
Jeroo: A Tool For Introducing Object-Oriented Programming

Dean Sanders
Computer Science/Information Systems

Northwest Missouri State University
Maryville, MO 64468

sanders@mail.nwmissouri.edu

Brian Dorn
Department of Computer Science

Iowa State University
Ames, IA 50011

dorn@cs.iastate.edu

Abstract

Jeroo is a tool that has been developed to help students in
beginning programming courses learn the semantics of
fundamental control structures, learn the basic notions of
using objects to solve problems, and learn to write methods
that support a functional decomposition of the task. Jeroo
is similar to Karel the Robot and its descendants, but has a
narrower scope that Karel’s descendants and has a syntax
that provides a smoother transition to either Java or C++.
Jeroo has been class tested at Northwest Missouri State
University, and has proven to be an effective tool for
working with students in a beginning programming class.

1 Introduction

The first programming course has always been difficult to
teach. When computing curricula emphasized procedural
programming, we observed that control structures and
subprograms were among the more difficult topics for our
students to master. As curricula moved to object-oriented
programming, we observed that the list of difficult topics
expanded to include the concept of objects. This paper
introduces Jeroo, a tool that helps beginning students
master these difficult topics. Jeroo is an integrated
development environment and simulator that was inspired
by Karel the Robot[7] and its descendants.

In the mid 1980’s, the first author of this paper introduced
Karel to a beginning programming class at Illinois State
University. Lacking appropriate hardware to have the
students work with a simulator, all programs were
handwritten. Examples were acted out or “animated” on
the chalkboard. The lack of a simulator made it easy to
implement the students’ suggestions for modifications to

both the metaphor and the language. The metaphor
evolved to kangaroo-like animals hopping around an island
picking flowers and avoiding nets. The language was
modified to fit the metaphor and to add logical operators.

In 1990, Lai Kuan Tong completed work on Jessica, which
she developed as her master’s project at Illinois State
University. Jessica is a development environment and
simulator for the metaphor that was described above. The
results of her work were never published, but her Jessica
tool, was used successfully for several years at Illinois
State University.

In 1999, the senior author of this paper revisited the Jessica
project, and worked with students to define the
requirements and construct a prototype for an object-
oriented successor to Jessica. The result is the Jeroo tool.

2 Design Goals for Jeroo

A few major design goals guided the development of the
Jeroo tool.
 Design the tool for novice programmers.
 Keep everything as straightforward as possible.
 Keep everything visible at all times.
 Build a tool to use in just the first part of the course.
 Focus on just control structures, methods, and objects.
 Eliminate variables and data types.
 Keep the Jeroo syntax close to Java and C++.
 Provide animated execution and code highlighting.
 Allow sophisticated problems to be solved without

complicated code.

Frequently, we referred to these goals to curb our
enthusiasm for adding more features. The result is an
effective tool that is easy to use.

3 Capabilities of Jeroo

The Jeroo tool has three major components. The Jeroo
programming language has a basic set of features and a
syntax that provides an easy transition to Java or C++.
Editors allow a student to develop programs and arrange
the initial positions of flowers and nets on the island. The
runtime module provides both language translation and

visual execution of a Jeroo program. The user interface
consists of a single window in which all components are
visible at all times.

3.1 Language Features

The Jeroo class is the only one that is available within the
language. There are no data types and no variables other
than references to Jeroo objects. There are, however, seven
predefined directional constants. Relative directions are
specified by the constants LEFT, RIGHT, and AHEAD,
and compass directions are specified by NORTH, EAST,
SOUTH, and WEST. Integer literals can be used in some
of the constructors. Each Jeroo object has three attributes:
location, direction, and number of flowers that are always
visible and that can be affected by constructors and some of
the predefined methods.

 The Jeroo class has four constructors that allow a student
to specify the values of various attributes. These four
constructors provides a gentle introduction to the use of
arguments and the concept of overloading.

Jeroos have several predefined methods, which can be
partitioned into two categories: sensor methods and action
methods. These allow a Jeroo object to examine and
interact with its immediate surroundings.

Action methods are essentially void methods that allow a
Jeroo to move about the island and interact with any
flowers and nets that it may encounter. The hop() and
turn(relative_direction) methods allow a Jeroo object to
move about the island. A Jeroo may alter its environment
by picking up flowers, planting flowers, and disabling nets
with the pick(), plant(), and toss() methods, respectively.

A programmer may define additional action methods to
extend the behavior of the Jeroos. The user-defined Jeroo
methods lack arguments, but they can call other methods.
The ability to write additional methods is an effective way
to introduce modularity at an early stage.

The sensor methods are essentially boolean methods that
provide information about a Jeroo’s immediate
surroundings. For example, they provide answers to
questions like: “Is there a net to the right of this Jeroo?”
Two of these methods, atFlower() and hasFlower(), take
no arguments. Three of them, isNet(…), isWater(…), and is
Jeroo(…), require that a relative direction be provided as an
argument. Lastly, the method isFacing(…) requires a
compass direction as an argument. These six methods are
used to construct conditions for if and while statements.

The Jeroo language supports three fundamental control
structures: while, if, and if-else. The condition for each of
these statements is always constructed from one or more
sensor methods and the operators &&, ||, and !.

3.2 Editor Features

The Jeroo tool provides a straightforward way to edit both
the source code for a Jeroo program and the layout of the
island. The source code and island editors support printing
and the common file operations: new, open, save, and
saveAs. The source code editor also supports common cut,
copy, and paste operations.

Source code is entered into a text area consisting of two
tabbed panes. One pane is used to write the code for the
main method. The main method contains the code that
instantiates the Jeroos and uses them to solve a specific
problem. The second pane is used to write the code for
user-defined methods that extend the behavior of the
Jeroos. This physical separation of the main method and
the Jeroo methods is a subtle introduction to the creation of
multiple classes, a topic that will appear later in the course.

Island editing is essentially a point-and-click process.
Flowers and nets are added by selecting the appropriate
item and left clicking on the island. Right clicking on an
item will remove it from the island.

3.2 Runtime Features

The Jeroo application includes a runtime module that
illustrates the connection between source code and visible
actions. A program may be executed continuously from
start to finish, or it may be executed stepwise. In either
mode, the source code is highlighted as the program is
being run, and the actions of the Jeroos are animated
simultaneously.

 The runtime module also updates two status panels. One
panel displays textual information about the status of the
program (Compiling, Running, etc), while the other
displays the identifier (name), direction, and number of
flowers associated with each Jeroo object.

The combination of source code highlighting, animation,
and status information creates a rich learning environment.
Both syntax and runtime errors can be located quickly; the
semantics of the control structures are readily apparent; and
the interaction between methods is revealed.

4 Using Jeroo in the Classroom

Jeroo has been used successfully in a beginning
programming course at Northwest Missouri State
University. Our use of Jeroo is very similar to the way
Karel is used at the University of Waterloo [1]. Our three
credit hour course lacks a closed laboratory session, but it
is taught in a laboratory classroom with one computer per
student. This arrangement allows us to use some class time
for “hands-on” activities. We use Jeroo for the first four
weeks of a 14-week trimester. At the end of these four
weeks, we expect the students to understand the semantics

of basic control structures, to be comfortable with the
concept of using objects to solve a problem, to be
comfortable with the process of sending messages to
objects, and to be able to write methods that extend the
behavior of the Jeroos.

4.1 Week 1: Actions and Simple Methods

We have chosen to require that the students use “pencil and
paper” for all activities and homework in the first week.
This is a change from our previous practice in which we
had them copy and run a “Hello” type program. We
demonstrate simple programs as we discuss basic concepts,
but we keep the students away from the computer so that
their attention is on planning and reading computer
programs rather than on the technology.

By the end of the week, the students are able to design,
write, and critique simple programs that use one Jeroo.
These programs include the Jeroo’s action methods and
may include one or two simple user-defined methods. By
the end of this week, the students are comfortable with
zero-based counting (to identify locations on the island),
and are familiar with modularization. We introduce some
basic terminology (syntax, object, message,
instance/instantiation), but we don’t expect the students to
fully understand these terms until later in the course.

4.2 Week 2: Multiple Objects and Repetitions

During the second week, we solidify the material from the
first week, paying particular attention to the meanings
behind the terminology. We have the students work with
multiple Jeroos and have activities that emphasize three
concepts: all Jeroo objects have a common behavior, any
user-defined method applies to all Jeroos, and different
Jeroos have different attributes (location, direction, flower
count, and appearance). In addition to working with
multiple Jeroo objects, the students learn to use while loops
and to write simple conditions using the sensor methods
and the ! operator.

4.3 Week 3: More Control Structures

During this week, we expand our repertoire of control
structures to include if and if-else. We have activities and
assignments that emphasize the difference between
repetition and selection structures. Now that we have
expanded our repertoire, we introduce the concept of nested
control structures. We also introduce the notion of
defensive programming by using if statements to guard
against run time errors such as hopping into a net.

4.4 Week 4: More Sophistication

During the fourth week, we expand our use of conditions to
include the && and || operators. Our examples and
assignments become more sophisticated, but sensible

modularization keeps the complexity manageable. Our
final assignment with Jeroo is a challenging problem that
we expect the students to tackle in pairs, but we do allow
students to work alone if they choose to do so.

4.5 Weeks 5 – 14: On to Java

By the start of the fifth week, the students are ready to
move from Jeroo to Java. The transition from various
incarnations of Karel to a “real” programming language has
always been difficult. There are three aspects to this
difficulty: a change in syntax, a change in development
environment, and a conceptual change.

The change in syntax is the most difficult for the students.
Despite their proven value as instructional tools, Karel and
his descendents all have a syntax that is rooted in Pascal.
In designing Jeroo, we took great pains to ensure that the
syntax of the Jeroo language was nearly identical to that of
both Java and C++. The only difference is that we have
used a simplified header line for each method. This
language design has proven to be beneficial, because the
students view Java as having the same structure as the
Jeroo language but with additional capabilities.

Some have tried to eliminate the change in development
environment by building Karel as an extension to an
existing language [1]. In designing Jeroo, we considered
this approach, but chose to develop Jeroo as an independent
microworld in which the source code, the island layout, and
the runtime behavior are always visible at all times. We
feel that this provides a simpler starting point for novice
programmers. We have encountered no major difficulties
as we move from Jeroo to the BlueJ [6] programming
environment that we use for the Java portion of the course.

The conceptual change has been the most difficult for us to
solve. The students have become accustomed to writing
programs that have a certain visual appeal. We want
students to become conversant with data types (int, long,
float, double, boolean) and the String class. We also want
them to be comfortable with using and writing both value
returning methods and methods with formal parameters.
Where do we begin?

After working with Jeroo for a few weeks, we feel that we
need to avoid going back to console I/O or pseudo-console
I/O using dialog boxes as substitutes for prompt-read style
input and println style output. Currently, we are
experimenting with various combinations of graphics
packages and packages for creating simple user interfaces.
Our goal is to introduce console output during the last two
weeks of the course, and to delay keyboard input until the
second course.

5 Perceived Benefits

We have observed several benefits associated with our use
of Jeroo. These benefits fall into three broad categories:
programming concepts, programming practices, and
student satisfaction.

From the perspective of programming concepts, we feel
that the students have a better understanding of control
structures, methods, and objects. The early introduction of
control structures allows earlier and more frequent use than
in or former approach to the course.

By the end of semester, most students routinely decompose
problems and plan solutions before they start writing code;
their designs are better. We attribute this to their earlier
experiences with Jeroo in which decomposition and
planning are more natural activities than they are in text
and number processing programs. We have also observed
that the students are better at reading and tracing code, but
this is due to the fact that we started these activities with
Jeroo, which is easier to read, and continued them
throughout the semester.

Increased student satisfaction is one of the greatest benefits
we have observed. At the end of the Jeroo portion of the
course (the first four weeks) the students appear to have
more confidence in their own ability than the students had
after the first four weeks of our former approach to the
course. They end the course with more enthusiasm for
programming, but this is probably due to a combination of
Jeroo and the revisions to the course that were a
consequence of our use of Jeroo.

What was lost when the use of Jeroo became part of the
course? We feel that we lost nothing other than the ability
to rely on a textbook. We can cover all the same material,
we just teach it differently.

6 Comparison to Related Tools

The original Karel has sired several descendants that
support an object-oriented style of programming. Those
who have used these tools report results similar to those we
have observed. This section compares Jeroo to a few
representative tools. It is not intended to be a complete list.

Karel++ [2] is an object-oriented descendant of the original
Karel. Karel++ was designed as the entry point for
students of C++ . Karel J. Robot [3] has been developed
recently to be a Java-based sibling of Karel++.
JKarelRobot [4, 5] is yet another descendent of Karel. This
tool supports three different programming languages: C++,
Java, and LISP. The Java based version is also known as
Jarel. Finally, students at the University of Waterloo use
another descendant of Karel [1]. This version was created
as a Java package that can be imported into a standard Java
program.

The following subsections summarize some important
differences between the Jeroo tool and Karel’s descendants.
Most of the differences are in the syntax of the
programming language. Karel and his descendants have a
syntax that is rooted in Pascal. The Jeroo tool has a syntax
that mirrors Java and C++.

6.1 The Development Environment

Integrated development environments exist for Karel++,
Karel J. Robot, and JKarelRobot, but these tend to use
multiple windows or screens. The Jeroo tool uses a single
window in which all components are visible at all times.

6.2 Karel’s World Versus Jeroo’s Island

Karel’s world is modeled after the first quadrant in a
Cartesian coordinate plane. Karel’s world extends infinitely
far to the North and East. A location in Karel’s world is
specified as a (row,column) pair. The row and column
numbering begins at one in the southwest corner.

Jeroo’s island is modeled after a two-dimensional array.
The island is bounded on all sides. A location on the island
is specified as a (row,column) pair. The row and column
numbering begins at zero in the northwest corner. This
provides a nice introduction to zero-based counting,
provides a preview of the way we typically visualize a two-
dimensional array, and corresponds to a typical screen
coordinate system.

6.3 Syntax for the “main” Method

Jeroo “main” Karel
method main() task
{ {
} }

6.4 Conditions

A condition (test) in Karel’s languge is just one of several
keywords. In general, there are no logical operators. A
condition in Jaroo’s language is formed by invoking sensor
methods and combining them with logical operators.

6.5 Advanced Features

Karel’s descendants tend to require that students write new
classes to extend a basic robot class. They also include
features such as data types, variables, and concurrency.

Keeping our audience and intended use in mind, we chose
not to require that students write classes. Instead, we allow
them to write additional methods to extend the behavior of
all Jeroos. Classes come later when we study Java per se.
Our experience with Jessica indicated that could meet our
education objectives without data types and variables. We

eliminated concurrency because the non-deterministic
execution would confuse rather than enlighten the students.

7 Summary

Jeroo has proven to be an effective tool for teaching the
concepts of objects, methods, and control structures to
novice programmers. The single-screen development
environment is easily mastered. The animated execution
and concurrent code highlighting aid understanding and
help maintain interest. The carefully chosen syntax
provides a smooth transition into either Java or C++. The
use of Jeroo allows us to cover the same topics, but teach
them differently and in a different order. If the transition
from Jeroo to Java or C++ is planned carefully, the result is
an improved learning experience.

References

[1] Becker, B. W. Teaching CS1 with Karel the Robot in
Java. Proceedings of the Thirty-Second SIGCSE Technical
Symposium (February 2001), ACM Press, 50-54.

[2] Bergin J., Stehlik, M., Roberts, J. and Pattis, R.
Karel++: A gentle Introduction to the Art of Object-
Oriented Programming, John Wiley & Sons, 1997.

[3] Bergin J., Stehlik, M., Roberts, J. and Pattis, R. Karel J.
Robot: A gentle Introduction to the Art of Object-Oriented
Programming in Java, 2002.
Online. Internet. Sept. 6, 2002. Available WWW:
http://csis.pace.edu/%7Ebergin/KarelJava2ed/Karel++Java
Edition.html

[4] Buck, D. and Stucki, D. JKarelRobot: A Case Study in
Supporting Levels of Cognitive Development in the
Computer Science Curriculum. Proceedings of the Thirty-
Second SIGCSE Technical Symposium (February 2001),
ACM Press, 16-20.

[5] Karel the Robot, 2002. Online. Internet. Sept. 6, 2002.
Available WWW: http://math.otterbein.edu/JKarelRobot

[6] Kölling, M. and Rosenberg, J. An Object-Oriented
Program Development Environment for the First
Programming Course. Proceedings of the Twenty-Seventh
SIGCSE Technical Symposium (February 1996), ACM
Press, 83-87.

[7] Pattis, R. E. Karel the Robot: A gentle Introduction to
the Art of Programming, 2nd ed., John Wiley & Sons, 1995.

Appendix A: A Sample Program

A Jeroo starts in the southwest corner facing East. The
Jeroo must clear an unspecified number of hurdles with
random heights and spacing to locate and pick a flower. A
possible layout for the island is shown in Figure 1.

 Figure 1

method main() {
 Jeroo kim = new Jeroo(25,0);
 while (!kim.atFlower()) {
 kim.run();
 if(kim.isNet(AHEAD)) {
 kim.jumpHurdle();
 }
 }
 kim.pick();
}
======= user-defined methods =======
method run () {
 while(!isNet(AHEAD) && !atFlower())
 hop();
}

method rise() {
 while(isNet(RIGHT))
 hop();
}

method descend() {
 while(!isWater(AHEAD))
 hop();
 turn(LEFT);
}

method jumpHurdle() {
 turn(LEFT);
 rise();
 turn(RIGHT);
 hop();
 hop();
 turn(RIGHT);
 descend();
}

http://csis.pace.edu/%7Ebergin/KarelJava2ed/Karel++JavaEdition.html
http://csis.pace.edu/%7Ebergin/KarelJava2ed/Karel++JavaEdition.html
http://math.otterbein.edu/JKarelRobot

	�
	Figure 1

