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Abstract. We propose a statistical measure suitable for com-
paring the rotational stabilities of pulsars with one another and
with terrestrial time scales. By a simple extension of notation
long used in the clock community, we call the statistic σz(τ ).
Defined in terms of third-order polynomials fitted to sequences
of measured time offsets, σz(τ ) is sensitive to variations in the
frequency drift rate of the clock or pulsar. We apply the new sta-
tistical formalism to real pulsar data and terrestrial time scales,
and show that over the past 10 years these two kinds of data
have comparable stabilities.
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1. Introduction

The possibility of using the exceptional rotational stability of
millisecond pulsars to generate a time scale has long been of
interest (Backer et al. 1982, Rawley et al. 1987, Guinot & Petit
1991, Taylor 1991, Kaspi et al. 1994, Petit 1995). A reliable
statistical measure is needed for studying the physics of pulsar
rotation and comparing pulsar stabilities with those of terres-
trial clocks. Clock data are commonly analyzed using a statistic
called σy , the square root of the “Allan variance,” which can
be computed from second differences of a table of clock offset
measurements. Second differences are used because all but a
few specially designed standards are likely to have significant
frequency biases, whereas most good clocks have very small
frequency drift rates (changes in those biases). The frequency
drifts of terrestrial clocks are analogous to pulsar spin-down
rates, which are meaningless from a timekeeping point of view
because their magnitudes vary widely and they must be esti-
mated separately for each pulsar, using the timing data them-
selves.

Following Taylor (1991), we therefore suggest use of a
statistic we shall call σz , related to third differences (or third-
order polynomial variations) of the timing residuals. These are
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the lowest-order deviations remaining in a pulsar time series
after the phase, frequency, spin-down rate, and astrometric pa-
rameters have been determined by comparison with terrestrial
time, and their effects removed. Since it is inherently insensitive
to effects that pulsars cannot measure, and, as we shall show, is
more sensitive to redder noise than other commonly used mea-
sures, σz is ideally suited for comparing pulsar stabilities with
those of other time scales.

2. Choice of statistic

Standard procedures for characterizing frequency stability were
reviewed in a classic paper by Barnes et al. (1971). In their
notation, a nearly periodic signal of nominal amplitude V0 and
frequency ν0 can be defined by the relation

V (t) = [V0 + ε(t)] sin[2πν0t + ϕ(t)] , (1)

and by counting its cycles one can make a clock. The functions
ε(t) andϕ(t) represent random amplitude and phase fluctuations
about the ideal, and it is assumed that ε� V0 and ϕ� 1. The
phase deviations of the clock are further characterized by two
functions

x(t) ≡ ϕ(t)
2πν0

, (2)

y(t) ≡ ϕ̇(t)
2πν0

, (3)

which measure the instantaneous time offset and fractional fre-
quency offset.

The stability of the clock is often measured by means of the
Allan variance, defined by

σ2
y =

〈
1
2

(ȳn − ȳn−1)2

〉
. (4)

Here ȳn = (xn − xn−1)/τ is the average fractional frequency
offset during the nth measurement interval of length τ , and
the angle brackets denote averaging over all available intervals
of that length. The Allan variance can also be written as the
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mean square of normalized second differences of the clock offset
measurements, defined by

D2(t, τ ) =
x(t + τ )− 2x(t) + x(t− τ )√

2 τ
. (5)

Here the normalization of D2 has been chosen so that for zero-
mean white frequency noise, σy , defined as

〈
D2

2

〉1/2
equals

the root-mean-square fractional frequency deviation. A related
statistic, the modified Allan variance, replaces each x(t) by its
average over the appropriate sub-interval (Allan 1987), which
adds sensitivity to the difference between white and flicker phase
noise while retaining the spectral characteristics of the Allan
variance for redder forms of noise.

The Allan variance is well suited to characterizing the per-
formance of manmade clocks, even if they have fixed frequency
offsets (which can be measured and removed). However, it is
not particularly well suited for pulsar data (Taylor 1991, Petit
& Tavella 1996), because pulsars also have sizable, a priori un-
known frequency drifts. The second-difference procedure dis-
cards all information about initial phase and frequency offsets
between the clocks. For comparison with pulsar data we wish
also to ignore fixed frequency drifts, which suggests using nor-
malized third differences:

D3(t, τ ) =
x(t + τ

2 )− 3x(t + τ
6 ) + 3x(t− τ

6 )− x(t− τ
2 )

2
√

5 τ
. (6)

Here the normalization has been chosen so that for white phase
noise the rms of D3 will equal the rms of the original phase
data, divided by τ , which is here redefined so as to symmetrically
encompass the entire interval. Although this definition is chosen
so that both D2 and D3 will be dimensionless, one should keep
in mind that they characterize fundamentally different orders of
variation.

Pulsar timing observations tend to be made at irregular inter-
vals for which the differencing technique is not directly appli-
cable. Taylor (1991) used the fact that fitting cubic polynomials
to timing data segments of length τ is computationally conve-
nient, and for equally spaced data leads to equivalent results (see
also Deeter & Boynton 1982, Deeter 1984). For correspondence
with the third difference defined in Eq. (6) the cubic term should
be multiplied by a factor τ 2/(2

√
5), and allowance should be

made if τ is defined as the time between individual data points.
We define σz(τ ) as the weighted root-mean-square of the coef-
ficients of the cubic terms fitted over intervals of length τ . This
definition differs from that less formally presented by Taylor
(1991) by a scale factor and in emphasizing the importance of
using a weighted rms.

A significant advantage of the polynomial approach is that
the fitted terms are sensitive to all values of x in each measure-
ment interval, instead of merely to four fiducial points spaced by
τ/3. This allows σz to distinguish between white and slightly
“blue” phase noise in a manner analogous to modified Allan
variance.

It is easy to describe how the computedσz(τ ) of a time series
will behave if the underlying function has known power-law
spectral characteristics. Following the techniques and notation
of Barnes et al. (1971), it is easy to show that, if the power
spectral density can be modeled as

Sx(f ) ∝ fα−2 , (7)

then σ2
z will also follow a power law,

σ2
z(τ ) ∝ τµ , (8)

with the exponents α and µ related by

µ =

{−(α + 1) if α < 3,
−4 otherwise.

(9)

It follows that σz is a good statistic for the analysis of low-
frequency-dominated “red” or “pink” phase noise, such as that
typical of pulsar timing residuals, but not for “blue” noise pro-
cesses with α > 3.

At the risk of overstating the obvious, we shall mention that
statistics such as σy and σz which operate in the time domain
are in many ways complementary to power spectral analysis in
the frequency domain (IEEE 1988). It is important to note, how-
ever, that conventional Fourier techniques necessarily fail in the
presence of steep power-law spectra (exponents > 2 in abso-
lute value), because of spectral leakage between frequency bins.
In contrast, the effective “filters” corresponding to the σz(τ )
technique have steep cutoffs (proportional to f 6) on their low-
frequency sides, and hence are ideal for analyzing red noise
(Stinebring et al. 1990).

3. Recipe for computing σz

Our recipe for the computation of σz is as follows:
1. Make a chronological list of times, residual clock dif-

ferences, and measurement uncertainties, namely ti, xi, σi, i =
1, . . . , N . The total interval spanned by the data is T = tN − t1.

2. To find σz(τ ), divide the data, according to time of ob-
servation into subsequences defined by continuous intervals of
length τ and arbitrary offset time t0. Fit the cubic function

X(t) = c0 + c1(t− t0) + c2(t− t0)2 + c3(t− t0)3 (10)

to the data in each subsequence by minimizing the weighted
sum of squared differences, [(xi −X(ti))/σi]2. Then set

σz(τ ) =
τ 2

2
√

5

〈
c2

3

〉1/2
, (11)

where angle brackets denote averaging over the subsequences,
weighted by the inverse squares of the formal errors in c3. Since
X(t) has units of time, σz will be dimensionless.

Insist that for each valid subsequence there be at least four
measurements, and that the interval between first and last mea-
surement be at least τ/

√
2. To allow for unmodeled error sources

it may be desirable to weight all measurements equally by set-
ting σi to a constant; in any case, the weighting scheme used
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Fig. 1. Residual time differences for PSRs B1855+09 and B1937+21
with respect to TT96, and between the free-running time scales
TA(PTB) and TA(A.1), after removal of best-fitting parabolas

should be reported. For computational reasons, t0 is best chosen
to lie near the midpoint of each subsequence.

3. While this procedure will work for any τ , we recom-
mend computing σz(τ ) only for τ = T, T/2, T/4, T/8, . . .
since other values of σz are not independent of these. We also
recommend that the set of intervals be only the adjacent non-
overlapping ones covering the full time range. In some cases
a formally more accurate estimate can be obtained by also in-
cluding overlapping intervals of length τ , but in the presence
of red noise the derived values of σz would not be significantly
improved and the error analysis would be more complicated. If
such techniques are applied, they should be explicitly identified.

If the long-term average values of 〈c3〉 for the underlying
stochastic noise process are zero, and if the recommended bin-
ning restrictions are followed, the computed values of σ2

z will
have χ2 distributions with n degrees of freedom, where n is
the number of squared values of c3 appearing in the average in
Eq. (11). For nearly all cases of interest the resulting sampling
errors will dominate the uncertainties. In Appendix A we outline
how to compute these uncertainties.

To promote standardization we have written a Fortran pro-
gram to compute σz and its statistical uncertainties, and have
made it publicly available by anonymous ftp to URL ftp://tycho-
.usno.navy.mil/pub/sigma z. It can also be found on the World
Wide Web at the USNO pulsar home page http://tycho.usno-
.navy.mil/pulsar.html.

Fig. 2. Fractional stabilities σz(τ ) for the three data sets illustrated
in Fig. 1, and for two shorter data sequences of atomic clock differ-
ences: TA(PTB)−TA(A.1) extending from MJD 49400 to 50079, and
the difference between a particular Hewlett Packard Model 5071 ce-
sium standard and the USNO Master Clock, which is steered daily to
approximate TAI.

4. Observed σz of pulsars and time scales

We have applied the recipe of Sect. 3 to the data in Fig. 1, which
includes timing residuals of the two longest-observed millisec-
ond pulsars, PSRs B1855+09 and B1937+21 (all but the most
recent of which are publicly available from Princeton, see Kaspi
et al. 1994), and terrestrial clock data obtained by anonymous
ftp from the Bureau International des Poids et Mesures (BIPM
1996). The pre-fit pulsar data were referenced to the terrestrial
time scale TT96 (see Guinot, 1994), and we designate the resid-
uals TT96−T(1855) and TT96−T(1937), respectively. In Fig. 2
we present values of σz for all three time series, computed with
equal weighting for all measurements. For both pulsars the slope
of the log-log graph is close to −1.5, at least up to intervals τ
of several years, as expected for residuals dominated by uncor-
related measurement errors. For the clock differences, and for
the pulsars at τ > 1 year, the curves are dominated by low-
frequency noise believed to be intrinsic to the pulsars and the
atomic time scales.

Also included in Fig. 2 are values of σz for the differences
between several terrestrial time scales (BIPM, 1992), again us-
ing equal weighting for all measurements. Note that at large τ
the pulsar stabilities are comparable with that of the difference
between two independent, free-running time scales: TA(A.1)
maintained by the U.S. Naval Observatory, (whose 50-clock
ensemble currently contributes about 40% of the weight to the
BIPM’s determination of TAI), and TA(PTB), maintained by
the Physikalisch-Technische Bundesanstalt (PTB) in Germany,
which maintains two standards optimized for calibration and
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Fig. 3. An application of pulsar data to create an improved time scale.
Top: timing residuals of PSR B1855+09 with respect to TT96, af-
ter filtering out all frequencies above 1/(970 days). Center: Residual
difference TA(PTB)−TA(A.1) after fitting out a parabola. Bottom: Im-
proved time scale generated by simple averaging of TT96-T(1855) and
TA(PTB)-TA(A.1).

long-term accuracy. For this time period, the frequencies of
these PTB standards were precise to about 3 × 10−15 when
averaged over a year, and accurate to about 2.2 × 10−14 in an
absolute sense (Bauch et al. 1987).

The 1996 computation of Terrestrial Time, TT96, was de-
rived using TA(PTB) for the long-term information. Conse-
quently for large τ , TA(PTB) can be considered equivalent to
TT96. Recently there has been a dramatic improvement in ter-
restrial frequency standards (Breakiron & Koppang 1996) ow-
ing to increases in both the number and quality of atomic clocks.
To illustrate this improvement we also include in Fig. 2 a σz
curve based on just the latest TA(PTB)−TA(A.1) data, and also
one showing the difference between a single Hewlett Packard
Model 5071 cesium standard and the USNO Master Clock (Mat-
sakis & Josties, 1996).

5. An application

The comparison of recent terrestrial clock data TA(PTB)-
TA(A.1) with older data from the same series in Fig. 2 shows
how terrestrial clock technology has improved over the last
ten years, but it also suggests that long-term errors in the ter-
restrial time scales of the 1980’s are making non-negligible
contributions to pulsar timing residuals, and thus that pulsar

data could be used to improve the terrestrial time scale. To
test this hypothesis we used the technique outlined in Bland-
ford et al. (1984) and Matsakis & Foster (1996) and applied
a crude Wiener filter to the time series TT96−T(1855). We
spline-filtered this 177-point data set to yield 177 equally spaced
pseudo-measurements over the 8-year interval, and then Fourier
transformed them. We made an approximate allowance for the
frequency-dependent signal-to-noise ratio by discarding all but
the three independent Fourier frequencies for periods larger than
800 days, and then transformed the data back to the time do-
main. The filtered data from TT96−T(1855) were then averaged
with those from TA(PTB)−TA(A.1). Curves created by averag-
ing TT96−T(1855) with TT96-TA(A.1) generate a similar av-
erage. Since our σz analysis indicated the absence of extremely
red noise, spectral leakage was not an issue in this case.

Although this technique is not optimal, Fig. 3 shows that av-
eraging the smoothed pulsar data with TA(PTB)−TA(A.1) has
made a noticeable improvement in stability of their combined
time scale. With a longer data set the improvement should be
even more significant. Over long time intervals TA(PTB) and
hence TT96 are each known to be more stable than TA(A.1),
so the improvement shown here (and the smaller variances of
the top and bottom panels of Fig. 3, compared with the center
panel) can be taken as demonstrations that T(1855) also was
more stable than TA(A.1) over the time range analyzed. A sim-
ilar conclusion was reached by Kaspi et al. (1994).

6. Conclusion

The stastistic σz can complement more commonly used mea-
sures in the analysis of pulsar and terrestrial clock data because it
is insensitive to the phase offset, average frequency, and average
drift while allowing one to study the long-term noise character-
istics of the data.
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many helpful discussions.

Appendix A: statistical errors in σz computations

As stated in the text, it will usually be the case that the computed
values of σ2

z will have χ2 distributions with n degrees of free-
dom, where n is the number of squared values of c3 appearing
in the average. For small n the distributions are significantly
skewed, and most estimates of σz will be biased low because
the median of the distribution is less than the average. A table of
the relevant biases and the ranges of “1σ error bars” that enclose
68% of the expected distributions can be generated by evalu-
ating incomplete gamma functions P (a, x) (see, for example,
Press et al. 1986). In particular, for each n we want to find the
values of x16, x50, and x84 that satisfy the relations

P (0.5n, 0.5nx16) = 0.16 , (A1)

P (0.5n, 0.5nx50) = 0.50 , (A2)

P (0.5n, 0.5nx84) = 0.84 . (A3)
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For a base-10 logarithmic plot of σz , the bias correction

b = −0.5 logx50 (A4)

should be added to the biased estimate given by Eq. (11).
Positive-going and negative-going error bars centered on the
corrected value of σz should then have lengths

δ+ = −0.5 logx16 − b , (A5)

δ− = 0.5 logx84 + b , (A6)

respectively. Note that these are defined so as to specify what
range of values of σz are consistent with the data rather than
what range of observed σz would be obtained if the actual value
were as measured.

Good approximations for b, δ+, and δ− can be obtained from
the simple relations

b ≈ 0.17/n , (A7)

δ+ ≈ 0.31/
√
n− 1 if n > 1, 0.52 otherwise, (A8)

δ− ≈ 0.31/
√
n . (A9)

Because of the decidedly non-gaussian statistics of the under-
lying errors, these equations are not useful for making detailed
comparisons of data with a model. We emphasize that they are
intended solely for the purpose of making informative graphs,
and note that in the limit of large n,

δ+ ≈ δ− ≈ 0.31/
√
n . (A10)
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