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Abstract.—Measurements of the efficiency of energy transfer between trophic levels are consis-
tent with the hypothesis that it is trophic structure that controls the fraction of energy consumed
at each trophic level, rather than energetics controlling trophic structure. Moreover, trophic
structure is determined by competitive and predator-prey interactions. In freshwater pelagic
communities, the collective efficiency of herbivorous plankton in consuming primary producers
is up to 10 times as great as is the efficiency of forest herbivores in consuming their food.
Conversely, forest predators are about three times as efficient in consuming herbivore produc-
tion as are zooplanktivorous fish. The presence of an additional level, piscivorous fish, in pelagic
communities accounts for the difference. In the aquatic system, herbivorous zooplankton are
freed from predation by the effect of piscivorous fish on their predators; in the terrestrial system,
green plants are freed from herbivory by predation on the herbivores. We explain the contrast
between freshwater pelagic systems and forests and prairies as follows: Pelagic ecosystems
have more trophic levels as a result of selection for small rapidly growing primary producers,
which cannot hold space in the fluid medium, in contrast to large space-occupying producers
in the terrestrial environment. Consumers in pelagic systems are more frequently gape limited
in the size range of food they can ingest than are grasping consumers in terrestrial systems.
This difference makes for two largely distinct levels of predators in pelagic communities. The
energy within the living, nondetrital components is more finely divided between trophic levels
in pelagic systems than in terrestrial systems. Ecological efficiencies do not determine trophic
structure; rather, they are its product.

The relationship between trophic structure and ecological energetics appears
simple until an attempt is made to establish cause and effect. Opinion about this
relationship changed several times during the period that ecology was becoming
established as a science, but the central hypotheses were largely in place by the
mid-1960s. A considerable amount of information about ecological energetics and
trophic structure has been collected during the three succeeding decades (1960s,
1970s, and 1980s). This article is an attempt to compare the original hypotheses
with the published data and to synthesize the available information into a coherent
picture, particularly for terrestrial and freshwater pelagic ecosystems.

Early emphasis was on the effect of energy flow on trophic structure (Lindeman
1942; Odum and Odum 1955), culminating in the suggestion that the height of the
trophic pyramid is limited by energy transfer between trophic levels (Hutchinson
1959; Slobodkin 1960, 1962). A quite different approach to understanding trophic
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structure combined interspecific interactions with trophic web ecology to argue
that commonly accepted observations on natural ecosystems can be explained
by competitive and predator-prey interactions. It has been concluded (Hairston
et al. 1960, hereafter referred to as HSS) that, in mature terrestrial communities,
competition for resources is most important in the decomposer, producer, and
carnivore trophic levels but that the herbivore trophic level is kept low by preda-
tion. Although HSS excluded aquatic systems from their discussion, a parallel
argument has been developed for pelagic lake ecosystems. Smith (1969), working
with mathematical models, concluded that the principal factor limiting each tro-
phic level depended on the number of tropic levels present and pointed out some
reasons for different numbers of levels. Earlier Hrbacek (1962) had proposed that
planktivorous fish could reduce herbivorous zooplankton, which would lead to
an increase in phytoplankton density. Subsequent investigations further devel-
oped this point of view from data on lakes (Brooks and Dodson 1965; Zaret and
Paine 1973; Shapiro and Wright 1984; Carpenter et al. 1987), and the ideas have
recently received considerable attention by both terrestrial (Fretwell 1977, 1987,
Oksanen 1988, 1991; Schoener 1989) and aquatic ecologists (Persson et al. 1988;
Liebold 1989).

Acceptance of the HSS conclusions would mean either that trophic efficiency
is unrelated to the input of energy or, in the extension of HSS by Oksanen et al.
(1981), that the two are related in complex ways. Therefore, neither constant nor
regularly increasing efficiency would be found. Indeed, transfer efficiency would
be determined principally by the relative importance of predation and competition
and, as will be seen, by the number of trophic levels present.

TOWARD A SYNTHESIS

It is our objective here to summarize information on both trophic structure and
energy flow between trophic levels for several terrestrial and pelagic ecosystem
types. We use this summary to point out differences in trophic structure between
these ecosystem types, most notably an apparent difference in food chain length,
as well as in energy transfer efficiencies between these ecosystem types. In our
summary of energy transfers between trophic levels, we principally use consump-
tion efficiencies (the percentage of net production at level » that is consumed by
level n+1). Although there is a wide array of other ecological efficiencies that
have been used by previous investigators (Kozlovsky 1968), we have adopted
this measure because it reflects the impact that consumers have on the trophic
levels on which they feed, which is useful in the comparisons we make here. We
also provide values for assimilation efficiency (the percentage of energy ingested
at level n that is assimilated at level #), and, although it is our impression that
these values are often less reliable than those for consumption, the conclusions
we draw are unchanged. We recognize that some readers may interpret our ap-
proach to infer that we assume equilibrium conditions. We prefer to avoid such
a loaded term. The data that we use, in some cases with a range of values, rather
are assumed to be representative of the ecosystem concerned, which thus implies
approximate long-term averages.
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Before proceeding further, we freely acknowledge that we have concentrated
on a few systems: freshwater pelagic, temperate forests, and grasslands. These
are the systems that we know best, and we find contrasts among them that lead
us to interesting conclusions. This is consistent with conclusions from an analysis
of field experiments (Hairston 1989) that a better understanding of ecological
processes can be obtained by considering them in one kind of system at a time.
For other kinds of ecosystems, such as deserts and the freshwater littoral zone,
some of our approach may well be applicable. These are discussed briefly at the
end and could lead to further comparisons and contrasts between ecosystems.
Communities of marine intertidal and subtidal zones, though well studied, are
excluded from our consideration because there more than one trophic level de-
pends on an external source of energy (i.e., they are not well-defined ecosystems).
Furthermore, in these systems, up to three trophic levels may all compete for
space.

We ask whether the differences we document in ecological efficiencies are
the cause of the differences in food chain length (essentially the first hypothesis
discussed above) or if, in contrast, differences in food chain length are the cause
of the differences in ecological efficiencies (essentially the second hypothesis
discussed above). It is our basic conclusion that the latter is more important than
the former. We further point to a number of instances in which rates and efficien-
cies of energy transfer within particular communities are strongly affected by the
individual characteristics of the species present. Finally, we propose an explana-
tion for the differences in trophic structure between terrestrial and pelagic eco-
systems.

TROPHIC STRUCTURE

We first consider what is the most informative way in which to represent and
analyze trophic structure. Two related systems have been used in the past: the
food webs (‘‘cycles’’) of Elton (1927) and trophic levels, an approach initiated by
Lindeman (1942). Fundamental to such an analysis is the question of community
or ecosystem boundaries. This becomes a crucial issue when we ask what limits
particular components of a system. Nature seems to abhor a sharp boundary as
much as a vacuum, and ecosystems are no exceptions. Even so great a contrast
as that between open water and forest typically shows an intermediate progres-
sion, as, for example, from cattails to buttonbush to alder thicket to trees. We
recognize that classification of trophic structure in such a location can become
an exercise in futility as different aspects are assigned to the two ecosystems.
Ecotones may be wide bands, as those in the northern United States and southern
Canada between temperate and boreal forests, or they may be interdigitating
complexes, like the deciduous forest-prairie ecotone. Bird watchers know well
the richness of avifauna in such locations, and Gleason (1926) made much of
the gradual change from one ‘‘association’’ to another in his argument against
community organization. The degree to which aquatic communities are distinct
from bordering terrestrial and benthic systems can vary greatly: the influence of
allochthonous inputs to lakes depends on such variables as length of shoreline
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and size of watershed (Rodhe 1969; Likens 1984; Wetzel 1990a). The effect of
allochthonous input of leaves and branches may contribute most of the energy
to stream ecosystems, especially in small streams. For example, in two creeks
in Quebec, Naiman et al. (1987) found that 91.3% and 74.1%, respectively, of the
carbon input came from such sources, with only 4.2% and 15.9% coming from
primary production. The remainder came from rainfall and throughfall. In marine
shoreline systems, the settlement of planktonic larvae onto benthic substrates
and their subsequent filter feeding on the plankton differ markedly between sites
(Roughgarden et al. 1988), and the relative importance of organic versus reduced-
inorganic compounds as sources of energy moving from benthic to pelagic habi-
tats depends on the importance of anaerobic decomposition (Howarth and Teal
1980). Less dramatic ‘‘seepage’’ between ecosystems comes from forest preda-
tors (hawks) on grassland herbivores or aquatic animals, such as fish and frogs.
Conceptualizing ecological systems as food webs or as trophic levels gives differ-
ent perspectives on this problem.

Food Webs

There are some serious difficulties in the use of food webs (several of which
were raised previously by Paine [1988] and Polis [1991]). Three in particular
trouble us here. The first is that quantitative assessment of the strength of even
a majority of the links is rarely practicable, a problem that has led many investiga-
tors to the implicit assumption that the links are equal in value. Food webs,
with their focus on unweighted interactions between individuals, can lead to an
overemphasis on rare interactions. For example, Martinez (1991) assigns 25 taxa,
ranging from large, abundant fish species to rare insect genera, equal importance
as prey to largemouth bass inhabiting a small midwestern lake. By this method
he finds over 10 food chain links from algae to bass. He does not ask, however,
where the bass obtain the majority of their energy—surely not after having passed
through 10 trophic levels. Similarly, among the complex food webs illustrated by
Polis (1991) in his figure 7, there are at least 10 links from plants to golden eagles.
If the consumption and assimilation efficiencies at the successive steps are like
those in other terrestrial systems, no more than 0.00035 of the ‘‘plant’ energy
would reach the golden eagle by such a route. It is not just a detail that golden
eagles feed primarily (>90%) on herbivorous mammals (Newton 1979). Further-
more, in the Coachella Valley, which Polis studied, the 14-km distance from the
center to the edge of the study area is small for a foraging eagle. Just because
the energy pathway occurred does not mean that we should add to our estimate
of the food chain length of the community or that we should alter our assessment
of the logical boundaries of energy flow.

The second difficulty with the use of food webs is that competition is of neces-
sity either ignored or assumed to exist (and to be of uniform strength) wherever
consumers use a common resource (MacArthur 1958; Yodzis 1980; Diamond
1986). Each is clearly a serious oversimplification. Finally, taxonomic uncertainty
has forced the pooling of biological species into ‘‘trophic species,’” especially at
levels close to the producers. This amalgamation of biological species is tempting
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in the interest of simplification, but there is no logical place to stop short of
becoming indistinguishable from trophic levels.

Weighing against these disadvantages are several positive aspects. Among
these, food webs provide the theoretical possibility of obtaining detailed informa-
tion about the flow of energy through a community, despite the fact that published
webs (published for purposes other than their use in either analysis of energy
flow or food web theory) are inaccurate. Thus, they permit partial analyses of
community complexity in the search for pattern. Furthermore, food webs can be
used to partition the influence of species that feed at more than one level, which
thus provides a first step in reducing the complex food webs into trophic levels.
The mean chain length calculations common in recent investigations of food web
patterns (see, e.g., Cohen 1978; Pimm 1982; Briand and Cohen 1987) appear to
us to be a step in this direction, though at present admittedly biased toward
larger, more readily identified organisms. Clearly, weighting trophic linkages by
energy flow as described by Levine (1980) would be preferable but for lack of
data is rarely possible. What this approach does omit is the possibility that indi-
vidual taxa may carry influence other than through their direct impact on energy
flow. For example, nitrogen fixation is context-dependent; the importance of an
N fixer to a community depends on whether other forms of N are present in
limiting supply.

Trophic Levels

Different authors use the term trophic level in different senses. In particular,
Cousins (1987) and Schoener (1989) describe multiple levels that approach food
chains and food webs in their complexity. These differ from our definition of
trophic level: a group of organisms acquiring a considerable majority of its energy
from the adjacent level nearer the abiotic source. In principle, the way to define
such a group is to measure all of the energy sources used by all organisms in an
ecosystem, then to calculate trophic position (e.g., using Levine’s [1980] Marko-
vian chain method). A more practical way to identify (but not to define) this
group is that the component organisms respond in a common way to significant
perturbations to other levels (directly to adjacent levels or indirectly to more
distant levels). Although the qualifier ‘‘considerable majority’’ in our definition
leaves open the problem of omnivory, we believe that it is omnivory that limits
the number of trophic levels. We suggest that omnivory becomes increasingly
prevalent at higher trophic levels (there are, after all, more trophic levels below
to consume) and that omnivores typically gain most of their energy from the
lowest level on which they feed. These two observations taken together must
truncate the number of trophic levels in any ecosystem. Indeed, Hastings and
Conrad (1979) have suggested, using an evolutionarily stable strategy analysis,
that food chains should be kept short by the evolution of a tendency in omnivores
to feed on the energetically most rewarding (i.e., the lowest available) trophic
level. They propose food quality differences between plant and animal tissue as
a constraint on reduction in number of trophic levels. At the end of this article
we suggest predator and prey morphologies as another.
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Classifying community structure into such broad categories as trophic levels
may obscure the details of trophic complexity that are at least partly shown by
food webs. This is especially true if there are many species feeding at two or
more levels. We do not agree with Burns (1989) that the term trophic guild is
necessary to denote what has been called trophic level in most of the literature
or that the trophic level construct necessarily has the confusing properties he
ascribes to it. We agree with him, however, that there are advantages in recogniz-
ing that individual species may feed at more than one trophic level (i.e., consume
energy that has passed through a varying number of links in the food web). When
this is the case, we see no reason why such species’ influence cannot in principle
be partitioned among trophic levels in the way that he and Strayer (1991) propose.

Cousins’s (1987) provocative comments on the use of trophic levels raise a
number of issues relevant to our discussion. He is bothered by the fact that
individual species often cannot be identified with a single trophic level. In particu-
lar he suggests that a fourth trophic level is difficult to identify in most ecosystems
because ‘‘taxonomic classification ceases to map approximately to trophic levels
at this point’’ (Cousins 1987, p. 315). He goes on to suggest that higher orders of
energy transfer nevertheless occur. The fact that a fourth (and in some cases
higher) trophic level can readily be identified in pelagic systems complicates his
argument, but, more to the point, it is precisely the fact that feeding at multiple
trophic levels occurs that leads us to suggest that energy transfers above the third
level in terrestrial systems are relatively unimportant. Cousins’s criticism, like
the food web analysis discussed above, overemphasizes rare interactions.

In terrestrial systems, a pattern of one species, one trophic level breaks down
significantly only among the predators, which tend to be unselective about the
level at which they feed. Predators do not, however, feed on foliage, sap, or
bark. Virtually all omnivores in terrestrial communities consume seeds rather
than leaves in addition to animals. Almost no seeds are involved in photosynthe-
sis, and they do not constitute a major energy component of primary production.
Thus, in an energy-flow-weighted analysis' of trophic levels, we place terrestrial
omnivores with carnivores. See, for example, the discussions of this in Slobodkin
et al. (1967) and Hairston (1985). Seed eaters have been shown to have an effect
on the composition of the plant community of the Chihuahan Desert shrub habitat
(Brown and Heske 1990), but there is little evidence that they affect plant recruit-
ment in forests. The extent to which omnivore and carnivore categories blend
into one another is illustrated by the lists in Clements and Shelford (1939, p. 128).
They give the proportions of seed and fruit versus insects for 33 species of North
American birds. The values range from 93% seeds and 7% insects for the white-
winged crossbill to 40% seeds and fruit and 60% insects for the rose-breasted
grosbeak. In a second table, a change from mostly seeds in winter to a large
proportion of insects in summer is given for eight species. The range is from
100% seeds in winter and 21% insects in summer for the evening grosbeak to
100% seeds in winter and 100% insects in summer for the vesper sparrow. Many
granivores (e.g., sparrows) switch to animal food when feeding their young, and
we assign granivores, nectarivores, and pollen feeders to the carnivore trophic
level.
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In contrast to terrestrial systems, energy acquisition at multiple levels occurs
frequently in aquatic systems. For example, in pelagic communities, phagotrophic
algae (Bird and Kalff 1986, 1987) and omnivorous zooplankton (Paffenhéfer and
Knowles 1980; Sprules and Bowerman 1988) can be quite common. Nevertheless,
the fact that whole trophic-level manipulations have discernible direct and indi-
rect effects on other levels (see reviews in Carpenter 1988; Liebold 1989) shows
that omnivory is not so prevalent that trophic levels are obscured. It would,
of course, be more accurate if dietary compositions could be measured. Such
measurements are relatively rare, but stable isotope methodology has in the past
15 yr been used in a number of instances to evaluate the trophic position of
organisms (see, e.g., Rau et al. 1983; Estep and Vigg 1985; Peterson and Fry
1987; Yoshioka et al. 1988), including those with uncertain diets (Peterson et al.
1985) or with uncertain contributions higher up the food chain (Fry 1986).

Using trophic levels as the primary subdivisions of communities condenses
trophic complexity into units that are common to all ecosystems and permits
direct comparisons of the trophic dynamics of different ecosystems in terms that
are common to all. The logical boundaries between adjacent systems may perhaps
be best evaluated in terms of trophic-level interactions that weight particular links
in the food web for their energetic significance. Importantly, the use of trophic
levels permits an analysis of the relative influence of competition and predation
on the different whole levels. We argue that, especially for an overview such as
ours, the use of trophic levels is the approach of choice.

HOW MANY LEVELS?

A first step in exploring the relationship between trophic structure and energet-
ics is an assessment of the pattern and variability in the number of trophic levels
within and between ecosystems. Some authors (e.g., Schoener 1989) have divided
terrrestrial communities into as many as eight, when decomposers and detriti-
vores are included. We maintain that for terrestrial ecosystems, it becomes arbi-
trary to use more than one level of herbivores and one of carnivores plus omni-
vores. The few species that prey preferentially on predators have negligible
impacts on the carnivore trophic level as a whole. The great majority of predators
either are specialized to take herbivores (parasitoids of caterpillars) or do not
distinguish between the more numerous herbivores and other carnivores. We
propose that the relatively small part of the carnivore level that specializes on
other carnivores (e.g., hawks of the genera Accipiter and Falco, some members
of which prey primarily on birds) represents an insignificant energy flux (see also
Smith 1969). Predators of the forest floor feed indiscriminately on herbivores,
detritivores, and smaller carnivores, as illustrated in table 1, which classifies the
food of salamanders from several populations in the Appalachians. Obviously,
detritivores do not figure largely among the prey of predators that forage in the
vegetation, but in this example they constitute a significant portion of the prey
individuals.

In the pelagic zone of lakes, the situation is different. Omnivory is exhibited
by a broad range of organisms, but a rigid size dependency of predation in pelagic
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TABLE 1

THE GuTt CONTENTS OF TWO SPECIES OF SALAMANDERS, PLETHODON JORDANI AND PLETHODON
GLUTINOSUS, CLASSIFIED ACCORDING TO THE TROPHIC LEVEL OF THE FooD ORGANISMS

SPECIMENS FROM AN AREA OF SYMPATRY
(GREAT SMOKY MOUNTAINS)

EsTIMATED TROPHIC

LEVEL OF PREY P. glutinosus P. jordani
Carnivore 10.05 14.67
Herbivore 29.58 35.53
Detritivore 60.37 49.37

SPECIMENS FROM AREAS OF ALLOPATRY

P. JORDANI
P. GLUTINOSUS Great Smoky Grandfather Nantahala
(Ridge and Valley) Mountains Mountain Mountains
Carnivore 20.61 12.46 38.18 51.26
Herbivore 38.90 54.99 27.46 15.56
Detritivore 40.50 32.55 34.36 33.18

Note.—All locations are in the southern Appalachian Mountains. Numbers are unweighted means
of percentage contributions by biomass, calculated from tables in Whitaker and Rubin (1971) and
Powders and Tietjen (1974).

consumers, discussed later, maintains reasonably distinct trophic levels. In many
lakes, predatory zooplankton may occupy an important intermediate link between
grazing zooplankton and planktivorous fish. In addition, there is a moderately
well-defined top predator level—the piscivorous fish, which specialize largely on
other fish that consume principally invertebrates. Certainly there exist lakes with
fewer trophic levels. In particular, small, highly seasonal, freshwater habitats
(e.g., temporary ponds, small arctic-zone lakes) typically lack fish completely.
However, by and large if we ignore for now decomposers and detritivores, most
larger bodies of water are seen to contain four or five levels in the pelagic zone,
whereas terrestrial communities contain only three.

This difference between the trophic structures of terrestrial and pelagic commu-
nities is corroborated by data presented by Briand and Cohen (1987). Using pub-
lished food webs of 113 communities, they calculated mean chain length (roughly
a surrogate for the number of trophic levels) for each. Although they did not view
their results in this way, we calculated from the data they presented the mean
chain lengths for all terrestrial communities as 2.6 (table 2). For pelagic communi-
ties, the value is significantly greater at 3.6 (+ = 4.47, df = 52). Briand and
Cohen ascribed the difference observed to one of dimensionality, concluding that
three-dimensional habitats have longer chain lengths (more trophic levels) than
do two-dimensional habitats. We suggest that dividing the data by dimensionality
is arbitrary (they call forests three-dimensional and prairies two-dimensional) and
that it obscures where the distinction lies. Indeed, the mean chain length for
forest food webs in their data is only 2.6 and no different from those of other
nonpelagic systems (tundra, 2.5; grasslands, 2.1; aquatic substrates, 2.6). The
only potential exception, deserts and sand dunes, is discussed in a later section.
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TABLE 2

MEAN Foop CHAIN LENGTHS FROM 113 FoopD WEBS REPORTED BY
BrianDp AND COHEN (1987)

Ecosystem Mean Chain Length (SD) N
Aquatic:
Pelagic 3.6 (.97) 30
Substrates 2.6 (.59) 45
Rivers 2.6 (.68) 11
Terrestrial:
All 2.6 (.57) 24
Forests 2.6 (.41) 8
Grasslands 2.1 (.29) 3
Tundra 2.5 (.67) 9
Desert 3.1 (.55) 3
Two dimensions 2.4 40
Three dimensions 3.2 28

Note.—Categorization of habitat types made by the present au-
thors according to information supplied by Briand and Cohen (1987).
Categorization of dimensionality follows Briand and Cohen (1987).

To us, the clear distinction lies between pelagic and nonpelagic communities.
Moore et al. (1989) also criticized Briand and Cohen’s (1987) concept of dimen-
sionality. They go on to argue that some of the patterns Briand and Cohen identify
result from the pooling of trophic levels in some food webs and the omission of
trophic levels in other webs. In particular, they object to the pooling of phyto-
plankton and zooplankton into a single resource in near-shore marine habitats
and rivers. Briand and Cohen (1989) have acknowledged that this policy may
have biased their conclusions. To the extent that plankton play an important role
in trophic transfer within a community, separating phytoplankton from zooplank-
ton both adds a trophic level to the community and transfers it to our ‘‘pelagic’’
category.

In streams, as in the case of lakes, fish may or may not be present (Cooper
1988; Flecker 1992), or some streams may contain piscivores while others lack
them (Bowlby and Roff 1986). Power (1990) recently identified another way in
which the trophic structure of river communities may differ from that just de-
scribed. The dominant grazer of benthic algae in the system she studied was a
dipteran fly larva that weaves a retreat protecting it from predatory fish but not
from damselfly nymphs. As a result, the predatory fish represent a fourth trophic
level, above algae, fly larvae, and damselfly nymphs. In other streams and rivers
the dominant grazers may be immature insects or snails that remain vulnerable to
fish predation. In these, only three trophic levels exist. Clearly, trophic structure
depends in this instance, and in others discussed below, on the particular charac-
teristics of the organisms involved. Our goal here is to ask if general patterns
overlie individual cases.

Interestingly, Pimm (1982), like Briand and Cohen, reports the number of tro-
phic levels in terrestrial systems to be typically three while the number in aquatic
pelagic systems to be typically four. We propose that this difference provides a
basis for formulating and testing hypotheses concerning the controls on the num-
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ber of trophic levels, as well as concerning the effects of chain length on commu-
nity structure.

ENERGY TRANSFERS BETWEEN LEVELS

In this section, we review and compare data on trophic transfer efficiencies in
both terrestrial and freshwater pelagic ecosystems. Our review is not exhaustive,
but the patterns we report are largely consistent between the studies cited. We
point out where inconsistencies exist because these often represent places where
specific community patterns appear to influence ecosystem processes.

For terrestrial systems, we obtained data from 20 studies (Gere, quoted in
Balogh 1958, p. 129; Odum et al. 1962; Bray 1964; Witcamp and Crossley 1966;
Dinesman 1967; Reichle and Crossley 1967; Wiegert and Evans 1967; Moulder
and Reichle 1972; Reichle et al. 1975; Singh and Gupta 1977; Swift et al. 1979;
Andrzejewska and Gyllenberg 1980; Coleman and Sasson 1980; Kajak 1980; Singh
et al. 1980; Edwards et al. 1981; Slansky and Scriber 1985; Kurihara and Kikkawa
1986; Vogt et al. 1986; Martin 1987) and for freshwater pelagic systems from 11
studies (Alimov et al. 1972; Andronikova et al. 1972; Gak et al. 1972; Krogius et
al. 1972; Moskalenko and Votinsev 1972; Pidgaiko et al. 1972; Sorokin 1972;
Wetzel et al. 1972; Winberg et al. 1972; Hobbie 1980; Cole 1985). In presenting
the results of our literature search, we must emphasize that the accuracy of the
figures that we have found is almost never stated in the original articles. One
indication of potential error comes from reports in several systems of consump-
tion efficiencies exceeding 100% by substantial amounts.

Terrestrial Ecosystems

The bulk of organic matter in temperate forests (about 62%) is in the form of
dead organisms, nearly all plants. Accordingly, in our diagram of energy flow
(fig. 1), this material occupies the largest compartment and a central position. In
common with similar ecosystems, temperate forests have only a small fraction of
net primary production (NPP) consumed by the herbivores, the best estimate
being 2.6%-4.7%. Even if we add the fall of leaves damaged by herbivores but
not consumed by them, the addition amounts to only 19%—-2% of the total litterfall
(Risley and Crossley 1988). This observation had been made qualitatively for
many years (see, e.g., Galoux 1953; Hairston et al. 1960). Two-thirds of what is
eaten, however, is not digested and joins the dead organic matter on the forest
floor. Thus, less than 1% of NPP is actually assimilated by the next trophic
level. Nearly all of the biomass produced by the herbivores is consumed by the
carnivores, the estimates ranging from 75% to 100%. Moreover, the carnivores
assimilate a comparatively large fraction of what they eat—56%. Thus, consistent
with Kozlovsky’s (1968) observation, consumption efficiency increases with tro-
phic level, and clearly, as others have noted (e.g., Kozlovsky 1968; Whittaker
1975), the ecosystem is not governed by some principle that regulates a constant
proportion of energy reaching successive trophic levels.

The energy bound in dead organic matter flows through the ecosystem by
entirely different allocations. A small fraction (about 15%) is leached or undergoes
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abiotic decomposition. Kurihara and Kikkawa (1986) give a range of estimates
from 8% to 23% for dead leaves of different species of trees. Detritivore consump-
tion was estimated as follows: Kurihara and Kikkawa estimate that millipedes
consume 1.7%-10% of the annual litterfall. From respiration data in Reichle et
al. (1975) it can be calculated that millipedes account for 32.9% of detritivore
consumption. Thus, consumption by detritivores is 5.2%-30.4% of annual lit-
terfall. The digestibility of this averages 32%, with a range from 4% to 82%
(Martin 1987). They can thus digest directly 1.7%-9.7% of the litter, or 2.7-15.6
g C - m~?%- yr~!, in addition to the microflora (bacteria and fungi) ingested. The
microflora, which amount to 11.33 g C - m™2, are 71%-82% digestible, according
to Martin, and thus account for an assimilation of 8-9.3 g C - m~?2 - yr~!. The
total assimilated by the detritivores is thus 10.7-24.9 g C - m~2 - yr~!. The
microflora are extraordinarily active metabolically, and their respiration accounts
for more than 90% of what is available to them (Reichle et al. 1975). This feature
leads us to make a separate trophic level of the microflora. They make up a large
fraction of the assimilable food of the detritivores, which obtain at least five or
six times as large a fraction of the net primary production as do the herbivores.
As the herbivores (consumers of leaves, sap, and wood) consume only 2.6%-5%
of the net primary production (Reichle et al. 1973; Whittaker 1975), the litter
makes up the remainder, amounting to 161-229 g C - m~2. The herbivores thus
consume 4.3-12 g C - m~?% - yr~!, of which 33%-40% is digestible (Martin 1987).
This means that they assimilate 1.42-4.8 ¢ C - m~2 - yr~! or 1/7.5-1/5.2 that of
the detritivores. This calculation does not take into account the turnover of small
roots in deciduous forests, with a large proportion decomposing each year. Respi-
ration from the decomposition of dead small roots is nearly twice that from litter
plus soil organic matter (Edwards et al. 1981). As a result of the large respiratory
loss at the microfiora level, detritivores normally contain only 1.7-6.1 times the
biomass of the herbivores (Edwards et al. 1970), even though more than 95% of
NPP passes to the detritus. Thus, the efficiency of energy transfer from primary
producers to consumers differs markedly depending on whether the pathway is
from living primary producers to herbivores or from dead primary producers
through decomposers:to detritivores. The physiology of the microfiora, like the
populational effect of the carnivores on the herbivores, is the determining factor
for the decomposition side of the forest ecosystem.

Apparently, the carnivores are as effective against the detritivores as they are
against the herbivores, although the hypothesis needs to be tested experimentally.
Spiders alone consume 65.6% of the average standing crop of their detritivore
prey annually (Moulder and Reichle 1972), and other forest floor predators must
consume substantial amounts as well. Given that woodland spiders have been
shown to be food limited (Wise 1975, 1979, 1981), it seems highly likely that their
predation seriously impacts prey density.

Comparable studies in other terrestrial ecosystems have yielded similar data
(table 3). It is interesting to compare the fate of litter in forests where the con-
sumption of NPP by herbivores ranges from only 2.6% to 7%, specifically in
temperate deciduous and tropical forests. The range of values for both kinds of
forest is considerable, but in all cases the relative values within forests are
similar. Values for NPP in temperate forests (in t - ha™! - yr™!) are 9 for oak
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TABLE 3

SoME TRoPHIC STRUCTURE CHARACTERISTICS AND SECONDARY PRODUCTION ESTIMATES
FROM VARIOUS TERRESTRIAL ECOSYSTEMS

Litter Turnover

Mean NPP Animal Consumption  Litter Time
Ecosystem (t-ha='-yrh (% NPP) (t-ha’h (yr)
Temperate deciduous forest 11.5 2.6-5 15 4
Temperate grassland 7.5 10.7 5 2
Boreal forest 7.5 4 35 14
Tundra 1.5 3 44 100
Savanna 9.5 15 3 1
Tropical forest 30 7 5 12-5

Note.—Values from Whittaker (1975) and Swift et al. (1979).

forest and 13 for beech forest (Rodin and Basilevic 1968), 10 for ‘‘warm temperate
mixed forest” (Lieth 1975), and 11.5 (Swift et al. 1979) and 6-25 (Whittaker 1975)
for temperate deciduous forest. For tropical rain forests, the values are 10-35
(Lieth 1975; Whittaker 1975), 32.5 (Rodin and Basilevic 1986), and 30 (Swift et
al. 1979). Thus, most tropical forests are more productive. For the litterfall, the
values for temperate forests are 6.5 (oak) and 9 (beech) (Rodin and Basilevic
1986) and 11.5 (Swift et al.). For tropical forests, the values are 25 (Rodin and
Basilevic) and 30 (Swift et al.). These approximately match NPP. The great con-
trast is in the standing amount of litter: 15 for all temperate forests for which we
find data and 2 (Rodin and Basilevic) and 5 (Swift et al.) for tropical forests.
Kurihara and Kikkawa (1986) give the ratio of standing crop of forest floor litter
to litterfall as 5-9 for temperate forests and 0.1 for tropical rain forests. Indeed,
one of the most striking features of a tropical rain forest for the ecologist is the
near absence of litter. Accustomed to a positive relationship between the amount
of litter and leaf mould and the general ‘‘lushness’ of temperate forests, we are
amazed to be able to kick a few dead leaves and see laterite. Decomposition in
the tropics is so rapid that the nutrients, and hence the total carbon, are nearly
all in the trees, whereas in temperate forests the amount in trees is less than half
of the total. In the grassland ecosystems, the major differences from forests lie
in the proportion of production in all trophic levels that is underground (fig. 2).
Otherwise, the flow of energy is much like that in forests (Coupland and Van
Dyne 1979; Swift et al. 1979). It is true that herbivores in grasslands take a
somewhat larger fraction of NPP, but the proportion is still quite small. The rest
of the flow is little changed by the difference.

Pristine grasslands, with complete faunas undisturbed by modern man, are
virtually unknown. The closest approach is the Serengeti, which is a tropical
savanna—that is, with scattered trees over much of its area. For much original
data, see Sinclair and Norton-Griffiths (1979); for a good general description, see
Ehrlich and Roughgarden (1987). Like the North American long-grass prairie,
most of the Serengeti is maintained by fire, as shown in table 4. Only in the
short-grass part does fire consume less than 50% of NPP. The migratory habit of
the bulk of the herbivore biomass makes interpretation difficult, but they clearly
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TABLE 4

THE FATE oF NET PRIMARY PRODUCTION IN THE SERENGETI

HasitaT TYPE

Kopjes Long Grass Short Grass
% Net primary production consumed by:
Herbivores 14.4 27.6 38.2
Detritivores 28.2 19.2 49.5
Fire 57.4 53.3 12.5

Note.—Values from Sinclair (1975). Note greater herbivore consumption than the average figure
for savannas in table 3. The percentage of herbivore production consumed by carnivores was 35.0%;
by scavengers, 65.0%.

consume a much larger fraction of NPP than they do in any other terrestrial
ecosystem. Nevertheless, Sinclair (1985) has recently concluded that the large
herbivores are predator controlled.

Freshwater Ecosystems

In contrast to terrestrial ecosystems, grazers of the pelagic open-water zone of
lakes and ponds show substantially greater consumption efficiencies, with a mean
of 32.8% of NPP consumed by grazing zooplankton (fig. 3). Riemann et al. (1986)
placed the value as high as 70%. For grazers eaten by either predatory zooplank-
ton or planktivorous fish, a mean of 90% of production is consumed. Finally,
74% of planktivorous fish production is consumed by piscivores. These values
were obtained from studies of 12 north temperate zone lakes and one arctic pond
(references given above). Net primary production values ranged in these studies
between 0.75 g C - m™% - yr~'and 156 g C - m~2 - yr~!. Assimilation efficiencies
calculated from data provided in 11 of the studies show a remarkable consistency
ranging between 75% and 82% regardless of trophic level (except bacterioplank-
ton for which ingestion and assimilation are not distinct). It is unclear, however,
whether this consistency results from a genuine similarity in pelagic processes or
the repeated application of a predetermined value. In any event, consumption
efficiency in these systems does not show as distinct an increase with trophic
level as was found in the terrestrial data. Indeed, if anything, there appears to be
a peak in transfer efficiency at the intermediate (herbivore to primary carnivore)
level.

The fate of detritus in the pelagic zone of lakes and ponds is quite different
from that in terrestrial systems. Water is much more viscous than air, and dead
phytoplankton cells are small and only slightly more dense than water; thus,
detritus settles to sediments comparatively slowly, which allows time for much
of it to be colonized by bacteria, consumed by grazers, or both before reaching
the bottom. The fecal pellets of copepods in general sink more quickly than do
living or dead algae or the loose feces of other zooplankton (e.g., Daphnia). Thus,
whether detritus reaches the sediments depends on the type of grazer present,
the depth of the water column, and the extent of vertical mixing. Furthermore,
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a substantial amount of dead organic matter is present in the water as dissolved
organic carbon, at least some of which is used by bacteria (Wetzel et al. 1972;
Wetzel 1984; Riemann et al. 1986). These processes constitute the ‘‘microbial
loop,”” which has been highlighted beginning in the European literature in the
1960s (e.g., Hillbricht-Illkowska et al. 1966; Saunders 1969; Overbeck 1972)
and is attracting much current attention (see, e.g., Stockner and Porter 1987;
Porter et al. 1988; Sherr and Sherr 1991). This loop clearly contrasts with the
terrestrial environment in which comparatively large pieces of detritus fall quickly
through the air to the ground, away from the activity of herbivores. Even though
the estimates may be imprecise, in many of the studies summarized in figure 3 it
appears that in lakes perhaps 60% of the NPP is consumed in the microbial loop,
never reaching the sediments. This number is consistent with Forsberg’s (1985)
and Riemann and Sgndergaard’s (1986) estimates that bacterioplankton produc-
tion can reach 70%-85% of phytoplankton production. The fraction of the pelagic
detritus that is returned to the grazing trophic level probably depends on the taxa
of zooplankton present. Some groups (e.g., cladocerans) apparently consume
detritus and bacteria, whereas others (e.g., calanoid copepods) do not (DeMott
1988; Pace et al. 1990). Ducklow et al. (1986) found for a coastal marine pelagic
system that very little energy made its way from bacterial production to larger
grazing zooplankton. Because the latter group in marine habitats is typically
dominated by copepods rather than cladocerans (a distinction apparently dating
from the evolution of suction-feeding planktivorous fishes during the Mesozoic;
Kerfoot and Lynch 1987), the low return of energy to the marine food chain via
the microbial loop may reflect the grazing capabilities of the macrozooplankton.
Freshwater systems, in contrast, may be dominated either by copepods or cladoc-
erans and thus may be expected to vary in the importance of the microbial loop
(Pace et al. 1990). For seven of the 12 lakes summarized in figure 3, data are
available on the seasonal average composition of the zooplankton. There is a
positive relationship between the logarithm of the ratio of nonpredatory cladocer-
ans to copepods and the fraction of bacterioplankton production that is consumed
by grazing zooplankton (fig. 4) (Epishura bicalensis is included here with clado-
cerans because this copepod, endemic to Lake Baikal, is known to consume
bacteria [Moskalenko and Votinsev 1972]). An important role for phagotrophic
protists as an intermediate link between bacteria and zooplankton has been advo-
cated by Sherr and Sherr (1988, 1991), but the amount of energy that returns to
the grazing food chain is still questionable (Fenchel 1988).

The portion of NPP actually reaching the bottom amounts to about 15%, in
striking contrast with the more than 95% NPP reaching the forest floor (fig. 1).
Once on the lake bottom, however, only 25% is consumed (Wetzel et al. 1972)
either by detritivores or microbes. The remaining about 12% of NPP accumulates
annually in the sediment. That being the case, the amount of standing biomass
of detritus in a lake, including sediments, would depend on the age of the lake.
This contrasts markedly with the total organic carbon on a mature forest floor,
which remains constant on an annual average basis. This difference in accumula-
tion of dead organic matter probably results from a greater tendency for anaerobic
decomposition in lake sediments than in forest soils. Canfield (1989) found lower
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Fic. 4.—The fraction of bacterioplankton consumed by grazing zooplankton in seven
pelagic lake communities (see text) as a function of the relative biomass of nonselective
cladoceran and selective copepod consumers (> = 0.66, P = .027).

decomposition efficiencies in marine sediments underlying anaerobic waters than
those underlying aerobic waters.

When entire lake ecosystems are considered, the role of littoral vegetation
and allochthonous inputs can lead energy dynamics to be much more similar to
terrestrial systems. Very little of the NPP by macrophytes is consumed by herbi-
vores (Wetzel 1983), with most of the production that is consumed going to bacte-
ria. This result could conceivably represent an indirect route to planktonic grazing
zooplankton, but Wetzel et al. (1972) did not find this to be the case in Lawrence
Lake, and Wetzel (1990b) concludes virtually none of freshwater littoral zone
production makes its way into the pelagic food chain. In relatively small bodies
of water with extensive shorelines, these littoral zone dynamics can dominate
(see, e.g., Wetzel et al. 1972). At higher, more mobile trophic levels, piscine
consumers in small lakes may move between the pelagic and the littoral zones
(Werner et al. 1983; Mittelbach 1986), which makes their relative trophic impacts
in these distinct habitats difficult to quantify (Lodge et al. 1988). The situation in
marine estuarine systems is in some ways similar to lakes. Although carbon is
exported from marshes into near-shore waters via tidal flushing, little or none of
the energy supplement is reflected in fish production (Nixon 1980). Once again
trophic efficiencies depend critically on the nature of the system (pelagic or litto-
ral) under study.

EFFICIENCIES OF ENERGY TRANSFER ARE SYSTEM-DEPENDENT

Do the data just summarized give us insight into the relationship between
energetics and trophic structure? Pelagic systems have one or two more trophic
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levels on the average than do terrestrial ones, yet this result cannot be explained
by any general tendency for them to be of higher productivity. In fact, just the
opposite is true. On a global scale, lakes (0.10-1.5 kg C - m~2 - yr~!) and the
oceans (0.01-1.0 kg C - m~2 - yr~!) fall at the low end of areal primary productiv-
ity compared to forests (0.4-3.5 kg C - m~2 - yr™') and savannahs or grasslands
(0.2-2.0kg C - m~2 - yr™!) (see reviews by Whittaker and Likens 1973; Whittaker
1975). Similarly, shallow coastal marine communities have higher productivities
on the average (0.2-1.0 kg C - m~2 - yr~!) than do those of the open ocean
(0.01-0.4 kg C - m~2 - yr™ "), but, as Ryther (1969) and Landry (1977) have pointed
out, coastal systems have shorter food chains than do oceanic ones.

This is not to say that variation in primary productivity has no effect on higher
trophic levels. Clear positive relationships are well-known between primary and
secondary productivity in both pelagic and terrestrial systems. For example,
drawing on data from many of the same studies used to construct figure 3, Brylin-
sky and Mann (1973) and Brylinsky (1980) showed significantly higher productiv-
ity of both herbivorous zooplankton and predatory zooplankton in the presence
of higher primary productivity. Oglesby (1977) documented higher fishery yields
in lakes with higher primary production, and Nixon (1982) found a similarly posi-
tive relationship for marine environments. In a survey of terrestrial communities,
McNaughton et al. (1989, 1992) found that herbivore productivity is positively
correlated with net primary productivity. Furthermore, a pattern depicted in fig-
ures 1 and 2 appears to be general: herbivore consumption rate is higher in grass-
lands than in forests at any given level of primary productivity, a result McNaugh-
ton et al. (1989) ascribe to domination of the herbivore trophic level by vertebrates
in grasslands and by invertebrates in forests.

There are even significant relationships between the values of the physical and
chemical parameters known to affect primary production and the performance of
higher trophic levels. Pace (1986) found that lakes with higher water-column
phosphorus concentrations had higher zooplankton biomass. In a terrestrial com-
munity, Coe et al. (1976) showed that the productivity of large grazers in African
game parks was a positive function of annual rainfall. Nevertheless, despite these
relationships and in contrast to both the early expectations of Hutchinson (1959)
and Slobodkin (1962) and principles more recently espoused by others (e.g., Fret-
well 1977, 1987; Oksanen et al. 1981), the number of trophic levels does not
appear to increase as a function of the amount of energy passing up the food
chain. The latter authors are in fundamental agreement with HSS about alterna-
tion of trophic control of trophic levels, but one feature of their development is a
proposal that the number of levels increases with increasing primary productivity.
Although this may be the case theoretically, we find it difficult to identify any
natural systems that have less than three trophic levels for reasons of limited
production. Only extreme physical features (e.g., low island area, anoxia in lakes)
seem to produce one-level or two-level communities.

What does determine the number of trophic levels in a community or ecosys-
tem? We have already stated our agreement with Hastings and Conrad (1979)
that omnivory truncates food chain length. We focus here on the contrast between
terrestrial and pelagic communities to consider this problem. In particular, we
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consider which hypotheses can account for our observations that pelagic commu-
nities tend to have four or five levels, whereas terrestrial (and other nonpelagic)
communities tend to have three (ignoring in both cases the decomposers and
detritivores, which are present in both kinds of systems).

One hypothesis is that the magnitude of the microbial loop in open water is
sufficient to support an additional trophic level above the primary carnivores
(planktivores). Enough detritus remains suspended in the water column, the argu-
ment goes, for the decomposer microbes to provide sufficient extra food for
filter-feeding herbivore production to support a large enough biomass of plankti-
vorous fish to maintain the piscivores. This is closely related to the original tenet
of Hutchinson (1959) and Slobodkin (1962) that the number of trophic levels
depends on the supply of energy. Certainly, available energy must set some upper
limit to the number of trophic levels that any area can support, as must the
amount of space available in which the top trophic level can forage (Schoener
1989). Nevertheless, both Pimm (1982) and Briand and Cohen (1987) in their
general reviews were unable to find any statistical relationship between NPP and
the number of trophic levels in a broad range of community types. When lakes
ranging between 25 mg C - m™2 - d"!and 1,240 mg C - m~2 - d~! NPP all have
four trophic levels (Pimm 1982), a threefold boost (maximum) in trophic transfer
accruing from the microbial loop looks relatively minor.

The hypothesis favored by Pimm and Lawton (1977) and Pimm (1982) is that
dynamical stability places constraints on food chain length. In particular, their
argument is that longer chains take longer to return to equilibrium after perturba-
tion. There are a number of simplifying assumptions in the approach used by
those authors that lead us, and have led others (e.g., Saunders 1978; Hastings
1988), to question the relevance of their conclusions, including assumptions that
local stability is an appropriate measure of persistence, that increased return
times increase the likelihood of extinction, that there are single or few species
per trophic level, that intraspecific density dependence occurs only at the lowest
trophic level, and that demographic or spatial complexity need not be considered.
For the comparison between pelagic and terrestrial systems, no reason occurs to
us why pelagic communities should be less susceptible to perturbation. Wetzel
(1984) suggested that the large reservoir of detritus present in lakes might provide
a base resource that would ‘‘impart metabolic stability’’ to these systems. He
observed, however, that very little of either the particulate or dissolved organic
carbon that makes up the detrital pool in fresh water actually enters the consumer
food chain. Indeed, in planktonic systems, extreme fluctuations in population
sizes of both producers and consumers are quite typical.

We propose the following hypothesis to account for the difference in the num-
ber of trophic levels between most pelagic systems and most terrestrial ones. In
planktonic communities, the primary producers are unable to hold space, and
they are selected to be small (for suspension in the water column, enhanced nutri-
ent uptake, and for rapid reproduction) (see also Smith 1975; Lewis 1976; Reyn-
olds 1984). The herbivores are generally small to feed better on the unicellular
algae. Under such conditions, a four-level system is likely, because the zooplank-
tivorous fish provide the only suitable prey for larger fish. Ryther (1969) proposed
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size-dependent consumption as an explanation for difference in food chain lengths
in the ocean, where phytoplankton cell size is greatest near shore waters where
food chains are shortest. This dynamic is enhanced by the morphological con-
straints placed on swimming organisms in the viscous aquatic habitat. Predators
in the pelagic zone, even when they derive from quite distinct phylogenetic back-
grounds (e.g., killer whales, tuna, dipteran larvae, arrow worms), nearly uni-
formly have a fusiform shape and capture their prey by the sole use of their
mouths. Their appendages are typically reduced to fins for efficient locomotion
in that habitat. As a result, these animals experience strong gape limitation in the
prey they can capture. That is, the maximum prey size captured and consumed
is limited to the width of the predator’s mouth (Zaret 1980). The gape limitation
constraint reduces the amount of feeding at multiple trophic levels high in the
food chain, as compared with communities in other habitats. A related idea is
Cousins’s (1987) suggestion that the number of trophic levels is dependent on the
average ratio of predator size to prey size. We suggest that this ratio is likely to
be much larger on the average in pelagic systems than in terrestrial systems,
where indeed it is often less than one (e.g., insects feeding on trees, pack-hunting
carnivores).

The competition of terrestrial producers for resources results in their competing
for space. They are abundant enough to compete because the herbivores in a
three-trophic level system consume only a very small fraction of the NPP. Com-
petition for space selects for large size and longevity. This large size in turn
means that herbivores are not constrained to be any particular size, and in fact
they span the complete range of sizes for terrestrial animals. Carnivores generally
feed indiscriminately on other carnivores as well as on the more numerous herbi-
vores, and there is no stratification by size among them.

These hypotheses should have applicability to systems beyond those we explic-
itly consider here, though perhaps in combinations different from forests, prairies,
or pelagia. For example, in the littoral zone of lakes, rooted macrophytes, which
account for two-thirds of NPP (Wetzel et al. 1972), occupy space like their terres-
trial counterparts, while the consumers are gape limited as in the pelagic zone.
Do three or four trophic levels prevail? The answer is typically four, again with
large piscivorous fish at the top, which suggests that the constraints of the fluid
medium are more significant than resource dynamics of the producers. One may
ask, then, why with four levels macrophyte beds persist. A possible answer may
again lie in the physical dictates of the environment. Unlike the predominance of
the fusiform body shape in truly pelagic fishes, the primary carnivores in the
littoral of lakes are typically deep-bodied fish adapted for hovering and high ma-
neuverability (Greenway 1965; Keast and Webb 1966). As noted below, this body
form is particularly invulnerable to piscivory (Hambright et al. 1991) and may
dilute effects of the top trophic level further down the food chain.

Gape limitation may occur in some terrestrial food chains dominated at the top
by lizards or snakes (De Marco et al. 1985), which has been demonstrated to
influence trophic structure in the way proposed for the pelagic zone (Spiller and
Schoener 1990). In the American Southwest, there is little experimental evidence
that the insectivorous lizards compete interspecifically (Hairston 1989). These
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TABLE 5

CoNsUMPTION EFFICIENCIES (%) FOR TEMPERATE TERRESTRIAL
AND FRESHWATER PELAGIC COMMUNITIES (SE)

TERRESTRIAL
PeLAGIC
Grassland
Deciduous Forest (Aboveground) Lake
Producers — herbivores 3.7 (.79) 9.3 (3.12) 32.8 (4.49)
Herbivores — first-degree predators 89.9 (4.96) 77.0 (2.3) 24.5 (10.4)
90.0 (13.2)
Primary predators — secondary predators C R 74.4 (13.2)

communities could provide a (further) test for the gape limitation hypothesis,
because the lizard-eating predators are larger lizards, snakes, and the roadrun-
ner, Geococcyx californianus, all of which are gape limited. The fact that mean
chain length for the three desert and sand-dune food webs reported by Briand
and Cohen (1987) (table 2) approaches that of pelagic systems is at least sugges-
tive. Care would have to be taken, however, to define what assemblage of species
was under investigation. Experiments in deserts appear to reveal three groups of
organisms that have few if any intergroup interactions: the perennial plants and
their herbivores and predators, the annual plants and the granivores that depend
on their seeds, and the insectivores and their prey and predators (Hairston 1989).

If productivity and trophic transfer efficiencies do not have a demonstrable
effect on the number of trophic levels in a community, is the converse true?
Does the number of trophic levels influence productivity or trophic efficiency?
If terrestrial communities typically have three trophic levels and pelagic lake
communities typically have four, then according to the HSS hypothesis we would
expect the fraction of primary production consumed by herbivores to differ be-
tween the two systems because herbivores in terrestrial communities should be
limited by predation, whereas those in pelagic should be food limited. Consump-
tion efficiency should then be lower in terrestrial than in pelagic systems. For the
studies summarized in figures 1-3, this is distinctly the case (table 5), with an
average of over 32% of primary production consumed by zooplankton in lakes
but only between 4% and 9% of terrestrial aboveground primary production con-
sumed by herbivores.

At the next trophic transfer (herbivores to primary carnivores), we expect the
reverse to be the case: food limitation in terrestrial and predator limitation in
pelagic communities. Here, however, the analysis of pelagic systems becomes
complicated by the presence of predatory invertebrates (fig. 3). Two interpreta-
tions are possible. If we ask what fraction of grazing zooplankton production is
ultimately consumed by planktivorous fish, then consumption efficiencies are
consistent with the HSS prediction: only some 24% of grazer production is con-
sumed by planktivorous fish in lakes as compared with between 77% and 90% of
aboveground herbivore production consumed by predators in terrestrial commu-
nities. On the other hand, if we ask what fraction of grazing zooplankton produc-
tion is consumed by predators of whatever type (either invertebrates or fish),
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then the value is on the average 90%. The difference lies in the inefficiency of
energy transfer from predatory invertebrates to zooplanktivorous fish.

Finally, if in a four-level pelagic system zooplanktivorous fish are limited by
piscivores, then a substantial fraction of the production by the former must be
consumed by the latter, which is the case (table 5). A small amount of production
by primary predators is consumed by other predators in terrestrial systems. We
were unable to assign an efficiency value to this, but our prediction is that it
should be low. For example, predators compose a relatively small fraction of the
total diets of top carnivores in several terrestrial systems. For birds of prey
feeding in eastern deciduous forests, 64.2% of their diet is on the average com-
posed of herbivores, 13.1% of omnivores, and 23.1% of carnivores (data taken
from Bent 1937-1938). A different approach is to tally the number of families or
subfamilies of predaceous or parasitoid insects that attack herbivores, omnivores,
or carnivores. Comstock (1948) gives information on 132 such taxa. For 86 of
them, one prey type is specified (e.g., caterpillar, wood-boring beetle, spider,
wasp, ant); of these, 67 (77.9%) are herbivores, 7 (8.1%) are omnivores, and 12
(13.9%) are predators. For 17 taxa (12.9% of the 132), at least two categories of
prey were listed (e.g., both herbivores and predators), and 29 taxa were simply
described as ‘‘predaceous.’’ It seems reasonable to allocate the prey of these last
two categories in the same proportions as those that are definite. Overall, the
food of predators and parasitoids is taken in rough proportion to the availability
of herbivores and carnivores as potential prey. As one example, the standing
crop biomass of canopy consumers in the deciduous forest at Oak Ridge consists
of 79% herbivores and 21% predators (Edwards et al. 1981).

Within particular communities, evidence for control of ecological energetics by
trophic structure comes from both comparative data and experimental studies.
For lakes and ponds, recent literature has stressed the impact of the consumer
trophic levels (see, e.g., Carpenter et al. 1987; Bendorf 1988; Carpenter 1988;
Carpenter and Kitchell 1988). For the group of aquatic studies summarized in
figure 3, there is substantial variation in herbivore consumption efficiency. Is
some of this variation explained by differences in trophic structure, for example,
differences in the relative importance of the predatory invertebrates in the grazing
food chain? For the six lakes for which the required data are available, consump-
tion of primary production by grazing zooplankton ranged between 12% and 59%,
and the fraction of grazing zooplankton production that was consumed by fish
ranged between 2.8% and 56%. The two variables are positively related (r> =
0.74, P < .05), which means that as a community shifts more toward having four
trophic levels (phytoplankton — grazing zooplankton — zooplanktivorous fish —
piscivores) rather than five (phytoplankton — grazing zooplankton — predatory
zooplankton — zooplanktivorous fish — piscivores), the efficiency with which
primary production is consumed by grazing zooplankton increases. This is consis-
tent with what would be expected from trophic structure control of energy flow.
Carpenter et al. (1992) reviewed data from 25 North American lakes and found
the well-known statistical relationship between water-column phosphorus content
and standing algal biomass. They also found, however, that algal biomass was
significantly negatively correlated with both the biomass and the mean body size
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of grazing zooplankton. Because it is well-known that in the presence of fish
zooplankton tend to be small in size and low in abundance, it appears that signifi-
cant grazer control of the primary producers may be fairly widespread in lakes.

Several experimental studies have explored the effects of zooplanktivorous fish
on zooplankton and phytoplankton abundances. For example, Vanni and Findlay
(1990) found that, in enclosures containing yellow perch (Perca flavescens), zoo-
plankton biomass was reduced and phytoplankton biovolume increased relative
to controls (no fish). Similar results are reported by Bosselmann and Riemann
(1986) for an enclosure-exclosure experiment. Morin et al. (1991) went one step
further and showed that in replicate ponds containing zooplanktivorous fish, both
planktonic and whole-pond primary productivity was about double that in similar
ponds lacking fish. As in the previous two studies, zooplankton biomass was
substantially lower in the presence of the fish (Hambright 1991). In each case,
the fish enclosures or ponds received inputs of solar energy identical to that in
the fishless ones, yet treatments with higher phytoplankton biomass and higher
primary productivity contained lower biomass of the trophic level consuming it.
This is strong evidence that the consumption efficiency of primary production by
zooplankton is substantially greater in the absence of zooplankton-feeding fish
than in their presence. A review by Liebold (1989) of 47 experiments of the type
just discussed shows that these effects are quite general. Still, we suspect that
the result of trophic-level manipulation will vary from system to system, de-
pending on the species involved. Deep-bodied, spiny-rayed planktivorous fish are
less vulnerable to piscivores than are those with shallow bodies and soft rays
(Hambright et al. 1991). Some cyanobacteria are less edible than are other groups
of algae (Porter 1977; Reynolds 1984). When present, each may determine trophic
transfer efficiency as much or more than the state of higher trophic levels. These
case-specific features may account for some of the exceptions to the general
pattern noted by DeMelo et al. (1992) in their literature review. It is interesting
and disconcerting, however, how often summaries of results given by DeMelo et
al. (1992) differed from those in Liebold’s (1989) comparable effort, even though
many of the same references were used.

For terrestrial communities, McNaughton et al. (1992) pointed out that during
years of population ‘‘outbreaks,’’ the productivity of herbivorous insects may be
substantially higher than it is in more typical years. It would be worth knowing
in these instances how primary production responded. As in aquatic systems,
experimental studies have documented significant effects of trophic structure on
the standing biomass of different trophic levels. Holmes et al. (1979) excluded
birds from sections of a temperate forest with netting and found that the numbers
of Lepidoptera larvae increased substantially, which indicates predator control
of the abundance of those herbivores. Other arthropod groups did not increase
in the bird exclosures, however. It is interesting that at the typical prey population
sizes present in that experiment, the proportion of caterpillar biomass removed
by birds greatly exceeded the fraction typically consumed during caterpillar out-
breaks. Thus, control of grazers by predators and grazer productivity (if Mc-
Naughton et al.’s 1992 result is general) can vary dramatically from year to year.

Predators apparently may also affect the dynamics of the primary producer
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trophic level, at least on a local scale. In one Australian forest community, the
interspecific territoriality of the bell miner (Manorinia melanophrys) is so effec-
tive in excluding other insectivorous birds that the psyllid Homoptera increased
to the point of defoliating the trees, because the bell miners were defending an
area containing more psyllids than they could consume (Loyn et al. 1981). In a
similar vein, Spiller and Schoener (1990) showed experimentally that removal of
predatory lizards from island communities in the Bahamas typically resulted in
an increase in herbivore damage to primary producers. The result is consistent
with earlier observations by Schoener (1988) that leaf damage was elevated on
islands naturally lacking lizards compared to islands where they were present.
As in the case of freshwater pelagic communities, an intermediate predatory
invertebrate trophic level may exist on these islands. Spiders are predators on
the herbivores, while the lizards consume both herbivores and spiders. Spider
population sizes were elevated in the absence of lizards (Schoener 1983), but
their indirect effect on herbivory depended on the prey species considered.

In both terrestrial and freshwater pelagic communities, trophic structure plays
a significant role in determining both the rate of energy fixation by the primary
producers and the transfer efficiencies of this energy to higher trophic levels.
These effects are not limited only to the communities just mentioned. Similar
dynamics have been documented for the stream systems studied by Bowlby and
Roff (1986) and Power (1990) and for the other aquatic systems such as marine
kelp beds (Estes and Palmisano 1974). We believe that the regularities that we
have suggested exist are determined first by the nature of the physical environ-
ment: substratum dominated versus pelagic. These qualities broadly dictate dif-
ferences in the number of trophic levels typical of each. Second, differences in
the number of trophic levels impose different transfer efficiencies because of
the effects of alternating trophic control. Clearly, in continuing to explore the
cause-effect relationship between trophic structure and energy flow, it will con-
tinue to pay to focus on the species constituting the dominant bulk of the biomass
or exercising exceptional influence at each trophic level, the ecological and other
biological properties of those species, and the constraints placed on the behaviors
of species and communities by the physical properties of the environments in
which they reside. The integration of the interaction among those species with
measurements of the energetics involved will surely advance our understanding
of ecological processes.

ACKNOWLEDGMENTS

The order of authors’ names is alphabetical. This article is an outgrowth of a
talk presented at a symposium in honor of the 75th anniversary of the founding
of the Ecological Society of America entitled ‘‘Changing Perspectives on Some
Long-standing Problems in Ecology.”” We thank R. B. Root and D. J. Shure for
inviting us to think about this topic. R. W. Howarth, P. L. Marks, G. G. Mittel-
bach, R. T. Paine, G. A. Polis, M. E. Power, L. Real, R. B. Root, W. P. Sousa,
E. E. Werner, and two anonymous referees provided invaluable criticism and
advice. We thank K. D. Hambright for initially pointing out a role for gape



404 THE AMERICAN NATURALIST

limitation. Part of this research was supported by National Science Foundation
grant BSR-8717134.

LITERATURE CITED

Alimov, A. F., V. V. Boullion, N. P. Finogenova, M. B. Ivanova, N. K. Kuzmitskaya, V. N.
Nikulina, N. G. Ozeretskovskaya, and T. V. Zharova. 1972. Biological productivity of lakes
Krivoe and Krugloe. Pages 39-56 in Z. Kajak and A. Hillbricht-Illkowska, eds. Productivity
problems of freshwaters. Paristwowe Wydawnictwo Naukowe, Warsaw.

Andronikova, I. N., V. G. Drabkova, K. N. Kuzmenko, N. F. Michailova, and E. A. Stravinskaya.
1972. Biological productivity of the main communities of Red Lake. Pages 57-71 in Z.
Kajak and A. Hillbricht-Illkowska, eds. Productivity problems of freshwaters. Paristwowe
Wydawnictwo Naukowe, Warsaw.

Andrzejewska, L., and G. Gyllenberg. 1980. Small herbivore subsystem. Pages 201-267 in A. 1.
Breymeyer and G. M. Van Dyne, eds. Grasslands, systems analysis, and man. Cambridge
University Press, New York.

Balogh, J. 1958. Lebensgemeinschaften der Landtiere. Akademie, Berlin.

Bendorf, J., ed. 1988. Biomanipulation. Limnologica 19:1-110.

Bent, A. C. 1937-1938. Life histories of North American birds of prey. Pts. 1, 2. Smithsonian Institu-
tion, Washington, D.C.

Bird, D. F., and J. Kalff. 1986. Bacterial grazing by planktonic algae. Science (Washington, D.C.)
231:493-495.

—— . 1987. Algal phagotrophy: regulating factors and importance relative to photosynthesis in
Dinobryon (Chrysophyceae). Limnology and Oceanography 32:277-284.

Bosselmann, S., and B. Riemann. 1986. Zooplankton. Pages 199-236 in B. Riemann and M. Sgnder-
gaard, eds. Carbon dynamics in eutrophic, temperate lakes. Elsevier, Amsterdam.
Bowlby, J. N., and J. C. Roff. 1986. Trophic structure in southern Ontario streams. Ecology

67:1670-1679.
Bray, J. R. 1964. Primary consumption in three forest canopies. Ecology 45:165-167.
Briand, F., and J. E. Cohen. 1987. Environmental correlates of food chain length. Science (Washing-
ton, D.C.) 238:956-960.

. 1989. Response to Moore et al. Science (Washington, D.C.) 243:239-240.

Brooks, J. L., and S. I. Dodson. 1965. Predation, body size, and composition of plankton. Science
(Washington, D.C.) 150:28-35.

Brown, J. H., and E. J. Heske. 1990. Control of a desert-grassland transition by a keystone rodent
guild. Science (Washington, D.C.) 250:1705-1707.

Brylinsky, M. 1980. Estimating the productivity of lakes and reservoirs. Pages 411-453 in E. D.
Le Cren and R. H. Lowe-McConnell, eds. The functioning of freshwater ecosystems. Cam-
bridge University Press, Cambridge.

Brylinsky, M., and K. H. Mann. 1973. An analysis of factors governing productivity in lakes and
reservoirs. Limnology and Oceanography 18:1-14.

Burns, T. P. 1989. Lindeman’s contradiction and the trophic structure of ecosystems. Ecology
70:1355-1362.

Canfield, D. E. 1989. Sulfate reduction and oxic respiration in marine sediments: implications for
organic carbon preservation in euxinic environments. Deep Sea Research 36:121-138.

Carpenter, S. R., ed. 1988. Complex interactions in lake communities. Springer, New York.

Carpenter, S. R., and J. F. Kitchell. 1988. Consumer control of lake productivity. BioScience
38:764-769.

Carpenter, S. R., J. F. Kitchell, J. R. Hodgson, P. A. Cochran, J. J. Elser, M. M. Elser, D. M. Dodge,
D. Kretchmer, S. He, and C. M. von Ende. 1987. Regulation of lake primary productivity by
food web structure. Ecology 68:1863—1876.

Carpenter, S. R., T. M. Frost, J. F. Kitchell, T. K. Kratz, D. W. Schindler, J. Shearer, W. G.
Sprules, M. J. Vanni, and A. P. Zimmerman. 1992. Patterns of primary production and




TROPHIC STRUCTURE AND ENERGY FLOW 405

herbivory in 25 North American lake ecosystems. Pages 67-96 in J. Cole, S. Findlay, and
G. Lovett, eds. Comparative analyses of ecosystems: patterns, mechanisms, and theories.
Springer, New York.

Clements, F. E., and V. E. Shelford. 1939. Bioecology. Wiley, New York.

Coe, M. J., D. H. Cumming, and J. Phillipson. 1976. Biomass and production of large African herbi-
vores in relation to rainfall and primary production. Oecologia (Berlin) 22:341-354.

Cohen, J. E. 1978. Food webs and niche space. Princeton University Press, Princeton, N.J.

Cole, J. J. 1985. Decomposition. Pages 302-310 in G. E. Likens, ed. An ecosystems approach to
aquatic ecology: Mirror Lake and its environment. Springer, New York.

Coleman, D. C., and A. Sasson. 1980. Decomposer subsystem. Pages 609-655 in A. I. Breymeyer
and G. M. Van Dyne, eds. Grasslands, systems analysis, and man. Cambridge University
Press, New York.

Comstock, J. H. 1948. An introduction to entomology. Comstock, Ithaca, N.Y.

Cooper, S. D. 1988. The responses of aquatic insects and tadpoles to trout. Internationale Vereinigung
fiir Theoretische und Angewandte Limnologie 23:1698—1703.

Coupland, R. T., and G. M. Van Dyne. 1979. Systems synthesis. Pages 97-106 in R. T. Coupland,
ed. Grassland ecosystems of the world: analysis of grasslands and their uses. Cambridge
University Press, Cambridge.

Cousins, S. 1987. The decline of the trophic level concept. Trends in Ecology & Evolution 2:312-316.

DeMarco, V. G., R. W. Drenner, and G. W. Ferguson. 1985. Maximum prey size of an insectivorous
lizard, Sceloporus undulatus garmani. Copeia 1985:1077-1080.

DeMelo, R., R. France, and D. J. McQueen. 1992. Biomanipulation: hit or myth? Limnology and
Oceanography 37:192-207.

DeMott, W. R. 1988. Discrimination between algae and detritus by freshwater and marine zooplank-
ton. Bulletin of Marine Science 43:486-499.

Diamond, J. 1986. Evolution of ecological segregation in the New Guinea montane avifauna. Pages
98-125 in J. Diamond and T. J. Case, eds. Community ecology. Harper, New York.

Dinesman, L. G. 1967. Influence of vertebrates on primary production of terrestrial communities.
Pages 261-266 in K. Petrusewicz, ed. Secondary productivity of terrestrial ecosystems.
Panstwowe Wydawnictwo Naukowe, Warsaw.

Ducklow, H. W., D. A. Purdie, P. J. L. Williams, and J. M. Davies. 1986. Bacterioplankton: a sink for
carbon in a coastal marine plankton community. Science (Washington, D.C.) 232:865-867.

Edwards, C. A., D. E. Reichle, and D. A. Crossley. 1970. The role of soil invertebrates in turnover
of organic matter and nutrients. Pages 147-172 in D. E. Reichle, ed. Analysis of temperate
forest ecosystems. Ecological Studies 1. Springer, New York.

Edwards, N. T., H. H. Shugart, Jr., S. B. McLaughlin, W. F. Harris, and D. E. Reichle. 1981.
Carbon metabolism in terrestrial ecosystems. Pages 499-536 in D. E. Reichle, ed. Dynamic
properties of forest ecosystems. Cambridge University Press, Cambridge.

Ehrlich, P. R., and J. Roughgarden. 1987. The science of ecology. Macmillan, New York.

Elton, C. 1927. Animal ecology. Sidgwick & Jackson, London.

Estep,. M. L. F., and S. Vigg. 1985. Stable carbon and nitrogen isotope tracers of trophic dynamics
in natural populations and fisheries of the Lahonton Lake system, Nevada. Canadian Journal
of Fisheries and Aquatic Sciences 42:1712-1719.

Estes, J. A., and J. F. Palmisano. 1974. Sea otters: their role in structuring nearshore communities.
Science (Washington, D.C.) 185:1058—-1060.

Fenchel, T. 1988. Marine plankton food chains. Annual Review of Ecology and Systematics 19:19-38.

Flecker, A. S. 1992. Fish predation and the evolution of invertebrate drift periodicity: evidence from
Neotropical streams. Ecology 73:438-448.

Forsberg, B. R. F. 1985. The fate of planktonic primary production. Limnology and Oceanography
30:807-819.

Fretwell, S. D. 1977. The regulation of plant communities by food chains exploiting them. Perspectives

in Biology and Medicine Association of Peoria 20:169-185.

. 1987. Food chain dynamics: the central theory of ecology? Oikos 50:291-301.

Fry, B. 1986. Sources of carbon and sulfur nutrition for consumers in three meromictic lakes of New
York State. Limnology and Oceanography 31:79-88.




406 THE AMERICAN NATURALIST

Gak, D. Z., V. V. Gurvich, I. L. Korelyakova, L. E. Kostikova, N. A. Konstantinova, G. A. Olivari,
A. D. Primachenko, Ya. Ya. Tseeb, K. S. Vladimirova, and L. N. Zimbalevskaya. 1972.
Productivity of aquatic organism communities of different trophic levels in Kiev Reservoir.
Pages 445-455 in Z. Kajak and A. Hillbricht-Illkowska, eds. Productivity problems of fresh-
waters. Pafistwowe Wydawnictwo Naukowe, Warsaw.

Galoux, A. 1953. La chénaie sessiliflore de Haute Campine. Travaux. Série A. No. 8. Station de
Recherches Groenendaal (Belgium).

Gleason, H. A. 1926. The individualistic concept of the plant association. Bulletin of the Torrey
Botanical Club 53:1-20.

Greenway, P. 1965. Body form and behavioral types in fish. Experientia (Basel) 21:489-522.

Hairston, N. G., Sr. 1985. The interpretation of experiments in interspecific competition. American
Naturalist 125:321-325.

——. 1989. Ecological experiments: purpose, design, and execution. Cambridge University Press,
Cambridge.

Hairston, N. G., Sr., F. E. Smith, and L. B. Slobodkin. 1960. Community structure, population
control, and competition. American Naturalist 94:421-425.

Hambright, K. D. 1991. Experimental analysis of piscivore-mediated trophic cascading effects in
freshwater ponds. Ph.D. diss. Cornell University, Ithaca, N.Y.

Hambright, K. D., R. W. Drenner, S. R. McComas, and N. G. Hairston, Jr. 1991. Gape-limited
piscivores, planktivore size refuges, and the trophic cascade hypothesis. Archiv fiir Hydrobi-
ologie 121:389-404.

Hastings, A. 1988. Food web theory and stability. Ecology 69:1665-1672.

Hastings, H. M., and M. Conrad. 1979. Length and evolutionary stability of food chains. Nature
(London) 282:838-839.

Hillbricht-Illkowska, A., Z. Gliwicz, and J. Spodniewska. 1966. Zooplankton production and trophic
dependencies in the pelagic zone of two Masurian lakes. Internationale Vereinigung fiir
Theoretische und Angewandte Limnologie 16:432-440.

Hobbie, J. E. 1980. Flux of carbon. Pages 5-9 in J. E. Hobbie, ed. Limnology of tundra ponds.
Dowden, Hutchinson & Ross, Stroudsburg, Penn.

Holmes, R. T., J. C. Schultz, and P. Nothnagle. 1979. Bird predation on forest insects: an exclosure
experiment. Science (Washington, D.C.) 206:462—-463.

Howarth, R. W., and J. M. Teal. 1980. Energy flow in a salt marsh ecosystem: the role of reduced
inorganic sulfur compounds. American Naturalist 116:862—-872.

Hrbacek, J. 1962. Species composition and the amount of zooplankton in relation to fish stock.
Ceskoslovenské Akademie Ved, Rada Mathematickych a Priarodnich Ved 72:1-114.

Hutchinson, G. E. 1959. Homage to Santa Rosalia or Why are there so many kinds of animals?
American Naturalist 93:145-159.

Kajak, A. 1980. Invertebrate predator subsystem. Pages 539-584 in A. I. Breymeyer and G. M. Van
Dyne, eds. Grasslands, systems analysis, and man. Cambridge University Press, New York.

Keast, A., and D. Webb. 1966. Mouth and body form relative to feeding ecology in the fish fauna of
a small lake, Lake Opinicon, Ontario. Journal of the Fisheries Research Board of Canada
23:1845-1874.

Kerfoot, W. C., and M. Lynch. 1987. Branchiopod communities: associations with planktivorous fish
in space and time. Pages 367-378 in W. C. Kerfoot and A. Sih, eds. Predation: direct and
indirect impacts on aquatic communities. University Press of New England, Hanover, N.H.

Kozlovsky, D. G. 1968. A critical evaluation of the trophic level concept. I. Ecological efficiencies.
Ecology 49:48-60.

Krogius, F. V., E. M. Krokhin, and V. V. Menshutkin. 1972. The modelling of the ecosystem of
Lake Dalnee on an electronic computer. Pages 149-164 in Z. Kajak and A. Hillbricht-
Illkowska, eds. Productivity problems of freshwaters. Paristwowe Wydawnictwo Naukowe,
Warsaw.

Kurihara, Y., and J. Kikkawa. 1986. Trophic relations of decomposers. Pages 127-160 in J. Kikkawa
and D. J. Anderson, eds. Community ecology: pattern and process. Blackwell, Oxford.

Landry, M. R. 1977. A review of important concepts in the trophic organization of pelagic ecosystems.
Helgoldnder Wissenschaftliche Meeresuntersuchungen Biology 30:8-17.



TROPHIC STRUCTURE AND ENERGY FLOW 407

Levine, S. 1980. Several measures of trophic structure applicable to complex food webs. Journal of
Theoretical Biology 83:195-207.

Lewis, W. M., Jr. 1976. Surface/volume ratio: implications for phytoplankton morphology. Science
(Washington, D.C.) 192:885-887.

Liebold, M. A. 1989. Resource edibility and the effects of predators and productivity on the outcome
of trophic interactions. American Naturalist 134:922-949.

Lieth, H. 1975. Primary production of the major vegetation units of the world. Pages 203-215 in H.
Lieth and R. H. Whittaker, eds. Primary productivity of the biosphere. Ecological Studies
14. Springer, New York.

Likens, G. E. 1984. Beyond the shoreline: a watershed-ecosystem approach. Internationale Vereini-
gung fiir Theoretische und Angewandte Limnologie 22:1-22.

Lindeman, R. L. 1942. The trophic-dynamic aspect of ecology. Ecology 23:399-417.

Lodge, D. M., J. W. Barko, D. Strayer, J. M. Melack, G. G. Mittelbach, R. W. Howarth, B. Menge,
and J. E. Titus. 1988. Spatial heterogeneity and habitat interactions in lake communities.
Pages 181-208 in S. R. Carpenter, ed. Complex interactions in lake communities. Springer,
New York.

Loyn, R. H., R. G. Runnalls, G. Y. Forward, and J. Tyers. 1981. Territorial bell miners and other
birds affecting populations of insect prey. Science (Washington, D.C.) 221:1411-1413.

MacArthur, R. H. 1958. Population ecology of some warblers of northeastern coniferous forests.
Ecology 39:599-617.

Martin, M. M. 1987. Invertebrate-microbial interactions: ingested fungal enzymes in arthropod biol-
ogy. Comstock, Ithaca, N.Y.

Martinez, N. D. 1991. Artifacts or attributes? Effects of resolution on the Little Rock Lake food web.
Ecological Monographs 61:367-392.

McNaughton, S. J., M. Osterheld, D. A. Frank, and K. J. Williams. 1989. Ecosystem-level patterns
of primary productivity and herbivory in terrestrial habits. Nature (London) 341:142—144.

————. 1992. Primary and secondary production in terrestrial systems. Pages 120-139 in J. Cole, S.
Findlay, and G. Lovett, eds. Comparative analyses of ecosystems: patterns, mechanisms,
and theories. Springer, New York.

Mittelbach, G. 1986. Predator-mediated habitat use: some consequences for species interactions.
Environmental Biology of Fishes 16:159-189.

Moore, J. C., D. E. Walter, and H. W. Hunt. 1989. Habitat compartmentation and environmental
correlates of food chain length. Science (Washington, D.C.) 243:238-239.

Morin, A., K. D. Hambright, N. G. Hairston, Jr., D. M. Sherman, and R. W. Howarth. 1991.
Consumer control of gross primary production in replicate freshwater ponds. Internationale
Vereinigung fiir Theoretische und Angewandte Limnologie 24:1512-1516.

Moskalenko, B. K., and K. K. Votinsev. 1972. Biological productivity and balance of organic sub-
stance and energy in Lake Baikal. Pages 207-226 in Z. Kajak and A. Hillbricht-Illkowska,
eds. Productivity problems of freshwaters. Panstwowe Wydawnictwo Naukowe, Warsaw.

Moulder, B. C., and D. E. Reichle. 1972. Significance of spider predation in the energy dynamics of
forest-floor arthropod communities. Ecological Monographs 42:473-498.

Naiman, R. J., J. M. Mello, M. A. Lock, T. E. Ford, and S. R. Reice. 1987. Longitudinal patterns
of ecosystem processes and community structure in a subarctic river continuum. Ecology
68:1139-1156.

Newton, 1. 1979. The population ecology of raptors. Poyser, Birkhaustead, U.K.

Nixon, S. W. 1980. Between coastal marshes and coastal waters—a review of twenty years of specula-
tion and research on the role of salt marshes in estuarine productivity and water chemistry.
Pages 437-524 in P. Hamilton and K. B. McDonald, eds. Estuarine and wetland processes.
Plenum, New York.

———. 1982. Nutrient dynamics, primary production and fisheries yields of lagoons. Oceanologica
Acta 4(suppl.):357-371.

Odum, E. P., C. E. Connell, and L. B. Davenport. 1962. Population energy flow of three primary
consumer components of old-field ecosystems. Ecology 43:88-96.

Odum, H. T., and E. P. Odum. 1955. Trophic structure and productivity of a windward coral reef
community on Eniwetok Atoll. Ecological Monographs 25:291-320.



408 THE AMERICAN NATURALIST

Oglesby, R. T. 1977. Relationships of fish yield to lake phytoplankton standing crop, production
and morphoedaphic factors. Journal of the Fisheries Research Board of Canada 34:2271-
2279.

Oksanen, L. 1988. Ecosystem organization: mutualism and cybernetics or plain Darwinian struggle
for existence? American Naturalist 131:424-444.

————. 1991. Trophic levels and trophic dynamics: a consensus emerging. Trends in Ecology &
Evolution 6:58-60.

Oksanen, L., S. D. Fretwell, J. Arruda, and P. Niemela. 1981. Exploitation ecosystems in gradients
of primary production. American Naturalist 118:240-261.

Overbeck, J. 1972. Distribution pattern of phytoplankton and bacteria, microbial decomposition of
organic matter and bacterial production in eutrophic, stratified lake. Pages 225-237 in Z.
Kajak and A. Hillbricht-Illkowska, eds. Productivity problems of freshwaters. Pafistwowe
Wydawnictwo Naukowe, Warsaw.

Pace, M. L. 1986. An empirical analysis of zooplankton community size structure across lake trophic
gradients. Limnology and Oceanography 31:45-55.

Pace, M. L., G. B. McManus, and S. E. G. Findlay. 1990. Planktonic community structure determines
the fate of bacterial production in a temperate lake. Limnology and Oceanography 35:
795-808.

Paffenhofer, G.-A., and S. C. Knowles. 1980. Omnivorousness in marine planktonic copepods. Jour-
nal of Plankton Research 2:355-365.

Paine, R. T. 1988. Food webs: road maps of interactions or grist for theoretical development? Ecology
69:1648—-1654.

Persson, L., G. Andersson, S. F. Hamrin, and L. Johansson. 1988. Predator regulation and primary
production along the productivity gradient of temperate lake ecosystems. Pages 45-65 in
S. R. Carpenter, ed. Complex interactions in lake communities. Springer, New York.

Peterson, B. J., and B. Fry. 1987. Stable isotopes in ecosystem studies. Annual Review of Ecology
and Systematics 18:293-320.

Peterson, B. J., R. W. Howarth, and R. H. Garritt. 1985. Multiple stable isotopes used to trace the
flow of organic matter in estuarine food webs. Science (Washington, D.C.) 227:1361-1363.

Pidgaiko, M. L., V. G. Grin’, L. A. Kititsina, L. G. Lenchina, M. F. Polivannaya, O. A. Sergeeva,
and T. A. Vinogradskaya. 1972. Biological productivity of Kurakhov’s power station cooling
reservoir. Pages 477-491 in Z. Kajak and A. Hillbricht-Illkowska, eds. Productivity problems
of freshwaters. Panstwowe Wydawnictwo Naukowe, Warsaw.

Pimm, S. L., and J. H. Lawton. 1977. The number of trophic levels in ecological communities. Nature
(London) 268:329-331.

Polis, G. A. 1991. Complex trophic interactions in deserts: an empirical critique of food-web theory.
American Naturalist 138:123-155.

Porter, K. G. 1977. The plant-animal interface in freshwater ecosystems. American Scientist
65:159-170.

Porter, K. G., H. Pearl, R. Hudson, M. Pace, J. Priscu, B. Riemann, D. Scavia, and J. Stockner. 1988.
Microbial interactions in lake food webs. Pages 209-228 in S. R. Carpenter, ed. Complex
interactions in lake communities. Springer, New York.

Powders, V. N., and W. L. Tietjen. 1974. The comparative food habits of sympatric and allopatric
salamanders, Plethodon glutinosus and Plethodon jordani, in eastern Tennessee and adjacent
states. Herpetologica 30:167-175.

Power, M. E. 1990. Effects of fish in river food webs. Science (Washington, D.C.) 250:811-814.
Rau, G. H., A. J. Mearns, D. R. Young, R. J. Olson, H. A. Schafer, and I. R. Kaplan. 1983. Animal
1BC/12C correlates with trophic level in pelagic food webs. Ecology 64:1314—1318.

Reichle, D. E., and D. A. Crossley. 1967. Investigation on heterotrophic productivity in forest insect
communities. Pages 563-587 in K. Petrusewicz, ed. Secondary productivity of terrestrial
ecosystems. Paristwowe Wydawnictwo Naukowe, Warsaw.

Reichle, D. E., R. A. Goldstein, R. I. Van Hook, and G. J. Dodson. 1973. Analysis of insect consump-
tion in a forest canopy. Ecology 54:1076—1084.

Reichle, D. E., J. F. McBrayer, and S. Ausmus. 1975. Ecological energetics of decomposer inverte-



TROPHIC STRUCTURE AND ENERGY FLOW 409

brates in a deciduous forest and total respiration budget. Pages 283-292 in J. Van Ek, ed.
Progress in soil zoology. Junk, The Hague.

Reynolds, C. S. 1984. The ecology of freshwater phytoplankton. Cambridge, Cambridge.

Riemann, B., and M. Sgndergaard. 1986. Bacteria. Pages 127-197 in B. Riemann and M. Sgndergaard,
eds. Carbon dynamics in eutrophic, temperate lakes. Elsevier, Amsterdam.

Riemann, B., M. Sgndergaard, L. Persson, and L. Johansson. 1986. Carbon metabolism and commu-
nity regulation in eutrophic temperate lakes. Pages 267-280 in B. Riemann and M. Sgnder-
gaard, eds. Carbon dynamics in eutrophic, temperate lakes. Elsevier, Amsterdam.

Risley, L. S., and D. A. Crossley. 1988. Herbivore-caused greenfall in the southern Appalachians.
Ecology 69:1118-1127.

Rodhe, W. 1969. Crystallization of eutrophication concepts in Northern Europe. Pages 50-64 in
Eutrophication: causes, consequences, correctives. National Academy of Sciences, Wash-
ington, D.C.

Rodin, L. E., and N. I. Basilevic. 1968. World distribution of plant biomass. Pages 45-50 in F. E.
Eckhardt, ed. Functioning of terrestrial ecosystems at the primary production level. UN-
ESCO, Paris.

Roughgarden, J., S. Gaines, and H. Possingham. 1988. Recruitment dynamics in complex life cycles.
Science (Washington, D.C.) 241:1460-1466.

Ryther, J. H. 1969. Photosynthesis and fish population in the sea. Science (Washington, D.C.)
166:72-76.

Saunders, G. W., Jr. 1969. Some aspects of feeding in zooplankton. Pages 556—-573 in Eutrophication:
causes, consequences, correctives. National Academy of Sciences, Washington, D.C.

Saunders, P. T. 1978. Population dynamics and the length of food chains. Nature (London)
272:189-190.

Schoener, T. W. 1983. Spider populations: extraordinary high densities on islands without top preda-
tors. Science (Washington, D.C.) 219:1353-1355.

———. 1988. Leaf damage in island buttonwood, Conocarpus erectus: correlations with pubescence,

island area, isolation and the distribution of major carnivores. Oikos 53:253-256.

. 1989. Food webs from the small to the large. Ecology 70:1559-1589.

Shapiro, J., and D. I. Wright. 1984. Lake restoration by biomanipulation: Round Lake, Minnesota,
the first two years. Freshwater Biology 14:371-383.

Sherr, E., and B. Sherr. 1988. Role of microbes in pelagic food webs: a revised concept. Limnology

and Oceanography 33:1225-1227.
. 1991. Planktonic microbes: tiny cells at the base of the ocean’s food webs. Trends in Ecology
& Evolution 6:50-54.

Sinclair, A. R. E. 1975. The resource limitation of trophic levels in tropical grassland ecosystems.
Journal of Animal Ecology 44:497-520.

———. 1985. Does interspecific competition or predation shape the African ungulate community?
Journal of Animal Ecology 54:899-918.

Sinclair, A. R. E., and M. Norton-Griffiths, eds. 1979. Serengeti: dynamics of an ecosystem. Univer-
sity of Chicago Press, Chicago.

Singh, J. J., and S. R. Gupta. 1977. Plant decomposition and soil respiration in terrestrial ecosystems.
Botanical Review 43:449-528.

Singh, J. S., M. J. Trlica, P. G. Risser, R. E. Redmann, and J. K. Marshall. 1980. Autotrophic
subsystem. Pages 59-200 in A. I. Breymeyer and G. M. Van Dyne, eds. Grasslands, systems
analysis, and man. Cambridge University Press, New York.

Slansky, F., Jr., and J. M. Scriber. 1985. Food consumption and utilization. Pages 87-163 in G. A.
Kerkut and L. I. Gilbert, eds. Comprehensive insect physiology, biochemistry, and pharma-
cology. Pergamon, Oxford.

Slobodkin, L. B. 1960. Ecological energy relationships at the population level. American Naturalist

94:213-236.

. 1962. Growth and regulation of animal populations. Holt, Rinehart, & Winston, New York.

Slobodkin, L. B., F. E. Smith, and N. G. Hairston. 1967. Regulation in terrestrial ecosystems, and
the implied balance of nature. American Naturalist 101:109-124.




410 THE AMERICAN NATURALIST

Smith, F. E. 1969. Effects of enrichment in mathematical models. Pages 631-645 in Eutrophication:
causes, consequences, correctives. National Academy of Sciences, Washington, D.C.

. 1975. Ecosystems and evolution. Bulletin of the Ecological Society of America 56:2-6.

Sorokin, Y. I. 1972. Biological productivity of the Rybinsk reservoir. Pages 493-503 in Z. Kajak and
A. Hillbricht-Illkowska, eds. Productivity problems of freshwaters. Paristwowe Wydawnic-
two Naukowe, Warsaw.

Spiller, D. A., and T. W. Schoener. 1990. A terrestrial field experiment showing the impact of
eliminating top predators on foliage damage. Nature (London) 347:469—472.

Sprules, W. G., and J. E. Bowerman. 1988. Omnivory and food chain length in zooplankton food
webs. Ecology 69:418-426.

Stockner, J. G., and K. G. Porter. 1987. Microbial food webs and freshwater planktonic ecosystems.
Pages 69-84 in S. R. Carpenter, ed. Complex interactions in lake communities. Springer,
New York.

Strayer, D. 1991. Notes on Lindeman’s progressive efficiency. Ecology 72:348-350.

Swift, M. J., O. W. Heal, and J. M. Anderson. 1979. Decomposition in terrestrial ecosystems. Univer-
sity of California Press, Berkeley.

Vanni, M. J., and D. L. Findlay. 1990. Trophic cascades and phytoplankton community structure.
Ecology 71:921-937.

Vogt, K. A., C. C. Grier, and D. J. Vogt. 1986. Production, turnover, and nutrient dynamics of
above-ground detritus of world forests. Advances in Ecological Research 15:303-377.

Werner, E. E., J. F. Gilliam, D. J. Hall, and G. G. Mittelbach. 1983. An experimental test of the
effects of predation risk on habitat use in fish. Ecology 64:1540-1548.

Wetzel, R. D. 1983. Limnology. 2d ed. Saunders, Philadelphia.

. 1984. Detrital dissolved and particulate organic carbon functions in aquatic ecosystems.

Bulletin of Marine Science 35:503-509.
—— . 1990a. Land-water interfaces: metabolic and limnological regulators. Internationale Vereini-
gung fiir Theoretische und Angewandte Limnologie 24:6-24.
— . 1990b. Detritus, macrophytes and nutrient cycling in lakes. Memorie dell’Instituto Italiano di
Idrobiologia 47:233-249.
Wetzel, R. D., P. H. Rich, M. C. Miller, and H. L. Allen. 1972. Metabolism of dissolved and
particulate detrital carbon in a temperate hard-water lake. Memorie dell’Instituto Italiano di
Idrobiologia 29(suppl.): 185-244.
Whitaker, J. O., and D. C. Rubin. 1971. Food habits of Plethodon jordani metcalfi and Plethodon
jordani shermani from North Carolina. Herpetologica 27:81-86.
Whittaker, R. H. 1975. Communities and ecosystems. 2d ed. Macmillan, New York.
Whittaker, R. H., and G. E. Likens. 1973. Carbon in the biota. Pages 281-300 in G. M. Woodwell
and E. V. Pecan, eds. Carbon in the biosphere. U.S. Atomic Energy Commission, Washing-
ton, D.C.
Wiegert, R. G., and F. C. Evans. 1967. Investigations of secondary productivity in grasslands. Pages
499-518 in K. Petrusewicz, ed. Secondary productivity of terrestrial ecosystems. Paristwowe
Wydawnictwo Naukowe, Warsaw.
Winberg, G. G., V. A. Babitsky, S. I. Gavrilov, G. V. Gladky, I. S. Zakharenkov, R. Z. Kovalev-
skaya, T. M. Mikheeva, P. S. Nevyadomskaya, A. P. Ostapenya, P. G. Petrovich, J. S.
Potaenko, and O. F. Yakushko. 1972. Biological productivity of different lake types. Pages
383-404 in Z. Kajak and A. Hillbricht-Illkowska, eds. Productivity problems of freshwaters.
Panstwowe Wydawnictwo Naukowe, Warsaw.
Wise, D. H. 1975. Food limitation of the spider Linyphia marginata: experimental field studies.
Ecology 56:637-646.

. 1979. Effects of an experimental increase in prey abundance upon the reproductive rates of
two orb-weaving spider species (Araneae: Araneidae). Oecologia (Berlin) 41:289-300.

. 1981. Inter- and intraspecific effects of density manipulations upon females of two orb-weaving
spiders (Araneae: Araneidae). Oecologia (Berlin) 48:252-256.

Witcamp, M., and D. A. Crossley. 1966. The role of arthropods and microflora in breakdown of white
oak litter. Paedobiologia 6:293-303.




TROPHIC STRUCTURE AND ENERGY FLOW 411

Yodzis, P. 1980. The connectance of real ecosystems. Nature (London) 284:544-545.

Yoshioka, T., E. Wada, and Y. Saijo. 1988. Analysis of lacustrine food web with natural carbon
and nitrogen isotope ratios. Internationale Vereinigung fiir Theoretische und Angewandte
Limnologie 25:573-578.

Zaret, T. M., 1980. Predation and freshwater communities. Yale University Press, New Haven, Conn.

Zaret, T. M., and R. T. Paine. 1973. Species introduction in a tropical lake. Science (Washington,
D.C.) 182:449-455.

Associate Editor: Wayne P. Sousa



