [Ko 89]. As expected the nuclear reaction cross section is given by the sum of
the geometrical areas of the nuclei. Due to the low binding energy of *'Li it also practically agrees
with the definition of [Ko 89] for the “interaction” cross section

oy =n(R,+ Ry)?; Ry=(13554"3 —0365)fm, Ri,=(3.14 + 0.06)fm .

Again, we adjust our results so that the data for a berylium target could be reproduced. This
amounted to a normalization factor of 1.18. Other studies of the nuclear contribution to the
two-neutron removal cross sections of !!Li projectiles have been done by Yabana, Ogawa and
Suzuki [YOS92a,b] and by Riisager et al. [Ri92].

The electromagnetic dissociation experimental cross sections obtained in ref. [Ko 89] are within
the limits of the theoretical pure cluster results, as shown in fig. 3. We observe that the scale
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ol T T L T Table 3
L Reactions cross sections (in barn) of *'Li + target
650} -4
:E 550 L ] Target aexp (b) U\heory (b)
& ssof- P Be 0.98 + 0.02 098
% a0l ] C 1.04 + 0.02 1.02
b7 ¢ ] Al 141 + 0.04 1.36
250} - Cu 2.10 + 0.06 2.00
0L = o 2 e 42_40 Pb 3.66 + 0.08 348
Target Mass Number
Fig. 2. Two-neutron removal cross sections of ''Li
(0.8 GeV/nucleon) projectiles due to the nuclear interaction with
the targets, as a function of the target number. Due to the
uncertainty of the binding energy of !'Li, the theoretical results
lie between the two solid curves. The experimental data of
Kobayashi et al. [Ko 897 are also shown.
10000 T T T L
8 1000~ P
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Fig. 3. Same as fig. 2, but for the electromagnetic dissociation of ''Li.

is logarithmic and that the Coulomb cross section is strongly dependent on the binding energy
of the dineutron + °Li. This dependence is approximately proportional to the inverse of ¢ [see
eq. (2.13a)]. The lower solid curve in fig. 3 corresponds to ¢ = 0.33 MeV, while the upper curve
corresponds to ¢ = 0.17 MeV. If the nuclear contribution to the process actually scales as in
€q. (2.15a), the experimental values of the Coulomb contribution (fig. 3) should be smaller. In this
case, the cluster model would not reproduce the experimental data on Coulomb dissociation, being
larger by 20-30%, especially for high Z targets. However, the RPA results of refs. [BF 89] and
[Te91] would then fall within the “experimental” results.

The merit of the cluster model is that it gives the necessary amount of the electromagnetic dipole
strength at low energies, so that the Coulomb dissociation cross section of '!Li turns out to be
appreciable. The matrix elements for the photodisintegration of !Li within the cluster model were
first calculated by Bertulani and Baur [BB 88a]. From their results we obtain for the electric dipole
strength distribution

. 2 .2 _ 2 __ 3/2
dB(EL; 1) 3h%e [ Z.m, me,> Lelho — &) (2.16)

d(hw) ~ npn\  m, (ho)*

where un.(€) is the reduced mass (binding energy) of the cluster system. The dipole strength
function for !Li, assuming ¢ = 0.2 MeV, has a peak at ~iw = 0.32 MeV. In spite of the fact that the
cluster model as described here is strongly simplified, the above results indicate that in order to
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obtain the correct amount of electric dipole strength of !'Li at low energies, it is necessary either to
make unconventional changes in the mean field as done in ref. [BF 89], or include cluster aspects in
the shell-model calculations, as was done in refs. [TS 90] and [JJH 90], and in the RPA calculation
as was done in ref. [Te91].

From (2.16) we obtain for the total dipole strength in the cluster model, integrated over energy,

B(El) =

2,2 _ 2
3hle (Z,(mb mex) . @.17)

167 6

m,

For !!Li, using ¢ = 0.2 MeV, we obtain B(E1)/e? = 2.25 fm? in the cluster model, which is about
80% of the cluster sum rule for dipole excitations [Al182] and 7% of the total nuclear dipole sum
rule. This means that in order to reproduce the experimental data on the Coulomb dissociation of
111, an appreciable amount of the strength of the dipole response in !*Li should be located at the
°Li + 2n channel. The Coulomb cross section is given by o¢ = fn(w)ay(w)dw/w, where o,(w) is
the photonuclear cross section and n(w) is a smooth function of w (approximately a logarithm of
). Therefore, the key information about the nuclear structure is contained in { ,(®)dw/w which
is directly proportional to the (non-energy weighted) integrated B(E1) values [BB 88b].

2.2. Hybrid RPA-cluster model for the dipole strength function of *'Li

It is well known that in nuclei with excess neutrons, low excited dipole states might decouple
from the giant dipole state while maintaining their appreciable transition strengths [HK 74; Mo 71;
S190]. This implies a larger electromagnetic dissociation than in normal stable nuclei.

A possible model that could account for the measurement of large electromagnetic dissociation
of 'Li is the excitation of a soft giant dipole resonance (SGR) at very low excitation energies
(~ 0.5 MeV) followed by its decay into °Li + 2n. Whereas cluster models that mock up the SGR
can account for the data, conventional RPA calculation produces very little strength at the
required energies, unless a rather unrealistic value of the binding energy of the p,,, orbit
(~ 0.2 MeV) is used [BF 89]. The experimentally known value of the one-neutron separation
energy is about 1 MeV and for such a value of ¢, too small a cross section is obtained (~ 0.25b
against the experimental value of 0.9 b). It is worthwhile here to mention that the separation energy
of the 2n cluster in !'Li is about 0.2 MeV. Thus the modified RPA calculation of Bertsch and
Foxwell [BF89] with ¢, = 0.2 MeV, mocks up the pairing interaction between the valence
neutrons by a rather subtle correction to the mean field [BE 91].

A more natural treatment, within RPA, is to enlarge the p—h configuration space to accommod-
ate the dineutron—dineutron hole excitations. Thus one ends up treating *'Li as composed of three
species of particles: protons, neutrons and dineutrons (the dineutron is treated as structureless).

The purpose of this section is to develop the above hybrid RPA—cluster model for '!Li in order
to verify the possible enhancement of the low-lying dipole strength.

We choose the Woods—Saxon potential of Bertsch and Foxwell [BF 89] with parameters that
result in a p,;, energy of 1.0 MeV. The continuum RPA calculation is done using the complex
energy method [Gi87; To87; Te88] except for the inclusion of 2n-2n hole excitations. The
dineutron potential is chosen such as to produce the correct dineutron separation energy of
¢ = 0.2 MeV. This is done easily by taking an usual shell-model Woods—Saxon interaction with an
effective nucleon mass of 2My. The single particle configurations included in the calculation are
shown in tables 4 and 5 with the corresponding energies.
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Table 4 Table §
The parameters of the Woods—Saxon potential well used in the Calculated single-particle energies in MeV and widths in MeV
calculation of the dipole response U, ,(r) =V, ,f(r) + for neutrons, protons and dineutron, using the code TABOO
LoV f'(r), f(r) = {1 + exp[(r — R)/a]}? (A.F.R. de Toledo Piza, University of Sdo Paulo, Internal
Report, unpublished)
Protons, neutrons dineutron
Orbit neutron proton dineutron
V,= — 4099 MeV Vin= — 8.61 MeV
V, = —59.82 MeV 1sy/2 —-17.74 -30.5
Vie= — 15.5MeVim Vis=00 1ps2 —5.15 —14.55
a = 0.65fm a = 0.65 fm 1py;2 —-0.96 —6.95
R =278 fm R=62fm 1d;,2 1.83 -i0.17 —-0.34
2842 6.1 —i6.5 -0.14 —0.20
2d;; 18.8 — 6.0 10.05 —i2.7
2p1)2 20-1i20

The RPA calculation was then done taking for the residual interaction a Landau—Migdal one
(with g = g’ = 0 and fg = 1.5), with R, = 3.16 fm and C = 447 MeV fm3. The B(E1) strength is
found distributed over excitation energy as shown in fig. 4. Besides the usual GDR at E ~ 16 MeV,
not shown in the figure, we find a strongly collective state, the “soft” GDR, at E = 1.81 MeV. Since
the width of the 2p,,, dineutron single particle state is found to be about 4 MeV, we conjecture that
our soft GDR has a similar width. The B(E1) value of the soft mode is found to be 2.38 e fm? which
corresponds to & 85% of the dipole cluster sum rule [A1 82] and 8% of the usual TKR sum rule.
Our findings concerning the soft GDR are in complete accord with the results obtained by Sagawa
and Honma [SH 90] using the sum rule approach.

The cross sections for Coulomb excitation of electric dipole states in the projectile nucleus (which
is by far the dominant excitation mode in highly energetic Coulomb collisions) is given by [BB 88c]

oc = jn(w)om(w) do/w , (2.18)

n(w) = 2/n)Zalc/v)* [EKo Ky — (v?E?/2¢?) (KT — K3)] , (2.19)
where K, (K) is the modified Bessel function of zeroth (first) order, as functions of
& =wbo/yv, bo= Ry + Ruy;. (2.20)

be is equal to the sum of the target, Ry, and projectile, Riy;, radii. We use Ry = 1.2 A3 fm and
Ruy; = 3.2 fm. The radius of 1!Li was obtained from the weighted average Riip; = X Ropi + % Rzns
where Rs1; and R,, are given in table 4. In terms of the electric dipole reduced matrix elements
B(E1; w) of the excited nucleus for the excitation energy hw, we can write

og1(w) = 273 (w/c)dB(El; w)/d (hw) . (2.21)
The dB/d(hw) values were calculated in the RPA method as described above.

For w < 1, which is the case for the most relevant part (hw < 40 MeV) of the RPA response
function (see fig. 4) one can use

EKoKy — 028%/2¢2)(K? — K2) ~ +In[(0.681/¢) + 1] . (2.22)
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For states with energy Aw = 1 MeV one finds that the above expression, eq. (2.22), results in the
value 2.95 for !'Li + 298Pb collisions. However, for iw = 20 MeV one obtains the value 0.32. That
is, B(E1, w) values with low energy (=~ 1 MeV) are weighted by a factor 9 times larger in the integral
(2.18) than states with large energies (20 MeV). In conclusion, a small enhancement of the
B(E1; w) values at low energies may increase the cross section (2.18) considerably. Inserting (2.21)
and (2.22) in (2.18) we get, with E = hw,

oc~ 1.3x 107322 g—geizln[(210/Eb(,)2 + 1]dE (fm?), (2.23)

which is a good approximation to determine the Coulomb excitation cross sections for '!Li
projectiles incident with 800 MeV A on a target (Zr, Ar). In eq. (2.23) E is given in MeV and b,
in fm.

For Cu and Pb targets, with the RPA response calculated above, we obtain

6c=130mb for !!'Li+ Cu; oc=682mb for !'Li+ Pb. (2.24)

These values of o are to be compared to the experimentally extracted values of ¢ = 210 + 40 mb
and oc = 890 + 100 mb, respectively.

The cross section for !*Li + Pb given above is almost identical to the value obtained by Bertsch
and Foxwell [BF 89] using a different model. The contribution to the cross section of the
excitations at E > 10 MeV is about 65 mb. We also find a strong linear dependence of o on the
width of the resonance. Allowing a variation of I', we obtain for !'Li + Pb, oc = 02(1 + 0.84I"")
where ¢ is the cross section with I'" = 0.

It is interesting to mention at this point that a pure cluster model, does generate a large dipole
strength at low excitation energies. In fact, the expression for d B/dE one obtains in this case is given
by eq. (2.16) which, for the !'Li nucleus, with ¢, the separation energy of the dineutron, equal to
0.2 MeV, peaks at E = $¢=0.32MeV and has a peak value of 4.1 ¢>fm>2. Notice that the
photo—nuclear cross section og, (E) of eq. (2.21) with the above cluster model dB(E1)/dE, peaks at
E = 2¢ = 0.4 MeV and has a peak value of 1.61 fm?. The dashed curve in fig. 4 corresponds to
eq. (2.16). With the above distribution the cross section a¢, eq. (2.18), comes out close to our
RPA-—cluster calculation if I" T is taken to be 5 MeV.

Finally, it is worthwhile to mention that the experimental data for the electromagnetic dissocia-
tion of 800 MeV A '!Li projectiles on Pb are 1.72 + 0.65b for the total cross Coulomb section and

DB(EIV/DE (e m/MeV)

Fig. 4. Calculated dipole strength distribution in the E < 10 MeV region. Solid curve corresponds to the RPA—cluster while the dashed
one represents the pure-cluster model eq. (2.16). See text for details.
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0.89 + 0.1 b for the 2n-removal channel [Ko 89]. It is by no means clear to which extent the RPA
response function includes other decay channels besides the two-neutron emission. This fact
actually may present an additional difficulty in relating the Coulomb excitation cross section
obtained with the RPA approach and the experimental two-neutron removal cross sections.

In the next section we present a calculation of the Coulomb dissociation cross section as
a function of energy for several models of dB(E1)/dE and compare with the available data.

2.3. Low-energy behavior of ' Li dissociation cross section

Recently, Sustich [SU 92], has presented a detailed calculation of the Coulomb dissociation
cross section for three models of dipole strength distribution as a function of ''Li bombarding
energy for reactions on a !°7Au target. This type of calculation is quite important as it clearly
shows the sensitivity of the low-energy cross section to the model used for the *!Li dipole response.
Sustich found that the data point at 30 MeV A measured by Anne et al. [An90] can be best
accounted for by the single particle model of Bertsch and Foxwell [BF 89]. The more recent
correlated-state model of Bertsch and Esbensen [BE 917 underestimates the cross section by factor
of 2, while the cluster model [BB 88a; BH 90a; BBH 91] overestimates the cross section by a factor
of 2. The large-basis nonspurious shell-model calculation by Hayes and Strottman [HS 90] also
underestimates the cross sections. Both the single particle and correlated-state model account well
for the data at 790 MeV A4 [Ko 89] whereas the cluster model again overestimates the cross section
at this energy by about 15%.

The formula used by Sustich for the Coulomb dissociation cross section, however, is only valid at
high energies, as pointed out by Bertulani and Baur [BB 88c]. At lower energies, a more compli-
cated expression for the cross section must be used.

The Coulomb dissociation cross section is given by eq. (2.18) which can be rewritten as

oc =¥ nu JdE nEl(E)idB(El)

= —4F (2.25)

where E is the excitation energy, « is the fine structure constant, and dB(E1)/dE is the dipole
response function of the nucleus.

Expressions for ng; (E) appropriate for high-energy collisions can be found in textbooks [Ja 75].
At lower energies, Winther and Alder [ WA 79] have shown that such an expression may be used to
a good approximation, if a rescaling of the impact parameter of the form

b-b+4inZ,Z,e*/myv?y (2.26)

is done. In fact, as shown by Aleixo and Bertulani [AB 89] such an approximation yields only
a 10-20% discrepancy with an exact numerical calculation. It was also shown that the approxima-
tion is worse if one goes to lower excitation energies. Since the important part of the dipole
response function is located at very low energies for unstable nuclei such as !!Li, it is therefore
appropriate to discuss this question more closely.

In this section we are mainly interested in giving a more accurate description of the Coulomb
excitation of unstable nuclei, which becomes increasingly important as the binding energy of the
excited nucleus decreases. We do not want to promote one or the other nuclear model which enters
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eq. (2.25) through the dipole response dB(E1)/dE. Indeed, we find it more exciting when discrepan-
cies between the models show up so that one can have deeper physical understanding of the
phenomena under scrutiny.

In ref. [BB 88c] it was shown that an analytical expression for ng;(E), which is valid for all
bombarding energies, can be obtained (we observe that the original formula for the dipole case
appearing in ref. [BB 88c] has a misprinted sign in one of its terms)

ngi(E) = (2/1:)Zfae‘""(c/v)2< — &Ky Kiy — 3(c/v)?&?

ok ke Mg (Ku) g (9K
><{I<m+11<m—1 Km EOI:K”’(aﬂ )i” Kl'](au u=in ’ (227)

where Z, and v are the target charge and the projectile (*'Li) velocity, respectively. o is the
fine structure constant, ¢, is the eccentricity factor of the lowest allowed Coulomb trajectory,
that is

6 = { 1 for 2a>R, (2.28)

R/ja—1 for 2a<R,

where R = Ry + R, is the sum of the target- and projectile-matter radii. The quantities n and £ are
defined by n = wa/yv and & = g,n, where w is the excitation frequency, a = Z, Z,e?/2E, , is half
the distance of closest approach for a head-on collision, and y = (1 — v2/c?)~1/2,

The function K, is the modified Bessel function with imaginary order. K;, means the derivative
of K;, with respect to the argument. At high energies the above expression for ng, reduces to
eq. (2.19) which is the form used by Sustich, even at the rather low energy of 30 MeV A. We should
point out, however, that Sustich [Su92] included recoil corrections to (2.19) which should render
his calculation accurate to within 20%.

Before presenting our calculation of oc based on eq. (2.27) for the different models of
dB(E1)/dE, we discuss the behavior of the function K, given by the integral [AS 64] (see appendix
B for details)

[eo]

K, (&) = J exp(—¢&coshx)cosnxdx . (2.29)

0

These functions are not tabulated, and have to be obtained by means of the numerical evaluation of
the integral at the r.h.s. of (2.29). The functions K;,+; and K;,_; are not needed since

Kin+1(€)Kip-1(8) = 0*/EHKLQ) + K3 (2.30)

In fig. 5 we show the functions K;(£) and Ks;(¢) versus £&. It is easy to understand the oscillatory
behavior of K;,(£) versus £ for small values of £, by using the stationary phase method. By writing
cosnx = 4(e"™ + e~i"*) and since the integral of eq. (2.29) is even in x, one may take only the ei"™*
branch of the cosine and extend the lower limit of integration to — co. Changing x to x + in and
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Fig. 5. The function K;,(£) versus {.(a) n=1,(b) n = 5.
using the stationary phase method, we find

Kiy(§) = 3™ ™2 [4Y/(&? — nH)]V* AN(Y) , (2.31a)
Y = —(ncosh™' (/) — /n* = E*)*P(3)*°, n>¢&, (2.31b)
Y=(/1=n?/8 —nsin™' /1 —n?/E2P 3P, n<(. (2.31¢)

In eq. (2.31a) Ai(Y) is the Airy function. This function oscillates for negative values of its argument
(¢ < n) and dies out as e~ ¢ for large positive values of Y, just as fig. 1b shows. Further, the local
period of the oscillations goes as A >~ 2né/n. Thus, even for small values of #, the function K;,(¢)
oscillates at very small values of &. In fig. 5a, these oscillations are not shown. A further study of the
properties of this function is given in appendix B.

We further verified that the representation (2.31) is also valid for K(&). Finally, we remark that
for our present purposes the argument of the modified Bessel function is related to its order
through & = gon; and since ¢y > 1, £ is equal to or larger than # and thus the low-¢ oscillations are
not relevant.

Since we want to give a description of the Coulomb excitation process which will be useful for the
analysis of Coulomb dissociation of unstable nuclei in general, we observe that for collisions of tens
of MeV per nucleon and above, R > a, that is, £ = gon > #. In this case one may use the
approximation

Kin(§) = Ko(&) — n*[K1(8) — Ko(&)] , (2.32)

which simplifies eq. (2.31a) enormously since the Ky(£) and K, (&) functions are much easier to
handle than the K;,(¢) functions.
Further simplifications can be done by noting that

£ =¢eon = hwR/yhv = E,R/yhv <€ 1, (2.33)

for excitation energies E., < yhv/R, which are the important energies involved in the excitation
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Fig. 6. The Coulomb dissociation cross section for different Fig. 7. Dipole response of !'Li in the single-particle (solid),
models of dB/dE. The two data points are from ref. [Ko 89] correlated-state (dashed) and cluster (dotted) models.

(E = 790 MeV/nucleon) and ref. [An90] (E = 30 MeV/nuc-
leon). Full curve: cluster model. Dashed curve: independent-
particle model. Dotted curve: correlated-state model.
Dashed—dotted curve: hybrid RPA—cluster model. See text for
details.

process of very unstable nuclei. Using the approximation K; ~ 1/x and K, ~ In(/x), where
6 =1.123..., one gets

nei(E) = (2/m)Ziae™™(c/v)*((1 — 2% + n*/8)In(6/¢) — &n*[1/€* + In?(3/¢)]

— 3(c/v)"2E2{1/8% — In*(8/&) + n*[(1/E*)In?(5/¢) + 21In2(6/€) + 2(¢ — 1)/€]}) .
(2.34)

We turn now to the results obtained for a¢, eq. (2.25), using for the dipole strength distribution
dB(E1)/dE different models discussed recently in the literature. In fig. 6 we show a comparison
among the cross sections obtained with the modified independent particle model [BF 89], the
correlated state model [BE 91], the hybrid RPA—cluster model [ Te91], and the cluster model
[BB 88a]. Our results diverge in an important way from those of Sustich [Su92] in that none of the
models account for the low-energy data point (E,, = 30 MeV A). Whereas the cluster model
overestimates the cross section, the other models fall short in value. The recent calculation of
Lenske and Wambach [LW 90], using the quasiparticle RPA method, also fall short in value (the
cross section for this case is not shown in the figure as it almost coincides with the independent-
particle result). The dipole response in these models are shown in fig. 7 (see also fig. 4). Bertulani
and Sustich [BS 92a] have shown that the Coulomb excitation of higher multipoles (M1, E2, ...)in
1114 is small and can be neglected.

2.4. Nonperturbative character of Coulomb breakup of weakly bound nuclei

As we have seen in the last sections, Coulomb excitation of unstable nuclei is a very useful
technique to access information on the structure and excitation response function of such nuclei.
This is especially true for the study of neutron- or proton-rich nuclei with very small binding
energies.

Many of the exotic nuclei, like !'Li do not have bound states besides the ground state, i.e., any
excitation leads to their fragmentation. The Coulomb fragmentation cross section is roughly
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inversely proportional to the separation energy of the fragments [ BB 88a]. Therefore, it can be very
large for weakly bound projectiles incident on large-Z targets.

One should expect that perturbation theory fails in describing the breakup process when the
cross sections attain very high values. In fact, we show that the breakup probability calculated with
first-order perturbation theory is close to unity. This can be understood with the use of simple
arguments. The energy transferred by the Coulomb field to the excitation of a projectile nucleus,
with N neutrons and Z protons, incident with velocity v on a target nucleus with charge eZ at an
impact parameter b is approximately given by (see section 1.2) E* = 2(NZ/A)(Zre?)?/myb?v?,
where my is the nucleon mass. For ' Li projectiles (N = 8, Z = 3)incident on lead at b = 15 fm and
v ~ ¢, one gets E* ~ 0.3 MeV. This energy is more than sufficient to break !'Li apart, since the
separation energy of two neutrons from this nucleus is about 0.25 MeV. This means that at small
impact parameters the breakup probability is of order of unity and a nonperturbative treatment of
the breakup process should be carried out.

Nonperturbative techniques like semiclassical coupled-channels calculations can be used in this
case. However, there is an insufficient amount of experimental data with details about the structure
of the unstable nuclei, to justify a complicated calculation. Since this is the final information that
one wants to obtain, a clearer understanding of the reaction mechanism is more useful at this stage.
The cluster model seems to be very appropriate to achieve this goal. It has been used with success
for the determination of the main characteristics of reactions induced by !!Li projectiles. Owing to
its simplicity the matrix elements of Coulomb breakup can be easily calculated. In this section we
describe the semiclassical coupled-channels calculations recently developed in ref. [BC 92].

2.4.1. Coulomb breakup of loosely bound clusters

Let us consider a projectile nucleus composed of two clusters with charges eZ, and ¢Z_, and
masses my, and m,, respectively, incident on a target with charge eZr. We assume that the projectile
follows a straight-line trajectory with velocity v and impact parameter b. The interaction potential
(neglecting magnetic interactions and nuclear forces) responsible for the breakup of the projectile, is
given by

Zy Zy
V= szez( 2 (v — b)? + 92z — 00)*]2 2 (b? + vTvztz)m) ’ 239

k=b, k=b,c

where y = (1 — v?/c?)~1/2

particles, respectively.
In the dipole approximation, expression (2.35) becomes*,

, and yy, z;, represent the transverse and longitudinal coordinates of the

yZre?

= ( z Zk(byk + Utzk)
t 5 U1 ) k=b,¢c
= /3n[yZre?/(b? + y*v?t2)> 2 (Zy me/my — Zomy/m,)

xr{ib[Yi1(F) + Yi -1 (7)] + /20t Yio(F)} (2.36)

where r is the vector from b to c and m, = m,, + m,. The first (second) term inside the curly brackets
represents the transverse (longitudinal) part of the interaction.

vV

* It is important to quote here that in fact the magnetic dipole interaction j- 4 = (v/c-j) V has to be added to (2.35) so that the term
proportional to ¢ in (2.36) comes out correctly. This can be achieved by using the continuity equation.
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In first-order time-dependent perturbation theory, the probability amplitude for the projectile
breakup, i.e., the transition from the ground state |0) to a state |¢) in the continuum is given by

t

1 .
dg = f exp[—i(Eo — E)t'/h]1<q|V(t)|0y dr’. (2.37)

= ®©

For loosely bound projectiles the ground state can be represented by a Yukawa wave function
¢o(r) = Ne™"/r, where N is the normalization factor, and = | /2u,.B/h, with u,. equal to the
reduced mass of the (b + c) system and B the binding energy. Neglecting final-state interactions, the
states | are given by @,(r) = {r|q) = 9" — e¥/r(n + iq), where the wave number q is related to
the energy E, as E, = h?q*/2p,.. The second term of {r|g) guarantees the orthogonality and
completeness of the initial and final states.

The dipole matrix elements are given by [BB 88a]

(g r¥1a(F)|0> = i4/2nn [q/(a* + n*)*]1Yim(@) - (2.38)

To first order, the breakup probability is obtained by integrating the square modulus of (2.37)
over the density of final states, i.e.,

)2
PO, ) =2P8L, + Py = j a2 (27[)3 , (2.39)

summed over the beam-axis components of the angular momentum carried by the Coulomb field,
m = 0, + 1. The integral over g is easily accomplished if one uses the sudden approximation, which
is valid for

(b/yv)(E,+ B) < 1. (2.40)

For weakly bound nuclei, as ''Li, E, + B ~ 1 MeV, and at bombarding energies Ej,;, ~ 1 GeV, the
above reaction shows that the sudden approximation is valid for impact parameters b < 300 fm.

Within the sudden approximation we can omit the exponential factor in (2.37) and the integrals
can be evaluated analytically as (« is the fine structure constant)

PN(b, t) = E[(Z/nb)(c/v)]? [Zo(me/m,) — Z(my/m,)]?

yvt/b 2 1 :|
x[(1+\/1+(wt/b)2> T oumE | (2.41)

The first (second) term inside the large square brackets arises from the transverse (longitudinal)
part of the interaction potential (2.36). It is clear that only the transverse contribution survives at
t = oo. The longitudinal contribution cancels since the component of the electric field along the
beam axis is an odd function of time. The breakup probability at ¢t = o is given by

PW(b, 00) = % [(Z/nb) (c/v)]* [Zy(me/my) — Zc(my/ma)]* . (2.42)
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For grazing collisions with heavy targets at intermediate energies the breakup probabilities of
eq. (2.42) are close to (or even exceed) unity. Therefore, first-order perturbation theory cannot be
used. However, if the sudden approximation holds, a nonperturbative closed expression can still be

derived. The amplitude can then be written as [neglecting the longitudinal component of the
interaction potential (2.36)]

aly = <{qlexp (% J V(t) dt)lO} = {q|exp(—i%rsinfsin ¢)|0)> , (2.43)

€ = 2Zrac/bv)[Zy(m./ma) — Zc(my/ma)] . (2.44)

Using the completeness relation

1
BolBE) + s | 610104180 = 30 =), (245)
one finds
d3 2 —2nr . . . 2
PO(b) = f PHE (2n;13 - —4"—712 f d3rer—2exp(—1‘€rsmf)sm¢) . (2.46)

The above integral can be easily evaluated and the result is
PO(b) =1 — (4n?/%?)[arctan(€/2n)]> . (2.47)

When €/2n < 1 (large impact parameters) the above relation reproduces the first-order result
(2.42). On the other hand, if €/n is large, one gets to lowest order in /%,

PO®B) =1 — n2n?/? .

A comparison between the sudden approximation and the first-order breakup probabilities for
the reaction !'Li + Pb — °Li + 2n + Pb at 30 MeV 4 is shown in fig. 8, as a function of b. The
failure of the first-order approximation at small impact parameter is clearly seen.

The results of egs. (2.41), (2.42) and (2.47) were obtained on the basis of the sudden approxima-
tion. In the example considered, the !Li breakup probability is appreciable even for large relative
energies in the projectile frame (E, ~ 2 MeV), where the sudden approximation starts to break
down. In addition, the treatment of this section cannot account for the energy distribution of the
breakup cross section. A more powerful coupled-channels treatment is therefore desirable. How-
ever, one faces the difficulty that the final states are in the continuum (one would have to consider
a continuous channel label) and the coupling matrix elements present divergence problems, caused
by the nonlocalized behavior of the continuum wave functions. This difficulty is avoided by
a discretization of the continuum along the lines proposed by Bédr and Soff [BS 85] in their
nonperturbative calculations of atomic ionization by heavy ions. We shall use the same treatment
of the continuum and develop a set of semiclassical coupled-channels equations.
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Fig. 8. Coulomb breakup probabilities of !'Li projectiles incident on lead at 30 MeV/nucleon, as a function of the impact parameter b.
The solid line corresponds to the nonperturbative sudden approximation. The dashed line corresponds to first-order perturbation
theory.

2.4.2. Discretization of the continuum and semiclassical treatment
of the coupled-channels problem
Our basis of time-dependent discrete states is defined as

[¢po> = exp(—iEot/h)I0) , Eo= —B;  |¢um) = exp(—iE;t/h) JI}(E)IE, Im)dE,
(2.48)

where |E,Im) are continuum wave functions of the projectile fragments (without the interaction
with the target), with good energy and angular-momentum quantum numbers E, [, m. The fun-
ctions I';(E) are assumed to be strongly peaked around an energy E; in the continuum. Therefore,
the discrete character of the states |¢;,, ) (together with |@, ) ) allows an easy implementation of the
coupled-states calculations. We assume that the projectile has no bound excited states. This
assumption is often the rule for very loosely bound systems. The orthogonality of the discrete states
(2.48) is guaranteed if

J dET(E)T,(E) = §;; . (2.49)

For the continuum set | EIm) we use, for the sake of simplicity, the plane wave basis

(eI Elmy = wy, g(r) Ym(F) = u/h?)>*(EY4)/7) ji(qr) Yim(P) , (2.50)
which obey the normalization condition (E = h2q?2/2p)
CEIm|E'lI'm'S = 8p8m O(E — E') . 2.51)

These states arise from the partial wave expansion of the plane wave exp(ig-r). Writing the
time-dependent Schrédinger equation for Y(t) = ¥ ajm®m, taking the scalar product with the
basis states and using orthonormality relations, we get the equations

daﬂm _

ih ar

Z Vitm; j 1'm @j1m €Xp[ —1(E;- — E;)t/h] . (2.52)

jrm
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We use the index j = O for the ground state |0) and j =1, 2, ... for the discretized continuum
states. Vi, j1'm are the matrix elements <@im|V|P; 1m ).
For I;(E) we consider two different sets of functions. Firstly the set I (E), ... , IN(E);

I(E)=1//s for (j—1)o<E<jo,
=0, otherwise . (2.53)

This set corresponds to histograms of constant height 1 /\/c_r and width . The states I;(E) trivially
satisfy the orthonormalization condition (2.49). They present the advantage of leading to simple
analytical expressions for the coupling matrix elements. On the other hand, they have discontinui-
ties at the edges, which lead to numerical difficulties. The second set consists of the functions

1/(E) = N (E/o)exp[ —n;(E/o)] . (2.54)

The normalization constant

N, = (1//o) [@n)™* @i )]1'2 (2.55)

guarantees that j' x;(E)x;(E)dE = 1. The functions x; are peaked at E = n;o and have width = o.
The integer n; = Kj is proportional to the index j and the proportionality constant, a small integer
K, is a parameter of the set which determines the overlap of two consecutive functions x; and y;+ ;.
Three consecutive functions y,, xs and y¢ are shown in fig. 9 for K = 3 and ¢ = 42 KeV. With this
choice ys is peaked at the maximum of the experimental breakup cross section (E =~ 250 KeV) of
] i projectiles (see fig. 12). However, this set fails to satisfy the orthogonality condition (2.49). This
shortcoming can be fixed by the definition of a new set I';(E) of linear combinations

N
I(E)= ¥ CuxulE), (2.56)
k=1

with the coefficients Cj determined so that the resulting combinations are orthogonal. These
coefficients can be found by means of an orthogonalization procedure as, e.g., the Gram—Schmidt
method [BF 69]. The result of the application of this method to the functions of fig. 9a is shown in
fig. 9b. The set of eqgs. (2.56) has the advantages of being continuously derivable and of leading to
reasonably simple coupling matrix elements.

A comparison between basis states ¢ ;,,(r) generated with each of these sets [through eq. (2.48)]
is made in figs. 10a, b. We chose for convenience the parameters ¢ = 40 KeV, j = 5 for the first set
(eq.- 2.53)and K = 3,j = 5, ¢ = 13.3 KeV for the second set (eq. 2.54). With this choice one of the
E; is equal to 200 KeV for both sets. We take [ = 1, m = 1, as example. One observes that the
discrete wave functions ¢;, decrease fast enough with r, so that the matrix elements
{PjimlrY1,|@; 1w > are finite. The use of the histograms (2.53) for I;(E) leads to beats in ¢, as
displayed in fig. 10a. These beats are the result of the discontinuous nature of I;(E) and arise from
the interference from the borders of the histograms. Due to this behavior, the numerical evaluation
of {@jim|7 Y1,|®;1'm > is more involved than with the second set of I; functions (2.55). Indeed, as we
see from fig. 10b the beats disappear with the use of the basis set (2.55). Although the use of
a plane-wave basis allows the derivation of simple results with both sets, this fact is of relevance for
future improvement of the calculations.
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Using (2.48) and the properties of the spherical harmonics one finds

(= 1) m QI+ DRI+ 1)[/1 1 I
Viim, j'trm = > yZye? Zc;:—Z \éz-l—? Uztz)s/z 00 0

x{ib[(_i i rln>+(_rln 1 m)]+f < bl r)}l,.,;,.,,,, (2.57a)

Ly jou = Ir3 dr JdE I(E) JdE'I’jr(E’)u,",‘E(r)u,',E»(r) . (2.57b)

From (2.57a) one deduces that the interaction potential is different from zero only if | — I'| = 1, as
expected. A discussion of the use of the dipole approximation is presented later in this section.

The use of the plane-wave basis is especially useful because, exploiting the recursion and closure
relations of the spherical Bessel functions, one obtains the general result

Iy, jr = (B*/w) [+ 1"+ 2)Fj + 01,1 +1Gj i + 0141,10Gj5] (2.58)
Fjj- = qul}(E)Fj'(E), Gy = quqF(E) I;(E), (2.59)

with E = h2q?/2u. Explicit forms can be found for each basis set.
(a) Histogram. Applying this relation to the histogram set (2.53), one can show that for j,j' # 0

— W+ +)j=Vi-1 it j=j,
1,-,;,~,'=h/ﬁ; —( DaHImR JIGai =) i |j-jl=1, (2.60)

otherwise .
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For j =0 or j' = 0, only the integral with [ or I’ = 1 is necessary, and the result is

Igo,j1 = Ij1;00 = (v 2nao/m) [E;'SM/(EO + Ej)z] (h2/2#)3/4 s E;j=(j— J2‘)0' . (2.61)

(b) Continuous basis. For the set of continuous energy functions (2.55) one finds, for j,j’ # 0

F; I“(n2+n’2+l) J
{Gy} V 2h2 Z ConCon Nl (ntn)y T 20— n'2n? 4+ 20 + 1)/(n + 1) |
(2.62)

where I'(z) is the gamma function and we simplified the notation using n = n;. Forj=0orj’ =0,
one finds

Lo EM* B2\ n?t (et
IOO;jl = Ij1;00 = - (Eo n Ej)z ‘2—# n"2+l (2n2)! Cj,, . (263)

As we have seen above, the use of the plane-wave basis results in the elegant derivation of
I;. ;1 represented by egs. (2.58) and (2.59). Nonetheless, the s-wave (I = 0) state of eq. (2.50) is not
orthogonal to the bound-state wave function. To restore orthogonality one has to add an extra
piece to this function. We expect however that this approximation does not affect our results
appreciably since to access this state one needs at least two transitions: the 00 — j1 followed by
j'1 - j'0. But the latter transition competes with the transition to the ground state, j1 — 00, which
is the dominant one. A more severe restriction is the use of plane waves to describe the continuum.
A realistic calculation would have to use outgoing waves for u{ & (r) which would carry information
about the final interactions of the b + ¢ system.

2.4.3. Results and discussions

We now use the theory delineated above to study the breakup of 11L1 projectiles incident on
heavy targets at energies around 30 MeV/nucleon. In fig. 11 we show the integrals I, ;.- for the
continuum—continuum coupling (j,j’ # 0). In particular we choose I = 0 and ! = 1. The coupling
jO—j’ =], 1, solid line in fig. 11a, is a reorientation effect in which the transition involves only
a change in the angular momentum (! = 0 to / = 1 in this case) of the state. We show also in fig. 11a
Ijo. ;-1 for transitions between states with different energies. In particular we take the transition
between neighboring states, with j' = j + 1 (dashed line). We use the results obtained with the
continuous energy set, egs. (2.62) and (2.63). One observes that while for j’ = the integral
decreases with energy, for j' = j + 1 it increases steadily. These results reproduce the trend shown
by eq. (2.60). In fig. 11b it is shown how I, ;-; varies as a function of E;., for a fixed E; = 0.2 MeV.
One observes that it is maximum for neighboring energy states and has an oscillatory behavior.
This has the consequence that the j,j’ # j coupling will practically not contribute to the total
breakup probability, P(E) , since its contribution will be washed out.

The breakup probability per unit energy interval, P(E) , is given by

(E) Z F(E)r (E)QU » Qu = RC(Z aumaﬂm> . (2643, b)
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Fig. 11. (a) Radial matrix elements, eq. (2.57b) for the
transition j — j + 1 (dashed line), and for the j —j one (solid
line). We used ! = 0 and ' = 1. (b) Radial matrix elements for
the transition j — j', keeping E; = 200 keV and varying E;..
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Fig. 12. Coulomb breakup probability, per unit energy interval
(MeV 1), of 'Li projectiles incident on lead at 30 MeV/nucleon
and b = 15 fm, as a function of the final total kinetic energy of
the fragments.

In fig. 12 we show the breakup probability per unit energy interval for the reaction 'Li + Pb at
30 MeV A and b = 15 fm, calculated from eq. (2.64a) by solving the coupled differential equations
(2.52) for a;,,. We see that the energy distribution of the fragments is peaked at E ~ 0.25 MeV.
Therefore, the most relevant momentum transfer to the !!Li nucleus occurs at g =

/2t B/h ~20fm ™!, The validity of the dipole approximation for the interaction potential
(2.57) to calculate the continuum—continuum coupling can only be justified for gr < 1. But, as
shown in fig. 10, the discretized wave functions extend up to 400 fm. Thus, unless the matrix
elements for the continuum—continuum coupling, eq. (2.57b), have its main contribution from
r < 20 fm, the dipole approximation is not valid. The j ' = j coupling does satisfy this requirement.
In this case the wave functions have equal energies, but different angular momenta. This causes an
asymptotically (r > 1/q) constant phase difference between the wave functions entering in I, ;..
This leads to cancellations in the integrand of eq. (2.57) for large r. The situation is different for
j' # j. In this case the integrand has contributions from larger values of r and these contributions
increase with energy. With a correct treatment of the multipole expansion of the interaction
potential (2.35) the integrals I ; ., would decrease with E. We expect that the transitions
00—-j,1=1 and j’,I =1- 00 dominate the excitation process, so that the matrix elements
between states with j # j’ # 0 do not play an important role. Also, to minimize the consequence of
the break down of the dipole approximation in the continuum—continuum coupling for j # j’, we
use in our calculation a large parameter K (we take K = 4). This leads to small I; ;..

In fig. 13 the solid line represents PBY, the total breakup probability [eq. (2.64a) integrated over
energy], as a function of the dimensionless parameter t = vt/b, for b = 15 fm. This is obtained by
solving the coupled channels egs. (2.52) for a time ¢ and calculating the sum PBY(t) = ¥, . o |ajim(?)}.
The dashed line corresponds to the first-order perturbation calculation in the sudden limit
(eq. 2.41). The breakup probability occurs in a time scale of At ~ b/v. This comparison indicates
a reduction in the breakup probability, arising from high-order processes.
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Fig. 13. Coulomb breakup probabilities of ''Li projectiles incident on lead at 30 MeV per nucleon, as a function of t = vt/b.

The total cross section is given by

o o]

0BV = 21 I bdb PPY(c0) . (2.65)

b

min

The value of b,;, is chosen according to Winther and Alder [ WA 79], as (see section 2.4)
bmin = Rp + Ry + nZpZre* /4E s , (2.66)

where Rp (Ry) is the projectile (target) radius. For ''Li we use Rp = 3.14 fm, while for the target we
use Rt = 1.2 A3, The above formula includes a recoil correction on the Coulomb excitation cross
section, given by the last term which depends on the bombarding energy, E,,,. Our results are
shown in table 6. In the first column we give the cross sections of our nonperturbative approach
and in the second the prediction of first-order perturbation. The experimental values for the
electromagnetic dissociation cross section of *'Li projectiles incident on Pb at several bombarding
energies are shown in the third column [ B191; Ko 89]. It is not clear from the experimental data of
Blank et al. [B191] which fraction of these cross sections goes into the °Li + 2n channel, but due to
its binding energy the breakup probability into this channel is dominant and a direct comparison
with our results is possible. We see that, while for high bombarding energies the results of the two
theoretical approaches are practically the same, at low energies they differ by about 20%. This is
due to the large breakup probabilities which occur for reactions around some tens of MeV per
nucleon [HPB 91]. The coupled-channels calculation result gives a better value of the cross section
at this energy.

Table 6
Comparison among the cross sections for the Coulomb breakup of !'Li
incident on lead, obtained within the first-order perturbation, ‘'), and with
the coupled-channels calculation, . The last column gives the experimental
values of refs. [B191; Ko 89]

Ellb (Mev A) 0(” (b) g (b) a:xp (b)
790 1.01 0.94 0.89 + 0.1
86.2 35 28 1.37 £ 1.43

69.9 3.8 3.1 2.96 + 0.83
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The inclusion of higher-order effects in the Coulomb breakup treatment of !!'Li projectiles has
also been recently studied by Baur, Bertulani and Kalassa [BBK 92] and by Shyam, Banerjee and
Baur [SBB 92], Bertsch and Bertulani [GB 92], and by Canto, Donangelo and Schultz [CDS 92].

3. Elastic scattering
3.1. Optical-model analysis

Recent work [Br88; BS 88; KB 88; St89] has established that the elastic scattering of light
heavy-ion systems such as !2C + 12C, 180 + !2Cand 60 + !0 shows sufficient transparency for
the cross sections to be dominated by far side scattering [HM 84; MS 84]. In particular, there is
often the appearance of a prominent (but damped) rainbow [St 89; HM 84; MS 84]. It has been
speculated that exotic nuclei like *'Li would exhibit much stronger absorption because of the weak
binding of the excess neutrons so that there would no longer be far side dominance. Then the
scattering would be more characteristic of the scattering by a black sphere for which the near side
and far side amplitudes are equal at all angles and their interference produces marked diffractive
oscillators [HM 84; MS 84]. However, we shall show here that there are good reasons to believe
that this is not so, and that the scattering is still dominated by refraction.

3.1.1. Construction of the optical potential

Here we describe the construction of the complex optical potential, U = V' + iW. The real
potential was obtained from the folding model, using the DDM3Y effective nucleon—nucleon
interaction described elsewhere [Br 88; BS 88; KB 88], together with realistic representations of the
nuclear density distributions [Sa 79]. For ''Li we took the spherical Hartree-Fock densities of
Bertsch et al. [BBS 89] which were shown to account for the intéraction cross sections measured at
E/A = 790 MeV, while a shell-model density [Sa 79] was used for 2C. The DDM3Y interaction is
both energy- and density-dependent, and has successfully described [Br 88; BS 88; KB 88] the
scattering of stable light heavy-ion systems over a range of energies E/4 ~ 10 to 120 MeV.

The resulting folded potentials ¥;(r) for *'Li + '>C and *2C + '>’C at E/4A = 85 MeV [SMH 91]
are compared in fig. 14. As expected, the 'Li potential is more diffuse than the 12C one because of
the greater radial extent of the ''Li density; the !'Li potential has a r.m.. radius of 4.38 fm
compared to 3.99 fm for !2C. Also shown in fig. 14 is the result of omitting the contributions of the
two valence neutrons from the !!Li density distribution. These two neutrons only give rise to about
10% of the folded potential at small radii, but are responsible for almost all of it at large distances
(50% at r = 7.5 fm, where the potential is — 1 MeV, and 90% at r = 10 fm, for example). The
potentials for E/4 = 30 MeV are similar in shape but stronger by 50 to 60%. Their other
characteristics are very similar to those shown in fig. 14.

The folding model was “calibrated” by using the 12C + 12C potentials to fit scattering data for
this system at the corresponding energies. It was found to be adequate (see fig. 15a) to use the folded
shape for both real and imaginary parts of the potential at E/4 = 85 MeV, with a complex
renormalization factor so that we have U(r) = (Mg + iN) V(). However, this assumption was not
satisfactory at the lower energy of E/4 = 30 MeV, as indicated by the dot—dash curve in fig. 15b.
A much better fit to the data at this energy (solid curve) was obtained by using an imaginary
potential W(r) of Woods—Saxon shape. In both cases, the normalization Ny required for the real
potential was close to unity.
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Fig. 14. Comparison of the unrenormalized (N = 1.0) folded potentials for *'Li + '2C and *>C + '2C, using the DDM3Y effective
nucleon—nucleon interaction for E/A = 85 MeV. Also is the potential obtained when the two “valence” neutrons are omitted from the
Y11 density distribution.
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Fig. 15. Fits to the measured [Bu 84] elastic cross sections for !2C + '2C. (a) At E/A = 85 MeV, using the folded potential of fig. 14
times N = 1.175 + 0.725i. The corresponding reaction cross section is 6, = 1000 mb. (b) At E/A = 30 MeV. The potential used for the
full curve had the folded potential times N = 0.814 for the real part and a Woods—Saxon imaginary part (W, = 18.2 MeV,
rw = 1.158 fm, aw = 0.584 fm). The dashed curve is the best fit obtained using the folded shape for both real and imaginary parts, with
N = 0.842 + 0.573i. The corresponding reaction cross sections are 1236 and 1214 mb, respectively.

The loose structure of 'Li allows it to be fragmented more easily than 2C and this could result
in some modification of the ''Li 4+ !2C real potential compared to that for *2C + '2C. The
analogous breakup of ¢ ’Li and °Be has been found [SY 83; HO 89; Sa 89; Ya89] to contribute
a repulsive term to their real potentials and to increase the strength of the absorptive potentials.
The possible effects of this for '!Li are explored here at E/4 = 30 MeV. However, the explicit
calculation [Sa 89; Ya 89] for ®Li has shown breakup to be much less important at higher energies
of E/A = 100 MeV. We assumed this to be true also for the real potential for !!Li, although we did
consider the effects of an additional weak absorptive potential of very long range. The possibility of
such a term arises because, although the separation energy of a single neutron from !'Li is about
1 MeV, the pair of valence neutrons has a separation energy of only 0.2 MeV. This implies a pairing
energy of 0.8 MeV and suggests a cluster model of '!Li as a dineutron very weakly bound to a °Li
core [HJ 87]. Such a picture is consistent with the observation [Ko 88, 89] of a relatively sharp
peak in the perpendicular momentum distribution of °Li fragments from ''Li breakup (see
section 7). The absorption from the elastic channel due to this fragmentation could be represented
in the optical potential by an imaginary term of exponential form with a range determined
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essentially [CDH 91a] by the 2n separation energy of 0.2 MeV; that is, at larger r we may use the
phenomenological form

AW(r) = —Wyexp(—r/a), a=x798fm. 3.1

We can place some constraint on variations of the optical potential away from the simple
folding model described above by requiring that the predicted reaction cross section o, remain
“reasonable”. Although measurements of o4 (E) for the exotic projectiles are not yet available at the
energies considered here, some guidance can be obtained from other measurements.

3.1.2. Reaction cross-section systematics

First, we note that the cross sections referred to here, measured [ Ta 88; Ta 85a; Ta 85b; Ko 88;
Ko89] at E/A ~ 1 GeV, are so-called interaction cross sections; that is, part of the reaction cross
section g, in which the neutron and/or proton number of the projectile is changed. Hence inelastic
excitations are omitted and therefore the true reaction cross section is underestimated, which
should be compared to an optical-model prediction. (The deficiency has been estimated [Ja 78] to
be about 5%.) This does not seem to be a problem at the lower energies, where the measured cross
section can be identified with 6 ,(E).

The measured [Ko 87] and calculated [PD 81; Ma 88] reaction cross sections are found to vary
very slowly with energy above E/A ~ 100 MeV, so that the values measured [Ta88] at
E/A ~ 1 GeV provide some guide as to their values at E/4 = 85 MeV. For example, the interaction
cross section for ''Li + 12C at E/A = 790 MeV was measured to be 1047 + 40 mb. Since ''Li has
no bound excited states, and hence no inelastic scattering, we may identify this with the reaction
cross section. The measured [Ja 78] value for !2C + '2C at E/4 = 870 MeV was 939 + 40 mb; the
value of 6, may be [Ja 78] about 5% larger. Thus the measured ratio for !1Li to !12Cis 1.12 + 0.04,
and the ratio of the reaction cross sections is probably even closer to unity. Projectile fragmenta-
tion, which is facilitated by the weak binding of !'Li, contributes [Ko 88, 89] about 40% of
its reaction cross section at E/A = 790 MeV. The production of °Li is responsible for about
one-half of this [Ko 88, 89]. It is possible that fragmentation may be somewhat more im-
portant at E/A = 85 MeV, thus enhancing the reaction cross section for '!Li relative to that
for 12C.

The o, for 12C + '2C at E/A = 83 MeV has been measured [Ko 87] to be 965 + 30 mb, which is
almost unchanged from its value at the much higher energy. If this were also true for ''Li + '2C,
we would predict o5 ~ 1030 to 1080 mb for this system at E/4 = 85 MeV. Even if the '!Li
fragmentation cross section were doubled at the lower energy, we would only anticipate
oa ~ 1500 mb.

There is more uncertainty at the lower energies where the breakup of loosely bound projectiles
becomes more important [SY 83; HO 89; Sa 89; Ya 89]. The average cross sections for a variety of
neutron-rich projectiles, over ranges of energies up to 60 MeV per nucleon, and on a target of 28Si,
have shown [Mi 87] a roughly linear deperidence upon their neutron excess, N — Z. (This has been
associated [Sh89] with the diffuseness of the neutron density distribution which increases with
neutron excess.) The observed behavior can be represented approximately [Mi 87; Sh89] by the
relation (for a given A = N + Z),

oa(N # Z)/oa(N = Z) ~ 1.0 + a(N — Z), a ~ 0.060 + 0.005 . (3.2)
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The measured [Ko 87] cross section for '2C + '2C at E/A = 30 MeV is 6, = 1316 + 40 mb.
Optical-model analyses [Br 88; BS 88; KB 88] of the elastic differential cross sections at the same
energy imply a value about 70 mb smaller. If the relation (3.2) is assumed to hold also for *2C as
target, it predicts the o, for ''Li + '2C to be about 30% larger, or about 1710 mb. However, at
E/A = 790 MeV, the measured o, for 'Li on '2C is about 200 mb larger [ Ta 85a, b] than a simple
extrapolation of the values for the lighter Li isotopes would indicate; this increase has been
attributed [BBS 89] to the last two neutrons in ''Li occupying the more weakly bound Op, , orbit.
If this increment persists, or is even larger, at the lower energy, we could anticipate a reaction cross
section of as much as 2 b for ''Li + !2C at E/A = 30 MeV.

3.1.3. Optical-model predictions

Figure 15a shows a fit to the scattering data [Bu 84] for !2C + !2C at 85 MeV/nucleon, using
the corresponding folded potential multiplied by N = 1.175 + 0.725i. The calculated reaction cross
section is 1000 mb, compared to the value 965 + 30 mb measured [Ko 87] at E/A = 83 MeV. The
same complex renormalization factor N was then applied to the folded potential for !!Li + 12C.
The calculated scattering for the two systems, in ratio to the corresponding Rutherford cross
sections, is compared in fig. 16. The predicted o, = 1197 mb for *'Li is 20% larger than for 2C as
the projectile.

The most noticeable feature of the comparison of the ¢/og(0) ratios for !'Li and '2C in fig. 16
(solid and dotted curves, respectively) is the considerably enhanced ratio for *'Li. However, this is
somewhat misleading because the Rutherford cross section for 12C + 12C is four times larger than
those for !'Li + !2C simply because of the greater charge on !2C. Consequently, the cross sections
themselves for the two systems are similar in magnitude over most of the angular range shown. In
both cases, we see far side dominance [HM 84; MS 84] beyond about 5°.

The scattering of ''Li at the larger angles may be damped by increasing the imaginary strength
N;; for example, doubling it (N; = 1.45) gives 6, = 1474 mb, which as concluded above might be
close to a reasonable upper limit for the expected value at this energy. The far side scattering
amplitude is reduced more by the increase in absorption than is the near side one, consequently the
two become closer in magnitude and the far side/near side interference structure seen in the angular
distribution (dash—dotted curve in fig. 16) is enhanced.

Simply increasing N, increases o, while preserving the shape of the imaginary potential
However, it may seem more reasonable that !'Li scattering is characterized by an imaginary
potential of longer range than for 12C. One such possibility is to add a surface-peaked, long-ranged
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Fig. 16. Elastic cross sections predicted for !!Li + '2C at E/4 = 85 MeV, using the folded potentials in fig. 14 times N = 1.175 + 0.725i
(solid curve) and N = 1.175 + 1.45i (dashed curve), shown in ratio to the Rutherford cross sections for this system. The corresponding
reaction cross sections are 1197 and1474 mb, respectively. Also shown for comparison (dotted curve) is the best fit to the *2C + 2C data
from fig. 15a. (Note that the Rutherford cross sections for !2C + 2C are approximately four times larger than those for !'Li + 12C)
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absorptive term, which easily increases the reaction cross section. For example, the use of
a Woods—-Saxon-derivative imaginary term with a peak magnitude of 1 MeV, radius 6 fm and
diffuseness 1.5 fm increases o, by 32% to 1576 mb. However, the effect on the elastic angular
distribution is much less marked, being more like a uniform reduction by about 30% for 0 > 5°,
with almost no change in shape.

The extreme in long-ranged absorption is provided by the model of eq. (3.1). We found, for
example, that adding such a term with a strength of W, = 400 KeV to the folded potential with
N = 1.1175 + 0.725i increased o, from the “bare” value of 1197 mb to 1859 mb. This implies over
600 mb of **Li — °Li + n? breakup from this cluster configuration, which seems excessive. None-
theless, the effect on the elastic angular distribution is negligible! The reason for the apparent
paradox is that this term predominantly produces absorption from very high partial waves, and
thus very large impact parameters, which contribute to small scattering angles. A few percent
reduction in the ratio to Rutherford is difficult to observe at these angles, but can correspond to
a large absorption because the Rutherford cross section is very large there.

We conclude that the elastic differential cross section for !!Li + !2C at E/4 = 85 MeV probably
lies between the two curves shown in fig. 16, and exhibits refractive features as strong as !2C + 12C
scattering at the same energy.

Figure 15b shows fits to !2C + !2C data [Bu84] at this energy. The best fit obtained by
assuming the imaginary potential to have the same folded shape as the real one (dashed curve)
requires a renormalization by N = 0.842 + 0.573i and is not satisfactory. A superior fit (solid curve)
is obtained with Ny = 0.814 and Woods—Saxon imaginary potential with W, = 18.2 MeV,
rw = 1.1158 fm and aw = 0.584 fm. This imaginary potential is less diffuse than the folded one.

The corresponding real and imaginary potentials were constructed for ''Li + '2C and their
radial shapes are compared in fig. 17. The scatterings predicted for !'Li and !2C are compared in
fig. 18. The scattering obtained for !*Li when the same folded shape for the real and imaginary
parts (with N = 0.842 + 0.5731) is used is also shown in fig. 18, and results in greater absorption
(64 = 1469 mb) than when a Woods—Saxon imaginary shape with the same parameters as
12C 4 12Cisused (6, = 1230 mb). Again, the ratio to Rutherford for !!Liis ~ 4 times greater than
for 12C at small angles because of its smaller charge. It is even larger for 25° > 6 > 10° when the
Woods-Saxon imaginary part is used, indicating enhanced far side dominance [HM 84; MS 84]
compared to the 12C + '2C case. Also, an interesting dip appears in the angular distribution near
30° in this case (solid curve in fig. 18). A near side/far side decomposition [HM 84; MS 84] shows
that this is an Airy minimum in the far side scattering. It can be made much more prominent by
increasing W, from 18.2 to 24 MeV. However, the minimum is removed by the very much stronger
absorption at small radii that occurs with the use of the folded shape for the imaginary potential.
(The latter reaches a strength of —97i MeV at r=0 when N = 0.573, compared to the

—18.21 MeV for the Woods—Saxon one.)

It was argued in section 3.1.2 above that the reaction cross section for *'Li + !2C at this energy
might be as large as 2 b. Increasing the imaginary Woods—Saxon strength W is not an efficient way
of increasing a,; doubling W, to 36 MeV only increases g, by about 15%, to 1411 mb, but has
a larger effect on the angular distribution. The ratio do/dog(8) is reduced considerably for § > 10°
and oscillations are introduced. However, it seems more plausible, because of the more diffuse
density distribution of 'Li, that the Woods—Saxon diffuseness, rather than its strength, should be
increased from that appropriate for !2C. Using aw = 1.0 fm raises g, by 40% to 1714 mby; it also
has an interesting effect on the angular distribution (see fig. 19). The cross sections are reduced
considerably between 6° and 22° but then the residual Airy minimum seen previously near 30° is
removed and replaced by a smooth fall-off.
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Fig. 17. The unrenormalized (Ng = 1.0) folded potential for
MLi 4+ 2Cat E/A = 30 MeV. Also shown is the Woods-Saxon
imaginary potential for !'Li + '2C using the parameter values
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Fig. 18. Elastic cross sections predicted for !'Li+ '2C at
E/A =30 MeV, using the folded potential in fig. 17 times
N = 03814, plus the imaginary potential shown there (solid

obtained from fitting !2C + '2C data (fig. 15b). curve), shown in ratio to the Rutherford cross sections for this

system. Also shown (dashed curve) is the result of using the
folded shape for both real and imaginary parts, with renormaliz-
ation N = 0.842 + 0.573i. The corresponding reaction cross sec-
tions are 1230 and 1469 mb, respectively. The best fit (dotted
curve) to the 12C + '2C data is also given for comparison. (Note
that the Rutherford cross sections for *2C + '2C are approxim-
ately four times larger than for !'Li + '2C)

The ad hoc introduction of a very diffuse surface absorption term (chosen to have the shape
of the derivative of a Woods—Saxon potential) can easily increase ¢,. For example, one with
a peak strength of Wp =2 MeV centered at Rp = 6 fm (rp = 1.33 fm) and with ap = 1.5 fm gives
oa = 2193 mb. However, the effect on the elastic angular distribution (fig. 19) is not dramatic,
consisting essentially of a reduction in magnitude of do/dag(0) by about a factor of 3 for 8 > 5°.
(We note that it still has a more “refractive” appearance than that for '2C + !2C and a residue of
the Airy minimum near 30° remains.)

The extreme of a long-ranged absorptive term is represented by the cluster breakup form of
eq. (3.1). The increment in o, that this produces is closely proportional to the strength W,. The
choice W, = 285 keV gives g, = 2 b, but just as at E/A = 85 MeV, it has no noticeable effect on the
elastic angular distribution.

It is possible that fragmentation of '!'Li makes the real optical potential significantly less
attractive at this lower energy [Sa 89; Ya 89]. We explored the kind of effects this might have by
reducing the strength of the folded real potential by 30% (using a renormalization factor Ny = 0.57
instead of the Ng = 0.814 obtained from the fit to the 12C + !2C data). Two examples are shown in
fig. 20, both using the Woods—-Saxon imaginary potential, one with the same imaginary parameters
as for 12C + 12C and the other with ayw increased to 1.0 fm. The reaction cross sections are almost
unchanged from the values obtained using the full Ny = 0.814, but there are large effects on the
angular distributions. Simply reducing the real potential by 30% introduces a deep minimum near
22° as well as more interference structure at other angles. A near side/far side decomposition
[HM 84; MS 84] for this case shows that the sharp dip near 22° is again an Airy minimum in the far
side scattering. Indeed, by slowly reducing Ny, one can see that it is the same one that is seen near
30° with the full Ny = 0.814, but the angle at which it occurs has moved forward as the real
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curve is the same as in fig. 18 (N = 0.814) while the dashed curve
shows the effect of reducing N to 0.57 without changing the
imaginary potential. The dotted curve was obtained by also
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potential strength is reduced. By chance, the choice of Ny = 0.57, in conjunction with this
imaginary potential, is close to maximizing the destructive interference between the inner and outer
contributions that give rise to the Airy structure of the rainbow [HM 84; MS 84]. It would be very
interesting to see whether the actual scattering of !!'Li + !2C in this energy region reveals any
structures like these.

The angular distribution resulting from both reducing Ny by 30% and increasing the imaginary
diffuseness to aw = 1.0 fm has a more conventional appearance (fig. 20) and no sign remains of the
Airy minimum. However, comparison with the dot—dashed curve in fig. 19 shows that use of the
smaller Ny value has had a larger effect here also. Clearly the scattering at this energy is very
sensitive to the real potential.

In summary, we see that we can make predictions for **Li + !2C scattering at this energy with
much less confidence, although our calculations help to delineate the kind of features to look for
when measurements are made. In particular, it is important to have some measure of the behavior
of the cross sections at larger angles (> 15°, say), where they begin to fall into the shadow region,
and where we have seen the possibility of some distinctive rainbow features occurring.

3.1.4. Contributions from the valence or “halo’’ neutrons

One is tempted to think of the excess neutrons, especially the two valence ones that occupy the
Opy/, orbital in the Hartree-Fock description [BBS 89], as forming a “halo” around a more
compact core nucleus. While it is true that the neutron distribution extends to much larger radii
than the proton, (see, e.g., ref. [ TS 90]), so that the r.m.s. radii are 3.08 and 2.21 fm, respectively, it is
not obvious how to identify the “halo” component unambiguously. An operational definition
might be provided by the momentum measurements [Ko 88, 89] on °Li fragments which imply two
groups of neutrons in !'Li. It is natural to identify the group with a narrow momentum
distribution, and hence associated with the larger radial extent, with the most weakly bound
valence neutrons. We made this assumption and recalculated the folded potential by omitting these
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two neutrons from the !'Li density distribution. Using only the (real and imaginary) potential
generated by the remaining nine nucleons, with the same N = 1.175 + 0.7225i, has little effect on
the !'Li + '2C scattering at E/A = 85 MeV, except for reducing the reaction cross section by 16%
and “stretching” the angular distribution out in angle slightly. The latter effect reflects the smaller
radius (r.m.s. radius = 4.01 fm) of the folded potential obtained when only the nine core nucleons
are included, as compared to when the full density is used (r.m.s. radius = 4.315 fm).

As we have seen (for example, fig. 20), the scattering at E/4 = 30 MeV is more sensitive to
changes in the real potential. Omitting the valence neutron contributions to the folded potential
produces a similar stretching of the Fraunhofer oscillations in the angular distribution as observed
at the higher energy, but the reduced attraction also results in generally smaller cross sections at the
larger angles (fig. 21). Also, the reduced attraction has the effect of moving the Airy minimum
forward from 30° to about 26°.

The calculations shown in fig. 21 were made using the Woods—Saxon imaginary potential
obtained from the fit to 12C + !2C scattering, but similar effects of omitting the valence contribu-
tion to the real potential are seen whatever the choice of imaginary potential. On the other hand,
the magnitudes of the reaction cross sections are changed by two percent or less.

It appears that it is not possible to obtain any clear signature of an extended neutron halo by the
study of the elastic differential cross sections. The effects of the two valence neutrons are small at
the higher energy, while their contribution to the real potential produces changes at the lower
energy that are comparable to other uncertainties in our predictions.

Our predictions for the scattering of 1'Li + !2C are somewhat uncertain, but they should help to
delineate the kind of features to be sought when measurements are made. The primary positive
result is that no support was found for speculations that the breakup of light, neutron-rich nuclei
would make their elastic scattering take on the diffractive characteristics of strong-absorption
scattering. It was important, in reaching this conclusion, to place reasonable constraints upon the
allowed size of the reaction cross section.

The interpretation of this finding is that the additional refraction in the surface region accom-
panying the larger extent of the excess neutrons more than compensates for the extra absorption
that is allowed. Thus the elastic scattering tends to remain far side dominated [HM 84; MS 84].

The scattering at E/4 = 30 MeV can be very sensitive to the real potential strength and its
relation to the imaginary one. Under some circumstances (e.g., fig. 20), we found a dramatic Airy
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Fig. 21. The effect on the scattering ''Li + *>C at E/A = 30 MeV of omitting the two valence neutrons of *'Li when constructing the
real folded potential.
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minimum appearing in the angular distribution. This would provide a good probe of the optical
potential present in the actual scattering of these ions.

The possibility of a very long-ranged absorptive tail due to the fragmentation of a °Li + 2n
cluster configuration was found to be very effective in increasing the predicted reaction cross
section. In fact, as discussed in detail in section 3.3, the inclusion of the dynamic polarization
potential in the calculation, results in an elastic scattering angular distribution which is damped by
a factor of 40% compared with the bare calculation.

3.2. Multiple-scattering theory approach

It is by now clear that neutron- or proton-rich nuclei are intrinsically qualitatively different
many-body systems from normal stable nuclei. Both the mean-field aspects as well as the nature of
the correlations among the nucleons are apparently quite different in the two systems. Nonelastic
reactions, e.g., fragmentation and single neutron emission have been reported and show clear
indication of the existence of a halo. Further tests of the halo hypothesis are certainly needed to
settle the question.

The simplest process, elastic scattering, however, has not been measured. This stems basically
from the low current of the secondary beam namely, e.g., 1! Li. Recently, it has been reported that
elastic angular distribution of 'Li from hydrogen is being accomplished at much lower energies
(100 MeV /nucleon) [Ta 92]. It is therefore of interest to do a preliminary qualitative calculation to
assess the importance of the halo in the elastic angular distribution. In the previous sections this
question has been posed in the context of heavy ions, with the major conclusion being that systems
such as !'Li + 12C behave in much the same way as, e.g., 12C + '2C [SMH 91]. Stronger refractive
effects were found for !'Li + '2C. The purpose of the present section is to extend the study to the
much simpler systems p + !Liand o + *'Li. Would the halo also bring in more refraction or does
long-range absorption rather dictate the scenario? This is the question we address here.

Our study is based on the Glauber theory with the optical potential determined from the usual
multiple-scattering series with medium effects taken fully into account.

3.2.1. Elastic scattering amplitude in eikonal approximation

We present in this section the pertinent formulae used in our calculation of the elastic scattering
angular distribution. We ignore spin—orbit effects and thus write for the elastic scattering ampli-
tude, f(0),

f6) = —ik I db bJo(gb)(€*® — 1), k* =2uEcn/h*, (3.3)

where u is the reduced mass, J, is the ordinary Bessel function of order zero, b is the impact
parameter and g is the momentum transfer, ¢ = 2k sin(6/2). The phase y(b) contains a nuclear and
a Coulomb piece and is given by

0

1
1) = 1n(d) + xcb) 5 b)) = — o J dz N[(6* + 2%)]

—

xeb) = 2Z,Z,e? /hw) [In(kb) + 3 E,(b*/r5s)] (3.4)
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where E,(x) is the exponential integral, defined as
we_'
Ei(x)= jT de . (3.5)

The Coulomb phase [Fa 70] yc(b) is finite for b = 0, yielding

tc = (2Z,Z,e* /hv) [In(kry,) — CT, (3.6)

where C = 0.577... is the Euler constant. The constant r,, ; appearing in the above equations is
equal to the root mean square radius of !'Li, r,, ;. = 3.14 fm. Vy is the complex nuclear potential
and v is the relative velocity. In section 3.2.3 we shall give a detailed discussion of the a—*!Li optical
potential needed for the calculation of yn(b). In what follows we proceed with our discussion of the
general features of the eikonal amplitude (3.3).

Because of the logarithmic divergence of yc(b) with increasing b, it is convenient to write f(6) as

f0) = —ik j db bJo(qb) {expLixc(b)] — exp[ix(b)1} + fc(6) = fn(6) + fc(O) , (3.7

where f-(0) is given by the usual expression
fc(0) = —(n/2k sin? 4 0)exp {i[20, — nln(sin*46)]} , (3.8)

where g, = argI'(1 + in) and # = Z, Z,e*/hv. We use eq. (3.7) in our numerical calculation.

It has been proven useful [HM 84] to decompose f(6) into its near and far side components. This
is accomplished by first writing the Bessel function in terms of H§®(gb), the Hankel function of
order zero and first (second) type. Asymptotically, these functions behave as running waves. With
that the amplitude f(6) can be written as f(8) = frcar(0) + frar(0), Where f o (0) [ frar(6)] is given by
(3.3) with Jo(gb) replaced by 3 H?(gb) [2 HV(gb)].

In the limit when yc(gb) is negligible and yn(gb) is pure imaginary (no refraction) it is easy to see
that the following relation holds [HM 84; CIH 85]:

Jnear(0) = —fH:(0) . (39

The above results in an angular distribution that exhibits simple black-disk Fraunhofer diffrac-
tion patterns since the near and far amplitudes are equal in magnitude. In our case of & + *'Li one
expects strong refractive effects arising both from the Coulomb and nuclear interactions. In
particular, the elastic scattering of o particles from several targets has clearly established the
phenomenon of nuclear rainbow; a situation characterized by the dominance of the far side
component over the near side. At very small angles one always encounters the opposite situation,
namely, fucar/frar > 1, oWing to the influence, on the angular region, of Coulomb repulsion which
affects mostly ficar-

To better understand the above features, it is useful to rely on the stationary phase method, more
commonly applied to the partial wave expansion of f(0). Here we summarize the major findings of
ref. [HM 84] involving the stationary phase evaluation of the eikonal amplitude, eq. (3.3).
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Whenever the phase x(b) is large, which is expected to be the case in our system, the stationary-
phase method becomes applicable. We obtain for the near and far contributions

Jaear(0) & — 3 ikby [27i/| 1" (bn)11"/2 exp [ix (bn)1 HEY [q(bn)bn] (3.10)
Jear(0) & — ikbe[2mi/|x" (be)|1"/* exp[ix(br) 1 HG [a(br)be] (3.11)

where by, are determined from the stationary phase conditions
t g = (d/db)x(B) by, » (3.12)

which, when eq. (3.4) is used, gives

(3.13)

1 b VN[ +29)'2] | 2Z,Z,e% 1
+g=
4 f Rt T —w—b’

where we have neglected the term inside the square brackets of eq. (3.4) for yc(b).

Notice that the Coulomb term represents the high-energy limit of the usual formula 2 tan(n/kb).
The easiest way to appreciate the above equation is to consider, in the application of the stationary
phase method, only the real part of the nuclear phase yn(b), and accordingly, the integrand in
eq. (3.13) is real and positive at the energies considered here. This allows real solutions of the above
equations to correspond to scattering in the illuminated region. Complex solutions would then be
associated with the classically forbidden region.

A simple analytical evaluation of eq. (3.13) is normally not possible when a Woods—Saxon
potential is used for V. Approximate formulae, however, can be obtained in the acceptable limit of
small diffuseness (compared to the radius). We obtain

+q = (k/E)\/2b [(Vo/\/a)g' ()], x=(b—R)a,, (3.14)

where V; is the strength (positive) of the assumed Woods—Saxon real potential, a, is its diffuseness
and g(x) is a function evaluated in ref. [HM 84] and is given by

g(x) =7 — (/2v) {1 —exp[ — 25%/(p + 1} + (€“/*/7/2u) erfe[/u/21/n/2,  (3.15)

u=exp{[(b— R)/a,17%}, (3.16)
where v is the solution of the equation

Lcoth[4(x + ¥v?)]. (3.17)

For — x> 1, v~ ./ —x and one obtains, for small b,

1—¢*
969 =+ T Ta == \/2(1—

-x/2(1—x)

\/” erfc[ — x/2(1 — x)]H/2 . (3.18)
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On the other hand, for large b, x > 0 and one finds here v = 1 /\/5 and

g(x) =~ /2/ee™ ™. (3.19)

Therefore, a simple formula which can be used to obtain by is

q = —(k/E)(2bn~/2/€)"/*(Vo/</a;) exp[ — (bx — R)/a,] + 2n/by - (3.20)

The above equation clearly gives two solutions for by. One corresponds to predominantly
Coulomb, and the other to nuclear scattering. The limiting value of g above, with no real
solution for by, represents the rainbow momentum transfer and is obtained from the condition
dg/dby = 0 or

g =[—a/by+ 112n/bx . (3.21)

At E,,, ~ 100 MeV for o scattering, one has a small # and a value of by which is equal to or larger
than Ru; in p 4+ ''Li or the sum of the radii R, + Ruy; in o + '1Li. This shows that g, is rather
small. In fact, our detailed numerical calculation to be presented below demonstrates that q, is close
to zero. This indicates that the g > ¢, scattering region is predominantly far sided and dominated
by the nuclear attraction at smaller values of b. Further, one anticipates to see greater sensitivity to
the details of the nuclear potential in f(0) and accordingly corrections to the double or single
folding potentials arising from higher-order effects (correlations) can be tested. We turn to
a detailed discussion of Vy for o + ''Li.

3.2.2. Elastic scattering of p + 'Li, p + °Li and p + '*C

In this section, we apply the formalism developed in the previous section to the elastic scattering,
of p + !'Li and compare it to that of p + °Li and p + '*>C. We choose the laboratory energy to be
100 MeV. Our aim here is to assess the qualitative effect of the neutron halo in ''Li on the angular
distribution. To further understand the phenomenon, we also make the comparison at
E,, = 800 MeV.

In fig. 22 we show the calculated proton and neutron densities for °Li, *Li and '2C. These
results were taken from the Hartree—Fock calculation of Bertsch et al. [BBS 89]. To exhibit clearly
the spatial extent of the two valence neutrons (in the 1P5,, level) in ''Li we show in fig. 23 the
difference 8p, = p, " — p,. It is clear that the two valence neutrons contribute to the density in
the region 2 fm < r < 5 fm. Notice that at r < 2 fm the contribution is negative. Further, the matter
radius of ®Li is about 2.5 fm. We next construct the p + A4 optical potential. This we do using the tp
approximation with medium corrections. At E,,, = 100 MeV, the average, medium modified
nucleon—nucleon optical potential is given by [HRB 91]

UN(r) = <tpn>pn(r) + <tpp>pp(r) B (322)

ton = —(E/K)Gpn(Epn + 1), N=porn, &,=187, &(,=100. (3.23)
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Fig. 22. The Hartree-Fock densities of neutrons and protons for (a) °Li, (b) !'Li and (c) '*C (ref. [BBS 89]).

0.010 T T T T

0,005

0,000

-0.005

6P (fm™>)

-0.00

-0015 R S S S—
r{fm)

Fig. 23. The difference p:'“ — p:“ VErsus r.

The Pauli-corrected nucleon—nucleon total cross section is given by [HRB 91]
OpN = UpN(E)P(EF/E) s (3.24)

1-3x, x<1%,
e = {1 —Ix+ExQ - 102, x>3, (3.25)

E™ = (122m) (k)2 , kY = [3h2pn()]Y3,  0pp=332mb, oy, =727mb.
(3.26)
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Fig. 24. The tp optical potential for p + °Li (dotted), p + !'Li (solid) and p + '2C (dashed) at E,,, = 100 MeV. (a) real, (b) imaginary.
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Fig. 25. The elastic scattering differential cross section (solid line) versus center-of-mass angle for (a) p + °Li, (b) p + ''Li and
(¢) p + '2C at E,,, = 100 MeV. Also shown are the near (dotted) and far (dashed) contributions.

In fig. 24 we show the resulting optical potential for the three systems p + °Li, p + ''Li and
p + '2C. They look very similar except for the strength which is larger the heavier the target is, as
expected from eq. (3.22) and fig. 22. However, the p + '!Li has a much larger diffuseness as
anticipated owing to the presence of the halo. In all cases, the real part is attractive. Absorption is
also strong owing to the strong coupling to the single nucleon knockout channel.

The elastic scattering angular distributions calculated from eq. (3.7) are shown in fig. 25. The
near contribution and the far contribution to do/dQ are also shown individually. In all three cases,
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Fig. 26. The momentum transfer function q(b\d)) for the three systems studied. The solid line is for ! 'Li, the dotted line is for °Li, and the
dashed line is for 2C.

the far side component dominates over the near side one, at least in the 6 > 10° region. However,
a very important qualitative change due to the relatively large size of 1!Li (the halo) is the fact that
the position of the minimum occurs at # = 30° in °Li, § = 28° in '!Li and 0 = 31° in 12C, clearly
showing the influence of the greater extention of the matter distribution in !!Li. This feature should
be easily tested experimentally.

To further understand the nature of the scattering, we have also calculated the momentum
transfer function g(b(8)) of eq. (3.13) for the three systems. This function, in the Glauber theory, has
a similar role as the classical deflection function extensively studied in the semiclassical treatment
of scattering, e.g., of heavy ions. In fig. 26 we show the real part of q(b(6)) versus b for the three
systems under study. Again, whereas the region 0 < b < 3 fm is as expected from general nuclear
systematics, the region b > 3 fm exhibits clearly the effect of the halo. Appreciably larger impact
parameters seem to contribute to the scattering of p + !!Li than to the scattering of p + °Li and
p + '2C for a given value of the momentum transfer (angle).

To complete the comparison among the three systems, we performed the elastic scattering
calculation at E,,;, = 800 MeV A. Although the experiment at this energy is very difficult, owing to
the very low current of the *'Li secondary beam, we felt that such a comparison would further
elucidate the question of the neutron halo. Thus in figs. 27, 28 and 29 we present the corresponding
tp optical potential, the elastic scattering angular distribution with its near—far decomposition and
the momentum transfer function, respectively. The nucleon—nucleon total cross sections and the
parameters ¢,y used in the calculation were taken from the literature and are o,, = 47.3 mb,
Opn =379 mb, £,, =0.06 and &, = —0.2.

At E,,, = 800 MeV A4, the real part of the tp optical potential is repulsive and the imaginary part
is quite strong (fig. 27). The momentum transfer function emphasizes this point in fig. 29. This
favors a situation of almost equality between the near and far contributions to do/dQ2. The
resulting Fraunhofer pattern is clearly seen in fig. 28 for the three systems. Unfortunately, at
this higher energy, the change in the oscillatory pattern of do/dQ arising from the neutron halo
is very small, making its study at this energy quite difficult. Finally, to complete the comparison
between the three systems, we present the values of the total reaction cross section oy at the
two energies considered in table 7. Although, og for p + ''Li is considerably larger than that
of p + °Li and p + '2C at both energies, the trend with energy, namely og(Ep, = 800 MeV) <
or(E, = 100 MeV), is fully understood from the general behaviour of oy and nuclear transpar-
ency [HRB 91].
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Fig. 28. Same as fig. 25 at E,,, = 800 MeV.

3.2.3. The optical potential for the o« + ''Li system

In this section, we extend our study (see also ref. [ABH 91]) of p + !!Li to the case of o + !Li
[ABH 92]. The tightly bound a-particle should prove an interesting probe as it represents, at low
energies, a heavier charged “nucleon”. To what extend the halo of 1!Li is sensitive to the size of the
impinging particle, is a question that can be partly answered by comparing the two systems
p + "'Liand o + !'Li at relatively low energies. We take this to be E,,;, = 26 MeV 4, since precise
data [Pl 71] on the elastic scattering of p from « exist and can be used to extract the p—a optical
potential. This potential is then used to calculate the o—''Li single folding optical potential. Since
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0.20 Table 7
Total reaction cross section for the
system p + X
015
— X E (MeV) og (mb)
M
E oo 12¢ 100 357.64
o 800 344.68
0.05 UL 100 597.20
800 474.11
0005 °Li 100 339.25
800 288.58

Fig. 29. Same as fig. 26 at E;,,, = 800 MeV.

the energy is too low for the usual [HRB 91] single folding approximation to the potential to
be valid, we also calculate the second-order contribution which carries important information
about nucleon—nucleon short-range correlations in the nucleus. We then write, for the first-order
potential

R = J &1’ Vealr — r)prilr’) - (3.27)

The potential extracted from the elastic scattering of protons from a particles at 26 MeV 4
laboratory energy is shown in fig. 30. The elastic scattering data of [P1 71] are shown in fig. 31. The
core neutrons and protons in !'Li certainly feel a potential which is slightly different from
Ve because of medium effects. On the other hand, the halo neutrons in the 1p;,, levels, being very
loosely bound, should behave almost as free neutrons. So, the “experimental” V,, of fig. 30 should
be quite adequate in describing their interaction with a. '

In principle, a better treatment for the o + ''Li interaction would be taking a double folding
potential for the °Li + « interaction, and a single folding one for the interaction of the halo,

1 3 3
VY = (i) jd Y pu(r)ponilr — r') + jd ¥ Vaalr — F)p2a(r'), (3:28)
10 T T T T 0 —r———
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L ol
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Fig. 30. Imaginary part (dashed curve) and real part (solid Fig. 31. Elastic scattering cross section for the system p + o at
curve) of the optical potential for p + a scattering. 26 MeV/nucleon. Data are from ref. [P171]. Solid curve is

a calculation using the potential of fig. 30 (see text for details).
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first- and second-order potentials [eqs. (3.27) and (3.29)].

where {tnn) is the medium-modified nucleon—nucleon ¢-matrix calculated in the forward direction.
We have compared egs. (3.27) and (3.28) and found the difference in the real and imaginary parts to
be less than 10%. Thus, for simplicity we shall in the following use eq. (3.27) for V{(r).

In ref. [HRB91] a detailed discussion of second-order potential which contains the
nucleon—nucleon short-range effects has been given. Within a single folding framework, this
potential, which we denote by V' {(r) is given by

y@ _

ikd / ’ ’
2E RcorrJ[Vpa(r_r)]szi(r)dsr ’ (329)

where R,,,,. is the correlation length and is generally taken to be — 0.411 fm and k,(E,) is the wave
number (energy) of the a particle. In figs. 32 and 33 we show the real and the imaginary parts of
V@(r) and the sum VI (r) + V&(r). The effect of V¥ (r) is quite noticeable.

3.2.4. The elastic scattering of « + ' Li

Before we show our results for the angular distribution of the elastic scattering of the system
o + !Liat E,,, = 26 MeV A, we first discuss the nature of the refraction in this system, exemplified
by the momentum transfer function g(b) of eq. (3.13) (the right-hand side of this equation). In fig. 34
we show g(b) for « + ''Li (solid line) calculated with ¥’ and with V) + V{&. Very little change is
seen when the second-order potential is added. However, the absorption content of V'’ + V@ is
quite different from V{0, as will be seen next. For comparison we also exhibit (dashed curve) g(b)
for o + 12C at the same energy (Ej, = 26 MeV A). Again a small effect is seen to arise from V&,
Notice that the nuclear rainbow (the dip at negative g) is at a larger negative g in !2C than in !'Li.
The large-b behavior of g(b) is slightly different in the two systems.

The cross section for o + ''Li calculated with ¥’ and V{’ + V¥ is shown in fig. 35. We see
here a drastic change in behavior at larger angles (6 > 10°), which arises from the different
absorption content in the two potentials. Figure 36 is the result of the same calculations, but for the
system o + 12C. Again for comparison, we show in fig. 37 the « + !2C as compared to the o + ''Li
results. This figure implies stronger refraction seen in a + '!Li, which corroborates the findings of
section 3.1 on the !!'Li + '2C systems.
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Fig. 34. Classical momentum transfer (eq. 3.13) as a function of
impact parameter for the reactions o + !!'Li (solid line) and
o + !2Li (dashed line).
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Fig. 35. Elastic cross section for the system o + !!'Li at
26 MeV/nucleon. The dashed line was calculated with the first-
order optical potential. The solid line includes the contribution

of the second-order potential.
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Fig. 37. Comparison between the elastic cross section for the
systems o« + !'Li and o + '2C at 26 MeV/nucleon. Both calcu-
lations include the contribution of the second-order potential.
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Fig. 36. Same as fig. 35, but for the system o+ '2C at
26 MeV/nucleon.

To better understand the nature of the angular distribution, we show in fig. 38 the near and far
contributions to da/df2 both for ¥’ and V{’ + V{?. It is clear that, in both cases, the angular
distribution is far side dominated, indicating great sensitivity to the nuclear potential at shorter
distances. However, the oscillations (Airy) in the far side amplitude, are washed out when
VD 4+ P2 is used. This shows that V{® contributes basically to absorption in such a way as to
damp the contribution to f;,,(6) arising from the inner stationary phase point. This feature is
common to both a + ''Li and a + 12C.

3.3. Polarization potentials

3.3.1. Derivation

The mean effect of the coupling between the elastic channel and excited states is expressed by the
optical potential [Fe 62]. Instead of deriving this potential from first principles, one frequently
adopts a phenomenological approach, expressing it in terms of a few parameters. These para-
meters, which may have a weak energy and/or mass dependence, are then fitted to a set of
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Fig. 38. Near (dotted curve) and far side (dashed curve) contribution to the elastic scattering cross section (solid) for the system o + *!Li
at 26 MeV /nucleon.

scattering data. When, however, a few channels have strong influence on the elastic scattering, it is
necessary to handle the coupling with these channels separately. One possible approach is to
express such effects as a correction to the optical potential. If one is able to obtain this correction,
usually known as a polarization potential, the calculation of the elastic and the reaction cross
sections reduces to the simple task of solving a one-channel Schrédinger equation. This approach
has been used in several situations (for a review see ref. [HBC 84]), including the cases of rotational
[LTS 77, BKG 78; DCH 79a] and vibrational [DCH 79b] excitations and that of transfer channels
[BPW 81; SB 82; FH 80].

In this section we discuss the derivation of the polarization petential resulting from the coupling
to states corresponding to the removal of a neutron pair from !'Li projectiles. This potential has
been calculated by Canto et al. [CDH 91a] for high-energy collisions with light targets. These
authors neglect the effects of the Coulomb field and use the eikonal approximation. In a more
recent paper {CDH 91b], the calculation has been extended to lower energies and Coulomb effects
have been included. This section describes the polarization potentials obtained with the more
general treatment of the latter, and its applications.

Following the procedure introduced by Feshbach [Fe62] for the derivation of the optical
potential, one defines the projection operators

P=|¢o><¢o|a Q=1—P,

where ¢o(x) = ¢o(x) represents the bound state of the 2n + °Li system while Q is the projector
onto states of the 2n pair in the continuum. The polarization potential can then be written

Vir,r') = <r; ¢0lvQG ™ Qoldo; ') , (3.30)

where v is the coupling interaction and G'*’ is the optical Green’s operator. In order to evaluate
eq. (3.30), we write the projector Q in its spectral form

Q= f|¢q><¢q| dq, (3.31)

with g standing for the set of quantum numbers that characterize the continuum states.
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With the introduction of representations in the space of the relative coordinate r and with the
assumption that the interaction v is local, the polarization potential can be put in the form

Vir,r') = F@)G I r)F (), (3.32)

with the scalar form factor

F(r) = U(r)(Id)f,(x)uz(x)dx)”2 . (3.33)

In the derivation of eq. (3.33), the following assumptions have been made:
o the energies of the relevant states ¢, of eq. (3.31) are small as compared to the collision energy,
o the matrix element {¢y|v|do> is negligible,
o the coupling potential is separable in the form: v(r, x) & U (r)u(x), where U (r) is the real part of
the '!Li-target optical potential and u(x) is an internal excitation form factor [BH 91a; BCH 92].
Performing the partial-waves expansion of the polarization potential and writing the l-projected
Green’s function explicitly, one gets the I-components of the polarization potential

Vilr,v') = F () [ — Qu/0?k) filkr )i (kr )1 F () - (3.34)

Above, fi(kr.) and h{*)(kr. ) are, respectively, the regular and the outgoing solutions of the radial
equation with the optical potential.

For practical applications, it is convenient to use the trivially equivalent local potential, defined
as [LTS 77]

Vil = f,(Lkr) f Vi, ) fitkr')dr’ (3.35)

and adopt the on-shell approximation for the Green’s function [LTS 77]. This approximation
amounts to replacing h{*’ - if; and its validity has been discussed in details in ref. [PC 90].
It leads to a separable Green’s function and the trivially equivalent local potential takes the
form

velr) = hzk F()|SPH f Z(kr)dr , (3.36)

where S{" is the I-component of the optical S-matrix and F,(kr) is the regular Coulomb function
[AS 64]. To get eq.(3.36), the authors have approximated the radial wave function as
Silkr) = |S{PIY2 F,(kr).

In the r-region of interest for the 2n-removal process, only the tail of U(r) is relevant. Therefore,
the form factor can be written

F(r) = Foe "%, Fo=CeRol®, (3.37a, b)
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In eq. (3.37b), C is a constant which can be obtained from eq. (3.33), Ry = Rui + Rygrger, and a is
the diffusivity associated to the optical potential U(r). Substituting eq. (3.37a) into eq. (3.36), one
gets

Velr) = —iW,(l, Eye™"/* . (3.38)
The strength Wy(l, E) is given by
Wo(l, E) = (1%0I*/E) ISV Li(n, 5) (3.39)

in terms of the radial integral

0

Lin, s) = Je_“’Ff(p)dP , s=1/ka, (3.40)

0

where 7 is the Sommerfeld parameter.
Using the asymptotic WKB approximation for Fy(p) [AW 75],

P
2n 0+ D)\ "V* 2n I(1+ 1)\?
F,(p)z(l—;—— = sin| 7 + T dp |, (3.41)

po

where p = kr and p, is the value of p calculated at the turning point of the Rutherford trajectory,
one obtains

Ii(n, 5) = (€7™/2s) [ns Ko(X) + XK, (X)] . (3.42)
In eq. (3.42), Ko(X) and K, (X) are modified Bessel functions with the argument
X =gs[1 + 11 + 1)/n?]V2. (3.43)

The variable X measures the distance of closest approach in a Rutherford trajectory, in units of a.
To a good approximation, the radial integral I;(n, s) can be parametrized as

Ii(n, s) ~ (0.75/s)e 083X (3.44)

The use of this parametrization in eq. (3.44) leads to a very useful formula for the strength of the
polarization potential.

For a comparison with the results of ref. [CDH91a], the high-energy and large-l limit was
investigated. In this limit the polarization potential of eq. (3.38) was shown to be identical to that
obtained within the eikonal approximation [CDH91a].

3.3.2. Nuclear 2n-removal cross section
Using the above described polarization potential, one obtains an expression for the *!Li nuclear
2n-removal cross section.
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The starting point is the formal definition of the nuclear break-up cross section
62" = (k/E){ P — Im(VP)| P>, (3.45)

where |W{*) is the exact elastic scattering wave function and V'? is the 2n-removal polarization
potential, which accounts for the effect of the breakup process on the elastic scattering. If the total
optical potential that generates |P{"’) is denoted by U* then the bare interaction taking into
account other channel-coupling effects is U™ = U — VP!,

Performing a partial-waves expansion, one may write eq. (3.45) as

o =% Q+ )T, (3.46)
k* <o
20 = 2 ar | hkn 2T —Im(rr] . (3.47)

0

In the above equation f'(kr) is the optical radial wave function, which is the regular solution of the
elastic-channel Schrddinger equation with the potential U*.

One now employs the same kind of approximation used in eq.(3.34), namely
fikr) = |S©12f,(kr), where S(® is the nuclear elastic S-matrix calculated with U°® and f(kr)
represents the scattering wave function generated by the potential ¥°*! 4+ V'P°! Approximating
fi(kr) by the properly normalized analytic extension of eq. (3.41), we obtain

pol -
foan[1-2 D IR el )

E
p
pol 1/2
xsin[t}n+ J(l _n 4D Im )("/k)> dp], (3.48)
p p E
Po
where the normalization factor N is given by
[ . r Im (VP)/E 5
2 _ kr)|? = —|d ! = . 3.49
W= [artient =ewn( - [ a0 g P ) =18 64
0 Po

If we now expand | f(p)|? to lowest order in Im (V'?°")/E, substitute it in eq. (3.47) and perform the
integration, we obtain

=2}

T# = 2|s;°>||s‘,|sinh( jdp

Po

Im (V5)/E )
[1—2n/p — 10+ 1)/p*]""?

) I pol A
= l:l - exp( —2fdp i 2"/:111/121 _)'_/li:)/pz],/z)]ISPH =(1 —{S:1*)|5{1 .
Po (350)
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Using the explicit form of VP [egs. (3.44)—(3.48)] it is easy to show that |S,| can be written as
|$i) = exp[ — RF §/E)|SO|1E(n,5)] - (3.51)

At high energies it is safe to set # = 0 and for the distant collisions under consideration we may
set [S(@| ~ | S| ~ 1. Under these conditions the nuclear breakup cross section agrees with that
found using the eikonal approximation (ref. [CDH 91a]).

3.3.3. Applications

The polarization potential discussed in the previous section was applied to collisions with a 2C
target. In this case the Coulomb field is weak and the 2n-removal process is dominated by the
nuclear interaction. A typical strong absorption optical potential was used to determine S{" and
the value &, = 2.7 MeV was adopted for the form-factor strength. This value resulted from a fit of
the theoretical reaction cross section at E;,, = 50 MeV A to the experimental value of Shimoura
et al. [Sh91]. In this fit, the reaction cross section was approximated by the sum of the
contributions from the 2n-removal process and from the absorption arising from the optical
potential.

The strengths of the polarization potential at the bombarding energies Ei, = 20, 50 and
100 MeV A are shown in fig. 39, as functions of the angular momentum.

The accuracy of the approximations involved in the derivation of eq. (3.50) can be tested in
a comparison with the exact expression of eq. (3.47). This comparison is shown in fig. 40, for three
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1.20FH
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= osof-
=
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Fig. 39. The strengths of the imaginary part of the polarization Fig. 40. The transmission coefficient as a function of ! for three
potential as a function of / for different collision energies. different energies. The solid lines represent the results of the

calculation using eq. (3.47) and the dashed lines those using the
approximation of eq. (3.50).
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Fig. 41. The ''Li 2n-removal cross section in collisions with Fig. 42. The angular distribution in the elastic scattering of
a !2C target, as a function of the laboratory energy. "1 + 2C, normalized to the Rutherford cross section. The

solid (dashed) line is the result of an optical-model calculation
without (with) the inclusion of the polarization potential.

different collision energies. For the calculation of the transmission coefficient of eq. (3.47), the wave
function f§'(kr) was obtained by solving the radial Schrédinger equation with the full interaction
potential U*®'.

Figure 41 shows the energy dependence of the predicted 2n-removal cross section as a function of
the collision energy. It shows a significant increase for low energies. Figure 42 shows the effects of
the polarization potential on the angular distribution of the !'Li + !2C elastic scattering, at
E,, = 85 MeV A. The dashed line corresponds to the optical-model calculation of Satchler et al.
[SMH 91] while the solid line was obtained with the addition of the polarization potential to the
same calculation. In this case the potential VP! was calculated within the eikonal approximation
(see ref. [CDH 91a]). The comparison indicates that the absorption resulting from the 2n-removal
process leads to an average increase of 40% in the damping.

The extension of the calculations to other targets is straightforward. It is sufficient to scale the
strength of the form factor in terms of the radius Ry of the new target. According to eq. (3.37b), we
have

FolAr) = Fo(12C) exp [(Rt — R¢)/a)] , (3.52)

where R stands for the radius of the !*C target. The resulting 2n-removal cross sections are shown
in fig. 43 for the three energies considered in the previous figures, as a function of the target mass.
So far in our discussion, we have ignored completely the real part of the breakup polarization
potential. In order to complete our discussion in the chapter we give below a brief account of this
question.
We calculate the real part of V},,, using the dispersion relation, which reads

P (Im V,o(E')
(Ey _ pol ’
Re Vil = - j———E — dE’, (3.53)
where P stands for the principal value of the integral. The above formula assumes a similar
r-dependence for Re V,,,, and Im V. Using the Im V,,;; calculated in this chapter we obtain a real

part which is dominantly repulsive and reaches, at most, the value of 0.5 MeV. This value could, to
some extent, affect the value of the elastic angular distribution and the sub-barrier fusion cross
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Fig. 43. Target mass dependence of the !'Li nuclei 2n-removal cross section. For simplicity a sharp-cutoff model for |${”] (eq. 3.50) is
used. -

section discussed in chapter 5. For lack of space we leave the detailed discussion of the above to
another publication [Hu 92].

Finally, we point out that several works have also treated the elastic scattering problems of !!Li,
and other neutron-rich nuclei, on nuclear targets. We cite, e.g., the works of Yabana, Ogawa and
Suzuki [YOS 92a, b] and Takigawa et al. [TUK 92].

4. Pion production with radioactive nuclei

In this chapter we will investigate the possibility to further determine the coordinate and
momentum space distribution of neutrons inside weakly bound isotopes via pion production with
radioactive beams.

In the next section, we discuss the inclusive n* and n~ production cross section in reactions of
radioactive beams in the context of a Glauber-type multiple-collision model, and we focus on the
possibility of probing the difference between proton and neutron densities by studying the ratio of
n* and n~ production cross sections. Section 4.2 contains our results regarding the pion energy
spectra studied within a modified Fermi gas model.

4.1. Inclusive n* and n~ production cross section

In principle, pion production in nucleus—nucleus collisions can be described with nuclear
transport models developed during the last decade [LB 91; Ba 89; Ca 90]. These models have been
successful to describe particle production in heavy ion collisions. However, they are semiclassical in
nature and therefore lack the capability to properly take into account the special nuclear structure
features of weakly bound nuclei near the drip line. It is therefore necessary to construct a more
phenomenological model. The model we present in the following [LHB 91] is not able to provide
a complete time-dependent description of heavy-ion reactions, as the above-mentioned transport
models can. But the model is more precise as far as utilizing nuclear-structure information is
concerned. In the following, we perform a calculation similar to the one presented by Lombard
and Maillet [1.M 88; TLM 87], but using the shell-model densities and energy-dependent cross
sections.
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Within a Glauber-type multiple-collision model, the total number of nucleon—nucleon collisions
in the reaction of A + B at an impact parameter b is

N(b) = G(E) fdxdy szl dzy pa(x? + y2 + z8) 2 pa(x? + (y — b)* + 23)'/%, (4.1)

where O is the overlap region of nuclei A and B, and G(E) is the momentum-averaged total
nucleon-nucleon cross section. For !!Li, since the core nucleon and halo neutron have different
momentum distributions, it may be written as

6(E) = —121 &core(E) + _121- &halo(E) . (42)

Since we wish to analytically carry out the bulk of our calculations, following Karol [Ka 75] we
assume that the nucleon density distribution is a Gaussian function

p(r) = p(0) exp (—r*/a?) . (4.3)

The integration in eq. (4.1) can then be performed analytically to yield the result

G(E)n?pa(0)ps(0)aiad

2 2
aa T U4p

N(b) =

exp [ —b%/(a3 + ad)] . 4.4)

Similar forms for the proton—proton and neutron—neutron collision numbers can be obtained in
terms of their density-distribution parameters.

Under the assumption that pions are produced through A resonances, and neglecting the n* and
n~ produced in neutron—proton collisions, the inclusive #* and m~ cross section can then be
written as [LM 88]

dO'mc |an(¢1)| ZsZs QZA! QQZB !aZAaZB

aza + aZs

r 2 ;(E)( 4B ])9 (999 (9) i3 ’3 2
x2andbexp[ i exp(— b )],
0

a2, — ag az + ag a? + ai
4.5)
dol, B ) n2pna(0)pxn(0)adsads
dQ —|an(CI)| NANB alsz+a12vB
N 2 E)Y(AB — 0 b?
e [babesp - 2 - HEAD = o OpaOudad (Y],
afa — ake a; + af ax + ag
o
4.6)

where py; and py; are the neutron and proton coordinate-space densities of nucleus i, and f;2(g) is
the amplitude for the process N + N —- N + A.
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At beam energies smaller than 1 GeV/nucleon, available experimental data [VA 80; Ki86] show
that pions are mainly produced through A resonances, direct processes account for less than 20%
and higher resonances have negligible cross sections. From the experimental data of n + p
collisions [VA 80] and the calculated ratio of the isospin-space matrix elements [TLM 87], it is
shown that the intensities of t* and ©~ produced in n + p collisions are smaller than in p + p and
n + n collisions, respectively, by an order of magnitude. We therefore expect that the above
equations are good approximations for the present purpose of our calculation.

Since we are interested in the ratio of the inclusive n* and n~ production, the main ingredients in
the model calculation are then the density parameters and the momentum-averaged cross sections.

We start out by obtaining realistic density distributions for protons and neutrons for all isotopes
under consideration. This is accomplished by using a binding-energy adjusted shell-model program
[BBS 89]. As examples for the calculated density distributions, we display in fig. 44 the neutron and
proton densities for '?C (upper part) and !'Li (lower part) by the solid lines (see also fig. 22).

The results of the Gaussian fit to the calculated density distributions are represented by the
dotted lines. In table 8, we list the obtained values for p(0) and a for proton and neutron density
distributions for all Li isotopes used in the subsequent calculations as well as the corresponding
values for !2C.

For calculating the momentum-averaged nucleon—nucleon cross sections, we choose our
momentum-space distribution functions such that our results agree with known experimental data.

One such comparison is performed in fig. 1 (see section 2.1). In the upper part, we use a Fermi
gas model for the momentum distribution of the neutrons in !'Li. We assume different Fermi
momenta for core and halo neutrons. The fitted values are Pg(core) = 158 MeV/c and
Pr(halo) = 38 MeV/c which coincide with those inferred from the experimental data by using the
Goldhaber model. By randomly picking two neutron momenta from within these Fermi spheres
and adding their momenta, one obtains a recoil spectrum for °Li in the projectile rest frame,
employing the assumptions entering the Goldhaber model [Go 74]. By picking two neutrons
from the halo, one obtains the dotted curve in fig. 1. The dashed curve is the result of using the
same procedure on two core neutrons. The solid curve is the result of an addition of the two
contributions with the proper weights as measured in the experiment of Kobayashi et al. [Ko 88].
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Fig. 44. Density distributions for 12C and !!Li. The solid lines are calculated with the binding-energy adjusted shell model. The dotted
lines are the Gaussian fits to the density profiles.
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Table 8
Parameters of the Gaussian fits to the nucleon density distribution in Li-isotopes and !2C as calculated by Bertsch, Brown
and Sagawa [BBS 89]

pa(0) (fm ™) a, (fm) pp(0) (fm~?) ap (fm) p(0) (fm™?) a (fm)

12¢ 0.1148 2110 0.1120 2.128 0.2268 2.120
"Li 0.1051 1.897 0.1121 1.688 0.2168 1.797
8Li 0.1151 1.984 0.0996 1.755 0.2134 1.885
°Li 0.1215 2071 0.0989 1.760 0.2178 1952
0 B 0.1115 2.346 0.0851 1.851 0.1922 2175

For purposes of comparison, all curves in the upper part of fig. 1 were normalized to the same
value. In the lower part of this figure, we compare the simulated °Li transverse momentum spectra
to the data of Kobayashi et al. [Ko 88]. One can see that we are able to reliably reproduce the
experimental observables.

We obtain the momentum distribution averaged nucleon—nucleon cross sections by integrating

a(\/;) weighted with the momentum distributions of target and projectile,

0(Eveam) = JfA(PA)fB(pB —Pbeam)ff(\/; (Pa, Pe))d3pad’py . 4.7)

Here, f;(p) are the momentum distributions of target i = A and projectile i = B.
For the purpose of this calculation, we use the well known parametrizations of Cugnon
[CMYV 81] for the free-space elastic and inelastic nucleon—nucleon cross sections as a function of

the available center of mass energy, \/E, in a nucleon—nucleon collision,

35
oal/3) = T 1000 — 18993 20, /s> 1.8993, (4.8)

20(/s — 2.015)?
| __X 2015 a.
el = 0552 (5 — 2015)%” Vs> 2015 (49)

In this parametrization, ./ s is measured in GeV and ¢ in mb.

In fig. 45, we display the results for 6 ;ne( Epeam) a0d Giora1( Eveam) for three different cases. The
solid lines are for free nucleons. In this case, the distribution functions f are J-functions,
and we have G(Ep.,m) = 0nn. The threshold energy for pion production is in this case

Et, ./nucleon = 290 MeV.

The dashed and dotted lines represent the case that the target is a carbon nucleus. f, (p) is then
a Fermi gas distribution function with Fermi momentum of 221 MeV/c determined from the
carbon fragmentation experiment [Ko 89]. The dashed lines are obtained by using the momentum
distribution of !'Li core neutrons for fz, and the dotted line represents the case that the halo
neutron momentum distribution is used. In these cases, the threshold energies for pion production
are 70 MeV and 120 MeV, respectively.

One can see from fig. 45 that the distribution-averaged value of the total nucleon—nucleon cross
section is largely unaffected by the momentum distribution of nucleons in target and projectile.
However, the averaged inelastic cross section shows a very large effect close to the threshold.
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Fig. 45. Nucleon momentum-average nucleon—nucleon cross sections in the reaction '!Li 4+ !2C. Solid lines are the free-space
nucleon—nucleon cross sections. Dotted lines are for carbon nucleons colliding with halo neutrons and dashed lines are for carbon
nucleons colliding with the core nucleons of !'Li.

Ebeum (

Table 9
Comparison of the computed normalized cross section differences between negative-
and positive-pion production, E, for two different values of & and the same quantity
obtained from simple counting of nucleons, E,, for reactions of different Li isotopes

with 12C
E (mb) TLi 4 12C 8Li 4+ 12C oLi 4+ 12 ML 4 120
40 0.1153 0.2221 0.2955 0.3951
25 0.1143 0.2210 0.2939 0.3927
E, 0.1429 0.2500 0.3333 0.4545

In table 9, we present the results of our calculation for the ratio
E = (o-;tn_c - a::l::)/(a:rn_c + O'ﬁ:c) s (410)

for the systems 4Li + 12C (4 =7, 8, 9, 11) with 6 = 40 mb and 25 mb. These two values for &
are chosen to represent the case for nucleus—nucleus interactions around the pion production
threshold (E,..m = 200 MeV/nucleon — 6 =~ 25 mb) and for reactions at higher beam energies
(Epeam = 800 MeV/nucleon — & ~ 40mb). For comparison, we also present the ratio E, for the two
cross sections, which results from simple counting arguments of neutrons and protons, or by
assuming that protons and neutrons have the same density distribution in eq. (4.5),

Eo =(NaNp — ZaZp)/(NaNg + Z,Zg) . 4.11)

Our calculations confirm the finding of ref. [LM 88] that the ratio E is sensitive to the difference
between proton and neutron density distribution and therefore the pion production is a useful tool
for determining the size of the neutron-rich nuclei. However, in our results the effect is not quite as
dramatic as claimed to be. We attribute this to the more realistic density distributions used in our
calculations.



344 C.A. Bertulani et al., Structure and reactions of neutron-rich nuclei
4.2. Pion energy spectra

In this section we study another aspect of exotic nuclei via pion energy spectra, namely the
momentum distribution of nucleons inside these nuclei.

In the present exploratory study of pion spectra with exotic nuclei, we use a modified Fermi gas
model. It was first used by Bertsch in the study of threshold pion production [Be77]. The
assumption is made that only the first collision of a nucleon pair can create a pion, and we further
assume that pion reabsorption and the final-state Pauli blocking for the two colliding nucleons can
be neglected. For the individual nuclei, we assume that the phase-space distribution function can be
separated into coordinate and momentum parts. For the momentum space distribution of the
colliding nuclei we use a simplified form of two homogeneously filled Fermi spheres, the centers of
which are separated by the beam momentum

fas(p) = 0(pr, — |p|) A + 6(PF, — |P — Pream|) B , (4.12)

where pr, and pg, are the Fermi momenta of the projectile of mass A and target of mass B,
respectively. We will use the Fermi momenta for carbon and !*Li extracted from the experimental
data, as we have discussed in the previous section.

Pion energy spectra in the reaction A + B can then be calculated as a sum of the pion energy
distribution in each nucleon—nucleon collision with all possible momenta within the Fermi spheres

do, do,
<doé >AB = CJ( d(;)NN(S)fA(pA)fB(pB)dapA dSPB y (413)

where C is a constant coming from the integration over the impact parameter, which is irrelevant
for the following discussions. s is the center-of-mass energy squared of the two colliding nucleons.

To calculate the pion energy distribution (dg,/dE)nn in each nucleon—nucleon collision, we
assume that pion production is proceeding via the A resonance. The mass distribution of the
A resonance is taken from Kitazoe et al. [Ki86] and is given by

P(M,) = 025T%(q)/[(Mas — My)? + 0.25T%(q)] 4.14)
where M, = 1232 MeV, and the width I'(q) of the resonance is parametrized as
I'(q) =047q3/[1 + 0.6(q/m,)*}m?2 . (4.15)

g is the momentum of the pion in the A rest frame.

The A is assumed to be produced isotropically in the nucleon—nucleon center-of-mass frame, and
we also assume that the decay of the resonance has an isotropic angular distribution in the A rest
frame. The decay of the resonance is then calculated using a Monte Carlo integration technique.
This leads to a pion energy spectrum in the A rest frame which is finally Lorentz-transformed into
the laboratory frame.

The integration in eq. (4.13) for calculating the pion spectra in the reaction A + B is performed
with the Monte Carlo integration method. Our calculation therefore generates pairs of colliding
nucleons from the projectile and the target, isospin quantum numbers are assigned to these
nucleons according to the N/Z ratios of the projectile and the target. We use available experimental
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data [VA 80; LM 70] for pion production cross sections in nucleon—nucleon collisions in all
possible isospin channels.

One such calculation is performed for the reaction !'Li + !2C at various beam energies. To
show the sensitivity of the pion energy spectra on the nucleon momentum distribution of the
radioactive nuclei, we show in fig. 46 the n~ spectra calculated by using the core Fermi momentum
and halo Fermi momentum for the ''Li projectile, respectively. The solid histograms are calcu-
lated with pg, = pr(halo) = 38 MeV/c and the dotted histograms are calculated with
Pr, = pr(core) = 158 MeV/c. These two calculations simulate the situations that nucleons coming
from !2C collide with the halo and core nucleons of the *'Li, respectively.

A strong sensitivity of the pion spectra on the nucleon momentum distribution can be seen,
especially at beam energies smaller than about 300 MeV/nucleon. Moreover, the different slopes of
the two curves signalling the different momentum distribution of the neutron halo from that of core
nucleons can be seen experimentally. The presently available radioactive beam facilities can
produce high quality ''Li and °Li beams, the different neutron momentum distributions of core
and halo neutrons in !!Li would then show up as contributions to the pion energy spectra with
different slopes in !'Li and °Li induced reactions. We estimate that a beam of 10° !!Li per second
at a beam energy of 300 MeV/nucleon would produce about 10* pions per second. With this
production rate, a high quality experiment using a pion spectrometer could be performed.

As can be seen from fig. 46, the difference in the slope of the pion spectra is not so obvious at
beam energies above 600 MeV/nucleon. This can be understood by looking at the distribution of
the center-of-mass energy squared s of the two colliding nucleons in the reaction A + B,

F(s) = ij(pA)fB (PB — Poeam) (s — 2m2 — 2EAEg + 2pa-ps)d>pad®ps ,

where we take on-shell nucleons so that E; = (p? + m2)'/? for i = A, B. ,
In fig. 47 we present the distribution of s*/? — (2m, + m,), which is the maximum of the pion
kinetic energy in the center of mass of the two colliding nucleons. The calculation is done for the
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Fig. 46. Pion kinetic energy spectra in the reaction !'Li + 2C Fig. 47. Distribution of the center-of-mass energy above pion-
at beam energies of 600, 300 and 150 MeV/nucleon. The solid production threshold for pairs of colliding nucleons in the reac-
lines are calculated with pg, = pr (halo) and the dotted lines are tion !'Li 4 '2C. The solid and dotted lines are calculated under

calculated with pg, = pg (core). the same conditions as in fig. 46.
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reaction !'Li + !2C at beam energies of 200 MeV/nucleon and 800 MeV/nucleon. Again the solid
histograms are the results using pg, = pr(halo) and the dotted ones using pg, = pr(core). The effect
of different internal momentum distributions is obvious at lower energies; as the beam energy gets
much larger than the Fermi energy, the effect gets less obvious.

In summary, we have studied both the coordinate and momentum space structure of the exotic
nuclei via pion production. Through a Glauber-type multiple-collision model calculation for the
inclusive n* and n~ production cross sections, implemented with the shell-model calculated
densities for neutrons and protons as well as the nucleon momentum-averaged nucleon—nucleon
cross sections, it is shown that the ratio of the n* and n~ production cross section is sensitive to the
difference between the proton and neutron densities. This ratio would be a useful tool for
determining the size of the exotic nuclei.

Within a modified Fermi gas model for the momentum distribution and assuming that the pion
production proceeds via A resonance as well as using the available experimental data for pion
productions in nucleon-nucleon collisions, we find that pion energy spectra are strongly sensitive
to the internal momentum distribution of the exotic nuclei. We further discussed a possible
experiment to determine the momentum distribution of the neutron halo via pion energy spectra.

Pion production with radioactive nuclei provides a complementary way for further determining
the properties of the exotic nuclei. Similar effects can be obtained through the study of hard
photons. Here, final-state interactions are completely negligible in contrast to the pion production
case. This makes the y potentially “clearer” to study than the =.

5. Near-barrier fusion of exotic nuclei

Recently, the low-energy fusion of radioactive beams, such as *'Li, with heavy-target nuclei has
been discussed [IMC 89; Hu91a, b; DD 92]. The principal motivation is twofold: (i) the enhance-
ment of the fusion cross section o; that arises from the existence of the halo neutrons can be used to
further understand these exotic nuclei, and (ii) the relevance of such studies to the potential
production of superheavy cold compound nuclei, using heavier exotic nuclei such as 5°Ca or 7°Fe,
with reasonably measurable cross sections.

In the calculations made so far, two features of the halo are taken into account: the lowering of
the static Coulomb barrier and the coupling of the entrance channel to the low-lying soft giant
dipole resonance (SGD) (the pygmy resonance). Both of these effects lead to an enhanced fusion
cross section.

In this chapter we discuss the near-barrier fusion of exotic nuclei with heavy spherical and
deformed target. We discuss the effect of the coupling to the pygmy resonance as well as to the
breakup channel.

The existence of the pygmy resonance at about 1.2 MeV has recently been firmly established
through the study of the double charge exchange reaction 'B(n~, n*)!*Li [Ko 91]. One anticip-
ates, on general grounds, that this state has a large width due to the very low binding energy of the
dineutron (~0.2 MeV). Thus it is of great importance in any fusion calculation to consider the finite
lifetime of the pygmy resonance. This tends to hinder the fusion process, in opposition to the
enhancement factors already reported. The purpose of this chapter is to calculate the fusion cross
section which takes into account the above effect by coupling the pygmy resonance to the breakup
channel. As fig. 48 shows, when a neutron-rich projectile approaches a heavy deformed target
nucleus, then within the soft giant dipole picture of section 1.2, the interaction induces a dipole
oscillation of the excess neutrons with respect to the projectile core. This allows a closer nuclear
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Fig. 48. When a neutron-rich projectile approaches a heavy deformed nucleus, the interaction sets in a dipole oscillation of the excess
neutron with respect to the core, allowing a closer nuclear contact with target.

contact with the target, increasing the fusion probability. On the other hand, within the cluster
picture, also discussed in section 1.2, the greater probability of breakup could easily result in
a lowering of the fusion cross section. Therefore the thrust of this chapter is to take into account
both cluster and SGD features of neutron-rich nuclei in the calculation of the near-barrier fusion
cross section.

5.1. Effects of the coupling to the pygmy resonance

In a coupled channel description of a heavy-ion reaction, the fusion cross section can be
calculated from the total reaction cross section as [HRB 91]

0f = Or — 0Op , (51)
where op is the direct reaction cross section and oy is given by
or = (K/E)<¥:" | ~Im V| ¥ (52)

where {r| lI’,‘,’”} is the wave function that describes the elastic scattering and V is the optical
potential that generates it. It can be shown [Hu 84; HRB 91] that the cross section o; (eq. 5.1) can
be written in the form

k
o=z LW =Im VO 9> (53)

where V' is the bare optical potential in channel i (no channel coupling) and | ‘I’,‘,?) is the exact
scattering state in that channel. Equation (5.3) has been used by several authors to calculate
or using coupled-channels codes [DLW 83]. Other models based on this equation but with the
further assumption of infinite absorption once the barrier is penetrated have also been developed
[LR 84]. Here we generalize the second class of models by incorporating the effect of the breakup
channel (included in | 'I’,‘,f’)).
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To be more specific, we deal here with a case involving the coupling of the elastic channel to
a resonant state in the projectile. If this resonant state is approximated by an excited state whose
width is very small, then o; can be written as (ignoring the excitation energy of the state) [LR 84]

oy =3[of(E+ F)+ of(E—F)], (5.4

where o is the one-channel fusion cross section, F is the channel coupling potential evaluated at
the barrier radius, and E is the collision energy in the c.m. frame. One possible way to take into
account the effect of the nonzero width of the resonance is to consider F in eq. (5.4) to be the
maximum value of a Lorentzian strength whose form is

F'=4ir>F,/I(Q—12)>+1ir?]. (5.5)
Thus, effectively, the effect of the coupling is reduced.
5.2. Effects of the coupling to the breakup channel
To include the breakup channel coupling effect, in eq. (5.4), namely the nonzero width of the

excitated state, it is convenient first to express the cross section as a sum of partial wave
contributions

& n n2( + 1 -1
_%§(21+1)T,f, Tlf(E)={1+exp|:h (VB —2—!(‘—1—:'37—)—15)]} . (56

Above, Rg and V3 are the Coulomb barrier radius and height, respectively. When incorporating the
breakup channel coupling effect, the partial fusion probability, T, has to be multiplied by the
breakup survival probability, 1 — 7;**. Thus

_—"5 i Ql+ 1)1 - T T . (5.7)

And finally,

I
2k?

o¢ = ( i QI+ D)1 -T")THE + F) + i 2l + (1 —= T™) T, (E — F))
=0 1=0

=4[o’"(E+F)+o"(E—F)]. (5-8)

Here the Coulomb breakup does not contribute since it is significant only at / larger than those for
which fusion is relevant. The nuclear breakup transmission factor, T;**, has been recently cal-
culated for several radioactive systems [CDH 91a,b]. The major conclusion of these studies is that
the dynamic polarization potential which enters in the evaluation of 7,**, via

bu _ ¢ _ Im pol/E
Ti"=1-exp ( Zf e (2n/p)—l(l+1)/p2]“2d”> )
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is very sensitive to the binding energy of the breakup cluster. In eq. (5.9)  is the Sommerfeld
parameter and p, is the distance of closest approach, multlphed by the wave number k,
obtained from 1 — 2n/po — I(I + 1)/pé = 0. A closed-form expression for TP" was derived in
ref. [CDH 91b] and it reads

T™ =1 —exp[ —(4F3/E?)|S" |13 (n,5)], (5.10)

where &%, is a couphng strength factor of eq.(3.37b), which was found to be 4.859eV for
111 4 298pp, | S| is the modulus of the optical S-matrix in the breakup channel and I (n, s) is
a Coulomb radial integral evaluated and discussed in ref. [CDH 91b] (see section 3.3). The
sensitivity of V,, and T;™ to the binding energy of the dineutron in !!Li resides in the I-dependence
of I;(n,s).

In ref. [Fi91], the breakup effect on near-barrier fusion of several light heavy-ion systems has
been extensively studied. In particular the data on the systems *Be + 2°Si, !!B + 27Al, !2C + 2*Mg
and '°F + '°F have been investigated. The greater breakup probability of several of the participat-
ing nuclei was found to be responsible for the correspondingly smaller fusion cross section,
calculated according to eq. (5.7). This comparison supports the validity of the above discussed
model.

5.3. Application to the fusion of '*Li with *°8Pb and ?*8U at near-barrier energies

In the following, we apply the results of the previous section to the fusion of !!Li with very heavy
ions [Hu 92]. We use the fusion calculation of Takigawa and Sagawa [TS 91] as a background for
the study of the effect of the coupling to the breakup channel. We take the height of the Coulomb
barrier (Vg =26 MeV) its radius (Rg = 11.1 fm) and curvature (hw = 3 MeV) from fig. 1 of
ref. [TS91] and use these parameters in the Hill-Wheeler transmission coefficients of eq. (5.6). The
strength F was adjusted to reproduce the values of g, of ref. [TS91]. We found F ~ + 3.0 MeV.
The breakup effect was then 1nvest1gated through the modified fusion cross section of egs. (5.8) and
(5.10), taking | S/ | = [1 — T; (E — 0.2)]Y2. The result of our calculation is shown in fig. 49. It is
clear that the inclusion of the breakup coupling and thus the lifetime of the pygmy resonance,
reduces o; by as much as a factor of 100 at energies slightly below the barrier. More important is
the fact that the breakup of the projectile renders the fusion cross section lower than the one-
dimensional calculation at energies extending from slightly below the barrier to energies above the
barrier (24 MeV < E < 45MeV). At energies less than 24 MeV the enhancement sets in. The
increase of the enhancement with increasing E~1! is, however, much slower than the case without
breakup, eq. (5.4). Only at energies E < 10 MeV, does the breakup effect subside compietely, letting
the pygmy resonance act as a complete vibrational enhancer.

Figure 50 exhibits more clearly the above features through the behaviour of the enhancement
factor ¢, defined as the ratio of the fusion cross section to the one-dimensional cross section o¢ . The
breakup effect is contained in the interval 10 MeV < E < 45 MeV. Further, there is a sharp dip at
the barrier. This dip is easily understood. At energies above the barrier, the nuclear breakup
process inhibits fusion. This inhibition becomes less effective as the energy approaches the barrier,
which acts as a natural threshold. At sub-barrier energies, the increase in the distance of closest
approach leads to a further reduction in the breakup effects. These striking features arising from the
halo should be easy to verify experimentally. The saturation value of ¢ is 250 and it represents
simply the value of 4 exp (2n/AwF ) [eq. (5.6) at the energy E — F ], which is attained at much lower
energies (~ 10 MeV) than predicted by Takigawa and Sagawa [TS91].
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Fig. 49. Excitation function for the fusion cross section of Fig. 50. The enhancement factor ¢ versus E ., for ''Li + Pb.
Y1 + 208Pb, The dotted curve is the one-dimensional The dashed curve is eq. (5.4)/eq. (5.6) while the full curve repres-
Hill-Wheeler cross section (eq. 5.6), the dashed curve is the ents eq. (5.8)/eq. (5.6).

pygmy resonance enhanced cross section (eq. 5.4) and the full
curve represents the result with inclusion of the breakup coup-
ling (eq. 5.8) (see text for details).

We have repeated the above calculation for the deformed nucleus >*8U. Here the enhancement of
oy arises from both the coupling to the pygmy resonance of the projectile and the coupling to the
states of the target rotor. Taking only the 0* and 2™ states of 2*®U into consideration, the fusion
formula reads [Hu 91b] (the sudden limit is assumed)

o¢ = 3{0.562[6¢ (E + F + 0.73 8,1 (Rg)) + 6{(E — F + 0.73 8, f (Rg))]

(5.11)
+0.438[a{(E + F — 1.37 B, f(Rg)) + 6{ (E — F — 1.37 B, f(Rs))1} ,
where f(Rp) is the rotational coupling form factor given approximately by
f(Rg) = (1/3/4m) Vs (R2/Rg) (1 — 3(R2/Rs)) . (5.12)

In egs. (5.11) and (5.12) R, is the radius of 238U (7.4fm), B, is the deformation parameter
(B2 =~ 0.27), we estimate Vg to be about 29 MeV. One thus gets f(Rg) = 3.3 MeV.

In fig. 51 we present the fusion cross sections calculated according to eq. (5.9) (one-dimensional
barrier penetration model, dashed line), to eq. (5.11) (pygmy resonance vibration and target
rotation coupling model, dotted line) and with the inclusion of the breakup survival probability in
eq. (5.11), obtained by replacing o by o° (full curve). We find here a fusion behaviour similar to
that of the !!'Li + 2°®Pb system except that the enhancement is larger by a factor of 11. The
corresponding enhancement factors are shown in fig. 52, which shows very similar behaviour to
fig. 50. The saturation value of ¢ is 1000, which is attained at about E = 13 MeV. Again one sees the
sharp dip of ¢ at the barrier energy (29 MeV).

In this section, we have calculated the influence of the nonzero width of the pygmy resonance on
the fusion of !!Li with heavy spherical and deformed nuclei at close-to-barrier energies. This is
accomplished by taking into account in the multi-dimensional fusion calculation, the effect of the
breakup channel '!'Li— °Li + 2n. The usual vibrational and vibrational + target rotational
enhancement of the sub-barrier fusion cross section is appreciably reduced. Further, the enhance-
ment factor ¢ is found to exhibit nontrivial structure around the barrier. This is clearly related to
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of the ''Li breakup on eq. (5.11).

the halo neutrons in ''Li and should be easily verified experimentally. Similar effects should be
present in exotic B- and Be-induced fusion reaction.

Before ending, we should mention that the above findings are quite relevant to the discussion of
using radioactive beams to produce superheavy elements. In ref. [Hu 91b] the sub-barrier fusion
cross section for °Fe + 2°®Pb was calculated including only the effects of the pygmy oscillation,
and it was found that the enhancement was quite great. Similar conclusions were reached by
ref. [DD 92] for the system **Ca + '**Sm. It is obvious that these calculated enhancements are
great overestimates in view of the easily breakable nature of these loosely bound nuclei. Further,
considerations of extra—extra push limitations of fusion, recently taken into account by ref. [Ag 92]
clearly points to a much more modest enhancement.

6. Nuclear astrophysics and exotic nuclei
6.1. Coulomb dissociation experiments

It is well known [Fo 84], that a variety of stellar environments are so hot and dense that the
nuclear reaction rates are comparable with natural decay processes. These conditions characterize
nuclear burning in, for example, cataclysmic binaries, accreting neutron stars, and supernovae,
all of which are important nucleosynthetic sources. Of special interest in this context is the
radiative capture reaction which is one of the most important in the formation of various
elements in the universe (for a review see, e.g., ref. [RB90]). An example of such reaction is
"Be(p, v)®B, the decay of which is believed to yield about 70-80% of the neutrinos of our sun that
are detectable using the 37Cl(v, e”)*’Ar reaction. Although there are some experiments on
proton-capture reactions on 'Be, which has a half-life of 54 days, disagreement among the results
are found [Ba 80; Ba 83; BS86]. Thus, an independent measurement, based on alternative tech-
niques, would be useful. Such statement is valid for other radiative capture reactions of interest in
astrophysics.

For example, recently, an alternative mechanism for the primordial nucleosynthesis of inter-
mediate-mass nuclei (12 < A < 28) has been proposed [Ap87; MF 88; Ma90]. In this scheme,
heavier nuclei are formed via neutron capture or proton and alpha chains. The important reactions
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in this scenario consist of the following:

'H(n, y) *H(n, ) *H(d, n) *He (°H, v) "Li(n, v) *Li(e, n) **B(n, v) **B

12B(B, v) 12C(n, y) *C(n,y) **C(n,y) *5C ... 6.1)

In addition, there is an important branch which turns the reaction flow back to the lighter
elements,

8Li(n, v)°Li(B~, v) °Be(p, o) 6Li . (6.2)
Of the above reactions, it is important to determine the following neutron-capture cross sections:
"Li(n, v)8Li(n, y) °Li ; 12C(n, y) 13C and *C(n, y) !3C. (6.3a,b)

The ®Li(n, y)°Li reaction is important because it may compete strongly with the a-capture
reaction ®Li(a, n)!!B, thus reducing the predicted yields of 4 > 12 isotopes. In fact, there could be
as much as a 50% reduction in 4 > 12 isotopes, depending on the cross section for the ®Li(n, y)°Li
reaction [WSK 89]. It may be impossible to ever have a 8Li target due to its short half-life (838 ms)
so the cross section for the capture reaction may never be measured.

Likewise, the subsequent reactions in the above chain involving '*C and '°C provide an
alternative route to the production of heavy elements. For example, Kajino et al. [KMF 90] have
found that, depending on the value of the cross section used for the reaction *C(n, y)!°C, the
sequence of carbon-capture reactions and B decays can provide the main route to the synthesis
of heavy elements. This contradicts other nucleosynthesis calculations, where the reaction
14C(a, v)'80 is considered the primary means through which heavy elements are synthesized.
However, estimates of the '“C capture cross section vary significantly. Only an upper limit to the
measured thermal neutron-capture cross section currently exists, and extrapolating this to a neu-

tron energy of 30keV with the l/ﬁ law implies an upper limit of < 1 nb. Calculations which
consider only 14C neutron capture followed by E2 transitions to the 5/27 state of °C agree with
this value. However, Kajino et al. also include the E1 transitions to the !3C ground state, and they
calculate a cross section of 0.1 mb, an increase by a factor of 10°. If the cross section is indeed this
high, then this reaction could compete with the '*C(a, y)!°C reaction as the primary path to heavy
element synthesis [KMF 90]. Considering the large discrepancy in theoretical estimates for this
cross section (5 orders of magnitude), a measurement is warranted. As with the ®Li(n, y)°Li
reaction, to measure the 14C(n, v)!°C reaction in the forward direction would be very difficult, if
not impossible.

As we have seen in previous sections, reactions with radioactive secondary beams have provided
unique opportunities to study the nuclear structure of exotic nuclei, far from the stability line.
Reactions of nuclei with half-lifes of the order of milliseconds are now possible to study experi-
mentally. In this section is shown that, besides the possibilitiy to study entirely new phenomena,
unobservable with current methods, radioactive beams can give direct information on the astro-
physical S-factors for radiative capture reactions leading to the formation of unstable nuclei. This
possibility arises because of the huge Coulomb dissociation cross sections of radioactive projectiles,
due to their low binding energy.
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The Coulomb dissociation method was proposed and shown by Baur, Bertulani and Rebel
[BBR 86] as an important tool to extract useful information on radiative capture cross sections of
interest in astrophysics. The first experiments done to test this method for the reactions a(t, v)’Li,
a(d, 7)6Li and p(**N, y)**O have been encouraging [Ut90a; Ki89,91; Mo 91]. Reactions with
high-energy release, like 12C(a, 7)!%0, can also be studied in this way. Nonetheless, one has to rely
on precise coincidence measurements of the angular and energy distributions of fragments b and c.
Another disadvantage of this method is that one has no control on the final-state interactions of,
e.g., the influence of the Coulomb and nuclear fields of the target after the breakup.

The Coulomb dissociation method works as follows. The Coulomb dissociation cross section for
the reaction a + A -» b + c + A is given by [BB 88c]

oo = ¥ | nes(e) o700 64)

A

where o ]*(¢) is the photo-disintegration cross section y + a — b + c, with the photon energy ¢, and
multipolarity © = E (electric) or M (magnetic), and A = 1, 2, ... (order). The photo-disintegration
cross section is related to the radiative capture cross section through the detailed balance theorem

7y + D@+ DK
22, +1) k2

c(y+a-b+c)=) o (y+a-b+c)= cb+c—oa+vy), (6.5
nA

where k2 = 2u E/h?, E is the center-of-mass energy of the relative motion of the b + ¢ system, y is
the reduced mass of b + ¢, k, = ¢/hc = (E + Q)/hc, and Q is the energy release in the radiative
capture. The radiative capture cross section is usually written in terms of the astrophysical S-factor
as

6(B +c—a+7y)=[S(EYE]exp[ —2nn(E)], 1= ZyZ.e/bv, (6.6)

where v = ,/2uE. This definition factors out the steep increase of the radiative capture cross
sections at low relative energies [RB 90].
As indicated in eq. (6.5), the radiative capture cross section is a sum over all multipolarities.
In most cases, a multipolarity of one (or two) dominates the process. This also occurs with the
Coulomb-induced breakup cross section given by eq. (6.4), depending on the function n,;(¢). These
functions are interpreted as the number of equivalent (virtual) photons, provided by the Coulomb
field of nucleus A, incident on nucleus a. They can be calculated for all bombarding energies with
good accuracy, as was shown in ref. [AB 89]. In very high-energy collisions, simple analytical
formulas were obtained [BB 88c]. Also, for all multipolarities, n,,(¢) decreases rapidly with ¢, thus
enhancing the lower-energy part of the photo-disintegration cross section, which enters eq. (6.4).
Formula (6.4) has the same structure if one measures differential cross sections, instead of total
ones. Only the quantities n,, are replaced by similar ones, which depend on differentiated variable
(e-g., ;.m., & etc.). Therefore, a direct relationship always exists between the measurement and the
photo-disintegration, or the radiative capture cross section, respectively.
The simplest measurements take advantage of resonances that may exist for a particular energy
E. In this case, the aim is to obtain the total strength below the resonance, its width, etc. The first
successful experiment along these lines was done by Motobayashi et al. [Mo 91]. In this experiment
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the cross section of the Coulomb dissociation reaction 2°8Pb(!40, 1*Np)2°8Pb was measured at
Eib = 87.5 MeV/nucleon. The aim was to determine the radiative width I', of the 1~ state in **O at
¢ = 5.17 MeV, which dominates the radiative capture process **N(p, v)'*O, a key reaction in the
hot CNO cycle of hydrogen burning in stars. In fact, this reaction competes with the B* decay of
13N and determines the conditions for starting the hot CNO cycle rather than the regular CNO
cycle. This transition is expected to take place in various astrophysical circumstances, such as
supermassive stars, novae, supernovae outburst [WW 81] or at the surface of neutron stars
[FHM 81].

The result of this experiment is shown in fig. 53 where the angular distribution of *O excited to
its 1~ state is shown. This state was identified by its decay products p + !3N. Since coupling effects
or multi-step contributions are negligible, a one-step excitation model (see, e.g., ref. [AB91]) is
enough to describe the scattering data. In this model the only parameter needed to reproduce the
data is a deformation parameter fy c which determines the strength of the excitation. The
contribution from the nuclear breakup can be estimated by assuming a simple collective vibration
mode with By = B¢, where Sy and B¢ denote the nuclear and Coulomb deformation parameters,
respectively. At forward angles of § < 5°, a coherent sum of the nuclear and Coulomb amplitudes is
only different by 5% on average from the pure Coulomb dissociation cross sections. The best fit to
the experimental data was obtained with a deformation parameter fc = 0.046, corresponding to
a radiative width I, = 3.1 £+ 0.6eV. This error is the smallest of the three existing measurements,
indicating high experimental efficiency of the Coulomb dissociation method. The other experi-
ments are the results of branching-ratio measurements of Fernandez et al. (2.7 + 1.3eV) [FAG 89]
and the one of Aguer et al. (7.6 + 3.8eV) [Ag89].

Nonresonant reactions are more difficult to analyse via the Coulomb dissociation method. In
order to determine the radiative capture cross section (6.6) an accurate measurement of the relative
energy E of the fragments has to be made after the breakup. But “post-acceleration” effects (i.e., the
additional acceleration of the fragments by the Coulomb field of the target) may prevent a direct
association between the measured energy and that originated from the direct breakup mechanism.
Nonetheless, for certain cases the method has been shown to work [BH 91a].

F 29000 (0, 0" (17))2%%Rb 3
i Ein=B7.5MeV/u]

da/dQ2 (b/sr)

001}

Fig. 53. Experimental and calculated angular distributions ior the reactions 2°*Pb(!*O, *3Np)?®Pb exciting the 1~ state of **O. The
solid curves are obtained by the coherent sum of the nuclear and Coulomb excitation amplitudes assuming I'y = 3.1 eV for 140(17). The
dashed and dotted curves represent the nuclear and Coulomb breakup contributions, respectively, to the 2°*Pb(!*0, !3Np)?°®Pb

reaction.
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Fig. 54. Cross section for the d(«, y)5Li capture reaction. The low-energy data (open circles) were obtained by means of the Coulomb
dissociation method [Ki91] and added to the graph of ref. [Ro 81].

Successful experiments for the study of a(d, v)®Li and a(t, y)"Li by the Coulomb dissociation
method has been performed (see, e.g., refs. [Ut 90a; Ki91]).

The reaction of the Coulomb breaking-up of ®Li into a-particle and deuteron fragments is
especially suited for the use of the method, since the identical charge-to-mass ratio of the fragments
minimizes the post-acceleration effects. The production of Li isotopes through “He(t, v)"Li and
“He(d,y)°Li fusion reactions at temperatures corresponding to energies of about 300keV is an
important clue of the nucleosynthesis in the primordial fireball [Sc 85; SW 77]. The “He(d, y)°Li
cross section is unknown at these energies, and the present conclusion that “Li is produced in the
big-bang nucleosynthesis, but that ®Li, however, is produced predominantly in spallation reac-
tions, is based on a purely theoretical extrapolation of the cross section [Au 81].

In the experiment of Kiener [Ki91] a very elaborate measurement of the triple-differential
laboratory cross sections d3c/dQ,dQydE,s was done. Analogous to the ideas behind
egs. (6.4)—(6.6) this measurement can be related to the radiative capture cross section “He(d, y)®Li.
In order to display the experimental progress due to the use of the Coulomb dissociation method,
their data (with E > 100keV) are plotted (open circles) in fig. 54 together with the previous
(higher-energy) results of the standard experimental approach [Ro 81]. These results can be
considered as an experimental confirmation of theoretical conclusions on the capture cross section
at astrophysical energies.

The examples displayed in figs. 53 and 54, with their applications, give strong support to the
Coulomb dissociation method as an alternative tool to access information on the radiative capture
cross section of astrophysical interest. While some of these reactions can be studied in a standard
capture experiment, the ones involving radioactive targets, like those of egs. (6.3a, b) could be better
studied by using the Coulomb dissociation method. The most promising cases are the reactions
proceeding through resonances, and for which no available data exist due to the difficulty of using
radioactive targets.

6.2. Direct measurements

Most nuclides with 4 2 70 are synthesized by neutron capture. The s-process describes neutron
capture over slow time scale compared with typical beta-decay lifetimes near the line of stability,



356 C.A. Bertulani et al., Structure and reactions of neutron-rich nuclei

and thus leads to the formation of a continuous chain of stable heavy elements from the iron group
to 2°°Bi. The r-process, on the other hand, corresponds to neutron capture on a time scale which is
rapid compared with B-decay lifetimes.

In an explosive astrophysical environment the neutron densities can become so high that
successive neutron captures can occur out to nuclei far from stability. Furthermore, the temper-
atures become so high (7 ~ 3 x 10® K) that the Boltzmann population of nuclear excited states can
lead to dramatic changes of the neutron-capture and B-decay rates. In this context there is a class of
reactions which one thinks [Ma 86] are important quantities to improve the regime of input to the
s-process in such environments. Important unstable nuclei for which the neutron-capture cross
section has not been measured are, e.g., "°Se, 85Kr, °’Pd, '4"Pm, !3!Sm, °°Ho, '®°Re, '°2Ir and
205Pb.

The astrophysical site for the r-process is still not known. There are two fundamental time scales
which are basic input data to this process. One is just how high the neutron density must be to
reproduce the r-process abundances. The other is that the neutron density must remain high in
order to produce the actinides (which cannot be produced by the s-process due to a-decay at 21°Bi).
This quantity depends on the sum of the neutron-capture and p-decay lifetimes as one moves away
from stability. The r-process must live enough for nuclei to capture far from stability, and then for
beta to decay up to the mass numbers of the actinides. Before the astrophysical site for the r-process
can be determined, more refined determinations of neutron-capture cross sections and B-decay
rates are desirable.

Anytime there is thermonuclear hydrogen burning, there is a possibility for proton reactions on
unstable nuclei. A well known example is the reaction "Be(p, 7)®B in the sun. Other examples are
the 22Na(p, y)*>*Mg reaction in the Ne-Na cycle, and the reactions of 2°Al in the Mg-Al cycle.
When the temperatures are high, other reaction rates also become important. For T2 2 x 108K the
waiting point for the normal hydrogen-burning CNO-cycle shifts [MD 84] from '“N to !3N, and
then, via the »*N(p, y)'*O reaction, it shifts to the production of **O and '3O. This is the hot
(beta-limited) CNO cycle, which is particularly significant in the evolution of supermassive
(M > 10* M,,,,) stars. This hot hydrogen-burning scenario can be studied via the Coulomb
dissociation method, as discussed in section 6.1, or by producing a beam of radioactive heavy ions
to be focussed onto a target of hydrogen or “He.

The reaction 8Li(a, n)!!B is critical in predicting the abundances of !'B and heavier nuclei in the
standard (homogeneous) model (SM) [WFF 67; SW 77; Wa 84] or in the inhomogeneous models
(IM) [AHS 87,88; AFM 87; Ma90; KB90], as !'B is the nuclide through which most heavier
nuclides must pass, and that reaction apparently regulates the dominant pathway by which !B is
made [KB90]. Observation of this reaction, however, is complicated by the 840.3 ms half-life
[Sa90] of 8Li. A recent measurement [Pa90] of the inverse reaction !!'B(n, a)Li gives the
ground-state-ground-state cross section for ®Li(a, n)!!B. However, several !!B excited states can
be populated in 8Li(«, n)!'B, so inference of the cross section of interest from measurement of the
inverse reaction may underestimate the actual value by a large factor. This statement also applies
for the Coulomb dissociation method. The use of inverse (or nondirect) measurements has to be
analysed carefully case by case.

Of course, the best possible measurement is the direct one. For the reaction ®Li(a, n)' !B a direct
measurement has been recently reported using a 8Li radioactive beam [Bo 92]. Their results are
shown in fig. 55. Also indicated in that figure is the ground-state—ground-state excitation function
inferred from the study of the inverse reaction [Pa 907; it can be seen that the cross section to all
possible !B states exceeds that to just the ground state by a fairly constant factor of about 5 for the
data shown. Since all the nuclides heavier than 11 amu pass through ''B on their way to higher
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Fig. 55. Total cross section for the 8Li(a, n)''B reaction as a function of the center-of-mass energy. The points with error bars are from
ref. [Bo 92]. The open circles are a sampling of the data of ref. [Pa90] for the cross section to just !B (gs.).

masses, the heavier-element abundances might thus be expected to increase with this reaction rate,
provided B-decay of ®Li is the dominant ®Li destruction mechanism.

7. Momentum and angular distributions in exotic beam induced reactions
7.1. Momentum distribution

Fragmentation reactions with secondary beams of radioactive nuclei have shown that the total
reaction cross section and the transverse momentum distribution of the fragments are sensitive to
the separation energy of the last neutrons and to the size of the density profile in these nuclei
[Ko 88]. These two quantities are linked since the “size” of the nucleus is roughly proportional to
the inverse of the square root of the separation energy. Using the Goldhaber model for soft
fragmentation, the authors of ref. [Ko 88] were able to relate the widths of the narrow peaks in the
momentum distributions with the separation energies and sizes of the radioactive nuclei. However,
this approach is not free of bias. The interaction of the fragments with the target broadens the
narrow peak and makes the extraction of quantitative information about these quantities strongly
model-dependent and potentially inaccurate.

We show here that a better measure of the interaction size of the radioactive projectile is
obtained by the longitudinal momentum distribution of its fragments. It is also shown that the
Coulomb and nuclear fragmentation amplitudes have longitudinal momentum distributions with
very nearly equal widths. This fact has indeed been verified in a recent experiment at the
NSCL/MSU [Or 92]. On the other hand, the transverse momentum distributions are substantially
broadened by the size and diffuseness of the interaction with the target and contain Coulomb and
nuclear contributions with different widths. The interpretation of the “wide” (core-neutron)
component of the transverse momentum distributions is therefore less straightforward than that of
the longitudinal ones.

We follow below the recent work of Bertulani and McVoy [BM 92], using a simple cluster
description of the radioactive nuclei. The conclusions drawn are however of general validity. The
cluster model only serves as a guide to obtain an analytical insight into the results. The systems
studied experimentally involve reactions of the form

a+A->b+x+A*=b+X. (7.1)
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According to ref. [HM 85], a spectator model of a = b + x gives the singles spectra of the
particle b as

do 2E, ~
A0.dE, p(Ev) ho.k. fdszlcﬁa(q, b)IP[1 — |S:a(b)1] s (1.2)
T 2
| $a(g, b, = ‘ fd""'b exp(igy * o) Sva(bp) @a(ry — )| - (7.3)

The quantity S;5(b;) is the S-matrix for the scattering of cluster i (i = b, x) from the target A. We
obtain it from a complex optical potential by means of the eikonal approximation. For the optical
potential we use the tpp formalism (see, e.g., ref. [HRB91]), which is obtained by folding the
nuclear densities of the participant nuclei weighted by the nucleon—nucleon scattering cross
section, with medium correction effects. We shall here concentrate on reactions involving '!Li,
11Be, and °He, and compare our results with the measurements of the momentum distributions of
the °Li, '°Be, and “He fragments, respectively. The Hartree-Fock densities for these nuclei were
taken from ref. [BBS 89], except for the °He, which was taken from ref. [Su91]. The density
distributions of the knocked-out neutrons were taken as the difference between the neutron
distributions of the original nuclei and of the observed fragments.

In eq. (7.3), ¢, represents the cluster wave function for the incoming a = b + x projectile. If one
assumes that the fragment b does not interact with the target, i.e., Spa(b) = 1, one finds

do/dQ,dE, = p(E)o5al$algs)I” (7.4)

where o, is the total reaction cross section of fragment x with the target A, and ¢,(gy) is the
Fourier transform of ¢, (r, — r,) with respect to g,. The above result is known as the Serber model
limit [Se 47]. It tells us that in this approximation the breakup mechanism measures the mo-
mentum-space internal wave function of the projectile, so that the singles spectrum of fragment
b provides important information about the internal structure of the projectile. This is especially
useful for the study of extremely short-lived nuclei in secondary beam reactions.

Unfortunately, the Serber model is only a rough approximation for most cases and the elastic
scattering (including absorption) of the fragment b on the target has to be included, leading to an
unavoidable broadening of the momentum distributions [Ut 90a, b]. The physical origin of this
broadening is simple diffraction (i.e., the uncertainty principle), as an examination of eq. (7.3) makes
clear. For instance, if S, = 1, the Fourier transform given by this equation would be exactly the
Fraunhofer diffraction pattern (as a function of ¢,) of the “source distribution” ¢,(r, — r,).
Including the factor Sya(by), with |Spa(bp)] < 1, effectively decreases the transverse width of the
source by eliminating the part that overlaps with the target A, and this will of course broaden the
transverse diffraction pattern.

This broadening makes it harder to extract the internal momentum structure of the projectile.
However, since for high-energy collisions the S-matrix Sy, does not depend on the longitudinal
coordinate, the longitudinal momentum distribution is expected to be much less altered by the
Sya absorption. In particular, a gaussian shape is quite appropriate for the light projectiles
considered here, and in this case the longitudinal and transverse parts of the integral of eq. (7.3)
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factorize completely. That is, if one takes for the projectile cluster wave function the approximation
¢a oc exp[(—by — b,)?47] , (7.5

one finds

do/dg{” = (2n)* (E,/hv,k,) (C3/4%)exp [ — (q{”)*/24%]

X szbx byexp(—24*b2)[1 — [S:a(b)I] (7.6)

X fdbb by exp(— 2A2b§)IO(4bxbbA2)|SbA(bb)|2 s

where the C, is a normalization constant and I, a Bessel function. That is, the dependence on g{” is
given by a Gaussian function multiplied by a geometrical factor. Therefore, the longitudinal
momentum distribution measures the internal momentum function of the projectile and is insensi-
tive to the details of the nuclear interaction. This fact was pointed out by Friedman in the general
context of nuclear fragmentation reactions [Fr83].

Due to their low separation energies, the projectiles near the B-instability line are also easily
Coulomb excited/fragmented. It is well known that the electromagnetic excitation cross sections
induced in nuclear collisions are directly related to the cross sections induced by real photons
[BB 88c]. The proportionality factor is the so-called number of virtual photons, which is a slowly
varying function of the photon energy. Therefore, the momentum distribution of the fragments will
be determined by a matrix element of the form (in the dipole approximation)

My = J"Ylm(f)fﬁ?‘(")d’i(")dsr . (7.7)

We again assume that the initial wave function ¢; has a gaussian form, and use plane waves for the
final state. This neglects the final-state interaction of b with A, an approximation appropriate to the
Coulomb fragmentation, which takes place farther from A than does the nuclear fragmentation.
With these assumptions, one finds that the momentum distribution of the fragments due to the
Coulomb interaction has a gaussian shape in all three components of g,

d?s6/dgq2 = const x g, exp(— g/24?) . (7.8)

Integrating over k{ one gets to a good approximation another gaussian distribution for the
longitudinal momentum distribution, this time from the electromagnetic fragmentation process.

Recently, the longitudinal momentum distribution of ®Li has been obtained from the fragmen-
tation of !'Li projectiles with 70 MeV 4 has been measured at the NSCL/MSU using several
targets [Or 92]. The data was taken using light and heavy targets, thus probing the effects of the
nuclear and the Coulomb interaction on the breakup. As shown in fig. 56, this width can be
explained by using eq. (7.5) and a calculation for the electromagnetic breakup of the projectile
[BB 88c¢] with the value A4 = 20 MeV/c, for all targets. A recent detailed calculation by Esbensen
and Bertsch for the electromagnetic dissociation of !Li on tantalum [EB91], accounting for
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Fig. 56. Longitudinal momentum distributions of °Li from the
breakup of ''Li incident on (a) Be, (b) Nb and (c) Ta, at
70 MeV A. The data are from [Or92] and the curves are from
egs. (7.2) and (7.6), normalized to the data.

Fig. 57. Transverse momentum distributions of (a) °Li frag-
ments from the breakup of !'Li, (b) '°Be fragments from the
breakup of ''Be and (c) *He fragments from the breakup of *He
projectiles incident on C at 800 MeV A. The data are from

ref. [Ko 88]. The dotted and dashed curves describe halo neu-
tron only, the dotted curve neglecting final-state neutron inter-
actions with the target, and the dashed curve including them via
¢gs. (7.6) and (7.9). The solid curves are two-Gaussian fits to the
data, using a width determined by the binding of the core and
halo neutrons of the projectile.

initial- and final-state correlations between the valence neutrons in '!'Li, has also obtained this
value for the momentum width. This momentum width can be approximately related to the
separation energy of the 'Li by Eg ~ 4%/u,, = 0.26 MeV, which agrees well with the experimental
value in direct measurements. Although approximate, this relation shows that in fact the separation
energy can be obtained from the measurements of the widths of the longitudinal momentum
distributions.

Using the gaussian shape for ¢, and integrating eq. (7.2) over g{”, one obtains for the transverse
momentum distribution

Fo _ — E G
dg?e, hv,k, A

jdszbxexp(_zAzbf) [1 - ISxA(bx)Iz] (79)

2

X i Jdbbbbexp(_Azblza)Jm(q'(l!’)b)Im(bebbAZ)SbA(bb) >

m= —w

where J,, and I,, are Bessel functions. In contrast to eq. (7.5), the above relation shows that the
transverse momentum distribution depends on the target size parameters.

Figure 57 shows the transverse momentum distributions of °Li, '°Be and “He from the break-
up of 11Li, ! Be and ®He projectiles, respectively, incident on carbon at 800 MeV A. For this target



C.A. Bertulani et al., Structure and reactions of neutron-rich nuclei 361

only the nuclear contribution to the breakup needs to be considered. The data are from
ref. [Ko 88]. The dotted curves are the result of the Serber model calculation following eq. (7.3).
The momentum parameters A were determined by the separation energies of the fragments with the
approximate formula 4 = ./ uyEg which give the values 0.25 MeV, 0.5 MeV and 0.97 MeV for
1174, 1'Be and ®He, respectively. The dashed curves were obtained using the more correct
approach of eq. (7.2).

In the case of !Li the result of the Serber model agrees with the one obtained for the
longitudinal momentum distribution data of NSCL/MSU, since the momentum distribution given
by this model is isotropic. The interaction of the fragments with the target broadens the peak, and
this is displayed by the dashed curves in this figure. However, it is also seen that the wings of the -
momentum distributions cannot be reproduced by using a single gaussian parametrization for the
ground-state wave function. This is due to the simple cluster-model picture that we have adopted.
More realistic models are able to describe these wings (wide component) [Zh91a, b], but our
analysis is consistent with the idea that the narrow peak measures the separation energy of the halo
fragments.

An attempt to explain the wings of the momentum distributions displayed in fig. 57 (solid lines),
can be made by assuming that also neutrons from the core of the projectile could be removed with
appreciable probability [Ko 88]. One can assume that the cross sections for the removal of the
loosely bound valence neutrons and the more tightly bound from the core add incoherently. The
results are shown by the solid lines in fig. 57. In this calculation we added two results of eq. (7.8):
the results which yield the dashed lines in fig. 57, with other results with the internal momentum
widths 4, = 55 MeV/c, 92 MeV/c and 79 MeV/c, for '!Li, !Be and SHe, respectively. The
Hartree—Fock densities for the core nucleons were taken from refs. [BBS 89; Su91]. These mo-
mentum widths are much wider than the one cited before, and are related to the separation energies
of the core neutrons. The contributions of the two gaussian simulations for the internal wave
functions were chosen so as to reproduce as well as possible the experimental data. The excellent
agreement with the experimental data (solid lines in fig. 57) should therefore be approached with
some caution, since any two gaussian fits can reproduce the transverse momentum data [Ko 88].
Nonetheless, the ratio between the two contributions gives roughly the spectroscopic factors for the
removal of neutrons from the core and from the halo, respectively. This ratio, 6yige/Gnarrows 1S
however large, being about 0.4 for the fragmentation of 'Li. It is hard to believe that so many
events could be originated by the removal of tightly bound neutrons. We are more inclined to think
that the observed wings are the results of three-body effects, as claimed by Zhukov et al.
[Zh 91a, b].

Another interesting feature shown in fig. 57 is a small shift of the peaks with respect to the central
position (gy = 0). This shift arises from the phase of the S,-matrices originating in the real part of
the potential, but is small and has been neglected in our calculations.

In order to test the dependence of these results on the ''Li wavefunction, we have used Yukawa
wavefunctions instead of gaussians. No appreciable deviation from the previous results was found,
as long as appropriate values for the size parameter were chosen.

The above analysis shows that the longitudinal momentum distribution which results from the
fragmentation of weakly bound light projectiles is insensitive to the interaction, and provides
a reliable probe of the internal momentum wave function of the projectile. On the other hand, the
transverse momentum distribution depends on the reaction mechanism, and the extraction of
definite information about the halo size is not free of bias. One interesting problem to be studied is
the extension of the experimental measurements to look for the possible existence of wings in
the longitudinal momentum distributions, which do not appear in the data of ref. [Or92]. The
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Fig. 58. The angular distribution of the neutrons in the Be(**Li, °Li + n)x at 30 MeV/nucleon. Data points are from ref. [An 90] and
the solid curve, the result of the calculation according to section 7.2.

existence of such wings would provide a more definitive measure of the contribution of more tightly
bound nucleons, from the core of the projectiles, which have been assumed to explain the wings of
the transverse momentum distribution [Ko 88].

7.2. Angular distribution of neutrons

The spectator model above discussed [HM 85] can also be used to describe the angular
distributions of emitted neutrons in the fragmentation of !Li at lower energies. In particular we
discuss here the data of Anne et al. [An 90] and take the reaction Be(*'Li, °Li + n)X at 30 MeV A4,
as an example. We avoid the complications of egs. (7.6) and (7.9) observing that (see appendix A)
the yield of dineutrons within the cluster model is given by (ignoring the Coulomb contribution)

iz i ~ @170, (7.10)

where the quantities ¢ and f‘}(o) are defined in the appendix. Since the reaction is inclusive, we take
Y,. to be an angle-integrated incoherent cross section and consider j as an angular momentum. We
then have for the two-neutron angular distribution [BH 92]

352; _ .21_ i 1 — T3(0)1T (o) [Pj(cos )1 . (7.11)

Taking ¢ = 0.136 fm ! = 24 MeV/c, which is the value associated with the correct separation
energy of the two neutrons in !'Li, we obtain the excellent agreement with the data of Anne et al.

[An90], shown in fig. 58.
Of course for !!'Li interaction with heavier targets, the Coulomb contribution becomes domi-

nant. We refer the reader to the discussion of Esbensen [Es91].

8. Conclusions

In this report the several facets of neutron-rich nuclei are discussed and analysed. In particular,
the reactions of nuclei such as !!Li with light and heavy targets are exhaustively described both at
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low and intermediate energies. The signature of the neutron halo is sought in elastic scattering,
pion production, sub-barrier fusion and breakup reactions. The major conclusions of this report
are the following. From simple three-body considerations, the dineutron in *'Li is weakly bound to
the core °Li through an effective 1/r?-like interaction. This fact allows the introduction of the
appropriate name for these exotic systems: Rydberg nuclei. It is difficult to distinguish between the
simple cluster model and the excitation of the low-lying “soft” giant dipole resonance (the pygmy
resonance) through an analysis of the ~1GeV A fragmentation reactions. Both models give
similar Coulomb dissociation cross sections. Detailed calculation within the cluster model in fact
give a very good account for the fragmentation cross section both at intermediate and high
energies.

In so far as the dipole strength distribution is concerned, we have shown here that a hybrid
RPA-—cluster calculation can be formulated in a reasonably consistent way. In such a calculation
three species of particles are considered: protons, neutrons and dineutrons. This way, a special,
clearly needed, attention to two-body correlations (pairing) is given. The resulting dipole strength
distribution in !'Li was found adequate when used to calculate the Coulomb dissociation cross
section.

The elastic scattering of !!Li on !2C, p and « was then considered within the optical model and
a more detailed multiple-scattering framework. The existence of the halo was found to be
intimately related to conspicuous changes in the refractive aspects of the angular distribution. The
effect of two-nucleon correlations is also assessed.

A detailed study of the effect of the breakup channel on the elastic scattering of !'Li was made.

The corresponding dynamic polarization potential was found to be predominantly absorptive
and of a long-range nature. The inclusion of this potential in the calculation of do/dog was then
done and an important 40%, almost angle-independent, damping of the angular distribution was
predicted. The real part of the polarization potential was calculated with the aid of a dispersion
relation and was found to be repulsive and small.

The problem of pion production that accompanies the interaction of !'Li with, e.g., '2C,
was then discussed and the halo effect considered. The fact that pions produced from the
interaction of halo neutrons with the target have different spectral shapes from those coming
from the interaction of core nucleons, is emphasized. The sub-barrier fusion of ''Li on
heavy spherical and deformed targets is then calculated taking into account both the pygmy
resonance and cluster aspects. Important conspicuous structure in o was found around the
Coulomb barrier.

Finally, the astrophysical application of the nuclear physics of these exotic systems, and the
major characteristics of the low-energy momentum and angular distributions of the ejectiles in the
fragmentation of ''Li were discussed in great detail.
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Appendix A. Theory of the primary yield

Fragment emission in heavy-ion reactions at intermediate and higher energies is a common
occurrence [Si90]. Several models have been devised to calculate the cross section. These range
from statistical [Ha 85], microscopic Monte Carlo [Mo 88; Fr83] and others. A fully quantum
mechanical treatment based on general reaction theory concepts is still lacking. Recently [HM 85,
89], a general reaction theory of nuclear fragmentation has been developed and applied success-
fully to several reactions involving a partial fusion of the projectile (incomplete fusion, IF). In these
calculations, the inclusive spectator particle angular and energy distributions are usually presented.
It is the purpose of this appendix to present a theory of the yield of spectator particles in these
reactions. The expression for the inclusive inelastic breakup cross section derived here is used in
section 2.1.

To be specific we consider the following process

a+A=0b+x)+A->b+ Y (x+A). (A.1)

all states

In the spectator—-DWBA treatment of Hussein and McVoy [HM 85], the yield of b is given by

po= -4 4o ap Lo __2 (E)G Wal D (A.2a, b)
b = deEb b b dg.t;dEb - hva p b X XA X 1) 32 ]

where p(E,) is the density of states of b and is equal to u,ky/(27)*h?, v, is the velocity of the
projectile and ¥{*’ is given by

1> = (161 dai S - (A.3)

In (A.3) the x refer to distorted waves, and ¢, is the intrinsic wave function of a. The symbol (|)
implies that the b coordinates are integrated over. Finally — W, is the imaginary part of the x-A
optical potential. Note that eq. (A.2b) describes the inclusive inelastic breakup. The elastic breakup
piece of d2¢/dQ,dE, is known to contribute less than 10% at moderate and higher energies
[Ba84].

Employing the Glauber approximation for the distorted waves allows writing the matrix element
PP | Weal i) as a function of the momentum transfer ¢, = k, — kj, where k, (k) is the wave
number of b in the incident (final) channel. Thus transforming the energy and angle integral in
eg. (A.1) into a momentum-transfer integral allows the reduction to the following transparent form
of Py:

2 E,

P =k,

\/%fdbblsb(bb)l2 Jdbx|¢a(|bb = b)IP[1 — |5.bI1] , (A4)

where b refers to the impact parameter, and S(b) the elastic element of the S-matrix. In obtaining
(A.4) a normalised Gaussian is used for ¢,(r, — r,) which, when cylindrical coordinates r = zZ + bb
are used, can be expressed as

allry — i) = (0%/n/m)" 1 exp[ — } 0% (20 — 2,)*Jexp[— } 02(b, — b,)] . (A.5)
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The z, and z, integrals in the original formulas egs. (A.1) and (A.2a) have already been performed
in (A4).

A further reduction of eq. (A.4) can be made by integrating over the polar angles of b, and &,,
which results in the following simple formula, after writing E, /hk, = v, = v,,

[ee]

Py = il Jbbdbblsb(bb)lzexp( a2b3 )Jb db,[1 — |S,(b,)1*]

0
x exp(— a2b7) [4n*Jo(— 2ic*byby)] (A.6)

where J, is the cylinder Bessel function. The factor 4n?J(— 2ig?b,b,) was obtained from the
relation [AS 64]

2n 2n

J do fdﬁ exp[202b.b, cos(B — )] = 4n?Jo(— 2ic?b,by) .

To proceed further we use the following expansion of J, [AS 64]:
Jo@) = 3. (=Y /@M (A7)
With (A.7), eq. (A.6) can be finally written in the following simple form:
o= 3, 0= TN i), (a8

where we have introduced the symbol T to represent the following dimensionless integral:
Ti(o) = [(e*Y**/j!] f b¥’ dbf exp(— 6*b?) Ti(b:) , (A9)

where T(b;) is the transmission coefficient 1 — |S;(b;)|? and i is either b or x. It is important to note
that 7, eq. (A.9) becomes unity in the limit |S| = 1.

Equation (A.8) is an important result of this appendix. It expresses the projectile-like primary
fragment yield in a conventional total reaction cross-section form, with the width ¢? playing the
role of the squared wave number, and the label j playing the role of angular momentum. It is easy to
verify that eq. (A.8) reduces to the known limiting cases. To see this we first note that the integral
Ti(o) as a function of j looks very much like T(b)=1—|S(b)|* versus b. Therefore
[1—-T *(0)] f‘}(a) should be a localized (window) in j. The value of j at which the “peaking” occurs
can be estimated as follows. The function b* exp(— o2b?) peaks at b* = j/¢* and the b integral in
T counts this peak aslongas b < b, = [(E — Eg)/E]'/? R, where Eg is the height and R the position
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of the Coulomb barrier characterizing T'(b). Thus the critical value of j which defines the boundary
of the function T is

Jo=0?[(E — Eg)/EJR?. (A.10)

The function 1 — T behaves in exactly the opposite way to 7 and thus (1 — T}’)T % has a window
shape in j. The detailed form of this window depends upon the physical parameters that specify the
functions T%(s) and T3(o).

An interesting case which received several considerations in the past is the Serber model
[Se47], S, = 1. This limit corresponds to setting 1 — T%(0) = 1 in our formula eq. (A.9). Approxi-
mating T7}(c) by a sharp cutoff from @(j, — j), we obtain immediately for the yield,

n ,E, —Eg
50

PSberber ~ 2 EX — EB
EX

R)% = 7":sz E = a:eaction s (All)

which is just the total reaction cross section of the participant particle (x).
The more realistic expression for Py, eq. (A.8), gives, in the sharp-cutoff limit, the following sum
rule:

o by _ﬁ 2 _E_‘ﬁ 2|l x b
Pb - 0_2 (]c Jc) - ﬂ[(l Ex>Rx <1 Eb Rb = O'reaction O reaction » (Alz)

which can be orders of magnitude smaller than P3¢™°". Of course the energies E, and E, correspond
to the incident channel, E, = (m,/m,)E, and E, = (m,/m,)E,, and in the above equation
0 eaction > O Leaction. Clearly when x is the light particle and b, the heavy one, the above approxima-
tion is not valid and one has to calculate eq. (A.8) exactly.

Appendix B. Uniform approximation for X,,(&)

The modified Bessel function of imaginary order K;,(¢) is discussed in most books and
handbooks of special functions [AS 64; Gr80]. No tables, however are given. Numerical integra-
tion of the integral that represents this function is necessary. This procedure, however, could
generate large errors, depending on the value of n and &. It is the purpose of this appendix to
perform a uniform approximation analysis that permits writing the function in terms of tabulated
Airy function and its first derivative. In particular, we discovered that K;,({) represents basically
a rainbow scattering problem. The uniform approximation formulae are used for the evaluation of
the low-energy CD cross section in section 2.3.

The integral representation of K, () is given by in, e.g., Abramowitz and Stegun [AS 64] (p. 376),

K, (8 = jexp(— Ecosht)cosntdt, |argé|<in. (B.1)
0
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Now since the integrand is even in t, we may rewrite (B.1) in the following form

©

K, (&) =1% J exp(— ¢ cosht)exp(int)dt . (B.2)

-

We now change t—t+4in and perform the integration along the line defined by
—o0 +in <t < 400+ 4in. This leaves the result unchanged since the integrand in an analytic
function. Using the relation cosh(t + 4in) = +isinht we have

Ki,(&) = S exp(—inn) J‘ exp[—i(¢sinht — nt)]dt . (B.3)

- 0

Equation (B.3) is our starting point for applying the uniform approximation. According to the
usual procedure of Chester, Friedman and Ursell [CFU 57], we map the function £sinh x — x
into

Esinht —nt =4 4> + xp (B.4)

thus

e o)

Ky =1 f exp[i(34® + xu)] (:—;) dy . (B.5)

-

Before we proceed, we remark that the phase of the integrand in (B.2) is stationary when
Ecosh(+1t)=n, or

t=tcosh™'(n/&), n>¢&; t= xicos(n/é), n<¢. (B.6)

The situation can be easily understood from fig. 59 where & cosh ¢ is plotted versus . The minimum
of £cosht is at t = 0 and represents £ = 5, which is the “rainbow” 5. For # > £ one is on the bright
side of the rainbow whereas n < ¢ represents the dark side exemplified by two pure-imaginary
stationary points (complex-conjugate of each other). When looked at from the cubic map, eq. (B.4),
the stationary points are given by

u= t./—x. (B.7)

The function dt/dyu is expanded as usual,

d [eo]
aﬁ = a(u*+x)r. (B.8)

n=0
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Fig. 59. The order “deflection function” ¢ cosh ¢ versus ¢ for several values of &.

The coefficients in (B.8) are to be found by repeated differentiation of (B.4) at the stationary
points (B.7). Thus, for ay,a; and a,, we need, a,=(dt/dp),, as2u = (d*t/du®),, and
2a, + 8u’a, = (d3t/dp3),,.. Accordingly,

(Ecosht —np)dt/dp=p + x, (B.9a)
Esinh t(de/dp)® + (Ecosht — ) d?t/du® = 2u, (B.9b)
écosht(((:—lt)3 + 3§sinht:—;-§% + (écosht — n)g—;—g =2, (B.9¢)
¢sinh t(:—;y + 6¢ cosht (:—;)2 g;—i— + 3¢ ;inh t <§—;§)2
+4§sinht§—;§;+(§cosht—n)§%=0. (B.9d)

At the stationary points £ cosht — n = 0 and p? = — x, and thus eq. (B.9b) gives

(e m o w _nE (e
du gsinht ¢ Jcosh?t —1 & /p?/E —1 -2 \n*—x*)
or

(de/dp)s = [—4x/(* — E3)]* = aq . (B.10)
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Equations (B.9c¢, d) give

. 1[d2] 2 — 4[ —4x/(n? — £2)]P o _[Eyde), —2a
YT 2u oo 6 /% — E[—dx/(n? — )= 2T 8(—x)

(B.11)
[d3/du®], .

— J/n* — E[dt/duls,. — 6n[de/dulZ, [d*e/du®]2, — 34/n° — £2[d*t/dp*12,,
4/n* — & [dt/du), .

(B.12)

From eq. (B.4) we have for the x that appear, in (B.10), (B.11) and (B.12), in the illuminated region,
n>¢,

—Jn* =& +ncosh™ (/8 = + 3 (—x)**. (B.13)

In the forbidden region, n < £,

It = —psin~ /1 —y?/E2 =% x3%., (B.14)

Inserting (B.8) (keeping up to second-order terms) into (B.5), we have finally the desired formula, in
terms of Airy’s function Ai(x) and its first derivative Ai’(x),

Kinl® = [0 Ai(Y) — 20, ATOJe ™27, Ai() = o= j S dy (B.15)

- ©

where a, and a, are given by egs. (B.10) and (B.12) respectively. Notice that the a, term gives zero
since it is odd. Higher-order corrections can be easily generated.

The discussion above can be made more transparent when compared with a scattering problem
[FW 59]. Here one speaks about the scattering at a given angle, which is the conjugate variable to
the integration variable, the orbital angular momentum. The representation eq. (B.1) of K;,(¢)
identifies the order n with the “angle”. For a given value of n two values of ¢ contribute, which are
the two stationary points determined from the equation £ cosh(+t) = 5, where the function £ cosh ¢
represents a deflection function. The analogy with a scattering problem is a bit ill-based since both
positive as well as negative t contribute. In a scattering situation only positive values of the angular
momentum enter in the discussion. In any case K;, for a fixed value of £ exhibits a double-rainbow
form as a function of 5. The rainbow 7 is just n = &£. For 7 < £ one is the shadow of the rainbow,
whereas 1 > & represents the illuminated region (oscillatory behaviour). Both positive and negative
values of  can be considered.

In fig. 60 we present K;,,() for £ = 0.1, 0.5, 1.0, 5.0 and 10.0 versus n. The rainbow in the order of
K;,(&) is clearly exhibited.

The analogy with scattering becomes more sound when discussing the behaviour of K;,(£) with
respect to ¢ for fixed n. To make full use of this analogy it is more convenient to use another
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Fig. 60. Plot of exp(nn/2) K;,(£) versus n for (a) K;,(0.1), (b) Kiy(1), (¢) Kiy(S5) and (d) K;,(10).

representation for the function. This new representation is obtained from eq. (B.1) by a change of
variable sinh¢ = A. Then

di
K, () = | ——==cexp(insinh~ 11 —ii&), B.16
which when integrated by parts, yields
K, (&) =¢ de exp(insinh =1 A — iA¢) . (B.17)

The stationary points are determined from the condition

n(d/dx)sinh~*A = & = n(1/ /A% + 1), (B.18)

which is just eq. (B.6) rewritten in terms of the new variable A. The deflection function n/./1 + A% is
plotted in fig. 61. Again the rainbow value of £ is £ = #. In fig. 62 we show Kjo, ; (), K;1(£), K;s(&)
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Fig. 61. The argument “deflection function” ¢ = n(1/,/1 + 42), for several values of .
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Fig. 62. (a) Ki0.1(£), (b) Ki1(&), (¢) Ks(&) and (d) K;;(&) for very small values of £.

and Kj;0(¢) which clearly show the Airy pattern that characterizes the rainbow in the argument.

In this appendix the uniform approximation is used to express the function K,,(¢) in terms of
Airy’s function and its first derivative. It is found that K, (&) represents, as a function of order # and
argument £, a rainbow scattering situation. Further, we verified that the uniform series, eq. (B.15) is
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rapidly convergent. In fact a,/a, is almost always less than 1%. At the rainbow, n = £, we find the
relation a,/a, = 1/(22/3 x 70 x n*/3) [or 1/(22/3 x 70 x £4/3)], and thus, as long as 7(£) is not very
small, the second term in (B.15) would contribute by, at most, a few percent. This appendix is partly
based on recent work of Hussein and Pato [HP 92].
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Note added in proof

Note to section 2.4.3. Recently, Ieki et al. [Ie 93] have performed elaborate triple coincidence
measurements of the Coulomb dissociation of ' Li. As predicted in the theoretical papers quoted in
section 2.4.3, the experiment indicates that higher order electromagnetic processes (reacceleration
effect) are relevant. In fact, the semiclassical method described in this section has been applied
[CDS92] to obtain theoretical predictions for the fragment energy spectrum and longitudinal
velocity distribution, which were obtained by Ieki et al. [Ie 93]. Theory and experiment are in good
agreement.
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The results of Ieki et al. [Ie 93] on the reacceleration effect seem to indicate that the breakup of
111 i is more likely to occur via a direct breakup mechanism than via the excitation of a resonant
state in the continuum,; i.e., the peak in the dipole response function dB/dE (see, €.g., fig. 4) should
be interpreted as a threshold effect rather than a resonance. This was indeed suggested by Bertulani
and Baur [BB 88a]. However, the conclusions of Ieki et al. [Ie 93] are based on classical consider-
ations.

Recently, Bertsch and Bertulani [GB92] have addressed this problem by solving the time
dependent Schrédinger equation nonperturbatively. For simplicity, a one-dimensional model for
the reaction was used. The conclusion was that even when the breakup proceeds via the excitation
of a resonance, the reacceleration effect is larger than expected from the naive classical model. In
view of the potential importance of reacceleration both as a measuring tool and as an obscuring
agent for the measurements of Coulomb breakup, more experimental and theoretical studies are
clearly necessary.

As a final remark, we quote the work of Bertulani and Sagawa [BS92b] on the nuclear
excitation of multipole states in neutron-rich nuclei. They predict cross sections for soft multipole
excitation of order of 100 mb/sr at forward angles in reactions at beam energies in the range
30-70 MeV/nucleon. It might be possible to distinguish the multipoles experimentally by the
angular dependence at very forward angles.

Note to section 3.1.4. We end this section with few remarks concerning the recent data on the
elastic scattering of *'Li + '2C and '!C + '2C at 60 MeV 4 published by Kolata et al. [Ko 92].
These authors confirmed, to a large extent, the predictions of Satchler et al. [SMH 91]. The ratio of
the cross section to Rutherford, was found to be three times larger in !'Li + '2C as compared to
that of 1!C + !2C. If the cross sections themselves were compared (not their ratio to Rutherford)
the enhancement in 'Li + !2C is found to be about 1.4. Both angular distributions are, as
anticipated, far-side dominated and may exhibit a nuclear rainbow effect.

The Airy minimum predicted by Satchler et al. at 8 >~ 14° was, however not found. The analysis
performed by Kolata et al. also confirmed the need to include a weak, long-range, absorptive
potential, to account for the measured reaction cross section.

Similar conclusions were reached by the GANIL group [Le92]. These authors measured the
angular distributions of "Li and ''Li elastic scattering from 23Si at E,,, = 29 MeV 4. The ''Li
cross section was found to be far-side dominated and the need for a long-range breakup absorptive
potential was clearly pointed out when the reaction cross section was extracted.

Note to section 3.2.2. Recently, the proton elastic scattering from the neutron-rich nuclei, °Li
and '!Li at E,,, = 60 and 62 MeV 4 under the inverse kinematical conditions has been reported by
the RIKEN group [Mo 92].

In contrast to the heavy-ion experiment of Kolata et al. [Ko 92], the proton scattering was found
to be basically influenced by absorption. In fact, Moon et al. [Mo 92] reported an appreciable
reduction of the p + !!Li cross section as compared to that of p + °Li. Our calculation above does
not give such a reduction. The reason is the importance of the breakup channel in the ''Li
scattering, which we did not take into account.



