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The increasing use of computerized tools for virtual manufacturing in workstation design has two main advantages over traditional
methods; first, it enables the designer to examine a large number of design solutions; and second, simulation of the work task may
be performed in order to obtain the values of various performance measures. In this paper a new structural methodology for the
workstation design is presented. Factorial experiments and the response surface methodology are integrated in order to reduce the
number of examined design solutions and obtain an estimate for the best design configuration with respect to multi-objective

requirements.

1. Introduction

1.1. Background

The design and planning of manual workstations and the
determination of proper work methods to be employed
are challenging tasks. In order to achieve optimal eco-
nomic and ergonomic results, a comprehensive study of
the task at hand must be conducted and several para-
meters and constraints have to be considered. Often, this
is done using methods engineering approaches.

Methods engineering consists of a step-by-step process
of project definition; data gathering and analysis; for-
mation of alternative methods and workstation layouts;
and evaluation of each alternative. The best fitting al-
ternative is then selected and is designed in detail (Niebel
and Freivalds, 1999).

Motion and time study is at the heart of methods en-
gineering. It is intended to determine the standard time
for task completion by an experienced well-trained
worker and to analyze the worker’s motion sequence in
order to eliminate unfavorable motions and to maintain
efficient ones. Extensive research in the area has yielded a
set of principles of motion economy aiming to promote
correct utilization of the human body and proper ar-
rangement of the workstation and design of tools and
equipment (Barnes, 1980).

Two classes of measures are used to evaluate a given
design: (i) economic measures based on completion time
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and productivity; and (ii)) ergonomic measures such as
energy exertion, posture analysis and physical loads. In
fact, the two classes of measures are associated such that
poor ergonomic planning often results in economic
damages (e.g., low performance and liability suits).

Current research, which is related to methods engi-
neering and the design of manual workstations, branches
into two domains. The first deals with more technical
aspects of anthropometric modeling and simulation of
human movement (Zhang and Chaffin, 1997; Chaffin,
1997; Zhang et al., 1998). The other domain deals with
the development of methodology set to exploit the
emerging technologies in design applications such as
CAD, Rapid Prototyping and Virtual Reality (Nayar,
1995; Braun et al., 1996; Arzi, 1997, Waly and Sistler,
1999).

Modeling of human motion is an evolving field of re-
search. A simple modeling of the torso and right arm,
including four segments with seven degrees-of-freedom
(DOF), is presented in Zhang et al. (1998). A simulated
annealing is used for setting weights to the DOF, which
are associated with the relative movements, in order to
efficiently resolve the kinematics redundancy. However,
as the number of articulations involved increases, the
number of DOF becomes almost measureless (Chaffin,
1997). Although it is still a great mystery how the brain
resolves this kinematics redundancy, many models at-
tempt to tackle the problem by using some form of op-
timization method to determine the aperture of each joint
in a fixed posture. All these models require very complex,
often non-tractable computations and fail to accurately
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represent the actual dynamic movement of the limb. Any
attempt to model dynamic motion by sequencing a series
of static frames requires additional dynamic information,
such as the intended direction of the motion, and results
with a more complex problem (Zhang and Chaffin, 1997).
Therefore, one should be careful in selecting an anthro-
pometric model for workstation planning. It is important
that the model approximates the human motion as real-
istically as possible. In particular if the model is used as
a basis for an optimization procedure, as done in this
paper.

Several attempts have been made to apply computer
technology to methods engineering and workstation de-
sign. For instance, Braun et al. (1996) presented an ex-
ample of computer-aided planning of a manual assembly
workstation using a system called EMMA. The described
system was based on AutoCAD and consisted of a data-
base of workstation elements (such as bins and tools) and
anthropometric data combined with an MTM-1 analysis
module. Six ergonomic measures corresponding to six key
principles of workstation design were defined: work area
coverage; coverage of the optimal visual area; utilization
of left and right hand; balanced motion patterns; degree
of control; and quota of sensomotorical motions. Their
values were formulated through MTM analysis. In ad-
dition, an economic measure was directly derived from
the standard assembly-time, thus making an on-line
evaluation of any candidate configuration of the work-
station. Optimization of ergonomic and economic mea-
sures can be achieved through an interactive process of
small adjustments to workstation parameters such as bin
sizes, arrangement of bins and tools in the workplace, and
product design. Since no economic evaluation was asso-
ciated with the ergonomic measures, Braun et al. (1996)
proposed to improve both types of measures separately.
Therefore, their method focused on finding a good solu-
tion relative to both measures rather then finding a strict
optimal solution.

Arzi (1997) suggested the integration of more advanced
technology in the design process. Technology capable of
effectively simulating human movement, rapidly gener-
ating workstation prototypes and allowing designers to
virtually “step in” to the computer model and examine it
using Virtual Reality (VR). The author introduced a
framework for Rapid Prototyping (RP)-based system and
specified a set of basic modules: Modeling module (the
heart of the system); Safety and Health module; Physical
Environment module; Anthropometric and Biomechani-
cal Design module; Controls and Display Design module;
Task Evaluation module; Time Standards Generation
module; and various User Ultilities. A preliminary partial
RP system was implemented for the redesign of a super-
market cashier workstation. JACK software was used to
model alternative configurations of the workstation tak-
ing anthropometric and biomechanical aspects into con-
sideration. A simple computer program translated JACK
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motion commands into MTM-2 vocabulary in order to
produce time standards. Results showed an overall im-
provement in measures for the selected design objectives.

Computer-oriented approaches, such as the above,
present a significant improvement over traditional meth-
ods. They reduce the required time and effort for con-
structing physical models, and allow the designer to
evaluate more alternatives faster and more precisely. Yet,
a step-by-step interactive search for a satisfactory solu-
tion remains inefficient because of the limited number of
configurations that can be examined, and the small
number of conflicting considerations that can be handled.
In their survey, Zha et al. (1998) briefly reviewed design
and simulation approaches in manual assembly layouts,
and concluded that those are mostly of sequential and
non-intelligent nature and are therefore insufficient for
concurrent intelligent design.

A considerably different approach has been represented
by Gilad and Karni (1999), who developed the ERGOEX
— an expert system suited for professional ergonomists as
well as novices. The system receives various data about
the worker and the working environment, and generates
quantitative and qualitative recommendations based on
ergonomic knowledge bases. While an expert system ap-
proach may improve significantly the designer’s accessi-
bility to accumulated knowledge in ergonomics, it is
rather inflexible and is not capable of analyzing funda-
mental aspects of the design, such as worker’s motion and
performance time.

In this paper, we follow the work of Nayar (1995),
Braun etz al. (1996), and Arzi (1997) by exploiting com-
puterized applications for the design of manual work-
stations. In order to overcome the deficiencies pointed
out by Zha et al. (1998), we suggest a systematic design
heuristic based on Fractional Experiments (FE) and Re-
sponse Surface Methodology (RSM). Fractional experi-
ments are used to generate candidate configurations of a
workstation and to build empirical models relating design
factors to various objective functions. Based on these
models, RSM is utilized to optimize the design factors
with respect to economic and ergonomic multi-objective
measures.

1.2. Factorial experiments and response surface
methodology

Design Of Experiments (DOE) is applied to assist an
investigator (designer) in gaining information about a
particular process or system through experiments. Fun-
damental questions arise in situations of limited experi-
mental resources, such as, “which factor affects the system
response?” or “how to efficiently improve a given system
configuration?” Factorial Experiments (FE) and Re-
sponse Surface Methodology (RSM) provide a collection
of statistical techniques useful for modeling, optimizing
and addressing the above as well as other DOE questions.
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FE are applied to systems that are characterized by a
combination of factor-levels; that is, where each of the
control factors is fixed to one out of many feasible levels.
FE are often used as screening experiments, in which
many factors are considered with the purpose of identi-
fying those that have a significant effect on the response
(Montgomery, 1997). Screening experiments are useful in
early stages of the experimentation, when several discrete
factors are tested for their significance. The FE that
contains the smallest number of experiments with which k
factors can be investigated is the 2% design. In this design,
each of the factors has two levels — “high” and “low” —
and therefore the response is assumed to be approxi-
mately linear over the range of levels. If the experimenter
suspects a higher-order relation between the response and
the factors and if experimental resources are sufficient, it
is better to consider a higher-order design such as the
CCD or the BBD (Montgomery, 1997). Once the experi-
ments are performed, model-fitting techniques can be
implemented to portray analytically the relations between
the input factors and the response. Regression analysis,
which is based on the method of least squares, is probably
the most popular method for model-fitting. Least squares
can be used for curve fitting without necessarily relying
on the assumption that the departure (the differences
between the response and the regression model) behaves
like white noise (Sacks et al., 1989; Montgomery, 1997).
This is important for the design and analysis of computer
experiments with deterministic outputs, as performed in
this study.

When design factors are continuous, the classical RSM
is an efficient method for optimization of the system
configuration. In these cases, FE are applied primarily to
obtain an empirical response model and improve an ini-
tial configuration. Then the RSM can be applied to fine-
tune the values of the continuous factors in obtained
solutions, following a procedure which is similar to those
proposed by Shang (1995) and Ben-Gal et al. (1999).

The RSM uses the empirical response model seeking to
relate a response Y to the values of control factors
X1,%2,...,Xx, where the underlying relationship is un-
known. The empirical model is written as:

Y =g(x,.. ,By) + ¢, (1)

where g approximates an unknown function by a first-
order or a second-order polynomial in xj,...,x,; By, ...,
B, are the estimators of the unknown system parameters;
and ¢ represents the experimental error. The estimate of
the experimental error is based on high-order interaction
effects when using a factorial design with deterministic
outputs. In practice, estimators are usually obtained by
the method of least squares or maximum likelihood from
a set of experiments. The experiments are represented by
the design matrix, X, whose columns are associated with
the system factors and rows correspond to various system
configurations.

Xy B, ...
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RSM provides a contour representation of the model
by local approximation (a few terms of the Taylor ex-
pansion series) over some limited region. The number of
unknown parameters depends on the number of factors
and on the order of the model (Myers and Montgomery,
1995). Using the smoothness features (differentiability) of
the empirical model and the method of steepest descent,
the RSM provides a set of adjustments to the factor
values (with respect to the direction of the gradient) to
improve the system response. In the new region, which is
defined by the neighborhood of the improved factor
values, a new approximating function is selected and a
new direction of improvement is estimated in an iterative
manner.

2. The proposed methodology

2.1. Modeling the design parameters

The proposed methodology is based on improving
an initial workstation configuration, called the initial
solution. The initial solution may be obtained from an
existing workstation or by simulation of Virtual Manu-
facturing (VM) design tools. A set of system factors
(design parameters) has to be defined in order to be
modified during the optimization stage.

We recommend choosing factors and conditions that
adhere to the following properties. First, they should be
suspected of influencing the measures of interest. Second,
they should be controllable factors; factors that can be
manipulated in reality not only physically, but also from
an economical (and/or legal) point of view. For example,
there is no reason to model factors representing a new
system if the management does not approve purchasing
such a system. Third, the specified factors should be easily
and accurately modeled by the VM tool. For example, the
quality level of a product might be hard to model by a
VM tool and therefore should be ignored; on the con-
trary, factors related to physical measures and locations
of entities are simply modeled by the VM tool and easily
manipulated during the optimization stages. Finally, it is
of interest to include factors that are continuous in nature
and, therefore, adequate for RSM optimization. Factors
that represent distances, angles, weights, or other charac-
teristics of the task environment are usually continuous
and therefore are excellent candidates for the proposed
method.

The knowledge regarding which factors to include in
the model is system-specific and considered as an art. It is
usually based on experience, which is hard to express
algorithmically. When such experience does not exist, it is
recommended to start the suggested procedure with a
large set of candidate factors and use a screening exper-
iment to identify those that have a significant influence on
the measures. Further discussion on types of systems that
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can be represented by a factorial model can be found in
Ben-Gal ef al. (1999).

2.2. Multi-objective approach to the workstation design
problem

Performance measures that are associated with the
workstation design problem are usually characterized as
economical or ergonomic measures. Often one can iden-
tify the trade-off between these two types of measures.
For example, a problematic and inconvenient posture in
an assembly workstation can be improved by changing
the orientation of the product. Such an action may re-
quire additional high-cost equipment as well as changes
in the product design, and results in an increase of the
cycle time. Jung and Freivalds (1991) presented a trade-
off between worker safety and productivity in lifting
tasks. They have shown that increasing the load improves
productivity, but, on the other hand, increases the
worker’s risk for musculoskeletal disorders. Hence, one
can conclude that both economical and ergonomic mea-
sures should be considered in a workstation design while
their relative importance should depend on the task per-
formed and the overall objective.

A difference between economical and ergonomic mea-
sures is that in economical measures, the relationship be-
tween the measure (such as cycle time, number of products
and idle time) and the real objective (profitability for ex-
ample) is relatively clear (although not always). On the
other hand, the relationships between ergonomic mea-
sures and objectives, such as decreasing risk of injury or
improving working conditions, are much less clearer. This
might be one reason why many papers in the area of
workstation design focus on a single ergonomic aspect
of the human operator, such as biomechanical strength,
metabolic rate, reach assessment, or time predictions
(Feyen et al., 2000). This limitation has been discussed in
the literature. Porter et al. (1995) as well as Feyen et al.
(2000) applied for an integrated design tool that minimizes
the risk of injuries. Jung and Freivalds (1991) emphasized
the importance of considering multiple measures in the
design stage due to possible interactions between different
measures that may lead to conflicting conclusions if these
measures are considered separately.

Once an integrative approach is adopted, the perfor-
mance measures should be defined. The National
Academy of Sciences (Anon, 1998) presents a list of
factors that may affect the risk for disorders, such as
work procedures, equipment and environment, organi-
zational factors, physical and psychological factors of
individuals, non-work-related activities and social fac-
tors. In his review Hagberg (1992) divides exposure
variables into five categories: posture; motion/repetitions;
material handling; work organization; and external fac-
tors. Moore and Garg (1995), in analyzing risk factors of
distal upper extremity disorder, mention force; repetition;
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posture; recovery time; and type of grasp as the impor-
tant factors. Most of the above factors depend both on
the work procedures and workstation design. In this re-
search, we deal with the workstation design only. We
assume that the structure of the task is already given and
aim to provide the most suitable physical environment for
doing the job. Accordingly, the measures that are con-
sidered here are those that are affected by the workstation
design rather than the work orders. Measures such as
number of repetitions and exposure time to the risk factor
are disregarded in this study. The factors addressed in the
following case study (without loss of generality since the
proposed approach can be applied with any set of mea-
sures) are: (i) the cycle time (economical measure, equals
the inverse of the worker’s throughput rate); (ii) the
metabolic energy consumption according to Garg guide-
lines, which is a measure to the amount of effort spent on
the task (physiological measure); (iii) worker’s posture
during the task (according to OWAS guidelines) that may
indicate risk of injury; and (iv) lifting limitations ac-
cording to NIOSH guideline (biomechanical). As seen
later, these measures (that are widely discussed in Section
3.2) are sensitive to changes in the physical structure of
the workstation as represented by the design factors.

In order to combine multiple objectives into a single
one, the scaling of each objective has to be determined. In
general, the NIOSH report (Anon, 1997) contains limited
quantitative information about exposure-disorder rela-
tionship between risk factors and musculoskeletal dis-or-
ders. A similar view is presented by the National Acadamy
of Sciences (Anon, 1998), reporting that although some
statistical results have been obtained regarding the rela-
tionship between individual factors and musculoskeletal
disorders, they rarely show high predictive value. Ac-
cording to this report, dealing with the combined inter-
action is much more complicated and much work is still
required. In addition, the report states that further re-
search is needed on models and mechanisms that underlie
the established relationship between causal factors and
outcomes, as well as about the relationships between in-
cremental changes of the environmental load and incre-
mental responses. Hagberg (1992) claims that much has to
be done in investigating the exposure-effect relationship
between physical exposure and musculoskeletal disorders.
Moore and Garg (1995) specify the reasons for the ab-
sence of practical physiological, biomechanical, or psy-
chophysical models that relate job risk factors to increase
risk of developing upper extremity disorders. They state
that dose-response (cause—effect) relationships are not
well understood, that measurement of some task vari-
ables, such as force, is very difficult in an industrial setting,
and that the number of task variables is very large. As a
result, most research assumes monotonic or linear risk
factor-disorder relationship. McCauley-Bell and Crump-
ton (1997), who suggest a fuzzy linguistic model for
predicting the carpal tunnel syndrome risk, assume a
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monotonic relationship between the variables and the risk
level. Jung and Freivalds (1991), assume a linear rela-
tionship between the frequency of doing a task and bio-
mechanical and physiological stress. The only exception is
found in the review of Winkel and Westgaard (1992) who
raise the fact that sometimes lack of physical exposure
(inactivity) may cause a negative effect on the body. Aside
from this exception, (which we believe is irrelevant to the
environment addressed in our study) they also assume an
increasing monotonic relationship between the risk fac-
tors and the disorder. Based on the above, we have de-
cided to adopt linear scaling in our case study, while
emphasizing that further research has to be conducted to
identify precisely the risk factors-disorders relationship.
A basic method to combine multiple objectives into a
single one is to use a weighting scheme. Due to the lack of
knowledge regarding the factor-risk relationship, one
should not expect to find developed weighting schemes in
the ergonomics literature. Not surprisingly, the literature
reveals that although many recommendations exist for an
integrated approach where several measures have to be
considered simultaneously, almost none apply a weighting
scheme or uses another integrating method. Even those
papers that address multiple measures refer to each mea-
sure separately, for example those of Laring et al. (1996),
Gilad and Karni (1999) and Feyen et al. (2000), or suggest
building an ergonomic profile (Hagberg, 1992) without
using any weighting scheme. One approach for setting
weights that was found in ergonomics literature is the
Analytic Hierarchy Process (AHP) developed by Saaty
(1980). The AHP is used by McCauley-Bell and Crumpton
(1997), while investigating the prediction of carpal tunnel
syndrome, and by Jung and Freivalds (1991). It is a tool
for structural collection and analysis of expert opinions,
based on a comparison between couples. This tool is
suitable for handling a problem with multiple factors, and
provides a structural sequence of steps. The general idea
of the AHP is that even for an expert it is difficult to
compare several factors simultaneously in order to set
their weights. Instead, the expert compares a couple of
factors each time, and indicates their relative importance.
The outcomes of the method are a normalized weighting
scheme and a consistency grade of the experts’ decisions.
In additional, the AHP enables us to combine opinions of
experts from different areas (production, manufacturing,
ergonomics). Since the major contribution of this study
does not lie in the weighting scheme, the weights in the
case study were determined arbitrarily. Nevertheless, we
recommend that a real application of the proposed ap-
proach, a concrete method of combining the performance
measures, such as the AHP approach, be used.

2.3. Outline of the methodology steps

The suggested heuristic, which applies the new method-
ology, consists of two parts. The first part is based on
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factorial experiments and handles discrete search over
combinations of factor-levels for improving the initial
solution. In the second part, the solution that was ob-
tained earlier is further refined by changing the continuous
factors using RSM. The algorithm is illustrated in Section
3.3 by presenting a detailed case study. Its flow chart is
presented in Fig. 1 and described in the following steps.

Step 1. Initialization

Given a feasible configuration of the investigated system
(either from an existing system or by initial modeling) and
a set of performance measures, denote the initial config-
uration of n design factors by x,. That is, xq is an n-
dimensional vector of factor levels (system settings).

Step 2. Modeling and feasibility test

Use a virtual manufacturing tool, such as eMpower used
here, to model the existing system and check the model
validity by simulations. It is assumed that the VM model
can be used to evaluate different design configurations
accurately.

Step 3. Alternative solutions

Generate a discrete space of M candidate design config-
urations. Use a screening factorial design where the levels
of each factor are selected as follows. Start with the initial
design and specify a range for each design factor that
contains the current factor level. ¢ discrete points on such
range define ¢ possible levels per factor and result in a ¢”
full-factorial design. For limited experimental resources,
a 2" full-factorial design can be used by assuming a linear
response model. Such design is obtained by considering
only the endpoints of the factor ranges. Otherwise, the
number of the examined systems may be reduced by using
Fractional Factorial Experiments (FFE).

Step 4. Simulation and feasibility test

Simulate each of the design configurations. Check the
feasibility of each solution, e.g., lack of collisions between
environmental objects. Eliminate non-feasible solutions.

Step 5. Analysis

Analyze the performance measures obtained from the
simulations. Use a multi-objective function, denoted by
D(-), to evaluate the designs with respect to pre-defined
performance measures and to select the best system (we use
the desirability function suggested by Derringer and Suich
(1980), however, different multi-objective functions can be
used as well). Denote the best design solution known thus
far by x*. If all design factors are discrete (i.e., qualitative
factors or ordinal discrete factors), go to Step 8. If there
exist continuous design factors, go to Step 6.

Step 6. Applying optimization RSM techniques

to refine the design solution

Apply response surface techniques for model fitting.
Check the validity of the model, for example, by using
residual analysis. If required, fit a higher-order design
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1. A given feasible solution , x;
setj=0

l

2. Model and simulate the system

}

A 4

3. Generate a discrete-space of
candidate solutions using x, and
factorial experiments

l

4. Perform simulations and feasibility
tests of the obtained solutions

l

5. Analyze the simulation results, and
use a multi-objective function to
select the best solution x*

Are there any
continuous factors?

Yes

6. Apply RSM to find the estimated
best solution x; with respect to the
continuous factors

l

7. Simulate and perform validity and
feasibility test of the best solution x;

9. Set x,=x*

Fig. 1. Steps of the suggested methodology.

If x is feasible,
and D(x*)>D(xg)
then x*=x

R

8. Is D (x*) - D(x,)) <9,
or j=J

10. Applying x*
END

such as Central Composite Design (CCD). Use the RSM
to find optimal factor configurations on a continuous
scale that yield the expected best solution. Apply a multi-
objective optimization technique. Denote the best design
solution obtained from the RSM by xg.

Step 7. Validation and feasibility test

Simulate xg and evaluate its expected multi-objective
performance, denoted by D(xgr). If xg is feasible and
D(xr) is found to be superior than D(x*), the expected
multi-objective performance of the best design obtained
thus far, set x* = xg.

Step 8. Termination condition

If the improvement of the multi-objective performance is
smaller than ¢, i.e., D(x*) — D(x,) < J, or the maximal
number of iterations, J, has been obtained, go to Step 10.
Otherwise go to Step 9.

Step 9. New search for best design

Set xp = x*, thus defining the best design configuration
found thus far as a new initial solution. Increase the it-
eration counter by one, i.e., j = j+ 1, and go to Step 3.

Step 10. Termination
Apply x* to the investigated system. END.
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3. An illustrative real-life case study

In this section, a detailed case study of an ergonomic
design of a workstation is presented. For simplicity rea-
sons, we chose to illustrate the suggested methodology by
designing a simple workstation. In particular, we consider
a workstation used for packaging of fruits in bins (Elbaz,
1999). Most of the routing and the sorting tasks are fully
automated. However, final packaging of the finest quality
fruits is performed manually. The most expensive tasks in
the process are those involving direct manpower.

The case study is organized as follows: (i) a brief de-
scription of the system, the underlying operational pro-
cesses and the factors are provided; (i) a detailed
description of the performance measures is given; and (iii)
a detailed implementation of the suggested methodology
is described by using RobcadMan/eM Power — a VM
software package of Tecnomatix Technologies Ltd.

3.1. Description of the system

The workstation for the case study is part of an existing
industrial citrus packing house. The main functions in the
packing house are as follows:

Fruit reception.

Initial cleaning process.

Fruit classification (according to size and quality).
Packaging fruit in bins.

Bin loading for transportation.

The bottleneck of the whole process is the packaging
line, which consists of numerous manual workstations.
An attempt to replace humans with industrial robots
failed in the past, due to low throughput and low quality
of the robotic workstations. The worker performs the
repetitive task of packing fruits, while staying at the same
positions all day long. At the end of the day, many
workers are complaining of shoulder aches and lower
back aches. The objective of redesigning the packing
workstation is dual: to maximize throughput and to
create a suitable ergonomic working environment for the
workers.

A drawing of the workstation is presented in Fig. 2.
The process begins with the arrival of the fruit to the
workstation after the classification stage by an upper
conveyor, up to the serving shelf. The worker then
manually delivers the fruit from the conveyor into the bin
until the bin is full. In this stage, the full bin is replaced by
a new one, and a new cycle begins. In more detail, the
manual work consists of the following four stages:

1. Bin Preparation — the worker walks to a pack of raw
material of bins, takes one and prepares the bin by
folding its walls. Then the bin is positioned on the
working surface.

2. Fruit packing — the main task. The worker, using
two hands, takes two pieces at a time and puts it
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inside the bin. This process proceeds until the bin is
full.

3. Bin marking — the worker attaches several tags and
a bar code on the outer bin surface.

4. Bin dispatching — the worker closes the bin and
pushes it toward the lower conveyor.

As mentioned above, the main task is the fruit packing
(stage 2), and in this case study we focus on ergonomic
improvement related to this task.

Four design factors are considered. All the factors are
location (positioning) factors of the packaging worksta-
tion. In particular (see Fig. 2):

e Factor A is the horizontal distance in millimeters
between the edge of the serving shelf and the edge of
the working surface.

e Factor B is the vertical height in millimeters of the
serving shelf.

e Factor C is the vertical altitude in millimeters of the
lower edge of the working surface.

e Factor D is the angle in degrees of the slope of the
working surface.

3.2. The performance measures and the objective function

In this section, we describe the four performance mea-
sures that are selected and later integrated using a multi-
objective function. The aim is to increase the throughput
rate (capacity) of the workstation, as well as to create a

Upper conveyor

Servingh shelf A

Lower conveyor

== | »p 7

B Working
surface

v ot

Fig. 2. The packaging workstation.
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suitable and adjustable ergonomic environment that ac-
commodates a large percentage of the workers popula-
tion, as suggested in Niebel and Freivalds (1999). The
considered measures are:

e Ttask. The packaging cycle time (an economical
measure) is a measure for the productivity of the work-
station, and therefore should be minimized. The task
cycle time consists of m individual operations, where the
time to perform each operation is denoted by ¢,
i=1,...,m. The operation times are obtained from the
MTM tables stored in the RobcadMan/eMpower data-
base. i.e.,

Ttask = ) t; (min/unit). (2)

m

i=1

o Eshift. The metabolic energy consumption in a shift
according to Garg guidelines (physiological measure). It
is used as a measure of the task’s difficulty. The objective
is to minimize the metabolic energy consumption for an
8-hour shift, measured in Kcal units. The energy con-
sumption rate per each individual operation, denoted by
e, i=1,...,m, is generated by the VM software using
the Garg formula (Garg et al., 1978). Eshift is the time-
weighted average of the energy consumption rates mul-
tiplied by the shift time (480 minutes), i.e.,

m
Eshift = 480 (Z e; X z,) / Ttask (Kcal).  (3)
i=1
One should note that using this measure in the given task
is a bit problematic, since the loads involved are relatively
light and the relative frequency may not be high enough to
significantly load the cardiopulmonary system. Still, we
use this measure (as well as all other measures) for dem-
onstration purposes, while noting that in practical im-
plementation its suitability should be carefully examined.

o Ptask. The worker’s posture during the task that
may indicate risk of injury. This measure considers the
worker’s body positions during the packaging task ac-
cording to the OWAS guidelines (Karhu ez al., 1981;
Scott and Lambe, 1996). The objective is to shorten op-
erations that require inconvenient body positioning. A
good solution requires that during all operations the body
position remains in category one. This category, called
the natural position, insures that no damage is caused to
the worker. The Ptask is the time weighted average of the
position categories that are denoted by p;, i=1,...,m
and generated by the VM simulator. Thus,

Prask = (Zp,- X tl-) /Ttask (Posture category). (4)
i=1

e Wtask. The lifting limitations according to the NI-
OSH guideline (a biomechanical measure). This measure
takes into account the upper weight limits that the worker
is allowed to carry in each position during the task time.
The values are obtained from the RobcadMan/e Mpower
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database according the NIOSH lifting equation (Waters
et al., 1993). The applicability of the NIOSH formula has
several limitations as discussed in Waters et al. (1994).
One limitation defines the lifting task as ‘“‘the act of
manually grasping an object of definable size and mass
with two hands, and vertically moving the object without
mechanical assistance”. In this case study, each hand lifts
a separate object. However, since both hands operate si-
multaneously and the two objects are held closely to-
gether, it is considered as an applicable lifting task for the
NIOSH equation. Furthermore, such a consideration is
reasonable since the weight of the objects does not exceed
the allowed limit, and the Wtask is employed only as a
comparative measure between different postures. In gen-
eral, one has to look for body positions for which the
weight limits are as high as possible, since large values
indicate suitable ergonomic positions of the worker.
Moreover, the weight limit is important even when the
worker carries a weight which is smaller than the limit.
The reason is the long run influence of carrying weight on
lower back injuries. Hence, the higher the average weight
limit during the task, the better. Wtask is the time-
weighted average of the weight limits, denoted for each
position by w;, i =1,...,m, calculated only for those
operations that involve weights,

Wrask = <z’": I x t; x w,)/(zm: l; x ti> (Kg), (5)
i=1 i=1

where,

[ — { 1 if operation i involves a weight lift, (6)
' 0 otherwise.

Assume that the designer has to evaluate K different
configurations. Accordingly, 7;, Ey, P, and W, denote
respectively the Ttask, Eshift, Ptask and Wtask perfor-
mance measure values for solution £k=1,... K, as
obtained from the VM simulation. Since many multi-
objective functions (and particularly the desirability
function used here) require the performance measure
values to be between zero and one, we apply the following
normalization procedure:

Ty = (Ur — T) /(1.2(Ur — Lr))
Ey = (Up — Ex)/(1.2(Ug — L))
Py = (Up —P)/(1.2(Up — Lp))
Wi= (W —L,)/(12(Uy — Ly)) k=1,...

where Ur (L), Ug (Lg), Up (Lp), and Uy (Ly) are the
upper (lower) limits of the four performance measures
respectively and

Upever = Unevevr +0.1(Unppvw — Levevpvr)

8
Lrppw = Loew = 0.1(Unepvw — Lrveevw ), ®)

The rational for such normalization procedure is now
explained. In common normalization procedures, the
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upper (lower) limits are set to the maximal (minimal)
values obtained out of all existing solutions. Thus, as-
signing the grade one to the best-obtained solution and
the grade zero to the worst obtained one. This approach
is problematic since it assigns the zero grade to the worst
obtained solution, as if no worse solution exists. Simi-
larly, the best solution gets the higher normalized value of
one, as if better solutions do not exist. Since the current
experiment does not cover all the solution space, and it is
assumed that better and worse solutions might exist, we
increase the range between the upper and lower limits for
all the performance measures by 20%, as seen in the
dominators of Equation 7. This guarantees that the
normalized values of, T;, E;, Py and W are within
the range 0.08 — 0.92.

The next stage is to use a multiple objective function in
order to compare alternative design solutions and select
the optimal one. Several multiple-response procedures
were suggested over the years, for example, by Myers and
Carter (1973), Khuri and Conlon (1981), Myers and
Montgomery (1995) and Derringer and Suich (1980). The
latter method constructs a multiple objective function for
each alternative, denoted by Dy and called the desirability
function. It reflects the combined desirable grade of the kth
solution with respect to all performance measures. The
desirability function of solution k is based on the geometric
mean of its normalized performance measures, as follows:

% /3
D, = (H dl?v)

v=1

k=1,...,K, (9)

where di, denotes the vth performance measure of solu-
tion k; and r, is the relative importance that is assigned
subjectively and respectively to each performance mea-
sure. In our example, v =4, d; = T, drp = Ey, dry = Py,
and dy 4 = Wy. Accordingly the desirability function is the
following:

) ) ~ ~ \1/6
Dk:(TkxEkkaka) :
k=1,...,K, (10)
where, for illustration purpose, the first two performance

measures are considered to be twice as important as the
last two.

3.3. Applying the suggested methodology

Step 1. Initialization

A feasible initial configuration of the packaging work-
station is presented in Table 1 and denoted by level 0.
The solution is characterized by measures of the four
design factors (n = 4) and denoted by xy.

Step 2. Modeling and feasibility test
RobcadMan/e M Power, a virtual manufacturing software
package by Tecnomatix Technologies Ltd., is used to
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model the existing system and its feasibility. It takes
about 8 hours to build such a model by a well-trained
person. Figure 3 illustrates the graphic interface of Rob-
cadMan/e M Power with the modeled workstation.

Step 3. Alternative solutions

Table 1 presents the selected ranges for the four design
factors. The initial solution defines the center points for
each range. For illustration purpose, a 2* full-factorial
experiment with 16 different configurations is defined by
considering the endpoints of the factor ranges and ne-
glecting higher order response models.

Step 4. Simulation and feasibility test

Table 2 presents 16 configurations that are generated by
editing the initial solution model. A few minutes (10-15)
are required to generate and run each configuration on a
Pentium PC. A validation of the ergonomic constraints is
performed on each model and it is found that alternative
number 3 is not feasible. An ergonomic report, which is
generated by the VM software, is used to calculate the
normalized performance measure according to Equations
(7) and (8) and the desirability function given by Equa-
tion (10). The experiment outputs are shown in Table 2.

Step 5. Analysis

At this stage, the simulation results of alternative solu-
tions are analyzed. The desirability function in Equation
(10) is applied to the multiple objectives. The desirability
values for each configuration are listed in Table 2. As can
be seen from Table 2, no dominant solution (solution
which is superior to all other solutions in all performance
measures) exists; yet, the initial solution may be im-
proved. The following analysis includes examination of
each performance measure separately, evaluation of the
multi-objective (desirability) function for all measures
simultaneously, residual analysis, and model fitting to
confirm the findings.

Ttask. The cycle time per task is considerably affected
by changes in the factors’ values. There is a large diffe-
rence of about 17.5% between the best solution (2121
with Ttask = 10.47 seconds) and the worst solution (2212
with Ttask = 12.31 seconds). In a mass production envi-
ronment, such as in this case, this improvement is

Table 1. The intial values and the selected ranges of the design

factors

Parameter Factor level Delta
0 1 2

A (mm) =300 -330 =270 30

B (mm) 1120 1090 1150 30

C (mm) 600 570 630 30

D (deg) 15.52 12.52 18.52 3
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Current time
Currem. action
Fr'o-!to action

[ Reset simulation
[Time interval 0.20
Step by B & T
Inverse IT

Fig. 3. The examined workstation (the picture is from the RobcadMan/e M Power interface).

Table 2. Simulation results of the alternative design solutions

Alternative  Exp. MTM analysis  Garg analysis ~ OWAS analysis NIOSH 91 analysis Desirability Feasibility

(ABCD) Ttask (Sec) Eshift (kcal) Ptask Wtask (kg) test
Actual Norm. Actual Norm. Actual — Norm. Actual Norm.
0 0000 11.08 0.04 833.84 0.08 1.24 0.14 3.55 0.42 0.24 OK
1 1111 11.55 043 831.76 037 1.24 0.09 2.89 0.14 0.26 OK
2 2111 10.82 0.76  833.77 0.09 1.11 0.82 3.67 0.47 0.35 OK
3 2211 - - - - - - - - - No (collision)
4 1211 11.99 0.23 833.61 0.12 1.24 0.12 2.83 0.12 0.15 OK
5 1221 11.49 045 832.89 0.22 1.23 0.16 2.75 0.08 0.23 OK
6 2221 11.80 0.31 827.89 0.92 1.14 0.66 3.51 0.40 0.53 OK
7 2121 10.47 0.92 830.63 0.53 1.11 0.82 3.65 0.46 0.67 OK
8 1121 11.24 0.57 829.38 0.71 1.24 0.12 2.82 0.11 0.36 OK
9 1122 11.34 0.52 828.72 0.80 1.23 0.17 2.93 0.16 0.41 OK
10 2122 10.56 0.88 830.78 0.51 1.09 0.92 3.76 0.51 0.67 OK
11 2222 11.85 029 828.97 0.77 1.13 0.70 3.62 0.45 0.50 OK
12 1222 11.69 0.36  832.10 0.33 1.23 0.19 2.87 0.13 0.27 OK
13 1212 12.05 0.20 83343 0.14 1.24 0.11 3.80 0.53 0.19 OK
14 2212 12.31 0.08 828.86 0.78 1.15 0.61 4.73 0.92 0.36 OK
15 2112 11.02 0.67 832.59 0.26 1.11 0.81 3.79 0.52 0.48 OK
16 1112 11.69 0.36 831.18 046 1.25 0.08 3.00 0.19 0.28 OK
Upper limit 12.49 - 834.44 - 1.26 - 4.93 - - -
Lower limit 10.29 - 827.30 - 1.08 - 2.55 - - -

economically significant. The observation is reconfirmed
by the model fitting analysis that follows.

Eshift. The variation in the energy consumption dur-
ing a work shift among the different solutions is relatively
small. The reason is that, energy-wise, the considered task

is not a demanding one. A major portion of the energy
consumption consists of the Basal Metabolism (the min-
imal amount of energy needed to keep the body func-
tioning, when no activities are performed at all (Kroemer
et al., 1994)) and the energy consumption for basic re-
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quired body positions. This measure is further considered
in this case study for illustration purposes only, whereas
in reality it would have been eliminated.

Ptask. The body position category is affected by con-
figuration changes. The back position is found by the VM
software to be the most relevant and problematic crite-
rion. For example, during 23.5% of the time, the back
position in the initial solution stands on category two,
which may harm the worker in the long run. For com-
parison, in the best solution (2122), the back position
stands on category two in only 9% of the task time. Note
from Table 2 that factor A has a clear effect on the Ptask
value. It is seen that the best solutions are obtained when
factor A is fixed on its higher level (the serving shelf is
closer to the worker), while the worst solutions are ob-
tained for the lower level. This finding is confirmed by the
model fitting analysis as well.

Wtask. The average weight limit in the initial solution
is 3.55 kg. The best configuration (2212) has an average
weight limit of 4.73 kg, thus an improvement of 33%.
Similarly to the Ptask analysis, it is seen that the best
solutions are obtained when factor A is fixed on its higher
level.

At this stage, the desirability function of each alter-
native is evaluated. The performance measures are first
normalized and the desirability function is then calculated
using the relative importance values given in Equa-
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tion (10). Figure 4 presents the different configurations
ranked according to their desirability value. The best
solution is configuration 2122 with a desirability value of
0.67. The initial solution is ranked in 13th place with
a desirability value of 0.24. It is seen that not only are 12
solutions superior to the initial solution, but also that the
initial solution is dominated by three configurations (in-
cluding solution 2122). In other words, these configura-
tions are superior to the initial solution in al// objectives
and, therefore, are considered better for any set of relative
importance values.

Finally, a polynomial response fitting is performed
with respect to all performance measures. Table 3 is ob-
tained from the Design Expert statistical software and
presents, for example, such analysis with respect to the
Ttask (MTM) measure. The table contains model-fitting
measures, including coefficients of determination and the
contribution of each term to the model sum-of-squares.
The basis for such analysis is the use of higher order
interaction effects (that are not included in the model) as
an estimate for the experimental error. The required as-
sumption of uncorrelated errors with mean zero and
constant variance has to be carefully verified through
residual analysis. A normal probability plot of the re-
siduals is presented in Fig. 5 and validates the non-linear
response model, given at the bottom of Table 3. This
non-linearity results from the significant interaction
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Fig. 4. The different configurations ranked according to their desirability value.
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Table 3. Model fitting analysis with respect to the Ttask measure

Ben-Gal and Bukchin

Factor Sum-of-squares DF Mean square Factorial R® %%/ Percentage contribution to
sum-of-squares (%)

A 0.24 1 0.24 0.056 5.66

B 2.52 1 2.52 0.592 59.5

C 0.57 1 0.57 0.134 134

D 0.055 1 0.055 0.013 1.3

AB 0.85 1 0.85 0.199 20

Full Model 4.17 5 0.83 0.9958

Residual*' 0.018 9 1.958E-003

Cor Total 4.19 14

Model fitting measures

Root MSE 0.044 R’ 0.9958

Dep Mean 11.46 Adj R? 0.9935

C.V. 0.39 Pred R* 0.9885

PRESS 0.048 Adeq Precision 65.461

Response fitting (in terms of coded factors (+1,—1)):

Expected Ttask (MTM) = 11.50 — 0.13A + 0.42B — 0.20C + 0.061D + 0.24AB

Factor Coefficient estimate DF
Intercept 11.50 1
A-shelf d -0.13 1
B-shelf_h 0.42 1
C-box_h -0.20 1
D-box_angle 0.061 1
AB 0.24 1

Standard error

0.012
0.012
0.012
0.012
0.012
0.012

95% CI low

11.48

-0.15
0.39

-0.22
0.035
0.21

95% CI high

11.53
-0.10
0.44
-0.17
0.088
0.27

*! Error estimate is based on high-order interaction effects.

*2The factorial R? is evaluated by the ratio of the factor sum-of-squares and the total sum-of-squares.
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Studentized Residuals

Fig. 5. A normal probability plot of the residuals of the re-
sponse model for Ttask.

between factors A and B (the horizontal and the vertical
distances of the serving shelf). For further discussion on
analysis approaches of deterministic simulation models
see McKay et al. (1979) and Sacks et al. (1989).

A similar procedure is repeated with respect to the other
three performance measures. Table 4 presents the list of
factors with respect to all performance measures in de-
creasing order of importance. It is found that the vertical
distance of the serving shelf (factor A) affects all the mea-
sures and that the horizontal height of the serving shelf
(factor B) affects all the measures beside the Wtask. The
interaction AB is found to affect most measures as well.
Figure 6 exemplifies such interaction with respect to the

Table 4. Design factors in decreasing order of significance with
respect to all performance measures

Ttask Eshift Ptask Wtask
(MTM) (Garg) (OWAS) (NIOSH)
B(-) AB(+) A(+) A(+)
AB(-) C(+) AB(-)

C(+) A(+) B(-)

A(+) B(+) C(+)

D(-)
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833.77
832.79 B

831.81 | B-

830.83

Actual Garg

829.85

828.87 -
B+

827.89

A- A+

Fig. 6. The interaction between factors A and B with respect to
the Eshift PM.

Eshift (Garg) performance measure. The cross of lines
clearly indicates that a higher shelf (level B+) should be
used if the shelf'is closer to the worker (level A—). However,
a lower shelf'is better if the shelf is distant from the worker.

Since the design factors are continuous, one can refine
the best solution found thus far by applying RSM tech-
niques, as explained in the next step.

Step 6. Applying optimization RSM techniques to refine
the design solution

In this step, we apply the response surface methodology
to find the best solution. We follow the optimization
procedure of Derringer and Suich (1980). Table 5 pre-
sents the initial conditions of both the performance
measure and the design factors that are used by the op-
timization procedure. We use the extrapolation presented
in Equation (7). Thus, with respect to Ttask, Eshift and
Ptask, the response gets a desirability grade of one if it is
equal (or lower) to the minimum value obtained in pre-
vious experiments minus 10% of the observed range. As
for the Wtask measure, a desirability grade of one is
obtained if the weight limit is equal (or higher) to the
maximum value obtained in previous experiments plus
10% of the observed range. The lower and upper weights
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define the accumulation rate of the desirability grade.
Weights of value one imply a linear accumulation rate.
The importance column gives the relative importance of
each performance measure with respect to the others, as
seen in Equation (10). More details regarding the mathe-
matical implication of the weights and the importance
can be found in Derringer and Suich (1980). Table 5 also
presents the search range for the design solutions. Note
that we also allow some extrapolation of the design factor
values. That is, the four design factors that were experi-
mented earlier with level values of one or two (in coded
terms) are now allowed to vary between 0.8 to 2.2. The
reason for such extrapolation is the assumption that one
can estimate the response functions over a wider search
region by using the responses obtained in a smaller ex-
perimental region (Myers and Montgomery, 1995). Such
an assumption has to be checked at a later stage by a
validation experiment of the best design solution, par-
ticularly if such a solution lies out of the experimented
range.

The applied desirability RSM method is based on a
general non-linear optimization technique that utilizes the
steepest ascent algorithm. The initial solution is based on
the best solution obtained thus far. Additional starting
simplex points are then generated randomly by adding or
subtracting a fraction of each of the factor ranges to the
initial starting point. A downhill simplex (Nedler-Mead)
multi-dimensional pattern search is then applied which
converges at either a stationary point or a design space
boundary. Convergence is achieved when the distance
moved or objective function change is less than a 107°
ratio. Further details on the optimization algorithm can
be found in Derringer and Suich (1980).

Table 6 presents nine design solutions sorted in a de-
creasing order by their desirability grades. For compari-
son purpose, two solutions from previous steps were
added to the table: the initial solution given in Step 1
(denoted in the Table by IS), and the best “discrete’ so-
lution obtained at Step 4 (denoted in the Table by DBS).

The best design solution that is obtained by the re-
sponse optimization procedure (Design No. 1) achieves a
desirability grade of 0.736. The design factors and its
performance measures are presented in Fig. 7. Note that

Table 5. Search region and definition parameters for the multiple desirability method

Name Goal Lower limit Upper limit Lower weight Upper weight Importance
shelf_d (A) 0.80..2.20 0.8 2.2 1 1 -
shelf_h (B) 0.80..2.20 0.8 2.2 1 1 -
box_h (C) 0.80..2.20 0.8 2.2 1 1 -
box_angle (D) 0.80..2.20 0.8 2.2 1 1 -
Ttask <10.29 10.29 12.48 1 1 2
Eshift <827.29 827.29 834.44 1 1 2
Ptask <1.07 1.07 1.26 1 1 1
Wtask >4.93 2.55 4.93 1 1 1




388

Table 6. Design solution improvement using the RSM

Ben-Gal and Bukchin

Number  Shelf d Shelf h Box_h Box_angle Ttask Eshift Ptask Wtask Desirability
1 2.20 1.26 2.20 0.95 10.62 829.98 1.08 3.99 0.736
2 2.20 1.28 2.18 0.81 10.63 829.95 1.08 3.99 0.736
3 2.20 1.38 2.20 0.80 10.78 829.48 1.09 3.98 0.734
4 2.20 1.08 2.20 0.80 10.33 830.76 1.07 3.99 0.732
5 2.20 1.23 2.20 1.40 10.62 830.13 1.08 3.98 0.729
6 2.20 1.29 2.20 1.51 10.73 829.87 1.08 3.99 0.727
7 2.15 1.18 2.20 0.80 10.51 830.28 1.09 3.94 0.726
8 2.17 1.04 2.20 0.80 10.29 830.88 1.08 3.96 0.723
9 2.20 1.24 2.20 1.88 10.69 830.09 1.08 3.99 0.722
DBS 2 1 2 2 10.56 830.78 1.09 3.76 0.674
1S 0 0 0 0 11.08 833.84 1.24 3.55 0.236
0.80 ‘ ‘ T220 0.80 ‘ ° ‘ 2.20
1.00 2.00 1.00 2.00
shelf d =2.20 shelf h=1.26
0.80 ‘ ‘ $2.20 0.80 e‘ ‘ 2.20
1.00 2.00 1.00 2.00
box_h=2.20 box_angle = 0.95
10.29 827.29
12.48 834.44
10.47 12.31 827.89 833.77
MTM = 10.62 Garg = 829.98
1.07 4.93
‘T\sze 2.55
1.09 1.25 2.75 4.73
OWAS =1.08 NIOSH = 3.99

Fig. 7. Design parameters and performance measure values of the best solution.

both the shelf distance (factor A) and the box height
(factor C) are set in the edges of the permitted range, thus
outside the experimented region. The shelf height (factor
B) is set to 1.26, within the experimented range and the
box angle (factor D) is set to 0.95 outside, but close to the
experimented region. In terms of the performance mea-
sures, note that the Ptask (OWAS) is better than the best
value obtained earlier, the Ttask (MTM) is close to the
best value, while the Eshift (Garg) and Wtask (NIOSH)
are smaller than the best values obtained in Step 5.
Finally, Figs. 8 and 9 (a and b) present, respectively, a
three-dimensional plot of the desirability response and
the contour plots of the MTM and Garg measures with
respect to the shelf distance (factor A) and the shelf
height (factor B). It can be seen that the desirability re-

sponse is flat close to the optimal solution, indicating that
potentially there are several optimal solutions close to

design solution number one.

Step 7. Validation test

The best solution obtained in Step 6 is modeled by the
RobcadMan/e M Power simulator to validate its expected

performance.

Steps 8—10. Termination

At this stage, the termination condition has to be
checked. For illustration purposes, only a single iteration
is allowed. Therefore, design No. 1 is selected as the best
design, denoted by x*, and the system is reconfigured
accordingly.
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Fig. 8. A three-dimensional plot of the desirability response
as a function of factors A and B (box_h=1.89, box_angle=
0.80).

Remark: In this case study we showed how a real-life
working environment could be improved using the pro-
posed methodology. Although only a single iteration was
conducted, the final selected configuration was found to
be superior to the initial configuration with respect to a//
the objective measures, and consequently obtain a sub-
stantially higher desirability grade.

4. Summary

In this paper, a new methodology for workstation design
was introduced. The proposed approach was based on
Factorial Experiments (FE) and Response Surface
Methodology (RSM) and utilized computerized tools for
virtual manufacturing and graphical simulation. Com-
puterized tools enable an individual to simulate and
evaluate a large number of design configurations with
respect to multiple performance measures. However,
most of the VM tools that are available in the market
focus on modeling and graphical aspects and fail to
propose a systematic procedure for the design process. In
most cases, they also overlook the effect of interactions
among design factors that play a significant role in the
design of manual workstations. FE and RSM were used
in this work to bridge these gaps by generating a set of
alternative design configurations in a systematic manner,
and apply educated changes to configuration parameters.
Such an approach enables us to reach a satisfactory so-
lution, with respect to both operational and ergonomic
measures, within a limited number of examined configu-
rations.
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2.20

1.85+

1.50

B:shelf_h

1.15+

1.85

0.80 1.15 150 1.85 220

A: shelf_d

Fig. 9. (a) A contour plot of the MTM measurement for factors
A and B; and (b) a contour plot of the Garg measurement for
factors A and B. In both figures box_h =2.20, box_angle =0.80.

The proposed methodology emphasized the advantages
of combining computerized tools such as virtual manu-
facturing, and statistical design approaches such as RSM.
Workstations are often characterized by continuous
metric factors, such as height, length and depth, that are
well suited to be input factors to RSM. In particular, the
case study demonstrated that a dramatic improvement in
workstation performances can be obtained by applying
the proposed methodology to these factors. The best
configuration obtained was superior to the initial con-
figuration with respect to all performance measures and a
significant increase in the desirability measure, from 0.236
to 0.736, was accomplished.

The proposed methodology can be applied to different
workstation configurations, provided that they can be
characterized by a set of design factors. Furthermore,
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almost any tool for virtual manufacturing and graphical
simulation, which contains anthropometric models, can
be used for this matter.
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