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Abstract  
An extension of the celebrated Paris’ law for crack propagation is given to take into account of 
deviations from Linear Elastic Fracture Mechanics (LEFM) in a simple manner using the Woehler SN 
curve of the material, suggesting they are both special cases of a more general “unified law”. In 
particular, using recent proposals by the second author, the stress intensity factor ( )aK  is replaced 
with a suitable mean over a micro structural parameter length scale a∆ , the “fracture quantum”. The 
latter is not a material constant but rather an indication of a process zone size. In practice, for a 
Griffith crack, this is seen to correspond to increasing the effective crack length of a∆ . Contrary to 
other attempts to extend Paris’ law to include short cracks, we suggest a dependence of this fracture 
“quantum” on the applied stress range level such that the correct convergence towards the Wöhler-like 
regime is obtained. Hence, the final law includes both Wöhler’s and Paris’ material constants, and can 
be seen as either a generalized Wöhler’s SN curve law in the presence of a crack, or as a generalized 
Paris’ law for cracks of any size. The main aim is not explaining quantitatively the behavior of short 
cracks (for which detailed modeling of local processes is probably required), but rather to provide a 
consistent unified treatment of the fatigue damage process.  
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1. INTRODUCTION 
 

Fatigue life prediction is still very much an empirical art rather than a science. In the specific case of 
fatigue crack propagation, after the pioneering work of Paris and Erdogan [1-2], there is large use of 
phenomenological laws relating the crack growth rate, da/dN, to the amplitude of the applied stress 
intensity factor, ∆K. However, it is often forgotten that Paris’s law describes the experimental data 
under constant amplitude loading and, importantly, under ‘small-scale yielding’ which in turn requires 
either sufficiently low loads, and/or “long cracks” [3]. These stringent requirements are not always 
well specified and are also confused: “short crack” in particular is nearly always related to the fatigue 
limit and fatigue threshold (see the definition of intrinsic crack from El Haddad et al. [4]) whereas, as 
we shall see later on, the definition of “short” should also depend on the loads level. A number of 
modifications of Paris’s law have been suggested to deal with various departure from the ideal 
conditions: threshold limits, closure, short cracks [4,5], among others. The case of short cracks is one 
of the most well-known since Paris’s law can significantly underestimate their rate of growth. Such 
large number of ad hoc fatigue laws implies that the “physics” of fatigue-crack growth is not 
completely well captured by stress-intensity factors-based theories, mainly because of failure of the 
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‘small-scale yielding’ assumption, and the involvement of other microstructural or grain-scale 
parameters. However, this should not come with too much surprise, given until fracture mechanics 
emerged, fatigue was dealt with older, also empirical, fatigue laws, such as Wöhler’s SN curves 
approach.  
Initiation and propagation of cracks are well distinct phenomena, and depend differently on material, 
geometry and load levels [5,6]. For nominally plain specimen, at low load levels, where we expect 
fatigue failure at high cycle numbers (High Cycle Fatigue, HCF), practically the whole life is 
expended in enucleating the crack, rather than propagating: indeed, the latter phase only takes the final 
few cycles. At high load levels (those giving Low Number of Cycles, LCF), cyclic plastic deformation 
takes place rapidly leading to failure. These various processes result in the well-know empirical 
Wöhler curve (or, more in detail, in the Basquin-Coffin-Manson’s law – but we shall neglect for 
simplicity this aspect). There is no known fundamental reason to write the curve as a power-law, and 
indeed alternative equations have been suggested, but the power law between two given points is 
probably the simplest or most used form for the plain specimen namely: 
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where Rσ∆  is the range of stress at static failure (i.e. twice the ultimate strength), 0σ∆  the fatigue 
limit and ∆σ is the stress range for having a life Nf; N0, and ∞N  are the number of cycles at beginning 
and end of validity of the law. Clearly, eq. (1) also implies: 
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where 
0σ

σ
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= R
RF ; typically N∞=107 and N0=103, and for steels considering FR=2 we would have 

k=13.3, while for FR=3, k=8.4, in the typical range k=6-14 for Al or ferrous alloys. Turning to the 
case of cracked specimen, LEFM applies, and fatigue life (often denominated “residual”) is all given 
by propagation, generally by the celebrated Paris’s law [1,2]. Paris’ law gives the advancement da of 
fatigue crack per unit cycle dN, va, as a function of the amplitude of stress intensity factor ∆K 
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where ∆Kth is the “fatigue threshold”, and KIc the “fracture toughness” of the material; C and m are the 
so-called Paris’ constants. There is therefore no dependence on absolute dimension of the crack. The 
law is mostly valid in the range 10-5—10-3 mm/cycle, intersecting ∆Kth and KIc at th

av =10-6 mm/cycle, 

and c
av = 10-4 mm/cycle, respectively, where th

av  is a conventional velocity at the threshold, and c
av  

at the critical conditions.  This means that the constant C is not really arbitrary, since by writing the 
condition at the intersections, m

Ic
c

a
m

th
th

a KvKvC // =∆= . In practice, these limits are not as 
precise and only standards can help defining reference values. From the linearity in this range 10-5—
10-3 mm/cycle in the log/log plot, Fleck et al. [6] suggest to find the Paris exponent m as: 
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where 
th

Ic
K K

K
F

∆
= , and their paper (see specifically Fig. 16) seems to confirm this assumption for the 

exponent m. An obvious link between the two curves (Wöhler and Paris) is obtained when considering 
the life of a distinctly cracked specimen having an initial crack size ai. Under the assumptions of 
constant remote stress and no geometrical effects, for m>2 the following is obtained (where the 
dependence on the final size of the crack af  has been removed as relatively not influent): 
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This is to be considered as a Wöhler curve of the cracked component and the Wöhler equivalent 
exponent in these conditions, k’, to distinguish it from the “material constant” base value k, turns out 
to be exactly equal to the Paris exponent, k’=m. It is interesting however to remark that the SN fatigue 
curve depends on the initial crack size, ai. 
 
2. GENERALIZED PARIS’ LAW 

 
Quantized Fracture Mechanics (QFM, Pugno and Ruoff [7]), is prone to generalize the Paris’ equation, 

by substituting ( )aK  with an appropriate mean value, ( ) ( ) aa

a
aKaaK

∆+
=∆ 2* , , where a∆  is 

“fracture quantum”, a microstructural material constant. In order to consider the effect of this 
“apparent” additional crack sizes, it is natural in the study of fatigue crack growth to propose the 
following generalized Paris’ law:  
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where in turn ( )σ∆∆a . By integrating (6), the total number of cycles *P

CN  can be found for the 
fatigue collapse, arising when the crack length has reached its critical final value Ca , can be deduced 
as: 
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Accordingly, in the criterion of eq. (7) we can fix a∆  to recover, in the limit case of 0→a , the 
Wöhler’s prediction, eq. (1), which we write here as:  
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Hence, the quantum should be fixed so that : 

 
( ) W

C
P
C NaNa =→∆ 0: * ;       (9)

 
Thus, eqs. (6) or (7), with the position of eq. (9), can be consider a generalized Paris law. Note that 
such a law is of very simple application, and would allow one to study not only the final condition but 
also the evolution of the fatigue crack growth ( )( )NaN P* , where ( ) CaNaa ≤≤ .  
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As a simple example of application, let us consider the Griffith’s case (infinite elastic plate with a 
symmetric crack of length 2a). For this case the stress-intensity factor (mode I) is aK πσ=  and the 

full stress field at the crack tip is 
( )( )( )21

1

xaa
yy

+−
=σ  (where x is the distance from the tip). 

Accordingly, by integration: 
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By applying eq. (7), and integrating between an initial and a final value of crack size (we suppose 
af=ac and ai=a) it follows: 
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From eq. (11), a∆  can be obtained by solving: 
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Assuming aaC ∆>> , it gives: 
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For m>2 (usual case), –2<

21
1
m−

 <0, one obtains 
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i.e. a power-law of stress range with exponent (k-m)/(m/2-1).  For example, for typical values for a 
metal m=4, k=12, then (12-4)/(2-1)= 8. Hence, ( )σa∆  increases remarkably with the stress range 
similarly to what found from simpler independent reasoning (Ciavarella [8,9]). 
 
By assembling eqs. (11) and (14), one obtains: 

 

( )

12

12
1

21

12
1

2

2
*

−

























−

∆
+

∆
≈

−

−−

m

mCC
a

C
N

m

m

m

mk

mm
P
C

π
σ

πσ
;       

(15)

 



XXXIV CONVEGNO NAZIONALE AIAS – MILANO, 14-17 SETTEMBRE 2005 

 

which is the proposed integrated Paris law. Notice that obviously it is not a power-law type, but a 
more complicated law depending on initial size of the crack and stress range. An obvious limit case is 
for very large crack, for which one re-obtains the original Paris law. Hence, the notion of “large crack” 
can be made quantitative, indicating that: 
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Conversely, “short crack” for “<<”and returning to the typical cases of metals 2<m<k, then short 
crack is obtained if either the numerator (stress range) is large or the denominator is small.  Viceversa, 
the usual definition of short crack is (as discussed earlier) limited to the absolute size, probably 
because the stress range at which this is measured is not too far from the fatigue limit (or just above 
it). 
 
Eq. (15) is a “non-power-law” which we can consider as an “asymptotic matching” between the two 
due power-law regimes (Wöhler and Paris) at the extremes. In fact, Eq. (15) in the other limit of small 
a becomes: 

 

( ) W
C

m

mk

mm
P
C N

m
mCC

C
N =

−









−

∆

∆
≈

−−

12
121

1

2

2
* π

σ

πσ
;       

(17)

 
which is the original Wöhler law. Notice that since we impose to obtain the Wöhler law for negligible 
crack, we are not sure what is the reduction of the fatigue limit for the a0 crack size (this will be 
discussed further in the example cases paragraph). 
 
This result can also be interpreted in terms of the generalized Paris law, which reads for a Griffith 
crack:  
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For short cracks (a→0) one gets: 
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i.e. a Paris’ law power law in terms of σ∆  rather than K∆ . 
 
3. EXAMPLES 

 
To make some illustrative examples, we make use of Tab.1. To start with, we notice that the Wohler 
curve is more generally defined as a Basquin-Coffin-Manson equation in terms of amplitude of strain 
(where plastic strains are important for strain controlled experiments). The Basquin (elastic strain) 
curve in particular reads : 
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( )bf N2'2/ σσ =∆ ;       (20)
 

where f'σ  is called fatigue strength coefficient, b is fatigue strength exponent, and N the number of 
cycles for initiation. Table 1 gives various material properties taken from the LIFest database of 
Somat. To convert equation (20) into the notation of equation (1), just notice that b=-1/k and hence 
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Tabella 1: Mechanical properties of some steels 
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1045 MPa 621 382 948 -0,09 8,20E-13 m  3,5 7,1  

A27cast Ksi 70 40 177 -0,07 1,67E-11 in 3,8  270 

EN24 MPa 1277 1166 3956 -0,18 4,45E-11 m 2,45 4,5 72,5 

RQT501 MPa 590 472 892 -0,09 1,00E-10 m  1,72 5,35 80 

RQT701 MPa 825 735 955 -0,06 1,00E-10 m 1,72 5,35 113 
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Figure 1: An example of comparison for Basquin curve and Paris integrated (dashed) and generalized (solid) curves for 
a=5,50,500 microns (1045 steel) 

 
In fig. 1 an example is given of comparisons of the obtained generalized Paris equation (15), with the 
original integrated Paris law and the Basquin law, equation (1) or (20). Notice that the proposed 
equation deviates very little from either curves, being very close to the lower of the two curves.  
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Figure 2: An example of comparison for Basquin curve and Paris integrated (dashed) and generalized (solid) curves for 

a=5,50,500 microns (EN24 steel) 
 

CONCLUSIONS 

We have proposed a new equation generalizing Paris law for fatigue crack propagation by using the 
ideas of adding a fracture “quantum” to the standard LEFM. This leads to a new law which, upon 
integration, leads to a general equation for fatigue life. By imposing consistency with the Wöhler’s 
law for the uncracked material, in the limit when the new generalized law is used for short initial 
cracks, we get the appropriate “quantum crack” size.  
 
In these respects, the proposed model has the advantage of being an “interpolation procedure” between 
the celebrated Paris and Wöhler’s regimes (or perhaps, more elegantly, an “intermediate asymptotics” 
solution), and hence doesn’t have the risk associated to the inevitable “extrapolation” nature of the 
many other phenomenological but essentially empirical models.  
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