Security by Politics - Why it will never work

Systems

Lukas Grunwald DN-Systems GmbH Germany DefCon 15 – Las Vegas USA

Agenda

- Motivation
- Some basics
- Brief overview ePassport (MRTD)
- Why cloning?
- How to attack the system
- BAC (Basic Access Control)
- EAC (Extended Access Control)
- Enrollment: Unexpected risks

Motivation - MRTD

This image is a work of a Federal Bureau of Investigation employee, taken or made during the course of an employee's official duties. As a work of the U.S. federal government, the image is in the **public domain**.

The Government's Dream

Multi biometric, double gates, anti-tailgating, lightlysupervised (to maintain non-automated entry channels)

dn Systems

The Industry's Solution

- Government first asked Security Print Shops
 - These are general and global print shops
 - Extensive know-how in secure printing
 - No know-how in IT security / cryptography
 - Never done an IT security project
- Security Print Shops asked Smart Card Industry
 - Focus on selling their products
 - Advocates multi-purpose use

Industry Ideas for the ePassport

- Multi-purpose use
- Identical design for national ID cards
- Use for electronic banking
- eGovernment
- Electronic signature
- Email encryption
- ID and travel / Passport
- Electronic payment

Design Goals

- Use of cryptography / PKI
- Heavy use of biometrics
- 100% security against counterfeiting
- Improve facilitation
 - Minimize time spent on legitimate travelers
 - Segmentation of low-, highrisk travelers
 - Minimize immigration time for traveler

Design Approach

- Setting up a standards group at the ICAO
- Stuffed with printing experts
- Some crypto experts
 - Only worked on algorithm level
- No one knows about implementation
- Driven by RFID manufactures
- No one looked at risks / design goals (KISS)

Problems with Patents

- To store biometric data, typically a HASH is generated and stored (for fast comparison)
- Most of these HASHES are patented
- ICAO stores pictures of facial image
 - JEPG or JEPG2000
- Same with fingerprints
- Compromises don't work with security

ePassports

This image is a work of a United States Department of Homeland Security employee, taken or made during the course of an employee's official duties.

As a work of the U.S. federal government, the image is in the public domain.

MRTD

- Machine Readable Travel Document aka Electronic Passports (ePassports)
- Specifications by ICAO
 - (International Civil Aviation Organization)
- Enrollment on a global basis

ePass from Germany

Quelle: Bundesministerium des Innern

- RFID tag embedded into the cover
- Produced by the Bundesdruckerei GmbH
- No shield, readable even when passport cover is closed

2D Code and MRZ

Passport with 2D barcode and MRZ (machine readable zone)

MRTD Data-Layout

- LDS (Logical Data Structure)
 - Data is stored in DG (Data Groups)
 - DG1: MRZ information (mandatory)
 - DG2: Portrait image + biometric template (mandatory)
 - DG3-9: Fingerprints, iris image (optional)
 - EF.SOD: Security Object Data (cryptographic signatures)
 - EF.COM: List of existing Data Groups
- Data is stored BER-encoded like ASN.1
- DG2-DG4 uses CBEFF for encoding (Common Biometric File Format, ISO 19785)

MRTD Security Features

- Random UID for each activation
 - Normally all ISO 14443 transponders have a fixed unique serial number
 - The UID is used for anti-collision
 - Prevent tracking of owner without access control
 - Problem: ICAO MRTD specs don't require unique serial number
 - Only some countries will generate random serial numbers

Passive Authentication

- This method is mandatory for all passports
- Method of proof that the passport files are signed by issuing country
- Inspection system to verify the hash of DG's
 - EF.SOD contains individual signatures for each DG
 - EF.SOD itself is signed
 - Document signer public key from PKD / bilateral channels
 - Document signer public key can be stored on the passport
 - Useful only if country's root CA public key known

Signed Data

Password on Monitor?

Basic Access Control

- Grants access to data after inspection systems are authorized
- Authorization through the Machine Readable Zone (MRZ)
 - Nine digit document number
 - In many countries: issuing authority + incrementing number
 - Six digit date of birth
 - Can be guessed or assumed to be a valid date
 - Six digit expiry date
 - 16 most significant bytes of SHA1-hash over MRZ_info are used as 3DES key for S/M (ISO7816 secure messaging)
- Some European passports (Belgium) don't have BAC

BAC

- The access key is printed on the passport
- Many times the passport is put on a Xerox machine in:
 - Hotels
 - Rentals (cars, ski, ...)
 - Shops (cell phones, ...)
- The data from the MRZ is stored in many private databases (airlines, banks ...)

BAC And Traceability

- With the BAC handshake data known,
 - the random unique ID is worthless
 - the MRTD is traceable
 - access to the content (LDS-DG.1 &DG.2) is possible
 - access to the SOD is possible

Extended Access Control

- Optional method (EAC)
- Should prevent the unauthorized access to biometric data
 - Not internationally standardized
 - Implemented only by individual issuers
 - Only shared with those countries that are allowed access
- Access is only possible with certificates from issuing country

Where is my clock?

Inspection of CV-Certs

- The MRTD does not have any reliable and secure time information
- Once a CV is captured, all MRTDs which have been read using a CV issued earlier could be accessed
- The biometric data is accessible as well
- The MRTD can not verify the validity of the timestamp from a CV certificate
- A false CV certificate with an issue date far out in the future can deactivate the MRTD permanently

EAC Risks

- A false CV certificate can deactivate the MRTD permanently
- A rogue regime could misuse the CV certificates to obtain fingerprints from passport holders
- With these fingerprints it is possible to produce false evidence

PKI Integration

- X.509 Certificates
 - Every issuer operates a self-controlled CA
 - Signer keys are derived from CA root
 - Public keys are distributed via ICAO PKD
 - Everyone can verify
 - It is not possible to revoke a certificate on the MRTD

Why Cloning of Passports?

- The normal tags are read-only
- Data could be retrieved from an issued passport
- Deactivation of issued passport (microwave oven)
- Cloned tag behaves like an "official" ePassport
- Cloned tag could be extended with exploits
- Exploit could attack inspection system, backend or databases

Inspection Systems

- Inspection systems should be evaluated
- Off-the-shelf PCs are too complex to be formally validated for correctness
- MRTD uses JPEG2000
- JPEG2000 is very complicated
 - Easy to exploit
 - For example, see CVE number CVE-2006-4391
 - Metasploit and other toolkits make it easy

A Vendor's Design of an Inspection System

- Uses "off-the-shelf" PC's
- RFID-Reader is "Designed for Windows XP"
- No security improvement of the software
- Just like inserting a USB stick containing unknown data into the inspection system

Problem With The Procedure

- First, read, data from the RFID chip
- Then, parse the structures
- Decode the payload
- Finally, verify the document cryptographically

Biometric Data

- Data should be reduced to hashes only
- But fingerprints will be stored as pictures
- Reverse-engineering of fingerprints possible with MRTD data
- Contrary to any best practice in IT security

Chaos of Standards

- TLV and ASN.1 not correctly implemented
- Redundant meta formats for biometric data
- If signing key is lost, the whole country is doomed
- First, the data must be parsed, then it can be verified
- Design was made by politicians and not by IT security experts
- It is possible to manipulate data

Snake Oil Warning

- "Trust us, we the experts know what we're doing"
- "We removed the standards from the ICAO website, now we are safe"
- "Grunwald used the primary purpose of the passport: he read it - there is no security risk"
- "The RFID chip will be protected by the security features of the printed paper in the passport"

More Quotes

- After a short version of this presentation at the "Security Document World 2007" in London I got this comment from a responsible person at the ICAO:
- "It's right that these security flaws could harm an IT system, but we have to keep in mind, the ePassport is a security document and has nothing to do with IT systems"

Thank You

Questions?