
210272-1732/00/$10.00  2000 IEEE

Because conventional RISC proces-
sors have insufficient processing power to sup-
port the continuing development of digital
consumer products, we need a new high-
performance processor for multimedia appli-
cations. Processing multimedia video images
requires more than 10 times the currently
available performance. At Fujitsu, we provide
this higher performance in software to attain
a high degree of flexibility.

We developed the FR500 microprocessor
with a novel embedded VLIW (very long
instruction word) architecture for use in such
digital consumer products.1 The FR500 is the
first product in the FR-V line, Fujitsu’s gener-
ic name for VLIW architecture microproces-
sors. The FR-V line offers the flexibility to
develop new products optimized for a wide
variety of digital consumer products.

Here, we describe the FR-V architecture,
which includes our variable-length VLIW and
instruction set architectures, speculative exe-
cution control, and conditional execution
control. We also evaluate its performance.

An embedded VLIW processor
Performance requirements are soaring for

embedded processors, whose demand in mul-
timedia processing is rising now more than
ever. Some DSP and media processors satisfy
this by means of eight-way VLIW architec-
tures.2-6 However, for embedded processors,
less code, low power, and small dies are

mandatory. To satisfy these requirements, we
developed an embedded processor using a
four-way VLIW architecture. The architec-
ture can be characterized as follows:

• parallel execution by variable-length
VLIW,

• 32-bit-length instruction format with
64-entry register files,

• general CPU function in combination
with a media-processing function for
enhancing multimedia-processing ability,
and

• instructions for global scheduling.

Instruction set
As Figure 1 shows, the instruction set con-

sists mainly of integer, floating-point, and media
instructions for global scheduling. Each instruc-
tion is 32-bits wide. The FR500 simultaneous-
ly executes four instructions, packed in a single
128-bit-wide VLIW packet. Floating-point
instructions support single-precision floating-
point operations, augmenting performance in
media-oriented applications such as graphics
and voice recognition. Some are single-
instruction, multiple-data stream (SIMD)
instructions for simultaneous operations.

Media instructions, an instruction set for
multimedia extensions, are 16-bit fixed-point
operations. They are also SIMD instructions
that perform two or four operations simulta-
neously, augmenting digital processing perfor-

Atsuhiro Suga
Fujitsu Laboratories

Limited

Kunihiko Matsunami
Fujitsu Limited

INTRODUCING THE FR500
EMBEDDED MICROPROCESSOR

DEVELOPED FOR DIGITAL CONSUMER PRODUCTS, THE FR500 MICRO-

PROCESSOR ISSUES FOUR INSTRUCTIONS SIMULTANEOUSLY AND CAN BE

CONFIGURED IN A SMALL-SCALE CIRCUIT, MAKING IT POSSIBLE TO

IMPLEMENT A LOW-COST, HIGH-PERFORMANCE SYSTEM.

mance such as voice and image processing.
Moreover, to augment instruction-level paral-
lelism (ILP), we prepared predicated and nonex-
ception instructions for global scheduling.

Variable-length VLIW
instructions

Each instruction provided
in the FR-V architecture is
executed in parallel using
VLIW architecture methods.
To specify the VLIW bound-
ary, all instructions include a
packing flag for suppressing
NOP instructions.

The FR500 four-way

VLIW architecture can issue up to four 32-bit-
long instructions simultaneously. As shown in
Figure 2, the FR500 can issue up to two inte-
ger, or I, instructions and up to two floating-
point operation or media-processing
instructions. Also, a branch instruction or log-
ical operation instruction for the predicate reg-
ister—that is, B instructions—can be issued to
any of the four slots, contributing to improved
simultaneously executable instructions.

Speculative execution control
Speculative execution refers to the execution

of an instruction before it is known that its exe-
cution is required.7 To perform speculative exe-
cution control, the FR-V architecture provides
nonexception instructions that suspend exe-
cution of exception processing when an excep-
tion condition is raised. The raised exception
condition can be handled at a later time or can-
celed completely under software control. This
makes it possible to move the exception-caus-
ing instruction across a branch instruction.

In the right program of Figure 3, the nonex-
ception load (NLD) instruction to substitute
the value for gr6 is set away from the ADDI
instruction referring to gr6. This decreases the
influence of the memory delay. An exception
that is caused by an NLD instruction is sus-
pended, a COMMIT instruction raises it, and
a CLEAR instruction cancels it.

By using the NLD instruction, beyond a

22

FR500

IEEE MICRO

Basic RISC
instruction

Extended instruction sets
 Floating-point instruction set
 Media instruction set

Instruction for global scheduling
 Nonexception instructions
 Predicted instructions

Figure 1. FR-V instruction sets.

F/MI I F/M

I

B B

F/M F/M

4-way VLIW

B

B

F/M

Example 1

Example 2

Example 3

Example 4

Example 5

I I

I
F/M

B

Integer instruction
Floating-point or
media instruction
Branch instruction or
logical operation for
the predicate registers

Figure 2. Variable-length VLIW instructions.

Assembler example

SETLOS #5,gr6
BRA Label2

Label2:

Label1:

LD @(gr4,gr0),gr6

ADDI gr6,#3,gr7

NLD @(gr4,gr0),gr10

SUBcc gr1,gr2,gr3,icc1
BNE icc1,#1,Label1

SUBcc gr1,gr2,gr3,icc1
BNE icc1,#0,Label1

Label1:

COMMITGR gr10

OR gr10,gr0,gr6
ADDI gr6,#3,gr7

CLRGR gr10

SETLOS #5,gr6
BRA Label 2

Label2:
SUBcc gr1,gr2,gr3,icc1 gr1-gr2 → gr3

Condition → icc1

5 → gr6

@(gr4+0) → gr6
Gr6+3 → gr7

conditional branch

branch always

BNE icc1,#0,Label1

SETLOS #5,gr6
BRA Label2

LD @(gr4,gr0),gr6
ADDI gr6,#3,gr7

NLD @(gr4,gr0),gr10 @ (gr4+0) → gr10
Suspend exception on gr10

CLRGR gr10 Clear exception on gr10

COMMITGR gr10

OR gr10,gr0,gr6

Raise exception on gr10

Gr10 or 0 → gr10

Optimization by nonexception instructions

Figure 3. Speculative execution control example. GR: general-purpose register; icc: conditional code register.

branch instruction or a loop, the FR500 com-
piler can control speculative execution. This
optimization improves the ILP and reduces
memory delays.

Conditional execution control
Predicated execution instructions are useful

in improving the ILP.8 However, in cases where
conditions are nested within nested IF clauses,
recent predicated execution mechanisms
require many predicate registers. In our archi-
tecture, a predicated instruction is executed
when, and only when, one of three condi-
tions—true, false, or undefined—stored in the
predicate register, is equivalent to either the true
or the false specified in the instruction field.

Furthermore, the FR500 supports two log-
ical operations, AND and ANDN, between
the predicate registers. Figure 4 shows these
operations along with their truth tables. Fig-
ure 5 shows sample coding. By accommodat-
ing these operations, we observed a 30% code
size reduction in the sample coding.

As a part of our chip evaluation, we observed
the utility of predicated instructions using the
ADPCM program. (Adaptive Differential
Pulse Code Modulation is one of the simplest
and oldest forms of audio
coding.) In comparing the
overall execution time of the
program with and without the
predicated instructions, we
found a 1.7 performance
improvement in terms of exe-
cution time.

FR500 hardware
Figure 6 shows the block

diagram of our chip. The exe-
cution units of the floating-
point and media units (the
FM unit in the figure) have
two and four arithmetic units
respectively; each consists of
two-stage pipelines. Thus
there are a total of four float-
ing-point execution units and
eight media execution units.
The GR and FR register files
are register sets for integer and
floating-point/media opera-
tions. Both are 32-bits wide
with a depth of 64. As shown

in Figure 7, the peak performance at 266 MHz
is 1,064 Mflops and 4,256 MOPS, which is
four times the frequency.

The cache unit executes two 8-byte-long
load instructions simultaneously. The non-
blocking technique reduces miss penalties.
The data cache also has write-through and
copy-back modes that can be selected by the
user to optimize the data cache according to
the application. In addition, the data cache
has a memory mode, enabling it to function
as internal main memory and hiding the
external transfer latency via external DMA.

Evaluation
To verify the parallelization ability of the

23JULY–AUGUST 2000

andcc

1s
t a

rg

2nd arg

T

T

U

U

F

F

U

U

U

U

U

U

T

F

U

andcc

1s
t a

rg

2nd arg

T

U

T

U

F

U

F

U

U

U

U

U

T

F

U

Figure 4. Logical operation between predicate registers. T=true; F = false;
U = undefined.

IF (C=D)
IF (A=B)

Z=X + Y
} else

Z=X − Y
}

} else {
IF (E=F) Z=X∗Y

} else
Z= X/Y}

}
}

subccA,B,cr0
subccC,D cr1
subccE,F cr2
cicc EQ cr0
cicc EQ cr2
cicc EQ cr1
andcr cr0 cr1
andncr cr0 cr2
cdiv X,Y,Z cr2 F
cmul X Y Z cr2 T
csub X Y Z cr1 F
cadd X Y Z cr1 T

7 instructions
10 registers

2 instructions
3 registers

subccA,B,cr0
subccC,D cr1
subccE,F cr2
cicc EQ cr0
cicc EQ cr2
cicc EQ cr1
notcr cr0 cr3
notcr cr1 cr4
notcr cr2 cr5
andcr cr0 cr1 cr6
andcr cr0 cr4 cr7
andcr cr3 cr2 cr8
andcr cr3 cr5 cr9
cdiv X,Y,Z cr9 F
cmul X Y Z cr8 T
csub X Y Z cr7 F
cadd X Y Z cr6 T

Sample code

Conventional predicate code

3-value predicate code

Figure 5. Three-value predicate mechanism.

FR500 compiler, we evaluated the parallelism,
the delays caused by register conflicts, and the
execution cycle count in some benchmark
programs by using our Cycle Accurate Simu-
lator, which was developed as an engine of our
simulator debugger. This simulator can report
executed instructions, executed cycles, and
penalty cycles.

Figure 8 (next page) shows the ILP change.
We used four options to compare the opti-
mization effects on three benchmark programs.
Program 1 is a fast Fourier transform (FFT) pro-
gram that is composed of only integer instruc-

tions. Program 2 is an FFT program composed
with single-precision floating-point and integer
instructions. Program 3 is the Dhrystone 1.1
program. Option 1 (no schedule) performs tra-
ditional and general optimizations but not par-
allelization. Option 2 (local schedule) schedules
only instructions in basic blocks. Option 3
(trace schedule) schedules traces. Option 4
(trace schedule + predication) performs Option
3 and conditional execution control.

The execution results show that the following
relationship is established: local schedule <trace
schedule <trace schedule + predication. No effects
of conditional execution control are seen in Pro-
gram 2 because the program structure is simple;
there is no pattern in which an instruction can
be replaced with the predicated instruction.

In Program 1 (consisting of integer-only
operations), the ILP is 1.75, meaning that near-
ly two instructions are always executed con-
currently. In the FR500 when executing an
integer-only-operation program, two I instruc-
tions and two B instructions can be executed
concurrently. When B instructions are exclud-
ed, the ILP is 1.58. This means that instruc-

24

FR500

IEEE MICRO

GR
(32 bits ×
64 words
5R/4W)

Instruction
buffer

Int 0

Int 1

Data cache
(16 Kbytes,

4-way,
1RW/1R)

Debug
support unit

S
D

R
A

M

Instruction cache
(16 Kbytes

4-way,
1 RW/1R)

Float 0

Float 1

Media 0

Media 1

Instruction
cache control

Address
translation

Data
cache control

FM unit

I unit

S unit

B unit

CLK generator

I I F/M F/M

ICE

Bus bridge

Local bus

CLKIN

B
us

 in
te

rf
ac

eS
D

R
A

M
 in

te
rf

ac
e

S
ys

te
m

 b
us

 in
te

rf
ac

e

FR
(32 bits ×
64 words
5R/4W)

Pipeline control

Figure 6. FR500 block diagram.

I EI E

I
E

Integer instruction
Extended instruction

Floating-point operation

Floating-point operation

Media operation

Media operation

Media operation

Media operation

Figure 7. FR500 peak performance: 1,064 Mflops at 266 MHz and 4,256
MOPS at 266 MHz, respectively.

tions can be supplied to the I unit at 79% of
capacity, which is a very high operating ratio.

Figure 9 shows the change in delays caused
by register conflicts. In this figure, the delay
cycle occurring at execution of each program
is normalized with the no schedule value
defined as 1. For no schedule, the same opti-
mization as in other cases is performed, except
that no scheduling is performed. Conse-
quently, no schedule = 1 is used as an index
of the scheduling capability. In Program 1, the
effects of trace scheduling and conditional exe-
cution control eliminate 77.2% of the delays
caused by register conflicts. Eliminating delays
by scheduling improves pipeline throughput,
which improves execution speed. See the
“Trace scheduling” box .

Figure 10 shows the change in the execu-

25JULY–AUGUST 2000

0

20

40

60

80

100

120

Better
R

eg
is

te
r

co
nf

lic
t c

yc
le

 (
%

)

Program 1 Program 2 Program 3

No schedule Local schedule
Trace schedule Trace schedule + predication

Figure 9. Delay cycle count change.

0

50

100

150

200

250

300

Better

P
er

fo
rm

an
ce

 im
pr

ov
em

en
t (

%
)

Program 1 Program 2 Program 3

No schedule Local schedule
Trace schedule Trace schedule + predication

Figure 10. Execution cycle count change.

Very long instruction word architectures require fine-grained parallelism.
By using trace-scheduling technology,1 a compiler finds such instruction-
level parallelism and generates code suitable to the VLIW CPU.

Since many conditional branches occur in a program, execution counts
of each basic block differ. It focuses on the basic block with the highest exe-
cution count in the program. The trace scheduler traces basic blocks with
a high branch probability and a high execution count to find the group of
basic blocks (herein called trace) with the greatest possibility of being exe-
cuted. Then scheduling is performed for instructions included in that trace.

A more wide-ranging instruction can be scheduled by scheduling traces
composed of two or more basic blocks. This means that a greater count
of ILPs can be found.

Reference
1. J.R. Ellis, Bulldog: A Compiler for VLIW Architectures, ISBN 0-

262-05034-X, MIT Press, Cambridge, Mass., London, 1986.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Better

In
st

ru
ct

io
n-

le
ve

l p
ar

al
le

lis
m

 (
IL

P
)

Program 1 Program 2 Program 3

No schedule Local schedule
Trace schedule Trace schedule + predication

Figure 8. ILP change.

Trace scheduling

tion cycle count. The execution cycle count
in each option is 1, and the figure shows the
approximate improvement in the cycle count
compared to no schedule. Program 2 achieves
2.74 times the performance.

We designed the FR500 embedded gen-
eral-purpose microprocessor using the

VLIW architecture to provide a good balance
of performance, flexibility, and power con-

sumption. We fabricated the 0.18-micron, five-
metal-layer CMOS processor on a 7.5-mm ×
7.5-mm die. Figure 11 displays the FR500 die
photo, and Table 1 lists the chip specifications.

According to our performance evaluation,
our compiler improved performance. We plan
to adopt a technique to give feedback on
dynamically collected information (such as pro-
file information and extracting traces with a
high execution count) to improve the perfor-
mance of programs using trace scheduling.

The importance of a good optimizing com-
piler for VLIW embedded processors cannot
be stressed enough. The FR500 microproces-
sor is well suited to meet the demanding needs
of digital consumer products. MICRO

Acknowledgments
We thank all FR-V project members and

parties who were involved with the chip and
software developments.

References
1. A. Suga et al., “A 4-Way VLIW Embedded

Multimedia Processor,” 2000 Digest of
Tech. Papers Int’l Solid-State Circuits Conf.
(ISSCC), IEEE Press, Piscataway, N.J., Feb.
2000, pp. 240-241.

2. J. O’Donnell, “MAP1000A: A 5W, 230-MHz
VLIW Mediaprocessor,” Hot Chips Symp.,
Aug. 1999; contact the authors for copies.

3. J. Choquette, “Genesis Microprocessor,”
Hot Chips X Symp., Aug. 1998; contact the
authors for copies.

4. G. Slavenburg et al., “TM-1300 High-Speed,
Low-Cost, Enhanced PCI, VLIW Media
Processor,” Hot Chips Symp., Aug. 1999;
contact the authors for copies.

5. O. Nishii et al., “A 200MHz 1.2W 1.4GFLOPS
Microprocessor With Graphic Operation
Unit,“ ISSCC Digest of Tech. Papers, IEEE
Press, Feb. 1998, pp. 288-289.

6. D. Ditzel, “Transmeta’s Crusoe: A Low-
Power X86-Compatible Microprocessor Built
With Software,” Proc. Cool Chips III Symp.,
Apr. 2000, Kikai-Shinko-Kaikan, Tokyo, pp. 1-
30; contact the authors for copies.

7. W. Wen-mei et al., “The Superblock: An
Effective Technique for VLIW and Superscalar
Compilation,” J. Supercomputing, Vol. 7,
1993, pp. 229-248.

8. S.A Mahlje et al., “A Comparison of Full and

26

FR500

IEEE MICRO

Integer

Instruction cache

Data cache

Floating
/media

BUS

BUS

DSU

Figure 11. FR500 die photo.

Table 1. FR500 chip specifications.

Item Description

Process technology 0.18-micron, 5-metal-layer CMOS
Issues 4 VLIW (2 integer, 2 floating, or 2 media)
Frequency 266 MHz
Peak performance 532 MIPS + 1,064 Mflops, 4,256 MOPS
Register file GR: (5R/4W) 32 bits × 64 words

FR: (5R/4W) 32 bits × 64 words
Caches Instruction: (1RW/1R) 16 Kbyte, 4-way set associative

Data: (1RW/1R) 16 Kbyte, 4-way set associative
Bus interfaces SDRAM: 133 MHz, 1 Gbyte/s (maximum)

System: 133 MHz, 1 Gbyte/s (maximum)
No. of transistors Logic: 3.2 million, RAM; 3.5 million

Total: 6.7 million
Chip size 7.5 mm × 7.5 mm
Package type Plastic BGA352
Power dissipation 2.0 watts at 1.8 volts

27JULY–AUGUST 2000

Partial Predicated Execution Support for ILP
Processors,” Proc. 22th Int’l Symp.
Computer Architecture, IEEE CS Press, Los
Alamitos, Calif., June 1995, pp.138-150.

Atsuhiro Suga is a senior researcher in the Sys-
tem LSI Development Laboratories at Fujit-
su Laboratories Limited in Kawasaki, Japan.
His research interests include microprocessors
and architectures for digital consumer prod-
ucts. Suga received ME degrees from Yoko-
hama National University.

Kunihiko Matsunami is a senior engineer at
Fujitsu Limited, where he develops compilers

for embedded Gmicro family/FR family/
FFMC family/FR-V family microprocessors.
His current interests are in performance issues
on C++ specification. Matsunami received a BE
degree in information engineering from the
University of the Ryukyus.

Direct questions about this article to
Atsuhiro Suga, System LSI Development
Laboratories, Fujitsu Laboratories Ltd. 1-1,
Kamiodanaka 4-chome, Nakahara-ku,
Kawasaki 211-8588, Japan; asuga@flab.
fujitsu.co.jp.

Career
Service
Center

• Certification

• Educational Activities

• Career Information

• Career Resources

• Student Activities

• Activities Board

http://computer.org

Career Service Center

Introducing the
IEEE Computer Society

Career Service Center

Advance your career

Search for jobs

Post a resume

List a job opportunity

Post your company’s profile

Link to career services

http://computer.org/careers/

