
ABSTRACT
Modifying the code of a program at runtime has been made
possible by quite a number of programming languages,
such as Scheme, Objective-C, Smalltalk, Self, and others. Scheme, Objective-C, Smalltalk, Self, and others. Scheme, Objective-C, Smalltalk, Self
Be it for allowing different development and prototyping
methods, or be it for performative code improvisation
(live coding 1), these languages have gained a wider use in
algorithmic sound synthesis.2 Consequently, the temporal
delimitation between development (preparation) and
application (action) has become less rigid - even more,
instead of making only the parameters of an application
accessible, its source code can be modifi ed at runtime.
It is this more immediate interrelation between changes
in the code and changes in the sound that brings the text
of the computer language into play more evidently as a
direct description of sound.
This article presents an overview of such a system
implemented in a dynamic programming language
and discusses some implications and problems of this
approach. It concludes with examples of interactive
programming in sonifi cation research, in fi lm sound and
music performance, areas where this approach is used
with interesting results.

1. INTRODUCTION

Algorithmic sound sources, being the actualization
of rules, often seem to have their beauty in the more
or less indirect perceptibility of these artifi cial causal
relationships. Programming languages allow the
formulation of such algorithms, not only for the computer
to actualize them, but at the same time, to maintain a
discourse with a model, a portrait of some world with its
own rules.
But if we ask how this formulation takes place, it may,
quite similar to literary text production, turn out not to
be simply the notation of pre-formed ideas or intentions.
Despite being deterministic we often can’t be entirely
sure what sound an algorithm will yield. In many cases
its complete anticipation, precluding anything new from
happening, would not be all that desirable. Suppose we
search for a specifi c sound, say the creaking of a closing

bus door heard from the other side of the road. We would
begin by writing an initial algorithm that captures a rough
imagination, a conjecture of how the sound could be
characterized. Then we would modify this description
until it became, possibly in a surprising moment, a
sudden realization of something that evokes a memory
of that particular sound. The surprising moment is not
so much the result of a random coincidence, but of the
way in which program-text, synthesis process, sound and
perception interact.3

2. TIME TROUBLES

“Back in the 1920s, the nuclear physicist Niels Bohr
said, “Predictions are hard, especially if they concern the
future.” Of course that’s still true today.”4

A program obviously is a plan of how something is
supposed to happen, an anticipation of future events. If the
program text is used as the representation of algorithmic
processes with their causal relations, one encounters the
problem that the process is happening in time while its
description has been made in advance. This becomes
apparent as soon as one tries to change the plan when it
is already in the process of realization. It is interesting
that it is not so much its predictive quality that makes this
diffi cult than the fact that the algorithm, as it happens,
operates on its own past states. Its iterative5 character
causes the algorithm to stick to its own history, so that as
a process, it is always something else than its rules.
Even if it is described in a declarative way, the
programmer‘s (and the sound’s) “temporal existence
[...] imposes state on the system.”6 But even more, for
the same reason it is also diffi cult to relate two processes

Julian Rohrhuber
University Cologne, Academy

of Media Arts Cologne

Alberto de Campo
Institute for Electronic Music
and Acoustics, University for

Music and Dramatic Arts Graz

Renate Wieser
University for Fine Arts

Hamburg

ALGORITHMS TODAY

NOTES ON LANGUAGE DESIGN FOR
JUST IN TIME PROGRAMMING

1 See e.g. “temporary organisation for the proliferation of live
algorithmic programming” (toplap), http://toplap.org, with references
to developers and artists like Fredrik Olofsson, Nick Collins, Ge
Wang, Dave Griffi ths, Craig Latta, Amy Alexander, Adrian Ward, Alex
McLean
2 See e.g. Collins, McLean, Rohrhuber, Ward 2004.

3 Here, we try to describe the implications of interactive programming
not so much as a problem of control, but emphasize the involvement
in a process of distributed agency. A very good general description of
the interaction between human and non-human agents (actants) can be
found in Latour 1996a [8]
4 New World talking to Claus Weyrich, head of Corporate Technology New World talking to Claus Weyrich, head of Corporate Technology New World
at Siemens)
5 Derrida notes that the sanskrit root of the word ‘iter’ is ‘iter’ is ‘iter’ ‘itara’,
‘otherness’, which connects otherness with repetition.
6 While Abelson and Sussman were talking about the “user” imposing
time on the system, it is the programmer and the sound generation in our
context. [1], p.291

to each other. When one replaces a running algorithm
by a new one, the new development might be similar to
the old, but it is nevertheless a new enfolding which, by
itself, has no memory of the previous one. This results in
a situation where there is no general equivalence between
the present and a modifi ed version of an algorithm.
Interactive programs that provide a graphical interface to
control their behaviour seem to avoid this rigid character.
But, quite obviously, this type of immediate control
happens within the space that the programmer has chosen
before. In this sense, a graphical user interface leads us
to the same basic problem: The algorithm implicitly
presumes a fi xed delimitation between what can be
changed at runtime and what is the prevailing context of
this change. In a language for interactive programming,
this delimitation can be made explicit (syntactically)
as well as dynamic (semantically), forming a porous
signifi cation space of what is part of the operation and
what is its parameters.
Whatever part of the process is exchanged at runtime, it
is always a new part in an ongoing context (or, taken the
other way round, a changed context of an ongoing part).
Defi ning (and modifying) this structure therefore should
be seen primarily as working on a temporal delimitation
creating „islands in history“7. It will become clear that
there are different possible ways of interaction between
these islands and their contexts, depending on the
situation.

Figure 1: When modularizing the algorithm, a part can be exchanged
without changing the temporal development of the other. Here, a pair of
algorithms (visually connected by grey zones) is developed together:
in a fi rst step, x is inserted in (ad), while keeping (bc) the same. In a
second step, (bc) is changed to (b’y), while keeping (a’xd’).

To recapitulate, we can see that working on an active
program means being involved in two time structures: On
the one hand, there is an algorithm that goes its own way

determined by its inner set of rules, and on the other hand,
this very same process is modifi ed, rethought, rewritten.
Obviously we have to state a basic disagreement between
the programmer’s time and the time of the program - each
trying to reach their own aims, before they are ready again
to take each other into account. This is evident in the
iterative character of software development cycles. One
can safely predict that this incongruousness cannot be
resolved once and for all.8 Here, we will show an attempt
to fi nd a clear way to express this relation for a sound
synthesis language.

3. REFERENCE, ASSIGNMENT, DEFINITION

In the process of writing a program, there is normally
a clear temporal order: fi rst some entities are defi ned
(variables, parameters), then some value (object) is
assigned to them and only then are they referred to or
operated on. Because this order is part of the temporal
delimitation which we want to restructure at runtime,
we need some placeholder for a later algorithm which
can be used in a running program already before it is
known (sometimes referred to as a lazy proxy). The
system discussed here (the Just In Time Programming
Library9) provides such placeholders within the
SuperCollider10 language by extending its system of
higher-order functions. By making assignment, defi nition
and reference syntactically very similar, implications of
evaluation order are avoided. The fact that one can refer to
an element before it exists as well as change it when it is
already in use allows the refactoring of a sound algorithm
at runtime (here a very basic example in three steps - note
that all code examples given are evaluated line by line):

An alternative syntax for this placeholder system is
provided using a modifi ed environment access (in this
case, a system of synthesis nodes). Here, an environment
variable such as ~x returns a proxy when referred to, and
thus can be played before an algorithm is assigned to it.

7 Note that this “monadic” structure is not necessarily identical to
concurrency, but modularity seen from a temporal perspective. The
exchangeable part may be a process that runs independently, but also
may be e.g. a stream, a single value or a functionally defi ned algorithm.
To be exact, the text itself should be considered such an “island” as well,
in so far as it is an algorithm evaluated by the interpreter to construct a
program.

8 Sussman/Abelson seem to agree with us on this point: “As far as
anyone knows, mutability and delayed evaluation do not mix well in
programming languages, and devising ways to deal with both of these at
once is an active area of research.“ [1], p.288
9 JITLib is written in SuperCollider language and has been evolving
since 2000, an introduction is to be found e.g. in Collins et al. 2004. It
is part of the SuperCollider distribution.
10 SuperCollider combines a dynamic programming language and
a real time sound synthesis server. It is available under GPL at
http://supercollider.sourceforge.net (see also [10, 11])

One proxy can play its role in any number of contexts, so
that a change of one part may affect the whole system in
very heterogenous ways. As a consequence, the resulting
graph also has no predefi ned output, so that one can
use any appropriate node to listen to. Different types of
processes (tasks / patterns, synthesis nodes) demand
different implementations of this structure: A (quasi-
continuous) synthesis proxy (NodeProxycontinuous) synthesis proxy (NodeProxycontinuous) synthesis proxy () takes advantage
of the fl exible bus architecture of the SuperCollider
server so that its single signal can be read by any other
node simultaneously independent of their node order. On
the client side, SuperCollider implements a system of SuperCollider implements a system of SuperCollider
higher order stream descriptions, called patterns, that are
used for tasks (sequences of evaluations) and algorithmic
generation of values or sound events alike. Being
streams with late evaluation, they represent a discrete
and encapsulated model of time, unlike the server-side
synthesis nodes. As one pattern can create multiple
streams, a placeholder for such a pattern should change all
streams that derive from it. The library of PatternProxy
is used to provide such descriptions, which get “threaded
into” an already existing stream that uses them. Together,
these placeholders allow us to write and modify networks
of interdependent temporal (or “historic”) structures. By
their relation, they defi ne what a change in the program
text means for the resulting algorithmic process.

4. “STATELESS” STATES

What is supposed to happen when one changes the
textual description of one single node of the network?
When modifying a sound algorithm at runtime it is not
always that easy to recognize the difference - the old
sound is gone and the new one takes over our perception.
In order to grasp the effect of the modifi cation, a certain
perceptual consistency must be given. For this, we need
to maintain some identity of the process, a continuity
between the old and the new behaviour, which helps to
understand their difference. As previously mentioned, the
new text can’t be taken as the description of the very same
process, simply because this process is part of history.
One could suggest that we should “fast forward” the
new process to the point in which the old is operating
at the moment of exchange. But it is not at all trivial to
know what the corresponding step or local state would
have to be. Without doubt, there are cases in which such
analogy can be found, but such solutions are necessarily
contingent. Even more, what makes a sound is not only
its present state, but its immediate past, its dynamic
change in time being its only apparent quality.
Another suggestion would be to use a psychoacoustic
model to know what we would perceive as a consistent
transition between two slightly different versions of the
sound algorithm. Apart from the fact that this might
be infi nitely complex, each part of the program may
play very specifi c roles in the sound. Therefore, such
a transition between the two versions wouldn’t have a
consistent effect.
The only solution that is left, as a kind of desperate
attempt to preserve some sort of elementary identity, is to
interpolate the nodes’ outputs during a phase of transition
while maintaining their “causal meaning” in the relations
of the algorithmic network. In order to be able to
synchronize textual changes at runtime, the system
provides grids of reference time (allowing e.g. beat

synchronicity) and functions that postpone the change
until a certain condition is fulfi lled. In order to be able
to distribute and dislocate the change of an algorithm in
a collaborative environment with several people, a small
system of network dispatchers is part of the library. This
makes various types of collaborative situations possible,
in which the program text is part of the conversational
process.

5. SOME APPLICATION FIELDS

Sonifi cation

Sonifi cation design and tuning is an activity where
interactive programming is particularly appropriate:
In the ideal design session, there is a lively discussion
between domain experts and audio designers on the
current version of some algorithm that transforms data
into sound. Here, being able to change the scaling
of some mapping of data to synthesis parameter is
practically a minimum requirement; in fact, interactive
sonifi cation has been the topic of conferences and there
is general agreement in the auditory display community
that this is a very promising direction [12].
Being able to exchange synthesis processes while playing
(which often means iterating over some subset of the
data) turns the design into a much more communicative
process. In the project SonEnvir [3,4,5], all prototypes
are written in JITLib. Here, the acceptance by the domain
experts has been very good so far; this is both useful
for prototype development and for user access to make
meaningful experimental changes by themselves. In fact,
being able to store results of a design/tuning session as
text has proven extremely valuable already; even long-
term reproducibility of specifi c solutions on future audio
programming platforms seems quite realistic.

Music Performance

A series of seminars called Warteraum has led to the
formation of a band, PowerBooks_UnPlugged, with PowerBooks_UnPlugged, with PowerBooks_UnPlugged
Alberto de Campo, Echo Ho, Hannes Hölzl and Jankees
van Kampen. PB_UP employs the laptop as a complete
instrument, by using internal speakers only, speech
synthesis as supplied by the operating system, and live
coding in a more literal sense. We use a common pool of
text fi les with code snippets collected in rehearsals that
serve as shared performance material. Every fi le contains
one or several little scripts that create sound textures;
these can be streams of note- or grain-like events, complex
evolving synthesis processes, or mixtures of both.
Some of these textures have fi xed durations, so that some
layers end by themselves, while others are being rewritten
and modifi ed during runtime. Modifi cations that deem
interesting are sent to the other players, along with other
chat messages (such as discussions what to do next).
These variations and other ideas developed while playing
can be added to the pool. The implicit working model is as
democratic and symmetrical as the spatial disposition of
the music: everyone can make sounds on her own laptop
as well as (simultaneously or sequentially) on everyone
else’s. We fi nd that the resulting uncertainty [13] is one
of the most interesting and enjoyable side effects of the
new possibility space created by the JITLib approach
described here.

Film Sound

Sound synthesis for fi lm is engaged in an interesting area
between the musical (and often psychological) sound
track and the atmospheric sounds that, together with the
images, form the physical texture of the narrative. The
sound of the experimental documentary “Alles was wir
haben” [7] operates on the border of artifi cial and natural
impression of atmospheric sounds, and on the expectation
of “fi delity”. In the development of this soundtrack
almost all “real” sounds were created in a process of
interactive programming, where the two artists tried to
fi nd ways toward a certain sound impression from their
memory. The collaborative process was only possible in
this way because the textual description of this purely
synthetic, algorithmic sound could be modifi ed while
active. The story of the fi lm evolves around the attempt
to construct an (in the end, rootless) identity of a home
land (“Heimat”), which may correspond quite well to the
idea of a program of which we do not know if it will ever
come to halt.

6. CONCLUSION

Text is often taken to be something stable, unchangeable,
something that is projected into the future of a reader.
A program text, seen as a description of a tool, an
application, might be part of this “future-precluding”
character even more [9]. But as the activity of
programming reveals, neither code nor the deterministic
algorithm is created in this way - iteration after iteration
the written language shows its infl uence on the thinking
and world of the programmer as much as the code
changes with its use. Interactive programming can’t
fulfi ll the desire for complete and immediate control
of a sound process. Clearly, this immediacy must
constantly escape, thwarted by the temporal structure
of the symbolic system. Nevertheless, for someone who
is interested in getting involved in such problems rather
than avoiding them, it can be rewarding to experiment
along these lines. For us these considerations offer the
promise of something like a poetic language of code to
fi nd its way into programming and sound research.

REFERENCES

[1] Abelson, H. and Sussman, G.J., “Structure and
Interpretation of Computer Programs”, The MIT Press,
Cambridge, 1996

[2] Collins, et al: “Live Coding in Laptop Performance”,
Organized Sound, Cambridge, 2004.

[3] Dayé, C. et al, “Sonifi cation as a Tool to Reconstruct
Users’ Actions in Unobservable Areas”. submitted to
International Conference for Auditory Display, Limerick,
Ireland, 2005.

[4] De Campo, A., Frauenberger, C., Höldrich, R., “Designing [4] De Campo, A., Frauenberger, C., Höldrich, R., “Designing [4] De Campo, A., Frauenberger, C., Höldrich, R., “

a Generalized Sonifi cation Environment”, Proceedings of
the International Computer Music Conference, Miami, USA,
2004.

[5] De Campo, A. et al, “Sonifi cation of Quantum Spectra”.
Submitted to International Conference for Auditory Display,
Limerick, Ireland, 2005.

[6] Derrida, J, “Signatur, Ereignis, Kontext” (“Signature Event
Context”), in: Jacques Derrida, Limited Inc., Wien: Passagen
Verlag 2001.

[7] Kamensky, Volko: “Alles was wir haben” (“All That We
Have”), experimental documentary fi lm, 2004, real sound
synthesis: Julian Rohrhuber. http://swiki.hfbk-hamburg.de:
8888/MusicTechnology/491

[8] Latour, Bruno: “On actor-network theory, A Few
Clarifi cations”, in: Soziale Welt 47/4 (1996), p. 369–381.

[9] Lyotard, Jean-Francois. “Time Today” The Inhuman:
Refl ections on Time. Trans. Geoffrey Bennington and Rachel
Bowlby. Stanford: Stanford UP, 1991.

[10] McCartney, James. 1998. “Continued Evolution of the
SuperCollider Real Time Synthesis Environment.” Proceedings
of the International Computer Music Conference”, Ann Arbor,
Michigan, 1998.

[11] McCartney, James. 2002. “Rethinking the Computer
Music Language: SuperCollider.” Computer Music Journal,
26:4, 61-8.

[12] http://www.interactive-sonifi cation.org/

[13] Rohrhuber, J, De Campo, A, “Waiting and Uncertainty in
Computer Music Networks”, Proceedings of the ICMC 2004,
Miami, USA.

