
Entropy – A Guide for the Perplexed

Roman Frigg and Charlotte Werndl∗

June 2010

Contents

1 Introduction 1

2 Entropy in Thermodynamics 2

3 Information Theory 4

4 Statistical Mechanics 9

5 Dynamical Systems Theory 18

6 Fractal Geometry 26

7 Conclusion 30

1 Introduction

Entropy is ubiquitous in physics, and it plays important roles in numerous
other disciplines ranging from logic and statistics to biology and economics.
However, a closer look reveals a complicated picture: entropy is defined differ-
ently in different contexts, and even within the same domain different notions
of entropy are at work. Some of these are defined in terms of probabilities,
others are not. The aim of this chapter is to arrive at an understanding of
some of the most important notions of entropy and to clarify the relations
between them. In particular, we discuss the question what kind of prob-
abilities are involved whenever entropy is defined in terms of probabilities:

∗The authors are listed alphabetically; the paper is fully collaborative. To contact the
authors write to r.p.frigg@lse.ac.uk and charlotte.werndl@queens.ox.ac.uk.
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are the probabilities chances (i.e., physical probabilities) or credences (i.e.,
degrees of belief)?

After setting the stage by introducing the thermodynamic entropy (Sec-
tion 2), we discuss notions of entropy in information theory (Section 3),
statistical mechanics (Section 4), dynamical systems theory (Section 5) and
fractal geometry (Section 6). Omissions are inevitable; in particular, space
constraints prevent us from discussing entropy in quantum mechanics and
cosmology.1

2 Entropy in Thermodynamics

Entropy made its first appearance in the middle of the 19th century in the
context of thermodynamics (TD). TD describes processes like the exchange
of heat between two bodies or the spreading of gases in terms of macroscopic
variables like temperature, pressure and volume. The centre piece of TD is
the so-called Second Law of TD, which, roughly speaking, restricts the class
of physically allowable processes in isolated systems to those that are not
entropy decreasing. In this section we introduce the TD entropy and the
Second Law.2 We keep this presentation short because the TD entropy is
not a probabilistic notion and therefore falls, strictly speaking, outside the
scope of this book.

The thermodynamic state of a system is characterised by the values of
its thermodynamic variables; a state is an equilibrium state if, and only if
(iff), all variables have well-defined and constant values. For instance, the
state of a gas is specified by the values of temperature, pressure and volume,
and the gas is in equilibrium if these have well-defined values which do not
change over time. Consider two states A and B. A process that changes
the state of the system from A to B is quasistatic iff it only passes through
equilibrium states (i.e., if all intermediate states between A and B are also
equilibrium states). A process is reversible iff it can be exactly reversed by
an infinitesimal change in the external conditions. If we consider a cyclical
process – a process in which the beginning and the end state are the same –
a reversible process leaves the system and its surroundings unchanged.

The Second Law (in Kelvin’s formulation) says that it is impossible to
devise an engine which, working in a cycle, produces no effect other than the
extraction of heat from a reservoir and the performance of an equal amount

1Hemmo & Shenker (2006) and Sorkin (2005) provide good introductions to quantum
and cosmological entropies, respectively.

2Our presentation follows Pippard (1966, pp. 19-23, 29-37). There are also many
different (and non-equivalent) formulations of the Second Law (see Uffink 2001).
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of mechanical work. It can be shown that this formulation implies that∮
dQ

T
≤ 0, (1)

where dQ is the amount of heat put into the system and T the system’s
temperature. This is known as Clausius’ Inequality. If the cycle is reversible,
then the inequality becomes an equality. Trivially, this implies that for re-
versible cycles ∫ B

A

dQ

T
= −

∫ A

B

dQ

T
(2)

for any paths from A to B and from B to A, and the value of the integrals
only depends on the beginning and the end point.

We are now in a position to introduce the thermodynamic entropy S
TD

.
The leading idea is that the integral in euqation (2) gives the entropy dif-
ference between A and B. We can then assign an absolute entropy value to
every state of the system by choosing one particular state (we can choose
any state we please!) as the reference point, choosing a value for its entropy
S

TD
(A), and then define the entropy of all other points by

S
TD

(B) := S
TD

(A) +

∫ B

A

dQ

T
, (3)

where the change of state from A to B is reversible.
What follows from these considerations about irreversible changes? Con-

sider the following scenario: we first change the state of the system from A
to B on a quasi-static irreversible path, and then go back from B to A on a
quasi-static reversible path. It follows from equations (1) and (3) that

S
TD

(B)− S
TD

(A) ≤
∫ B

A

dQ

T
. (4)

If we now restrict attention to adiathermal processes (i.e., ones in which
temperature is constant), the integral in euqation (4) becomes zero and we
have

S
TD

(B) ≥ S
TD

(A). (5)

This is often referred to as the Second Law, but it is important to point out
that it is only a special version of it which holds for adiathermal processes.

S
TD

has no intuitive interpretation as a measure of disorder, disorganisa-
tion or randomness (as often claimed). In fact such considerations have no
place in TD.

We now turn to a discussion of the information theoretic entropy, which,
unlike the S

TD
is a probabilistic concept. At first sight the information
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theoretic and the thermodynamic entropy have noting to do with each other.
This impression will be dissolved in Section 4 when a connection is established
via the Gibbs entropy.

3 Information Theory

Consider the following situation (Shannon 1949). There is a source S produc-
ing messages which are communicated to a receiver R. The receiver registers
them, for instance, on a paper tape.3 The messages are discrete and sent by
the source one after the other. Let m = {m1, ...,mn} be a complete set of
messages (in the sense that the source cannot send messages other than the
mi). The production of one message is referred to as a step.

When receiving a message, we gain information, and depending on the
message, more or less information. According to Shannon’s theory, informa-
tion and uncertainty are two sides of the same coin: the more uncertainty
there is, the more information we gain by removing the uncertainty.

Shannon’s basic idea was to characterise the amount of information gained
from the receipt of a message as a function which depends only on how likely
the messages are. Formally, for n ∈ N let Vm be the set of all probability
distributions P = (p1, . . . , pn) := (p(m1), . . . , p(mn)) on m1, . . . ,mn (i.e.,
pi ≥ 0 and p1 + . . . + pn = 1). A reasonable measure of information is a
function SS, d(P ) : Vm → R which satisfies the following axioms (cf. Klir 2006,
section 3.2.2):

1. Continuity. SS, d(p1, . . . , pn) is continuous in all its arguments
p1, . . . , pn.

2. Additivity. The information gained of two independent experiments is
the sum of the information of the experiments, i.e., for P = (p1, . . . , pn)
and Q = (q1, . . . , qk), SS, d(p1q1, p1q2, . . . , pnqk) = SS, d(P ) + SS, d(Q).

3. Monotonicity. For uniform distributions the information increases with
n. That is, for any P = ( 1

n
, . . . , 1

n
) and Q = ( 1

k
, . . . , 1

k
), for arbitrary

k, n ∈ N we have: if k > n, then SS, d(Q) > SS, d(P ).

4. Branching. The measure of information is independent of how the
process is divided into parts. That is, for (p1, . . . , pn), n ≥ 3, di-
vide m = {m1, . . . ,mn} into two blocks A = (m1, . . . ,ms) and

3We assume that the channel is noiseless and deterministic, meaning that there is a
one-to-one correspondence between the input and the output.
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B = (ms+1, . . . ,mn), and let pA =
∑s

i=1 pi and pB =
∑n

i=s+1 pi. Then

SS, d(p1, ..., pn) = SS, d(pA, pB)+pASS, d(
p1

pA

, ...,
ps

pA

)+pBSS, d(
ps+1

pB

, ...,
pn

pB

).4

(7)

5. Bit normalisation. By convention, the average information gained for
two equally likely messages is one bit (‘binary digit’): SS, d(1/2, 1/2) =
1.

There is exactly one function satisfying these axioms, the discrete Shannon
Entropy :5

SS, d(P ) := −
n∑

i=1

pi log[pi], (8)

where ‘log’ stands for the logarithm to the basis of two.6 Any change toward
equalization of p1, . . . , pn leads to an increase of SS, d, which reaches its max-
imum, log[n], for p1 = ... = pn = 1/n. Furthermore, SS, d(P ) = 0 iff all pi

but one equal zero.
What kind of probabilities are invoked in Shannon’s scenario? Ap-

proaches to probability can be divided into two broad groups.7 First, epis-
temic approaches take probabilities to be measures for degrees of belief.
Those who subscribe to an objective epistemic theory take probabilities to
be degrees of rational belief, whereby ‘rational’ is understood to imply that
given the same evidence, all rational agents have the same degree of belief
in any proposition. This is denied by those who hold a subjective epistemic
theory, regarding probabilities as subjective degrees of belief that can differ
between persons even if they are presented with the same body of evidence.
Second, ontic approaches take probabilities to be part of the ‘furniture of
the world’. The two most prominent ontic approaches are frequentism and
a propensity view. On the frequentist approach, probabilities are long run
frequencies of certain events. On the propensity theory, probabilities are
tendencies or dispositions inherent in objects or situations.

4For instance, for {m1,m2,m3}, P = (1/3, 1/3, 1/3), A = {m1,m2} and B = {m3}
branching means that

SS, d(1/3, 1/3, 1/3) = SS, d(2/3, 1/3) + 2/3 SS, d(1/2, 1/2) + 1/3 SS, d(1). (7)

5There are other axioms that uniquely characterise the Shannon entropy (cf. Klir 2006,
section 3.2.2).

6We set x log[x] := 0 for x = 0.
7For a discussion of the different interpretations of probability see, for instance, Howson

(1995), Gillies (2000) and Mellor (2005).
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The emphasis in information theory is on the receiver’s amount of un-
certainty about the next incoming message. This suggests that the p(mi)
should be interpreted as epistemic probabilities (credences). While correct
as a first stab, a more nuanced picture emerges once we ask the question
of how the values of the p(mi) are set. Depending on how we understand
the nature of the source, we obtain two very different answers. If the source
itself is not probabilistic, then the p(mi) express the beliefs – and nothing
but the beliefs – of receivers. For proponents of subjective probabilities these
probabilities express the individual beliefs of an agent, and beliefs may vary
between different receivers. Objectivist insists that all rational agents must
come to the same value assignment. This can be achieved, for instance, by
requiring that SS, d(P ) be maximal, which singles out a unique distribution.
This method, now known as Jaynes’ maximum entropy principle, plays a role
in statistical mechanics and will be discussed later.

Alternatively, the source source itself can be probabilistic. The proba-
bilities associated with the source have to be ontic probabilities of one kind
or other (frequencies, propensities, etc.). In this case agents are advised
to use the so-called Principal Principle – roughly the rule that a rational
agent’s credence for a certain event to occur should be set equal to the ob-
jective probability (chance) of that event to occur.8 In Shannon’s setting this
means that the p(mi) have to be equal to the source’s objective probability of
producing the message mi. If this connection is established, the information
transmitted in a channel is a measure of an objective property of a source.

It is worth emphasising that SS, d(P ) is a technical conception of infor-
mation which should not be taken as an analysis of the various senses ‘in-
formation’ has in ordinary discourse. In ordinary discourse information is
often equated with knowledge, propositional content, or meaning. Hence ‘in-
formation’ is a property of a single message. Information as understood in
information theory is not concerned with individual messages and their con-
tent; its focus is on all messages a source could possibly send. What makes
a single message informative is not its meaning but the fact that it has been
selected from a set of possible messages.

Given the probability distributions Pm = (pm1 , . . . , pmn) on {m1, . . . ,mn},
Ps = (ps1 , . . . , psl

) on {s1, . . . , sl}, and the joint probability distribution
(pm1,s1 , pm1,s2 . . . , pmn,sl

)9 on {m1s1, m1s2, . . . ,mnsl}, the conditional Shan-

8The Principal Principle has been introduced by Lewis (1980); for a recent discussion
see Frigg and Hoefer (2010).

9The outcomes mi and sj are not assumed to be independent.
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non entropy is defined as

SS, d(Pm |Ps) :=
l∑

j=1

psj

n∑
k=1

pmk,sj

psj

log[
pmk,sj

psj

]. (9)

It measures the average information received from a message mk given that
a message sj has been received before.

The Shannon entropy can be generalised to the continuous case. Let p(x) be
a probability density. The continuous Shannon entropy is

SS, c(p) = −
∫

R
p(x) log[p(x)]dx (10)

if the integral exists. The generalisation of (10) to densities of n variables
x1, ..., xn is straightforward. If p(x) is positive, except for a set of Lebesgue
measure zero, exactly on the interval [a, b], a, b ∈ R, then SS, c reaches its
maximum, log[b − a], for p(x) = 1/(b − a) in [a, b] and zero elsewhere. In-
tuitively every change towards equalisation of p(x) leads to an increase in
entropy. For probability densities which are, except for a set of measure zero,
positive everywhere on R, the question of the maximum is more involved. If
the standard deviation is held fixed at value σ, SS, c reaches its maximum
for a Gaussian p(x) = (1/

√
2πσ) exp(−x2/2σ2), and the maximum value of

the entropy is log[
√

2πeσ] (Ihara 1993, section 3.1; Shannon & Weaver 1949,
pp. 88–89).

There is an important difference between the discrete and continuous
Shannon entropy. In the discrete case, the value of the Shannon entropy is
uniquely determined by the probability measure over the messages. In the
continuous case the value depends on the coordinates we choose to describe
the messages. Hence the continuous Shannon entropy cannot be regarded as
measuring information, since an information measure should not depend on
the way in which we describe a situation. But usually we are interested in en-
tropy differences rather than in absolute values, and it turns out that entropy
differences are coordinate independent and the continuous Shannon entropy
can be used to measure differences in information (Ihara 1993, pp. 18–20;
Shannon & Weaver 1949, pp. 90–91).10

We now turn to two other notions of information-theoretic entropy,
namely Hartley’s entropy and Rényi’s entropy. The former preceded Shan-
non’s entropy; the latter is a generalization of Shannon’s entropy. One of

10This coordinate dependence reflects a deeper problem: the uncertainty reduced by
receiving a message of a continuous distribution is infinite and hence not measured by SS, c.
Yet by approximating a continuous distribution by discrete distributions, one obtains that
SS, c measures differences in information (Ihara 1993, p. 17).
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the first account of information was introduced by Hartley (1928). Assume
that m := {m1, . . . ,mn}, n ∈ N, represents mutually exclusive possible al-
ternatives and that one of the alternatives is true but we do not know which
one. How can we measure the amount of information gained when know-
ing which of these n alternatives is true, or, equivalently, the uncertainty
associated with these n possibilities? Hartley postulated that any function
SH : N → R+ answering this question has to satisfy the following axioms:

1. Monotonicity. The uncertainty increases with n: SH(n) ≤ SH(n + 1)
for all n ∈ N.

2. Branching. The measure of information is independent of how the
process is divided into parts: SH(n.m) = SH(n)SH(m), where ‘n.m’
means that there are n times m alternatives.

3. Normalization. Per convention, SH(2) = 1.

Again, there is exactly one function satisfying these axioms, namely
SH(n) = log[n] (Klir 2006, p. 26), which is now referred to as the Hart-
ley entropy.

On the face of it this entropy is based solely on the concept of mutu-
ally exclusive alternatives, and it does not invoke probabilistic assumptions.
However, views diverge on whether this is the full story. Those who deny this
argue that the Hartley entropy implicitly assumes that all alternatives have
equal weight. This amounts to assuming that they have equal probability,
and hence the Hartley entropy is the special case of the Shannon entropy,
namely the Shannon entropy for the uniform distribution. Those who deny
this argue that Hartley’s notion of alternatives does not presuppose prob-
abilistic concepts and is therefore independent of Shannon’s (cf. Klir 2006,
pp. 25–30).

The Rényi entropies generalise the Shannon entropy. As with the
Shannon entropy, assume a probability distribution P = (p1, ..., pn) over
m = {m1, ...,mn}. Require of a measure of information that it satisfies all
the axioms of the Shannon entropy except for branching. Unlike the other
axioms, it is unclear whether a measure of information should satisfy branch-
ing and hence whether it should be on the list of axioms (Rényi 1961). If the
outcomes of two independent events with respective probabilities p and q are
observed, we want the total received information to be the sum of the two
partial informations. This implies that the amount of information received
for message mi is − log[pi] (Jizba & Arimitsu 2004). If a weighted arithmetic
mean is taken over the − log[pi], we obtain the Shannon entropy. Now, is it
possible to take another mean such that the remaining axioms about infor-
mation are satisfied? If yes, these quantities are also possible measures of the
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average information received. The general definition of a mean over − log[pi]
weighted by pi is that it is of the form f−1(

∑n
i=1 pif(− log[pi])) where f is

a continuous, strictly monotonic and invertible function. For f(x) = x we
obtain the Shannon entropy. There is only one alternative mean satisfying
the axioms, namely f(x) = 2(1−q)x, q ∈ (0,∞), q 6= 1. It corresponds to the
Rényi entropy of order q:

SR, q(P ) :=
1

1− q
log[

n∑
k=1

pq
k]. (11)

The limit of the Rényi entropy for q → 1 gives the Shannon entropy, i.e.,
limq→1 SR, q(P ) =

∑n
k=1−pk log[pk] (Jizba & Arimitsu 2004; Rényi 1961),

and for this reason one sets SR, 1(P ) :=
∑n

k=1−pk log[pk].

4 Statistical Mechanics

Statistical mechanics (SM) aims to explain the behaviour of macroscopic
systems in terms of the dynamical laws governing their microscopic con-
stituents.11 One of the central concerns of SM is to provide a micro-dynamical
explanation of the Second Law of TD. The strategy to achieve this goal is
to first introduce a mechanical notion of entropy, then to argue that it is in
some sense equivalent to the TD entropy, and finally to show that it tends to
increase if its initial value is low. There are two non-equivalent frameworks
in SM, one associated with Boltzmann and one with Gibbs. In this section
we discuss the various notions of entropy introduced within these frameworks
and briefly indicate how they have been used to justify the Second Law.

SM deals with systems consisting of a large number of micro constituents.
A typical example for such a system is a gas, which is made up of a large
number n of particles of mass m confined to a vessel of volume V . And in
this chapter we restrict attention to gases. Furthermore we assume that the
system is isolated from its environment and hence that its total energy E is
conserved. The behaviour of such systems is usually modeled by continuous
measure-preserving dynamical systems. We discuss such systems in detail in
the next section; for the time being it suffices to say that the phase space
of the system is 6n-dimensional, having three position and three momentum
coordinates for every particle. This space is called the system’s γ-space Xγ.
xγ denotes a vector in Xγ, and the xγ are called microstates. Xγ is a direct
product of n copies of the 6-dimensional phase space of one particle, called

11For an extended discussion of SM, see Frigg (2008), Sklar (1993) and Uffink (2006).
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the particle’s µ-space Xµ.12 In what follows xµ = (x, y, z, px, py, pz) denotes
a vector in Xµ; moreover, we use ~r = (x, y, z) and ~p = (px, py, pz).

13

In a seminal paper published in 1872 Boltzmann set out to show that the
Second Law of TD is a consequence of the collisions between the particles of
a gas. The distribution f(xµ, t) specifies the fraction of particles in the gas
whose position and momentum lies in the infinitesimal interval (xµ, xµ+dxµ)
at time t. In 1860 Maxwell showed that for a gas of identical and non-
interacting particles in equilibrium the distribution had to be what is now
called the Maxwell-Boltzmann distribution:

f(xµ, t) =
χ

V
(~r) (2πmkT )−3/2

‖V ‖
exp

(
− ~p 2

2mkT

)
, (12)

where k is Boltzmann’s constant, T the temperature of the gas, ‖V ‖ is the
volume of the vessel, and χ

V
(~r) the characteristic function of volume V (it

is 1 if ~r ∈ V and 0 otherwise).
The state of a gas at time t is fully specified by a distribution f(xµ, t), and

the dynamics of the gas can be studied by considering how this distribution
evolves over time. To this end Boltzmann introduced the quantity

HB(f) :=

∫
Xµ

f(xµ, t) log[f(xµ, t)] dxµ (13)

and set out to prove on the basis of mechanical assumptions about the col-
lisions of gas molecules that HB(f) must decrease monotonically over the
course of time and that it reaches its minimum at equilibrium where f(xµ, t)
becomes the Maxwell-Boltzmann distribution. This result, which is derived
using the Boltzmann equation, is known as the H-theorem and is generally
regarded as problematic.14

The problems of the H-theorem are not our concern. What matters is
that the fine-grained Boltzmann entropy SB, f (also continuous Boltzmann
entropy) is proportional to HB(f):

SB, f (f) := − k n HB(f). (14)

Therefore, if the H-theorem were true, it would establish that the Boltzmann
entropy increased monotonically and reached a maximum once the system’s

12This terminology has been introduced by Ehrenfest & Ehrenfest (1912) and has been
used since. The subscript ‘µ’ here stands for ‘molecule’ and has nothing to do with a
measure.

13We use momentum rather than velocity since this facilitates the discussion of the
connection of Boltzmann entropies with other entropies. One could also use the velocity
~v = ~p/m.

14See Emch & Liu (2002, pp. 92–105) and Uffink (2006, pp. 962–974).
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distribution becomes the Maxwell-Boltzmann distribution. Thus, if we asso-
ciated the Boltzmann entropy with the thermodynamic entropy, this would
amount to a justification of the Second Law.

How are we to interpret the distribution f(xµ, t)? As introduced, f(xµ, t)
reflects the distribution of the particles: it tells what fraction of the particles
in the gas are located in a certain region of the phase space. So it can be in-
terpreted as an (approximate) actual distribution, involving no probabilistic
notions. But f(xµ, t) can also be interpreted probabilistically, as specifying
the probability that a particle drawn at random from the gas is located in a
particular part of the phase space. This probability is most naturally inter-
preted in a frequentist way: if we keep drawing molecules at random from
the gas, then f(xµ, t) gives us the relative frequency of molecules drawn from
a certain region of phase space.

In 1877 Boltzmann presented an altogether different approach to justify-
ing the Second Law.15 Since energy is conserved and the system is confined
to volume V , each state of a particle lies within a finite sub-region Xµ, a of
Xµ, the accessible region of Xµ. Now we coarse-grain Xµ, a, i.e., we choose
a partition ω = {ωi : i = 1, . . . , l} of Xµ, a.

16 The cells ωi are taken to be
rectangular with respect to the position and momentum coordinates and of
equal volume δω, i.e., µ(ωi) = δω, for all i = 1, . . . , l, where µ is the Lebesgue
measure on the 6-dimensional phase space of one particle. The coarse-grained
microstate, also called arrangement, is a specification of which particle’s state
lies in which cell of ω.

The macroscopic properties of a gas (e.g., temperature, pressure) do not
depend on which specific molecule is in which cell of the partition but are
determined solely by the number of particles in each cell. A specification of
how many particles are in each cell is called a distribution D = (n1, . . . , nl),
meaning that n1 particles are in cell ω1, etc. Clearly,

∑l
j=1 nj = n. We

label the different distributions with a discrete index i and denote the ith

distribution by Di. Di/n can be interpreted in the same way as f(xµ, t)
above.

Several arrangements correspond to the same distribution. More pre-
cisely, elementary combinatorial considerations show that

G(D) :=
n!

n1! . . . nl!
(15)

arrangements are compatible with a given distribution D. The so-called

15See Uffink (2006, 974–983) and Frigg (2008, 107–113). Frigg (2009a, 2009b) provides
a discussion of Boltzmann’s use of probabilities.

16We give a rigorous definition of a partition in the next section.
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coarse-grained Boltzmann entropy (also combinatorial entropy) is defined as:

SB, ω(D) := k log[G(D)]. (16)

Since G(D) is the number of arrangements compatible with a given distri-
bution and the logarithm is a monotonic function, SB, ω(D) is a measure for
the number of arrangements that are compatible with a given distribution:
the greater SB, ω(D), the more arrangements are compatible with a given
distribution. Hence SB, ω(D) is a measure of how much we can infer about
the arrangement of a system on the basis of its distribution. The higher
SB, ω(D), the less information a distribution confers about the arrangement
of the system.

Boltzmann then postulated that the distribution with the highest entropy
was the equilibrium distribution, and that systems had a natural tendency
to evolve from states of low to states of high entropy. However, as later
commentators, most notably Ehrenfest & Ehrenfest (1912), pointed out, for
the latter to happen further dynamical assumptions (e.g., ergodicity) are
needed. If such assumptions are in place, the ni evolve so that SB, ω(D)
increases and then stays close to its maximum value most of the time (Lavis
2004, 2008).

There is a third notion of entropy in the Boltzmannian framework, and
this notion is preferred by contemporary Boltzmannians.17 We now consider
Xγ rather than Xµ. Since there are constraints on the system, its state will
lie within a finite sub-region Xγ, a of Xγ, the accessible region of Xγ.

18

If the gas is regarded as a macroscopic object rather than as a collection
of molecules, its state can be characterised by a small number of macro-
scopic variables such as temperature, pressure and density. These values are
then usually coarse-grained so that all values falling into a certain range are
regarded as belonging to the same macrostate. Hence the system can be
described as being in one of a finite number of macrostates Mi, i = 1, . . . ,m.
The set of Mi is complete in that at any given time t the system must be in
exactly one Mi. It is a basic posit of the Boltzmann approach that a system’s
macrostate supervenes on its fine-grained microstate, meaning that a change
in the macrostate must be accompanied by a change in the fine-grained mi-
crostate. Therefore, to every given microstate xγ there corresponds exactly

17See, for instance, Goldstein (2001) and Lebowitz (1999).
18These constrains include conservation of energy. Therefore, Γγ, a is (6n − 1)-

dimensional. This causes complications because the measure µ needs to be restricted to
the (6n− 1)-dimensional energy hypersurface and the definitions of macroregions become
more complicated. In order to keep things simple, we assume that Γγ, a is 6n-dimensional.
For the (6n-1)-dimensional case, see Frigg (2008, pp. 107–114).
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one macrostate M(xγ). But many different microstates can correspond to
the same macrostate. We therefore define

XMi
:= {xγ ∈ Xγ, a |Mi = M(xγ)} , i = 1, ...,m, (17)

which is the subset of Xγ, a consisting of all microstates that correspond to
macrostate Mi. The XMi

are called macroregions. Clearly, they form a
partition of Xγ, a.

The Boltzmann entropy of a macrostate M is19

SB, m(M) := k log[µ(XM)]. (18)

Hence SB, m(M) measures the portion of the system’s γ-space that is taken up
by microstates that correspond to M . Consequently, SB, m(M) measures how
much we can infer about where in γ-space the system’s microstate lies: the
higher SB, m(M), the larger the portion of the γ-space in which the system’s
microstate could be.

Given this notion of entropy, the leading idea is to argue that the dy-
namics of systems is such that SB, m increases. Most contemporary Boltz-
mannians aim to achieve this by arguing that entropy increasing behaviour is
typical ; see, for instance, Goldstein (2001). These arguments are the subject
of ongoing controversy (see Frigg 2009a, 2009b).

We now turn to a discussion of the interrelationships between the various
entropy notions introduced so far. Let us begin with SB, ω and SB, m. SB, ω

is a function of a distribution over a partition of Xµ, a, while SB, m takes cells
of a partition of Xγ, a as arguments. The crucial point to realise is that each
distribution corresponds to a well-defined region of Xγ, a: the choice of a
partition of Xµ, a induces a partition of Xγ, a (because Xγ is the Cartesian
product of n copies of Xµ). Hence any Di uniquely determines a region XDi

so that all states xγ ∈ XDi
have distribution Di:

XDi
:= {xγ ∈ Xγ |D(xγ) = Di}, (19)

where D(xγ) is the distribution of state xγ. Because all cells have measure
δω, equations (15) and (19) imply:

µ(XDi
) = G(Di) (δω)n. (20)

Given this, the question of the relation between SB, ω and SB, m comes
down to the question of how the XDi

and the XMi
relate. Since there are

no standard procedures to construct the XMi
, one can use the above con-

siderations about how distributions determine regions to construct the XMi
,

19See, e.g., Goldstein (2001, p. 43) and Lebowitz (1999, p. 348).
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making XDi
= XMi

true by definition. So one can say that SB, ω is a special
case of SB, m (or that it is a concrete realisation of the more abstract notion
of SB, m). If XDi

= XMi
, equations (18) and (20) imply:

SB, m(Mi) = k log[G(Di)] + k n log[δω]. (21)

Hence SB, m(Mi) equals SB, ω up to an additive constant.
How do SB, m and SB, f relate? Assume that XDj

= XMj
, that the system

is large, and that there are many particles in each cell (nj � 1 for all j), which
allows us to use Stirling’s formula: n! ≈

√
2πn(n/e)n. Plugging equation (15)

into equation (21), yields (Tolman 1938, chapter 4)

log[µ(XMj
)] ≈ n log[n]−

l∑
i=1

ni log[ni] + n log[δω]. (22)

Clearly, for the ni used in the definition of SB, ω we have

ni ≈ ñi(t) := n

∫
ωi

f(xµ, t) dxµ. (23)

Unlike the ni the ñi need not be integers. If f(xµ, t) does not vary much in
each cell ωi, we find:

l∑
i=1

ni log[ni] ≈ nHB + n log[n] + n log[δω]. (24)

Comparing (22) and (24) yields −nkHB ≈ k log[µ(XMj
)], i.e., SB, m ≈ SB, f .

Hence, for a large number of particles SB, m and SB, f are approximately
equal.

How do SB, m and the Shannon entropy relate? According to equation
(22),

SB, m(Mj) ≈ − k
l∑

i=1

ni log[ni] + C(n, δω), (25)

where C(n, δω) is a constant depending on n and δω. Introducing the quo-
tients pj := nj/n, we find

SB, m(Mj) ≈ −n k

l∑
i=1

pi log[pi] + C̃(n, δω), (26)

where C̃(n, δω) is a constant depending on n and δω. The quotients pi are
finite relative frequencies for a particle being in ωi. The pi can be interpreted
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as the probability of finding a randomly chosen particle in cell ωi. Then, if
we regard the ωi as messages, SB, m(Mi) is equivalent to the Shannon entropy
up to the multiplicative constant nk and the additive constant C̃.

Finally, how does SB, f relate to the TD entropy? The TD entropy of an
ideal gas is given by the so-called Sackur-Tetrode formula

STD = n k log

[(
T

T0

)3/2(
V

V0

)]
, (27)

where T0 and V0 are the temperature and the volume of the gas at reference
point E (see Reiss 1965, pp. 89–90). One can show that SB, f for the Maxwell-
Boltzmann distribution is equal to equation (27) up to an additive constant
(Emch & Liu 2002, p. 98; Uffink 2006, p. 967). This is an important result.
However, it is an open question whether this equivalence holds for systems
with interacting particles, that is, for systems different from ideal gases.

The object of study in the Gibbs approach is not an individual system
(as in the Boltzmann approach) but an ensemble – an uncountably infinite
collection of independent systems that are all governed by the same equations
but whose states at a time t differ. The ensemble is specified by an everywhere
positive density function ρ(xγ, t) on the system’s γ-space: ρ(xγ, t)dxγ is the
infinitesimal fraction of systems in the ensemble whose state lies in the 6n-
dimensional interval (xγ, xγ + dxγ). The time evolution of the ensemble is
then associated with changes in the density function in time.

ρ(xγ, t) is a probability density, reflecting the probability at time t of
finding the state of a system in region R ⊆ Xγ:

pt(R) =

∫
R

ρ(xγ, t)dxγ. (28)

The fine-grained Gibbs entropy (also ensemble entropy) is defined as:

SG, f (ρ) := −k

∫
Xγ

ρ(xγ, t) log[ρ(xγ, t)]dxγ. (29)

How to interpret ρ(xγ, t) (and hence pt(R)) is far from clear. Edwin
Jaynes proposed to interpret ρ(xγ, t) epistemically; we turn to his approach
to SM below. There are (at least) two possible ontic interpretations: a
frequency interpretation and a time average interpretation. On the frequency
interpretation one thinks about an ensemble as analogous to an urn, but
rather than containing balls of different colours the ensemble contains systems
in different micro-states (Gibbs 1981, p. 163). The density ρ(xγ, t) specifies
the frequency with which we draw systems in a certain micro-state. On
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the time average interpretation, ρ(xγ, t) reflects the fraction of time that the
system would spend, in the long run, in a certain region of the phase space if it
was left to its own. Although plausible at first blush, both interpretations face
serious difficulties and it is unclear whether these can be met (see Frigg 2008,
pp. 153–155).

If we regard SG, f (ρ) as equivalent to the TD entropy (which is com-
mon), then SG, f (ρ) is expected to increase over time (during an irreversible
adiathermal process) and assumes a maximum in equilibrium. However, sys-
tems in SM are Hamiltonian, and it is a consequence of an important theorem
of Hamiltonian mechanics, Liouville’s theorem, that SG, f is a constant of mo-
tion: dSG, f/dt = 0. So SG, f remains constant, and hence the approach to
equilibrium cannot be described in terms of an increase in SG, f .

The standard way to solve this problem is to consider the coarse-grained
Gibbs entropy instead. This solution has been suggested by Gibbs (1981,
chapter 12) and has since been endorsed by many (e.g., Penrose 1970). Con-
sider a partition ω of Xγ where the cells ωi are of equal volume δω. The
coarse-grained density ρ̄(xγ, t) is defined as the density that is uniform within
each cell, taking as its value the average value in this cell:

ρ̄ω(xγ, t) :=
1

δω

∫
ω(xγ)

ρ(x′γ, t)dx′γ, (30)

where ω(xγ) is the cell in which xγ lies. We can now define the coarse-grained
Gibbs entropy :

SG, ω(ρ) := SG, f (ρ̄ω) = −k

∫
Xγ

ρ̄ω log[ρ̄ω]dxγ. (31)

One can prove that SG, ω ≥ SG, f ; the equality holds iff the fine grained
distribution is uniform over the cells of the coarse-graining (see Lavis 2004,
p. 229; Wehrl 1978, p. 672). The coarse-grained density ρ̄ω is not subject to
Liouville’s theorem and is not a constant of motion. So ρ̄ω could, in principle,
increase over time.20

How do the two Gibbs entropies relate to the other notions of entropy in-
troduced so far? The most straightforward connection is between the Gibbs
entropy and the continuous Shannon entropy, which differ only by the mul-
tiplicative constant k. This realisation provides a starting point for Jaynes’s
(1983) information-based interpretation of SM, at the heart of which lies a
radical reconceptualisation of SM. On his view, SM is about our knowledge
of the world, not about the world. The probability distribution represents

20There is a thorny issue under which conditions the coarse-grained entropy actually
increases (see Lavis 2004).
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our state of knowledge about the system and not some matter of fact about
the system: ρ(xγ, t) represents our lack of knowledge about a micro-state of
a system given its macro condition and entropy is a measure of how much
knowledge we lack.

Jaynes then postulated that to make predictions we should always use
the distribution that maximises uncertainty under the given macroscopic
constraints. This means that we are asked to find the distribution for which
the the Gibbs entropy is maximal, and then use this distribution to calcu-
late expectation values of the variables of interest. This prescription is now
know as Jaynes’ Maximum Entropy Principle. Jaynes could show that this
principle recovers the standard SM distributions (e.g., the microcanonical
distribution for isolated systems).

The idea behind this principle is that we should always choose the dis-
tribution that is maximally non-committal with respect to the missing infor-
mation because by not doing so we would make assertions for which we have
no evidence. Although intuitive at first blush, the maximum entropy princi-
ple is fraught with controversy (see, for instance, Howson and Urbach 2006,
pp. 276–288).21

A relation between SG, f (ρ) and the TD entropy can be established only
case by case. SG, f (ρ) coincides with STD in relevant cases arising in prac-
tice. For instance, the calculation of the entropy of an ideal gas from the
microcanonical ensemble yields equation (27) – up to an additive constant
(Kittel 1958, p. 39).

Finally, how do the Gibbs and Boltzmann entropies relate? Let us start
with the fine grained entropies SB, f and SG, f . Assume that the particles are
identical and non-interacting. Then ρ(xγ, t) =

∏n
i=1 ρi(xµ, t), where ρi is the

density pertaining to particle i. Then

SG, f (ρ) := −k n

∫
Xµ

ρ1(xµ, t) log[ρ1(xµ, t)]dxµ, (32)

which is formally equivalent to SB, f (14). The question is how ρ1 and f relate
since they are different distributions. f is the distribution of n particles
over the phase space; ρ1 is a one particle function. Because the particles
are identical and noninteracting, we can apply the law of large numbers to
conclude that it is very likely that the probability of finding a given particle

21For a discussion of Jaynes’s take on non-equilibrium SM, see Sklar (1993, pp. 255–
257). Furthermore, Tsallis (1988) proposed a way of deriving the main distributions of
SM which is very similar to Jaynes’ based on establishing a connection between what is
now called the Tsallis entropy and the Rényi entropy. A similar attempt using only the
Rényi entropy has been undertaken by Bashkirov (2006).
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in a particular region of phase space is approximately equal to the proportion
of particles in that region. Hence ρ1 ≈ f and SG, f ≈ SB, f .

A similar connection exists between the coarse grained entropies SG, m

and SB, ω. If the particles are identical and non-interacting, one finds

SG, ω = −k n
l∑

i=1

∫
ωi

Ωi

δω
log[

Ωi

δω
]dxµ = −k n

l∑
i=1

Ωi log[Ωi] + C(n, δω), (33)

where Ωi =
∫

ωi
ρ1dxµ. This is formally equivalent to SB, m (26), which in

turn is equivalent (up to an additive constant) to SB, ω (16). Again for large
n we can apply the law of large numbers to conclude that it is very likely
that Ωi ≈ pi and SG, m = SB, ω.

It is crucial for the connections between the Gibbs and the Boltzmann
entropy that the particles are identical and noninteracting. It is unclear
whether the conclusions hold if these assumptions are relaxed.22

5 Dynamical Systems Theory

In this section we focus on the main notions of entropy in dynamical systems
theory, namely the Kolmogorov-Sinai entropy (KS-entropy) and the topolog-
ical entropy.23 They occupy centre stage in chaos theory – a mathematical
theory of deterministic yet irregular and unpredictable or even random be-
haviour.24

We begin by briefly recapitulating the main tenets of dynamical systems
theory.25 The two main elements of every dynamical system are a set X of
all possible states x, the phase space of the system, and a family of trans-
formations Tt : X → X mapping the phase space to itself. The parameter
t is time, and the transformations Tt(x) describe the time evolution of the
system’s instantaneous state x ∈ X. For the systems we have discussed in
the last section X consists of the positions and momenta of all particles in
the system and Tt is the time evolution of the system under the dynami-
cal laws. If t is a positive real number or zero (i.e., t ∈ R+

0 ), the system’s

22Jaynes (1965) argues that the Boltzmann entropy differs from the Gibbs entropy except
for noninteracting and identical particles. However, he defines the Boltzmann entropy as
(32). As argued, (32) is equivalent to the Boltzmann entropy if the particles are identical
and noninteracting, but this does not appear to be generally the case. So Jaynes’s (1965)
result seems useless.

23There are also a few other less important entropies in dynamical systems theory, e.g.,
the Brin-Katok local entropy (see Mañé 1987).

24For a discussion of the kinds or randomness in chaotic systems, see Berkovitz, Frigg
& Kronz (2006) and Werndl (2009a, 2009b, 2009d).

25For more details, see Cornfeld, Fomin & Sinai (1982) and Petersen (1983).
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dynamics is continuous. If t is a natural number or zero (i.e., t ∈ N0), its
dynamics is discrete.26 The family Tt defining the dynamics must have the
structure of a semi-group where Tt1+t2(x) = Tt2(Tt1(x)) for all t1, t2 either
in R+

0 (continuous time) or N0 (discrete time).27 The continuous trajectory
through x is the set {Tt(x) | t ∈ R+

0 }; the discrete trajectory through x is
the set {Tt(x) | t ∈ N0}.

Continuous time evolutions often arise as solutions to differential equa-
tions of motion (such as Newton’s or Hamilton’s). In dynamical systems
theory the class of allowable equations of motion is usually restricted to ones
for which solutions exist and are unique for all times t ∈ R. Then {Tt : t ∈ R}
is a group where Tt1+t2(x) = Tt2(Tt1(x)) for all t1, t2 ∈ R and are often called
flows. In what follows we only consider continuous systems that are flows.

For discrete systems the maps defining the time evolution neither have to
be injective nor surjective, and so {Tt : t ∈ N0} is only a semigroup. All Tt

are generated as iterative applications of the single map T1 := T : X → X
because Tt = T t, and we refer to the Tt(x) as iterates of x. Iff T is invertible,
Tt is defined both for positive and negative times and {Tt : t ∈ Z} is a group.

It follows that all dynamical systems are forward-deterministic: any two
trajectories that agree at one instant of time agree at all future times. If
the dynamics of the system is invertible, the system is deterministic tout
court : any two trajectories that agree at one instant of time agree at all
times (Earman 1971).

Two kinds of dynamical systems are relevant for our discussion, measure-
theoretical and topological dynamical ones. A topological dynamical system
has a metric defined on X.28 More specifically, a discrete topological dynam-
ical system is a triple (X, d, T ) where d is a metric on X and T : X → X
is a mapping. Continuous topological dynamical systems (X, d, Tt), t ∈ R,
are defined accordingly where Tt is the above semi-group. Topological sys-
tems allow for a wide class of dynamical laws since the Tt have to be neither
injective nor surjective.

A measure-theoretical dynamical system is one whose phase space is en-
dowed with a measure.29 More specifically, a discrete measure-theoretical
dynamical system (X, Σ, µ, T ) consists of a phase space X, a σ-algebra Σ

26The reason not to choose t ∈ Z is that some maps, e.g., the logistic map, are not
invertible.

27S = {a, b, c, ...} is a semigroup iff there is a multiplication operation ‘·’ on S so that
(i) a · b ∈ S for all a, b ∈ S; (ii) a · (b · c) = (a · b) · c for all a, b, c ∈ S; (iii) e · a = a · e = a
for all a ∈ S. A semigroup as defined here is also called a monoid. If for every a ∈ S there
is a a−1 ∈ S so that a−1 · a = a · a−1 = e, S is a group.

28For a discussion of metrics, see Sutherland (2002).
29See Halmos (1950) for an introduction to measures.
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on X, a measure µ, and a measurable transformation T : X → X. If
T is measure-preserving, i.e., µ(T−1(A)) = µ(A) for all A ∈ Σ where
T−1(A) := {x ∈ X : T (x) ∈ A}, we have a discrete measure-preserving
dynamical system. It makes only sense to speak of measure-preservation if
T is surjective. Therefore, we suppose that the T in measure-preserving sys-
tems is surjective. However, we do not presuppose that it is injective because
important maps are not injective, e.g., the logistic map.

A continuous measure-theoretical dynamical system is a quadruple
(X, Σ, µ, Tt), where {Tt : t ∈ R+

0 } is the above semigroup of transforma-
tions which are measurable on X×R+

0 , and the other elements are as above.
Such a system is a continuous measure-preserving dynamical system if Tt is
measure preserving for all t (again, we presuppose that all Tt are surjective).

We make the (common) assumption that the measure of measure-
preserving systems is normalised: µ(X) = 1. The motivation for this is
that normalised measures are probabilitiy measures, making it possible to
use probability calculus. This raises the question of how to interpret these
probabilities. This issue is particularly thorny because it is widely held that
there cannot be ontic probabilities in deterministic systems: either the dy-
namics of a system is deterministic or chancy, but not both. This dilemma
can be avoided if one interprets probabilities epistemically, i.e., as reflecting
lack of knowledge. This is what Jaynes did in SM. Although sensible in some
situations, this interpretation is clearly unsatisfactory in others. Roulette
wheels and dice are paradigmatic examples of chance setups, and it is widely
held that there are ontic chances for certain events to occur: the chance of
getting a ‘3’ when throwing a dice is 1/6, and this is so due to how the world
is and it has nothing to do with what we happen to know about it. Yet, from
a mechanical point of view these are deterministic systems. Consequently,
there must be ontic interpretations of probabilities in deterministic systems.
There are at least three options available. The first is the time average in-
terpretation already mentioned above: the probability of an event E is the
fraction of time that the system spends (in the long run) in the region of
X associated with E (Falconer 1990, p. 254; Werndl 2009d). The ensemble
interpretation defines the measure of a set A at time t as the fraction of solu-
tions starting from some set of initial conditions that are in A at t. A third
option is the so-called Humean Best System analysis originally proposed by
Lewis (1980). Roughly speaking, this interpretation is an elaboration of (fi-
nite) frequentism. Lewis’ own assertions notwithstanding, this interpretation
works in the context of deterministic systems (Frigg and Hoefer 2010).

Let us now discuss the notions of volume-preservation and measure-
preservation. If the preserved measure is the Lebesgue measure, the system
is volume-preserving. If the system fails to be volume-preserving, then it is
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dissipative. Being dissipative is not the failure of measure preservation with
respect to any measure (as a common misconception has it); it is preserva-
tion with respect to the Lebesgue measure. In fact many dissipative systems
preserve measures. More precisely, if (X, Σ, λ, T ) or (X, Σ, λ, Tt) is dissipa-
tive (λ is the Lebesgue measure), often, although not always, there exists a
measure µ 6= λ such that (X, Σ, µ, T ) or (X, Σ, µ, Tt) is measure-preserving.
The Lorenz system and the logistic maps are cases in point.

A partition α = {αi | i = 1, . . . , n} of (X, Σ, µ) is a collection of non-
empty, non-intersecting measurable sets that cover X: αi ∩ αj = ∅ for all
i 6= j and X =

⋃n
i=1 αi. The αi are called atoms. If α is a partition,

T−1
t α := {T−1

t αi | i = 1, . . . , n} is a partition too. Ttα := {Ttαi | i = 1, . . . , n}
is a partition iff Tt is invertible. Given two partitions α = {αi | i = 1, . . . , n}
and β = {βj | j = 1, . . . ,m}, the join α ∨ β is defined as {αi ∩ βj | i =
1, . . . , n; j = 1, . . . ,m}.

This concludes our brief recapitulation of dynamical systems theory. The
rest of this section concentrates on measure preserving systems. This is not
very restrictive because many systems, including all deterministic Newtonian
systems, many dissipative systems and all chaotic systems (Werndl 2009d),
fall into this class.

Let us first discuss the KS-entropy. Given a partition α = {α1, . . . , αk},
let H(α) := −

∑k
i=1 µ(αi) log[µ(αi)]. For a discrete system (X, Σ, µ, T ) con-

sider

Hn(α, T ) :=
1

n
H(α ∨ T−1α ∨ . . . ∨ T−n+1α). (34)

The limit H(α, T ) := limn→∞Hn(α, T ) exists, and the KS-entropy is defined
as (Petersen 1983, p. 240):

SKS(X, Σ, µ, T ) := sup
α
{H(α, T )}. (35)

For a continuous system (X, Σ, µ, Tt) it can be shown that for any t0, −∞ <
t0 < ∞, t0 6= 0,

SKS(X, Σ, µ, Tt0) = |t0|SKS(X, Σ, µ, T1), (36)

where SKS(X, Σ, µ, Tt0) is the KS-entropy of the discrete system (X, Σ, µ, Tt0)
and SKS(X, Σ, µ, T1) is the KS-entropy of the discrete system (X, Σ, µ, T1)
(Cornfeld et al. 1982). Consequently, the KS-entropy of a continuous system
(X, Σ, µ, Tt) is defined as SKS(X, Σ, µ, T1), and when discussing the meaning
of the KS-entropy it suffices to focus on (35).30

30For experimental data the KS-entropy, and also the topological entropy (discussed
later), is rather hard to determine. For details, see Eckmann & Ruelle (1985), and Ott
(2002); see also Shaw (1985), who discusses how to define a quantity similar to the KS-
entropy for dynamical systems with added noise.
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How can the KS-entropy be interpreted? There is a fundamental con-
nection between dynamical systems theory and information theory. For a
dynamical system (X, Σ, µ, T ) each x ∈ X produces, relative to a partition
α, an infinite string of messages m0m1m2 . . . in an alphabet of k letters via
the coding mj = αi iff T j(x) ∈ αi, j ≥ 0. Assume that (X, Σ, µ, T ) is
interpreted as the source. Then the output of the source are the strings
m0m1m2 . . .. If the measure is interpreted as probability density, we have
a probability distribution over these strings. Hence the whole apparatus of
information theory can be applied to these strings.31 In particular, notice
that H(α) is the Shannon entropy of P = (µ(α1), . . . , µ(αk)) and measures
the average information of the message αi.

In order to motivate the KS-entropy, consider for α := {α1, . . . , αk} and
β := {β1, . . . , βl}:

H(α | β) :=
l∑

j=1

µ(βj)
k∑

i=1

µ(αi ∩ βj)

µ(βj)
log[

µ(αi ∩ βj)

µ(βj)
]. (37)

Recalling the definition of the conditional Shannon entropy (9), we see
that H(α | ∨n

k=1 T−kα) measures the average information received about
the present state of the system whatever n past states have been already
recorded. It is proven that (Petersen 1983, pp. 241–242):

SKS(X, Σ, µ, T ) = sup
α
{ lim

n→∞
H(α | ∨n

k=1 T−kα)}. (38)

Hence the KS-entropy is linked to the Shannon entropy, namely it measures
the highest average information received about the present state of the system
relative to a coding α given the past states that have been received.

Clearly, equation (38) implies that

SKS(X, Σ, µ, T ) = sup
α
{ lim

n→∞

1

n

n∑
k=1

H(α| ∨k
i=1 T−iα)}. (39)

Hence the KS-entropy can be also interpreted, as Frigg (2004, 2006) does,
as the highest average of the average information gained about the present
state of the system relative to a coding α whatever past states have been
received.

This is not the only connection to the Shannon entropy: let us regard
strings of length n, n ∈ N, produced by the dynamical system relative to a
coding α as messages. The probability distribution of these possible strings of

31For details, see Frigg (2004) and Petersen (1983, pp. 227–234).
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length n relative to α is µ(βi), 1 ≤ i ≤ h, β = {β1, . . . , βh} := (α∨T−1α∨. . .∨
T−n+1α). Hence Hn(α, T ) measures the average amount of information which
the system produces per step over the first n steps relative to the coding α,
and limn→∞Hn(α, T ) measures the average amount of information produced
by the system per step relative to α. Consequently, supα{H(α, T )} measures
the highest average amount of information that the system can produce per
step relative to a coding (cf. Petersen 1983, pp. 227–234).

A positive KS-entropy is often linked to chaos. The interpretations dis-
cussed provide a rational for this: the Shannon information measures uncer-
tainty, and this uncertainty is a form of unpredictability (Frigg 2004). Hence
a positive KS-entropy means that relative to some codings the behaviour of
the system is unpredictable.

Kolmogorov (1958) was the first to connect dynamical systems theory
with information theory. Based on Kolmogorov’s work, Sinai (1959) intro-
duced the KS-entropy. One of Kolmogorov’s main motivations was the follow-
ing.32 Kolmogorov conjectured that while the deterministic systems used in
science produce no information, the stochastic processes used in science pro-
duce information, and the KS-entropy was introduced to capture the property
of producing positive information. It was a big surprise when it was found
that also several deterministic systems used in science, e.g., some Newtonian
systems etc., have positive KS-entropy. Hence this attempt of separating
deterministic systems from stochastic processes failed (Werndl 2009a).

Due to lack of space we cannot discuss another, quite different, interpre-
tation of the Kolmogorov-Sinai entropy, where supα{H(α, T )} is a measure
of the highest average rate of exponential divergence of solutions relative to
a partition as time goes to infinity (Berger 2001, pp. 117–118). This im-
plies that if SKS(X, Σ, µ, T ) > 0, there is exponential divergence and thus
unstable behaviour on some regions of phase space, explaining the link to
chaos. This interpretation does not require that the measure is interpreted
as probability.

There is also another connection of the KS-entropy to exponential di-
vergence of solutions. The Lyapunov exponents of x measure the mean ex-
ponential divergence of solutions originating near x, where the existence of
positive Lyapunov exponents indicates that, in some directions, solutions di-
verge exponentially on average. Pesins’s theorem states that under certain
assumptions SKS(X, Σ, µ, T ) =

∫
X

S(x)dµ, where S(x) is the sum of the pos-
itive Liapunov exponents of x. Another important theorem which should be
mentioned is Brudno’s theorem, which states that if the system is ergodic

32Another main motivation was to make progress on the problem of which systems are
probabilistically equivalent (Werndl 2009c).
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and certain other conditions hold, SKS(X, Σ, µ, T ) equals the algorithmic
complexity (a measure of randomness) of almost all solutions (Batterman &
White 1996).

The interpretations of the KS-entropy as measuring exponential diver-
gence are not connected to any other notion of entropy or to what entropy
notions are often believed to capture, such as information (Grad 1961,
pp. 323–234; Wehrl 1978, pp. 221–224). To conclude, the only link of the
KS-entropy to entropy notions is with the Shannon entropy.

Let us now discuss the topological entropy, which is always defined only for
discrete systems. It was first introduced by Adler, Konheim & McAndrew
(1965); later Bowen (1971) introduced two other equivalent definitions.

We first turn to Adler et al.’s definition. Let (X, d, T ) be a topological
dynamical system where X is compact and T : X → X is a continuous
function which is surjective.33 Let U be an open cover of X, i.e., a set
U := {U1, . . . , Uk}, k ∈ N, of open sets such that

⋃k
i=1 Ui ⊇ X.34 An open

cover V = {V1, . . . , Vl} is said to be an open subcover of an open cover
U iff Vj ∈ U for all j, 1 ≤ j ≤ l. For open covers U = {U1, . . . , Uk} and
V = {V1, . . . , Vl} let U∨V be the open cover {Ui∩Vj | 1 ≤ i ≤ k; 1 ≤ j ≤ l}.
Now for an open cover U let N(U) be the minimum of the cardinality of an
open subcover of U and let h(U) := log[N(U)]. The following limit exists
(Petersen 1983, pp. 264–265):

h(U, T ) := lim
n→∞

h(U ∨ T−1(U) ∨ . . . ∨ T−n+1(U))

n
, (40)

and the topological entropy is

Stop, A(X, d, T ) := sup
U

h(U, T ). (41)

h(U, T ) measures how the open cover U spreads out under the dynamics
of the system. Hence Stop, A(X, d, T ) is a measure for the highest possible
spreading of an open cover under the dynamics of the system. In other
words, the topological entropy measures how the map T scatters states in
phase space (Petersen 1983, p. 266). Note that this interpretation does not
involve any probabilistic notions.

Having positive topological entropy is often linked to chaotic behaviour.
For a compact phase space a positive topological entropy indicates that rel-

33T is required to be surjective because only then it holds that for any open cover U
also T−t(U), t ∈ N, is an open cover.

34Every open cover of a compact set has a finite subcover; hence we can assume that U
is finite.
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ative to some open covers the system scatters states in phase space. If scat-
tering is regarded as indicating chaos, a positive entropy indicates that there
is chaotic motion on some regions of the phase space. But there are many
dynamical systems whose phase space is not compact; then Stop, A(X, d, T )
cannot be applied to distinguish chaotic from nonchaotic behaviour.

How does the topological entropy relate to the Kolmogorov-Sinai entropy?
Let (X, d, T ) be a topological dynamical system where X is compact and T
is continuous, and denote by M(X,d) the set of all measure-preserving dynam-
ical systems (X, Σ, µ, T ) where Σ is the Borel σ-algebra of (X, d).35 Then
(Goodwyn 1972):

Stop, A(X, d, T ) = sup
(X,Σ,µ,T )∈M(X,d)

SKS, (X, Σ, µ, T ). (42)

Furthermore, it is often said that the topological entropy is an analogy of
the KS-entropy (e.g., Bowen 1970, p. 23; Petersen 1983, p. 264), but without
providing an elaboration of the notion of analogy at work. An analogy is more
than a similarity. Hesse (1963) distinguishes two kinds of analogy, material
and formal. Two objects stand in material analogy, if they share certain
intrinsic properties; they stand in formal analogy if they are described by
the same mathematical expressions but without sharing any other intrinsic
properties (see also Polya 1954). This leaves the question of what it means for
definitions to be analogous. We say that definitions are materially/formally
analogous iff there is a material/formal analogy between the objects appealed
to in the definition.

The question then is whether Stop, A(X, d, T ) is analogous to the
KS-entropy. Clearly, they are formally analogous: relate open cov-
ers U to partitions α, U ∨ V to α ∨ β, and h(U) to H(α). Then,
h(U, T ) = limn→∞(U ∨ T−1(U) . . . T−n+1(U))/n corresponds to H(α, T ) =
limn→∞H(α ∨ T−1(α) . . . T−n+1(α))/n, and Stop, A(X, d, T ) = supU h(U, T )
corresponds to SKS(X, Σ, µ, T ) = supα h(α, T ). However, these definitions
are not materially analogous. First, H(α) can be interpreted as correspond-
ing to the Shannon entropy but h(U) cannot because of the absence of
probabilistic notions in its definition. This seems to link it more to the
Hartley entropy, which also does not explicitly appeal to probabilities: we
could regard h(U) as the Hartley entropy of a subcover V of U with the least
elements (cf. section 3). However, this does not work because, except for the
trivial open cover X, no open cover represents a set of mutually exclusive
possibilities. Second, h(U) measures the logarithm of the minimum number

35The Borel σ-algebra of a metric space (X, d) is the σ-algebra generated by all open
sets of (X, d).
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of elements of U needed to cover X, but H(α) has no similar interpretation,
e.g., is not the logarithm of the number of elements of the partition α. Thus
Stop, A(X, d, T ) and the KS-entropy are not materially analogous.

Bowen (1971) introduced two definitions which are equivalent to Adler et al.’s
definition. Because of lack of space, we cannot discuss them here (see Pe-
tersen 1983, pp. 264–267). What matters is that there is neither a formal nor
a material analogy between the Bowen entropies and the KS-entropy. Con-
sequently, all we have is a formal analogy between the KS-entropy and the
topological entropy (41), and the claims in the literature that the KS-entropy
and the topological entropy are analogous are to some extent misleading.
Moreover, we conclude that the topological entropy does not capture what
entropy notions are often believed to capture, such as information, and that
none of the interpretations of the topological entropy is similar in interpre-
tation to another notion of entropy.

6 Fractal Geometry

It was not until the late 1960s that mathematicians and physicists started to
systematically investigate irregular sets. Mandelbrot coined the term fractal
to denote these irregular sets. Fractals have been praised for providing a
better representation of several natural phenomena than figures of classical
geometry but whether this is true remains controversial (cf. Falconer 1990,
p. xiii; Mandelbrot 1983; Shenker 1994).

Fractal dimensions measure the irregularity of a set. We will discuss
those fractal dimensions which are called entropy dimensions. The basic idea
underlying fractal dimensions is that a set is a fractal if the fractal dimension
is greater than the usual topological dimension (which is an integer). Yet the
converse is not true: there are fractals where the relevant fractal dimensions
equal the topological dimension (Falconer 1990, pp. xx-xxi and chapter 3;
Mandelbrot 1983, section 39).

Fractals arise in many different contexts. In particular, in dynamical
systems theory, scientists frequently focus on invariant sets, i.e., sets A for
which Tt(A) = A for all t, where Tt is the time evolution. And invariant sets
are often fractals. For instance, many dynamical systems have attractors,
i.e., invariant sets which neighboring states asymptotically approach in the
course of dynamic evolution. Attractors are sometimes fractals, e.g., the
Lorenz and the Hénon attractor.

The following idea underlies definitions of a dimension of a set F . For
each ε > 0 we take a measurement Mε(F ) of the set F at level ε, and then
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we ask how Mε(F ) behaves as ε goes to zero. If Mε(F ) obeys the power law

Mε(F ) ≈ cε−s, (43)

for some constants c and s as ε goes to zero, then s is called the dimension
of F . From (43) follows that as ε goes to zero:

log[Mε(F )] ≈ log[c]− s log[ε]. (44)

Consequently,

s = lim
ε→0

log[Mε(F )]

− log[ε]
. (45)

If Mε(F ) does not obey a power law (43), one can consider instead of the
limit in (45) the limit superior and the limit inferior (cf. Falconer 1990, p. 36).

Some fractal dimensions are called entropy dimensions, namely the box-
counting dimension and the Rényi entropy dimensions. Let us start with
the former. Assume that Rn is endowed with the usual Euclidean metric d.
Given a nonempty and bounded subset F ⊆ Rn, let Bε(F ) be the smallest
number of balls of diameter ε that cover F . The following limit, if it exists,
is called the box-counting dimension but is also referred to as the entropy
dimension (Edgar 2008, p. 112; Falconer 1990, p. 38; Hawkes 1974, p. 704;
Mandelbrot 1983, p. 359)

DimB(F ) := lim
ε→0

log[Bε(F )]

− log[ε]
. (46)

There are several equivalent formulations of the box-counting dimension.
For instance, for Rn consider the boxes defined by the ε-coordinate mesh:

[m1ε, (m1 + 1)ε)× . . .× [mnε, (mn + 1)ε), (47)

where m1, . . . ,mn ∈ Z. Then if we define Bε(F ) as number of boxes in the
ε-coordinate mesh that intersect F , the dimension obtained is equivalent to
(46) (Falconer 1990, pp. 38–39). As expected, typically, for sets of classical
geometry the box dimension is integer-valued and for fractals it is non-integer
valued.36

For instance, how many squares of side length ε = 1
2n are needed to cover

the unit square U = [0, 1] × [0, 1]? The answer is B 1
2n

(U) = 22n. Hence

the box-counting dimension is limn→∞
log[22n]

− log[ 1
2n ]

= 2. As another example

36The box-counting dimension has the shortcoming that even compact countable sets
can have positive dimension. Therefore, it is often modified (Edgar 2008, p. 213; Falconer
1990, p. 37 and pp. 44–46).
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Figure 1: The Cantor Dust

we consider the Cantor dust, a well known fractal. Starting with the unit
interval C0 = [0, 1], C1 is obtained by removing the middle third from [0, 1],
C2 is obtained by removing from C1 the middle third of each of the intervals
of C1, and so on (see Figure 1). The Cantor dust C is defined as ∩∞k=0Ck.
By setting ε = 1

3n and by considering the ε-coordinate mesh, we see that
B 1

3n
(C) = 2n. Hence

DimB(C) := lim
n→∞

log[2n]

− log[ 1
3n ]

=
log[2]

log[3]
≈ 0.6309. (48)

The box-counting dimension can readily be interpreted as the value of
the coefficient s such that Bε(F ) obeys the power law Bε(F ) ≈ cε−s as ε
goes to zero. That is, it measures how spread out the set is when examined
at an infinitesimally small scale. However, this interpretation does not link
to any entropy notions. So is there such a link?

Indeed there is (surprisingly, we have been unable to identify this
argument in print).37 Consider the box-counting dimension where Bε(F ) is
the number of boxes in the ε-coordinate mesh that intersect F . Assume that
each of these boxes represent a possible outcome and that we want to know
what the actual outcome is. This assumption is sometimes natural. For
instance, when we are interested in the dynamics on an invariant set F of a
dynamical system we might ask: in which of the boxes of the ε-coordinate
mesh that intersect F is the state of the system? Then the information
gained when we learn which box the system occupies is quantified by the
Hartley entropy log[Bε(F )]. Hence the box-dimension measures how the
Hartley information is growing as ε goes to zero. Thus there is a link

37Moreover, Hawkes (1974, p. 703) refers to log[Bε(F )] as ε-entropy, which is backed up
by Kolmogorov & Tihomirov (1961) who justify calling log[Bε(F )] entropy by an appeal to
Shannon’s source coding theorem. However, as they themselves observe, this justification
relies on assumptions that have no relevance for scientific problems.
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between the box-dimension and the Hartley entropy.

Let us now turn to the Rényi entropy dimensions. Assume that Rn, n ≥ 1, is
endowed with the usual Euclidean metric. Let (Rn, Σ, µ) be a measure space
where Σ contains all open sets of Rn and where µ(Rn) = 1. First, we need
to introduce the notion of the support of the measure µ, which is the set
on which the measure is concentrated. Formally, the support is the smallest
closed set X such that µ(Rn \ X) = 0. For instance, when measuring the
dimension of a set F , the support of the measure is typically F . We assume
that the support of µ is contained in a bounded region of Rn.

Consider the ε-coordinate mesh of Rn (47). Let Bi
ε, 1 ≤ i ≤ m, m ∈ N,

be the boxes that intersect the support of µ, and let Zq,ε :=
∑m

i=1 µ(Bi
ε)

q.
The Rényi entropy dimension of order q, −∞ < q < ∞, q 6= 1, is

Dimq := lim
ε→0

1

q − 1

log[Zq,ε]

log[ε]
, (49)

and the Rényi entropy dimension of order 1 is

Dim1 := lim
ε→0

lim
q→1

1

q − 1

log[Zq,ε]

log[ε]
, (50)

if the limit exists.
It is not hard to see that if q < q′, Dimq′ ≤ Dimq (cf. Beck & Schlögl 1995,

p. 117). The cases q = 0 and q = 1 are of particular interest. Be-
cause Dim0 = DimB(supportµ), the Rényi entropy dimensions are a gen-
eralisation of the box-counting dimension. And for q = 1 (Rényi 1961):

Dim1 = limε→0

∑m
i=1−µ(Bi

ε) log[µ(Bi
ε)]

− log(ε)
. Since

∑m
i=1−µ(Bi

ε) log[µ(Bi
ε)] is the

Shannon entropy (cf. section 3), Dim1 is called the information dimension
(Falconer 1990, p. 260; Ott 2002, p. 81).

The Rényi entropy dimensions are often referred to as entropy dimensions
(e.g., Beck & Schlögl 1995, pp. 115–116). Before turning to a rationale for
this name, let us state the usual motivation of the Rényi entropy dimensions.
The number q determines how much weight we assign to µ: the higher q,
the greater the influence of boxes with larger measure. So the Rényi entropy
dimensions measure the coefficient s such that Zq,ε obeys the power law
Zq,ε ≈ cε−(1−q)s as ε goes to zero. That is, Dimq measures how spread out
the support of µ is when it is examined at an infinitesimally small scale
and when the weight of the measure is q (Beck & Schlögl 1995, p. 116; Ott,
2002, pp. 80–85). Consequently, when the Rényi entropy dimensions differ
for different q, this is a sign of a multifractal, i.e., a set with different scaling
behaviour (see Falconer 1990, pp. 254–264). This motivation does not refer
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to entropy notions.

Yet there is an obvious connection of the Rényi entropy dimensions for q > 0
to the Rényi entropies (cf. section 3).38 Assume that each of the boxes of
the ε-coordinate mesh which intersect the support of µ represent a possible
outcome. Further, assume that the probability that the outcome is in the
box Bi is µ(Bi). Then the information gained when we learn which box the
system occupies can be quantified by the Rényi entropies Hq. Consequently,
each Rényi entropy dimension for q ∈ (0,∞) measures how the information
is growing as ε goes to zero. For q = 1 we get a measure of how the Shannon
information is growing as ε goes to zero.

7 Conclusion

This chapter has been concerned with some of the most important notions of
entropy. The interpretations of these entropies have been discussed and their
connections have been clarified. Two points deserve attention. First, all no-
tions of entropy discussed in this chapter, except the thermodynamic and the
topological entropy, can be understood as variants of some information theo-
retic notion of entropy. However, this should not distract from the fact that
different notions of entropy have different meanings and play different roles.
Second, there is no preferred interpretation of the probabilities that figure in
the different notions of entropy. The probabilities occurring in information
theoretic entropies are naturally interpreted as epistemic probabilities, but
ontic probabilities are not ruled out. The probabilities in other entropies, for
instance the different Boltzmann entropies, are most naturally understood
ontically. So when considering the relation between entropy and probability
are no simple and general answers, and a careful case by case analysis is the
only way forward.
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Mañé, R. (1987), Ergodic Theory and Differentiable Dynamics, Springer,
Berlin.

Mandelbrot, B. (1983), The Fractal Geometry of Nature, Freeman, New York.

Mellor, H. (2005), Probability: A Philosophical Introduction, Routledge, Lon-
don.

Ott, E. (2002), Chaos in Dynamical Systems, Cambridge University Press,
Cambridge.

Penrose, R. (1970), Foundations of Statistical Mechanics, Oxford University
Press, Oxford.

Petersen, K. (1983), Ergodic Theory, Cambridge University Press, Cam-
bridge.

Pippard, A.B. (1966), The Elements of Classical Thermodynamics., Cam-
bridge University Press, Cambridge.

Polya, G. (1954), Patterns of Plausible Inference, Volume II of Mathematics
and Plausible Reasoning, Princeton University Press, Princeton.

Reiss, H. (1965), Methods of Thermodynamics, Dover Publications, Mine-
ola/NY.
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