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Abstract

Registration and analysis of neuro-imaging data presectsbenging problem due to
the complex folding patterns in the human brain. Specificttle cortical surface of the
human brain can be modeled as a highly convoluted 2D sur&inee it is non-flat, the
non-Euclidean geometry of the cortex needs to be accouatesHile performing reg-
istration and subsequent signal processing of anatommchfumnctional signals on the
cortex. Techniques from differential geometry offer a pdwleset of tools to deal with
the convoluted nature of the cortex. We present a methodllmasp-harmonic mapping
for performing cortical surface parameterization. A 2D rhioate system induced by
the flat mapping is then used to compute the surface metriclescdetize derivatives
in the surface geometry. For performing inter-subjecticalttregistration based on sul-
cal landmarks, we generalize thin-plate splines to nonstlataces by using covariant
derivatives. We also present an FEM based method for simadizs parameterization
and registration of sulcal landmarks based on elastic gmaigimization. The man-
ual effort required for selecting the sulcal landmarks cambnimized if we choose
an optimal set of such landmarks. We present a method fomafiti selecting a sub-
set of any size from a set of candidate sulcal landmarks awdpkdict the associated
registration error for that subset using conditional distions. Surface signals from
individual brains can be brought to a common atlas surfaaesbyg these surface based

registration techniques.

Xil



Isotropic and anisotropic diffusion filtering methods apvenfiulated for processing
of the cortical data. This is performed by using paramet¢ion-based methods which
use covariant diffusion operators in the flat space. Wherstiniace data is a point-set
on the cortex, we propose a method to quantify its mean andnaa with respect to
the surface geometry.

The registration techniques presented for surface alighare extended to volumes
to perform full surface and volume registration. This is eday using volumetric har-
monic mappings that extend the surface point correspomrdenihe cortical brain vol-
ume. Finally, the volumetric registration is refined by gsinverse-consistent linear
elastic intensity registration. This set of methods presarunified framework for reg-

istration and analysis of brain signals for inter-subjestnoanatomical studies.

Xiii



Chapter 1

Introduction

Brain is home to our mind and personality. It houses our shed memories and future
hopes. It orchestrates the symphony of consciousnessitieatugs purpose and passion,
motion and emotion. Understanding the workings of humardman only be achieved
if we understand the structure and function of the humambrai

The outer part of the brain comprises of grey matter whicmiernally supported
by white matter. The two hemispheres of the brain are segrhiat the central fissure
and connect to each other at the corpus callosum. Cerebglfound at the posterior-
inferior part of the brain. Cerebral cortex or simply coriexhe outermost layer of the
cerebrum and is the place where most of the neuronal acinstake place. The human
cerebral cortex is 2-4 mm thick and plays a central role inyraamplex brain functions
including memory, attention, perceptual awareness argliage. Due to the relatively
small thickness of the cortex, it can be modeled as a 2D higbhwoluted surface
with more than two third buried in the grooves, calidci. The sulcal folding pattern
varies across individuals, however, some of the major suciseen across individuals
[OKA9Q0]. Itis known that the sulci are related to the functiof the brain and therefore
inter-subject alignment of the cortex should be carriedvatht the constraint that these
sulci are aligned.

Medical imaging modalities acquire various anatomical,(¥IR, etc.) and func-
tional (PET, EEG, MEG, etc.) neuro-imaging data. Intersabpnalysis of this data
allows us to study group differences and similarities. That@amical variability across

individuals needs to be normalized before such a study carabréed out. Medical
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Figure 1.1: The cortical surface of the human brain depiocreé MR data (top row)
and rendered as a surface (bottom row).

image registration performs this normalization by alignthe coordinate systems of
the various medical images to register them to a common tmpl atlas. One of the
most challenging problems in image registration is theratignt of human brains.
Registration of surface models of the cerebral cortex hgmitant applications in
inter-subject studies of neuroanatomical data for mapaimanalyzing progression of
disorders such as Alzheimer’s disease [TMM] and studying growth patterns in devel-
oping human brains [TMT00, GG104]. Investigators have studied several anatomical
and functional aspects of the human brain such as genetiedés [THdZ02] and
the influence of medication and drugs abuse on the structutdumction of the brain
[NB97, Cha01l]. Inter-subject analysis, or intra-subjetlgsis over a period of time of
such data, present difficult problems due to the inter-silv@riability and convoluted
geometry of the cortical surface. Since most neural and boétaactivity takes place

in the cortex, and because the thickness of the cortex id sekaive to the resolution

2



of most functional imaging techniques, it is plausible todmlothe cortex as a surface
rather than as a volume.

Since the cortex is non-flat, the non-euclidean geometrj@fcortex needs to be
accounted for while doing registration and subsequensigocessing of anatomical
and functional signals on the cortex. In this report we psgosurface parameterization
method which computes a 2D coordinate system on the cortexusép-harmonic map-
ping of the cortex td?? to assign 2D coordinates to the surface points. This coatéin
system is then used to compute the associated surface roettiee assigned coordi-
nates which are then used to discretize derivatives in tfacigeometry. In order to
bring several brain surfaces in a common template spaceyesem two surface reg-
istration techniques to find a point to point corresponddretgveen the two surfaces.
The first technique involves-harmonic mapping of the cortex to a plane and then repa-
rameterization with thin-plate bending energy as a regaitgg function. Alternatively,
the second technique incorporates sulcal landmark magdhinhe parameterization
method itself. This is done by using a more general elastidehfor parameteriza-
tion. The point correspondence set by surface registraaornbe used to bring surface
functional signals such as MEG dipoles or neuronal activati fMRI and anatomical
signals such as cortical thickness from individual bramstcommon atlas surface.
Isotropic and anisotropic diffusion filtering methods apenfiulated for different kinds
of smoothing of such cortical data. When the surface datageimt-set on the cor-
tex, we propose a method to quantify its mean and variandera#ipect to the surface
geometry. The registration technique presented for seirdignment is then extended
to volumes to perform full surface and volume registratismg harmonic mappings.
Inverse-consistent elastic intensity registration isithsed to further improve the volu-

metric alignment. Various validation techniques were useakssess the performance of



the above tools and to compare them with existing methodsesepted in subsequent

chapters.



Chapter 2

Cortical Surface Parameterization

The surface area of the cerebral cortex is approximatei§y cm? [HSB*00]. 60-70% of
the surface area is buried in the folds and creases (sulwérelis considerable variabil-
ity and individual differences in the size, location andegtof the sulci and gyri across
human subjects. Bringing multiple brain surfaces into awam coordinate system is
helpful in studying variability of these sulcal patternsass subjects, for integrating and
averaging functional data across subjects, and in stugyatigrns in cortical develop-
ment over time. Since the cortex can be modeled as a condabet with the topology
of a sphere, it is natural to parameterize it using sphedoardinates[FSTD98]. Eck
et al.[EDD"95] and Kanai et al.[KSK98b] model a triangulated surfaca aenfigura-
tion of springs with one spring placed along each edge of &#hgle. The resulting
energy functional, thééarmonic energyis shown to be a quadratic form and is mini-
mized using gradient descent to transform the surface iqgla@ar disk. Desbrun et
al.[DMAO02] propose a parameterization technique whichsubecot of angles in the
given triangulation. The resulting energy functional (faesnergy) is argued to be a
measure of angle distortion and a new parameterizationtersd by minimizing it.
Haker et al.[AHTK99] presented a method for conformally piag the cortical surface
to a sphere. Their method uses the Laplace-Beltrami operatbthe fact that for a con-
formal map, the Laplace-Beltrami of the parameterizatiamnction is zero everywhere
on the surface. Though these methods ensure a perfectlgromaif map, the stereo-

graphic projections involved can introduce a large amofitgrgyth and area distortion.



(a) Matlab tool for marking sulcal anatomy (b) BrainSuite's sulcal tracing module

Figure 2.1: Sulcal Tracing Tools

Circle packing is introduced as a parameterization methddl§B"00]. Analytic sur-
faces can be approximated by circle packing, but for gerserddces, the surface pack-
ing method considers only the connectivity and not geon®#@H*05]. Fischl et al.
used mechanical models to simulate an inflation of the arsarface to produce an
inflated surface and a spherical map [FSTD98].

We proposed a parameterization technique for the corticdhse based om-
harmonic energyninimization [JLTS04]. Angle and area distortion metricsrescom-

puted to evaluate the performance of this flattening proeedu

2.1 Parameterization and the Coordinate System

In this section, we describe our method to parameterizeagdtilated surface mesh. In
the context of our work, this mesh will typically represehe tsurface of the cerebral
cortex; thus we will refer to this mesh model as the corticafexce. We use oup-

harmonic mapping technique [JLTS04] for parameterizatidme parameterization can

be viewed as an assignment of complex numbers or vectd®$ to each vertex in the



triangulated surface and the assignment is performed in sugay that the resulting
p-harmonic energy is minimized. Lé&t be a surface with boundary. We define:
S — R? to be a function such that theharmonic energy given bz, = [ ||V¢|” dS
is minimized. We impose constraints on this minimizatiorfiging the location of the
inter-hemispheric fissure so that it is mapped to a unit su¥ve rewrite the energy
functional as the sum of two energy functionals= [«, 5], one for each coordinate,

such that the corresponding arguments are scalars,

E, - / IV dS, pe(1,00)

This minimization can be performed by minimizations oveo t@al-valued functions.
Discretization is done using finite elements. We make themapson that both of them
are piecewise linear. Let be a piecewise linear real-valued scalar function defined ov
the surface, and’ is « restricted to trianglé. Sincea! is linear on the*" triangle we

can write,
a(x,y) = ah+dx+ay (2.1)

The three coefficients can be determined if values of thetfoimer are known at the

three vertices of the triangle. These equations can beanriitt matrix form as

Loy oy || a (w1, 31)
Loay yy | | | = | o'(z2,0) (2.2)
1 23y aj o’ (3, y3)

T



The coefficients:), i anda can be obtained by inverting tlex 3 matrix. From (2.1)

and by inverting the matrix in (2.2), we obtain

— aj
Vo' = '
a;
. . . . . . ai(x17y1>
1 Yo— Y1 Ys— Y1 Y1~ Vs .
- |DZ| 7 7 7 7 7 7 a(l’g,yg)
Ty — Ty Ty — Xy L9 — Ty :
~ - a($3>y3)
Bi N J/
ri
V_§ 1 BT
RS

We use the fact that for any triangld)’| = 2A* where A’ is the area of the triangle.

Sincea’ is piecewise linear, its gradient is constant over eachdte, so that:

/ [Val?ds = 3 |IValP 4

where the sum is over all triangles. Therefore,

argmin/HVadeS = argmljnZ‘}MiFi‘}p

= arg mFin | MT||

whereM" = mBi, M is composed using coefficients 8 andT is a vector
with coefficientsa for each vertex. The vecta¥/T" can be split into two parts: free

vertices and constrained vertices. Values @it constrained vertices are known.

argmin/||Va||pdS = argn%inHMfFf—i-MchHp
a 7



corpus callosum
" ol B

Figure 2.2: The figure shows the cortical surface and its mapd4quare. The corpus
callosum is constrained to lie on the boundary of the square.

whereMy, I'y andM,,I'. are free and constrained parts of thieandI” matrices.

This results in an unconstrained minimization problem. Tdwt that matrix)/
is sparse allows us to use the computationally efficientugate gradient method for
obtaining the solution. The Jacobi preconditioner reddlcesexecution time consider-
ably. The resulting maps are known to be bijections becdestatget domain is convex
and flat [ES64, Ham75, FR02]. Using this scheme, we map eaticalchemisphere
onto a unit square by constraining the inter-hemisphersufesto lie on the boundary

of the square.

2.1.1 Validation of p-harmonic mappings

In this section we present our method of evaluating the pexdoce of the»-harmonic
mappings described in section 2.1. We start by extractinggh-tesolution trian-
gulated cerebral cortical surface model for each brain. hBam@in surface is rep-

resented by approximateB00, 000 triangles. The BrainSuite software we use for



Figure 2.3: The»-harmonic maps of the left hemisphere of an individual corte

extraction also labels and separates the two cortical Ipdrares and delineates the
closed contour representing the inter-hemispheric fisswaeseparates the two hemi-
spheres. We then parameterize the contour according igghleand constrain it to

lie on the boundary of the unit square. The mapping desciibegction 2.1 is then
computed by minimizing the-harmonic functional by conjugate gradient with Jacobi
preconditioner [Smi85]. The minimization is very fast caangd to other methods
[AHTK99, FSTD98, HSB 00] and takes on the order of 20 seconds on 3GHz Intel Pen-
tium 4 processor. Performing this operation for both heimésps produces a bijective

mapping of the cortical surface to a pair of unit squares.

10



In order to explore and evaluate the performance of such mgppand their depen-
dence on the value gfchosen, we computed these mappingsfer 2,4, 6, 8 and used

the following metricsV,,,. andN,,., as measures of angle and area distortions.

Nangle = \/‘911912 + g21922| /9 (2.3)

Narea = ||g_gavg|| (24)

Nangie €an be interpreted as a normalized inner product of the twenuas of the
metric tensor. It is zero if the mapping preserves anglesf@mal). NV, . is deviation
of the differential arealS from its mean value. We evaluate these metrics at all the
vertices and then plot their histograms for different valoép. The Fig. 2.4 shows
p-harmonic maps of the cortical surfaces for the valueg ef 2,4, 6 and8. It can be
seen from Fig. 2.4(a) that maps for= 4, 6, 8 have much less area distortion than the
map forp = 2. However there was no consistent trend for the valugs @flso it can
be seen from Fig. 2.4(b) that the angle distortions are coafyba for all values op.
From a computational point of view, though the use of covdrderivatives can make
the subsequent processing independent of the valpewé chooser = 4 because it
has less area distortion than= 2 case and hence the numerical error introduced during

the resampling of the cortical surface on a regular gridss.le
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Figure 2.4: The figure shows smoothed histograms for angtertiion and area distor-
tion respectively. In the angle distortion plot, angle digbn increases with the value
of p. In the area distortion plot, the distortions for4,6,8 are less than that fpr2
and most of the points have small angle distortion only. Hexéhere is no observable
trend for the value op in either case.
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Chapter 3

Cortical Surface Registration

Various surface-based techniques have been developedtéoisubject registration of
two cortical models. These techniques can be used to regigbgect surfaces to a com-
mon atlas which in turn registers cortical data represgnsimucture and function of
the human brain to the atlas. There are two main categoriesetiods that align the
cortex from a subject to an atlas: manual landmark basedade{dSTLO7c] and auto-
matic methods based on alignment of geometric features [W8Ldr surface indices
[TRPO5]. The main advantage of automatic methods is thaetiseno manual input
required for performing the alignment. However they maydssireliable in the sense
that they do not incorporate higher level knowledge of didcatomy. While they have
been successfully applied in several settings, their acgumay not be satisfactory for
expert neuroanatomists, particularly in the presence efatide variation that may be
present in neuroanatomy or the image acquisition qualigga@rom subjects exhibiting
abnormal cortical shape, such as individuals with Alzhegmi#sease, may be handled
better by manual delineation. It is likely that landmarkémked by experts, who have
been trained to make consistent decisions when faced wibhgarities that frequently
arise in the analysis of cortical geometry, will produce royed registration results. In
some cases a particular area, such as the visual cortex,aradyrierest and constraints
specific to that area may provide more appropriate regisirat

One class of techniques involves flattening the two cortszafaces to a plane
[HSB*00] or to a sphere [FSTD98] using mechanical models or variat methods and

then analyzing the data in the common flattened space. Qihfecse based techniques
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work in the surface geometry itself rather than a plane ohaisgpand choose to account
for the surface metric in the inter subject registration [W\NW00, THST04, LTPHO4,
MST04, WGH05]. The advantage of such techniques is that they make tfistnae
tion results independent of the intermediate flat spacdtnegun a more consistently
accurate registration throughout the cortex. In this altape present a technique that
is a generalization of the popular thin-plate spline me#hfodm R™ to a non-Euclidean
surface, as well as a Finite Element-based technique.

We presented oyr-harmonic mapping method in Chapter 2, which maps each indi-
vidual cortical hemisphere to the unit square. @drarmonic method results in a very
fast parameterization of high-resolution cortical sueaand always results in a bijective
map. We use the resulting square maps of the cortical heerispko assign a coordinate
system to the cortex. We then use these coordinates to certtpuimetric tensor and
Christoffel symbols of the mapping. In order to register bn@n to another, we warp
coordinates of one brain with respect to another using kldoamarks such that the
bending energy is minimized within the true geometry of thdagce. This is achieved
by solving the resulting variational problem using covariderivatives and thus mak-
ing the warping results independent of the coordinate sys@ur warping approach is
derived from the one presented in [TWMTO0O]. However, we e plate splines as
a regularizing function. This is because the availabilityydarmonic maps allows us
to have an approximate orthogonal coordinate system onotfiieal surface and there-
fore we are able to decompose the deformation into two otthalgcomponents. Also
availability of a smooth parameterization from 3D spaceria square means that the
deformations are low dimensional in the parameter spaceTherefore we use DCT
basis functions to represent the warping field. These tegciesiresult in a considerable

speed up and stability in the registrations. As an improveroeer this method, we also
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present a simultaneous parameterization and alignmembitpee as discussed further

in Sec. 3.2. We also present evaluations of these regmtregchniques.

Left Hemisphere Right Hemisphere

(b)

Figure 3.1: (a) A cortical surface with hand labeled sulg);A flat map of the two cor-
tical surface. The arrows show connectivity at points aldreggboundary of the square.
Due to the spherical topology of the cortical surface, we &ssign to it a coordinate
system that allows us to compute partial derivatives adiessterhemispheric fissure.
(c) Chessboard texture mapped to the surface using theesomagos.

15



3.1 Thin Plate Splines Registration in the Intrinsic

Geometry of the Cortical Surface

3.1.1 Mathematical Formulation

The parameterization method presented in Chapter 2 gives usitial approximate
alignment of the labeled sulcal landmarks as shown in Fig. [8.can be seen that the
alignment is not perfect, however the deformation requicedlign the sulci perfectly
is relatively small compared to the brain size. Thereforeuse linear models from
continuum mechanics which approximate small deformatiomegularize the required
deformation field. Here we discuss the widely used thingeglines, but we generalize
them to the non-Euclidean geometry of the cortical surfataing parameterized each
of the cortical surfaces, we now align coordinate systentsdxen one surface, which
we denote the “atlas”, and another which we call the “subjethe alignment uses a
set of manually labeled sulci, sampled uniformly alongthengths, as a set of point
constraints [TT96b]. To compute a smooth warping figlfom one coordinate sys-
tem to the other we use the thin plate spline bending enerdii@aubject surface as a
regularizing function. The-harmonic maps serve two purposes. First, they set up an
initial alignment of the features across multiple subje&scond, they are used as our
computational space to align the cortices. However, the-phate spline based align-
ment uses covariant derivatives, and is therefore invaviéih respect to the specific
parameterization [TMVO01].

Thin plate biharmonic splines [Boo89] are a very popularhuodtfor landmark-
based registration of 2D or 3D images. These splines ar¢iaaoduof the biharmonic
equation

R0} [oR0) o

ou?t + 28u2802 + ot 0 (3.1)
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or equivalently, they solve a variational problem that miizies the bending energdyj,

of a thin metal plate:

B A o \>  [9%\°

We minimize this bending energy subject to the point landnenstraints, imple-

mented here using a quadratic penalty function approaciceSve wish to minimize the
bending energy in the surface, we must account for the Bitrigeometry of the surface
when computing the integral. While we use the parameteresfiacdoing the calcu-
lations required for evaluation of the bending energy, weoant for the effect of the
parameterization while calculating the integral. Thisdbiaved using covariant deriva-
tives which results in the property that given a set of homoles landmarks in some
initial alignment, the deformation is independent of theapaeterization used for the
computation of the TPS deformation field. The use of covarnivatives eliminates
the effect of the initial parameterization on the resultiveyping field.
Let x denote the 3-D position vector of a point on the cortical atef Letu!, u?

denote the coordinates in the parameter space. The metsorteoefficients required

in the computation are given by:

2

ox
g = ' % ) (3.3)
ox |I?
g2 = ‘ 9uzl| (3.4)
ox 0x
gi2 = ga1 = <%7 @> ) (3.5)
g = \/911922 — (g12)? (3.6)

We note that the eigenfunctions of the biharmonic operaidhe surfaces are dependent

on the surface itself. Therefore we do not expand the defiiomsin terms of a common
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eigenfunction basis as in [Boo89]. Instead we take a moeetapproach and minimize
the integral numerically. The bending energy is minimizethe intrinsic geometry after
replacing the first and second partial derivatives in (3y2iHe corresponding covariant
derivatives. Integration over the surface can be carrig¢dpuintegration in the param-
eter space while compensating with the surface metrithe differential formds? for
the integration in the surfacgis related to its counterpart in the parameter sgace)
by ds?> = gdudv. Let S be the set of all vertices, and It denote the set of constrained
vertices (landmarks). Lectjl. and d? denote thex andv displacements required at the
5 landmark,1 < j < N, to take it to its location in the atlas space. Cartesian ten-
sors suffice for flows in 2D or 3D Euclidean spaces. Howeverctitéical surface is
a two dimensional non-Euclidean space and from the outsetidds a full tensorial
treatment. We do this by replacing the usual partial dexigatby covariant derivatives
as done in continuum mechanics on manifolds [Kre99]. Altifiowe want the deforma-
tion field with respect to the cortical surface to be indeemaf the specific choice of
parameterization, the deformation field expressed in the&@meter space invariably
does depend on the initial parameterization. This progsrtiesirable since it ensures
the covariance properties of the deformation vector fiefdatbdeformations expressed
in the parameter space can be modeled as contravariantv€tkéT00, Kre99] since,
with respect to two different parameterizatiomsand @, the respective values of the
deformationsp and¢ are related by_bﬁ = gbjg%f. In order to preserve their tensorial
nature, we need to use covariant derivatives instead ofdhal ppartial derivatives. The
covariant derivativ@ﬁ, of a contravariant tenset’ is given by:

¢P

¢ = 5+ ¢"T, P wherea, 3,k € {1,2} (3.7)
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wherel", _# denote the Christoffel symbols of the second kind [Kre99ggiby:

1 09aa 09aa 0 |
1 a912 agaa 890104:
r.. = 2= — — :
1 0] 09aa |
f_p B _ 99ss Yaa
FQIB F[Ba - a5 |: (6767 a a 912 auﬁ ] (310)

wherea, 3 € {1,2}. The first covariant derivative of a contravariant tengbris a

mixed tensowﬁcﬁ. Covariant derivativeg® s, Of such a tensor are given by:

¢C
¢ 50 = G = &g, + 65T,

whereo, 3, p, & € {1,2} (3.11)

The warping field(¢!, ¢*) with respect to the parameter spaeewv) that minimizes

bending energy in the surface while matching the consgasrthen given by:

¢1 = arg r?piln/p ((¢1,11)2 + (\/51#1,12)2 + (1?1,22)2) gdudv,
with ¢' (u;, v;) = d;,Vj € S, (3.12)
¢2 = arg I?pgn/}) ((7/)2,11)2 + (\/5@52,12)2 + (@b2,22)2) gdudv,
with <b2(uj, Uj) = djz,VJ €S, (313)

The warping field(¢!, ¢?) at the interhemispheric fissure is not forced to be zero as

described in the next section.
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3.1.2 Discretization Algorithm

In order to solve (3.12) and (3.13) for the thin-plate spliegistration, we need to
discretize the integral in that equation. We usejtfi@rmonic square maps of the trian-
gulated tessellation of the cortical surface for definingardinate system. The square
maps for each hemisphere are then resampled on a regula25%§xid. Because the
interhemispheric fissure is fixed on the boundary of the sgitsreach hemisphere, one
can visualize th€u, v) parameter space as two squares placed on each other and con-
nected at the boundaries of the squares. The main advantage epace is the ease
of composing and solving various partial differential efipra@s in discrete form since
this allows us to calculate partial derivatives across weetiemispheres and to include
explicitly the connectivity of the two cortical hemisphsii@ subsequent analysis. This
boundless space is then used for discretizing the partisadives with respect ta and
v spatial coordinates in the solution of the differential &ipns. For instance, assume
that f : M — R is a scalar-valued function defined on the cortical surf&te We
arrange its discretized representation at each vertexitrismgulation of the surface in
a vectorf = f;. In order to discretiz% by central difference, we calculate the usual
central difference at the interior points in the squares.tif@nboundary of the squares,
we consider the connectivity relationship shown in Fig. f8rithe neighborhood in the
central difference approximation. Using these relatisrescompose a central difference
matrix D¢ and obtain discretization cgg asDc f. Similarly we compose matrices/,
D?, the forward and backward difference operators fortkeordinate, and>¢, D/ and
D?, — the central, forward and backward difference operator$orthe v coordinate.
We carry out the discretization of the linear operator cgpomding to the bending

energy in (3.12) and (3.13) in the following steps.

1. Parameterize the cortical surface to map it into two ssgiand assign to it the

coordinate system described above.
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2. Form the forward, backward and central difference mesie/, D/, Db, D’ and

D¢ D¢ for v andv coordinates respectively.

3. Compute the surface metric coefficiepts, g2, go1 andg-,. This is accomplished
by replacing partial derivatives in (3.3), (3.4), (3.5) a8d6) by their discrete

versions from step 1.

4. Compute the Christoffel symbols according to (3.8),Xartd (3.10) by replacing

partial derivatives in that equation by finite differencetritas from step 1.

5. Compute the first and second covariant derivative operating (3.7) and (3.11).
This can be done by first computing the operator correspgnaif3.7) and then
using it to compose the operator corresponding to (3.11)pldRe the partial
derivatives in their expressions by finite difference ntatsifrom step 1 and con-
catenate them to form a covariant bending energy functiodtix which is used

to minimize the covariant bending energy.

3.1.3 Bending Energy Minimization

We discretized the bending energy integral in (3.12) anti3(38in the parameter space
over a 256x256 regular grid for each hemisphere. We denetedklariant differen-
tial operator in these equations iy As described previously, our parameter space
takes into account the neighborhood relationships bettyesiivo hemispheres and thus
the covariant operatak is discretized in such a way that derivatives at the interhem
spheric fissure are calculated correctly. In our currentémmentation our constraints are

enforced by adding a quadratic penalty term rather thanxhetenatching constraints
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Deformation field on Deformation field on
the left hemisphere  the right hemisphere

Figure 3.2: (upper) The figure shows the warping field compote the surface. The
deformation field is smoothly varying. This is achieved hegathe bending energy
regularization was performed in the intrinsic geometryhsf surface. The color indi-
cates the magnitude of the deformation. (lower) The thatepépline deformation field
applied to a regular grid representing left and right heimesps.

in (3.12) and (3.13). Leb = (¢!, *) denote the deformation field. The discretized cost

function then takes the form

¢ = arg minz v/ gL:i®;:|)*+

€S

0”3 Va(L;®; — ;)| (3.14)

JES:

22



The resulting least squares problem is very high-dimedi@b6x256x2x2 parame-
ters), but it could be solved directly since the matkixs sparse. However, we reduce
the dimensionality of the problem by projecting onto a stilidehe discrete cosine
transform (DCT) basis functions. Provided the constratats be satisfied with a rel-
atively smooth deformation, this approach will work wittwker basis functions than
the original 256x256 samples i, v) space. LetB denotes the DCT basis matrix,

T = LB,V = BT® andT; = L; B. The optimization problem

® = argmin » _||\/gL;BB"®;|?

€S

+0° > " ||\/gL:BB"®; — di|” (3.15)
iESc
reduces to:
U =argmin Y _[|gTV|* + 0> ||VgL¥ — dy|? (3.16)
€S 1€Sc

In this way, we calculate the deformations in the DCT trammafepace. Use of this basis
leads to a significant increase in speed. We observe thasitigpa higher value of the
parameter will lead to more accurate alignment of the sulcal landmarkis, but in
practice a very high value leads to non-bijective defororatf the coordinate space.
Due to this trade-off, we pick a value of by trial and error. For certain individual
subjectss is decreased if the deformation field is non-bijective. Tlaeps thus obtained
are then applied to the:, v) coordinates of each cortical surface to coregister them to
the template. This process is illustrated in Fig. 3.2 wheeeshow the sulci traced on
the original cortical surface and their corresponding fioces in flat space. We then
show the relative locations of these sulcal features in flats for the subject and atlas

before and after matching. Note that we use a quadratic fyefiomiction to match the
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landmarks so that they do not exactly align after regisiratiCortical regions near the
boundary of the unit square exhibit larger metric distortielative to the cortical surface
than do regions near the center. Since the warp bendingyeisergmputed with respect
to the intrinsic geometry of the surface rather than flat spae see that the warp in flat
space exhibits larger deformations near the boundariesatide center, following the

pattern of metric distortion.

3.1.4 \Validation TPS surface registration

Alignment of two cortical surfaces was performed using titénsic TPS method pre-
sented above. For our purpose, we used 16x16 DCT basisdasdti each of the
andwv directions. We found that the resulting warps closely rddeththe warping field
computed without using basis functions. The use of basistimms resulted in a run-
time of 2 min. as compared to the runtime of 2 to 3 hours in thee @ computation
without using basis functions. Fig. 3.3 shows alignmentudéa maps before and after
registration. The warping field is smooth on the cortex stheesurface geometry was
considered during the regularization.

There is no gold standard for evaluating the performancegittration algorithms
such as the one presented here. However, there are sevaaltes that are desirable
for any surface registration algorithm. Our method for matihg the quality of our

registration results is based on the following properties:

1. Insensitivity to the anatomical variability between tiple subjects. Though it
is difficult to expect any automatic registration algoritionalign the anatomi-
cal features accurately, we expect a sulcus to be aligneé axaurately if the

remaining sulci are used as landmarks and are forced to. align
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2. Insensitivity to a small amount of noise in the extractedexe coordinates. The
process of extracting the cortical surface involves sé\steages and the results
of each stage are sensitive to various parameters. We ntoslettriability intro-
duced during the extraction process as additive Gaussiar mothex, y, z coor-
dinates. The warping process should be relatively inseadiv this noise and

should depend only on the global structure of the brain.

3. Insensitivity to small linear (affine) scaling of the sagé coordinates. These kind
of volumetric warps can get introduced in the imaging precd@gdso brains from
different age groups have different sizes and registragluould not depend on

factors such as the overall size of the brain.

The error results presented here are in terms of the root sepzered error. In order
to evaluate performance with respect to (1), we carried datee-one-out validation
scheme. We aligned cortices of 6 subjects with one anothieg 22 out of 23 labeled
sulci leaving one sulcus out of the registration each timar. gach of thé?C; x 23 =
345 registrations, we measured how well the sulcus that waslgfof the registration
process aligns across the subjects before and after edgstr Before carrying out the
warping, there was mean squared error of 28.6 mm in the fleasuAfter aligning all
but the free sulcus, the remaining root mean squared errsr208l mm. For (2), we
added Gaussian noise in each of the, z coordinates and register each of the brains
with the noiseless brains. In this case, since we know thecbpoint correspondence
between the noiseless and the noisy brains, we calculagedligmment error for the
entire surface rather than just the sulci. Before applyiR& Wwarping, there was 40.9
mm mean squared error. After warping there was 3.58 mm akgnm@rror. For (3) we
applied affine warps to the cortical surfaces and alignectftiee warped surface with
the original surfaces. In this case also we calculated &rdhe entire surface as in (2).

Before warping there was 35.8 mm error which reduced to 3.48zmor after warping.
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(a) Alignmentin the square spacéb) Initial alignment in reference
atlas space

(c) Alignment in the square spa¢#) Alignment in the brain atlas
after covariant TPS warping space

Figure 3.3: Alignment of the sulcal landmarks: 6 brains aggstered to a common cor-
tical surface using thep-harmonic maps in the plane. They are approximately aligned
by thep-harmonic maps justifying our small deformation linear ralo@hin plate bend-

ing energy model) which is used for landmark alignment. Afeplying the covariant
TPS deformation field to the surface parameterization, weseg that the sulci show
better alignment.

3.2 A Finite Element Method for Simultaneous Regis-
tration and Parameterization
The method presented in Sec. 3.1 is a two step procedure wingthmaps the

two cortical surfaces to a plane and then computes a defanmaéctor field that
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aligns sulcal landmarks with respect to their planar cowatlis. Similar methods
were presented by various researchers which use planeresphesome intermedi-
ate representation of the cortex as a common space for penigrthe alignment
[HSBT00, BGKM98, FSTD98, TRP05, TH®4, WGH"05, JSTLO5]. In our two step
procedure, in order to solve the resulting variational mization problem, numerical
derivatives were computed by resampling the brain on a tmifgrid with respect to the
parameterization. In addition to the computational cosesémpling and interpolation,
this step results in a loss of resolution since the regulaeori-regular grid in flat space
is not necessarily optimal for representing the brain in BRce. In our new approach,
we incorporate sulcal landmark alignment directly in ourgpaeterization method and
thus avoid the resampling and reparameterization step lebahp

We propose an FEM based elastic mapping method that avadsstnof an inter-
mediate surface flattening step for landmark matching. doiporates the landmark
registration into the parameterization method itself. \&e the Cauchy-Navier elastic
equilibrium equation for performing this matching as expal in the next section. This
approach also has the advantage that the computation cekttigely small and that the
resulting alignment is inverse consistent [JC02] as witidmee clear from the symmetry

of the cost function defined below.

3.2.1 Surface Registration

To perform cortical surface registration and parametédrawith labeled sulcal curves
as constraints, we model the cortical surface as an elds&t aind solve the associated
elastic equilibrium equation using an FEM. We choose theenganeral elastic model
over a surface based harmonic mapping method [AHTK99, TS@O04, WLCTO05]

because we found that the surface based harmonic mappingstademain bijective
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when multiple sulcal landmark constraints are imposed eiirterior of the flat parame-

ter space. However, for the elastic model we have so far alwhtained a near bijective
map by adjusting the model parametarandy. appropriately. The reason for this situ-
ation, intuitively, is that relative to the power of the Lapian alone, the Cauchy-Navier
elasticity operator provides additional control over thadyent of the divergence of the
surface vector field, and this indirectly controls the Jaaolof the mapping, constrain-

ing it from taking on extreme values and thereby violatingi$moothness assumption.

3.2.2 Mathematical Formulation

We assume as input a pair of genus-zero, tessellated datidaces extracted from a
volumetric MR image [SL0OO]. Our goal is to map the surfacegath cortical hemi-
sphere in the two brains to the unit square such that in therfégd a set of manu-
ally delineated sulcal landmarks are aligned with respethé flat space coordinates.
Point landmarks are generated by sampling uniformly alcachesulcal curve. Let
¢ = [¢1, $2]T be the 2D coordinates assigned to every point on a givercaebsiirface
such that the coordinatessatisfy the Cauchy-Navier elastic equilibrium equatiothwi
Dirichlet boundary conditions on the boundary of each catthemisphere, represented
by the corpus callosum. We constrain the corpus callosuie tnlthe boundary of the
unit square mapped as a uniform speed curve. We solve thigbeigun equation in the

geometry of the cortical surface using the form:

PAG + (i + NV(V - ¢) = 0. (3.17)

wherey and )\ are Lamé’s coefficients. The operatdxsandV represent the Laplace-

Beltrami and covariant gradient operators, respectiveiyh respect to the surface
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geometry. The solution of this equation can be obtainedatianially by minimizing

the following integral on the cortical surface [HCF02]:
E(¢) = / 2(traee (D) + D¢))* + gtrace (DY)T + Dp)?)dSs. (3.18)
S

whereD¢ is the covariant derivative of the coordinate vector fieldhe integralF(¢)
is the totalstrain energy Although the elastic equilibrium equation models only ma
deformations, we have found that in practice we can alwayspee a flat map of the
cortex by setting the parameters= 1 and\ = 10.

Minimizing (3.18) produces a flat map of each hemisphere lllhat constrain the
locations of the sulcal landmarks. To do this, we introdue following constraints.
Let o5 and¢ 4 denote the 2D coordinates to be assigned to the subject Esdoaain

hemispheres respectively. Then we define the LagrangidriwagionC(¢g, ¢4) as

Cps,da) = E(¢s) + B(da) +0 Y (¢s(k) — pa(k))? (3.19)

keM

whereggs (k) and¢4 (k) denote the coordinates assigned to the set of sulcal lakdmar
M, ando is a Lagrange multiplier. Note that we do not constrain tleaimns of the
sulci in the flat map but simply constrain homologous landwan the two maps to lie

at the same coordinates.

3.2.3 Finite Element Formulation

To minimize (3.19) on a tessellated surface we use an FEMtweatize the strain energy
E(¢). Since the integrand in (3.19) is a tensor, it is justifiabledmpute it locally at

each vertex point by assigning a local coordinate systery) to its neighborhood.
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(f) o = 3 forsurface 1 (9) o = 3 for surface 2 (h) Sulcal alignment fos = 3

Figure 3.4: (a),(b) The two cortical surfaces with hand latesulci as colored curves;
(c),(d) flat maps of a single hemisphere for the two brainseuit the sulcal alignment
constraint; (e) overlay of sulcal curves on the flat maps outhalignment; (f),(g) flat

maps with sulcal alignment; (h) overlay of sulcal curvestmftat maps with alignment.

For each triangle the covariant derivatiize in the local coordinates, y becomes the

Jacobian matrix:

D¢ = * 4 3.20
¢ 9¢2  O¢2 ( )
ox Jy
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From (3.18), the strain enerdy;(¢) for thei'® triangle A, is given by:

B0 = [ e n) Gy G2 3.21)

+2(p+ ) (%) <%> + ((%)2 + (%)2> ds.

We now describe the FEM discretization of the partial deives with respect to the
local coordinates. Letv be any piecewise linear real-valued scalar function defined
over the surface, and; the function restricted to trianglewith local coordinates:, y.
Also denote the local coordinates of the three vertice&easy, ), (z2, y2) and(xs, ys3)

respectively. Since; is linear on the*”" triangle, we can write,
ai(z,y) = ay + a'x + aby (3.22)

Writing this expression at three vertices of the triangkematrix form,

L2y oy ag o' (1, y1)
1z oy ai | = | o (22, 52) (3.23)
1oz oy a o' (3, ys)

T

The coefficients:), a} anda can be obtained by inverting the matiiX. From (3.22)

and by inverting the matrix in (3.23), we obtain

dat 7
a

(61’) — ( ?) (3.24)
) e

i i i i i i o (x1,41)
1 (112311 Ys — Y1 y1y2)

ai($2,y2) (3.25)

L] =Ty T =Tz Tyg— T ;
o' (z3,y3)
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Denote the discretization cg; anda% at triangle: by D! and D; respectively. Also

note that D?| = 2A; whereA; is the area of th¢" triangle. Then we have:

Di= (vt v vi-u) (3.26)
D, = oA (x’l — x5 T} — Ty TH— xi) . (3.27)

Substituting these in (3.21) and (3.19), we have

]
2

. ¢
B(6) =" 4%12- (si0}) K ( ?) (3.28)
VDL VAD;

oyt VEDy  /iD;
7OWAL D o

0 \/Z,uD;

¢'|1*. (3.29)

whereK is given by

A+ 2u)DEDE + uDED ADYD,, + uD* D},
K<( 2 HE 5y vy (3.30)

AD}! D}, + uD¥ D;, (A+2u)D}! D}, 4+ pDItD.,

This method is used to discretize bdilips) andE(¢4). It can be seen from (3.29) and
(3.19) that the cost function is quadratic. We minimize €3.With respect to botlyg
and¢ 4, with the corpus callosum fixed at the boundary of the uniasguto compute
the sulcally-coregistered flat maps for both brains sinmétasly. The minimization
is performed by using a preconditioned conjugate gradiesgthod with Jacobi pre-
conditioner. In practice the minimization algorithm corges in approximately 500

iterations, requiring 3-4 mins on a desktop computer fofag@s with approximately
200,000 vertices.
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Figure 3.5: RMS error and percentage overlap in the flattemaolas a function of.

3.2.4 Results and Validation

We first extract cortical surfaces from MRI for each subjesing the BrainSuite soft-
ware [SLO2] to produce a genus-zero tessellated reprdégantd the inner gray/white
cortical boundary. We then manually delineate 23 majorn sul@ach of these extracted
cortical hemisphere meshes. Delineation is performeddoraance with a sulcal label-
ing protocol with established intra- and inter- rater teilidy [THdZ *02]. This protocol
specifies that sulci do not intersect and that individuatisale continuous curves that
are not interrupted. If interruptions are present the cuiare simply interpolated across
any interrupting gyri. In cases where a full set cannot benéefia subset can be used
without any change in the algorithm defined here. Uniform gasialong the sulcal
curves serve as landmarks in our registration.

Fig. 3.4 illustrates the alignment process. Fig. 3.5 shodfRMS error in matching
of sulcal landmarks and the percentage area of overlap dinfpin the flat maps as a
function of the Lagrange multiplier. Enforcing a more accurate sulcal alignment by
increasings results in an increase in overlap in the mappings. We cheose3 for
further analysis. Although the elastic mappings are noh#dly guaranteed to produce

a bijective registration, we found that by setting= 1, A = 10 ando = 3, we can
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Figure 3.6: Mapping of sulcal landmarks from 5 subjects toatias brain (left) without
and (right) with the sulcal alignment constraint.

achieve a nearly bijective map with an average overlap ofamately0.4% of the
surface area. By inspection we see that the overlap occufgiricinity of pairs of
landmarks that are closely spaced in one brain and distdaheinther. One solution to
this problem is to locally reparameterize in the neighborhof the overlap once the flat
maps are computed.

We performed a leave-one-out validation for examining tleefggmance of our
method. We choose one brain as a representative ‘atlas’ligmdcartices of 5 subjects
with the atlas using 22 of the 23 labeled sulci leaving onewsubut of the registration
each time. For each of the registrations, we measured howtheekulcus that was
left out of the registration process aligned across theestbwith ¢ = 0) and without
(0 = 3) sulcal alignment. Without alignment, there was an RMSreofd33.1 mm in
the free sulcus. With alignment using all but the free sulthe remaining rms error
was 3.2 mm for the free sulcus.

Incorporating sulcal landmark alignment directly in ourgraeterization method
not only avoids the resampling and reparameterizatiorssiegd reduces computational
cost while maintaining high resolution in the surface tdatens, but also makes the
registration inverse consistent. The improved speed aswluton of the registration

may help in large scale and detailed comparisons of codiat.
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3.3 Optimum Choice of Sulcal Subset for Registration

The objective of landmark based manual registration mettprdsented in Sec. 3.1
and Sec. 3.2 is to minimize the alignment error in sulcal esrvTheir disadvantage
is that the individual tracers need to be trained, and even thter-rater variability
introduces some uncertainty into the procedure. In registn applications, errors in
automatic sulcal identification may propagate into errarghie registration accuracy.
There is an inherent tradeoff between manual effort foringasulcal landmarks and
registration accuracy. Increasing the number of sulcalizarks achieves more accurate
registration, but it also increases the required manuattefDue to this, for large scale
studies, manual procedures may be infeasible unless wenmmthe number of sulcal
curves required in the manual tracing protocol. Here, weesitdthis issue.

In this section, we present an algorithm that finds an optsubket of sulcal land-
marks with a given number of sulci, which leads to minimunoem registration. We
begin with a large set of sulcal curves that have been idedtifiy the neuroanatomist
on our team as candidate landmarks for cortical registrat@ur objective is to select
an optimal subset from this set such that, for a given numbeumwves, the sulcal regis-
tration error is minimized when computed over all sulci. Gtraightforward approach
is to actually perform registration of the sulcal curvesdaet of training images using
all possible subsets and then measure the error in the remainconstrained sulcal
curves. The difficulty with this approach is that there aregehnumber of combinations
possible. In our case we ha2é candidate curves. Suppose we want to define a proto-
col that used0 curves, the number of combinations to be tested{s ~ 5.3 million.

If the error is to be estimated by performing pairwise regisbns of20 brains, i.e.
(%) registrations, then the total number of registrations irequis (%) (30) ~ 1 billion.
This is a prohibitively large number considering the facittburface registrations are

computationally expensive.
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Instead of performing actual brain registrations with npldt subsets of constrained
sulci, we perform only pair-wise unconstrained registnasi using the elastic energy
minimization procedure described in Sec. 3.2. The requli@ps produce reasonable
correspondences so that we can model the measured sulisttatgn errors using a
multivariate Gaussian distribution. Using conditionadlpabilities, we then analytically
predict the registration error that would result if we coasted a subset of the curves
to match using hand labeled sulci. These errors can be yagoahputed using condi-
tional covariances, and as we show below, lead to reasomablyrate estimates of the
true errors that result when constraining the curves. Fotea fnumber of constrained
curves, we estimate the error for all possible subsets t&tha and select the one with
the smallest predicted error. We investigate the predicéiocuracy of our model by
doing actual registrations using the optimal sulcal camstrset. Our algorithm reveals
the trade-off between the number of curves and registrato@aracy. An appropriate
optimal subset of sulci can be chosen for a particular stadet on manual effort and
desired registration accuracy. Once such a subset is chosbnthe sulci from that

subset need to be manually labeled on the brains used foraar@iomical study.

3.3.1 Registration Error

The point correspondence defined by registration allows nsdp a point set from one
brain to another brain. For every pair of registered hemaspty we map the traced
curves of one brain to the other, which is arbitrarily defiasda target. The registration
is either unconstrained for error prediction, or constdifor validation. We param-
eterize each sulcal curveover [0, 1] and then computé' equidistant points on each
sulcus corresponding to = {0.1/5,0.2/5,..,1}. The point to point errorg,(s) are

treated ass different samples of the errex,, as illustrated in Fig. 3.8, whekg,(s) is
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1) central sulcus (CS)

2) precentral sulcus (preCS)

3) superior frontal sulcus (SFS)
4) inferior frontal sulcus (IFS)

5) ascending branch of sylvian fissure (abSF)

6 horizontal branch of sylvian fissure (hbSF)
7) lateral orbital sulcus (latOcS)

8) frontomarginal sulcus (F-MS)

9) Cingulate sulcus (CingS)

10) paracentral sulcus (paraCS)

11) supra orbital sulcus (supraOS)

12) olfactory or medial orbital sulcus (OIfS)
13) sylvian fissure terminal split (SF)

14) sup. temporal with upper brang@s§S
15) inferior temporal sul¢TS)
16) occipeto temporalI(©TS, not shown)

17) collateral sulcus @pl

18) transtersporal sulcus (TTS)

19) circuldcssi (circS)
20) postcentral sulpes{CS)
21) intraparietal sulciisS)
22) parieto occipital sulcusRS)

23) subparietal sulci*&u

24) calcarine sulcue8a

25) transwerxcipital sulcus (TOS, not shown)
26) lateral occipgtalcus (latOcs)

Figure 3.7: The complete set of candidate sulcal curves fwbinh we select an optimal
subset for constrained cortical registration
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Figure 3.8: (a) Registration of two cortical surfaces basethe flat mapping method,;
(b) Parcellation of the cortex into regions surroundingttiaeed sulci; (c) Registration
error for two corresponding sulci wheeg(s) are samples of the registration error.

the registration error in 3D coordinates for locatioon then!" curve. For symmetry,
we repeat the procedure by interchanging subject and targets.

The alignment error in a sulcus causes a registration emrtitd surrounding cor-
tical area. Therefore, isolated sulci will have more impactregistration, since their
misregistration will affect large cortical regions. To cpemsate for this effect, we par-
cellate the cortex intaV = 26 regions by assigning each cortical point to the near-
est sulcal curve (Fig 3.8b). The parcellation was perforfuedall M/ = 24 avail-
able brain hemispheres. We then defined a weight functiothi®n'* sulcus to be
w, = 37 Al /AT, where Al is the surface area of thé" parcellated region in the

i" brain, andA’ is the total surface area of tii& hemisphere.

Finally, the surface registration error metric was defined a

Br = E(3 wa(€l)? + wa(el)? + wa(es)?), (3.31)
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wheree? | ¥ ande? represents, y, andz components oé,,, andE(- - - ) is the expec-
tation operator. Below, we substitute® = ,/w,e® in order to simplify subsequent
analysis. The objective of the surface registration praoed to minimize this registra-

tion errorEx.

3.3.2 Probabilistic Model of the Sulcal Errors

We model the sulcal erroisy, ..., EX; as jointly Gaussian random variables, since these
errors are drawn from a large population of brain pairs. We&edbee computations for
the x component of the error; similar computations are perforrioed, andz. The

distribution model oft¥ for j € {1, ..., N} is:

T T 1 1 T e\ —1

whereX* denotes the covariance matrix Bf. Therefore, the registration error can be

expressed as:
N
By, =E{> (Ef)’} = trace (") (3.33)
i=1

We now want to predict the registration error when some ofstlilei are explicitly
constrained to register. We partition the curves into twe:s&ulciF which are free and
sulciC which are constrained so thit... N} = F'UC. We assume that the registration
algorithm is well behaved in a sense that it does not creatatural deformations on the
unconstrained sulci when a subset of them are constraimeathér words, if we con-
strain some sulci to register, the distribution of the rerirag ones would be the same as
if the constrained ones matched simply by chance, conditiam the constrained sulci

having zero error. Therefore, we model the registratioarsrin unconstrained sulci as
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the conditional distribution of the original joint Gaussidensity. The probability den-
sity of a jointly Gaussian vector, conditioned on some oélesnents being zero, is also
jointly Gaussian. Therefore, the registration erkjr after matching the sulci fror’

can be obtained using the conditional expectation:

E¥ =F (Z EP?|EY = 0Vj € C) — trace (X2) (3.34)
i€eF

whereX% is the conditional covariance matrix of the error terms esponding to free

sulci. By rearranging sulci so that free sulci precede thesttained ones, we can parti-

tion the covariance matrix as:

Xfr T

e — (3.35)

E?f ch

whereX$, andX;, are the error covariances for free sulci and constrainesd sedpec-
tively, and¥%, andX?, are the cross-covariances.

The conditional covariance is given by:
5§ =%, — B5(35) 78 (3.36)

which is the Schur complement &f, in X* [MKB79]. The estimated registration error

E7¢ after constraining a subset of sulci is then:

Ef = trace (X¢). (3.37)
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This formula allows us to estimate the x component of thestegfion error for a
particular combination of constrained sulci and free sulitie total registration error is

evaluated by adding the x,y, and z components.
Ef = trace (X%) + trace (X%) + trace (X§). (3.38)

We use this formula to estimate the total registration erfor all (J]VV) combinations of
sulcal subsets, wher¥. is the number of constrained sulci, and choose the subget tha

minimizes this error.

3.3.3 Results

A total of 24 brains, or equivalently 48 hemispheres, werindated. Our tracings,
consisting of 26 candidate sulci per hemisphere (Fig. 3véje verified and corrected
whenever necessary by a neuroanatomist. We assigned thsphenes into two sub-
sets, a training set of 24 hemispheres and a testing set oé@dspheres, in order to

check:

e Accuracy of the estimator: if the errors predicted by the method are close to

the actual errors after registration.

e Generalizability of the results to other datasets: if weseha different dataset
(testing set) of brains and sulci, whether the registragimors remain similar to

the ones from the training dataset.

We performed unconstrained mappings for all the training hemispheres by
directly minimizing Eq. 3.18 for each hemisphere sepayatestead of doing pairwise
registrations using Eqg. 3.19 with = 0, since the optimization in Eq. 3.19 becomes

separable in the unconstrained case 0. Using the flat maps of th24 hemispheres
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Figure 3.9: Sample covariance matrices for the x, y, and zpoorants of the registration
error, represented as color coded images.

we computed samples of sulcal errd$, EY, and £, with S = 10 samples for each
sulcus, for all possible pairwise combinations of hemispb@s described in Sec. 3.3.1.
Whenever a sulcus were missing from either cortical surfageassumed abnormal
anatomy in that region and assigned zero registration &rdnose sulci. The resulting
sample covariance matrices of the errors are shown in Fid) &sing color code. The
non-zero off-diagonal elements indicate that the errcescarrelated among sulci, and
thus constraining some of them would affect the registnaéivor of the others. The
correlation structure of the sulcal errors depends on tleaklocations in the flat maps.
Here we used square maps as discussed in Sec. 3.3.1, but @t thqi our results are
robust with respect to the mapping method.

By applying Eq. 3.38 to all subsets of a given number of camséd curves, we
identified the subset that minimizes the registration eifbe optimal subsets of curves
are given in Fig. 3.10 for all numbers of constrained sulonfrl to 26. We also cal-
culated the sulcal registration errors for each of thesargptsubsets by doing actual

registrations. In order to perform actual registration,sheses = 3 as discussed in
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0 1018.14 1018.14 1M114.21
1 578.95 569.51 590.21
2 352.67 354.57 402.33
3 284.43 280.6 302.44
4 228.64 233 245.23
5 197.86 201.28 212.23
Rk 167.19 164.77 172.47
S 7 133.05 129.23 122.34
n |8 106.98 101.16 93.21
o |9 90.17 9.12 92.12
QO |10 79.21 83.13 85.21
é " 67.17 70.32 61.29
w— |12 57.58 61.22 55.21
O |13 47.9 50.1 48.24
’q“) 14 39.95 42.86 41.21
o |15 36.55 41.57 38.15
e 16 26.15 29.78 25.32
S |17 16.59 20.21 18.43
c |18 13.49 18.21 16.23
19 11.18 14.23 13.32
20 8.64 11.05 10.23
21 7.51 10.43 9.3
22 5.01 8.21 7.67
23 3.43 6.98 5.68
24 2.02 6.01 4.27
25 113 5.42 3.54
26 0 4.82 2.63

[ | Constrained Sulcus  [] Unconstrained Sulcus  Errors in mm?

Figure 3.10: Optimal subsets of sulci for cortical regitna. Each row gives the indices
of the optimal subset of sulci that minimize the registnatoror against all other com-
binations with equal number of constrained curves (alsd~sge3.7). The three right

columns show that the estimated (est.) error is close todlwelkated actual (act.) error
when actual registrations with the same constrained careeperformed. Our method
predicts the registration error both for the training (&nj the testing (tst) set of brains.

[JSTLO7a] for the constrained subset of sulci. Comparinigneded and actual registra-
tion errors, also in Fig. 3.10, we see that the predictedegadue close to those obtained
when actually constraining the curves.

A Lilliefors test rejected the null hypothesis of normality the errorst’, EY, and
EZ for many sulci, and therefore our Gaussianity assumptiooigully satisfied. This

is not surprising, since for example errors are naturallynaled by the size of the brains
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and therefore some deviation from normality are anticigpaktéowever, the distributions
were unimodal and the predicted errors of our model are inrdemce with the actual
ones, indicating that our distributional assumptions aesonable for this application.

In order to check the generalizability of the results, wedude 24 cortical hemi-
spheres from the testing set, which are different from tlgareal 24 hemispheres of the
training set. We performed pairwise registrations of trstig brains constraining the
optimal subset of sulci, as shown in Fig. 3.7. The averagstragion errors in this case
were again close to the predicted errors as shown in the sguore fi Therefore, our
results are valid to other brain datasets.

To further test our method, we subjectively selected a sé& ofirves to be con-
strained, namely CS, SFS, CingS, STS, IPS, and CalcS, wh&ined a reasonable a
priori selection based on sulcal extent and spatial digfioh around the cortex. The
algorithm predicted an error dP4.36mm? and the actual error wa)0.03mm?. The
optimal set (SFS, STS, OTS, postCS, IPS, and CalcS) foundubynethod had pre-
dicted an error ofl67.19mm? and the actual error wak64.77mm?, which is better
than our subjectively selected subset. We anticipate thgéneral the curves selected
by our method should be superior to those selected on artivetiiasis, since vari-
ous confounding effects due to elastic flat mapping as wetbalations in errors are
accounted for in the algorithm. In this specific case, weaeotinat our algorithm pre-
ferred more sulcal curves on and around temporal lobe. Tdnisbe explained by the
fact that temporal lobe maps to a very small area in the flarggspace. Therefore any

alignment error made in that region in the flat space getsifiatpin the 3D space.
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Figure 3.11: Optimal sulcal sets for 5, 10, and 15 curves.

3.3.4 Discussion

We have described a general procedure for selecting subfstdcal landmarks for
use in constrained cortical registration. The procedurebmaused to reduce the time
required for manual labeling of sulci in group studies oftiwal anatomy and function.
The optimal subsets of curves, shown in Fig. 3.10, providetition on the crite-
ria our method uses to select curves. First notice that theadesulcus is not selected

for protocols with a small number curves (less than 16). Thmobably because sulci
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Figure 3.12: Top row: subjective selection of 6 curves, vatbference on long sulci
distant from each other that are expected to minimize aintegistration error; bottom
row: optimal sulcal set with the 6 curves selected by our webth

that are most stable and consistent among brains, such asrhral sulcus, may tend
to align well even without explicitly tracing them. Theredp they may not improve
the registration error sufficiently to justify their incios in the tracing protocol. Fur-
thermore, short sulci neighboring other candidate curveexcluded from the optimal
protocol, such as the paracentral sulcus which is closeet@itigulate sulcus, and the
subparietal sulcus which is close to the cingulate and thetpaoccipital sulcus.

On the other hand, the most important sulcus for surfacedb@ggstration seems to
be the superior temporal sulcus with its upper branch. Bhossibly for two reasons:
(1) itis one of the longest sulcus and hence aligning it védjister a large region of the
brain; (2) in cortical flat maps where the corpus callosum &pped on the edges of a

unit square, such as in our method in Fig. 3.8a, the tempalal s mapped to a small
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area near the center of the unit square. Since it is away fnemndrpus callosum, there
is a significant misregistration error if it is unconstrainél herefore it is important to
align it accurately, and so it is selected by our method.

A registration error always remains when only a subset afi $sillused for registra-
tion. Whether this is acceptable or not depends on the pétioeuroscience study.
For example, anatomical studies [TMU1, STR 02, Cha0l, GGI-04] require high
accuracy and might need more sulci, whereas functionalesusiuch as low resolution
magnetoencephalography data [PNBLO5], can tolerate higdggstration error. Fig.
3.10 can be used as a guideline: based on the degree ofaégis@ccuracy required, a
different number of curves may be used.

Our method provides the subset of sulci to be delineated iegastration study
based solely on the registration error. However, some admngthe selected subset
can be made based on other practical considerations, sugbtnasnience in tracing.
For instance, identification and tracing of the central ssiic always easy and it could
be helpful in identifying the surrounding sulci. Therefave expect that it would be
typically included in a tracing protocol. Furthermore, fauroscience studies focusing
on particular cortical regions, for example language ssidterested in activation in
the temporal lobe and Broca’s area, the registration eretriondefined in Sec. 3.3.1
can be modified by assigning more weight to the regions oféstethus custom optimal
curve protocols can be defined, tailored to the needs ofimhay neuroscience studies.

Errors and variability in identifying cortical landmarkeesa common problem con-
cerning all landmark based techniques and can affect thstrapon error. However,
they are beyond the scope of this mathematical formulakonthis particular study the
curves were carefully identified and cross-checked by agamatomy expert. Inter and

intra-rater variability is typically minimized by apprdpte training and cross checking
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of traces. A possible extension of our method could allow efiod of intra/inter-rater
variability in identifying sulci, so that unreliable oneaxcluded from the protocol.

Our methodology readily extents to other landmark basestragion methods in
which the goal is to select an optimal subset of landmarkkafge scale studies, from a
set of candidate landmarks. Finally, it can possibly beiagfb other areas of computer
vision [MA98, OlIs00, GI94] for aiding optimal landmark setn.

The surface based surface registration techniques pesséenthis chapter set up
point to point correspondence between two surfaces basedaomally traced sulcal
landmarks. We also presented a method to optimally selecdhthe sulcal landmarks
in order to minimize the manual effort. These methods candmsl Wo register neu-
roanatomical data from individual surfaces to a commorsatlehis data can then be

analyzed in the surface geometry by using the techniqueepted in the next chapter.
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Chapter 4

Processing of Data in the Surface

Geometry

Neuroimaging data, such as cortical thickness or neuralaticin, can often be ana-
lyzed more informatively with respect to the cortical sedaather than the entire vol-
ume of the brain. This analysis should be carried out in tiensic geometry of the
surface rather than in the ambient space. We present mditragisneralizations of two
commonly used image filtering methods to non-Euclidearaserfeometries. First we
describe a method for isotropic diffusion filtering, whistequivalent to Gaussian filter-
ing in Euclidean space. We then describe its extension spawopic filtering. In order
to discretize and numerically compute the isotropic and@nbpic geometric opera-
tors, we first parameterize the surface usingl@armonic mapping. We then use this
parameterization as our computational space and accoutitdsurface metric while
carrying out isotropic and anisotropic filtering. We illtegte these methods in an appli-
cation to smoothing of mean curvature maps on the corticédse. For the cases when
the cortical data is a point set on the surface, we presentlaoohéo quantify its mean
and variance. This is illustrated in the analysis of MEG ¢Bdocations corresponding

to finger tapping.
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4.1 Image Filtering on Surfaces

Gaussian kernel smoothing has been widely used in 3D meidiea)ing as a tool to
increase signal-to-noise ratio. However, in many mediteging applications neuro-
anatomical [TT96a][THdZ03], functional [JSTLO5] and statistical [CRD5] data are
defined with respect to the non-Euclidean cortical surfawtideally should be pro-
cessed with respect to the non-Euclidean geometry of tHacgurThe Gaussian kernel
is isotropic in Euclidean space, but on curved surfacesatiemof a Gaussian function
needs to be generalized. One existing approach, calleasaifi smoothing [TSCO00],
replaces the Gaussian filter by the heat equation which s $b&ved on the surface.
Thus filtering is formulated as the process of heat diffusignexplicitly solving an
isotropic diffusion equation with the given data as an atitiondition [CWT 01]. The
drawback of this approach is the complexity of setting upiéefielement method formu-
lations or implicit PDEs and difficulty in making the numaischeme stable [Chu05].
Here we describe an alternative approach to smoothing sisepeat equation, which
is based on a parameterized representation of the surface.

Anisotropic filtering or Perona-Malik flow [PM90] has beendely used in region
selective smoothing and edge preserving filtering of 2D abdrBages. Anisotropic
diffusion filtering on non-Euclidean surfaces has beeniagpb processing and modifi-
cation of surface geometries [HP04][CDRO04]. In contrastehwe focus on anisotropic
filtering of anatomical or functional images which are scdlanctions defined on
these surfaces [TSCO00]. In order to solve the isotropic amdo&opic diffusion
equations on non-flat surfaces, the associated LaplateaBeloperators needs to
be discretized. The existing approaches to this discteiizaise FEM formulations
[LPDS04][BX03][CWT"01]. We present an alternative to the FEM approach. We

first generate a global parameterization of the surface pobenthe metric tensor for
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the parameterization, and use this to compute the isotrapicanisotropic Laplace-
Beltrami operators. We first parameterize the corticalaagfusing a-harmonic map-
ping technique . We then resample the surface on a reguiigelatith respect to the 2D
parameterization and solve the associated PDEs usingisici®tization while account-
ing for the p-harmonic mapping transformation. Our method explicittg@unts for
the metric of the surface and does not need the local flatrssssrgtion made in FEM
methods [CWT 01][BX03]. In Euclidean case, discretization of the timeidative in
the diffusion equations can be carried out using the Craiakison method [Smi85] due
to its numerical accuracy and stability. Our approach alaw/to generalize this method

to non-Euclidean cortical surface thus making our methdt btable and accurate.

4.2 Mathematical Formulation

We assume a genus zero cortical surface on which we defindaa salued field rep-
resenting the anatomical or functional image of intereste a0 assume that a 2D
coordinate system is assigned to this surface through angdeaization process. We
summarize our approach to generating this parameteneati®ection 4.3. Our goal
is to define filtering operations on this image which are comguwvith respect to the
intrinsic geometry of the surface.

Throughout this chapter we use Einstein’s summation cdimefiDo 76][Kre99]
in order to simplify the notation. Lef(s,?) be a scalar function which denotes the
image given on the cortical surfadeandt denotes timel(s, 0) represents the original
unsmoothed image. Let g;; : 7, 7 € 1,2 denote the metric tensor associated viitfor

a given coordinate system ap#l : i, j € 1,2 denote inverse of the metrig;.
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4.2.1 Isotropic filtering

The isotropic diffusion equation on surfaSewith the original imagéd (s, 0),s € S as

the initial condition, is given by

0

1 (s,8) = Al(s, 1), (4.1)

whereA is the Laplace-Beltrami operator that generalizes thedaah in Euclidean

space to Riemannian spate

Al(s,t) = <\/_ Waz (s, t)) . 4.2)

We discretize this operator using the discretizations @ftietric tensor and thus explic-

f ou”

itly model the geometry of the surface in our method.

The discretization of the time derivative on the left hardksof (4.1) can be carried
out by explicit discretization methods for hyperbolic PDHs the explicit scheme for
solving (4.1), time is discretized using a forward difference ahd, ») is used for cal-
culation of the left-hand side of (4.1), whefés, n) denotes the image value at iteration
n. Let L denote the discretization @k and¢ the time step; the resulting discretized

equation is given by
I(s,n+1)—1I(s,n)

= LI(s,n). (4.3)

Rearranging terms we have the update equation:

I(s,n+1)=1(s,n)+0LI(s,n). (4.4)

This is an explicit method for solving the heat equation. M/lihas the advantage of

being fast to compute, the choicedis critical in the implementation, with large values
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of ¢ resulting in numerical instability producing oscillatosplutions. A theoretical
upper limit on the size of depends on grid size and the metric tensor coefficientst
and is hard to determine. Violating the upper limit on thareadfs causes amplification
of numerical errors which in turn results in divergence @& $iolution. [Smi85]

In order to overcome this difficulty, here we adapt the Craéslson scheme to
suite our particular equation. While it is slower than thplext method (4.4), it has the
advantage of being stable as well as accurate [Smi85]. $nctise, (4.1) is discretized

as
I(s,n+1)—1I(s,n)
)

_ %L(I(s,n) 4 I(s,n+1)). (4.5)

Rearranging terms gives:

I(s,n+1)—ng(s,n+1) :I(s,n)—i-gLI(s,n)

LiI(s,n+1)=b, (4.6)

whereL; = I — L andb = I(s,n) + $LI(s,n) This linear system of equations is then

solved at each iteration using conjugate gradient to coenfiut n + 1) from (s, n).

4.2.2 Anisotropic filtering

Anisotropic diffusion filtering of planar images was firssgdabed by Perona and Malik
[PM90]. Here we generalize this idea to non-Euclidean sedawhich allows us to
perform spatially variant and image dependent nonlingerifilg of surface constrained
image data within the geometry of the surface itself. The@nopic diffusion filter is

formulated as a diffusion process that encourages smapthihin regions of slowly
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varying intensity while inhibiting smoothing across boands characterized by large

image gradients. The anisotropic diffusion equation hagdim:

0I(s,t)
ot

=V .- (D(s,t)VI(s,t)), 4.7)

where the diffusion coefficienb(s, t) is a monotonically decreasing function of image
gradient magnitude:

D(s,t) = f(IVI(s,D)])- (4.8)

Varying the diffusion coefficient with image gradient allevior locally adaptive edge

preserving smoothing. Two choices fpwere suggested [PM90]:

) = - (12201 »

fa(s,t) = ! a>0, (4.10)

(14w)
exp (_ (nvz)(< )||>)

Wherey is referred to as the flow constant. Since these filters aneesged using PDESs,

they generalize to non-Euclidean spaces. For the cortictdese, we replace (4.7) by

ol(s,t) 1 WOL(s, 1)
ot fﬁuv (fD( t)g" W) (4.11)

To compute the diffusion constants we also need an estirogtioe gradient. We replace

IVI(s,t)|* by thedifferentiator of the first ordefKre99] given by

e 0I(s,t) 0I(s,t) _

V(I(S,t),I(S,t)) = oue ouB

(4.12)

With these substitutions, the anisotropic heat equatiome-defined on the cortical

surface independently of the particular parameterizaiged for its computation.
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4.3 Discretization and Numerical Method

We use a-harmonic map presented in Chapter 2 for parameterizatiamich we min-
imize a p-harmonic energy function while constraining aefbcurve in the interhemi-
spheric fissure, which divides the brain into two hemispsg@emap to the boundary of
a unit square. This procedure produces a one-to-one mafpjpmgeach hemisphere to
a unit square.

Let x denote the 3-D position vector of a point on the cortical acef Letu!, u?
denote the coordinates in the parameter space. The metsorteoefficients required

in the computation are given by:

2 2

ox ox
=37 =53 4.13
911 H@ul » Y22 H8u2 5 ( )
ox 0x
=921 =571 723 4.14
912 = g21 <0u1’ 8u2> ) ( )
9= g192 — (912)°, (4.15)
The inverse metric coefficients’ are given by:
Y N N (4.16)
g g g

4.3.1 Discretization Algorithm

In order to solve the diffusion equations numerically, wedhéo discretize the isotropic
and anisotropic Laplace-Beltrami operators in (4.2) antil(} We use the unit-square

p-harmonic maps of the triangulated tessellation of theica@rsurface to define a 2D
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coordinate system. The square maps for each hemispheresampled on a regu-
lar 256x256 grid. The co-ordinate system we assign to thecabsurface is depicted
in Fig. 3.1. The two squares in th@', u?) parameter space represent the two hemi-
spheres in the!, 22, 2® space. The boundaries of the squares correspond to the com-
mon interhemispheric fissure between the two cortical heh@ses. The neighborhood
relations between the edges of the two squares is depictetiffeyent arrows in the
figure. Because the interhemispheric fissure is fixed on thadary of the squares rep-
resenting the two hemispheres, one can visualizeithe u* parameter space as two
squares placed on each other and connected at the bourafdhiesquares. We follow
these neighborhood relations when discretizing the patéavatives at the boundary
of the two squares. This allows us to compute partial davigatacross the the two
cortical hemispheres making the boundary separating thempletely transparent to
the numerical discretizations. This boundaryless paransgtace is then used for dis-
cretizing the partial derivatives with respect to thfeand«? spatial coordinates in the
solution of the differential equations. For instance, assthatf : M — R is a scalar
valued function defined on the cortical surfade We arrange its discretized represen-
tation at each vertex in the regular grid of the surface inmorq?. In order to discretize
% by central differences on the entire surface, we calculstialcentral differences at
the points which are not on the boundary of the squares. Obdtedary points of the
squares, we use the connectivity relationship shown in Bid.for the neighborhood
in the central difference approximation. Using these ref&st we compose a central
difference matrixD¢, and obtain discretization oc% asD¢, f Similarly we compose
matricesDi L Dzl, the forward and backward difference operators fortheoordinate,
andD¢,,D/, andD?,, the central, forward and backward difference operatarthieu?

coordinate.
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We carry out the discretization of the isotropic and anguity operators as described

in the following steps:

1. Parameterize the cortical surface to map it in two squamnesassign it the coor-

dinate system described above.

2. Form the forward, backward and central difference ma$rld£ 1 D’,, Db

u2! ul)

D22
and D¢

ul)

D¢, for u' andu? coordinates respectively.

3. Compute the surface metric coefficientg, g1o, g21 andgs, and also the inverse
metric coefficients;!!, ¢'2, ¢*2. This is done by replacing partial derivatives in

(4.13), (4.14), (4.15), (4.16) by their discrete versiasf step 2.

4. Compute the isotropic or anisotropic Laplace-Beltraperators using (4.2) or

(4.11).

In the case of isotropic diffusion discretization of thefalion operator needs to
be carried out only once before starting the time iteratio@n the other hand, for
anisotropic diffusion the diffusion operator dependsiosn ¢) and hence needs to be
updated by carrying out the last step 4 repeatedly afteryetmie step. In order to
decrease this numerical cost, we update the operator aftey £00 iterations assuming
that the incremental change in I(s,n) is small.

The impulse response of the isotropic diffusion filter iswhan Fig. 4.1 both on
the cortical surface and in the parameter space of one hbarsplt can be seen that
use of the surface metric results in a more circularly symimghpulse response on the
cortical surface. Note that because of the non-linear eaifithe anisotropic diffusion
filter, its behavior cannot characterized by its impulspoese.

We performed numerical simulations on an Intel Pentium 4G22 computer with

2GB of RAM using MATLAB. The cortical surface was extractagdrh a 256 x 256
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(b) The heat kernel computed using the Laplace-Beltramiaipeon the cortical
surface

Figure 4.1: The impulse response of the isotropic smootfililegs are displayed in the
parameter space and on the surface [JSTLO5]. It can be sstemttbn the surface metric
is used to compute the Laplace-Beltrami, the impulse resp&arnel is not isotropic in
the parameter space, however it is isotropic on the surface.

x 170 voxel T1-weighted MR image of a volunteer subject. Bssing time from the
raw MR volume to extraction of the topologically correctealdessellated cortex using
BrainSuite took 7 mins. The tessellated cortex had a total4million nodes. The
harmonic parameterization of the 1.4 million node cortmatface took 37 secs. Note
that adding the parameterization step does not add sigmtifycto the total computa-
tional cost compared to a direct FEM method [BX03][LPDS0%he number of iter-
ationsn along with the size of time stef decide the amount of smoothing applied.
Smaller values ob result in more numerically accurate solutions while theceien
time is directly proportionah. We chose) = 1 x 107° andn = 40000. Isotropic

diffusion on the resampled surface took 20 mins with thisiagh@f » and o while
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(b) Isotropic diffusion

(c) Anisotropic diffusion

Figure 4.2: left: The mean curvature of the cortical surfalcgted on a smoothed rep-
resentation (for improved visualization of curvature ircail folds; right: The mean
curvature plotted in 2D parameter space for a single coiftiemisphere. Isotropic dif-
fusion blurs the regions as well as the edges separating wigla while anisotropic

diffusion reduces noise while preserving edges.
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anisotropic diffusion took 1.5 hours. The difference in@xén times is mainly due to
the non-linear nature of the anisotropic diffusion whichuiees re-computation of the
diffusion operatorL repeatedly during the iterations. The code through parenzet
tion was implemented in C/C++ with substantial effort dieztat optimizing run-times
while the diffusions were computed in MATLAB and, based om earlier experience,
we can expect a several-fold speed up when these are repnogchdirectly in C/C++.
We illustrate the diffusion operations by running them onameurvature maps
computed on the cortical surface. We compute the mean cuevasing the method
described in [CMR03] and resample it on the regular grid. However we note that a
an added advantage of our approach is that we can also cothputeean curvature by
using our discretization of the metric tensor. In partictiee mean curvaturé can be

computed as:

1
H= ibaﬁgaﬁ, (4.17)

where thesecond fundamental fortns is given by

1 | ox ox 0°x

by = — . 4.1
of V9 |Oul + ou? + Ououb (4.18)

The minima and saddle points of the mean curvature of thecabdurface are known
to follow the sulcal patterns [CMR03] and therefore are vital features for automatic
labeling of the sulci [RHXPO02]. However, as can be seen in Hdg2(a), there is a
considerable amount of noise in the mean curvature computete cortical surface.
This is primarily due to the fact that the mean curvature iscal feature and is there-
fore prone to errors in extraction and discretization of¢b#ical surface. We see that
the isotropic diffusion filtering smooths out this noiset Bince this filtering is not

region selective, it also blurs the regions between sulasi{ye mean curvature) and
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gyri (negative mean curvature) as seen in Fig. 4.2(b). Orother hand, anisotropic
filtering removes noise while carrying out the smoothingyomithin regions and thus
respecting boundaries between sulci and gyri as seen ilE(r), thus illustrating the
advantage of anisotropic filtering. Isotropic filtering da@ used where such selective
smoothing is not required such as in smoothing of functialah when smoothness is
required for application of parametric random-field methéat control of false posi-
tives in multiple hypothesis testing [WMN6]. These techniques can also be used for
multiscale representations of functional activation [l189], statistical data [CRDO5]

and neuro-anatomical variability [THdD3].

4.3.2 The Heat Equation in the Intrinsic Geometry

The heat equation in the intrinsic geometry of the surfacgvisn by:

(A—Q)C =0 WhereA:L 0

ot /3 0u

)
vy _—
V99 5

where A denotes the Laplace-Beltrami operator anis the scalar field being dif-
fused. We discretized the operator using the metric tenaloulations described in
the Appendix. Using this discretized operator, we set upGrank-Nicolson scheme
[Smi85] for solving the heat equation since it is known to tebke. We illustrate the
differences between using the usual Laplacian and the teyB&ltrami operator in Fig.
4.1. In the former, diffusion is computed with respect to #ie Euclidean space and
produces a 2D Gaussian distribution in the flat parametaeswhich maps to a clearly
anisotropic distribution on the surface. Conversely, tlaplace-Beltrami form com-
putes the diffusion directly on the surface, on which it progls an isotropic distribution
while exhibiting anisotropic behavior with respect to tregameter space. Solutions of

linear partial differential equations, such as the heat&qn, can be characterized by
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Green’s functions. The Green’s function of the heat equatadso known as thheat
kernel has been a topic of extensive research in spectral the@s9R. Though the
heat kernel can only be implicitly defined in arbitrary saedg, several of its properties
in Euclidean spaces extend to Riemannian spaces and, ioybartto surfaces.

Here we list a few properties we will use later in this chap®eoofs can be found in
[R0s97]. LetM be a geodesically complete Riemannian manifold. Then thekeznel

K,(z,y) exists and satisfies
1. Kt(xvy) = Kt(yvx)

2. limy_o Ky(z,y) = 0.(y)

4 Ky(z,y) = [, Ki—s(z, 2) Ky(2,y)dz

5. Ki(z,y) = Y oope Moi(x)di(y)

4.4 The Heat Kernel as a PDF

We know that the heat kernel is positive everywhere. It ird&gs to one on the manifold
[Dav89] and therefore it is a suitable candidate for modgtime probability density
function of sample points lying in the manifold. MoreoverBuclidean space, the heat
kernel is identical to the Gaussian pdf. Therefore we prepeplacing the Gaussian
density with the covariant heat kernel in our surface-basedysis [Hsu02].

Just as we can characterize an isotropic Gaussian distmdatthe Euclidean plane
through its mean and standard deviation, so we can chawmecwistributions on the
surface through mean and variance-like parameters thedaeaze the location of the

heat kernel and the ‘time’ at which it is observed. Estimatbthese parameters is in
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turn analogous to maximum likelihood parameter estimaiien parameter estimation
for a set of sample points on the surface can be viewed as tidepn of finding the
kernel of a covariant differential operator that best fitsséa points.

For isotropic distributions the corresponding heat kerkiéin, ¢) on a Riemannian
manifold can be completely specified by two parametersthe location of the initial
impulse, and the time Parameters: andt play the role of the mean and variance in the
Gaussian case. Thus the probability of finding a sampteistmodeled ag(z|m, t) =
K,(m,z). So the problem of fitting the heat kernel in the given sampii@ats can be
reduced to the problem of estimating these two parametdlgedfeat kernel.

If the sample points are;, we define the likelihood function for. andt as:

Because of property 2 abov&,(m, z) can be calculated explicitly by placing a delta
function at pointn and solving the heat equation up to timeThe problem with this
approach is that the parameter(the location of the mean) is unknown. However, since
the heat kernel is symmetric (property 1), we can insteackplae delta function at the
sample points:;; whose locations are known, rather than at the unknown meatidm
m, and running the heat equation up to timé his allows us to explicitly compute the
likelihood function (4.19) for a set of sample pointsfor any time point. The values
of m andt for which the likelihood function.(m, t) attains its maximum are then our
estimates of the mean and variance.

To use this scheme for supervised classification of two etgsof points, we
first compute ML estimates of the parametérs,, t;) and (ma, t5) for the two clus-

ters. We then define a likelihood ratio as the ratio of the twathkernels: R =
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(b) pdf estimated for digit 5

Figure 4.3: The figures shows the heat kernels estimated thefitwo datasets for
MEG somatosensory data. For each of the datasets the exdipditis displayed in the
parameter space and on the cortical surface.

Figure 4.4: The classifier: Red and Blue regions shows thel&edsion regions

Ki(mq,t1)/K3(ma, ts) and compute this ratio at each point on the surface. The sur-
face is then partitioned into two regiolhs> 1 andR < 1.

We illustrate the technique presented above for classditaf point localizations of
S1 somatosensory regions. For each of 5 subjects we sird@geints each represent-
ing locations of thumb and index figure on the postcentraligythe 6 points could, for

example, represent localizations from 6 separate studiasongle subject. We brought
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the cortical surfaces for all subjects into register, using of the subjects as the atlas, as
described above. We then used the pooled data from all dalijethe atlas-coordinates
to compute the mean and standard deviation for the thumbralec finger respectively
as illustrated in Fig. 4.3. We then applied the likelihootiaatatistic to partition the
cortex as illustrated in Fig. 4.4. Note that this two-classiyem classifies the entire
brain, including both hemispheres, into two regions. Witbrensomatosensory areas
involved we could perform a finer partitioning of somatsegsmrtex producing maps
of the most probable areas to which each sensory unit woud Wvaile this is a some-
what artificial problem, it is clear that an extension of thiglysis would allow us to

produce probabilistic maps of functional localizationtie tatlas space.
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Chapter 5

Volumetric Registration using

Harmonic Maps

5.1 Introduction

In this chapter we describe an approach to brain image ratjist based on harmonic
maps that combines surface based and volume based apm@actacing a volumetric
alignment in which there is also a one-to-one corresporelbatween points on the two
cortical surfaces.

Talairach normalization based on a piecewise affine tramsftion [TT88] was the
first commonly used volumetric alignment technique. Beeausses a restricted set of
anatomical landmarks and is piecewise affine, it resultseiatively poor alignment
and has been largely replaced by automated intensity-balfggument methods that
also allow non-rigid deformations [AF99, WG198]. There are a vast array of such
methods, differing in how they measure the fit between theitmages (e.g., squared
error, correlation, mutual information), the parametaticn of the transformation (e.g.,
polynomial, splines, discrete cosine transform or othgemfunction bases), and the
procedure used to regularize the transformation (e.gstieJeébiharmonic, or viscous
fluid models) [HBHHO1]. Polynomial warps and linear elasteformations implicitly
assume that deformations are small and do not guaranteeryaen of topology for
larger deformations [CRNM95]. The viscous fluid approach [CRM96] and more recent

approaches using large-deformation diffeomorphic metrapping [GVM04, AG04]
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were developed to address the problem of ensuring diffephiomaps and are better
able to register objects whose alignment requires largeroheitions while conserving
their topology.

Since these intensity-based methods do not explicitly rnthge cortical surface,
alignment can be rather poor. An illustration of this is shaw Fig. 5.1, where we
have used the Automated Image Registration (AIR) softwa/&IH"98, WGW" 98]
to align two brain volumes using a 5th order polynomial (1@8gmeters). While the
regions of cortical grey matter exhibit reasonably goodespondence between the two
images, the cortical surfaces themselves do not align 8atice cytoarchitectural and
functional parcellation of the cortex is intimately relat® the folding of the cortex,
it is important when comparing cortical anatomy and funtiio two or more subjects
that the surfaces are aligned. For this reason, there hasdmemcreasing interest in
analyzing the cerebral cortex based on alignment of susfeater than volumes.

Various surface-based techniques have been developeudoisubject registration
of two cortical models. One class of techniques involvesdifang the two cortical sur-
faces to a plane [HSBOO] or to a sphere [FSTD98] using mechanical models or varia-
tional methods and then analyzing the data in the commoerilatt space [BGKM98].
Other surface based techniques work in the surface geonssgtirather than a plane
or a sphere and choose to account for the surface metric intdresubject registration
[TWMTOO, JSTLO5]. The advantage of such techniques is thay produce regis-
tration results that are independent of the intermediatesflace (or, equivalently, the
specific parameterization of the cortex) resulting in a naoesistently accurate reg-
istration throughout the cortex. These approaches involaaually delineated sulcal
landmark matching [JSTLO5] in the intrinsic surface geameWhile some progress
has been made recently towards automating the matchinggsacsing mutual infor-

mation [WCTO05] or optical flows of mean-curvature imageshe surface parameter
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space [TPO5, TRPO5], fully automatic alignment of high teBon cortical surfaces
remains a challenging problem.

While the volume registration methods described above dpmwide suitable cor-
tical alignment, the cortical registration methods do nefirce any volumetric cor-
respondence. One approach is to combine landmark pointgesand surfaces as
additional constraints in an intensity-based warping me@tfiPCS 89, TT96a, KL99,
DLF99, HHCS 02, DPB96, DP94]. For example, landmarks, curves [DP94javage
matching [DPB96] are applied in a hierarchical manner inrgdaleformations frame-
work ensuring generation of diffeomorphisms [JM00, GJ6]. Registration methods
such as the Hierarchical Attribute Matching Mechanism foagje Registration (HAM-
MER) algorithm [LSDO04] incorporate surface as well as votumformation for the
alignment. For brain images, the desired deformation fietsd to be obtained incre-
mentally by using large deformation or fluid models [CY®0, JC02] and hence are
computationally expensive. Additionally, accurate afiggnt of the cortical surface as
well as the cortical volume remains a challenging task nyalok to the complex folding
pattern variability of the cortex.

In this chapter, we propose a new method based on harmonigingspfor extend-
ing the surface matching to the entire cortical volume, amdgnt a modified intensity
alignment based on [Chr99] to compute the final map. The tiaguhethod, compris-
ing the three steps outlined above, gives an inverse censistap which is capable of

aligning both subcortical and sulcal features.

5.2 Problem Statement and Formulation

Here we address the following problem: produce a one-toroapping between two

brain volumes such that subcortical structures and swdoalrharks are aligned and that
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there is also a one-to-one correspondence between theat@irfaces of the two vol-
umes. Equivalently, given 3D manifoldd and N representing the two brain volumes,
with boundarie®) M anddN representing their respective cortical surfaces, we want t
find a map fromM to N such thatb M, the surface of\/, maps tod N, the surface of
N, and the intensities of the images in the interioddfand N are matched. In addition
the map must satisfy a sulcal matching constraint so thalid sulci on the surface
OM map onto homologous sulci @ghV. The boundaries)M anddN, are assumed to
have a spherical topology.

We solve the mapping problem in three steps:

1. Surface matching, which computes a map betwgehando/V, the cortical sur-
faces of the two brains. The mapping is based on minimizati@m elastic strain
energy subject to the constraint that a set of interactiadlglled sulci are aligned,

as described in Chapter 3.

2. Extrapolation of the surface map to the entire cortichlme such that the cortical
surfaces remain aligned. This is done by computing a hamnm@ip between
M and N subject to a surface matching constraint. As we describestti@
5.3, an intermediate spherical representation is usedctlitdée enforcement of
this constraint. We note also that while the sulci are camsdd to remain in
correspondence, the cortical surfaces can flow with regpeetach other when
computing the volume harmonic map provided we retain thetorane mapping

betweemM andoN.

3. Refinement of the harmonic map on the interiord&nd /N to improve intensity
alignment of subcortical structures. For this step we usénegrse consistent

linear elastic registration method as described in Se&ibn
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Figure 5.1: Cortical surface alignment after using AIR waite for intensity based vol-
umetric alignment using a 168 parameiér order polynomial. Note that although the
overall morphology is similar between the brains, the twdical surfaces do not align

well.

The mapping in Step 2 requires large scale deformation torertkato M andoN
are aligned. Linear elastic or thin-plate spline registrabased on landmarks cannot
be used for this purpose ,FEE)S]. Harmonic maps on the other hand are suitable since
they are bijective provided that the boundary (the corscaface in this case) is mapped
bijectively. Conversely, the final step requires a more lloenement of the mapping

to align subcortical structures so that use of linear edasthods is appropriate.

5.3 Indirect Mapping Approach

The surface registration procedure described in Chaptets3up a point to point cor-
respondence between the two cortical surfaces, which septeéhe boundary of the
two cerebral volumes. Extrapolating this corresponderm® the boundary surface to
the entire cerebral volume in a one-to-one manner is clgihgrdue to the convoluted
nature of the cortex. In fact, most of the linear models swhireear elastic or thin-

plate splines become non-bijective under relatively malddmark matching constraints

[EA05]. 3D harmonic maps are attractive for this purpose duiaédr tendency to be
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bijective if the boundary (cortical surface) is mappedddijeely, which is the case here.
In this section we describe a framework for computing a haimmapping between two
3D volumes as well as the computational approach used fdemmgntation. Details of
harmonic maps and their properties can be found in [Jos02].

Letu : M — N be aC* map from a 3 dimensional Riemannian manifoM, ¢) to
an 3 dimensional Riemannian manifdl/, ») whereg andh are Riemannian metrics
for M andN respectively. A Riemannian metric defines an inner produetvery point
in the manifold and thus helps in defining the notion of distaon the manifold [Jos02].
Let {g:;5;7,7 € {1,2,3}} denote components of the Riemannian metric tegsand
{hag; a, B € {1,2,3}} denote the components of the Riemannian metric telsdhe
inverse of the metrig = {g;;} is denoted by{¢*/}. Let (2!, 2, 2*) and(u', u?, u*) be
local coordinates for andu(z) respectively. LeDu denote the derivative (generalized
Jacobian) of the map. Trenergy density functioa(u) of mapw is defined to be norm
of Du [NisO1] and is given by

() () =3 Du 5.1)
SN ou®(x) ou®(z
:% > 7 (@)hap(u(x)) ax(i ) 8;. >, (5.2)
t,j=1a,8=1

which can be thought of as the rate of expansion of the miaporthogonal directions,

at pointx € M [Nis01],. Themapping energys defined as:

Bu) = /M (u)(2)dp,. (5.3)

Therefore, in coordinate form [Nis01], it is given by

i LA u® (z) Oul (x
B =5 [ 3 Y P hastua) D %y, 5.4

ij=1a,6=1
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where the integration is over the manifald with respect to the intrinsic measuig,
induced by its Riemannian metric

A harmonic mapfrom (M, g) to (N, h) is defined to be a critical point of the
mapping energy(u). In this sense harmonic maps are the least expanding maps in
C>*(M, N), the space of all smooth maps frah to V. Therefore, among all possible
smooth maps between two manifolds, the harmonic maps haveetidency to avoid
overlaps and folds in the map, resulting in a bijective map.

A number of existence, uniqueness, and regularity resaite been proven for har-
monic maps [Xin96]. Eells and Sampson [ES64] proved thetemx¢e of a harmonic
map from any compact Riemannian manifold to a compact Riamanmanifold of
non-positive sectional curvature. Hamilton [Ham75] gatiezed this result to manifolds
with boundaries. In medical imaging, harmonic mappings ghérmonic mappings,
their generalized counterparts [FR02], have been useddoows applications such
as surface parameterization and registration [AHTK99, B&& JLTS04] and image
smoothing [TSCO00]. Wang et al. [WGYO04] describe a method/fumetric mapping
of the brain to the unit balB(0,1). Here we use harmonic maps to align two brain
volumes so that both the brain volumes and cortical surfacealigned.

When computing the harmonic maps we could fix the correspwelbetween the
two surfaces using the method from Chapter 3 and map onlyntiegior of the two
volumes. This would result in a suboptimal mapping with eztfo the 3D mapping
energy. To overcome this limitation, we instead allow thedaste M to flow within the
surface of N when computing the map. The only constraints placed on thacas
are that the maps are aligned at the set of user defined satwihirks and that the
boundaryoM maps ontadN. This less restrictive surface mapping constraint cannot
be formulated directly in the ambient Euclidean 3D spaceesthere is no analytical

expression for the surfaces. It could be accomplished witharameterizing the surface
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using a level set approach [TSC00, MSOO04]. Here we use amptate representation
for the manifolds which allows us to enforce the boundaryamiaig constraint while
allowing one boundary to flow within the other. We achieve thy first mapping to the
unit ball as described below. This mapping to the unit baluhes in a non-Euclidean
representation oV thus requiring the use of the Riemannian metric in compuitireg

harmonic map.

5.3.1 Mathematical Formulation

We find the map of the 3D brain manifoldV to the 3D unit ballB(0, 1) [WGYO04]
using the method described in Sec. 5.3.3.4et (v}, v?, v*) denote three components
of the mapv. This map is bijective and therefore we can treat the unit B&, 1) as

an alternative representatidfv, 4) of the manifold N, with associated metrig, that
has the advantage over the Euclidean sga¢e/) that the cortical surface lies on the
surface of the sphere (heferepresents the identity metric for the Euclidean space);
h is the metric induced by the map With this alternative representation of, the

components of its metrik, s at pointz = (z', 2, 2*) are given by:

. 2 9xt O
o = — v OvB’

(5.5)

Now instead of needing to directly compute the harmonic mapM, I) — (N, I),
we instead find the harmonic map: (M,I) — (N,h) ~ B(0,1) subject to the
constraint that the cortical surfaéd/ maps to the spherical boundary of the unit ball,

as illustrated in Fig. 5.2.
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volumetric
harmonic

(N;h)

Figure 5.2: lllustration of our general framework for swdaconstrained volume regis-
tration. We first compute the mapfrom brain manifold(/V, ) to the unit ball to form
manifold (V, h). We then compute a map from brain (M, I) to (N, h). The final
harmonic map fronjM, I') to (N, I) is then given by, = v o 4.

Since M remains in the Euclidean space, its metrid jsso g% (z) is the identity

operator and the harmonic mapping problem (5.4) becomes:

i = arg min /M 23: 23: hag(v(2)) (87;@) (%if?) dpg (5.6)

=1 o,f=1

subject to|lu(z)||> = 1 for z € OM, the surface of\/. Note that this constraint
allows the surface map to flow within the spherical bounddfy.also want to constrain
the maps so that predefined sulcal landmarks are alignedchieva this we impose
the additional constraints tha{c) = u. for ¢ € M, where M, are the set of sulcal
landmark points inV/ andu, are the locations of the homologous landmark&nNin /).
Having obtained: by minimizing the integral in (5.6), the final harmonic mapgpirom

u: (M, I)— (N, I)canthen be computed as= v~! o @ as illustrated in Fig. 5.2.
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5.3.2 Initialization Procedure

Because the minimization problem (5.6) is nonlinear, itngortant to have a good
initial estimate of the map in order to achieve convergence in reasonable time. We
therefore generate an initial estimateof « by computing a map of the second manifold
(M, I) to the unit ball, just as we do for the first manifdld/, I') (Fig. 5.2). Thus our
initialization generates a bijective initial map, whichnist necessarily harmonic. The
procedure is illustrated in Fig. 5.3.

The initialization consists of the following steps. We ficstmpute flat maps to the
unit square for each hemisphere of the two brains with atigsaidci as described in
Chapter 3. A stereographic projection then maps the two $@meres of each brain to
the unit sphere so that the corpus callosum that forms thedsoy of the unit squares
maps to the equator. Using these surface maps as constvagrttsen mapV andM to
the unit ball to provide, respectively, the unit ball matdfeV, #) and an initial estimate
o of the desired map from (M, I) to (N, k). The initial map obtained in this manner
is smooth and bijective. With this initialization, the 3Drhreonic map is computed by

minimizing (5.6) to obtain the final harmonic mapping framto N.

5.3.3 Mapping to the Unit Ball B(0, 1)

In the special case whei/, g) and(N, h) are 3D Euclidean manifolds, thén; = 67,
gij = g" = 53 the Kronecker delta, or identity tensor, for3,i,5 € 1,2, 3, and the

mapping energy simplifies to
E(u) = / |Vul|?dV (5.7)
M

whereV is the usual gradient operator 3D Euclidean space andl/ is the volume

integral [WGYO04]. In order to map the given cortical brainwme M to the unit ball,
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Square maps with Maps to Volumetric

Cortical surfaces aligned sulci unit sphere harmonic map
to unit ball

Figure 5.3: Initialization for harmonic mapping from to N. First we generate flat
square maps of the two brains, one for each hemisphere, vathlgned sulci. The

squares corresponding to each hemispheres are mappedstoandithe disks are pro-
jected onto the unit sphere. We then generate a volumetips finam each of the brains
to the unit ball. Since all these maps are bijective, theltiegumap results in a bijec-

tive point correspondence between the two brains. Howévercorrespondence is not
optimal with respect to the harmonic energy of maps from ttse firain to the second,
but is used as an initialization for minimization of (5.6).

this energy is minimized subject to the constraint that tiréase of M/ maps to the sur-
face of the unit ball using the point-to-point corresporaiedefined by the flat mapping
obtained as described in Chapter 3. This is computed by noah@rtegration over the
voxel lattice using finite differences to approximate thadients in (5.7). The resulting
function is minimized using a preconditioned conjugatedggat method. The process
of mapping to the unit ball is illustrated in Fig. 5.4 where st®w iso-surfaces in brain
coordinates corresponding to different radhij,within the unit ball. Atr = 1 we are

at the outer surface of the brain and see the full corticahsar Asr is reduced we

76



r=0.75

Figure 5.4: lllustration of the deformation induced witspect to the Euclidean coordi-
nates by mapping to the unit ball. Shown are iso-surfacessponding to the Euclidean
coordinates for different radii in the unit ball. Distoni® become increasingly pro-
nounced towards the outer edge of the sphere where the eativeluted cortical sur-
face is mapped to the surface of the ball.

see successively less distortion since the harmonic mapvencentirely by the surface

constraint.

5.3.4 Harmonic Mapping Between the Two Brains

The mapping to the unit ball is applied to both brain volumésand N. The mapping
of the Euclidean coordinates 11 to the unit ball provides the initial estimaig of the
harmonic map:. We then refine this map by minimizing the harmonic energybiB)X
from (M, I) to (N, h), the unit ball representation @&f. Again, the problem is solved
using numerical integration and finite difference opergtor this case accounting for
the metrich according to (5.6) when computing these derivatives. Is thapping, the
locations of the sulci inV/ are constrained using their initial mappings computed
when flattening and matching the cortical surfaces. Othantpmn the surface are
allowed to move freely to minimize the harmonic energy, sabjo the constraint that
all points on the surface map t0i||> = 1, which is achieved by adding a penalty

function to the discretized form of (5.6).
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5.3.5 Implementation

We first describe a numerical method for computation of thérime,;(z) and then
outline the harmonic mapping method.

Computation of Metric

The metrich;;(z),z € N is associated with the unit ball coordinatgs0, 1) given to

N by the mapy = (v',v?,v?) (Fig. 5.2). Itis given byh.s(p) = 35, 22 92 with

a,B € {1,2,3} atz = (2!, 2% 2*). Note that althoughr € N is in the regular grid,
v(z) € B(0,1) is not necessarily so, and hence computation of partiavakdres with
respect tav directly is difficult. In order to comput%%?, first computeg”?} using finite

differences and then use the chain rule identity

% ¥ %
oxt v ox _si (5.8)

o Oxd  Oxd

to solve for%. The metrich;; is computed by substituting these partial derivatives in

the above equation.

Harmonic Mapping

The harmonic mapping procedure can now be summarized asvioll

1. Align the surfaces of both the braing and NV using the procedure described in

Chapter 3.

2. Map the unit squares to unit disks by the transformationy) —

and then project them onto two hemispheres using) —

(= —)
\/x2+y2’ \/x2+y2
(z,y, £/ + y?2).
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. Using this mapping of the cortical surface to the unit splas the boundary con-
dition, generate volumetric harmonic mapsiéfand NV to the unit ballB(0, 1) as

described in Sec. 5.3.3.

. Compute the metrigé associated with the unit balb(0, 1) coordinates ofV as

described above.

. Minimize (5.6) holding the matched sulci fixed, and legtitme cortical surface
OM slide along boundary of the unit ball. This is done by minimggz(5.6) with
the constraint thatu(z)||? = 1 for x € OM anda(c) = 1(c) for c € M, where
M. C M denotes the set of sulcal points dh The partial derivatives in (5.6) are

discretized by finite differences and the minimization is€ldy gradient descent.

. Compute the deformation vector fieldr) — = whereu = v~ o 4 and apply this

to map brain volumé/ to N. Trilinear interpolation is used for this deformation.

5.4 Direct Mapping Approach

The limitation of the approach presented in the previous@eeis that by using the map

to the unit ball, the method is restricted to mapping onlydeesbral volume contained

within the cortical surface. Here we avoid this restricttpncomputing the harmonic

map directly in Euclidean space so that the entire brainmelaan be registered. How-

ever, this approach keeps the surface points fixed duringmvetric harmonic maps

and hence the surface registration is suboptimal with dpethe volumetric energy

[JSTLO7Db][JSTLed]. Since the map between the corticalasad is fixed, there is no

longer a need for the intermediate spherical representafithile this approach places a

more restrictive constraint on the mapping of the surfatpractice we see only a small

difference between the two methods in the mapping of theiartef the cerebrum.
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5.4.1 Mathematical Formulation

The registration problem is formulated in a similar manrethte approach used in
Sec. 5.3. We start by aligning the cortical surfaces, sernoraatically, using sulcal
landmarks.

Given two 3D manifolds)M and NV representing brain volumes, with\/;, dM,
and 0N, ON, representing surfaces corresponding to cortical greyémmiatter and
grey/CSF boundaries, we want to find a map framto N such that (i)0M;, the
grey/white matter surface af/, maps too N, the grey/white matter surface of; (ii)
0Ms,, the grey/CSF surface a@ff, maps taNV,, the grey matter/CSF surface &f, and
(i) the intensities of the images in the interior 81 and N are matched. The sur-
faces,0M;, 0M, andON;, ON,, are assumed to have a spherical topology. We solve the

mapping problem in three steps:

1. Surface matching which computes maps between surface-thie cortical sur-
faces and the grey matter/csf surfaces of the two brain, sutcal alignment

constraints (Chapter 3);

2. extrapolation of the surface map to the entire corticdime. This is done by
computing a harmonic map betweghand N subject to a surface matching con-

straint (Section 5.4.2), and

3. Refinement of the harmonic map on the interiordo&nd /N to improve intensity

alignment of subcortical structures (Section 5.5).

5.4.2 Harmonic Mapping

The surface registration procedure described in Chaptets3up a point to point cor-

respondence between the pairs of surfatks, oM, andoN;, ON,. As noted earlier,
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treating these surfaces as landmarks is not helpful siregeate highly convoluted and
finding a volumetric diffeomorphism consistent with thefaae map is non-trivial. One
approach that can achieve such a diffeomorphism is to camguitarmonic map. A
harmonic map: = (u', u? v?®) from 3D manifold M to 3D manifoldV is defined as

the minimizer of the harmonic energy [Jos02],

Ey(u) = %/ ii (%ﬁ)zdw (5.9)

M -1 a=1

Note that (5.9) is quadratic im* and that the summands are decoupled with respect to
a. Consequently the harmonic energy(u) can be separately minimized with respect
to each component®, « € {1, 2, 3}.

We compute the minimizer df}, (u) using a conjugate gradient method with Jacobi
preconditioner. The mapping of the two surfaces computetthenprevious sections
act as constraints such that/; maps tooN; and9dM, maps todN,. This harmonic
mapping extrapolates the surface mappings to the entitanmlsuch that the surface

alignments are retained.

5.5 Volumetric Intensity Registration

The surface constrained harmonic mapping procedure ofitetanapping approach
in Sec. 5.3 or the direct mapping approach in Sec. 5.4 dest@bove produces a
bijective mapping between the two brain volumes. Howeverses only surface shape
and sulcal labels and does not use the MRI intensity valuesngpute the map. The
result is a large scale deformation that aligns surfacaifeatbut will benefit from an

intensity-based refinement aimed at aligning subcortieatures. In order to do this
refinement and also make the final map inverse consistentsevénear elastic inverse

consistent registration based on Christensen’s apprdaat®9] with the modifications
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Harmonically warped M

M Original to match the surface of N

Harmohically warped N N rigiﬁal

to match the surface of M

Figure 5.5: Schematic of the intensity alignment proced@ace harmonic maps"/
andu” are computed, we refine these with intensity driven warpsand v while
imposing constraints so that the final deformations arerge/eonsistent.

described below to ensure that the entire mapping procabgrithan just this last step,

is inverse consistent.

5.5.1 Formulation

The surface constrained volumetric harmonic mapping pheeedescribed above can
be used to generate two map¥ : M — N andu” : N — M, each harmonic, but
not necessarily inverses of each other. The correspondifayrdation fields for these
maps can be expressedd$(r) = uM(z) — x,2 € M andd) (z) = uN(z) — z,x €

N. Note that both of these deformation fields accurately alfgntwo surfaces and
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corresponding sulci, and are one-to-one. These defornsatice used to initialize the
volumetric inverse consistent intensity registrationgaure that we now describe.

Let fy(x),z € M denote intensity at point € M and fx(z),z € N denote
intensity at pointz € N. The situation can be summarized as follows and is illustrat
in Fig. 5.5): We have harmonic mapd’ : M — N «" : N — M that change the
shapes of domain®/ and/N to match their respective targetsand)/ . In order to align
the intensities, we seek refinement magé : M — M andw” : N — N such that the
mapped intensity valug,; o w o " matchesfy (or equivalentlyf,; o w™ matches
fv o (u™)™), andfy o w® o u™ matchesfy, (or fy o w™ matchesfy, o (u*)~1). For
inverse consistency, we need’ ~ (v o wM o ™)t andw™ ~ (u¥ o w" o uM)1,
Let @M, dN denote the deformation fields correspondingutd, w™ and letdw™ , d
denote the deformation fields foa" o w™ o u™)~1, (uM o w™ o uN)~1,

The inverse consistency similarity cost functioitd}!, d%), can now be defined as

the sum of three terms:

C(dM dN) = CREg(dM dN) + an[M<dM dN)

w ) w w I w w I w

+ BCrec(dM, d) subject tad® (u™ (x)) = 0,2 € OM and

w W

dM (N (x)) =0,z € ON (5.10)
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where the boundary constraints ensure that the corticesimeatigned after registration
and the three constituent terms are defined as follows:

Crec(dy,dy) = || Lyd) || + | Lydy) ||?

Cor(dl, d) = || fur(w + di (2)) — fv(u® ™ (2))[*+
(@ + d2 (2) = Far (W (@)
~ (@) + Varfar () - dB () — fao(u® ™ (2))] P+
| (@) + Vv fv(@) - d (2) = Far(u™ ™ () ]*+
Croo(dy,diy) = || () — &b () |1*+
|5 (z) — 5 ()]

C(dM dN) = CREg(dM dN) + OKCS]M(dM dN)

w ) Yw w ) w w I w

w ) Tw

+ BCroc(d¥, ) subject tad (u™(z)) = 0,2 € M and

dM(uN(x)) =0, € ON (5.11)

w

The first term is the regularizer whete, = aV3, + 3V (V) + v and Ly =
aV3% + BVN(Vy-) + v denote the Cauchy Navier elasticity operators\inand N
respectively. The second term measures the intensity niegtivteen the transforma-
tions in both directions and the third term is measure of atemn from the inverse
consistent condition. This is a quadratic cost function aad be minimized by the
conjugate gradient method. We use a preconditioned cotgggadient method with

Jacobi preconditioner for this purpose.

5.5.2 Implementation

1. First, the harmonic mapg” : M — N andu’ : N — M are computed using the

procedures described in Sec. 5.3.4 or Sec. 5.4.
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Figure 5.6: lllustration of the effects of the two stages aiwnetric matching is shown
by applying the deformations to a regular mesh representiegslice. Since the defor-
mation is in 3D, the third in-paper value is represented bgrcga) Regular mesh rep-
resenting one slice in the subject; (b) the regular meshedhny the harmonic mapping
which matches the subject cortical surface to the templatiécal surface. Note that
deformation is largest near the surface since the harmoajimconstrained only by
the cortical surface; (c) Regular mesh representing ooe slithe harmonically warped
subject; (d) the intensity-based refinement now refines éferchation of the template
to improve the match between subcortical structures. In ¢hse the deformation is
constrained to zero at the boundary and are confined to thedanbf the volume.

2. Theinverses of the magy, : N — M is computed. This is done by interpolating
the correspondence,; : uy,(z) — z from points to the regular voxel grid of using
Matlab’s griddata3 function with linear interpolation. This function implemis the
method based on Delauney triangulation as described in @DHIthough it can also
be computed using the method described in [Chr98]' : M — N is computed
similarly.

3. Setd! = 0 andd’) = 0.
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4. Compute the maps” (y) = y + d> (y),y € N, wM = (uV o w” o ™)~ and
dM(z) = oM (z) — .

5. Compute the difference terfia (z) — fur (v ' (2)).

6. Compute an updated estimate of the deformation fi@d‘rom (5.10) using a
preconditioned conjugate gradient method.

7. Repeat steps 4-6 with/ andV interchanged.

8. Test inverse consistency er@f-¢ for convergence, otherwise go to Step 4.

This final refinement completes the surface-constrainedstragjon procedure.
While there are several steps required to complete thetratyis), each step can be
reduced to either a surface or a volume mapping cast as agyemémimization prob-
lem, possibly with constraints, and can be effectively catad using a preconditioned
conjugate gradient method. The different effects of theriwayic mapping, producing
large scale deformations, and the linear elastic inteftbityen refinement, producing

small scale deformations, are illustrated in Fig. 5.6

5.6 Results and Validation

In order to illustrate the application of our surface coaisted registration procedure
to T1-weighted MR brain images and validate its performamee obtained labeled
brain data from the Internet Brain Segmentation Repos{i&$R) dataset at the Center
for Morphometric Analysis at Massachusetts General Hakpithis consists of T1-
weighted MR images with.5mm slice thickness as well as expert segmentations of
43 individual structures. The cortical masks were obtaaraditheir topology corrected
using the BrainSuite software as described in Chapter 3. cbical surfaces were
then interactively labelled with 23 sulcal curves on eacimigphere using a standard

labeling protocol [THdZ02]. Our registration algorithm was applied by performing
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surface matching, harmonic mapping and volumetric intgmegistration as described
above. Shown in Fig. 5.7 and Fig. 5.9 are three orthogonals/ef a subject before
and after alignment to the template image. Note that befbgmraent the surfaces
of the subject and template are clearly different, whilemfhe harmonic mapping the
deformed subject surface almost exactly matches the mtmgyof that of the template.
However, since at this point we do not take the image intersditto account, the interior
structures do not align well. Following the final intensiigsed alignment procedure the
subcortical structures of the warped subject show impraggdement with those in the
the template. Also shown in Fig. 5.9 and Fig. 5.7 are the apedvided by the IBSR
data set before and after mapping.

Our method for evaluating the quality of our registratiosulés is based on the

following two desirable features:

1. Alignment of the cortical surface and sulcal landmarkse &{pect the sulcal
landmarks to be accurately aligned after registration andhe two surfaces to

coincide.

2. Alignment of subcortical structures. We also expect tnenolaries of subcortical
structures (thalamus, lateral ventricles, corpus cafigsio be well aligned after

registration.

To evaluate performance with respect to 1 and 2 we used a §d¥16f volumes on
which we labeled 23 sulci in each hemisphere. For compavisouse a 5th order poly-
nomial intensity-driven warp computed using the AIR sof@@VGH™98, WGW"98].
We also compare performance with the HAMMER [LSD04, SDOgpathm. HAM-
MER is an automated method for volume registration whichble o achieve improved
alignment of geometric features by basing the alignment romtiribute vector that

includes a set of geometric moment invariants rather thaplgi the voxel intensities.
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Figure 5.7: Examples of direct mapping approach. (a) Oaignbject volume; (b) orig-
inal template; (c) registration of subject to template gsnrface constrained harmonic
mapping, note that the surface matches that of the temgthtetensity-based refine-
ment of the harmonic map of subject to template to complefistration procedure
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We note that since our approach uses explicitly labelled st can expect better per-
formance than either AIR or HAMMER in terms of the alignmeittivese features.
However, AIR and HAMMER provide a basis for comparison froome of the most
widely used and best performing algorithms for volumeteigistration.

We measured the mean squared distance between pairs ofdgousllandmarks
corresponding to uniform samples along each of the 23 ldlmitci. We repeated this
procedure for each of the 30 possible pairwise registratadriwo from six brains and
computed the average mean squared distance over all edgist. We found that the
mean squared misalignment between sulcal landmarkslwas:m for HAMMER,
11mm for AIR and 2.4mm for our cortically constrained method. The significantly
lower error for our approach is unsurprising since matctahgulci is imposed as a
constraint. The reason that the error is not zero is thatdhstcaint is imposed using a
penalty function rather than strictly using Lagrange nplikirs.

To evaluate performance in terms of subcortical structwesused the manually
labeled regions in the IBSR data set. To evaluate accuracgomputed the Dice coef-
ficients between the template and warped subject for eadosidal structure, where
the structure names and boundaries were taken from the IB&Rake. The Dice coef-

ficient measures overlap between two sets representingsgi and.S,, and is defined

2|51NSa|

AS15+4]52]

where| - | denotes size of the set [ZDMP94]. Values range from zeroifor d
joint sets to unity for identical sets. A comparison of the®toefficients for some
major subcortical organs is shown in Fig. 5.7, where we shae Doefficients for our

method before and after application of the intensity-bad@mhment step. This com-
parison shows similar results for all three methods, withgaoducing superior results
in some subcortical structures. For example, HAMMER predusuperior results in

thalamus, while our proposed method produced superiottsaathippocampus. Thus

the geometric invariants in HAMMER seem to improve perfonce relative to our
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intensity based alignment of deeper subcortical strustusdile our use of a cortical

constraint leads to superior performance with respectltabkalignment and structures
that are more superficial with respect to the cerebral cpaiesh as the hippocampus.
This is a preliminary validation and larger scale validati® needed on a larger popula-

tion with a larger range of brain structures.

Template

Template

(a) Regular Grid Warped (b) Regular Grid Warped
by Harmonic Map by Intensity-driven Deformation

Figure 5.8: Volumetric registration using direct mappipgeoach: (a) lllustration of the
extrapolation of the surface mapping to the 3D volume by lmaimmapping. The pairs
of surfaces are shown in red and green. The deformation §elepresented by placing
a regular grid in the central coronal slice of the brain anfdiaeing it according to the
harmonic map. The projection of this deformation onto a 2&8nplis shown with the
in-plane value encoded according to the adjacent color(baiThe result of harmonic
mapping and linear elastic refinement of the subject brathéaemplate brain. Note
that the inner and outer cortical surfaces, by constraieteaactly matched. The linear
elastic refinement produces an approximate match betwdmorical structures. The
deformation field here shows the result of cortically coaisied intensity-driven refine-
ment. Note that the deformations are zero at the boundarpamekro in the vicinity of
the ventricles, thalamus and other subcortical structures
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. b) Templ (c) Subject Warped (d) Subject Warped by
(a) Subject (b) Template by Harmonic Map Harmonic Map and
Intensity Matching

Figure 5.9: Examples of surface constrained volumetricsteggion. (a) Original sub-
ject volume; (b) template; (c) registration of subject tlmpdate using surface con-
strained harmonic mapping, note that the cortical surfageehes that of the template;
(d) intensity-based refinement of the harmonic map of stilbpetemplate

5.7 Conclusion

We have presented a framework for coregistration of bralanae data using harmonic
maps. Through the use of an intermediate spherical map, evalde to constrain the
surfaces of the two brain volumes to align while enforcingnpmatching only at a set
of hand labeled sulcal curves. Using harmonic maps we aeetaldompute large scale

deformations between brain volumes.
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We have also described, as an initialization procedure wvamethod for cortical
surface parameterization and sulcal alignment in whichtitee problems are solved
in a single step using a finite element method. This methodth@agproperties that
it is inverse consistent between the two brains and can beutad directly from a
tessellated representation of the surface, rather thanrireg|resampling using a regular
grid with respect to the induced parameterization.

The examples shown here demonstrate the cortical matchipggies and the abil-
ity to also align subcortical structures. One of the limdas of this evaluation was
that cortical grey matter was not included in the registragince the cortical surfaces
were generated by BrainSuite [SLOO], which selects therigney/white boundary as
the cortical surface. However, this is a limitation of thegmocessing step rather than
the method itself, and the process can be applied to thedtdlbral volume provided
that a genus-zero brain volume and sulcal labels are subphesecond limitation is
that the cerebellum and brainstem are not included in thiysisasince the volume of
interest that is mapped is restricted to the cerebrum, bexibgl the outer cortical sheet.
We can address this issue in practice by modifying the finahisity-based matching
step by first adding the brainstem and cerebellum back todteboum. This would also
require extrapolation of the deformation field from the hamie map outwards to these
structures as an initialization of the intensity based wadpernatively, the cerebellum
could also be explicitly modelled using a surface basedagmtr (see, e.g. Hurdal et al.
[HSB*00]), and its surface and enclosed volume could be treatadiimilar fashion to

the cerebrum.
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Table 5.1: Comparison of Dice coefficients

Subcortical AIR | Harmonic| HAMMER Harmonic
Structure with intensity
Left Thalamus 0.6588| 0.5294 0.7303 0.5856
Left Caudate 0.4426| 0.4336 0.5688 0.5716
Left Putamen 0.4079| 0.3497 0.4905 0.5092
Left Hippocampus | 0.4676| 0.3069 0.3916 0.3930
Right Thalamus 0.6326/ 0.5018 0.7495 0.6230
Right Caudate 0.3671| 0.3572 0.5098 0.5116
Right Putamen 0.3096| 0.2358 0.4111 0.4679
Right Hippocampus 0.5391| 0.3455 0.1989 0.4342
Avg. Dice coeff.
for all structures 0.3021| 0.3821 0.3621 0.4019
Std. Dev. of
Dice coeff. 0.1937| 0.2547 0.2390 0.2671
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Chapter 6

Conclusions and Future Work

We have presented a set of geometric methods constitutiagreework for registration
and analysis of brain images. Various tools and their iot@nections are depicted in
Fig. 6. The sulcal tracing tool can be used to delineate afsefld on the cortex. These
sulcal sets are then used as input to surface-based régissraresented in Chapter 3.
We also presented a method to optimize the set of sulcal larikdnm order to minimize
the manual effort (Sec. 3.3). We presented two surfacetraja techniques in that
chapter: (1) covariant thin-plate splines (Sec. 3.1) (2VMHiased Surface registration
(Sec. 3.2). We concluded that the second approach leadster fsomputation and
accurate registration. This surface registration can bd t@ integrating surface-based
functional or anatomical data from individual subjects toommon atlas. Intersubject
analysis of such data can be carried out in the geometry odtthe surface. We pre-
sented parameterization-based numerical methods feomotand anisotropic smooth-
ing filters in the surface geometry (Chapter 4). Smoothimgbmperformed on the atlas
surface, or on the original subject surfaces. When the dagoint-set, we presented a
method for quantifying its mean and variance with respesutéace geometry. Again,
this analysis can be carried out for a single subject or fosragistered dataset to the
atlas surface. The surface registration method was extetodeolumetric registration
using harmonic maps (Chapter 5). We presented two apprea¢hendirect approach
using intermediate representation (Sec. 5.3) and (2) Direxpping approach (Sec.
5.4). While the direct mapping approach is faster, it doegggnarantee diffeomorphic

mappings. On the other hand the indirect approach is signili¢ slower, but results
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in diffeomorphic mappings. As a result of this method, we @édull 3D volumetric
registration of the brain in which cortical surfaces as vaslithe subcortical structures
are aligned.

There are a number of directions in which this work can beredgd. In the follow-

ing sections, we present a few possible extensions as wafiEgations.

Isofropic/&nisotropic Filtering

Rf

Data Processmg

Parameterization

TPS alignment E (NI ), \
[ \‘-g;: =
/ P £

(W, k)

Intensity Regisirat] .
Indirect Harmonic Mapping TNy Regisiration '

. . Simultaneous Parameterization
Surface Registration and alignment : .
Volume Registration

Figure 6.1: Geometric framework for registration and asigly
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6.1 Geometric Features and Manual Landmarks based
Surface Registration

Our method for cortical surface registration is a manuaitaark based method. Alter-
natively, there are a number of automatic surface registrahethods which perform
such an alignment based on geometric features such as unavahape indices, etc.
[TPO5, FSTD98, HSB00]. The advantage of automatic methods is that they do not
involve manual input and therefore they are ideally suiteddrge-scale studies. How-
ever, accurate alignment of the brain anatomy involvesdritgvel knowledge which is
difficult to incorporate in such methods. These methods stmvwgistent misalignment
of certain areas, such as Broch’s area. Sulcal folds aretgossemisregistered when
there are branches. Manual landmark based methods overtt@se difficulties by
using user input in the form of expert labeled sulci. Moreptreese methods are ideally
suited for abnormal anatomy. Also they could be useful fafggeing more accurate
registration in a region of interest by marking more landksan this region. The dis-
advantage of manual techniques is that a considerable d@robtmaining is required.
Also manual effort is needed in order to identify the sulaaives. In order to address
these issues, and take advantage of both types of methoadgmule like to formulate a
semi-automatic method where only some of the sulcal cuneelsbeled manually when
automatic geometric feature based methods do not give aataggistration. This can
lead to minimization of the manual tracing effort withoutsfcing accuracy and con-

trol in the surface registration process.
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6.2 Registration of DTl images

Diffusion Tensor Imaging (DTI) produces in vivo images weied with characteristics
of water molecule diffusion inside a tissue [LAG2]. In each voxel, it produces3ax 3
diffusion tensor which indicates the principle directiafsvater diffusion. This imag-
ing modality is particularly useful to infer the white-mattconnectivity of the brain
[BJWT03]. The tensor data produced by the DTI images is used tnstemt fiber
tracts in the white matter (tractography). Recently, maheaaced models of the diffu-
sion process have been proposed that aim to overcome thenessas of the diffusion
tensor model. Amongst others, these include g-space igdbiviN~08] and general-
ized diffusion tensor imaging [ OM].

In order to perform intersubject comparison and analysi¥idfdata, accurate align-
ment of white matter is important. Particularly, since thkeal curves are closely related
to the function of the brain, any such comparison needs ateatignment of the sulci.
The volumetric registration technique presented in Chdptaakes such an alignment
possible. We plan to use our volumetric registration teghes for intersubject compar-
isons of DTI data and fiber tracks. We will perform intersujalignment of brains
using T1 weighted MR data. The deformation field obtained thay can then be
applied to the diffusion tensors to reorient them apprapelygd APBGO1]. Their vari-
ance can be quantified across subjects using the Lie grougtwte of the diffusion
tensors [LRDO06]. This kind of analysis can help identify Barities and differences in

white matter connectivity across a population of subjects.
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