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SUMMARY

A novel classification of planar four-bar linkages is presented based on the systematical variation of one,
two or three bar lengths and studying the transmission properties (input-output curves) of the linkages.
This classification is better suited to the study of biological systems than the classical Grashof-classification
used in engineering as it considers the change of structural elements, in evolution for example, instead of
evaluating the possibilities for the rotation of a particular bar.

The mechanical features of a wide range of planar linkages in vertebrates, described by various authors,
have been included in this classification. Examples are: skull-levation and jaw-protrusion mechanisms in
fishes, reptiles and birds, the coral crushing apparatus of parrotfishes, and catapult-mechanisms in feeding
pipefishes. Four-bar replacement mechanisms, e.g. crank-slider mechanisms in feeding systems of fishes
and cam-mechanisms in mammalian limb-joints, and more complex linkages than four-bar ones, e.g. six-
bar linkages and interconnected four-bar linkages in fish feeding mechanisms, are also discussed.

In this way, an overview is obtained of the applicability of planar linkage theory in animal mechanics
to mechanical functioning and the effect of possible variations of bar lengths and working ranges in
evolution. Four-bar system analysis often provides a rigorous method of simplifying the study of complex
biological mechanisms. The acceptable width-range of necessary and undesired hysteresis (‘play’) in
biological linkages is also discussed.
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1. INTRODUCTION

In many biological systems, skeletal elements cannot
be moved by the muscles directly. For example, in
head expansion of fish during feeding, there are no
muscles lateral to the head which are strong enough to
move the suspensoria (cheeks) and opercula (gill
covers) in a lateral direction (abduction). In such
cases, these elements have to be moved via a chain of
bones and ligaments called a linkage (Alexander 1983).
In engineering, linkages are widely applied with an
almost infinite variety (see e.g. Hartenberg & Denavit
1964; Dijksman 1976; Hunt 1978; Reuleaux 1983).
This ‘theory of machinery’ has become a separate
discipline in mechanics. Its importance is indicated by
a literature-‘explosion’ during the past 50 years.

In biology, several linkages have been described in
different animals and for different functions (various
authors, see later). However, a comprehensive under-
lying theory which merges engineering- and biological
principles and which gives a systematic overview about
the variety of linkages is still lacking. It is the aim of
this paper to present such a framework. The advantage
of this approach is that the structure and the particular
mechanical properties of linkages can be better
understood and that it gives insight in possible
evolutionary changes in biological linkages.

The linkage with the simplest construction consists
of four elements (bars or links) which are movably
connected in parallel planes (Hartenberg & Denavit
1964: §2.8). It has a so-called mobility 1 (also denoted
as a single degree of freedom in motion) (Dijksman
1976; Alexander 1983), i.e. the movement of a
particular element determines the movement of all the
other elements. It is already difficult to obtain a
complete overview of all possible variations of this so-
called planar four-bar linkage.

The main discussion in this article will be concen-
trated on planar four-bar linkages, with some
excursions to more complex systems. In the first part of
the paper, a new classification of four-bar linkages,
more suitable for biological applications than the
current engineering one, will be given. The second part
considers examples of different linkages in animals and
discusses their mechanical behaviour using the theory
presented and developed in the first part.

2. DEFINITIONS

In this section the following definitions and ter-
minology will be stated (for technical background see,
for example, Hartenberg & Denavit 1964 ; Hunt 1978;
Dijksman 1976; Reuleaux 1983). Figure 1 gives an
arbitrarily chosen example of a four-bar linkage in
which the names and abbreviations of bars, joints and
angles are defined. These definitions are used con-
sistently in this paper.

1. A four-bar ‘linkage’ (or ‘-chain’, ‘-system’) is
the combination of the bar lengths itself. A
‘configuration’ is the shape of the linkage for any input
angle (see below). A ‘position’ resembles a fixed
configuration of the linkage (i.e. for a particular input
angle). A ‘crank’ (c¢) is a bar which can make a
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C: coupler-curve

Figure 1. An example of a planar four-bar linkage with
angles, joints, points and bars defined. These definitions are
consistently used throughout the paper. Modified after Hunt
(1978). The bars and joints are always indicated by the same
alphabetic characters, numbers and names. o« = input angle,
B = output angle. Approximate bar lengths are: (q, b, ¢, d)
= (26, 20, 15, 10). The hatched triangular area is a part of
the coupler plane. K is an arbitrary point in this plane. Curve
C is an example of a coupler plane curve. The instantaneous
centre of rotation (ICR) or pole is at the crossing of the
continuations of bars ¢ and ¢. The locus of the pole for all
positions of the linkage is called ‘polode’ or ‘centrode’. Two
polodes exist: a ‘fixed’ and a ‘moving’ one (see text and
figure 2b). These curves have a rather complex shape and are
therefore not drawn in this figure.

complete revolution, a ‘rocker’ (r) can only oscillate.
In engineering texts, double crank (cc), crank-rocker
(cr or rc) and double rocker (rr) linkages are
distinguished (table 1; see also §10 of Dijksman 1976).

2. The angle a is the ‘input angle’, the angle £ the
‘output angle’ to be calculated (« and £ are mostly
considered in the interval [0,360°]). Considering other
angles of the linkage as in- and output-variables or
considering the linkage with changed bar-lengths is
called a ‘ transformation’. Considering different bars as
the frame is called an ‘inversion’ of the linkage. A plot
of £ as a function of a is called an ‘input-output
function’ or (kinematic) ‘transmission function’. The
transmission function has a very characteristic shape,
so the type of a four-bar linkage can immediately be
read from it. Simple methods to determine g from
given bar lengths and « are e.g. described by Elshoud
(1986) using intersecting circles and Aerts & Verraes
(1984) and Westneat (1990) using the cosine rule. The
‘transmission ratio’ (transmission-coeflicient of Barel
etal. 1975) is df/da. When the six quantities (a, b, ¢, d,
a and f; see figure 1) are known, any angle between
the bars can be easily determined and by this all other
properties of the linkage (see below).

3. ‘Coupler curves’ are trajectories which points of
the plane connected to the ‘coupler-bar’ 4 (e.g. point
K in figure 1) make in the plane of the frame bar 4.
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Figure 2. Important positions and configurations of different planar four-bar linkages. Frame bars b are drawn bold.
(a) uncrossed configuration; (4) conversely crossed configuration. For this configuration, the fixed (f) and moving (m)
polodes are drawn; (¢) reversely crossed configuration; (d) conversely (broken line) and reversely (solid line) folding
configurations; (¢) branched or transition-position; (f) undetermined position; (g) stretched in-line position of 4
with ¢ (uncrossed-uncrossed transition); (%) overlapping in-line position (uncrossed-crossed transition).

Table 1. Engineering classification of planar four-bar linkages (Hartenberg & Denavit 1964 : §3.3; Hunt 1978 : §3.10 ; Dijksman

1976 §10)

(Only in the Grashof-linkages (type 1) and the special transition-linkages (types 3 and 4) the shortest link(s) can make a
complete revolution. a = input link, 4 = frame (or base-) link, ¢ = output link, d = coupler link. s = shortest link, / = longest
link, p and ¢: remaining links. ¢ = crank = revolving bar, r = rocker = oscillating bar, cc = double crank linkage, cr = crank-
rocker linkage, rc = rocker-crank linkage, rr = double rocker linkage.)

type

(Hartenberg & movement remarks
“if? ‘and’ Denavit 1964) class (Dijksman 1976)
stl<p+q s=a la Grashof cr — always at least one revolving bar
stli<ptq s=c¢ 1b Grashof rc - no image position
sHI<p+q s=0b lc Grashof cc — incomplete coupler motion
sti<p+q s=d 1d Grashof rr — bicursal coupler curves
s+I>p+q 2a,b,c,d rr — three bars oscillate
stl=p+q s=a 3a cr —image
stl=p+q s=¢ 3b rc — branching position
sti=p+q s=b 3c cc linkages possible
stli=p+q s=d 3d rr — complete
a=c¢ b=d 4a Parallellogram  cc B s};)ortest coupler
a=b c=dands=5 4b Kite cc o e motion

! ) make — unicursal

a=d c=band s=b 4b Kite cc — folding complete coupler
a=b c=dand [=b 4c Kite rc system revolution curves
a=d c=band /=05 4c Kite cr

Sometimes, parts of these curves are virtually straight
lines (Dijksman 1976; Badoux 1984).

4. The ‘instantaneous centre of rotation’ (ICR) can
be found at the intersection of the (extensions of the)
in- and output-bar. The ICR is also called the
‘(velocity-) pole’ because this point is the only point of
the coupler plane having zero (linear) velocity. When
infinitesimal quantities are considered, the pole and
ICR are identical. For finite displacements, this is not
the case. A discussion about poles and ICR’s for such
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displacements can be found in Alexander & Dimery
(1985).

The locus of the ICR for all positions of a four-bar
linkage is the ‘polode’ or ‘centrode’ (figure 1,
Dijksman 1976). Two polodes exist: a ‘fixed polode’,
which can be constructed taking the frame bar b
fixed and plotting the locus of the ICR for different
positions of the linkage, and a ‘moving polode’, taking
the the coupler bar 4 fixed (figure 2b; for other
examples, see e.g. Muller 19934). As at the ICR the
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Figure 3. Scheme for parameter classification of four-bar
linkages. Starting from a rhomboid linkage (one-parameter
linkage), three classes of 2-parameter linkages are derived.
The transmission function of a rhombus provides the
asyptotes of the transmission functions of 2-parameter
linkages. Three asymptotes can be distinguished: (1) the line
o =0° or 360°, (2) the line = 180° (3) the line o = 4.
Further explanation in text (§3). For parallellogram linkages
see figure 4; for isosceles linkages see figure 5; for trapezoidal
linkages see figure 6.

(linear) velocities of both the frame- and the coupler
plane are zero, the polodes roll over each other during
movement of the linkage, without sliding (Menschik
1974 a; Alexander & Bennett 1987; Muller 19934, b).
In figure 2, all possiblities for special configurations
and positions of planar four-bar chains are shown.

Table 2. Overview of four bar type codes

A transmission function gives for any o two, one, no
or an infinite number of values of #. No values for f
exist when the position of the linkage is impossible.
Generally, a four-bar linkage can have an ‘uncrossed’
(figure 2a) or ‘crossed’ (figure 24, ¢) configuration. In
a ‘conversely’ (figure 24) crossed configuration, the in
and output bars rotate in the same direction, in a
‘reversely’ (figure 2¢) crossed configuration, these bars
rotate in opposite directions. Sometimes, crossing is
impossible. Then, the linkage can be only conversely
(outwards) and reversely (inwards) ‘folded’ (figure
2d). Basically, the movements of four-bar linkages are
(highly) non-linear. It has to be considered as a special
case when a more or less linear relation between o and
f occurs.

Linkages may move through ‘branched’ (or
‘transition-’, ‘change point-’) positions (figure 2¢), in
which they can change from an uncrossed to a crossed
situation and vice versa. Then, some bars may change
their direction of rotation (Hartenberg & Denavit
1964). Comparable ‘branched’ positions may also
occur between inwards folding and outwards folding
configurations (§45). In an ‘undetermined position’
(figure 2f), a and S are independent of each other: at
a single a, an infinite amount of values of /£ is possible
or vice versa (figure 3).

Single values for & and £ may be obtained when two
bars are in a °‘stretched in-line’ (figure 2g) or
‘overlapping in-line position’ (figure 24). In an
‘overlapping in-line’ position, the linkage may be
‘locked’ i.e. fixed to an immobile position (to behave as
a rigid unit; see Muller 1987).

When a transmission function consists of two
separate parts, the four-bar linkage has to be dis-
mounted to obtain the ‘image configurations’ of the
chain. In these cases, the coupler curves are broken up

(Transmission functions are shown in Figs. 4, 5, 6, 9 and 10. Isosceles linkages are denoted by a ‘K’ from ‘Kite’ to avoid
confusion with other characters. The type codes for three parameter series in which one of the bars is varied are shown in table
5. For example, the type code 3Pslsl(1) means: a series of three parameter systems, based on the linkage 2Pslsl, in which bar
1 (= bar a) is varied. 2- and 3-parameter types which resemble particular four-bar types concerning their transmission
functions (approximate function cognates) are placed within quotation marks.)

type code system description

IR one parameter (= one bar length) system: rhombus

2Pslsl two parameter system: parallellogram; bar a is short (s)

2PIsls two parameter system: parallellogram; bar a is long (/)

2Kssll two parameter system: kite; (a,b,¢c,d) = short-short-long-long

2Kllss etc.

2Klssl

2Kslls

2Tls two parameter system: trapezoid; bar a = bar 1 is short (s)

2T11 two parameter system: trapezoid; bar a = bar 1 is long (/)

2T2s two parameter system: trapezoid; bar b = bar 2 is short (s)

2T21 etc.

2T3s

2T31

2T4s

2T4]

3Sopp(Imsm) three parameter system: medium bars (m) equal and opposite; (a,b,¢,d) = long-medium-short-medium
3Sadj(Ismm) three parameter system: medium bars (m) equal and adjacent; (a,b,¢,d) = long-short-medium-medium
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in two branches (‘incomplete’ or ‘bicursal’). For
continuous transmission functions, all configurations
(and so the image configurations) can be obtained
leaving the linkage intact. In the latter cases, coupler
curves are also continuous (‘complete’ or ‘unicursal’).

3. CLASSIFICATIONS

In engineering, classification of planar four-bar
linkages is centered about the possibility of an element
making a complete revolution. This so-called ‘ Grashof-
classification’ (table 1) is very relevant when motors
are used to drive the linkages. In biological systems,
such continuously rotating elements are absent and so
the Grashof-classification is less relevant. Instead, the
possibility of changes in the size and shape of elements
and of the working range are important. Therefore, I
designed a new theoretical classification of planar four-
bar linkages which is better suited for this purpose.
This new classification matches the Grashof-one (as it
should do!) but considers the properties of four-bar
linkages from a different viewpoint.

Regarded formally, a four-bar chain contains four
independent parameters i.c. the lengths of the bars 4, 6,
¢ and d, and a motion variable (a). Transmission
functions may be studied for different values of a, b, ¢
and d, but also the ‘working range’ for & may be varied
(shifted and/or extended), implying a five- or more-
parameter approach. In some fortunate cases a
combination of parameters can be made (e.g. in
bilaterally symmetric systems) resulting in a two- or
even a one-parameter approach by combining the two
parameters (Muller 1987, 1989).

The only one-parameter linkage is the rhombus
(IR-linkage: all bars equal: a =56 = ¢ =d; table 2,
figure 3). The rhombus is a double crank linkage
showing linear transmission over the entire range
[0,360°]: f = a, except for & = 0+£.360° where £ is
undetermined and g = 180+4.360° where o is un-
determined. No crossed or folding configurations exist.

Starting from the rhombus, three different types of
two-parameter linkages may be derived: ‘parallello-
gram’ linkages in which opposite links are equal,
‘isosceles-’ or ‘kite’ linkages in which two adjacent
links are equal and ‘trapezoidal’ linkages in which
three bars are equal (figure 3). Although the rhombus
in itself has no very interesting properties, it is an
important linkage because all two- (or more-) par-
ameter transmission curves have the transmission curve
of the rhombus as an ‘asymptote’. Thus, some sense for
the shape of a two-parameter curve can be obtained
by, for a moment, adjusting its parameters to give
almost a rhombus (see also Fichter & Hunt 1979).

The asymptotic nature of two- or more-parameter
transmission curves implies also that they usually show
a ‘non-linear behaviour’. A particular form of non-
linear transmission is found in a ‘ transient mechanism’
in which for a small change of the input angle (o or f)
a rather large variation of the output angle results (see,
for example, figure 4 and §4a).

To provide an easy reference to the various types of
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Planar linkages in animals M. Muller 693

1: a=30 b=170 ¢=3.0 d=17.0
2:a=50 b=150 ¢c=50 d=15.0
3:a=70 b=13.0 c=70 d=130
4: =90 b=11.0 ¢c=9.0 d=11.0
360 T
N
1
AN
IN
8 4
2Pslsl N
0 a 360
5:a=11.0 b=9.0 ¢c=11.0 d=9.0
6: a=13.0 b=70 ¢c=13.0 d=7.0
7:a=150 b=5.0¢c=150 d=5.0
8: a=170 =30 c=170 d=30
360
[/ 7
ﬂ 5 —
6
/
/
2PIsls
0 360

Figure 4. Transmission functions of parallellogram linkages.
The perimeter of the different linkages is kept constant. The
solid bar in the inset denotes the frame-link 4, the left bar is
the input-link a. The line o = £ represents the transmission
function for uncrossed configurations, the bold lines give the
transmission function for crossed configurations. The codes
are defined in table 2. Further explanation in text (§4a).

2- and 3-parameter four-bar linkages, I designed a
simple ‘identification code’ (table 2). This code will be
used throughout this article. The transmission proper-
ties of the four-bar linkages can be read in figures 4, 5,
6, 9 and 10.

4. TWO-PARAMETER LINKAGES

Fourteen different two-parameter linkages can be
distinguished, belonging to the classes: parallellogram
linkages, isosceles- or kite linkages and trapezoidal
linkages altogether already cumulatively giving a great
variation in transmission curves. Within one class, the
two-parameter system may be reduced to a one-
parameter system because the ratio between the
parameters then fully defines the linkage (Muller 1987,
1989).
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1: a=17.0 b=17.0 ¢=3.0 d=3.0
2: a=15.0 b=150 ¢=5.0d=5.0
3:a=13.0 b=13.0 ¢c=70d=7.0
4: a=11.0 b=11.0 ¢=9.0 d=9.0
5:a=10.0 »b=10.0 ¢=9.5 d=9.5
360 Y T
'“@ 1
74 (3
/64
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| 2Kllss
0 a 360
1: a=9.5 b=100 ¢=10.0 d=9.5
2:a=9.0 =100 ¢=10.0 d=9.0
3: a=8.0 b=10.0 ¢c=10.0 d=8.0
4: a=7.0 b=10.0 ¢c=100 d=7.0
5:a=6.0 b=10.0 ¢c=100 d=6.0
6: a=50 b=10.0 ¢c=10.0 d=5.0
7: a=4.0 b=10.0 ¢c=10.0 d=4.0
360 v T
———
7
B
7
D
\Z 2Kslls
0 360
a

1: a=30 b=3.0 ¢c=17.0 d=17.0
2:a=50 b=50 c=150 d=15.0
3: a=70 b=7.0 ¢c=13.0 d=13.0
4: a=90 b=90 ¢c=11.0 d=11.0
360
i
T ‘ ’{///
p =4
/ 4/’7
s %
2Kssll
0 360

Q

1: a=11.0 b=9.0 ¢=9.0 d=11.0

7 7

S

e
N

|
/| [Kisdl])

0 360
a

Figure 5. Transmission functions of isosceles (kite) linkages. In diagram 2Kslls values of bar lengths are given from
Muller (1989). In this diagram, it is shown that the extreme values of the transmission functions lie on a straight line.
The solid bar in the inset denotes the frame-link b, the left bar is the input-link a. The lines give the transmission
functions for the outwards folding (kite) and inwards folding (deltoid) configurations. No crossed configurations exist.
The codes are defined in table 2. Further explanation in text (§454).

(a) Parallellogram- or 2P-linkages: (a = c) and (b = d)

In the non-crossed configuration, parallellogram
linkages give a linear transmission of @ to f over the
[0,360°]-range. In the crossed configuration however,
transmission becomes non-linear, especially for
rhombus-like linkages. For example, in curve 4 (in
figure 4) a small variation of « leads to a very large
variation of #in the rangesa € [0,20°] and a € [340,360°]
and a small variation of f leads to a large variation of
a in the range «€[90,270°]. This enables also the
possibility of a considerable change of transmission
properties by only ‘shifting the range’ of input angles.
A ‘positive transmission’ (i.e. & and £ both increase or
decrease) is obtained for a parallellogram linkage of
the type 2Plsls, a ‘negative transmission’ (i.e. «
increases and S decreases or vice versa) for a
parallellogram linkage of the type 2Pslsl. In the
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parallellogram linkage, absolute °transmission-stab-
ility’ is obtained in the non-crossed configuration,
implying that a change of the transmission by a change
of the linkage parameters in ‘evolution’ cannot occur
(or can be avoided), whereas in the crossed con-
figuration evolution may lead to a very different
transmission. In the latter configuration, the trans-
mission may be very sensitive to a change of para-
meters.

Parallellogram linkages have no undetermined
positions as the rhombus has. At the corresponding
angles however ‘branched positions’ occur in which
the linkage may change from its crossed to its non-
crossed configuration.

Biological linkages with a positive transmission are
discussed in §64. An example of a conversely crossed
linkage are the cruciate ligaments in the knee joint,
discussed in more detail in §64. It is noticeable that
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Figure 6. Transmission functions of trapezoidal linkages. The perimeter of the different linkages is kept constant. The
thin lines give the transmission functions for the uncrossed configurations, the bold lines for the crossed configurations.
Hatched lines indicate the values & = £ and in some diagrams transitions from crossed to uncrossed configurations.
The solid bar in the inset denotes the frame-link 4, the left bar is the input-link a. Dots indicate equal bars. The codes

are defined in table 2. Further explanation in text (§4c¢).

knee-prosthesis four-bar linkages are mostly uncrossed
(see e.g. Hobson & Torfason 1974, 1975; Greene
1983), so in surgery-engineering, no advantage has
been taken of the non-linear properties present in the
natural system.

(b) Isosceles-, Kite-, Deltoid- or 2K-linkages: (a =b
and ¢ =d) or (b =c and a = d)

Regarded formally, the isosceles-linkage can be
brought in a ‘deltoid’ (inwards folding) and a ‘kite’
(outwards folding) configuration. Usually, the names
of the configurations are also used for the linkage. Four
‘inversions’ of isosceles-linkages can be distinguished.
The inversions with a long base have similar, but
rotated and shifted transmission curves (figure 5:
2Kllss and 2Kslls), the inversions with a short base can
in a similar way be taken together (figure 5: 2Kssll and
2Klssl). Undetermined cases occur for o = 0+ £.360°
(figure 5: upper diagrams) and g = 18044.360°
(figure 5: lower diagrams). No crossed configuration
exists but the short bars may come to lie in line,
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forming a ‘branched position’ between deltoid- and
kite configurations (figure 16). Folding linkages also
exist for 3- or 4-parameter linkages (see §54).

A well-known feature of the inversions 2Kssll and
2KIssl is that the range of movement of opposite bars
over one cycle differs a factor 2 (Reuleaux 1983). The
isosceles-linkage is the only constructionally ‘bilaterally
symmetric’ four-bar linkage, which implies its bio-
logical importance. Applications in fish-head func-
tional morphology are given by Muller (1989) who
attempted to optimize the dimensions of the four-bar
linkage with respect to functional demands for feeding
(see §6b) and Aerts (1991) who extended the planar
isosceles-model to a three-dimensional one to describe
accurately its (quasi-) time-dependent behaviour.

(¢) Trapezoidal or 2T-linkages: (a =b = c) or
(b=c=d)or(c=d=a)or(d=a=c)

An overview of the eight possibilities in this class of
linkages is given in figure 6. A first subdivision can be
made in trapezoidal linkages with one relatively long
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bar (figure 6: upper row) and trapezoidal linkages
with one relatively short bar (figure 6: lower row).
Further splitting, in different pairs of linkage types, can
be easily read from the diagrams in figure 6. A
particular feature of the linkages 2T*s (* =1...4) is
that two closed image-curves (‘branches’) exist,
implying that the transmission cannot move along
these two curves without dismounting the linkage (see
§2).

The trapezoidal linkages also enable a ‘locked
position’ from which the linkage can be triggered
(figure 2, Muller 1987). Parallellogram- and isosceles-
linkages do not possess this option but locking linkages
are also possible with 3 and 4 parameters (see §§55 and
6¢).

The linkages 2T4s and 2T1l are of importance in
‘transient’ movements e.g. in feeding pipefishes
(Muller 1987). See §6¢ for more details.

In the literature, particular mechanisms have been
considered as ‘catastrophe-mechanisms’ i.e. bistable
mechanisms which may ‘jump’ from one state to
another. An example is the click mechanism for wing-
movements in insects as considered by Thomson &
Thompson (1977). The wing-movements predicted by
these authors are quite realistic and from a math-
ematical point of view the approach is very attractive.
Nonetheless, it is in my view incorrect and misleading
to speak of a ‘catastrophe-mechanism’ because all
mechanical positions of the mechanism are feasible and
actually existing during the movement. In real
catastrophe-mechanisms, the ‘catastrophe’ consists of
a non-feasible situation (Alexander 1982). Using
linkages, the mechanical construction of a biological
structure can be modelled much more realistically than
a catastrophe-mechanism and asymmetrical movement
curves can also be produced easily.

5. THREE-PARAMETER LINKAGES

(a) Three-parameter series

It is apparent that with three bar lengths the
overview of movement possibilities is in danger to get
lost. Figure 7 gives an overview of transmission curves
of an arbitrarily chosen series of three-parameter
linkages (i.e. 3Pslsl(4); for explanation see figure
legend; for other codes, see table 2; for a general
overview, see table 5). This series runs through some 2-
parameter linkages and a linkage (figure 7: no. 2) that
possesses unique properties compared to two-para-
meter linkages (see §564). It would be valuable to
dispose of an overview which gives all transitions in 3-
parameter series. Then, the mechanical properties of a
particular 3-parameter linkage could be judged e.g.
from the closest transitional stages. This is discussed in
detail in §§5¢ and d).

Another advantage of a series such as figure 7 is that
it gives insight into possibilities, and non-possibilities
(1), of evolutionary changes in the mechanical be-
haviour of biological linkages. Here this is only
considered for changes in a single parameter (see §§5d
and 6Ge).

Although the details of three- and four-parameter
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1: a=90 b=110 ¢ =90 |[d= 60| 2T4s
2: a=90 b =110 ¢ =90 |d= 7.0| 3Sopp(mlms)
3:a=90 b=11.0 ¢c=90 |d= 80| 2T2I
4: a=9.0 b=11.0 ¢c=9.0 |d= 90| 2T21
5:a=90 b=11.0 ¢=9.0 |d=100] 2T2I
6: a=90 b=11.0 c=9.0 |d=11.0| 2Pslsl
7:a=9.0 b=11.0 ¢c=9.0 {d=120| 2T41
360 ¢
1
432
6953
B ‘7%
|
0 360
a

Figure 7. Example of a series of 3-parameter linkages. The
short notation (code) of this particular series is 3Pslsl(4)
which means: a 3-parameter linkage, based on the two-
parameter parallellogram linkage 2Pslsl (see figure 4) in
which bar 4 (= bar d) is varied. A complete overview of
codes can be found in table 2. Codes within quotation-marks
indicate the 2-parameter linkage type with a transmission
function that resembles the transmission function of the
linkage in question (approximate function cognate). The
choice of the linkages corresponds to the series in table 5 (not
the same bar-values chosen). The thin lines give the
transmission function for the uncrossed configurations, the
bold lines for the crossed configurations. Further explanation
in text (§54).

transmission curves are unique, the essentials of the
system-behaviour can often be understood by com-
paring them with transmission curves of approximately
similar 2-parameter- and 3S-linkages (figures 4, 5, 6, 9
and 10;see also§§5 6 and 6¢). First, the real transmission
function is determined using all four parameters. This
transmission-curve is then compared with those of the
simpler 2-parameter- and 3S-linkages. These linkages
are indicated in figure 7 with quotation-marks (also in
other figures; see table 2). Here, we obtain a powerful
tool to rigourously simplify the mechanical analysis of
biological systems, even to a single-parameter level. Dr
E. A. Dijksman (personal communication) has pro-
posed the term ‘approximate function cognates’ for
such linkages (see also Dijksman 1975). It is widely
appreciated that an admissible reduction in the
number of parameters strengthens the explanatory
power of a model. Examples are given in §6. The
appearance or disappearance of parts of the trans-
mission functions for slight deviations of the bar lengths
of the real 4-parameter linkage to obtain the cognate
two-parameter linkage does mostly not affect the
essentials of the transmission (see e.g. figure 14:
Latimeria and Eguus and figure 17). In this paper,
approximate function cognates are indicated by

placing the code between quotation-marks (see figure
7).



(b) Special linkages

Linkage no. 2 in figure 7 cannot be compared with
any 2-parameter linkage. An example of such a linkage
in different positions is shown in figure 8 (left box). It
has no crossed configuration and behaves in this
respect as an isosceles linkage. It can be brought to a
folded position because (b—a) = (¢—d) (or more gen-
erally: (l-m) = (m—s), see table 3). Contrary to the
isosceles linkages, undetermined positions do not exist.
It behaves partly trapezoid-like (inbetween 2T4s and
2T21; see figures 6, 7) but cannot be locked to form an
immobile triangle. It has stretched in-line positions as
in isosceles linkages and trapezoidal linkages but lacks
overlapping ones as in trapezoidal linkages. This
special 3-parameter linkage with opposite equal bars,
with a length between the longest and the shortest bar,
is referred to as a 3Sopp-linkage (table 2). As described
above, its properties can be considered being inbetween
an isosceles linkage and a trapezoidal linkage. All
3Sopp-linkages are listed in table 3. Their transmission
curves can be found in figure 9.

The only other possibility of a 3S-linkage has two
adjacent bars of equal length. Some positions of a
3Sadj-linkage are shown in figure 8. The eight
possibilities for 3Sadj-linkages are listed in table 3.
Transmission curves are shown in figure 10. The
properties of 3Sadj-linkages are inbetween a parallello-

3Sopp 3Sadj —

=

(=4

.00

,_.
)
)
S

— w

P »

o 1=

1= S

S

180.00

105.50 120.00
98.18 35.00

0.00
0.00

9.011.0 9.0 7.0

Figure 8. Some positions of the two types of special 3-
parameter linkages (3S-linkages). The linkages correspond to
linkages in tables 3 and 5 and figures 9 and 10. The input
angle o is drawn in the third diagrams and numerically
indicated near each diagram. Further explanation in text

(§56).

L [7.011.0 9.0 9.0 -
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Table 3. Overview of all possible 3S-linkages

[=longest bar, s=shortest bar, m=intermediate bar.

type code linkage example
3Sopp

3Sopp (msml) m/s\m/l 9.0 7.0 9.0 11.0
$Sopp(mlms) N1 N 9.011.0 9.0 7.0
3Sopp(smlm) N /z\m 70 90110 9.0
3Sopp(lmsm) 17 N5 110 90 7.0 9.0
3Sadj

3Sadj(mmsl) sl 9.0 9.0 7.0 11.0

m-—m
3Sadj(mmls) Ny 9.0 9.011.0 7.0
3Sadj(smml) 5 Pz 7.0 9.0 9.0 11.0
m—m
3Sadj(lmms) [~ N 110 9.0 9.0 7.0
3Sadj(shmm) s —1._ 70110 9.0 9.0
m-—m

3Sadj(lsmm) [ —s” 110 7.0 9.0 9.0
3Sadj(mslm) /s—z\m 9.0 7.011.0 9.0

m
3Sadj(mlsm) N —s7 9.011.0 7.0 9.0

gram and a trapezoidal linkage. A crossed con-
figuration and branched positions exist as in parallello-
grams. Locked-, stretched in-line- and overlapping in-
line positions are as in trapezoidal linkages.

From the above description, it follows that only
linkages which satisfy the condition: (/+s = 2m) are
3S-linkages.

The special linkages with four different bar lengths
(4S) can easily be derived from the 3S-linkages. This is
shown in figure 11. The four parameter linkages are
obtained by elongating or shortening adjacent bars in
the folded and branched positions. A folding 3-
parameter special linkage can only be modified in a
folding 4-parameter linkage or in a 2-parameter folding
one (isosceles linkage). The shortest (s) and longest (/)
bars remain always opposite. The crossing linkage also
preserves its character and the shortest and longest
bars remain always adjacent.

All special linkages discussed in this section cor-
respond to type 3 linkages in the engineering classi-
fication (table 1; see also pp. 230, 231 in Dijksman
1976). The method for deriving them by a parameter
consideration, as detailed above, is more refined and
exposes aspects of their mechanical properties which
are not immediately apparent from the engineering
consideration. Examples of 3Sopp- and 3Sadj-linkages
in biology are given in §§6« and b.



698 M. Muller Planar linkages in animals

a=9.0 b=7.0 ¢=9.0 d=110 a=9.0 b=11.0 ¢=9.0 d=7.0
360 g ; 360, :
/ 3Sopp(msml) 3Sopp(mlms)
B — B
L >
/ =
0 a 360 0 a 360
a=70 =90 c=11.0 d=9.0 a=11.0 =90 ¢=7.0 d=9.0
360 : : 360
3Sopp(smlm) / 3Sopp(lmsm) /
T (
B // B
/ Cae— /
0 o 360 0 o 360

Figure 9. Transmission functions of the special 3-parameter linkages 3Sopp (two opposite bars are equal; folding
linkages). The insets give a scheme of the linkage in a folded position. Black bar: frame-link, white bar: input-link.
An overview of these linkages is given in table 3. The choice of the linkages corresponds to table 5. Further explanation
in text (§56).

a=90 b=90 c=70 d=11.0 a=90 b=90c=11.0 d=7.0 a=705=90 ¢c=90d=11.0 a=110 b=9.0 ¢c=9.0 d=7.0

I i 360 1 i 360 360 T
( 3Sadj(mmsl) 3Sadj(mmls)

360

3Sadj(smml) | 3Sad)(imms)

ﬁ\\\ B )ﬂ\*/ _J

C N\ [
0 a 360 0 a 360 O o 360 0 a 360
a=70 b=11.0 ¢=9.0 d=9.0 a=11.05=70 ¢c=9.0 d=9.0 a=90b=7.0c=11.0 d=9.0 a=90b=11.0 c=7.0 d=9.0
360 I Y 360 360 360

3Sadj(mlsm)

[3Sadjslmm) | (Sadismm)] Tadim
B \ \ B / B / B

(NIRRT [EONENTITIIRRTILATY
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Figure 10. Transmission functions of the special 3-parameter linkages 3Sadj (two adjacent bars are equal; crossing
linkages). The insets give a scheme of the linkage in a branched position. Black bar: frame-link, white bar: input-
link. An overview of these linkages is given in table 3. The choice of the linkages corresponds to table 5. Further
explanation in text (§56).
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(¢) Three-parameter transitions

In this section, the question is addressed of what
consequences an evolutionary change of a particular
bar of a four-bar linkage may have on the mechanical
functioning of a system. It was shown that in a three-
parameter series (§54) transitions to 2-parameter- and
3S-linkages occur. Transitions in Grashof conditions
are also met and so transitions in crank- and rocker-
movement. Table 5 lists these transitions for all 3-
parameter series which originate from the fourteen
two-parameter cases. This table was obtained by a
computer programme which generated linkages of
interest. The programme works as follows. Two
different 3-parameter linkages of a particular series are
required as input. This enables the programme to
determine which bar is variable (i.e. which column in
the series, see figure 7). Then, following the conditions
of table 4, five different linkages were generated.
Additionally, at each Grashof transition, two linkages
were generated to show the transition. This was done
for all permutations of bars. A second programme
deleted all identical linkages per category which were
superfluously generated by the first programme. All
linkages were classified following the Grashof- and the
parameter-classification. So, for thousands of initially
unsurveyable linkages, only the relevant transitions in
mechanical behaviour were selected.

Table 5 (in Appendix 3) gives a complete and
comprehensive overview of all these possible 3-para-
meter transitions. [t gives insight into mutual relations
between different four-bar linkages and therefore may
be used as a ‘field-guide’ for biologists who study
evolutionary transitions. With the help of the trans-
mission functions (figure 4, 5, 6, 9 and 10), it enables
evaluation of evolutionary possibilities and difficulties

@) < ! .

1-Z

Figure 11. The derivation of special 4-parameter linkages
from special 3-parameter linkages. (a) (3Sopp)-systems to 4S-
systems; (b) (3Sadj)-systems to 4S-systems. The equal
(intermediate) bars (m) are drawn bold. / = longest bar, s =
shortest bar. Change of bar-lenghts may be in all directions
and combinations in folded (3Sopp) resp. branched (3Sadj)
positions. The 4S-linkages may be divided in ‘opp’ and ‘adj’
linkages when the longest and shortest bars are opposite or
adjacent. All these linkages correspond to ‘Type 3 linkages’
in table 1. Further explanation in text (§55).

Phil. Trans. R. Soc. Lond. B (1996)

M. Muller 699

Planar linkages in animals

Table 4. Cases for the generation of new four-bar linkages in
a 3-parameter series

(Suppose that the 4-bar is the variable bar (V) in the series.
The other bars are constant. New linkages can be generated:
(i) by making adjacent bars equal; (ii) by making 3S-
linkages following the concerning rules (§5(¢c). A choice of
the variable bar can be made by cyclical change of the input
bars. The result is the generation of five different linkages
(V1...V5). This is elucidated in the scheme below.)

adjacent bars of bar 4 equal

Vi=a
V2=¢

(3Sopp)-configurations

d—a=c¢c—b ——> b=c—d+a
d—a=¢—d —— b=c¢—d+a
s0:

V3 =c¢—d+a

(3Sadj)-configurations

atb=¢+d —— b=c+d—a

b+c=d+a  — b=d+a—c
c+d=a+b —— b=c+d—a
d+a=b+c¢ —_ b=d+a—c
SO:

Vd=c¢+d—a

V5 =d+a—c¢

for changes in mechanical behaviour. I selected the
following possibilities.

1. From 3P-series (i.e. 3-parameter series based on
2-parameter parallellograms), 2P-, 2T- and 3Sopp-
linkages may be obtained.

2. From 3K-series (i.e. 3-parameter series based on
2-parameter isosceles linkages), 2K-, 2T- and 3Sadj-
linkages may originate.

3. From 3T-series (i.e. 3-parameter series based on
2-parameter trapezoidal linkages), all types may
follow.

Observing, for example, the 3Pslsl(1)-series in table
5 with the input bar a varying from short to long, it
reveals that the linkages for relatively small values of
bar a change from cr- linkages, via a single cc-linkage
to rc-linkages. So, bar a changes from crank to
rocker, and bar ¢ does the reverse. This has
implications for the allowed absolute values of & and £,
and for the allowed ranges of Ao and Af in the
biological system: when changing in evolution, the
bars are meeting other movement-possibilities and
-limitations which e.g. may jam the mechanical
behaviour of the system. The cc-linkage (2Pslsl: a = 9)
possesses branching positions which may cause in-
stability in the transmission. The avoidance of such a
linkage requires a special pathway in evolution, e.g. via
4-parameter-linkages, via a limitation of the a-range in
the cc-linkage (see §5d), or even by coupling of the cc-
linkage to another linkage. At relatively large values of
bar a, the linkages change to rr-linkages via a 3Sopp-
linkage. This enables the evolution of a linkage with
folding properties.

For folding linkages in which the folding charac-
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(@)

(b

outer boundary
(d)(ii) 3 volumes
2T*s' (*=1,2,3)

(d)(@i) 3 volumes
2T (*=1,2,3)

Figure 12. The three-dimensional parameter solution space developed by Hain (1964) and Barker (1985) with
linkage-characterizations of the present classification. The (dimensionless) co-ordinates in the diagrams may help to
follow the orientation of lines and planes in three dimensions. Dashed lines: spaces limited by the cube. (a) Outer
boundary of all 4-bar systems, limiting the space wherein all four-bar linkages can be realised. () 2T**-linkages can
be realised along the orthogonal and diagonal lines in the solution space. ‘1’- and ‘s’-linkages are indicated near the
line parts. These parts are separated by the rhomboid linkage in point (1,1,1). (¢) and (4) further explorations of the
solution space: (¢) rhombus, 2P-, 2K-, 3S-, 4S- and ‘2T2*’ systems; (d) 3S-, 4S- and ‘2T**’-systems. The line 2P runs
along the scaled values a=v¢, d =1. The 2K-lines are obtained for a=4d, ¢=1 and ¢=d, a=1. The
3S-lines are the bisectors of the planes forming the tetrahedrons. In diagrams () (i) and (d) (ii), the (*) in the codes may
be (1,3,4) as (* = 2) is contained in the tetrahedrons (see diagram (¢)). Comparison of diagrams (d) (i) and () (ii) with
diagram (b) reveals in which volumes the ‘I’- and ‘s’-linkages are found. Further explanation in text (§54d).

teristics should be preserved, there are limited
possibilities for evolutionary transitions. Table 5 shows
that the folding properties are easily lost (see §6¢). A
pathway along 4-parameter linkages is possible (see
figure 11 and §54).

In the 3T-series, transitions sometimes are via a
rhombus (see e.g. 3T1I(l) in table 5). When, for
instance, crossed positions of a linkage would be
essential, an evolutionary approach or transition in this
range would be very difficult or even a real barrier
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would be met. This rules also for 3P-series in which
3Sopp-linkages occur.

As mostly the essentials of the mechanical
functioning of four-bar linkages already can be
approximated by 2-parameter and 3S-transmission
functions (see § 5 a), the 3-parameter transitions in table
5 give sufficient flexibility to study possible evol-
utionary trends in many biological systems (e.g. those
discussed in §6). Some caution is however required.
This is discussed in the next section in which an



extension of the above analysis to 4-parameter con-
siderations is made.

(d) Three- and four-parameter transitions

This section can be omitted at first reading as it
requires a detailed consideration of the three-
dimensional parameter space of four-bar linkages
developed by Hain (1964) and further explored by
Barker (1985). The aim of this section is to provide a
more general scheme that gives a deeper insight in the
results of table 5.

Hain’s parameter space is constructed as follows.
First, the lengths of the bars of a four-bar linkage are
scaled with respect to the frame-bar, i.e. all bars are
divided by the length of bar 4. In the rest of this
section, only scaled bar-lengths will be considered.
Now, the scaled values of bars a, ¢, and d can be
plotted in a three-dimensional coordinate system
(figure 12). In this system, possibilities and limitations
for the construction of particular four-bar linkages can
be investigated.

The outer boundary (figure 12a) which limits the
possible construction of any four-bar linkage is formed
by the trivial conditions: ¢ =0, ¢=0, d=0, and
by the equations:

gl =(+a)—b—c—d=0
2= —a(+b)—c—d>=0
3= —a—b(+¢)—d>=0
¢4 = —a—b—c(+d) =20

(these and the following equations can be checked
easily by taking special cases, e.g. intersections with the
coordinate cube). The rhomboid linkage (all bars
equal; see figure 3) is located in the point (I,1,1)
(figure 12¢).

Within the outer boundary, all possible 2T**-
linkages are represented by straight lines (figure 124).
Note that 3T**-series along these lines (so, 3Tx*(x),
(x =1...4)) have to contain only two parameters (see
figure 134) and so are no ‘true’ 3-parameter series.
They only pass the rhombus-transition (figures 12,
13b). For completeness, they are included in table 5.

The conditions for the construction of 4S-linkages
(or type 3-linkages; see table 1) are:

¢ = (a+c¢)—(b+d) =0 (4Sopp i.e short and long
bars opposite; figure 11a)

¢6 = (a+d)—(b+¢) =0 (4Sadj i.e short and long
bars adjacent; figure 1156)

q7 = (c+d)—(b+a) =0 (4Sadj idem; figure 115).

These three equations determine a surface within the
outer boundary consisting of two tetrahedrons and the
extensions of the planes forming these tetrahedrons
(figure 12¢, d). Particular straight lines on this surface
represent the 2P-; 2K- and 3S-linkages (figure 12¢).
Crank-rocker-transitions may only occur at this surface
(Barker 1985).
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All other linkages in the parameter space are more
or less trapezoid-like, obviously depending on their
position with respect to the lines and planes mentioned
above. Two examples are still worth to be mentioned
here: within the ‘small tetrahedron’, the scaled bars a,
¢ and d are always smaller than the frame b, so we
obtain 2T2l- and ‘2T21’-linkages. Analogously, within
the ‘large (infinite) tetrahedron’ 2T2s- and ‘2T2s’-
linkages are present (figure 1254). Other particular
volumes and lines are shown in figures 12 and 13 and
are not treated in detail here.

An overview of a variation series of table 5 is
obtained by considering the intersection of the par-
ameter space by a diagonal plane (because in table 5
always at least two bars are equal). An example is
shown in figure 13 (i.e. for a = ¢). From figures 12 and
13, it is now possible to judge more closely some merits
and limitations of table 5.

When one would take a variation series in a plane
parallel to the plane in figure 13, most of the 2-
parameter and 3S-linkages of figure 134 would not be
found. Instead of the rhombus, one would find single
2T1*- and 2T3*-linkages. Two 2K- and two 3Sadj-
linkages would be obtained. 4S-linkages would be
found at the intersections with the 4S-planes of the
tetrahedrons. At sufficient distance of the plane of
figure 13, the whole ‘small tetrahedron’ would be
missed however. So, despite still varying a single bar
length and taking the relation between two other bar
lengths to be constant, the chance of obtaining a 2- or
3-parameter linkage would be different and often
smaller than in figure 135.

Another example is to take variation series e.g. in a
plane parallel to the plane [a,c] for d = 1 (figure 128,
¢). Now, 2P- and 2T-linkages can be found exclusively,
ie. no 3S- and 4S-linkages. The latter linkages,
together with 2K-linkages, are found for other values of
d, i.e. other parallel-planes, but also here the chances of
obtaining such linkages is relatively small compared to
figure 136.

Finally, one may choose variation series in the 4S-
planes (figure 12¢), so preserving folding or branching
properties. This includes in itself already a rather
serious limitation. Also in this case, the same conclusion
for the above two examples holds.

The general conclusion of the above discussion is
that the variation series of table 5 provide a satisfactory
first and rather simple clue to study evolutionary
variations of bar-lengths which may lead to transitions
between different four-bar linkages or transmission
properties of linkages. The use of the parameter space
of figure 12 is absolutely essential where a four-
parameter approach cannot be avoided! Table 5 and
figure 13 may then help to understand in which part of
the parameter space a transition may take place and
what kind of linkages one may expect to find there. A
more general engineering approach for variation of
four bar lengths can be found in Hain (1964).
Occasionally, a simultaneous variation of two bar
lengths is possible as e.g. in the case of snout elongation
(see §64). I have however strong reservations against
more ‘exotic’ examples of simultaneous variation of
bar lengths (see §6¢).
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Figure 13. An intersection of the solution space of figure 12 by a diagonal-plane, elucidating the composition of three-
parameter series of table 5. () the plane in the solution space. Lines in the plane are drawn bold. (4) the typification
of linkages and three-parameter series in the plane. The rhombus-linkage separates the linkage types which are
indicated at the lines. All possible three-parameter series of table 5 in this plane are indicated by arrows. Black dots
indicate the 2-parameter- and 3S-linkages met in these series. Open squares indicate the start-linkages of the 3-
parameter series in table 5. Open circles indicate the crank-rocker transitions shown in table 5. All lines originating
from the origin (0,0,0) have a constant (a,¢,d)-ratio, so the b-bar varies. Co-ordinates in the three-dimensional space
(so corresponding to diagram «) are indicated within parentheses. Further explanation in text (§54).

6. BIOLOGICAL SYSTEMS

The mechanical features of the biological systems
described in this section were partly published by
different authors and are partly original. All the
examples mentioned have been carefully checked in
original material by M.M.

(a) Approximate linear transmission

This section deals with positive transmission systems
(see §2). Although positive transmission may be
strongly non-linear (§44), here only systems with an
approximately linear (proportional) transmission in
the working range will be considered.

Examples are shown in figure 14, including: (i) the
opercular mandible depression mechanism in fishes
(Anker 1974; Barel ¢t al. 1977; Aerts & Verraes 1984)
in which elongation of the snout of a fish, and so
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change in type of the four-bar linkage, does have little
influence on the transmission function (Barel et al.
1975); (ii) the jaw movement mechanism in labrid
fishes (Westneat 1991, 1994); (iii) the skull-levation
mechanism in the coelacanth Latimeria (Alexander
1973), reptiles (Frazzetta 1962, 1966) and birds (Bock
1964); and (iv) the plantaris system (‘reciprocal
apparatus’) in the hind legs of ungulates (Badoux
1975; Moolenaar 1983).

Although superficially these systems seem to be not
very different in transmission properties, figure 144
shows that they in fact belong to different classes. Their
transmission curves differ also in slope and working
range. From the transmission curve 6 (in figure 145),
it is apparent that Latimeria possesses the only known
biological linkage which is close to a 3Sadj-linkage
(compare to figure 10: 3Sadj(mmls)) and is also in this
respect a remarkable animal. The theory developed in
the previous sections considerably helps in the investi-
gation of these aspects.



Planar linkages in animals M. Muller 703

Latimeria (6)  10cm

®)
1: Stizostedion: a= 76 b=100 c¢= 20 d= 6.1 "2T3s
2: Cheilinus operc: a= 58 b=10.0 c¢= 1.5 d= 88 "2T3s
3: Cheilinus max: a= 35 b=100 c¢= 37 d= 74 272
4: Equus: a=285 b=100 ¢=266 d= 8.8 '2PIsls
5: Varanus: a= 41 =100 c= 6.1 d=103 2TIs
6: Latimeria: a= 84 b=100 c=14.1 d= 3.8 '3Sadj(mmls)’

-
44
Vi)

0 360 0 360

—
N\

N

Ny
N
)

Figure 14. Examples of biological four-bar systems with approximately linear positive transmission functions in the
working range. (a) Structures; (b) Transmission curves. Frame bars b are drawn bold. Bold curves give the
transmission function for the crossed configuration. The approximate 2-parameter function cognate linkages are
indicated in diagram () within quotation marks. The approximate working ranges are indicated by small open
circles. Normalized linkage dimensions are consistent with lengths in the present pictures and may be somewhat
different from the data of the original authors. This does not affect the results. &, = a in initial position, &; = a in final
position. Further explanation in text (§6a).

approximate
working range (°)
animal and anatomical names of bars e reference
linkage no. (abbreviations in Appendix 2) a, a, (partly cited)
Stizostedion (1) a = op, b = n-sus, ¢ = lj, d = iop-lim 30 40 Osse (1983)
(pike-perch)
Cheilinus (2) a = op, b = n-sus, ¢ = lj, d = iop-lim 50 60 Westneat (1990)
(wrasse)
Cheilinus (3) a =1j, b = n-sus, ¢ = pal, d = max 40 80 Westneat (1990)
(wrasse)
Equus (4) a = tg-tfds, b = fem, ¢ = tpt, d = cal, 30 145 Badoux (1975)
(horse) additional link: tib Moolenaar (1983)
Varanus (5) a=q, b= pu, ¢ =muz, d = pter 30 65 Frazzetta (1962)
(monitor, lizard)
Latimeria (6) a = ih-sym, b = np, ¢ = na-pal-q, d =j 125 100 Alexander (1973)
(coelacanth)
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Figure 15. An example of a biological ‘3Sopp(mlms)’-
linkage. (a) the linkage in a lateral view of the rainbow trout,
Oncorhynchus mykiss (= Salmo gairdnert) (modified after Aerts
& Verraes, 1987). The linkage consists of: (1) the lower jaw
(bar a), (2) the suspensorium (bar &), (3) the maxillare (bar
¢) and (4) the maxillo-mandibular ligament (bar ¢). During
movement, bar-sequences change, see text. The angle
between the lower jaw- and suspensorium-bar is indicated
near the diagrams. The ®-sign denotes a stationary state of
a bar. Normalized linkage dimensions are (a):(b):(c):(d) =
(53):(100):(69):(21). The transmission curve of this
4-parameter linkage closely resembles the transmission
curve of the 3Sopp(mlms)-linkage: (a):(b):(c):(d) =
(60):(100):(60):(20) (see figure 17). (b) (i-iv) some positions
during different stages of movement. Note that in- and
output bars change in different stages. Anatomical
abbreviations in Appendix 2. Further explanation in text

(§6¢).

(b) Folding mechanisms and force amplification

A folding 4S- four-bar linkage that closely approxi-
mates the 3S-type: 3Sopp(mlms), is found in the
mechanism that moves the maxillare in teleost fishes
(figure 15). This mechanism was described for the first
time by Alexander (1967) in the trout, Salmo trutta,
and more rigorously by Aerts & Verraes (1987) in
the rainbow trout Oncorhynchus mykiss (Wahlberg)
(= Salmo gairdner: Richardson). The present analysis of
the system is based on data of these authors and on
some new discoveries of M. M.

The opening and closing movements of the mouth
can be split up in four phases. In the first phase (figure
154i) the lower jaw starts to depress. As the ligamentum
maxillo-mandibulare (Imm) is not taut, the maxillare
remains stationary. In this phase, the distal point of the
[j-bar moves merely from a dorsal to a ventral position
of the maxillare. An a of 25° marks the end of this
phase i.e. when the Imm-bar has just become taut and
a real four-bar linkage has been formed.

A second phase is drawn in figure 155ii. The /j-bar
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is now the input-bar of the linkage. Further depression
of this bar causes a forward rotation of ca. 22° of the
maxillare. At an o of 63°, the lower jaw reaches its
maximal depression.

In the third phase of the movement (figure 154iii),
the maxillare continues forward rotation by its inertia.
In fact, the maxillare now becomes the input-bar of the
linkage. It is interesting that the type of the linkage
remains the same (which would not have been the case
when the linkage would have been a isosceles linkage).
At an a of 43° the maxillare reaches it maximal
forward rotation, 13° more than in phase 2. Obviously,
the rotation-possibilities of the maxillare are dependent
on the lengths of the bars. Back-rotation of the
maxillare takes place in the fourth phase of the
movement (figure 1556iv). The lower jaw is now again
input-bar. At the end of this phase, the distal point of
the /j-bar has reattained its position dorsally of the
maxillare.

A peculiarity of the system is that, owing to the
presence of a non-rigid bar (i.e. the Imm-bar), in cach
of the movement-phases in fact different mechanical
systems are used (although their dimensions are
approximately equal). This explains that the distal
point of the /j-bar has to be dorsal of the max-bar in the
rest situation to make the linkage in phase 4 functional
and that it first has to be moved to a ventral position
of the max-bar (phase 1) to make the linkages in phases
2 and 3 functional.

In physics, ‘amplification’ is mostly used when a
quantity is enlarged by external supply of energy
whereas enlargement without energy-supply is denoted
by ‘transformation’. This would be confusing in this
article because ‘transformation’ is used for other
purposes (see §2). So here the word ‘amplification’ will
be used to denote an enlargement of a quantity (e.g.
force), irrespective of the energy.

A four-bar linkage that enables force-amplification
is found in the suspensorium abduction system in
teleost fishes (figure 16) and has been described by
Muller (1989). It is an isosceles linkage of the type
2Kslls. Transmission curves can be found in figure 5.
Force-amplification occurs when the hyoid bars are
close to the in-line position (figure 164, ¢; see also §4 ).

In four-bar linkages with approximate in-line bars, a
rather weak input force may produce a comparatively
very large output force (theoretically infinitely large).
This is explained in figure 16¢i—iv where forces (=)
and movements (=) are considered in different four-
bar linkages. A force calculation in an isosceles linkage
can be found in Muller (1989). It would be superfluous
to repeat this here.

Figure 16¢i considers the hyoid-jaw linkage de-
scribed by Muller (1989). In the left picture, abduction
of the linkage takes place, in the right one adduction.
‘Muscle’ forces Fy are transformed to linkage forces F,.
In the left picture of figure 16¢ii, the hyoids are not in-
line giving a relatively small adduction force (F,). In
the right picture, the hyoids are almost in-line giving a
very large adduction force tending to infinity when the
hyoids are in-line (limit case). The movements of point
P are then rather small. A comparable force con-
sideration can be found in Nash (1977: problem 1:14).
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Figure 16. An example of a biological isosceles linkage. (a)(i) deltoid or inwards folding configuration; (a)(ii) in-line
or aligned configuration; (a)(iii) kite or outwards folding configuration; (b) The linkage in a ventral view of the horse-

mackerel,

Trachurus trachurus (after Muller 1989). The linkage consists of the hyoids () and the lower jaw-

suspensorium complex (j). In this example, the ratio %/j is ca. 0.57. The angle « is the input angle which is driven

by the sternohyoid-, hypaxial-, and epaxial muscles, the angle S

. (supplement of ) represents the suspensorial

abduction. Anatomical abbreviations in Appendix 2. (¢) (i-iv) Diagrams, relating forces (- and outlined arrows) and
movements (-») in different four-bar systems with approximate in-line bars. Frame bars 4 are drawn bold. F, = force
in x-direction, F, = force in y-direction. Further explanation in text (§6).

Figure 16ciii shows that, when a frame-bar is fixed (2
possibilities), the movements of the bars may change
but the forces (¥, and F;) remain the same. Figure 16 ¢iv
gives a transition from a symmetrical linkage to an
asymmetrical one. As long as opposite forces are in-line
and equal, the direction of their lines of action may be
chosen arbitrarily. However, the forces corresponding
to F, and F, of figure 16¢i must remain orthogonal,
also in dlagram 16¢civ. The force F (),
acting on the frame-bar, may be replaced by the forces
F1 and F2 (outlined arrows; not to scale).

Another (lower jaw)-(maxillare) system is the coral
crushing apparatus of parrotfishes (e.g. Pseudoscarus
Sforsteni: see figure 17, modified after Van Dobben
1935). The jaw mechanism of this fish is formed by a
trapezoidal four-bar linkage. During biting (closing),
this linkage consists of: the maxillare (bar a), the
suspensorium (bar b), the articulare (bar ¢) and the
dentale (bar d). In other scarids, the articular and
dental bones are more or less grown together and the
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coupler bar is formed by the maxillo-mandibular
ligament (compare Oncorhynchus, see above). Opening
of the jaws is caused by a retraction-force of the
interoperculum (F, ; outlined arrow; see §6a4), closing
is caused by a force exerted by the adductor
mandibulae (F,,) (figure 17aii). The adductor
mandibulae muscle fibres act directly on the input-
and coupler-bars.

Initially, I thought that the properties of a force-
amplifying linkage, as discussed above, could be
applied to provide the large forces necessary to break
off coral lumps with the coral crushing apparatus of
scarids. Dr J. L. van Leeuwen, however, convinced me
that this cannot be the case. Although indeed the forces
between the points P tend to infintity when the bars a
and d are tending to the in-line position, the moment
arms of these forces with respect to point Q tend to zero
simultaneously! Using the formulae from Muller
(1989), it can be proven that the moment in the limit
case (i.e. when the bars ¢ and d are in line) is equal to
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Figure 17. (a)(i)(ii) The (maxillare)-(lower jaw) linkage of the parrotfish, Pseudoscarus forsteni (modified after Van
Dobben 1935) in a lateral view. The frame bar 4 is drawn bold. The anatomical names of the bars during biting are:
a = maxillare, b = suspensorium, ¢ = articulare, d = dentale. F, = force exterted by adductor mandibulae muscle,
F,, = force exterted by interopercular bone, F . = force exerted on prey. Normalized linkage dimensions are
(@):(b):(c):(d) = (41.2):(100):(43.5):(21.1). These data were measured from stereo X-radiographs of the holotype.
The linkage in diagram (a)(ii) is drawn in Van Dobben’s picture and not entirely to scale. A 2T2l-linkage with
transmission properties very close to the real linkage has dimensions (@) : (8): (¢):(d) = (35.0):(100):(35.0):(35.0). (§)
Kinematic aspects of evolutionary transitions of (maxillare)-(lower jaw) system from a ‘generalized’ system as e.g.
present in the trout (Oncorhynchus) to a ‘specialized’ system as found in Pseudoscarus. (b)(i) Using the real linkage
dimensions; (4)(ii) using approximate function cognates. The folding properties of the (maxillare)-(lower jaw)
linkage of the trout are lost in that of the parrotfish. 1 = initial position, mjd = maximal jaw depression, u = ultimate

position, f = final position. See also figure 15. Further explanation in text (§66).

h.I, (see figure 16¢1). With the given geometry (figure
174ii), this means that the fish cannot take any
advantage of the large forces Fy, of figure 16¢ii. So, Van
Dobben (1935) was probably right when he wrote that
the biting force in Pseudoscarus was approximately
equal to the force exterted by the adductor
mandibulae. The large pressures to break off coral
lumps are possibly provided by the acute edges of the
jaws.

In figure 17(4) the kinematic aspects of a transition
from a ‘generalized’ (lower jaw)-(maxillare) system
of e.g. a trout (Oncorhynchus; see above) to the
‘specialized’” mechanism of parrotfishes (Pseudoscarus)
are shown (obviously, no taxonomic relationship
between the two species is assumed to exist). This
reveals not only a transformation from a folding
‘3Sopp(mlms)’-linkage to a non-folding 2T21’-link-
age, but also a limitation of the working range during
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action. It is also shown that the ‘approximate function
cognate’ technique (§54a) gives a similar insight in this
evolutionary change, using simpler linkages than the
original ones.

(¢) Locking mechanisms and hysteresis

Locking four-bar linkages are present in the neuro-
cranium levation mechanism of some fishes (figures 18
19; Muller 1987). The system is particularly well
developed in pipefishes (order Gasterosteiformes: several
families: see Muller 1987; Altermatt 1991). It consists
of: (i) the urohyal, sternohyoid, hypaxial muscle
complex (u-bar); (ii) the pectoral girdle (pg-bar); (iii)
the neurocranium, suspensorium complex (n-bar) ; and
(iv) the hyoid (4-bar). Muller (1987) considered the
system in an earth-bound frame. In this frame, the bar-
sequence is: (a, b, ¢, d) = (u, pg, n, k).
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Figure 18. An example of hysteresis in a four-bar system of a feeding pipefish Entelurus aequoreus (head length =
25 mm), with and without taking shortening of the ventral head muscles and a correction for the projection of the
hyoids into account. Left picture: transmission functions with bar pg as frame-link 4. This picture gives the relation
between the mouth bottom depression o and the neurocranium levation f (see Muller 1987). Right picture:
transmission functions with bar n as frame-link 4. Bar conventions and angles are as in figure 1. Anatomical
abbreviations in Appendix 2.

Linkage dimensions and angles are indicated in the insets and were measured from a 400 fr s™* movie with lateral
and ventral views of the animal. a,f = in- and output angles of ‘2T11’-‘2T4s’-linkages, a*,f* = idem of ‘2T41’-
‘2T3s’-linkages. The angle  indicates the abduction angle between the two hyoid-bars. Time between subsequent
points is 2.5 ms. The four-bar transmission curves were calculated with unshortened and maximally shortened bars,
measured from the movie and from three-dimensional X-radiographs. The u-bar shortens through contraction of the
sternohyoid and hypaxial muscles, the A-bar shortens by abduction of the hyoids. Note that abduction takes place
immediately after the start of the movement (i.e. within 5 ms) and the system then behaves as a rigid one (with
changed bar-lengths). Note also that it is not necessary that corresponding points lie at the same relative positions:
e.g. the third data point in the left picture on the transmission curve and in the right one in between the transmission

curves. This is due to the change of bar-lengths. Further explanation in text (§6¢).

The neurocranium levation mechanism in
syngnathids can be considered as a bistable system: at
the start of the movement, suspensorium abduction
and contraction of the sternohyoid and hypaxial
muscles immediately occurs (within 5 ms). This results
in the transformation of the original four-bar linkage
(‘2T11") to another one in which the u- and A-bars
differ from the original values (‘2T4s’; see figure 18:
left picture). The rest of the movement takes place
along the transmission curve of the latter linkage. This
transition is better shown in a fish-bound frame i.e.
taking the n-bar as the frame. Then, the linkage is
inversed from one («,f) to another four-bar (a*,f*)
linkage (figure 18: right picture). The bar-sequence
becomes now: (a, b, ¢ , d) = (pg, n, h, u). It is virtually
impossible to obtain this insight into the functioning of
the system by conventional frame-by-frame motion
analysis.

Westneat (1990, 1994) extensively tested the motions
of the four-bar linkages described above. He concluded
that shortening of the bars during motion, as proposed
by Muller (1987), gives good agreement between
theoretical and measured positions. Altermatt (1991)
tested the locking linkage in the snipefish, Macro-
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rhamphosus scolopax and found excellent agreement
between measured and predicted data.

As a conclusion, it is useful to apply planar four-bar
system analysis to less rigid biological systems con-
sidering two extreme rigid linkages as limits for a
region in which hysteresis (i.e. variability of a
particular bar or its projection) occurs (figure 18). The
question of the accuracy of such a system is discussed in
§6e.

Muller (1987) considered the neurocranium levation
mechanism in the shrimpfish, Amphisile as a 2-
parameter 2T4s-linkage, to fit it in his one-parameter
approach of these mechanisms. He argued that
Amphisile minimizes its head movement (neurocranium
levation: Af < 5°). The transmission function with the
real bar lengths (figure 19: curve no. 1) in Amphisile
however does not resemble a 2T4s-linkage (figure 19:
curve no. 2), but rather a 2T1l-one (figure 19: curve
no. 3), because the u-bar (= g-bar) is extremely long.
The real curve resembles also a 3Sadj(lmms) linkage
(figure 10, top, right) but this representation misses the
elegance of the reduction to a two-parameter system.
The small working range implies that a distinguish-
ment between a 2T- and a 3S-linkage is not needed. Af
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Figure 19. The neurocranium levation mechanism of the
shrimpfish, Amphisile sp. 1: the real 4- parameter linkage; 2:
considered as a 2T4s-linkage (Muller 1987); 3 and 4:
considered as a 2T1l-linkage; 5: the real 4-parameter linkage
with reduced u-bar. Bar-conventions and angles are as in
figure 1. Anatomical abbreviations are in Appendix 2. The
values for o, ..4 are for curve no. 1: 15°; for curve no. 2: 61°;
for curve no. 3: 25°; for curve no. 4: 36° and for curve no.
5: 19°. Frame bars (b= pg) are drawn bold. Further
explanation in text (§6¢).

is now ca. 9° (measured from 1500 fr s™! movies that we
made), so the head movement in this fish is possibly not
minimized as argued by Muller (1987). Note that there
is still a difference in the a-range between curves 1 and
3.

A two-parameter simplification still appears to be
valid because it satisfactorily predicts the actual
neurocranium levation. Two interesting conclusions
can be drawn: (i) hyoid length does only slightly
influence neurocranium levation (compare in figure
19: slope and working range of curves no. 1 and 3),
contrary to what one is tempted to think at first sight;
and (ii) the output of the system is very sensitive to a
change of the length of the u-bar (= bar a). A change
of bar a from 281.0 to 300.0 (ca. 6.8 9,) makes system
no. 3 in figure 19 non-functional. A similar change of
bar a in the other direction, i.e. from 281.0 to 262.0
produces curve no. 4 in figure 19 which differs
considerably from curve no. 3. Comparable results are
obtained for the 4-parameter linkage: changing bar a
from 137.2 to 148.0 (ca. 7.99,) makes the system non-
functional. A change from 137.2 to 126.4 produces a
transmission curve (no. 5: partly shown) rather
different from curve no. 1.

The system may also be considered with the
emphasis on the a-, f-, Aa- and Ap-values. Curve no.
2 is invalid for all these four values. Curves no. 3 and
4 have about the same Aa- and Ag-ranges but the
absolute a- and f-values are very different. Curve no.
5 differs from curve no. 1 only in the absolute S-values.
In the case of dAmphisile, Af is the only important
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parameter but in other cases also the a-, §-, Aa-values
may have significance.

The above example illustrates also the valuability of
the approximate function cognate approach: by
simulating the system, using the real bar lengths, an
approximate two-parameter linkage can be selected
and so the system description adequately simplified
(see §5a).

(d) Cam mechanisms

Cam mechanisms are found in e.g. a system formed
by two joints (Alexander & Bennett 1987). Here, one
of the links is substituted by two articulating surfaces,
whereby the sum of the radii of curvature and distances
is equal to the length of the ‘missing link’ (figure 20a,
b). This bar is an ‘imaginary bar’. The linkage in the
hock of the sheep can be considered as a ‘2T4]’-linkage
with two imaginary bars. In extreme extension and
flexion (figure 206), it reaches overlapping in-line
positions (figure 2). Intermediate positions are
reversely crossed (figure 2), so the system operates in
the most non-linear part of the transmission-curve
(figure 6). As the linkage is bistable (Alexander &
Bennett 1987), a little strain of the ligament occurs
during motion.

The structure of the cruciate ligament mechanism in
the knee joint (figure 20¢) lies in between a real four-
bar linkage (all the bars are existing) and a cam-
mechanism: the cruciate ligaments are kept taut by the
cams formed by the femoral condyles and tibial
articulating surface. This conversely crossed 2T4s-
linkage (figure 2) also operates in the most non-linear
part of the transmission curve (figure 6). In extreme
extension and flexion, overlapping in-line positions are
reached (figure 2; see Muller 19934).

Badoux (1984) considered the cruciate ligament
linkage in the knee joint of horse and dog as a straight
line generator (Chebychev-type, see also Hartenberg
& Denavit 1964; Dijksman 1976) which should adjust
the instantaneous centre of rotation (ICR; see §2) of
the knee joint during locomotion.

The shape of one of the articulating surfaces can be
derived from the shape of the other one and the
distance between the polode and the respective
articulating surface (StraBer 1917; Huson 1974;
Menschik 1974a). The position of the articulating
surfaces is never at the polodes. So, the cruciate
ligament four-bar linkage forces the articulating
surfaces to roll and slide over each other (see §2).
Implications of this fact for the mechanics of knee joints
of different shape have been discussed by Muller
(1993b). The dimensions of the cruciate ligament four-
bar linkage limit the angle of rotation between femur
and tibia (Muller 19934) and determine the angles
which the femoral and tibial axes make with the knee
joint (Menschik 1974 a; Muller 1993 4). At the extreme
positions of the cruciate ligament four-bar linkage,
elasticity of the ligaments plays a role in limitation of
the movement (see §6¢). Badoux (1984) assumed a
maximal strain of 6 %, for the cruciate ligaments, based
on various references.
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Figure 20. Examples of cam mechanisms. (a) General scheme of a two-joint linkage with a single ligament. Note that
link 4 is not real (non-existing or imaginary). (b) An actual two-joint linkage in the hock of the sheep, Ovis aries. (a)
and () modified after Alexander & Bennett 1987). Here, link 4 is on the intermediate element, so links a and ¢ are
imaginary. The linkage can be typified asa ‘2T41’-linkage. (¢) A diagram of the mammalian knee joint with the four-bar
linkage in it (Muller 19935). In this linkage, all bars are real, provided that the ligaments are kept taut. This can
be considered as a ‘2T4s’-type linkage. Frame bars b are drawn bold. Anatomical abbreviations in Appendix 2.

(b)(®)

©®

Figure 21. (a)(b) The five classes of planar constrained six-bar linkages (modified after Dijksman 1976) (ai) Watt-1
six bar; (aii) Watt-2 six bar. (bi) Stephenson-1 six-bar; (i) Stephenson-2 six-bar; (4iii) Stephenson-3 six-bar. The
four-and six-bar linkages in the sling-jaw wrasse, Eptbulus insidiator (redrawn after Westneat & Wainwright 1989). The
rest situation of Epibulus is drawn right (cii) for comparison with the corresponding Stephenson-3-mechanism that is
protruded (ci). Frame bars 4 are drawn bold. The main elements of the four-bar linkage that drives the six-bar linkage
are: a = operculum, b = neurocranium, ¢ = vomero-interopercular ligament, d = interoperculum. The six-bar
linkage is in fact composed of a five- and a four-bar linkage (§6¢). The interoperculum is the input-bar of the six-
bar linkage, the vomero-interopercular ligament is the frame-bar. Output-bars are the maxillare and the quadratum.
Coupler-bars are the lower jaw and the interoperculo-mandibular ligament. Anatomical abbreviations in Appendix
2. x = vomero-interopercular ligament-bar.
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be easily verified that the combination of the opercular-

mechanisms

Five different types of six-bar constrained linkages
exist belonging to two different classes: Watt- and
Stephenson-mechanisms (figure 21). These linkages
have a mobility 1 (Dijksman 1976). A Watt linkage
can be considered as a four-bar linkage connected to
another four-bar linkage, a Stephenson linkage as a
four-bar linkage connected to a five-bar linkage. It can
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can be considered as a Watt-2 six-bar linkage (figure
21 aii).

The only example of a Stephenson six-bar linkage
known in biology is the snout protrusion mechanism
found in the head of the extremely evolved labrid fish
Epibulus insidiator (‘sling-jaw wrasse’, Westneat &
Wainwright 1989; Westneat 1991). This linkage is of
the Stephenson-3 type (figure 21). During snout
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(a)(ii)

(a)(iii)

imaginary joint \\‘
A Y
imaginary .1
joint () < 4B
o0 " real slider
D e slider
T G .
/ /I iC slider
O
i
\‘ i
4 |
. . % |
Imaginary \1
joint () W 3B
(o) op n Sus

2B C{i{naginary joint

Figure 22. Examples of crank-slider linkages. () Derivation of crank-slider linkage from a four-bar linkage. (b)
Definition of real and imaginary sliders (pictures 4i and aiii are the same). (¢) Jaw protrusion mechanism in the
dragonet, Callionymus lyra, formed of a crank-slider linkage driven by a four-bar linkage (modified after Kayser 1961).
The four-bar linkage is equivalent with the maxillare-system in the trout (§64), the crank-slider linkage is equivalent
with picture (b)(ii). Frame bars b are drawn bold. Anatomical abbreviations in Appendix 2. rs = real slider,

is = imaginary slider.

protrusion it is driven by a modified opercular four-bar
linkage (compare §6a).

Westneat (1991) has proposed evolutionary changes
in the feeding mechanisms of the fishes in the Cheilinid-
Epibulus transition. He argues that at a particular
stage, two bars (parameters) should change simul-
taneously (i.e. loss of the palatine link and gain of the
quadrate link). Although I agree with his statement
that: ‘... the most parsimonious is one that combines
the fewest number of evolutionary events into a
biomechanically feasible series of intermediate
forms...’, itis a question of what is still biomechanically
feasible! The movement-possibilities of the linkage are
extremely sensitive to e.g. a small change in length of
the quadratum (ca. 5%, change makes the system non-
functional). As the mechanical behaviour of a linkage
in fact is undetermined by simultaneous alteration of
two bars (see §5¢, table 5) and as the direction of
evolution is a priort unknown, it is in my view very
unlikely that such a transition could occur. So, I think

Phil. Trans. R. Soc. Lond. B (1996)

that other evolutionary pathways have to be searched
for. For example, when Epibulus would have been
evolved directly from an ancestor possessing the more
generalized maxillare-(lower jaw) linkage in teleosts
(see §6b, figure 15), the problem of loss of the palatinal
joint would not be present. The occurence of a (small)
ligamentum maxillo-mandibulare does not impede the
development of a movable quadrate link. As at present
solid information about the evolution of Epibulus is
lacking, the above and other possible suggestions
remain rather speculative.

In the protrusion apparatus of the jaws of teleost
fishes (Alexander 1967; Motta 1984), a so-called
‘crank-slider’ mechanism is often found. A crank-slider
linkage can be derived from an ordinary four-bar
linkage by replacing the output link (bar ¢) by a slider
connected to the frame bar & (figure 22a; see also
Hartenberg & Denavit 1964: §2.15). The radius of
curvature of the slider is equal to the length of bar c.
Moving point B to a large distance results in a straight
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(a)

Figure 23. The highly complex jaw protrusion mechanism in
the sand-eel, Ammodytes tobianus (modified after Kayser 1961),
consisting of 2x6 coupled four-bar linkages. Anatomical
abbreviations in Appendix 2. (a) Overview of whole jaw
apparatus. the maxillare has five processes: lateral (the
longest one), premaxillary (rostral), dorsal, cranial (caudal)
and medial (not shown). The rostral processus of the
palatinum proceeds to the dorsal processus of the maxillare.
(b)(c) Details. The joints 1B, 2D and 3A are the same. Four-
bar linkage no. 3 is indicated with white bars. Four-bar
linkage no. 4 is indicated with white dots at the joints.

The anatomical structures which form the bars

linkage

no. a b ¢ d

1 i see below *  max ip

2 max Imm]1 n le

3 max le rc lig. re-max
4 lig. re-max max mpe pa

5 mpe max imp pmx

6 U see below ¢ max Imm

“This ‘bar’ is formed by the virtually constant distance
between the quadrato-articular joint and the pivot of the
maxillary.

slider (figure 224iii). Crank-slider linkages can only be
typified by 2-parameter four-bar linkages when bars &
and ¢ are not too long compared to the coupler and the
crank (as e.g. in figure 22a4ii).

Curved sliders are found e.g. in Callionymidae. In
other teleosts, the slider may be more or less straight or
even (slightly) inversely curved, as is the case in
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Epibulus (figure 21). The point B is eliminated to
become an ‘imaginary joint’. In the dragonet,
Callionymus, and in ‘generalized’ teleosts, the crank-
slider linkage for premaxillary protrusion is driven
by the four-bar linkage that causes rotation of the
maxillare (see §66, figure 15). A peculiarity of the
protrusion mechanism in fish is that the place of
the morphological slider does not coincide with the
theoretical slider place of the crank-slider chain. This is
explained in figure 224. In diagram 225i, a con-
ventional crank-slider linkage is drawn. Diagram 22 ii
differs from 2241 in two respects. First, the direction of
rotation of the crank is reversed. Second, the slider
is modified: the ‘processus ascendens’ (pa) of the
‘premaxillare’ (pmx) moves over a really existing
slider (C*). The original slider (C) may exist or not. In
the latter case, we may speak of an ‘imaginary slider’.
In the actual system, confusion of real and imaginary
sliders may result in an erroneous position of point C
and so in a wrong dimensioning of the linkage.
Additionally, a morphological base for a choice of
point C on the real slider (i.e. the processus ascendens)
lacks. Figure 22¢ shows the actual situation in
Callionymus lyra. In Epibulus (figure 21), the maxillare
(connected to the six-bar linkage) can be considered as
crank, part of the lower jaw as coupler link, the point
of connection between lower jaw and premaxillare as
imaginary slider point and the processus ascendens of
the premaxillare as real slider.

The protrusion mechanism found in the sand eel,
Ammodytes tobianus (figure 23, Kayser 1961) is the most
complex coupled biological linkage known to M.M. It
is not a crank-slider mechanism as in generalized
teleosts (see above), but it consists of a bilateral series
of six four-bar linkages.

The movement during prey capture proceeds as
follows (figure 23 ; Kayser 1961 : figures 8, 18). Initially,
the mouth opens by depression of the lower jaw. The
slider-like coronoid process of the lower jaw pushes the
maxillare forward. At a larger lower jaw depression the
contact between the coronoid process and the maxillare
is lost. Now, the maxillare is rotated forward by the
four-bar linkages nrs. 6, and later 1 in figure 23a.
Linkage 6 is equivalent with the system described for
the trout (§65). A difference with the trout-system is
that the ligamentum maxillo-mandibulare is relatively
long and partly cartilaginous and so it can push the
maxillare (Kayser 1961 : p. 369). Force transmission to
the maxillare is zero in a completely folded position of
linkage 6 and begins to play a role when this linkage is
brought to its workable initial position (see above).
Figure 234 reveals that linkages nrs. 1 and 6 in fact
would form a non-movable system when the bars
would be all rigid. However, one of the ‘bars’ of
linkage no. ! is the ligamentum primordiale (figure
23a: Ip) which becomes taut close to the ultimate
position of the maxillare (figure 23¢). So, linkage 1
‘helps’ linkage 6 when the kinematic transmission of
the lower jaw (linkage 6: o) to the maxillare (linkage
6: f) tends to become too weak, i.e. when in linkage 6,
f becomes rather constant (figure 24: left diagram).

The premaxillare is at two points pushed forward by
four-bar linkage no. 5 (figure 234). The ligamentum
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1: a=20.0 b=1000 c= 17.2 d= 98.2  "2Pslsl'

2: a=21.1 b=1000 c= 64.1 d= 484 "2T2I

3: a=323 b=100.0 c¢=1242 d= 58.1 '3Soi)p(smlm)'
4: a=46.8 b=100.0 c= 79.2 d=151.9 "2T4l

5: a=33.0 b=100.0 c= 27.6 d=1043  '2Pslsl'

6: a=812 b=1000 c= 653 d= 455 '3Sopp(mlms)'
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Figure 24. Transmission curves of linkages drawn in figure 23. Bold lines: crossed configurations, thin lines: uncrossed
configurations. «,,f; = o,f in initial position, &,,8, = o,f in final position.

The approximate working ranges (in degrees)

(Values between parentheses are represented in the diagrams. Although measured as accurate as possible, using
preserved animals as well as a mechanical model, these values have to be considered with caution. A more rigorous

study is needed to improve the table.)

linkage no. @y o o, A

1 25-30 330-322 30-35 322-314

2 ca. 0 ca. 150 60-70 ca. 150

3 80-100 (90) ca. 145 20-30 150-160

4 200-210 ca. 100 60-120 (90) ca. 50
(from model)

5 — 180-200 — 180 110-120 110-120

6 -0 — 180 18 94

maxillo-premaxillare (figure 234: Imp) is rather solid
between points 5B and 5C (figure 234) and so can act
as a rigid link. It is probably loaded in a compressive
as well as in a tensile way during protrusion and so
needs a small amount of play.

The position and movement of the pivot of the
maxillare (figure 234 point 2D) is controlled by four-
bar linkage no. 2 in figure 234. The mesethmo-
maxillar ligament (figure 234: Imm1l) has to remain
continuously taut. To prevent dorsocaudally tilting of
the whole protrusion system, linkage no. 2 is supported
by the palatinum when the mesethmo-maxillar liga-
ment would be compressed.

The movement of the processus ascendens of the
premaxillare is at both ends controlled by four-bar
linkage no. 4 in figure 23 ¢. This linkage is also driven
by linkage no. 3 in figure 23 ¢. So, the movement of the
premaxillare is controlled in 3 points at each side. The
clastic ligament limits the protrusion at its final
position.

Figure 24 gives the transmission functions and
working ranges of the four-bar linkages of figure 23. It
is interesting that very different properties of several
types of linkages have been merged in evolution. Two
parallellogram-like linkages are present (nrs. 1 and 5),
one operating in a reversely crossed configuration, the
other starts at the transition of crossed and non-crossed
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configurations. One of the two trapezoidal linkages
(no. 2) possesses an approximately constant f-range,
where a varies considerably. This means that bar a
may rotate over a large angle whereas the other bars
are rather stationary. This allows a free suspension of
the pivot of the maxillare, without a direct coupling
to the neurocranium (ethmoid) as is the case in
generalized teleosts. The other trapezoidal linkage (no.
4) makes use of the non-linear transmission function. It
starts almost from a locked position. The remaining
linkages (nrs. 3 and 6) are close to 3Sopp-linkages.
They operate in reversely folding configurations (figure
2,82).

Four-bar analysis of such a complex system of
linkages is of considerable help in the investigation of
its movement-possibilities and working ranges and so
confers better insight into the mechanics than could be
(or was!) obtained by conventional morphological
examination (Kayser 1961 and references therein). It
may give insight into where ligaments and bony
(cartilaginous) elements are required and where rigid
and slackening, elastical or limiting structures are
necessary. It also provides a powerful check on the
validity of the mechanical consideration because
mechanical feasibility, transmission functions and
working ranges have to fit in which each other. These
features are greatly influenced by slight changes in the



four-bar linkages. For example, a small (e.g. 5%)
change of a bar of linkage no. 6 destroys its folding
properties (see also table 5). This means that the
mouth cannot be closed anymore and so the whole
protrusion system is jammed.

The small range of a crossed configuration in figure
24: curve 6 is removed when the linkage is in the range
of relevant positions (i.e. close to folding; compare
figures 15 and 17). So, curve 6 demonstrates the
sensitivity of the linkage for small changes of bars. Such
‘artifacts’ have to be eliminated in the working system,
e.g. by ‘play’ in the joints (see below).

The constrained linkage-system in Ammodytes tobianus
has still a mobility 1. Dijksman & Timmermans (1994)
have studied possibilities for the design of multi-bar
linkages with mobility 1, especially so-called ‘prime-
chains’. This theory may possibly be of help in future
studies of complex mechanisms in animals.

The very complex structure of coupled linkages in
biological systems, as discussed above, addresses the
question about the functional range of necessary and
undesired hysteresis. In Ammodytes tobianus, the pro-
trusion mechanism of the jaws consists of 2 X 6 coupled
four-bar linkages. This mechanism is very sensitive to
changes in bar-lengths. As biological structures have
no mathematical accuracy, a smoothly functioning
system requires a certain amount of hysteresis or ‘play’
(see §5a, 6¢,d). Too much hysteresis will make the
system non-functional. It is interesting to investigate
the allowable deviations of the system in question and
so the required accuracy during its evolution. This has
not been carried out hitherto. Table 5 and §5d may be
very heplful in such studies.

7. DISCUSSION

Within the application of four-bar linkage theory in
biological systems the emphasis of previous studies has
been quite various as shown in the following list.

1. Determination of degrees of freedom and physical
constraints (Alexander 1967, 1983; Elshoud 1986;
Alexander & Bennett 1987).

2. Determination and application of kinematic and
dynamic (force) transmission (Frazzetta 1962; Bock
1964; Alexander 1967, 1973; Liem 1970; Iordanski
1971; Anker 1974; Barel et al. 1975, 1977; Aerts &
Verraes 1984; Muller 1987, 1989; Aerts 1991;
Westneat 1991).

3. Derivation of coupler plane curves for a particular
motion (Badoux 1984). A special type of such curves
(Burmester-curves, see Burmester, 1888) has been
extensively discussed by Menschik (1974 4) and Miiller
(1983). The latter two papers were heavily criticized
by Fuss (1991).

4. Derivation of velocity pole curves and profile
shapes in the coupler plane (Huson 1974; Menschik
1974a). These studies aim to construct condylar fitting
surfaces from the polodes.

5. Derivation of limitations for movement possi-
bilities (Menschik 1974a; Alexander & Bennett 1987;
Muller 19934, b).

6. Optimization of artificial four-bar prostheses
(many papers, e.g. Hobson & Torfason 1974, 1975).
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The above-mentioned approaches study aspects of
linkage functioning in rather specific systems or
situations: This approach however, aims to place the
different linkages in a general framework. Such an
overview gives insight in the mechanical suitability of
particular linkage functions for particular purposes, in
evolutionary possibilities, in the effectiveness of a
particular composition of linkages in complex bio-
logical systems, in the available freedom to obtain
mechanically feasible constructions. Additionally, it
provides a powerful method to validate or falsify a
particular mechanical approach for a biological system
(see §6¢). Another advantage is that it enables thinking
about the mechanical functioning of biological systems
without requiring knowledge of mathematics. This
makes it also very suitable for educational purposes.
Obviously, four-bar theory offers also many possi-
bilities for more mathematically oriented studies (Aerts
& Verraes (1984) and many engineering texts). The
consideration of linkage mechanics in the present
paper and in the references mentioned is always time-
independent. Introduction of a time-dependent aspect
is technically possible but mostly gives rise to rather
complex differential equations.

An interesting aspect is whether linkage theory may
help to discover a possible ‘optimal design’ of a
structure. Optimization may take place following the
transmission function of a single linkage, or via
transitions to other linkages. Table 5 shows that there
are many ways to derive a particular linkage with its
(part of) a particular transmission function from other
linkages. It is tempting to think that evolutionary
pathways have to follow the principle of ‘minimal
redundancy’ implying that evolution has to take place
along a path with the minimal amount of transitions,
and so the minimal amount of ‘problems’. The more
transitions are present, the greater is the chance that a
non-functional situation or a barrier is met, or
possibilities for an evolutionary change become too
small. The question of simultaneous changes of
parameters has already been discussed in §6¢ . In the
same section, it has been argued that there is a limited
range of allowable hysteresis in many complex bio-
logical systems. Therefore it is also interesting to study
how linkage functioning is maintained and possibly
changed during allometric growth.

Itis apparent, especially from the examples discussed
in §6¢ (Epibulus, Callionymus, Ammodytes) that it is very
difficult, or even impossible, to generate compound
systems of biological linkages via a completely de-
ductive way, i.e. from functional demands and physical
principles only. Information about the basic com-
position of the system is needed a prior: to understand
the functioning of the structure.

Finally, it should be realized that many linkages are
in fact three-dimensional (see Wismans et al. 1980;
Otten 1983; Elshoud 1986; Van Gennip 1988; Aerts
1991). As in a three-dimensional model the large
amount of movement-possibilities and parameters
rapidly may lead to a loss of survey, it is useful to
investigate whether two-dimensional approaches may
give insight in aspects of functioning. Although a
simple model often does not closely represent the real
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structure and its simplifying approximations make it
often rather vulnerable, it has also explanatory power.
An example are the knee joint models (Huson 1974;
Menschik 1974a). It is very difficult to predict real
condylar shapes with these models but they provide a
useful tool for thinking about construction principles
for inarticular joints (Alexander & Bennett 1987;
Maiiller 1983; Muller 19934, b).
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APPENDIX 1
List of abbreviations used in text and figures

a = input link of four-bar linkage (figure 1)

A = coordinates of joint between bar a and bar &
of four-bar linkage (figure 1)

adj = adjacent

b = frame link of four-bar linkage (figure 1)

B = coordinates of joint between bar 4 and bar ¢
of four-bar linkage (figure 1)

¢ = output link of four-bar linkage (figure 1)

c = crank = revolving bar of four-bar linkage
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= coordinates of joint between bar ¢ and bar d
of four-bar linkage (figure 1)

= coupler link of four-bar linkage (figure 1)

= coordinates of joint between bar 4 and bar «a
of four-bar linkage (figure 1)

= force (with subscripts)

= force exterted by adductor mandibulae muscle
(figure 17)

= force exterted by interopercular bone (figure
17)

= force exerted on prey (figure 17)

= force in x-direction (figure 17)

F = force in y-direction (figure 17)

= instantaneous centre of rotation (figure 1)

opposite

r = rocker = oscillating bar of four-bar linkage

X = x coordinate

Yy = y coordinate

a = input (interior) angle of four-bar linkage,
between bar ¢ and bar b (figure 1)

= g

m

i)

%)—1
S5
i

I = output (exterior) angle of four-bar linkage,
between bar b and bar ¢ (figure 1)

B, = abduction angle of jaws (figure 16)

vy = angle between perpendiculars on f and ¢, y
= (0°: ‘straight leg’ (figure 20)

X = abduction angle of hyoids in locked linkage of
pipefishes (figure 18)

£ = angle between femoral and tibial axes (§ = 0°

for leg straight) (figure 20)

APPENDIX 2
List of abbreviated biological structures

a = anterior cruciate ligament (bar) (figure
20)

add mand = adductor mandibulae muscle (figure 17)

art = articulare (figure 17)

br = branchiostegal rays (figure 15, 22)

cal = calcaneus (figure 14)

cl = cleithrum (figure 22)

dent = dentale (figure 17)

el = elastic ligament (figure 23)

f = femoral distance between points of attach

of cruciate ligaments (figure 20)

fem = femur (figure 14)

gas = gastrocnemius (figure 14)

h = hyoid (bar) (figure 16, 18, 19)

hy = hyoid (figure 22)

ih = interhyale (figure 14)

iop = interoperculum (figure 15, 17, 21, 22, 23)

J = jaw-suspensorium-bar (figure 16)

lim = interoperculo-mandibular ligament
(figure 15, 21, 23)

]j = lower jaw (figure 15, 21, 22, 23)

Imm = maxillo-mandibular ligament (figure 15,
22)

Imm]1 = mesethmo-maxillar ligament (figure 23)

Imp = maxillo-premaxillar ligament (figure 22,
23)

Ip = primordial ligament (figure 23)

lvi = vomero-interopercular ligament (figure
21)

max = maxillare (figure 15, 17, 21, 22, 23)
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met = some metatarsal bones (figure 14) pmx = premaxillare (figure 15, 17, 21, 22, 23)
mpc = maxillo-premaxillar cartilage (figure 23) pop = preoperculum (figure 17)
muz = muzzle unit (figure 14) pter = pterygoid unit (figure 14)
n = neurocranium (bar) (figure 15, 18, 19, pu = parietal unit (figure 14)
21, 22, 23) q = quadratum (figure 14,21)
na = anterior part of neurocranium (figure 14) sus = suspensorium (figure 15, 22, 23)
np = posterior part of neurocranium (figure  sym = symplecticum (figure 14)
14) t = tibial distance between points of attach of
op = operculum (figure 15, 21, 22) cruciate ligaments (figure 20)
p = posterior cruciate ligament (bar) (figure  tfds = tendon of flexor digitorum superficialis
20) (figure 14)
pa = processus ascendens of premaxillare  tpt = tendon of peroneus tertius (figure 14)
(figure 22, 23) tg = tendon of gastrocnemius (figure 14)
pal = palatinum (figure 14,17,21) ttc = tendon of tibialis cranialis (figure 14)
par = parasphenoid (figure 15) tib = tibia (figure 14)
pg = pectoral girdle (bar) (figure 18, 19) u = urohyal (bar) (figure 18, 19)

APPENDIX 3
Table 5. Overview of 1-, 2- and 3- parameter linkages and their transitions

(The varied column in a 3-parameter series is boxed. Grashof- and Type-codes are listed in tables 1, 2 and 3. Some
characteristic transmission functions are shown in figures 4, 5, 6, 7, 9 and 10. q, 4, ¢, d = bar lengths; s = shortest bar(s),
! = longest bar(s). s/l = short-long-ratio. ¢ = crank (revolving bar), r = rocker (oscillating bar), cc = double-crank linkage,
cr = crank-rocker linkage, rc = rocker-crank linkage, rr = double-rocker linkage. Crank-rocker transitions in a 3-parameter
series are indicated in a variation direction from short to long bar lengths. The first transition which is met is indicated in the
Table. For example, in 3Pslsl(1), the first crank-rocker transition occurs between a linkage with approximate dimensions: 8.8
11.0 9.0 11.0 (cr, not indicated) and the linkage: 9.0 11.0 9.0 11.0 (cc, indicated in the table). The second crank-rocker
transition (between: 9.0 11.0 9.0 11.0 (cc) and: 9.2 11.0 9.0 11.0 (rc)) is fully indicated in the table. Otherwise, it would not
be clear where this transition would occur exactly. Examples of crank-rocker transitions are also drawn in figure 135. The
linkages containing a bar length of 3.0 were chosen as examples of linkages possessing a very short link. In fact, this link may
vary between zero and the first transitional bar length.)
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col. 1 2 3 4 5 6 7 8 9 col. 1 2 3 4 5 6 7 8 9
a b ¢ dJd perimeter s// Grashof c-r type a b ¢ dJd perimeter s/ Grashof c-r type
1R 2K
10.0 10.0 10.0 10.0 40.0 1.000 rhombus cc rhombus 9.0 9.0 11.0 11.0 400 0818 4Bkite cc 2Kssll
11.0 11.0 9.0 9.0 40.0 0818 4Ckite rc 2Kllss
2P 9.0 11.0 11.0 9.0 40.0 0.818 4Ckite cr 2Kslls
9.0 11.0 9.0 11.0 40.0 0.818 4Apar cc 2Pslsl 11.0 9.0 9.0 11.0 40.0 0.818 4Bkite cc 2Klssl
110 90 11.0 90 40.0 0.818 4Apar cc 2Pisls
1) 11.0 11.0 340 0273 1A
110 90 110 340 0.273 1A o 11.0 11.0 400 0818 4Bkite cc 2Kssll
11.0 9.0 110 40.0 0.818 4Apar oc 2Pslsl 11.0 11.0 420 03818 IC «cc 2T2s
11.0 9.0 11.0 40.2 0818 1B rc 110 11.0 440 0.692 3C cc 3Sadj(lsmm)
11.0 9.0 11.0 420 0818 1B rc 2T3s 11.0 442 0.682 2 fod
9.0 11.0 44.0 0.692 3B rc 3Sopp(lmsm)
9.0 110 442 0.682 2
11.0 340 0.273 1IC  «cc
11.0 40.0 0.818 4Bkite cc 2Kssll
9.0 11.0 320 0.273 1C  cc 11.0 40.2 0.818 1A o
9.0 11.0 36.0 0.636 3C  cc 3Sopp{msml) 11.0 42.0 0818 1A 2Tls
9.0 11.0 36.2 0.653 2 m 11.0 44.0 0.692 3A  cr 3Sadj(simm)
9.0 11.0 38.0 0.818 2 2T41 11.0 442 0.682 2
9.0 11.0 400 0818 4Apar cc 2Pslsl
9.0 11.0 40.2 0.804 2 "
11.0 32.0 0.273 1B rc
3Pslsl(3) 11.0 36.0 0.636 3B rc  3Sadj(mmsl)
9.0 11.0 11.0 34.0 0.273 1B rc 11.0 36.2 0.653 2 3
9.0 11.0 11.0 40.0 0.818 4Apar coc 2Pslsl 11.0 38.0 0.818 2 o 2741
9.0 11.0 11.0 40.2 0.818 1A ¢ 11.0 400 0.818 -4Bkite cc 2Kssll
9.0 11.0 11.0 420 0.818 1A cr 2T1s 11.0 40.2 0.804 2 o 4
9.0 11.0 11.0 44.0 0.692 3A  cr 3Sopp(smim)
9.0 11.0 11.0 44.2 0.682 2 v
3.0 320 0.273 ID =
3Pslsi(4) 7.0 36.0 0636 3D r 3Sadj(mmls)
9.0 11.0 320 0.273 ID 9.0 380 03818 2 o 27131
9.0 11.0 36.0 0.636 3D r 3Sopp(mims) 11.0 400 0.818 4Bkite cc 2Kssll
9.0 11.0 38.0 0.818 2 od 2T21 11.2 40.2 0.804 2 o
9.0 11.0 40.0 0.818 4Apar cc 2Pslsl
9.0 11.0 40.2 0.804 2 v
9.0 32.0 0.273 1A o
3PIsls(1) 9.0 36.0 0.636 3A  cr 3Sadj(slmm)
1.0 9.0 320 0.273 1A e 9.0 36.2 0.653 2 o
1.0 9.0 36.0 0.636 3A  cr 3Sopp(smlm) 9.0 38.0 0.818 2 o4 27121
11.0 9.0 36.2 0.653 2 4 9.0 400 03818 4C kite rc 2Kliss
11.0 9.0 38.0 0.818 2 I 2131 9.0 40.2 0.804 2 o4
11.0 9.0 40.0 0.818 4Apar cc 2Pisls
11.0 9.0 40.2 0.804 2 o
9.0 32.0 0.273 IC ¢
9.0 36.0 0.636 3C  cc 3Sadj(lsmm)
11.0 9.0 34.0 0.273 IC cc 9.0 36.2 0.653 2 w
11.0 9.0 400 0.818 4Apar cc 2P1sls 9.0 38.0 0.818 2 2Tl
11.0 9.0 40.2 03818 1D s 9.0 40.0 0.818 4C kite rc 2Kliss
110 9.0 420 0818 D o 2T4s 9.0 40.2 0.804 2
11.0 9.0 44.0 0.692 3D rr 3Sopp(mlms)
3Kllss(3)
3Plsis(3) 11.0 11.0 340 0.273 1B rc
1.0 9.0 32.0 0.273 IB rc 11.0 11.0 400 0818 4Ckite rc 2Kllss
110 9.0 36.0 0.636 3B rc 3Sopp(lmsm) 11.0 11.0 40.2 0.818 ID
11.0 9.0 36.2 0.653 2 o 11.0 11.0 420 0.818 ID 2T4s
11.0 9.0 38.0 0.818 2 r 2T11 11.0 11.0 44,0 0.692 3D  rr 3Sadj(mmls)
11.0 9.0 40.0 0.818 4Apar cc 2Pisls
1.0 9.0 40.2 0.804 2 o 3Kllss(4)
11.0 11.0 34.0 0.273 ID
3Plsls(4) 11.0 11.0 40.0 0.818  4CKkite rc 2Kllss
11.0 9.0 340 0273 ID 11.0 11.0 42.0 0818 IB rc 2T3s
110 9.0 400 0.818 4Apar cc 2Pisis 11.0 11.0 44.0 0.692 3B rc  3Sadj(mmsl)
11.0 90 420 0.818 1IC  cc 2T2s 11.0 11.0 442 0.682 2 v
11.0 90 440 0.692 3C  c¢c 3Sopp(msml)
11.0 9.0 44.2 0.682 2
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col.1 2 3 4 5 6 7 8 9 col.1 2 3 4 5 6 7 8 9
a b ¢ dJd perimeter s/ Grashof c-r type a b ¢ d perimeter s/7 Grashof c-r type
3Kslis(1) 2T1
1.0 9.0 34.0 0.273 1A o 11.0 90 9.0 90 38.0 0.818 2 2111
110 90 400 0818 4Ckite cr 2Kslls 9.0 11.0 11.0 11.0 420 0.818 1A o 2T1s
1.0 9.0 402 0818 D
11.0 9.0 420 0818 ID 2T4s 3T1K1) and 3T1s(1)
110 90 44.0 0.692 3D  rr 3Sadj(lmms) 30] 90 9.0 90 30.0 0.333 1A cr 2TIs
90 90 9.0 90 36.0 1.000 rhombus cc rhombus
9.1/ 90 90 90 36.1 0.990 2 2Tl
110 90 320 0.273 IC  cc
1.0 9.0 36.0 0.636 3C  cc  3Sadj(mslm) 3T1(2)
1.0 9.0 36.2 0.653 2 11.0[30] 9.0 9.0 32.0 0.273 IC «cc
1.0 9.0 380 0.818 2 2T31 110} 70| 9.0 9.0 36.0 0.636 3C  cc 3Sadi(lsmm)
11.0 9.0 400 0.818 4Ckite cr 2Kslls 11.0] 72| 90 9.0 362 0.653 2 o
11.0 9.0 40.2 0.804 2 o 11.0{ 90{ 9.0 9.0 38.0 0.818 2 m 2711
110|110} 9.0 9.0 400 0818 4Ckite rc 2Kllss
3Kslls(3) 1.0{11.2] 9.0 9.0 402 0.804 2
9.0 11.0 320 0.273 1B rc 3TIs(2)
9.0 11.0 36.0 0.636 3B rc 3Sadj(mlsm) 9.0[30]11.0 11.0 34.0 0273 1IC  cc
9.0 11.0 36.2 0.653 2 90| 9.0{11.0 11.0 400 0818 4Bkite «cc 2Kssll
9.0 110 38.0 0.818 2 2121 90| 9.2]11.0 11.0 402 0818 JA o
9.0 11.0 400 0818 4Ckite cr 2Kslls 9.0]11.0{ 11.0 11.0 42,0 0818 1A cr 2T1s
9.0 11.0 40.2 0.804 2 o 9.0/13.0{11.0 11.0 440 0.692 3A  cr 3Sadj(stmm)
9.0[13.2| 11.0 11.0 442 0.682 2 o
3Kslis(4) —
9.0 11.0 340 0.273 D 3TNGB
9.0 11.0 400 0818 4Ckite cr 2Kslls 1.0 9.0 3.0 9.0 32.0 0.273 IB rc
9.0 11.0 420 0818 A cr 2Tls 1.0 9.0{ 7.0] 9.0 36.0 0.636 3B rc 3Sopp(lmsm)
9.0 11.0 440 0.692 3A o 3Sadj(smml) 11.0 90| 72| 9.0 36.2 0.653 2
9.0 11.0 442 0.682 2 m 1.0 9.0] 9.0{ 9.0 38.0 0.818 2 2T11
1.0 9.0[11.0] 9.0 400 0.818 d4Apar cc 2PIsls
3Klssl(1) 11.0 9.0[11.2{ 9.0 40.2 0.804 2
11.0 320 0273 1A o 3TIs(3)
11.0 36.0 0.636 3A o 3Sadj(smml) 9.0 11.0{ 3.0{11.0 340 0273 IB rc
11.0 36.2 0.653 2 9.0 1.0} 9.0{11.0 400 0.818 4Apar cc 2Pslst
11.0 38.0 0.818 2 2T41 9.0 11.0 9.2[11.0 40.2 0.818 1A e
11.0 400 0818 4Bkite cc 2Klssl 9.0 11.0 [11.0}11.0 420 0818 1A e 2T1s
11.0 40.2 0.804 2 9.0 11.0{13.0}11.0 44.0 0.692 3A  cr 3Sopp(smlm)
9.0 11.0 {13.2J11.0 442 0.682 2
11.0 34.0 0273 IC  cc 3T1I(4)
11.0 40.0 0.818 4Bkite cc 2Klss] 1.0 9.0 9.07.ﬂ 320 0273 D o
11.0 402 0818 1B 11.0 90 9.0/ 70 36.0 0.636 3D rr 3Sadj(lmms)
11.0 42.0 0.818 1B rc 2T3s 110 90 9.0/ 90 38.0 0.818 2 2T
11.0 440 0.692 3B rc 3Sadj(mism) 1.0 9.0 9.0(11.0 40.0 0.818 4Bkite cc 2Klssl
110 442 0.682 2 o 11.0 90 9.0]11.2] 402 0.804 2
3T1s(4)
3KIssl(3) 9.0 11.0 11.0[ 3.0] 34.0 0.273 ID
11.0 9.0 11.0 34.0 0.273 IB rc 90 11.0 11.0{ 9.0 40.0 0.818 4Ckite cr 2Kslls
1.0 9.0 11.0 400 0.818 4Bkite cc 2Klssl 9.0 11.0 11.0[11.0 420 0818 1A o 2TIs
1.0 9.0 1L.0 420 0818 IC  cc 2T2s 90 11.0 11.0{13.0 44.0 0.692 3A o 3Sadj(smml)
1.0 9.0 11.0 44.0 0.692 3C  cc 3Sadj(msim) 9.0 11.0 11.0{13.2 442 0.682 2 o
11.0 9.0 11.0 442 0.682 2 o —
3Klssl(4)
11.0 90 9.0[3.0 320 0.273 ID o
11.0 9.0 9.0{ 7.0 36.0 0.636 3D rr 3Sadi{lmms)
11.0 9.0 9.0/ 9.0 38.0 0.818 2 2T
110 90 9.0]i1.0 400 0.818 4Bkite cc 2Klssl
110 9.0 9.0]11.2 40.2 0.804 2
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col1 2 3 4 5 6 7 8 9 .1 2 3 4 5 6 7 8 9
a b ¢ d perimeter s,/ Grashof c-r type a b ¢ Jd perimeter s// Grashof c-r type
212 213
90 110 9.0 9.0 380 0.818 2 2121 90 9.0 110 90 38.0 0818 2 2131
110 9.0 110 11.0 420 0818 1IC cc 2T2s 110 110 9.0 110 420 0818 1B rc 2T3s
3121(1) 3T31(1)
30]11.0 9.0 9.0 320 0273 1A o 730} 9.0 11.0 90 320 0273 1A o
70{11.0 9.0 9.0 360 0.636 3A o 3Sadj(simm) 7.0{ 9.0 11.0 9.0 36.0 0.636 3A o 3Sopp(smlm)
72{11.0 9.0 90 36.2 0.653 2 72| 90 11.0 90 36.2 0.653 2
9.0[11.0 9.0 9.0 380 0.818 2 0w 2121 9.0| 90 11.0 90 38.0 0.818 2 2131
11.0{11.0 9.0 9.0 40.0 0.818 4Ckite rc 2Kllss 11.0} 90 11.0 9.0 400 0818 4Apar cc 2Pisls
111.2{11.0 9.0 90 40.2 0.804 2 o 112} 9.0 11.0 9.0 40.2 0.804 2
3T2s(1) 3T3s(1)
30] 9.0 11.0 11.0 340 0.273 1A o 30]11.0 9.0 110 340 0.273 1A o
9.0 9.0 11.0 11.0 40.0 0.818 4Bkite cc 2Kssil 9.0|11.0 9.0 11.0 400 0818 4Apar cc 2Psis]
11.0] 90 110 11.0 420 0818 IC  cc 2T2s 9.2/11.0 9.0 110 40.2 0.818 1B r
13.0| 9.0 11.0 110 440 0.692 3C cc  3Sadj(lsmm) 11.0/11.0 9.0 110 420 0818 1B r 2T3s
13.2) 90 11.0 110 44.2 0.682 2 m 13.0{11.0 9.0 110 44.0 0.692 3B rc 3Sopp(lmsm)
— 132|110 9.0 110 442 0.682 2 o
3T21(2) and 3T25(2) —
9.0[ 3.0] 90 9.0 300 0.333 1IC e 2T2s 3T31(2)
9.0/ 9.0] 9.0 9.0 360 1.000 rhombus cc thombus 9.0{ 3.0] 11.0 9.0 320 0273 IC <
90| 9.1] 90 90 36.1 0.990 2 2121 90| 7.0/ 11.0 9.0 360 0.636 3C ¢ 3Sadj{msim)
90| 7.2{11.0 9.0 36.2 0.653 2 o
3T213) 9.0] 9.0/ 110 %0 38.0 0.818 2 o 2131
9.0 11.0[ 3.0] 9.0 320 0273 IB r 9.0{11.0] 11.0 9.0 400 0818 4Ckite cr 2Kslls
9.0 110 70| 9.0 360 0.636 3B rc 3Sadj(mism) 9.0{11.2] 11.0 9.0 40.2 0.804 2 o
9.0 110 7.2[ 9.0 36.2 0.653 2 n 3T3s(2)
9.0 11.0| 9.0} 9.0 38.0 0.818 2 2121 11.0[ 3.0} 9.0 11.0 340 0.273 IC  «cc
9.0 11.0|11.0 9.0 400 0818 4Ckite cr 2Kslls 110 90| 9.0 110 400 0.818 4Bkite cc 2Klssl
9.0 11.0{11.2| 9.0 40.2 0.804 2 o 110} 9.2| 9.0 110 40.2 0.818 1B rc
3T2s(3) 11.0{11.0] 9.0 11.0 420 0818 1B rc 2T3s
110 9.0 3.0{11.0 340 0.273 B rc 11.0{13.0] 9.0 110 440 0.692 3B rc 3Sadimism)
11.0 90| 9.0{110 400 0818 4Bkite cc 2Klssl 11.0{132] 9.0 11.0 44.2 0.682 2 m
11.0 9.0 [11.0}11.0 420 0818 1C  cc 2T2s —
11.0 9.0 {13.0}11.0 440 0.692 3C  cc 3Sadj(mslm) | | 3T31(3)and 3T3s(3)
116 9.0/[132|11.0 442 0.682 2 o 90 9.0 [30] 9.0 300 0.333 1B rc 2T3s
T 90 9.0/ 9.0f 90 360 1.000 rhombus cc thombus
3T21(4) - 90 9.0/ 9.1{ 9.0 36.1 0.990 2 2131
9.0 110 9.0] 3.0 320 0273 D o
9.0 110 9.0] 7.0 36.0 0.636 3D 1 3Sopp(mims) | |3T31(4)
9.0 11.0 9.0} 9.0 380 0.818 2 o 2121 90 9.0 11.0[ 3.0] 320 0273 ID m
9.0 110 9.0[11.0 400 0.818 4Apar cc 2Pslst 90 9.0 11.0]| 70 360 0.636 3D 3Sadj{mmls)
90 110 9.0{11.2 40.2 0.804 2 o 9.0 9.0 11.0] 9.0 38.0 0.818 2 o 2131
3T2s(4) — 9.0 9.0 110110 40.0 0.818 4Bkite cc 2Kssll
11.0 9.0 11.0[ 30 340 0273 D o 9.0 9.0 11.0]11.2 40.2 0.804 2
1.0 9.0 11.0[ 9.0 400 0818  4Apar cc 2Pisls | | 3T3s(4) -
11.0 9.0 11.0{11.0 420 0818 IC cc 2T2s 110 1.0 9.0[ 3.0 34.0 0273 D m
110 9.0 11.0{13.0 440 0.692 3C  c 3Sopp(msml) 110 1.0 9.0 9.0 400 0.818 4Ckite rc 2Kllss
1.0 9.0 11.0{13:2] 442 0.682 2 o 110 11.0 9.011.0 420 0.818 1B rc 2T3s
110 110 9.0{130 44.0 0.692 3B 3Sadj(mmsl)
110 110 9.0[132 44.2 0.682 2 o
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coh.1 2 3 4 5 6 7 8 9 o1 2 3 4 5 6 7 8 9
a b ¢ d perimeter s// Grashof c-r type a b ¢ d perimeter s// Grashof cr type
2T4 3T41(3)
9.0 90 9.0 11.0 38.0 0.818 2 2141 9.0 9.0[30]11.0 32.0 0.273 IB rc
11.0 11.0 11.0 9.0 420 0818 ID 2T4s 3.0 90| 70110 36.0 0.636 3B rc  3Sadj(mmsl)
9.0 90| 7.2/11.0 36.2 0.653 2
3T41(1) 9.0 9.0} 9.0{11.0 38.0 0.818 2 2T41
[30] 9.0 9.0 110 320 0.273 1A o 9.0 9.0 [11.0{11.0 400 0818 4Bkite cc 2Kssll
70{90 90 110 36.0 0.636 3A o 3Sadj(smml) 9.0 9.0 {11.2{11.0 40.2 0.804 2
72190 9.0 110 36.2 0.653 2 o 3T4s(3)
9.0/ 9.0 9.0 110 38.0 0.818 2 2T4] 11.0 11.0 [ 3.0] 9.0 34.0 0.273 1B rc
110} 90 9.0 11.0 400 0.818 4Bkite cc 2Klssl 11.0 11.0 | 9.0} 9.0 400 0818 4Ckite rc 2Kliss
11.2] 90 9.0 11.0 40.2 0.804 2 o 110 11.0 | 9.2] 90 402 0.818 D o
3T4s(1) 11.0 11.0 {11.0] 9.0 420 0.818 D 2T4s
[30]11.0 11.0 9.0 340 0.273 1A o 11.0 11.0 {13.0{ 9.0 440 0.692 3D  r 3Sadj(mmls)
9.011.0 11.0 9.0 400 0.818 4Ckite cr 2Kslls —
9.2{11.0 11.0 9.0 40.2 0818 ID 3T41(4) and 3T4s(4)
11.0(11.0 110 9.0 420 0818 ID o 2T4s 9.0 9.0 9.0f30 30.0 0.333 D o 2T4s
13.0{11.0 11.0 9.0 440 0.692 3D  rr 3Sadj(lmms) 9.0 9.0 9.0f 9.0 360 1.000 rhombus cc thombus
— 9.0 90 9.0} 9.1 36.1 0.990 2 2141
3T41(2)
9.0[3.0] 9.0 110 32.0 0.273 IC  «cc
9.0] 7.0 9.0 11.0 36.0 0.636 3C o 3Sopp(msml)
9.0] 7.2 9.0 11.0 36.2 0.653 2 n
901{9.0| 9.0 11.0 38.0 0.818 2 2T41
9.0[11.0] 9.0 11.0 400 0818 4Apar cc 2Pslsl
9.0(11.2] 9.0 11.0 40.2 0.804 2 o
3T4s(2)
11.0[30]11.0 9.0 340 0.273 IC
11.0] 9.0|11.0 9.0 400 0818 4Apar cc 2Pisls
110} 921110 9.0 40.2 0818 D o
11.0{11.0{ 11.0 9.0 420 03818 ID o 2T4s
110130/ 11.0 9.0 44.0 0.692 3D 1 3Sopp(mlms)
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