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Abstract

Registration and analysis of neuro-imaging data presents achallenging problem due to

the complex folding patterns in the human brain. Specifically, the cortical surface of the

human brain can be modeled as a highly convoluted 2D surface.Since it is non-flat, the

non-Euclidean geometry of the cortex needs to be accounted for while performing reg-

istration and subsequent signal processing of anatomical and functional signals on the

cortex. Techniques from differential geometry offer a powerful set of tools to deal with

the convoluted nature of the cortex. We present a method based on p-harmonic mapping

for performing cortical surface parameterization. A 2D coordinate system induced by

the flat mapping is then used to compute the surface metric anddiscretize derivatives

in the surface geometry. For performing inter-subject cortical registration based on sul-

cal landmarks, we generalize thin-plate splines to non-flatsurfaces by using covariant

derivatives. We also present an FEM based method for simultaneous parameterization

and registration of sulcal landmarks based on elastic energy minimization. The man-

ual effort required for selecting the sulcal landmarks can be minimized if we choose

an optimal set of such landmarks. We present a method for optimally selecting a sub-

set of any size from a set of candidate sulcal landmarks and also predict the associated

registration error for that subset using conditional distributions. Surface signals from

individual brains can be brought to a common atlas surface byusing these surface based

registration techniques.

xii



Isotropic and anisotropic diffusion filtering methods are formulated for processing

of the cortical data. This is performed by using parameterization-based methods which

use covariant diffusion operators in the flat space. When thesurface data is a point-set

on the cortex, we propose a method to quantify its mean and variance with respect to

the surface geometry.

The registration techniques presented for surface alignment are extended to volumes

to perform full surface and volume registration. This is done by using volumetric har-

monic mappings that extend the surface point correspondence to the cortical brain vol-

ume. Finally, the volumetric registration is refined by using inverse-consistent linear

elastic intensity registration. This set of methods presents a unified framework for reg-

istration and analysis of brain signals for inter-subject neuroanatomical studies.

xiii



Chapter 1

Introduction

Brain is home to our mind and personality. It houses our cherished memories and future

hopes. It orchestrates the symphony of consciousness that gives us purpose and passion,

motion and emotion. Understanding the workings of human mind can only be achieved

if we understand the structure and function of the human brain.

The outer part of the brain comprises of grey matter which is internally supported

by white matter. The two hemispheres of the brain are separated by the central fissure

and connect to each other at the corpus callosum. Cerebellumis found at the posterior-

inferior part of the brain. Cerebral cortex or simply cortexis the outermost layer of the

cerebrum and is the place where most of the neuronal activations take place. The human

cerebral cortex is 2-4 mm thick and plays a central role in many complex brain functions

including memory, attention, perceptual awareness and language. Due to the relatively

small thickness of the cortex, it can be modeled as a 2D highlyconvoluted surface

with more than two third buried in the grooves, calledsulci. The sulcal folding pattern

varies across individuals, however, some of the major sulciare seen across individuals

[OKA90]. It is known that the sulci are related to the function of the brain and therefore

inter-subject alignment of the cortex should be carried outwith the constraint that these

sulci are aligned.

Medical imaging modalities acquire various anatomical (CT, MR, etc.) and func-

tional (PET, EEG, MEG, etc.) neuro-imaging data. Intersubject analysis of this data

allows us to study group differences and similarities. The anatomical variability across

individuals needs to be normalized before such a study can becarried out. Medical

1



Figure 1.1: The cortical surface of the human brain depictedon a MR data (top row)
and rendered as a surface (bottom row).

image registration performs this normalization by aligning the coordinate systems of

the various medical images to register them to a common template or atlas. One of the

most challenging problems in image registration is the alignment of human brains.

Registration of surface models of the cerebral cortex has important applications in

inter-subject studies of neuroanatomical data for mappingand analyzing progression of

disorders such as Alzheimer’s disease [TMV+01] and studying growth patterns in devel-

oping human brains [TMT00, GGL+04]. Investigators have studied several anatomical

and functional aspects of the human brain such as genetic influences [THdZ+02] and

the influence of medication and drugs abuse on the structure and function of the brain

[NB97, Cha01]. Inter-subject analysis, or intra-subject analysis over a period of time of

such data, present difficult problems due to the inter-subject variability and convoluted

geometry of the cortical surface. Since most neural and metabolic activity takes place

in the cortex, and because the thickness of the cortex is small relative to the resolution

2



of most functional imaging techniques, it is plausible to model the cortex as a surface

rather than as a volume.

Since the cortex is non-flat, the non-euclidean geometry of the cortex needs to be

accounted for while doing registration and subsequent signal processing of anatomical

and functional signals on the cortex. In this report we propose a surface parameterization

method which computes a 2D coordinate system on the cortex. We usep-harmonic map-

ping of the cortex toR2 to assign 2D coordinates to the surface points. This coordinate

system is then used to compute the associated surface metricfor the assigned coordi-

nates which are then used to discretize derivatives in the surface geometry. In order to

bring several brain surfaces in a common template space, we present two surface reg-

istration techniques to find a point to point correspondencebetween the two surfaces.

The first technique involvesp-harmonic mapping of the cortex to a plane and then repa-

rameterization with thin-plate bending energy as a regularizing function. Alternatively,

the second technique incorporates sulcal landmark matching in the parameterization

method itself. This is done by using a more general elastic model for parameteriza-

tion. The point correspondence set by surface registrationcan be used to bring surface

functional signals such as MEG dipoles or neuronal activations, fMRI and anatomical

signals such as cortical thickness from individual brains to a common atlas surface.

Isotropic and anisotropic diffusion filtering methods are formulated for different kinds

of smoothing of such cortical data. When the surface data is apoint-set on the cor-

tex, we propose a method to quantify its mean and variance with respect to the surface

geometry. The registration technique presented for surface alignment is then extended

to volumes to perform full surface and volume registration using harmonic mappings.

Inverse-consistent elastic intensity registration is then used to further improve the volu-

metric alignment. Various validation techniques were usedto assess the performance of

3



the above tools and to compare them with existing methods as presented in subsequent

chapters.
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Chapter 2

Cortical Surface Parameterization

The surface area of the cerebral cortex is approximately1570 cm2 [HSB+00]. 60-70% of

the surface area is buried in the folds and creases (sulci). There is considerable variabil-

ity and individual differences in the size, location and extent of the sulci and gyri across

human subjects. Bringing multiple brain surfaces into a common coordinate system is

helpful in studying variability of these sulcal patterns across subjects, for integrating and

averaging functional data across subjects, and in studyingpatterns in cortical develop-

ment over time. Since the cortex can be modeled as a convoluted sheet with the topology

of a sphere, it is natural to parameterize it using sphericalcoordinates[FSTD98]. Eck

et al.[EDD+95] and Kanai et al.[KSK98b] model a triangulated surface asa configura-

tion of springs with one spring placed along each edge of eachtriangle. The resulting

energy functional, theharmonic energy,is shown to be a quadratic form and is mini-

mized using gradient descent to transform the surface into aplanar disk. Desbrun et

al.[DMA02] propose a parameterization technique which uses thecot of angles in the

given triangulation. The resulting energy functional (Tuette energy) is argued to be a

measure of angle distortion and a new parameterization is obtained by minimizing it.

Haker et al.[AHTK99] presented a method for conformally mapping the cortical surface

to a sphere. Their method uses the Laplace-Beltrami operator and the fact that for a con-

formal map, the Laplace-Beltrami of the parameterization function is zero everywhere

on the surface. Though these methods ensure a perfectly conformal map, the stereo-

graphic projections involved can introduce a large amount of length and area distortion.
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Figure 2.1: Sulcal Tracing Tools

Circle packing is introduced as a parameterization method in [HSB+00]. Analytic sur-

faces can be approximated by circle packing, but for generalsurfaces, the surface pack-

ing method considers only the connectivity and not geometry[WGH+05]. Fischl et al.

used mechanical models to simulate an inflation of the cortical surface to produce an

inflated surface and a spherical map [FSTD98].

We proposed a parameterization technique for the cortical surface based onp-

harmonic energyminimization [JLTS04]. Angle and area distortion metrics were com-

puted to evaluate the performance of this flattening procedure.

2.1 Parameterization and the Coordinate System

In this section, we describe our method to parameterize a triangulated surface mesh. In

the context of our work, this mesh will typically represent the surface of the cerebral

cortex; thus we will refer to this mesh model as the cortical surface. We use ourp-

harmonic mapping technique [JLTS04] for parameterization. The parameterization can

be viewed as an assignment of complex numbers or vectors inR
2 to each vertex in the

6



triangulated surface and the assignment is performed in such a way that the resulting

p-harmonic energy is minimized. LetS be a surface with boundary. We defineφ :

S → R
2 to be a function such that thep-harmonic energy given byEs =

∫
‖∇φ‖p dS

is minimized. We impose constraints on this minimization byfixing the location of the

inter-hemispheric fissure so that it is mapped to a unit square. We rewrite the energy

functional as the sum of two energy functionalsφ = [α, β]′, one for each coordinate,

such that the corresponding arguments are scalars,

Es =

∫

‖∇φ‖p dS, p ∈ (1,∞)

This minimization can be performed by minimizations over two real-valued functions.

Discretization is done using finite elements. We make the assumption that both of them

are piecewise linear. Letα be a piecewise linear real-valued scalar function defined over

the surface, andαi is α restricted to trianglei. Sinceαi is linear on theith triangle we

can write,

αi(x, y) = ai0 + ai1x+ ai2y (2.1)

The three coefficients can be determined if values of the function α are known at the

three vertices of the triangle. These equations can be written in matrix form as








1 xi1 yi1

1 xi2 yi2

1 xi3 yi3








︸ ︷︷ ︸

Di








ai0

ai1

ai2








=








αi(x1, y1)

αi(x2, y2)

αi(x3, y3)








(2.2)
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The coefficientsai0, a
i
1 andai2 can be obtained by inverting the3× 3 matrix. From (2.1)

and by inverting the matrix in (2.2), we obtain

−−→
∇αi =




ai1

ai2





=
1

|Di|




yi2 − yi1 yi3 − yi1 yi1 − yi2

xi1 − xi2 xi1 − xi3 xi2 − xi1





︸ ︷︷ ︸

Bi








αi(x1, y1)

αi(x2, y2)

αi(x3, y3)








︸ ︷︷ ︸

Γi

−−→
∇αi =

1

2Ai
BiΓi

We use the fact that for any triangle,|Di| = 2Ai whereAi is the area of the triangle.

Sinceαi is piecewise linear, its gradient is constant over each trianglei, so that:

∫

‖∇α‖p dS =
∑

i

‖∇α‖pAi

where the sum is over all triangles. Therefore,

arg min
α

∫

‖∇α‖p dS = arg min
Γ

∑

i

∥
∥M iΓi

∥
∥
p

= arg min
Γ

‖MΓ‖p

whereM i = 1
(Ai)(p−1)/pB

i, M is composed using coefficients ofBi andΓ is a vector

with coefficientsα for each vertex. The vectorMΓ can be split into two parts: free

vertices and constrained vertices. Values ofα at constrained vertices are known.

arg min
α

∫

‖∇α‖p dS = arg min
Γf

‖MfΓf +McΓc‖p
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Figure 2.2: The figure shows the cortical surface and its map to a square. The corpus
callosum is constrained to lie on the boundary of the square.

whereMf , Γf andMc,Γc are free and constrained parts of theM andΓ matrices.

This results in an unconstrained minimization problem. Thefact that matrixMf

is sparse allows us to use the computationally efficient conjugate gradient method for

obtaining the solution. The Jacobi preconditioner reducesthe execution time consider-

ably. The resulting maps are known to be bijections because the target domain is convex

and flat [ES64, Ham75, FR02]. Using this scheme, we map each cortical hemisphere

onto a unit square by constraining the inter-hemispheric fissure to lie on the boundary

of the square.

2.1.1 Validation ofp-harmonic mappings

In this section we present our method of evaluating the performance of thep-harmonic

mappings described in section 2.1. We start by extracting a high-resolution trian-

gulated cerebral cortical surface model for each brain. Each brain surface is rep-

resented by approximately200, 000 triangles. The BrainSuite software we use for

9



(a) p = 2 (b) p = 4

(c) p = 6 (d) p = 8

Figure 2.3: Thep-harmonic maps of the left hemisphere of an individual cortex.

extraction also labels and separates the two cortical hemispheres and delineates the

closed contour representing the inter-hemispheric fissurethat separates the two hemi-

spheres. We then parameterize the contour according its length and constrain it to

lie on the boundary of the unit square. The mapping describedin section 2.1 is then

computed by minimizing thep-harmonic functional by conjugate gradient with Jacobi

preconditioner [Smi85]. The minimization is very fast compared to other methods

[AHTK99, FSTD98, HSB+00] and takes on the order of 20 seconds on 3GHz Intel Pen-

tium 4 processor. Performing this operation for both hemispheres produces a bijective

mapping of the cortical surface to a pair of unit squares.
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In order to explore and evaluate the performance of such mappings and their depen-

dence on the value ofp chosen, we computed these mappings forp = 2, 4, 6, 8 and used

the following metricsNangle andNarea as measures of angle and area distortions.

Nangle =
√

|g11g12 + g21g22| /g (2.3)

Narea = ‖g − gavg‖ (2.4)

Nangle can be interpreted as a normalized inner product of the two columns of the

metric tensor. It is zero if the mapping preserves angles (conformal).Nangle is deviation

of the differential areadS from its mean value. We evaluate these metrics at all the

vertices and then plot their histograms for different values of p. The Fig. 2.4 shows

p-harmonic maps of the cortical surfaces for the values ofp = 2, 4, 6 and8. It can be

seen from Fig. 2.4(a) that maps forp = 4, 6, 8 have much less area distortion than the

map forp = 2. However there was no consistent trend for the values ofp. Also it can

be seen from Fig. 2.4(b) that the angle distortions are comparable for all values ofp.

From a computational point of view, though the use of covariant derivatives can make

the subsequent processing independent of the value ofp, we choosep = 4 because it

has less area distortion thanp = 2 case and hence the numerical error introduced during

the resampling of the cortical surface on a regular grid is less.
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Figure 2.4: The figure shows smoothed histograms for angle distortion and area distor-
tion respectively. In the angle distortion plot, angle distortion increases with the value
of p. In the area distortion plot, the distortions forp=4,6,8 are less than that forp=2
and most of the points have small angle distortion only. However there is no observable
trend for the value ofp in either case.
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Chapter 3

Cortical Surface Registration

Various surface-based techniques have been developed for inter-subject registration of

two cortical models. These techniques can be used to register subject surfaces to a com-

mon atlas which in turn registers cortical data representing structure and function of

the human brain to the atlas. There are two main categories ofmethods that align the

cortex from a subject to an atlas: manual landmark based methods [JSTL07c] and auto-

matic methods based on alignment of geometric features [WCT05] or surface indices

[TRP05]. The main advantage of automatic methods is that there is no manual input

required for performing the alignment. However they may be less reliable in the sense

that they do not incorporate higher level knowledge of sulcal anatomy. While they have

been successfully applied in several settings, their accuracy may not be satisfactory for

expert neuroanatomists, particularly in the presence of the wide variation that may be

present in neuroanatomy or the image acquisition quality. Data from subjects exhibiting

abnormal cortical shape, such as individuals with Alzheimers disease, may be handled

better by manual delineation. It is likely that landmarks defined by experts, who have

been trained to make consistent decisions when faced with ambiguities that frequently

arise in the analysis of cortical geometry, will produce improved registration results. In

some cases a particular area, such as the visual cortex, may be of interest and constraints

specific to that area may provide more appropriate registration.

One class of techniques involves flattening the two corticalsurfaces to a plane

[HSB+00] or to a sphere [FSTD98] using mechanical models or variational methods and

then analyzing the data in the common flattened space. Other surface based techniques
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work in the surface geometry itself rather than a plane or a sphere and choose to account

for the surface metric in the inter subject registration [TWMT00, THS+04, LTPH04,

MST04, WGH+05]. The advantage of such techniques is that they make the registra-

tion results independent of the intermediate flat space resulting in a more consistently

accurate registration throughout the cortex. In this chapter we present a technique that

is a generalization of the popular thin-plate spline methods fromRn to a non-Euclidean

surface, as well as a Finite Element-based technique.

We presented ourp-harmonic mapping method in Chapter 2, which maps each indi-

vidual cortical hemisphere to the unit square. Ourp-harmonic method results in a very

fast parameterization of high-resolution cortical surfaces and always results in a bijective

map. We use the resulting square maps of the cortical hemispheres to assign a coordinate

system to the cortex. We then use these coordinates to compute the metric tensor and

Christoffel symbols of the mapping. In order to register onebrain to another, we warp

coordinates of one brain with respect to another using sulcal landmarks such that the

bending energy is minimized within the true geometry of the surface. This is achieved

by solving the resulting variational problem using covariant derivatives and thus mak-

ing the warping results independent of the coordinate system. Our warping approach is

derived from the one presented in [TWMT00]. However, we use thin plate splines as

a regularizing function. This is because the availability of p-harmonic maps allows us

to have an approximate orthogonal coordinate system on the cortical surface and there-

fore we are able to decompose the deformation into two orthogonal components. Also

availability of a smooth parameterization from 3D space to unit square means that the

deformations are low dimensional in the parameter space too. Therefore we use DCT

basis functions to represent the warping field. These techniques result in a considerable

speed up and stability in the registrations. As an improvement over this method, we also
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present a simultaneous parameterization and alignment technique as discussed further

in Sec. 3.2. We also present evaluations of these registration techniques.

Figure 3.1: (a) A cortical surface with hand labeled sulci; (b) A flat map of the two cor-
tical surface. The arrows show connectivity at points alongthe boundary of the square.
Due to the spherical topology of the cortical surface, we canassign to it a coordinate
system that allows us to compute partial derivatives acrossthe interhemispheric fissure.
(c) Chessboard texture mapped to the surface using the square maps.
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3.1 Thin Plate Splines Registration in the Intrinsic

Geometry of the Cortical Surface

3.1.1 Mathematical Formulation

The parameterization method presented in Chapter 2 gives usan initial approximate

alignment of the labeled sulcal landmarks as shown in Fig. 3.3. It can be seen that the

alignment is not perfect, however the deformation requiredto align the sulci perfectly

is relatively small compared to the brain size. Therefore weuse linear models from

continuum mechanics which approximate small deformationsto regularize the required

deformation field. Here we discuss the widely used thin-plate splines, but we generalize

them to the non-Euclidean geometry of the cortical surface.Having parameterized each

of the cortical surfaces, we now align coordinate systems between one surface, which

we denote the “atlas”, and another which we call the “subject”. The alignment uses a

set of manually labeled sulci, sampled uniformly along their lengths, as a set of point

constraints [TT96b]. To compute a smooth warping fieldφ from one coordinate sys-

tem to the other we use the thin plate spline bending energy onthe subject surface as a

regularizing function. Thep-harmonic maps serve two purposes. First, they set up an

initial alignment of the features across multiple subjects. Second, they are used as our

computational space to align the cortices. However, the thin-plate spline based align-

ment uses covariant derivatives, and is therefore invariant with respect to the specific

parameterization [TMV+01].

Thin plate biharmonic splines [Boo89] are a very popular method for landmark-

based registration of 2D or 3D images. These splines are solutions of the biharmonic

equation
∂4φ

∂u4
+ 2

∂4φ

∂u2∂v2
+
∂4φ

∂v4
= 0 (3.1)
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or equivalently, they solve a variational problem that minimizes the bending energyEb

of a thin metal plate:

Eb =

∫ (
∂2φ

∂x2

)2

+ 2

(
∂2φ

∂x∂y

)2

+

(
∂2φ

∂y2

)2

dxdy (3.2)

We minimize this bending energy subject to the point landmark constraints, imple-

mented here using a quadratic penalty function approach. Since we wish to minimize the

bending energy in the surface, we must account for the intrinsic geometry of the surface

when computing the integral. While we use the parameter space for doing the calcu-

lations required for evaluation of the bending energy, we account for the effect of the

parameterization while calculating the integral. This is achieved using covariant deriva-

tives which results in the property that given a set of homologous landmarks in some

initial alignment, the deformation is independent of the parameterization used for the

computation of the TPS deformation field. The use of covariant derivatives eliminates

the effect of the initial parameterization on the resultingwarping field.

Let x denote the 3-D position vector of a point on the cortical surface. Letu1, u2

denote the coordinates in the parameter space. The metric tensor coefficients required

in the computation are given by:

g11 =

∥
∥
∥
∥

∂x

∂u1

∥
∥
∥
∥

2

, (3.3)

g22 =

∥
∥
∥
∥

∂x

∂u2

∥
∥
∥
∥

2

, (3.4)

g12 = g21 =

〈
∂x

∂u1
,
∂x

∂u2

〉

, (3.5)

g =
√

g11g22 − (g12)2 (3.6)

We note that the eigenfunctions of the biharmonic operator on the surfaces are dependent

on the surface itself. Therefore we do not expand the deformations in terms of a common
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eigenfunction basis as in [Boo89]. Instead we take a more direct approach and minimize

the integral numerically. The bending energy is minimized in the intrinsic geometry after

replacing the first and second partial derivatives in (3.2) by the corresponding covariant

derivatives. Integration over the surface can be carried out by integration in the param-

eter space while compensating with the surface metricg. The differential formds2 for

the integration in the surfaceS is related to its counterpart in the parameter space(u, v)

by ds2 = gdudv. LetS be the set of all vertices, and letSc denote the set of constrained

vertices (landmarks). Letd1
j andd2

j denote theu andv displacements required at the

jth landmark,1 ≤ j ≤ N , to take it to its location in the atlas space. Cartesian ten-

sors suffice for flows in 2D or 3D Euclidean spaces. However thecortical surface is

a two dimensional non-Euclidean space and from the outset demands a full tensorial

treatment. We do this by replacing the usual partial derivatives by covariant derivatives

as done in continuum mechanics on manifolds [Kre99]. Although we want the deforma-

tion field with respect to the cortical surface to be independent of the specific choice of

parameterization, the deformation field expressed in the 2Dparameter space invariably

does depend on the initial parameterization. This propertyis desirable since it ensures

the covariance properties of the deformation vector field. Small deformations expressed

in the parameter space can be modeled as contravariant vectors [TMT00, Kre99] since,

with respect to two different parameterizationsu andu, the respective values of the

deformationsφ andφ are related byφ
β

= φj ∂u
β

∂uα . In order to preserve their tensorial

nature, we need to use covariant derivatives instead of the usual partial derivatives. The

covariant derivativeφβ,σ of a contravariant tensorφβ is given by:

φβ,σ =
∂φβ

∂uσ
+ φκΓ β

κσ whereα, β, κ ∈ {1, 2} (3.7)
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whereΓ β
κσ denote the Christoffel symbols of the second kind [Kre99] given by:

Γ α
αα =

1

2g

[

gββ
∂gαα
∂uα

+ g12

(
∂gαα
∂uβ

− 2
∂g12

∂uα

)]

(3.8)

Γ β
αα =

1

2g

[

gαα

(

2
∂g12

∂uα
− ∂gαα

∂uβ

)

− g12
∂gαα
∂uα

]

(3.9)

Γ β
αβ = Γ β

βα =
1

2g

[

gαα
∂gββ
∂uα

− g12
∂gαα
∂uβ

]

(3.10)

whereα, β ∈ {1, 2}. The first covariant derivative of a contravariant tensorφζ is a

mixed tensorφζ,β. Covariant derivativesφζ,βσ of such a tensor are given by:

φζ,βσ =
∂φζ,β
∂uσ

− φζ,µΓ
µ

βσ + φ ν
β Γ ζ

νσ

whereσ, β, ζ, µ, κ ∈ {1, 2} (3.11)

The warping field(φ1, φ2) with respect to the parameter space(u, v) that minimizes

bending energy in the surface while matching the constraints is then given by:

φ1 = arg min
ψ1

∫

P

(

(ψ1
,11)

2 + (
√

2ψ1
,12)

2 + (ψ1
,22)

2
)

gdudv,

with φ1(uj, vj) = d1
j , ∀j ∈ Sc (3.12)

φ2 = arg min
ψ2

∫

P

(

(ψ2
,11)

2 + (
√

2ψ2
,12)

2 + (ψ2
,22)

2
)

gdudv,

with φ2(uj, vj) = d2
j , ∀j ∈ Sc (3.13)

The warping field(φ1, φ2) at the interhemispheric fissure is not forced to be zero as

described in the next section.
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3.1.2 Discretization Algorithm

In order to solve (3.12) and (3.13) for the thin-plate splineregistration, we need to

discretize the integral in that equation. We use thep-harmonic square maps of the trian-

gulated tessellation of the cortical surface for defining a coordinate system. The square

maps for each hemisphere are then resampled on a regular 256x256 grid. Because the

interhemispheric fissure is fixed on the boundary of the square for each hemisphere, one

can visualize the(u, v) parameter space as two squares placed on each other and con-

nected at the boundaries of the squares. The main advantage of this space is the ease

of composing and solving various partial differential equations in discrete form since

this allows us to calculate partial derivatives across the two hemispheres and to include

explicitly the connectivity of the two cortical hemispheres in subsequent analysis. This

boundless space is then used for discretizing the partial derivatives with respect tou and

v spatial coordinates in the solution of the differential equations. For instance, assume

that f : M → R is a scalar-valued function defined on the cortical surfaceM . We

arrange its discretized representation at each vertex in the triangulation of the surface in

a vector~f = fi. In order to discretize∂f
∂u

by central difference, we calculate the usual

central difference at the interior points in the squares. Onthe boundary of the squares,

we consider the connectivity relationship shown in Fig. 3.1for the neighborhood in the

central difference approximation. Using these relations,we compose a central difference

matrixDc
u and obtain discretization of∂f

∂u
asDc

u
~f . Similarly we compose matricesDf

u,

Db
u, the forward and backward difference operators for theu coordinate, andDc

v,D
f
v and

Db
v, — the central, forward and backward difference operators —for thev coordinate.

We carry out the discretization of the linear operator corresponding to the bending

energy in (3.12) and (3.13) in the following steps.

1. Parameterize the cortical surface to map it into two squares and assign to it the

coordinate system described above.
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2. Form the forward, backward and central difference matricesDf
u, D

f
v , Db

u, D
b
v and

Dc
u, D

c
v for u andv coordinates respectively.

3. Compute the surface metric coefficientsg11, g12, g21 andg22. This is accomplished

by replacing partial derivatives in (3.3), (3.4), (3.5) and(3.6) by their discrete

versions from step 1.

4. Compute the Christoffel symbols according to (3.8), (3.9) and (3.10) by replacing

partial derivatives in that equation by finite difference matrices from step 1.

5. Compute the first and second covariant derivative operators using (3.7) and (3.11).

This can be done by first computing the operator corresponding to (3.7) and then

using it to compose the operator corresponding to (3.11). Replace the partial

derivatives in their expressions by finite difference matrices from step 1 and con-

catenate them to form a covariant bending energy functionalmatrix which is used

to minimize the covariant bending energy.

3.1.3 Bending Energy Minimization

We discretized the bending energy integral in (3.12) and (3.13) in the parameter space

over a 256x256 regular grid for each hemisphere. We denote the covariant differen-

tial operator in these equations byL. As described previously, our parameter space

takes into account the neighborhood relationships betweenthe two hemispheres and thus

the covariant operatorL is discretized in such a way that derivatives at the interhemi-

spheric fissure are calculated correctly. In our current implementation our constraints are

enforced by adding a quadratic penalty term rather than the exact matching constraints
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Figure 3.2: (upper) The figure shows the warping field computed on the surface. The
deformation field is smoothly varying. This is achieved because the bending energy
regularization was performed in the intrinsic geometry of the surface. The color indi-
cates the magnitude of the deformation. (lower) The thin-plate spline deformation field
applied to a regular grid representing left and right hemispheres.

in (3.12) and (3.13). LetΦ = (φ1, φ2) denote the deformation field. The discretized cost

function then takes the form

Φ = arg min
∑

i∈S

||√gLiΦi||2+

σ2
∑

j∈Sc

||√g(LjΦj − dj)||2 (3.14)
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The resulting least squares problem is very high-dimensional (256x256x2x2 parame-

ters), but it could be solved directly since the matrixL is sparse. However, we reduce

the dimensionality of the problem by projecting onto a subset of the discrete cosine

transform (DCT) basis functions. Provided the constraintscan be satisfied with a rel-

atively smooth deformation, this approach will work with fewer basis functions than

the original 256x256 samples in(u, v) space. LetB denotes the DCT basis matrix,

T = LB, Ψ = BTΦ andTi = LiB. The optimization problem

Φ = arg min
∑

i∈S

||√gLiBBTΦi||2

+σ2
∑

i∈Sc

||√gLiBBTΦi − di||2 (3.15)

reduces to:

Ψ = arg min
∑

i∈S

||√gTΨ||2 + σ2
∑

i∈Sc

||√gTiΨ − di||2 (3.16)

In this way, we calculate the deformations in the DCT transform space. Use of this basis

leads to a significant increase in speed. We observe that choosing a higher value of the

parameterσ will lead to more accurate alignment of the sulcal landmark points, but in

practice a very high value leads to non-bijective deformation of the coordinate space.

Due to this trade-off, we pick a value ofσ by trial and error. For certain individual

subjectsσ is decreased if the deformation field is non-bijective. The warps thus obtained

are then applied to the(u, v) coordinates of each cortical surface to coregister them to

the template. This process is illustrated in Fig. 3.2 where we show the sulci traced on

the original cortical surface and their corresponding locations in flat space. We then

show the relative locations of these sulcal features in flat space for the subject and atlas

before and after matching. Note that we use a quadratic penalty function to match the

23



landmarks so that they do not exactly align after registration. Cortical regions near the

boundary of the unit square exhibit larger metric distortion relative to the cortical surface

than do regions near the center. Since the warp bending energy is computed with respect

to the intrinsic geometry of the surface rather than flat space, we see that the warp in flat

space exhibits larger deformations near the boundaries than at the center, following the

pattern of metric distortion.

3.1.4 Validation TPS surface registration

Alignment of two cortical surfaces was performed using the intrinsic TPS method pre-

sented above. For our purpose, we used 16x16 DCT basis functions in each of theu

andv directions. We found that the resulting warps closely resembled the warping field

computed without using basis functions. The use of basis functions resulted in a run-

time of 2 min. as compared to the runtime of 2 to 3 hours in the case of computation

without using basis functions. Fig. 3.3 shows alignment of sulcal maps before and after

registration. The warping field is smooth on the cortex sincethe surface geometry was

considered during the regularization.

There is no gold standard for evaluating the performance of registration algorithms

such as the one presented here. However, there are several properties that are desirable

for any surface registration algorithm. Our method for evaluating the quality of our

registration results is based on the following properties:

1. Insensitivity to the anatomical variability between multiple subjects. Though it

is difficult to expect any automatic registration algorithmto align the anatomi-

cal features accurately, we expect a sulcus to be aligned more accurately if the

remaining sulci are used as landmarks and are forced to align.
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2. Insensitivity to a small amount of noise in the extracted surface coordinates. The

process of extracting the cortical surface involves several stages and the results

of each stage are sensitive to various parameters. We model this variability intro-

duced during the extraction process as additive Gaussian noise in thex, y, z coor-

dinates. The warping process should be relatively insensitive to this noise and

should depend only on the global structure of the brain.

3. Insensitivity to small linear (affine) scaling of the surface coordinates. These kind

of volumetric warps can get introduced in the imaging process. Also brains from

different age groups have different sizes and registrationshould not depend on

factors such as the overall size of the brain.

The error results presented here are in terms of the root meansquared error. In order

to evaluate performance with respect to (1), we carried out aleave-one-out validation

scheme. We aligned cortices of 6 subjects with one another using 22 out of 23 labeled

sulci leaving one sulcus out of the registration each time. For each of the6C2 ∗ 23 =

345 registrations, we measured how well the sulcus that was leftout of the registration

process aligns across the subjects before and after registration. Before carrying out the

warping, there was mean squared error of 28.6 mm in the free sulcus. After aligning all

but the free sulcus, the remaining root mean squared error was 2.81 mm. For (2), we

added Gaussian noise in each of thex, y, z coordinates and register each of the brains

with the noiseless brains. In this case, since we know the correct point correspondence

between the noiseless and the noisy brains, we calculated the alignment error for the

entire surface rather than just the sulci. Before applying TPS warping, there was 40.9

mm mean squared error. After warping there was 3.58 mm alignment error. For (3) we

applied affine warps to the cortical surfaces and aligned theaffine warped surface with

the original surfaces. In this case also we calculated errorfor the entire surface as in (2).

Before warping there was 35.8 mm error which reduced to 3.18 mm error after warping.
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(a) Alignment in the square space(b) Initial alignment in reference
atlas space

(c) Alignment in the square space
after covariant TPS warping

(d) Alignment in the brain atlas
space

Figure 3.3: Alignment of the sulcal landmarks: 6 brains are registered to a common cor-
tical surface using theirp-harmonic maps in the plane. They are approximately aligned
by thep-harmonic maps justifying our small deformation linear model (thin plate bend-
ing energy model) which is used for landmark alignment. After applying the covariant
TPS deformation field to the surface parameterization, we can see that the sulci show
better alignment.

3.2 A Finite Element Method for Simultaneous Regis-

tration and Parameterization

The method presented in Sec. 3.1 is a two step procedure whichfirst maps the

two cortical surfaces to a plane and then computes a deformation vector field that
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aligns sulcal landmarks with respect to their planar coordinates. Similar methods

were presented by various researchers which use plane, sphere or some intermedi-

ate representation of the cortex as a common space for performing the alignment

[HSB+00, BGKM98, FSTD98, TRP05, THS+04, WGH+05, JSTL05]. In our two step

procedure, in order to solve the resulting variational minimization problem, numerical

derivatives were computed by resampling the brain on a uniform grid with respect to the

parameterization. In addition to the computational cost ofresampling and interpolation,

this step results in a loss of resolution since the regular orsemi-regular grid in flat space

is not necessarily optimal for representing the brain in 3D space. In our new approach,

we incorporate sulcal landmark alignment directly in our parameterization method and

thus avoid the resampling and reparameterization step completely.

We propose an FEM based elastic mapping method that avoids the use of an inter-

mediate surface flattening step for landmark matching. It incorporates the landmark

registration into the parameterization method itself. We use the Cauchy-Navier elastic

equilibrium equation for performing this matching as explained in the next section. This

approach also has the advantage that the computation cost isrelatively small and that the

resulting alignment is inverse consistent [JC02] as will become clear from the symmetry

of the cost function defined below.

3.2.1 Surface Registration

To perform cortical surface registration and parameterization with labeled sulcal curves

as constraints, we model the cortical surface as an elastic sheet and solve the associated

elastic equilibrium equation using an FEM. We choose the more general elastic model

over a surface based harmonic mapping method [AHTK99, TSC00, JLTS04, WLCT05]

because we found that the surface based harmonic mappings donot remain bijective
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when multiple sulcal landmark constraints are imposed on the interior of the flat parame-

ter space. However, for the elastic model we have so far always obtained a near bijective

map by adjusting the model parametersλ andµ appropriately. The reason for this situ-

ation, intuitively, is that relative to the power of the Laplacian alone, the Cauchy-Navier

elasticity operator provides additional control over the gradient of the divergence of the

surface vector field, and this indirectly controls the Jacobian of the mapping, constrain-

ing it from taking on extreme values and thereby violating the smoothness assumption.

3.2.2 Mathematical Formulation

We assume as input a pair of genus-zero, tessellated cortical surfaces extracted from a

volumetric MR image [SL00]. Our goal is to map the surfaces ofeach cortical hemi-

sphere in the two brains to the unit square such that in the flatmap a set of manu-

ally delineated sulcal landmarks are aligned with respect to the flat space coordinates.

Point landmarks are generated by sampling uniformly along each sulcal curve. Let

φ = [φ1, φ2]
T be the 2D coordinates assigned to every point on a given cortical surface

such that the coordinatesφ satisfy the Cauchy-Navier elastic equilibrium equation with

Dirichlet boundary conditions on the boundary of each cortical hemisphere, represented

by the corpus callosum. We constrain the corpus callosum to lie on the boundary of the

unit square mapped as a uniform speed curve. We solve the equilibrium equation in the

geometry of the cortical surface using the form:

µ∆φ+ (µ+ λ)∇(∇ · φ) = 0. (3.17)

whereµ andλ are Lamé’s coefficients. The operators∆ and∇ represent the Laplace-

Beltrami and covariant gradient operators, respectively,with respect to the surface
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geometry. The solution of this equation can be obtained variationally by minimizing

the following integral on the cortical surface [HCF02]:

E(φ) =

∫

S

λ

4
(trace ((Dφ)T + Dφ))2 +

µ

2
trace (((Dφ)T + Dφ)2)dS. (3.18)

whereDφ is the covariant derivative of the coordinate vector fieldφ. The integralE(φ)

is the totalstrain energy. Although the elastic equilibrium equation models only small

deformations, we have found that in practice we can always compute a flat map of the

cortex by setting the parametersµ = 1 andλ = 10.

Minimizing (3.18) produces a flat map of each hemisphere but will not constrain the

locations of the sulcal landmarks. To do this, we introduce the following constraints.

Let φS andφA denote the 2D coordinates to be assigned to the subject and atlas brain

hemispheres respectively. Then we define the Lagrangian cost functionC(φS, φA) as

C(φS , φA) = E(φS) + E(φA) + σ
∑

k∈M

(φS(k) − φA(k))2 (3.19)

whereφS(k) andφA(k) denote the coordinates assigned to the set of sulcal landmarks

M , andσ is a Lagrange multiplier. Note that we do not constrain the locations of the

sulci in the flat map but simply constrain homologous landmarks in the two maps to lie

at the same coordinates.

3.2.3 Finite Element Formulation

To minimize (3.19) on a tessellated surface we use an FEM to discretize the strain energy

E(φ). Since the integrand in (3.19) is a tensor, it is justifiable to compute it locally at

each vertex point by assigning a local coordinate system(x, y) to its neighborhood.
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(a) Surface 1 (b) Surface 2

(c) σ = 0 for surface 1 (d) σ = 0 for surface 2 (e) Sulcal alignment forσ = 0

(f) σ = 3 for surface 1 (g) σ = 3 for surface 2 (h) Sulcal alignment forσ = 3

Figure 3.4: (a),(b) The two cortical surfaces with hand labeled sulci as colored curves;
(c),(d) flat maps of a single hemisphere for the two brains without the sulcal alignment
constraint; (e) overlay of sulcal curves on the flat maps without alignment; (f),(g) flat
maps with sulcal alignment; (h) overlay of sulcal curves on the flat maps with alignment.

For each triangle the covariant derivativeDφ in the local coordinatesx, y becomes the

Jacobian matrix:

Dφ =





∂φ1

∂x
∂φ1

∂y

∂φ2

∂x
∂φ2

∂y



 (3.20)
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From (3.18), the strain energyEi(φ) for theith triangle∆i is given by:

Ei(φ) =

∫

∆i

(2µ + λ)

(

(
∂φ1

∂x
)2 + (

∂φ2

∂y
)2
)

(3.21)

+ 2(µ + λ)

(
∂φ1

∂y

)(
∂φ2

∂x

)

+ µ

(

(
∂φ1

∂y
)2 + (

∂φ2

∂x
)2
)

dS.

We now describe the FEM discretization of the partial derivatives with respect to the

local coordinates. Letα be any piecewise linear real-valued scalar function defined

over the surface, andαi the function restricted to trianglei with local coordinatesx, y.

Also denote the local coordinates of the three vertices as(x1, y1), (x2, y2) and(x3, y3)

respectively. Sinceαi is linear on theith triangle, we can write,

αi(x, y) = ai0 + ai1x+ ai2y (3.22)

Writing this expression at three vertices of the trianglei in matrix form,








1 xi1 yi1

1 xi2 yi2

1 xi3 yi3








︸ ︷︷ ︸

Di








ai0

ai1

ai2








=








αi(x1, y1)

αi(x2, y2)

αi(x3, y3)








(3.23)

The coefficientsai0, a
i
1 andai2 can be obtained by inverting the matrixDi. From (3.22)

and by inverting the matrix in (3.23), we obtain





∂αi

∂x

∂αi

∂y



 =




ai1

ai2



 (3.24)

=
1

|Di|




yi2 − yi1 yi3 − yi1 yi1 − yi2

xi1 − xi2 xi1 − xi3 xi2 − xi1













αi(x1, y1)

αi(x2, y2)

αi(x3, y3)









(3.25)
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Denote the discretization of∂
∂x

and ∂
∂y

at trianglei by Di
x andDi

y respectively. Also

note that|Di| = 2Ai whereAi is the area of theith triangle. Then we have:

Di
x =

1

2Ai

(

yi2 − yi1 yi3 − yi1 yi1 − yi2

)

(3.26)

Di
y =

1

2Ai

(

xi1 − xi2 xi1 − xi3 xi2 − xi1

)

. (3.27)

Substituting these in (3.21) and (3.19), we have

E(φ) =
∑

i

1

4Ai

(

φi1φ
i
2

)

K




φi1

φi2



 (3.28)

=
∑

i

‖ 1

2
√

Ai












√
λDi

x

√
λDi

y

√
µDi

y
√

µDi
x

√
2µDi

x 0

0
√

2µDi
y












φi‖2. (3.29)

whereK is given by

K =




(λ + 2µ)Dit

xDi
x + µDit

y Dy λDit
xDy + µDit

y Di
x

λDit
y Di

x + µDit
xDi

y (λ + 2µ)Dit
y Di

y + µDit
xDi

x



 (3.30)

This method is used to discretize bothE(φS) andE(φA). It can be seen from (3.29) and

(3.19) that the cost function is quadratic. We minimize (3.19) with respect to bothφS

andφA, with the corpus callosum fixed at the boundary of the unit square, to compute

the sulcally-coregistered flat maps for both brains simultaneously. The minimization

is performed by using a preconditioned conjugate gradient method with Jacobi pre-

conditioner. In practice the minimization algorithm converges in approximately 500

iterations, requiring 3-4 mins on a desktop computer for surfaces with approximately

200,000 vertices.
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Figure 3.5: RMS error and percentage overlap in the flattenedmap as a function ofσ.

3.2.4 Results and Validation

We first extract cortical surfaces from MRI for each subject using the BrainSuite soft-

ware [SL02] to produce a genus-zero tessellated representation of the inner gray/white

cortical boundary. We then manually delineate 23 major sulci on each of these extracted

cortical hemisphere meshes. Delineation is performed in accordance with a sulcal label-

ing protocol with established intra- and inter- rater reliability [THdZ+02]. This protocol

specifies that sulci do not intersect and that individual sulci are continuous curves that

are not interrupted. If interruptions are present the curves are simply interpolated across

any interrupting gyri. In cases where a full set cannot be defined, a subset can be used

without any change in the algorithm defined here. Uniform samples along the sulcal

curves serve as landmarks in our registration.

Fig. 3.4 illustrates the alignment process. Fig. 3.5 shows the RMS error in matching

of sulcal landmarks and the percentage area of overlap or folding in the flat maps as a

function of the Lagrange multiplierσ. Enforcing a more accurate sulcal alignment by

increasingσ results in an increase in overlap in the mappings. We chooseσ = 3 for

further analysis. Although the elastic mappings are not formally guaranteed to produce

a bijective registration, we found that by settingµ = 1, λ = 10 andσ = 3, we can
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Figure 3.6: Mapping of sulcal landmarks from 5 subjects to the atlas brain (left) without
and (right) with the sulcal alignment constraint.

achieve a nearly bijective map with an average overlap of approximately0.4% of the

surface area. By inspection we see that the overlap occurs inthe vicinity of pairs of

landmarks that are closely spaced in one brain and distant inthe other. One solution to

this problem is to locally reparameterize in the neighborhood of the overlap once the flat

maps are computed.

We performed a leave-one-out validation for examining the performance of our

method. We choose one brain as a representative ‘atlas’ and align cortices of 5 subjects

with the atlas using 22 of the 23 labeled sulci leaving one sulcus out of the registration

each time. For each of the registrations, we measured how well the sulcus that was

left out of the registration process aligned across the subjects with (σ = 0) and without

(σ = 3) sulcal alignment. Without alignment, there was an RMS error of 33.1 mm in

the free sulcus. With alignment using all but the free sulcus, the remaining rms error

was 3.2 mm for the free sulcus.

Incorporating sulcal landmark alignment directly in our parameterization method

not only avoids the resampling and reparameterization steps and reduces computational

cost while maintaining high resolution in the surface tessellations, but also makes the

registration inverse consistent. The improved speed and resolution of the registration

may help in large scale and detailed comparisons of corticaldata.
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3.3 Optimum Choice of Sulcal Subset for Registration

The objective of landmark based manual registration methods presented in Sec. 3.1

and Sec. 3.2 is to minimize the alignment error in sulcal curves. Their disadvantage

is that the individual tracers need to be trained, and even then inter-rater variability

introduces some uncertainty into the procedure. In registration applications, errors in

automatic sulcal identification may propagate into errors in the registration accuracy.

There is an inherent tradeoff between manual effort for tracing sulcal landmarks and

registration accuracy. Increasing the number of sulcal landmarks achieves more accurate

registration, but it also increases the required manual effort. Due to this, for large scale

studies, manual procedures may be infeasible unless we minimize the number of sulcal

curves required in the manual tracing protocol. Here, we address this issue.

In this section, we present an algorithm that finds an optimalsubset of sulcal land-

marks with a given number of sulci, which leads to minimum error in registration. We

begin with a large set of sulcal curves that have been identified by the neuroanatomist

on our team as candidate landmarks for cortical registration. Our objective is to select

an optimal subset from this set such that, for a given number of curves, the sulcal regis-

tration error is minimized when computed over all sulci. Onestraightforward approach

is to actually perform registration of the sulcal curves fora set of training images using

all possible subsets and then measure the error in the remaining unconstrained sulcal

curves. The difficulty with this approach is that there are a huge number of combinations

possible. In our case we have26 candidate curves. Suppose we want to define a proto-

col that uses10 curves, the number of combinations to be tested is
(
26
10

)
≈ 5.3 million.

If the error is to be estimated by performing pairwise registrations of20 brains, i.e.
(
20
2

)
registrations, then the total number of registrations required is

(
20
2

)(
26
10

)
≈ 1 billion.

This is a prohibitively large number considering the fact that surface registrations are

computationally expensive.
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Instead of performing actual brain registrations with multiple subsets of constrained

sulci, we perform only pair-wise unconstrained registrations using the elastic energy

minimization procedure described in Sec. 3.2. The resulting maps produce reasonable

correspondences so that we can model the measured sulcal registration errors using a

multivariate Gaussian distribution. Using conditional probabilities, we then analytically

predict the registration error that would result if we constrained a subset of the curves

to match using hand labeled sulci. These errors can be rapidly computed using condi-

tional covariances, and as we show below, lead to reasonablyaccurate estimates of the

true errors that result when constraining the curves. For a fixed number of constrained

curves, we estimate the error for all possible subsets of that size and select the one with

the smallest predicted error. We investigate the prediction accuracy of our model by

doing actual registrations using the optimal sulcal constraint set. Our algorithm reveals

the trade-off between the number of curves and registrationaccuracy. An appropriate

optimal subset of sulci can be chosen for a particular study based on manual effort and

desired registration accuracy. Once such a subset is chosen, only the sulci from that

subset need to be manually labeled on the brains used for a neuroanatomical study.

3.3.1 Registration Error

The point correspondence defined by registration allows us to map a point set from one

brain to another brain. For every pair of registered hemispheres, we map the traced

curves of one brain to the other, which is arbitrarily definedas a target. The registration

is either unconstrained for error prediction, or constrained for validation. We param-

eterize each sulcal curven over [0, 1] and then computeS equidistant points on each

sulcus corresponding tos = {0.1/S, 0.2/S, .., 1}. The point to point errorsen(s) are

treated asS different samples of the erroren, as illustrated in Fig. 3.8, whereen(s) is
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1) central sulcus (CS) 14) sup. temporal with upper branch (STS)
2) precentral sulcus (preCS) 15) inferior temporal sulcus (ITS)
3) superior frontal sulcus (SFS) 16) occipeto temporal sulcus (OTS, not shown)
4) inferior frontal sulcus (IFS) 17) collateral sulcus (colS)
5) ascending branch of sylvian fissure (abSF) 18) transversetemporal sulcus (TTS)
6 horizontal branch of sylvian fissure (hbSF) 19) circular sulcus (circS)
7) lateral orbital sulcus (latOcS) 20) postcentral sulcus (postCS)
8) frontomarginal sulcus (F-MS) 21) intraparietal sulcus (IPS)
9) Cingulate sulcus (CingS) 22) parieto occipital sulcus (OcPS)
10) paracentral sulcus (paraCS) 23) subparietal sulcus (subPS)
11) supra orbital sulcus (supraOS) 24) calcarine sulcus (CalcS)
12) olfactory or medial orbital sulcus (OlfS) 25) transverse occipital sulcus (TOS, not shown)
13) sylvian fissure terminal split (SF) 26) lateral occipital sulcus (latOcs)

Figure 3.7: The complete set of candidate sulcal curves fromwhich we select an optimal
subset for constrained cortical registration
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Figure 3.8: (a) Registration of two cortical surfaces basedon the flat mapping method;
(b) Parcellation of the cortex into regions surrounding thetraced sulci; (c) Registration
error for two corresponding sulci whereen(s) are samples of the registration error.

the registration error in 3D coordinates for locations on thenth curve. For symmetry,

we repeat the procedure by interchanging subject and targetbrains.

The alignment error in a sulcus causes a registration error in the surrounding cor-

tical area. Therefore, isolated sulci will have more impacton registration, since their

misregistration will affect large cortical regions. To compensate for this effect, we par-

cellate the cortex intoN = 26 regions by assigning each cortical point to the near-

est sulcal curve (Fig 3.8b). The parcellation was performedfor all M = 24 avail-

able brain hemispheres. We then defined a weight function forthe nth sulcus to be

wn = 1
M

∑M
i=1A

i
n/A

i, whereAin is the surface area of thenth parcellated region in the

ith brain, andAi is the total surface area of theith hemisphere.

Finally, the surface registration error metric was defined as

ER = E(
∑

n

wn(e
x
n)

2 + wn(e
y
n)

2 + wn(e
z
n)

2), (3.31)
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whereexn, e
y
n andezn representsx, y, andz components ofen, andE(· · · ) is the expec-

tation operator. Below, we substituteEx
n =

√
wne

x
n in order to simplify subsequent

analysis. The objective of the surface registration procedure is to minimize this registra-

tion errorER.

3.3.2 Probabilistic Model of the Sulcal Errors

We model the sulcal errorsEx
1 , ..., E

x
N as jointly Gaussian random variables, since these

errors are drawn from a large population of brain pairs. We describe computations for

the x component of the error; similar computations are performedfor y and z. The

distribution model ofEx
j for j ∈ {1, ..., N} is:

fEx(Ex
1 , ..., E

x
N) =

1

(2π)N/2|Σx|1/2 exp

(

−1

2
ExT (Σx)−1Ex

)

(3.32)

whereΣx denotes the covariance matrix ofEx. Therefore, the registration error can be

expressed as:

Ex
R = E{

N∑

i=1

(Ex
i )

2} = trace (Σx) (3.33)

We now want to predict the registration error when some of thesulci are explicitly

constrained to register. We partition the curves into two sets: sulciF which are free and

sulciC which are constrained so that{1...N} = F ∪C. We assume that the registration

algorithm is well behaved in a sense that it does not create unnatural deformations on the

unconstrained sulci when a subset of them are constrained. In other words, if we con-

strain some sulci to register, the distribution of the remaining ones would be the same as

if the constrained ones matched simply by chance, conditioned on the constrained sulci

having zero error. Therefore, we model the registration errors in unconstrained sulci as
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the conditional distribution of the original joint Gaussian density. The probability den-

sity of a jointly Gaussian vector, conditioned on some of itselements being zero, is also

jointly Gaussian. Therefore, the registration errorExc
R after matching the sulci fromC

can be obtained using the conditional expectation:

Exc
R = E

(
∑

i∈F

Ex2
i |Ex

j = 0∀j ∈ C

)

= trace (Σx
C) (3.34)

whereΣx
C is the conditional covariance matrix of the error terms corresponding to free

sulci. By rearranging sulci so that free sulci precede the constrained ones, we can parti-

tion the covariance matrix as:

Σx =




Σx
ff Σx

fc

Σx
cf Σx

cc



 . (3.35)

whereΣx
ff andΣx

cc are the error covariances for free sulci and constrained sulci respec-

tively, andΣx
fc andΣx

cf are the cross-covariances.

The conditional covariance is given by:

Σx
C = Σx

ff − Σx
fc(Σ

x
cc)

−1Σx
cf . (3.36)

which is the Schur complement ofΣx
cc in Σx [MKB79]. The estimated registration error

Exc
R after constraining a subset of sulci is then:

Exc
R = trace (Σx

C). (3.37)
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This formula allows us to estimate the x component of the registration error for a

particular combination of constrained sulci and free sulci. The total registration error is

evaluated by adding the x,y, and z components.

Ec
R = trace (Σx

C) + trace (Σy
C) + trace (Σz

C). (3.38)

We use this formula to estimate the total registration errors for all
(
N
Nc

)
combinations of

sulcal subsets, whereNc is the number of constrained sulci, and choose the subset that

minimizes this error.

3.3.3 Results

A total of 24 brains, or equivalently 48 hemispheres, were delineated. Our tracings,

consisting of 26 candidate sulci per hemisphere (Fig. 3.7),were verified and corrected

whenever necessary by a neuroanatomist. We assigned the hemispheres into two sub-

sets, a training set of 24 hemispheres and a testing set of 24 hemispheres, in order to

check:

• Accuracy of the estimator: if the errors predicted by the ourmethod are close to

the actual errors after registration.

• Generalizability of the results to other datasets: if we chose a different dataset

(testing set) of brains and sulci, whether the registrationerrors remain similar to

the ones from the training dataset.

We performed unconstrained mappings for all the24 training hemispheres by

directly minimizing Eq. 3.18 for each hemisphere separately, instead of doing pairwise

registrations using Eq. 3.19 withσ = 0, since the optimization in Eq. 3.19 becomes

separable in the unconstrained caseσ = 0. Using the flat maps of the24 hemispheres
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Figure 3.9: Sample covariance matrices for the x, y, and z components of the registration
error, represented as color coded images.

we computed samples of sulcal errorsEx
n, Ey

n, andEz
n, with S = 10 samples for each

sulcus, for all possible pairwise combinations of hemispheres as described in Sec. 3.3.1.

Whenever a sulcus were missing from either cortical surface, we assumed abnormal

anatomy in that region and assigned zero registration errorfor those sulci. The resulting

sample covariance matrices of the errors are shown in Fig. 3.10 using color code. The

non-zero off-diagonal elements indicate that the errors are correlated among sulci, and

thus constraining some of them would affect the registration error of the others. The

correlation structure of the sulcal errors depends on the sulcal locations in the flat maps.

Here we used square maps as discussed in Sec. 3.3.1, but we expect that our results are

robust with respect to the mapping method.

By applying Eq. 3.38 to all subsets of a given number of constrained curves, we

identified the subset that minimizes the registration error. The optimal subsets of curves

are given in Fig. 3.10 for all numbers of constrained sulci from 1 to 26. We also cal-

culated the sulcal registration errors for each of these optimal subsets by doing actual

registrations. In order to perform actual registration, wechoseσ = 3 as discussed in
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Figure 3.10: Optimal subsets of sulci for cortical registration. Each row gives the indices
of the optimal subset of sulci that minimize the registration error against all other com-
binations with equal number of constrained curves (also seeFig. 3.7). The three right
columns show that the estimated (est.) error is close to the calculated actual (act.) error
when actual registrations with the same constrained curvesare performed. Our method
predicts the registration error both for the training (trn)and the testing (tst) set of brains.

[JSTL07a] for the constrained subset of sulci. Comparing estimated and actual registra-

tion errors, also in Fig. 3.10, we see that the predicted values are close to those obtained

when actually constraining the curves.

A Lilliefors test rejected the null hypothesis of normalityfor the errorsEx
n, Ey

n, and

Ez
n for many sulci, and therefore our Gaussianity assumption isnot fully satisfied. This

is not surprising, since for example errors are naturally bounded by the size of the brains
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and therefore some deviation from normality are anticipated. However, the distributions

were unimodal and the predicted errors of our model are in accordance with the actual

ones, indicating that our distributional assumptions are reasonable for this application.

In order to check the generalizability of the results, we used the 24 cortical hemi-

spheres from the testing set, which are different from the original 24 hemispheres of the

training set. We performed pairwise registrations of the testing brains constraining the

optimal subset of sulci, as shown in Fig. 3.7. The average registration errors in this case

were again close to the predicted errors as shown in the same figure. Therefore, our

results are valid to other brain datasets.

To further test our method, we subjectively selected a set of6 curves to be con-

strained, namely CS, SFS, CingS, STS, IPS, and CalcS, which seemed a reasonable a

priori selection based on sulcal extent and spatial distribution around the cortex. The

algorithm predicted an error of194.36mm2 and the actual error was200.03mm2. The

optimal set (SFS, STS, OTS, postCS, IPS, and CalcS) found by our method had pre-

dicted an error of167.19mm2 and the actual error was164.77mm2, which is better

than our subjectively selected subset. We anticipate that in general the curves selected

by our method should be superior to those selected on an intuitive basis, since vari-

ous confounding effects due to elastic flat mapping as well ascorrelations in errors are

accounted for in the algorithm. In this specific case, we notice that our algorithm pre-

ferred more sulcal curves on and around temporal lobe. This can be explained by the

fact that temporal lobe maps to a very small area in the flat square space. Therefore any

alignment error made in that region in the flat space gets amplified in the 3D space.
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Figure 3.11: Optimal sulcal sets for 5, 10, and 15 curves.

3.3.4 Discussion

We have described a general procedure for selecting subsetsof sulcal landmarks for

use in constrained cortical registration. The procedure can be used to reduce the time

required for manual labeling of sulci in group studies of cortical anatomy and function.

The optimal subsets of curves, shown in Fig. 3.10, provide anintuition on the crite-

ria our method uses to select curves. First notice that the central sulcus is not selected

for protocols with a small number curves (less than 16). Thisis probably because sulci
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Figure 3.12: Top row: subjective selection of 6 curves, withpreference on long sulci
distant from each other that are expected to minimize cortical registration error; bottom
row: optimal sulcal set with the 6 curves selected by our method.

that are most stable and consistent among brains, such as thecentral sulcus, may tend

to align well even without explicitly tracing them. Therefore, they may not improve

the registration error sufficiently to justify their inclusion in the tracing protocol. Fur-

thermore, short sulci neighboring other candidate curves are excluded from the optimal

protocol, such as the paracentral sulcus which is close to the cingulate sulcus, and the

subparietal sulcus which is close to the cingulate and the parieto-occipital sulcus.

On the other hand, the most important sulcus for surface based registration seems to

be the superior temporal sulcus with its upper branch. This is possibly for two reasons:

(1) it is one of the longest sulcus and hence aligning it will register a large region of the

brain; (2) in cortical flat maps where the corpus callosum is mapped on the edges of a

unit square, such as in our method in Fig. 3.8a, the temporal lobe is mapped to a small
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area near the center of the unit square. Since it is away from the corpus callosum, there

is a significant misregistration error if it is unconstrained. Therefore it is important to

align it accurately, and so it is selected by our method.

A registration error always remains when only a subset of sulci is used for registra-

tion. Whether this is acceptable or not depends on the particular neuroscience study.

For example, anatomical studies [TMV+01, STR+02, Cha01, GGL+04] require high

accuracy and might need more sulci, whereas functional studies, such as low resolution

magnetoencephalography data [PNBL05], can tolerate higher registration error. Fig.

3.10 can be used as a guideline: based on the degree of registration accuracy required, a

different number of curves may be used.

Our method provides the subset of sulci to be delineated in a registration study

based solely on the registration error. However, some changes in the selected subset

can be made based on other practical considerations, such asconvenience in tracing.

For instance, identification and tracing of the central sulcus is always easy and it could

be helpful in identifying the surrounding sulci. Thereforewe expect that it would be

typically included in a tracing protocol. Furthermore, forneuroscience studies focusing

on particular cortical regions, for example language studies interested in activation in

the temporal lobe and Broca’s area, the registration error metric defined in Sec. 3.3.1

can be modified by assigning more weight to the regions of interest; thus custom optimal

curve protocols can be defined, tailored to the needs of individual neuroscience studies.

Errors and variability in identifying cortical landmarks are a common problem con-

cerning all landmark based techniques and can affect the registration error. However,

they are beyond the scope of this mathematical formulation.For this particular study the

curves were carefully identified and cross-checked by a neuroanatomy expert. Inter and

intra-rater variability is typically minimized by appropriate training and cross checking
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of traces. A possible extension of our method could allow modeling of intra/inter-rater

variability in identifying sulci, so that unreliable ones are excluded from the protocol.

Our methodology readily extents to other landmark based registration methods in

which the goal is to select an optimal subset of landmarks forlarge scale studies, from a

set of candidate landmarks. Finally, it can possibly be applied to other areas of computer

vision [MA98, Ols00, GI94] for aiding optimal landmark selection.

The surface based surface registration techniques presented in this chapter set up

point to point correspondence between two surfaces based onmanually traced sulcal

landmarks. We also presented a method to optimally select the set the sulcal landmarks

in order to minimize the manual effort. These methods can be used to register neu-

roanatomical data from individual surfaces to a common atlas. This data can then be

analyzed in the surface geometry by using the techniques presented in the next chapter.
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Chapter 4

Processing of Data in the Surface

Geometry

Neuroimaging data, such as cortical thickness or neural activation, can often be ana-

lyzed more informatively with respect to the cortical surface rather than the entire vol-

ume of the brain. This analysis should be carried out in the intrinsic geometry of the

surface rather than in the ambient space. We present methodsfor generalizations of two

commonly used image filtering methods to non-Euclidean surface geometries. First we

describe a method for isotropic diffusion filtering, which is equivalent to Gaussian filter-

ing in Euclidean space. We then describe its extension to anisotropic filtering. In order

to discretize and numerically compute the isotropic and anisotropic geometric opera-

tors, we first parameterize the surface using ap-harmonic mapping. We then use this

parameterization as our computational space and account for the surface metric while

carrying out isotropic and anisotropic filtering. We illustrate these methods in an appli-

cation to smoothing of mean curvature maps on the cortical surface. For the cases when

the cortical data is a point set on the surface, we present a method to quantify its mean

and variance. This is illustrated in the analysis of MEG dipole locations corresponding

to finger tapping.
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4.1 Image Filtering on Surfaces

Gaussian kernel smoothing has been widely used in 3D medicalimaging as a tool to

increase signal-to-noise ratio. However, in many medical imaging applications neuro-

anatomical [TT96a][THdZ+03], functional [JSTL05] and statistical [CRD+05] data are

defined with respect to the non-Euclidean cortical surface and ideally should be pro-

cessed with respect to the non-Euclidean geometry of the surface. The Gaussian kernel

is isotropic in Euclidean space, but on curved surfaces the notion of a Gaussian function

needs to be generalized. One existing approach, called diffusion smoothing [TSC00],

replaces the Gaussian filter by the heat equation which is then solved on the surface.

Thus filtering is formulated as the process of heat diffusionby explicitly solving an

isotropic diffusion equation with the given data as an initial condition [CWT+01]. The

drawback of this approach is the complexity of setting up a finite element method formu-

lations or implicit PDEs and difficulty in making the numerical scheme stable [Chu05].

Here we describe an alternative approach to smoothing usingthe heat equation, which

is based on a parameterized representation of the surface.

Anisotropic filtering or Perona-Malik flow [PM90] has been widely used in region

selective smoothing and edge preserving filtering of 2D and 3D images. Anisotropic

diffusion filtering on non-Euclidean surfaces has been applied to processing and modifi-

cation of surface geometries [HP04][CDR04]. In contrast, here we focus on anisotropic

filtering of anatomical or functional images which are scalar functions defined on

these surfaces [TSC00]. In order to solve the isotropic and anisotropic diffusion

equations on non-flat surfaces, the associated Laplace-Beltrami operators needs to

be discretized. The existing approaches to this discretization use FEM formulations

[LPDS04][BX03][CWT+01]. We present an alternative to the FEM approach. We

first generate a global parameterization of the surface, compute the metric tensor for
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the parameterization, and use this to compute the isotropicand anisotropic Laplace-

Beltrami operators. We first parameterize the cortical surface using ap-harmonic map-

ping technique . We then resample the surface on a regular lattice with respect to the 2D

parameterization and solve the associated PDEs using this discretization while account-

ing for thep-harmonic mapping transformation. Our method explicitly accounts for

the metric of the surface and does not need the local flatness assumption made in FEM

methods [CWT+01][BX03]. In Euclidean case, discretization of the time derivative in

the diffusion equations can be carried out using the Crank-Nicolson method [Smi85] due

to its numerical accuracy and stability. Our approach allows us to generalize this method

to non-Euclidean cortical surface thus making our method both stable and accurate.

4.2 Mathematical Formulation

We assume a genus zero cortical surface on which we define a scalar valued field rep-

resenting the anatomical or functional image of interest. We also assume that a 2D

coordinate system is assigned to this surface through a parameterization process. We

summarize our approach to generating this parameterization in Section 4.3. Our goal

is to define filtering operations on this image which are computed with respect to the

intrinsic geometry of the surface.

Throughout this chapter we use Einstein’s summation convention [Do 76][Kre99]

in order to simplify the notation. LetI(s, t) be a scalar function which denotes the

image given on the cortical surfaceS andt denotes time.I(s, 0) represents the original

unsmoothed image. Letg, gij : i, j ∈ 1, 2 denote the metric tensor associated withS for

a given coordinate system andgij : i, j ∈ 1, 2 denote inverse of the metricgij.
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4.2.1 Isotropic filtering

The isotropic diffusion equation on surfaceS, with the original imageI(s, 0), s ∈ S as

the initial condition, is given by

∂

∂t
I(s, t) = ∆I(s, t), (4.1)

where∆ is the Laplace-Beltrami operator that generalizes the Laplacian in Euclidean

space to Riemannian spaceS:

∆I(s, t) =
1√
g

∂

∂uν

(√
ggµν

∂I(s, t)

∂uµ

)

. (4.2)

We discretize this operator using the discretizations of the metric tensor and thus explic-

itly model the geometry of the surface in our method.

The discretization of the time derivative on the left hand side of (4.1) can be carried

out by explicit discretization methods for hyperbolic PDEs. In the explicit scheme for

solving (4.1), timet is discretized using a forward difference andI(s, n) is used for cal-

culation of the left-hand side of (4.1), whereI(s, n) denotes the image value at iteration

n. Let L denote the discretization of∆ andδ the time step; the resulting discretized

equation is given by
I(s, n+ 1) − I(s, n)

δ
= LI(s, n). (4.3)

Rearranging terms we have the update equation:

I(s, n+ 1) = I(s, n) + δLI(s, n). (4.4)

This is an explicit method for solving the heat equation. While it has the advantage of

being fast to compute, the choice ofδ is critical in the implementation, with large values
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of δ resulting in numerical instability producing oscillatorysolutions. A theoretical

upper limit on the size ofδ depends on grid size and the metric tensor coefficients{gi,j}

and is hard to determine. Violating the upper limit on the value ofδ causes amplification

of numerical errors which in turn results in divergence of the solution. [Smi85]

In order to overcome this difficulty, here we adapt the Crank-Nicolson scheme to

suite our particular equation. While it is slower than the explicit method (4.4), it has the

advantage of being stable as well as accurate [Smi85]. In this case, (4.1) is discretized

as
I(s, n+ 1) − I(s, n)

δ
=

1

2
L(I(s, n) + I(s, n+ 1)). (4.5)

Rearranging terms gives:

I(s, n+ 1) − δ

2
LI(s, n+ 1) = I(s, n) +

δ

2
LI(s, n)

L1I(s, n+ 1) = b, (4.6)

whereL1 = I − δ
2
L andb = I(s, n) + δ

2
LI(s, n) This linear system of equations is then

solved at each iteration using conjugate gradient to computeI(s, n+ 1) from I(s, n).

4.2.2 Anisotropic filtering

Anisotropic diffusion filtering of planar images was first described by Perona and Malik

[PM90]. Here we generalize this idea to non-Euclidean surfaces, which allows us to

perform spatially variant and image dependent nonlinear filtering of surface constrained

image data within the geometry of the surface itself. The anisotropic diffusion filter is

formulated as a diffusion process that encourages smoothing within regions of slowly
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varying intensity while inhibiting smoothing across boundaries characterized by large

image gradients. The anisotropic diffusion equation has the form:

∂I(s, t)

∂t
= ∇ · (D(s, t))∇I(s, t)), (4.7)

where the diffusion coefficientD(s, t) is a monotonically decreasing function of image

gradient magnitude:

D(s, t) = f(‖∇I(s, t)‖). (4.8)

Varying the diffusion coefficient with image gradient allows for locally adaptive edge

preserving smoothing. Two choices forf were suggested [PM90]:

f1(s, t) = exp

(

−
(‖∇I(s, t)‖

χ

)2
)

(4.9)

f2(s, t) =
1

exp
(

−
(

‖∇I(s,t)‖
χ

))(1+α)
α > 0, (4.10)

Whereχ is referred to as the flow constant. Since these filters are expressed using PDEs,

they generalize to non-Euclidean spaces. For the cortical surface, we replace (4.7) by

∂I(s, t)

∂t
=

1√
g

∂

∂uν

(√
gD(s, t)gµν

∂I(s, t)

∂uµ

)

. (4.11)

To compute the diffusion constants we also need an estimatorof the gradient. We replace

‖∇I(s, t)‖2 by thedifferentiator of the first order[Kre99] given by

∇(I(s, t), I(s, t)) = gαβ
∂I(s, t)

∂uα
∂I(s, t)

∂uβ
. (4.12)

With these substitutions, the anisotropic heat equation iswell-defined on the cortical

surface independently of the particular parameterizationused for its computation.
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4.3 Discretization and Numerical Method

We use ap-harmonic map presented in Chapter 2 for parameterization in which we min-

imize a p-harmonic energy function while constraining a closed curve in the interhemi-

spheric fissure, which divides the brain into two hemispheres, to map to the boundary of

a unit square. This procedure produces a one-to-one mappingfrom each hemisphere to

a unit square.

Let x denote the 3-D position vector of a point on the cortical surface. Letu1, u2

denote the coordinates in the parameter space. The metric tensor coefficients required

in the computation are given by:

g11 =

∥
∥
∥
∥

∂x

∂u1

∥
∥
∥
∥

2

, g22 =

∥
∥
∥
∥

∂x

∂u2

∥
∥
∥
∥

2

, (4.13)

g12 = g21 =

〈
∂x

∂u1
,
∂x

∂u2

〉

, (4.14)

g = g11g22 − (g12)
2, (4.15)

The inverse metric coefficientsgij are given by:

g11 =
g22

g
, g12 = g21 = −g12

g
, g22 =

g11

g
, (4.16)

4.3.1 Discretization Algorithm

In order to solve the diffusion equations numerically, we need to discretize the isotropic

and anisotropic Laplace-Beltrami operators in (4.2) and (4.11). We use the unit-square

p-harmonic maps of the triangulated tessellation of the cortical surface to define a 2D

55



coordinate system. The square maps for each hemisphere are resampled on a regu-

lar 256x256 grid. The co-ordinate system we assign to the cortical surface is depicted

in Fig. 3.1. The two squares in the(u1, u2) parameter space represent the two hemi-

spheres in thex1, x2, x3 space. The boundaries of the squares correspond to the com-

mon interhemispheric fissure between the two cortical hemispheres. The neighborhood

relations between the edges of the two squares is depicted bydifferent arrows in the

figure. Because the interhemispheric fissure is fixed on the boundary of the squares rep-

resenting the two hemispheres, one can visualize theu1 − u2 parameter space as two

squares placed on each other and connected at the boundariesof the squares. We follow

these neighborhood relations when discretizing the partial derivatives at the boundary

of the two squares. This allows us to compute partial derivatives across the the two

cortical hemispheres making the boundary separating them completely transparent to

the numerical discretizations. This boundaryless parameter space is then used for dis-

cretizing the partial derivatives with respect to theu1 andu2 spatial coordinates in the

solution of the differential equations. For instance, assume thatf : M → R is a scalar

valued function defined on the cortical surfaceM . We arrange its discretized represen-

tation at each vertex in the regular grid of the surface in a vector ~f . In order to discretize

∂f
∂u1 by central differences on the entire surface, we calculate usual central differences at

the points which are not on the boundary of the squares. On theboundary points of the

squares, we use the connectivity relationship shown in Fig.3.1 for the neighborhood

in the central difference approximation. Using these relations, we compose a central

difference matrixDc
u1 and obtain discretization of∂f

∂u1 asDc
u1
~f . Similarly we compose

matricesDf
u1,Db

u1 , the forward and backward difference operators for theu1 coordinate,

andDc
u2 ,D

f
u2 andDb

u2 , the central, forward and backward difference operators for theu2

coordinate.
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We carry out the discretization of the isotropic and anisotropic operators as described

in the following steps:

1. Parameterize the cortical surface to map it in two squaresand assign it the coor-

dinate system described above.

2. Form the forward, backward and central difference matricesDf
u1, D

f
u2 , Db

u1 , Db
u2

andDc
u1, Dc

u2 for u1 andu2 coordinates respectively.

3. Compute the surface metric coefficientsg, g11, g12, g21 andg22 and also the inverse

metric coefficientsg11, g12, g22. This is done by replacing partial derivatives in

(4.13), (4.14), (4.15), (4.16) by their discrete versions from step 2.

4. Compute the isotropic or anisotropic Laplace-Beltrami operators using (4.2) or

(4.11).

In the case of isotropic diffusion discretization of the diffusion operator needs to

be carried out only once before starting the time iterations. On the other hand, for

anisotropic diffusion the diffusion operator depends onI(s, t) and hence needs to be

updated by carrying out the last step 4 repeatedly after every time step. In order to

decrease this numerical cost, we update the operator after every 100 iterations assuming

that the incremental change in I(s,n) is small.

The impulse response of the isotropic diffusion filter is shown in Fig. 4.1 both on

the cortical surface and in the parameter space of one hemisphere. It can be seen that

use of the surface metric results in a more circularly symmetric impulse response on the

cortical surface. Note that because of the non-linear nature of the anisotropic diffusion

filter, its behavior cannot characterized by its impulse response.

We performed numerical simulations on an Intel Pentium 4 3.2GHz computer with

2GB of RAM using MATLAB. The cortical surface was extracted from a 256 x 256
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(a) The heat kernel computed using the Laplacian in the(u, v) parameter space

(b) The heat kernel computed using the Laplace-Beltrami operator on the cortical
surface

Figure 4.1: The impulse response of the isotropic smoothingfilters are displayed in the
parameter space and on the surface [JSTL05]. It can be seen that when the surface metric
is used to compute the Laplace-Beltrami, the impulse response kernel is not isotropic in
the parameter space, however it is isotropic on the surface.

x 170 voxel T1-weighted MR image of a volunteer subject. Processing time from the

raw MR volume to extraction of the topologically corrected and tessellated cortex using

BrainSuite took 7 mins. The tessellated cortex had a total of1.4 million nodes. Thep

harmonic parameterization of the 1.4 million node corticalsurface took 37 secs. Note

that adding the parameterization step does not add significantly to the total computa-

tional cost compared to a direct FEM method [BX03][LPDS04].The number of iter-

ationsn along with the size of time stepδ decide the amount of smoothing applied.

Smaller values ofδ result in more numerically accurate solutions while the execution

time is directly proportionaln. We choseδ = 1 × 10−5 andn = 40000. Isotropic

diffusion on the resampled surface took 20 mins with this choice of n and δ while
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(a) Noisy mean curvature

(b) Isotropic diffusion

(c) Anisotropic diffusion

Figure 4.2: left: The mean curvature of the cortical surfaceplotted on a smoothed rep-
resentation (for improved visualization of curvature in sulcal folds; right: The mean
curvature plotted in 2D parameter space for a single cortical hemisphere. Isotropic dif-
fusion blurs the regions as well as the edges separating themwhile while anisotropic
diffusion reduces noise while preserving edges.
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anisotropic diffusion took 1.5 hours. The difference in execution times is mainly due to

the non-linear nature of the anisotropic diffusion which requires re-computation of the

diffusion operatorL repeatedly during the iterations. The code through parameteriza-

tion was implemented in C/C++ with substantial effort directed at optimizing run-times

while the diffusions were computed in MATLAB and, based on our earlier experience,

we can expect a several-fold speed up when these are reprogrammed directly in C/C++.

We illustrate the diffusion operations by running them on mean curvature maps

computed on the cortical surface. We compute the mean curvature using the method

described in [CMR+03] and resample it on the regular grid. However we note that as

an added advantage of our approach is that we can also computethe mean curvature by

using our discretization of the metric tensor. In particular,the mean curvatureH can be

computed as:

H =
1

2
bαβg

αβ, (4.17)

where thesecond fundamental formbαβ is given by

bαβ =
1√
g

∣
∣
∣
∣

∂x

∂u1
+
∂x

∂u2
+

∂2
x

∂uα∂uβ

∣
∣
∣
∣
. (4.18)

The minima and saddle points of the mean curvature of the cortical surface are known

to follow the sulcal patterns [CMR+03] and therefore are vital features for automatic

labeling of the sulci [RHXP02]. However, as can be seen in Fig. 4.2(a), there is a

considerable amount of noise in the mean curvature computedon the cortical surface.

This is primarily due to the fact that the mean curvature is a local feature and is there-

fore prone to errors in extraction and discretization of thecortical surface. We see that

the isotropic diffusion filtering smooths out this noise, but since this filtering is not

region selective, it also blurs the regions between sulci (positive mean curvature) and
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gyri (negative mean curvature) as seen in Fig. 4.2(b). On theother hand, anisotropic

filtering removes noise while carrying out the smoothing only within regions and thus

respecting boundaries between sulci and gyri as seen in Fig.4.2(c), thus illustrating the

advantage of anisotropic filtering. Isotropic filtering canbe used where such selective

smoothing is not required such as in smoothing of functionaldata when smoothness is

required for application of parametric random-field methods for control of false posi-

tives in multiple hypothesis testing [WMN+96]. These techniques can also be used for

multiscale representations of functional activation [JSTL05], statistical data [CRD+05]

and neuro-anatomical variability [THdZ+03].

4.3.2 The Heat Equation in the Intrinsic Geometry

The heat equation in the intrinsic geometry of the surface isgiven by:

(∆ − ∂

∂t
)ζ = 0 where∆ =

1√
g

∂

∂ui
√
ggij

∂

∂uj

where∆ denotes the Laplace-Beltrami operator andζ is the scalar field being dif-

fused. We discretized the operator using the metric tensor calculations described in

the Appendix. Using this discretized operator, we set up theCrank-Nicolson scheme

[Smi85] for solving the heat equation since it is known to be stable. We illustrate the

differences between using the usual Laplacian and the Laplace-Beltrami operator in Fig.

4.1. In the former, diffusion is computed with respect to the2D Euclidean space and

produces a 2D Gaussian distribution in the flat parameter space which maps to a clearly

anisotropic distribution on the surface. Conversely, the Laplace-Beltrami form com-

putes the diffusion directly on the surface, on which it produces an isotropic distribution

while exhibiting anisotropic behavior with respect to the parameter space. Solutions of

linear partial differential equations, such as the heat equation, can be characterized by
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Green’s functions. The Green’s function of the heat equation, also known as theheat

kernel, has been a topic of extensive research in spectral theory [Ros97]. Though the

heat kernel can only be implicitly defined in arbitrary surfaces, several of its properties

in Euclidean spaces extend to Riemannian spaces and, in particular, to surfaces.

Here we list a few properties we will use later in this chapter. Proofs can be found in

[Ros97]. LetM be a geodesically complete Riemannian manifold. Then the heat kernel

Kt(x, y) exists and satisfies

1. Kt(x, y) = Kt(y, x)

2. limt→0Kt(x, y) = δx(y)

3. (∆ − ∂
∂t

)K = 0

4. Kt(x, y) =
∫

M
Kt−s(x, z)Ks(z, y)dz

5. Kt(x, y) =
∑∞

i=0 e
−λitφi(x)φi(y)

4.4 The Heat Kernel as a PDF

We know that the heat kernel is positive everywhere. It integrates to one on the manifold

[Dav89] and therefore it is a suitable candidate for modeling the probability density

function of sample points lying in the manifold. Moreover, in Euclidean space, the heat

kernel is identical to the Gaussian pdf. Therefore we propose replacing the Gaussian

density with the covariant heat kernel in our surface-basedanalysis [Hsu02].

Just as we can characterize an isotropic Gaussian distribution in the Euclidean plane

through its mean and standard deviation, so we can characterize distributions on the

surface through mean and variance-like parameters that characterize the location of the

heat kernel and the ‘time’ at which it is observed. Estimation of these parameters is in
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turn analogous to maximum likelihood parameter estimation, i.e. parameter estimation

for a set of sample points on the surface can be viewed as the problem of finding the

kernel of a covariant differential operator that best fits these points.

For isotropic distributions the corresponding heat kernelK(m, t) on a Riemannian

manifold can be completely specified by two parameters:m, the location of the initial

impulse, and the timet. Parametersm andt play the role of the mean and variance in the

Gaussian case. Thus the probability of finding a sample atx is modeled asp(x|m, t) =

Kt(m, x). So the problem of fitting the heat kernel in the given sample points can be

reduced to the problem of estimating these two parameters ofthe heat kernel.

If the sample points arexi, we define the likelihood function form andt as:

L(m, t) =

N∏

n=1

Kt(m, xi)

Because of property 2 above,Kt(m, x) can be calculated explicitly by placing a delta

function at pointm and solving the heat equation up to timet. The problem with this

approach is that the parameterm (the location of the mean) is unknown. However, since

the heat kernel is symmetric (property 1), we can instead place the delta function at the

sample pointsxi whose locations are known, rather than at the unknown mean location

m, and running the heat equation up to timet. This allows us to explicitly compute the

likelihood function (4.19) for a set of sample pointsxi for any time pointt. The values

of m andt for which the likelihood functionL(m, t) attains its maximum are then our

estimates of the mean and variance.

To use this scheme for supervised classification of two clusters of points, we

first compute ML estimates of the parameters(m1, t1) and (m2, t2) for the two clus-

ters. We then define a likelihood ratio as the ratio of the two heat kernels:R =
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(a) pdf estimated for digit 1

(b) pdf estimated for digit 5

Figure 4.3: The figures shows the heat kernels estimated to fitthe two datasets for
MEG somatosensory data. For each of the datasets the estimated pdf is displayed in the
parameter space and on the cortical surface.

Figure 4.4: The classifier: Red and Blue regions shows the twodecision regions

K1(m1, t1)/K2(m2, t2) and compute this ratio at each point on the surface. The sur-

face is then partitioned into two regionsR > 1 andR ≤ 1.

We illustrate the technique presented above for classification of point localizations of

S1 somatosensory regions. For each of 5 subjects we simulated 6 points each represent-

ing locations of thumb and index figure on the postcentral gyrus; the 6 points could, for

example, represent localizations from 6 separate studies on a single subject. We brought
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the cortical surfaces for all subjects into register, usingone of the subjects as the atlas, as

described above. We then used the pooled data from all subjects in the atlas-coordinates

to compute the mean and standard deviation for the thumb and index finger respectively

as illustrated in Fig. 4.3. We then applied the likelihood ratio statistic to partition the

cortex as illustrated in Fig. 4.4. Note that this two-class problem classifies the entire

brain, including both hemispheres, into two regions. With more somatosensory areas

involved we could perform a finer partitioning of somatsensory cortex producing maps

of the most probable areas to which each sensory unit would map. While this is a some-

what artificial problem, it is clear that an extension of thisanalysis would allow us to

produce probabilistic maps of functional localization in the atlas space.
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Chapter 5

Volumetric Registration using

Harmonic Maps

5.1 Introduction

In this chapter we describe an approach to brain image registration based on harmonic

maps that combines surface based and volume based approaches producing a volumetric

alignment in which there is also a one-to-one correspondence between points on the two

cortical surfaces.

Talairach normalization based on a piecewise affine transformation [TT88] was the

first commonly used volumetric alignment technique. Because it uses a restricted set of

anatomical landmarks and is piecewise affine, it results in relatively poor alignment

and has been largely replaced by automated intensity-basedalignment methods that

also allow non-rigid deformations [AF99, WGH+98]. There are a vast array of such

methods, differing in how they measure the fit between the twoimages (e.g., squared

error, correlation, mutual information), the parameterization of the transformation (e.g.,

polynomial, splines, discrete cosine transform or other eigenfunction bases), and the

procedure used to regularize the transformation (e.g., elastic, biharmonic, or viscous

fluid models) [HBHH01]. Polynomial warps and linear elasticdeformations implicitly

assume that deformations are small and do not guarantee preservation of topology for

larger deformations [CRM+95]. The viscous fluid approach [CRM96] and more recent

approaches using large-deformation diffeomorphic metricmapping [GVM04, AG04]
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were developed to address the problem of ensuring diffeomorphic maps and are better

able to register objects whose alignment requires large deformations while conserving

their topology.

Since these intensity-based methods do not explicitly model the cortical surface,

alignment can be rather poor. An illustration of this is shown in Fig. 5.1, where we

have used the Automated Image Registration (AIR) software [WGH+98, WGW+98]

to align two brain volumes using a 5th order polynomial (168 parameters). While the

regions of cortical grey matter exhibit reasonably good correspondence between the two

images, the cortical surfaces themselves do not align well.Since cytoarchitectural and

functional parcellation of the cortex is intimately related to the folding of the cortex,

it is important when comparing cortical anatomy and function in two or more subjects

that the surfaces are aligned. For this reason, there has been an increasing interest in

analyzing the cerebral cortex based on alignment of surfaces rather than volumes.

Various surface-based techniques have been developed for inter-subject registration

of two cortical models. One class of techniques involves flattening the two cortical sur-

faces to a plane [HSB+00] or to a sphere [FSTD98] using mechanical models or varia-

tional methods and then analyzing the data in the common flattened space [BGKM98].

Other surface based techniques work in the surface geometryitself rather than a plane

or a sphere and choose to account for the surface metric in theinter-subject registration

[TWMT00, JSTL05]. The advantage of such techniques is that they produce regis-

tration results that are independent of the intermediate flat space (or, equivalently, the

specific parameterization of the cortex) resulting in a moreconsistently accurate reg-

istration throughout the cortex. These approaches involvemanually delineated sulcal

landmark matching [JSTL05] in the intrinsic surface geometry. While some progress

has been made recently towards automating the matching process using mutual infor-

mation [WCT05] or optical flows of mean-curvature images in the surface parameter
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space [TP05, TRP05], fully automatic alignment of high resolution cortical surfaces

remains a challenging problem.

While the volume registration methods described above do not provide suitable cor-

tical alignment, the cortical registration methods do not define any volumetric cor-

respondence. One approach is to combine landmark points, curves and surfaces as

additional constraints in an intensity-based warping method [PCS+89, TT96a, KL99,

DLF99, HHCS+02, DPB96, DP94]. For example, landmarks, curves [DP94] andimage

matching [DPB96] are applied in a hierarchical manner in a large deformations frame-

work ensuring generation of diffeomorphisms [JM00, GJF+06]. Registration methods

such as the Hierarchical Attribute Matching Mechanism for Image Registration (HAM-

MER) algorithm [LSD04] incorporate surface as well as volume information for the

alignment. For brain images, the desired deformation fieldsneed to be obtained incre-

mentally by using large deformation or fluid models [CYV+00, JC02] and hence are

computationally expensive. Additionally, accurate alignment of the cortical surface as

well as the cortical volume remains a challenging task mainly due to the complex folding

pattern variability of the cortex.

In this chapter, we propose a new method based on harmonic mappings for extend-

ing the surface matching to the entire cortical volume, and present a modified intensity

alignment based on [Chr99] to compute the final map. The resulting method, compris-

ing the three steps outlined above, gives an inverse consistent map which is capable of

aligning both subcortical and sulcal features.

5.2 Problem Statement and Formulation

Here we address the following problem: produce a one-to-onemapping between two

brain volumes such that subcortical structures and sulcal landmarks are aligned and that
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there is also a one-to-one correspondence between the cortical surfaces of the two vol-

umes. Equivalently, given 3D manifoldsM andN representing the two brain volumes,

with boundaries∂M and∂N representing their respective cortical surfaces, we want to

find a map fromM toN such that∂M , the surface ofM , maps to∂N , the surface of

N , and the intensities of the images in the interior ofM andN are matched. In addition

the map must satisfy a sulcal matching constraint so that labelled sulci on the surface

∂M map onto homologous sulci on∂N . The boundaries,∂M and∂N , are assumed to

have a spherical topology.

We solve the mapping problem in three steps:

1. Surface matching, which computes a map between∂M and∂N , the cortical sur-

faces of the two brains. The mapping is based on minimizationof an elastic strain

energy subject to the constraint that a set of interactivelylabelled sulci are aligned,

as described in Chapter 3.

2. Extrapolation of the surface map to the entire cortical volume such that the cortical

surfaces remain aligned. This is done by computing a harmonic map between

M andN subject to a surface matching constraint. As we describe in Section

5.3, an intermediate spherical representation is used to facilitate enforcement of

this constraint. We note also that while the sulci are constrained to remain in

correspondence, the cortical surfaces can flow with respectto each other when

computing the volume harmonic map provided we retain the one-to-one mapping

between∂M and∂N .

3. Refinement of the harmonic map on the interiors ofM andN to improve intensity

alignment of subcortical structures. For this step we use aninverse consistent

linear elastic registration method as described in Section5.5.
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Figure 5.1: Cortical surface alignment after using AIR software for intensity based vol-
umetric alignment using a 168 parameter5th order polynomial. Note that although the
overall morphology is similar between the brains, the two cortical surfaces do not align
well.

The mapping in Step 2 requires large scale deformation to ensure that∂M and∂N

are aligned. Linear elastic or thin-plate spline registration based on landmarks cannot

be used for this purpose [E̊A05]. Harmonic maps on the other hand are suitable since

they are bijective provided that the boundary (the corticalsurface in this case) is mapped

bijectively. Conversely, the final step requires a more local refinement of the mapping

to align subcortical structures so that use of linear elastic methods is appropriate.

5.3 Indirect Mapping Approach

The surface registration procedure described in Chapter 3 sets up a point to point cor-

respondence between the two cortical surfaces, which represent the boundary of the

two cerebral volumes. Extrapolating this correspondence from the boundary surface to

the entire cerebral volume in a one-to-one manner is challenging due to the convoluted

nature of the cortex. In fact, most of the linear models such as linear elastic or thin-

plate splines become non-bijective under relatively mild landmark matching constraints

[EÅ05]. 3D harmonic maps are attractive for this purpose due totheir tendency to be
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bijective if the boundary (cortical surface) is mapped bijectively, which is the case here.

In this section we describe a framework for computing a harmonic mapping between two

3D volumes as well as the computational approach used for implementation. Details of

harmonic maps and their properties can be found in [Jos02].

Letu : M → N be aC∞ map from a 3 dimensional Riemannian manifold(M, g) to

an 3 dimensional Riemannian manifold(N, h) whereg andh are Riemannian metrics

for M andN respectively. A Riemannian metric defines an inner product at every point

in the manifold and thus helps in defining the notion of distance on the manifold [Jos02].

Let {gij; i, j ∈ {1, 2, 3}} denote components of the Riemannian metric tensorg and

{hαβ;α, β ∈ {1, 2, 3}} denote the components of the Riemannian metric tensorh. The

inverse of the metricg = {gij} is denoted by{gij}. Let (x1, x2, x3) and(u1, u2, u3) be

local coordinates forx andu(x) respectively. LetDu denote the derivative (generalized

Jacobian) of the map. Theenergy density functione(u) of mapu is defined to be norm

of Du [Nis01] and is given by

e(u)(x) =
1

2
|Dux|2 (5.1)

=
1

2

3∑

i,j=1

3∑

α,β=1

gij(x)hαβ(u(x))
∂uα(x)

∂xi
∂uβ(x)

∂xj
, (5.2)

which can be thought of as the rate of expansion of the mapu in orthogonal directions,

at pointx ∈M [Nis01],. Themapping energyis defined as:

E(u) =

∫

M

e(u)(x)dµg. (5.3)

Therefore, in coordinate form [Nis01], it is given by

E(u) =
1

2

∫

M

3∑

i,j=1

3∑

α,β=1

gij(x)hαβ(u(x))
∂uα(x)

∂xi
∂uβ(x)

∂xj
dµg (5.4)
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where the integration is over the manifoldM with respect to the intrinsic measuredµg

induced by its Riemannian metricg.

A harmonic mapfrom (M, g) to (N, h) is defined to be a critical point of the

mapping energyE(u). In this sense harmonic maps are the least expanding maps in

C∞(M,N), the space of all smooth maps fromM toN . Therefore, among all possible

smooth maps between two manifolds, the harmonic maps have the tendency to avoid

overlaps and folds in the map, resulting in a bijective map.

A number of existence, uniqueness, and regularity results have been proven for har-

monic maps [Xin96]. Eells and Sampson [ES64] proved the existence of a harmonic

map from any compact Riemannian manifold to a compact Riemannian manifold of

non-positive sectional curvature. Hamilton [Ham75] generalized this result to manifolds

with boundaries. In medical imaging, harmonic mappings andp-harmonic mappings,

their generalized counterparts [FR02], have been used for various applications such

as surface parameterization and registration [AHTK99, KSK98a, JLTS04] and image

smoothing [TSC00]. Wang et al. [WGY04] describe a method forvolumetric mapping

of the brain to the unit ballB(0, 1). Here we use harmonic maps to align two brain

volumes so that both the brain volumes and cortical surfacesare aligned.

When computing the harmonic maps we could fix the correspondence between the

two surfaces using the method from Chapter 3 and map only the interior of the two

volumes. This would result in a suboptimal mapping with respect to the 3D mapping

energy. To overcome this limitation, we instead allow the surfaceM to flow within the

surface ofN when computing the map. The only constraints placed on the surfaces

are that the maps are aligned at the set of user defined sulcal landmarks and that the

boundary∂M maps onto∂N . This less restrictive surface mapping constraint cannot

be formulated directly in the ambient Euclidean 3D space since there is no analytical

expression for the surfaces. It could be accomplished without parameterizing the surface
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using a level set approach [TSC00, MSO04]. Here we use an intermediate representation

for the manifolds which allows us to enforce the boundary matching constraint while

allowing one boundary to flow within the other. We achieve this by first mapping to the

unit ball as described below. This mapping to the unit ball results in a non-Euclidean

representation ofN thus requiring the use of the Riemannian metric in computingthe

harmonic map.

5.3.1 Mathematical Formulation

We find the mapv of the 3D brain manifoldN to the 3D unit ballB(0, 1) [WGY04]

using the method described in Sec. 5.3.3. Letv = (v1, v2, v3) denote three components

of the mapv. This map is bijective and therefore we can treat the unit ball B(0, 1) as

an alternative representation(N, h) of the manifoldN , with associated metrich, that

has the advantage over the Euclidean space(N, I) that the cortical surface lies on the

surface of the sphere (hereI represents the identity metric for the Euclidean space);

h is the metric induced by the mapv. With this alternative representation ofN , the

components of its metrichαβ at pointx = (x1, x2, x3) are given by:

hαβ =

3∑

i=1

∂xi

∂vα
∂xi

∂vβ
. (5.5)

Now instead of needing to directly compute the harmonic mapu : (M, I) → (N, I),

we instead find the harmonic map̃u : (M, I) → (N, h) ≈ B(0, 1) subject to the

constraint that the cortical surface∂M maps to the spherical boundary of the unit ball,

as illustrated in Fig. 5.2.
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Figure 5.2: Illustration of our general framework for surface-constrained volume regis-
tration. We first compute the mapv from brain manifold(N, I) to the unit ball to form
manifold (N, h). We then compute a map̃u from brain (M, I) to (N, h). The final
harmonic map from(M, I) to (N, I) is then given byu = v−1 ◦ ũ.

SinceM remains in the Euclidean space, its metric isI, so gij(x) is the identity

operator and the harmonic mapping problem (5.4) becomes:

ũ = arg min
γ

∫

M

3∑

i=1

3∑

α,β=1

hαβ(γ(x))

(
∂γα(x)

∂xi

)(
∂γβ(x)

∂xi

)

dµg (5.6)

subject to‖ ˜u(x)‖2 = 1 for x ∈ ∂M , the surface ofM . Note that this constraint

allows the surface map to flow within the spherical boundary.We also want to constrain

the maps so that predefined sulcal landmarks are aligned. To achieve this we impose

the additional constraints that̃u(c) = uc for c ∈ Mc whereMc are the set of sulcal

landmark points inM anduc are the locations of the homologous landmarks in(N, h).

Having obtained̃u by minimizing the integral in (5.6), the final harmonic mapping from

u : (M, I) → (N, I) can then be computed asu = v−1 ◦ ũ as illustrated in Fig. 5.2.
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5.3.2 Initialization Procedure

Because the minimization problem (5.6) is nonlinear, it is important to have a good

initial estimate of the map̃u in order to achieve convergence in reasonable time. We

therefore generate an initial estimateũ0 of ũ by computing a map of the second manifold

(M, I) to the unit ball, just as we do for the first manifold(N, I) (Fig. 5.2). Thus our

initialization generates a bijective initial map, which isnot necessarily harmonic. The

procedure is illustrated in Fig. 5.3.

The initialization consists of the following steps. We firstcompute flat maps to the

unit square for each hemisphere of the two brains with aligned sulci as described in

Chapter 3. A stereographic projection then maps the two hemispheres of each brain to

the unit sphere so that the corpus callosum that forms the boundary of the unit squares

maps to the equator. Using these surface maps as constraints, we then mapN andM to

the unit ball to provide, respectively, the unit ball manifold (N, h) and an initial estimate

ũ0 of the desired map̃u from (M, I) to (N, h). The initial map obtained in this manner

is smooth and bijective. With this initialization, the 3D harmonic map is computed by

minimizing (5.6) to obtain the final harmonic mapping fromM toN .

5.3.3 Mapping to the Unit BallB(0, 1)

In the special case when(M, g) and(N, h) are 3D Euclidean manifolds, thenhαβ = δβα,

gij = gij = δji , the Kronecker delta, or identity tensor, forα, β, i, j ∈ 1, 2, 3, and the

mapping energy simplifies to

E(u) =

∫

M

|∇u|2dV (5.7)

where∇ is the usual gradient operator in3D Euclidean space anddV is the volume

integral [WGY04]. In order to map the given cortical brain volumeM to the unit ball,
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Figure 5.3: Initialization for harmonic mapping fromM to N . First we generate flat
square maps of the two brains, one for each hemisphere, with pre-aligned sulci. The
squares corresponding to each hemispheres are mapped to a disk and the disks are pro-
jected onto the unit sphere. We then generate a volumetric maps from each of the brains
to the unit ball. Since all these maps are bijective, the resulting map results in a bijec-
tive point correspondence between the two brains. However,this correspondence is not
optimal with respect to the harmonic energy of maps from the first brain to the second,
but is used as an initialization for minimization of (5.6).

this energy is minimized subject to the constraint that the surface ofM maps to the sur-

face of the unit ball using the point-to-point correspondence defined by the flat mapping

obtained as described in Chapter 3. This is computed by numerical integration over the

voxel lattice using finite differences to approximate the gradients in (5.7). The resulting

function is minimized using a preconditioned conjugate gradient method. The process

of mapping to the unit ball is illustrated in Fig. 5.4 where weshow iso-surfaces in brain

coordinates corresponding to different radii,r, within the unit ball. Atr = 1 we are

at the outer surface of the brain and see the full cortical surface. Asr is reduced we
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Figure 5.4: Illustration of the deformation induced with respect to the Euclidean coordi-
nates by mapping to the unit ball. Shown are iso-surfaces corresponding to the Euclidean
coordinates for different radii in the unit ball. Distortions become increasingly pro-
nounced towards the outer edge of the sphere where the entireconvoluted cortical sur-
face is mapped to the surface of the ball.

see successively less distortion since the harmonic map is driven entirely by the surface

constraint.

5.3.4 Harmonic Mapping Between the Two Brains

The mapping to the unit ball is applied to both brain volumesM andN . The mapping

of the Euclidean coordinates inM to the unit ball provides the initial estimatẽu0 of the

harmonic map̃u. We then refine this map by minimizing the harmonic energy in (5.6)

from (M, I) to (N, h), the unit ball representation ofN . Again, the problem is solved

using numerical integration and finite difference operators, in this case accounting for

the metrich according to (5.6) when computing these derivatives. In this mapping, the

locations of the sulci inM are constrained using their initial mappingsũ0 computed

when flattening and matching the cortical surfaces. Other points on the surface are

allowed to move freely to minimize the harmonic energy, subject to the constraint that

all points on the surface map to‖ũ‖2 = 1, which is achieved by adding a penalty

function to the discretized form of (5.6).
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5.3.5 Implementation

We first describe a numerical method for computation of the metric hij(x) and then

outline the harmonic mapping method.

Computation of Metric

The metrichij(x), x ∈ N is associated with the unit ball coordinatesB(0, 1) given to

N by the mapv = (v1, v2, v3) (Fig. 5.2). It is given byhαβ(p) =
∑3

i=1
∂xi

∂vα
∂xi

∂vβ with

α, β ∈ {1, 2, 3} at x = (x1, x2, x3). Note that althoughx ∈ N is in the regular grid,

v(x) ∈ B(0, 1) is not necessarily so, and hence computation of partial derivatives with

respect tov directly is difficult. In order to compute∂v
α

∂xi , first compute∂v
γ

∂xj using finite

differences and then use the chain rule identity

3∑

γ=1

∂xi

∂vγ
∂vγ

∂xj
=
∂xi

∂xj
= δij (5.8)

to solve for∂v
γ

∂xj . The metrichij is computed by substituting these partial derivatives in

the above equation.

Harmonic Mapping

The harmonic mapping procedure can now be summarized as follows:

1. Align the surfaces of both the brainsM andN using the procedure described in

Chapter 3.

2. Map the unit squares to unit disks by the transformation(x, y) →

( x√
x2+y2

, y√
x2+y2

) and then project them onto two hemispheres using(x, y) →

(x, y,±
√

x2 + y2).
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3. Using this mapping of the cortical surface to the unit sphere as the boundary con-

dition, generate volumetric harmonic maps ofM andN to the unit ballB(0, 1) as

described in Sec. 5.3.3.

4. Compute the metrich associated with the unit ballB(0, 1) coordinates ofN as

described above.

5. Minimize (5.6) holding the matched sulci fixed, and letting the cortical surface

∂M slide along boundary of the unit ball. This is done by minimizing (5.6) with

the constraint that‖ũ(x)‖2 = 1 for x ∈ ∂M andũ(c) = ũ0(c) for c ∈ Mc where

Mc ⊂M denotes the set of sulcal points onM . The partial derivatives in (5.6) are

discretized by finite differences and the minimization is done by gradient descent.

6. Compute the deformation vector fieldu(x) − x whereu = v−1 ◦ ũ and apply this

to map brain volumeM toN . Trilinear interpolation is used for this deformation.

5.4 Direct Mapping Approach

The limitation of the approach presented in the previous sections is that by using the map

to the unit ball, the method is restricted to mapping only thecerebral volume contained

within the cortical surface. Here we avoid this restrictionby computing the harmonic

map directly in Euclidean space so that the entire brain volume can be registered. How-

ever, this approach keeps the surface points fixed during volumetric harmonic maps

and hence the surface registration is suboptimal with respect to the volumetric energy

[JSTL07b][JSTLed]. Since the map between the cortical surfaces is fixed, there is no

longer a need for the intermediate spherical representation. While this approach places a

more restrictive constraint on the mapping of the surface, in practice we see only a small

difference between the two methods in the mapping of the interior of the cerebrum.

79



5.4.1 Mathematical Formulation

The registration problem is formulated in a similar manner to the approach used in

Sec. 5.3. We start by aligning the cortical surfaces, semi-automatically, using sulcal

landmarks.

Given two 3D manifoldsM andN representing brain volumes, with∂M1, ∂M2

and∂N1, ∂N2 representing surfaces corresponding to cortical grey/white matter and

grey/CSF boundaries, we want to find a map fromM to N such that (i)∂M1, the

grey/white matter surface ofM , maps to∂N1, the grey/white matter surface ofN ; (ii)

∂M2, the grey/CSF surface ofM , maps to∂N2, the grey matter/CSF surface ofN ; and

(iii) the intensities of the images in the interior ofM andN are matched. The sur-

faces,∂M1, ∂M2 and∂N1, ∂N2, are assumed to have a spherical topology. We solve the

mapping problem in three steps:

1. Surface matching which computes maps between surface pairs - the cortical sur-

faces and the grey matter/csf surfaces of the two brains, with sulcal alignment

constraints (Chapter 3);

2. extrapolation of the surface map to the entire cortical volume. This is done by

computing a harmonic map betweenM andN subject to a surface matching con-

straint (Section 5.4.2), and

3. Refinement of the harmonic map on the interiors ofM andN to improve intensity

alignment of subcortical structures (Section 5.5).

5.4.2 Harmonic Mapping

The surface registration procedure described in Chapter 3 sets up a point to point cor-

respondence between the pairs of surfaces∂M1, ∂M2 and∂N1, ∂N2. As noted earlier,
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treating these surfaces as landmarks is not helpful since they are highly convoluted and

finding a volumetric diffeomorphism consistent with the surface map is non-trivial. One

approach that can achieve such a diffeomorphism is to compute a harmonic map. A

harmonic mapu = (u1, u2, u3) from 3D manifoldM to 3D manifoldN is defined as

the minimizer of the harmonic energy [Jos02],

Eh(u) =
1

2

∫

M

3∑

i=1

3∑

α=1

(
∂uα(x)

∂xi

)2

dV. (5.9)

Note that (5.9) is quadratic inuα and that the summands are decoupled with respect to

α. Consequently the harmonic energyEh(u) can be separately minimized with respect

to each componentuα, α ∈ {1, 2, 3}.

We compute the minimizer ofEh(u) using a conjugate gradient method with Jacobi

preconditioner. The mapping of the two surfaces computed inthe previous sections

act as constraints such that∂M1 maps to∂N1 and∂M2 maps to∂N2. This harmonic

mapping extrapolates the surface mappings to the entire volume such that the surface

alignments are retained.

5.5 Volumetric Intensity Registration

The surface constrained harmonic mapping procedure of the direct mapping approach

in Sec. 5.3 or the direct mapping approach in Sec. 5.4 described above produces a

bijective mapping between the two brain volumes. However, it uses only surface shape

and sulcal labels and does not use the MRI intensity values tocompute the map. The

result is a large scale deformation that aligns surface features but will benefit from an

intensity-based refinement aimed at aligning subcortical features. In order to do this

refinement and also make the final map inverse consistent, we use linear elastic inverse

consistent registration based on Christensen’s approach [Chr99] with the modifications
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Figure 5.5: Schematic of the intensity alignment procedure. Once harmonic mapsuM

anduN are computed, we refine these with intensity driven warpswM andwN while
imposing constraints so that the final deformations are inverse consistent.

described below to ensure that the entire mapping process, rather than just this last step,

is inverse consistent.

5.5.1 Formulation

The surface constrained volumetric harmonic mapping procedure described above can

be used to generate two mapsuM : M → N anduN : N → M , each harmonic, but

not necessarily inverses of each other. The corresponding deformation fields for these

maps can be expressed asdMu (x) = uM(x) − x, x ∈ M anddNu (x) = uN(x) − x, x ∈

N . Note that both of these deformation fields accurately alignthe two surfaces and

82



corresponding sulci, and are one-to-one. These deformations are used to initialize the

volumetric inverse consistent intensity registration procedure that we now describe.

Let fM(x), x ∈ M denote intensity at pointx ∈ M and fN(x), x ∈ N denote

intensity at pointx ∈ N . The situation can be summarized as follows and is illustrated

in Fig. 5.5): We have harmonic mapsuM : M → N uN : N → M that change the

shapes of domainsM andN to match their respective targetsN andM . In order to align

the intensities, we seek refinement mapswM : M →M andwN : N → N such that the

mapped intensity valuefM ◦ wM ◦ uN matchesfN (or equivalentlyfM ◦ wM matches

fN ◦ (uN)−1), andfN ◦ wN ◦ uM matchesfM (or fN ◦ wN matchesfM ◦ (uM)−1). For

inverse consistency, we needwN ≈ (uM ◦ wM ◦ uN)−1 andwM ≈ (uN ◦ wN ◦ uM)−1.

Let dMw , d
N
w denote the deformation fields corresponding towM , wN and letd̃wM , d̃Nw

denote the deformation fields for(uN ◦ wN ◦ uM)−1, (uM ◦ wM ◦ uN)−1.

The inverse consistency similarity cost functionC(dMw , d
N
w ), can now be defined as

the sum of three terms:

C(dMw , d
N
w ) = CREG(dMw , d

N
w ) + αCSIM(dMw , d

N
w )

+ βCICC(dMw , d
N
w ) subject todNw (uM(x)) = 0, x ∈ ∂M and

dMw (uN(x)) = 0, x ∈ ∂N (5.10)
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where the boundary constraints ensure that the cortices remain aligned after registration

and the three constituent terms are defined as follows:

CREG(dMw , d
N
w ) = ‖LMdMw ‖2 + ‖LNdNw ‖2

CSIM(dMw , d
N
w ) = ‖fM(x+ dMw (x)) − fN(uN

−1
(x))‖2+

‖fN(x+ dNw (x)) − fM(uM
−1

(x))‖2

≈ ‖fM(x) + ∇MfM(x) · dMw (x) − fN(uN
−1

(x))‖2+

‖fN(x) + ∇NfN(x) · dNw (x) − fM(uM
−1

(x))‖2+

CICC(dMw , d
N
w ) = ‖dMw (x) − d̃Mw (x)‖2+

‖dNw (x) − d̃Nw (x)‖2

C(dMw , d
N
w ) = CREG(dMw , d

N
w ) + αCSIM(dMw , d

N
w )

+ βCICC(dMw , d
N
w ) subject todNw (uM(x)) = 0, x ∈ ∂M and

dMw (uN(x)) = 0, x ∈ ∂N (5.11)

The first term is the regularizer whereLM = α∇2
M + β∇M(∇M ·) + γ andLN =

α∇2
N + β∇N(∇N ·) + γ denote the Cauchy Navier elasticity operators inM andN

respectively. The second term measures the intensity matchbetween the transforma-

tions in both directions and the third term is measure of deviation from the inverse

consistent condition. This is a quadratic cost function andcan be minimized by the

conjugate gradient method. We use a preconditioned conjugate gradient method with

Jacobi preconditioner for this purpose.

5.5.2 Implementation

1. First, the harmonic mapsuM : M → N anduN : N → M are computed using the

procedures described in Sec. 5.3.4 or Sec. 5.4.
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Figure 5.6: Illustration of the effects of the two stages of volumetric matching is shown
by applying the deformations to a regular mesh representingone slice. Since the defor-
mation is in 3D, the third in-paper value is represented by color. (a) Regular mesh rep-
resenting one slice in the subject; (b) the regular mesh warped by the harmonic mapping
which matches the subject cortical surface to the template cortical surface. Note that
deformation is largest near the surface since the harmonic map is constrained only by
the cortical surface; (c) Regular mesh representing one slice in the harmonically warped
subject; (d) the intensity-based refinement now refines the deformation of the template
to improve the match between subcortical structures. In this case the deformation is
constrained to zero at the boundary and are confined to the interior of the volume.

2. The inverses of the mapu−1
M : N →M is computed. This is done by interpolating

the correspondenceu−1
M : uM(x) 7→ x from points to the regular voxel grid ofN using

Matlab’s griddata3 function with linear interpolation. This function implements the

method based on Delauney triangulation as described in [BDH96] although it can also

be computed using the method described in [Chr99].u−1
N : M → N is computed

similarly.

3. SetdMw = 0 anddNw = 0.
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4. Compute the mapswN(y) = y + dNw (y), y ∈ N , w̃M = (uN ◦ wN ◦ uM)−1 and

d̃Mw (x) = w̃M(x) − x.

5. Compute the difference termfN(x) − fM(uN
−1

(x)).

6. Compute an updated estimate of the deformation fieldd̂Mw from (5.10) using a

preconditioned conjugate gradient method.

7. Repeat steps 4-6 withM andN interchanged.

8. Test inverse consistency errorCICC for convergence, otherwise go to Step 4.

This final refinement completes the surface-constrained registration procedure.

While there are several steps required to complete the registration, each step can be

reduced to either a surface or a volume mapping cast as an energy minimization prob-

lem, possibly with constraints, and can be effectively computed using a preconditioned

conjugate gradient method. The different effects of the harmonic mapping, producing

large scale deformations, and the linear elastic intensity-driven refinement, producing

small scale deformations, are illustrated in Fig. 5.6

5.6 Results and Validation

In order to illustrate the application of our surface constrained registration procedure

to T1-weighted MR brain images and validate its performance, we obtained labeled

brain data from the Internet Brain Segmentation Repository(IBSR) dataset at the Center

for Morphometric Analysis at Massachusetts General Hospital. This consists of T1-

weighted MR images with1.5mm slice thickness as well as expert segmentations of

43 individual structures. The cortical masks were obtainedand their topology corrected

using the BrainSuite software as described in Chapter 3. Thecortical surfaces were

then interactively labelled with 23 sulcal curves on each hemisphere using a standard

labeling protocol [THdZ+02]. Our registration algorithm was applied by performing
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surface matching, harmonic mapping and volumetric intensity registration as described

above. Shown in Fig. 5.7 and Fig. 5.9 are three orthogonal views of a subject before

and after alignment to the template image. Note that before alignment the surfaces

of the subject and template are clearly different, while after the harmonic mapping the

deformed subject surface almost exactly matches the morphology of that of the template.

However, since at this point we do not take the image intensities into account, the interior

structures do not align well. Following the final intensity-based alignment procedure the

subcortical structures of the warped subject show improvedagreement with those in the

the template. Also shown in Fig. 5.9 and Fig. 5.7 are the labels provided by the IBSR

data set before and after mapping.

Our method for evaluating the quality of our registration results is based on the

following two desirable features:

1. Alignment of the cortical surface and sulcal landmarks. We expect the sulcal

landmarks to be accurately aligned after registration and for the two surfaces to

coincide.

2. Alignment of subcortical structures. We also expect the boundaries of subcortical

structures (thalamus, lateral ventricles, corpus callosum) to be well aligned after

registration.

To evaluate performance with respect to 1 and 2 we used a set of6 MR volumes on

which we labeled 23 sulci in each hemisphere. For comparisonwe use a 5th order poly-

nomial intensity-driven warp computed using the AIR software [WGH+98, WGW+98].

We also compare performance with the HAMMER [LSD04, SD02] algorithm. HAM-

MER is an automated method for volume registration which is able to achieve improved

alignment of geometric features by basing the alignment on an attribute vector that

includes a set of geometric moment invariants rather than simply the voxel intensities.
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(a)

(b)

Figure 5.7: Examples of direct mapping approach. (a) Original subject volume; (b) orig-
inal template; (c) registration of subject to template using surface constrained harmonic
mapping, note that the surface matches that of the template;(d) intensity-based refine-
ment of the harmonic map of subject to template to complete registration procedure
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We note that since our approach uses explicitly labelled sulci we can expect better per-

formance than either AIR or HAMMER in terms of the alignment of these features.

However, AIR and HAMMER provide a basis for comparison from some of the most

widely used and best performing algorithms for volumetric registration.

We measured the mean squared distance between pairs of homologous landmarks

corresponding to uniform samples along each of the 23 labeled sulci. We repeated this

procedure for each of the 30 possible pairwise registrations of two from six brains and

computed the average mean squared distance over all registrations. We found that the

mean squared misalignment between sulcal landmarks was11.5mm for HAMMER,

11mm for AIR and 2.4mm for our cortically constrained method. The significantly

lower error for our approach is unsurprising since matchingof sulci is imposed as a

constraint. The reason that the error is not zero is that the constraint is imposed using a

penalty function rather than strictly using Lagrange multipliers.

To evaluate performance in terms of subcortical structureswe used the manually

labeled regions in the IBSR data set. To evaluate accuracy, we computed the Dice coef-

ficients between the template and warped subject for each subcortical structure, where

the structure names and boundaries were taken from the IBSR database. The Dice coef-

ficient measures overlap between two sets representing regionsS1 andS2, and is defined

as 2|S1∩S2|
|S1|+|S2|

where| · | denotes size of the set [ZDMP94]. Values range from zero for dis-

joint sets to unity for identical sets. A comparison of the Dice coefficients for some

major subcortical organs is shown in Fig. 5.7, where we show Dice coefficients for our

method before and after application of the intensity-basedalignment step. This com-

parison shows similar results for all three methods, with each producing superior results

in some subcortical structures. For example, HAMMER produced superior results in

thalamus, while our proposed method produced superior results in hippocampus. Thus

the geometric invariants in HAMMER seem to improve performance relative to our
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intensity based alignment of deeper subcortical structures, while our use of a cortical

constraint leads to superior performance with respect to sulcal alignment and structures

that are more superficial with respect to the cerebral cortex, such as the hippocampus.

This is a preliminary validation and larger scale validation is needed on a larger popula-

tion with a larger range of brain structures.

Figure 5.8: Volumetric registration using direct mapping approach: (a) Illustration of the
extrapolation of the surface mapping to the 3D volume by harmonic mapping. The pairs
of surfaces are shown in red and green. The deformation field is represented by placing
a regular grid in the central coronal slice of the brain and deforming it according to the
harmonic map. The projection of this deformation onto a 2D plane is shown with the
in-plane value encoded according to the adjacent color bar.(b) The result of harmonic
mapping and linear elastic refinement of the subject brain tothe template brain. Note
that the inner and outer cortical surfaces, by constraint, are exactly matched. The linear
elastic refinement produces an approximate match between subcortical structures. The
deformation field here shows the result of cortically constrained intensity-driven refine-
ment. Note that the deformations are zero at the boundary andnonzero in the vicinity of
the ventricles, thalamus and other subcortical structures.
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Figure 5.9: Examples of surface constrained volumetric registration. (a) Original sub-
ject volume; (b) template; (c) registration of subject to template using surface con-
strained harmonic mapping, note that the cortical surface matches that of the template;
(d) intensity-based refinement of the harmonic map of subject to template

5.7 Conclusion

We have presented a framework for coregistration of brain volume data using harmonic

maps. Through the use of an intermediate spherical map, we are able to constrain the

surfaces of the two brain volumes to align while enforcing point matching only at a set

of hand labeled sulcal curves. Using harmonic maps we are able to compute large scale

deformations between brain volumes.
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We have also described, as an initialization procedure, a new method for cortical

surface parameterization and sulcal alignment in which thetwo problems are solved

in a single step using a finite element method. This method hasthe properties that

it is inverse consistent between the two brains and can be computed directly from a

tessellated representation of the surface, rather than requiring resampling using a regular

grid with respect to the induced parameterization.

The examples shown here demonstrate the cortical matching properties and the abil-

ity to also align subcortical structures. One of the limitations of this evaluation was

that cortical grey matter was not included in the registration since the cortical surfaces

were generated by BrainSuite [SL00], which selects the inner grey/white boundary as

the cortical surface. However, this is a limitation of the preprocessing step rather than

the method itself, and the process can be applied to the full cerebral volume provided

that a genus-zero brain volume and sulcal labels are supplied. A second limitation is

that the cerebellum and brainstem are not included in the analysis since the volume of

interest that is mapped is restricted to the cerebrum, bounded by the outer cortical sheet.

We can address this issue in practice by modifying the final intensity-based matching

step by first adding the brainstem and cerebellum back to the cerebrum. This would also

require extrapolation of the deformation field from the harmonic map outwards to these

structures as an initialization of the intensity based warp. Alternatively, the cerebellum

could also be explicitly modelled using a surface based approach (see, e.g. Hurdal et al.

[HSB+00]), and its surface and enclosed volume could be treated ina similar fashion to

the cerebrum.
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Table 5.1: Comparison of Dice coefficients
Subcortical AIR Harmonic HAMMER Harmonic
Structure with intensity
Left Thalamus 0.6588 0.5294 0.7303 0.5856
Left Caudate 0.4426 0.4336 0.5688 0.5716
Left Putamen 0.4079 0.3497 0.4905 0.5092
Left Hippocampus 0.4676 0.3069 0.3916 0.3930
Right Thalamus 0.6326 0.5018 0.7495 0.6230
Right Caudate 0.3671 0.3572 0.5098 0.5116
Right Putamen 0.3096 0.2358 0.4111 0.4679
Right Hippocampus 0.5391 0.3455 0.1989 0.4342
Avg. Dice coeff.
for all structures 0.3021 0.3821 0.3621 0.4019
Std. Dev. of
Dice coeff. 0.1937 0.2547 0.2390 0.2671
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Chapter 6

Conclusions and Future Work

We have presented a set of geometric methods constituting a framework for registration

and analysis of brain images. Various tools and their interconnections are depicted in

Fig. 6. The sulcal tracing tool can be used to delineate a set of sulci on the cortex. These

sulcal sets are then used as input to surface-based registrations presented in Chapter 3.

We also presented a method to optimize the set of sulcal landmarks in order to minimize

the manual effort (Sec. 3.3). We presented two surface registration techniques in that

chapter: (1) covariant thin-plate splines (Sec. 3.1) (2) FEM-based Surface registration

(Sec. 3.2). We concluded that the second approach leads to faster computation and

accurate registration. This surface registration can be used for integrating surface-based

functional or anatomical data from individual subjects to acommon atlas. Intersubject

analysis of such data can be carried out in the geometry of theatlas surface. We pre-

sented parameterization-based numerical methods for isotropic and anisotropic smooth-

ing filters in the surface geometry (Chapter 4). Smoothing can be performed on the atlas

surface, or on the original subject surfaces. When the data is a point-set, we presented a

method for quantifying its mean and variance with respect tosurface geometry. Again,

this analysis can be carried out for a single subject or for a coregistered dataset to the

atlas surface. The surface registration method was extended to volumetric registration

using harmonic maps (Chapter 5). We presented two approaches: (1) Indirect approach

using intermediate representation (Sec. 5.3) and (2) Direct mapping approach (Sec.

5.4). While the direct mapping approach is faster, it does not guarantee diffeomorphic

mappings. On the other hand the indirect approach is significantly slower, but results
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in diffeomorphic mappings. As a result of this method, we geta full 3D volumetric

registration of the brain in which cortical surfaces as wellas the subcortical structures

are aligned.

There are a number of directions in which this work can be extended. In the follow-

ing sections, we present a few possible extensions as well asapplications.

Figure 6.1: Geometric framework for registration and analysis
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6.1 Geometric Features and Manual Landmarks based

Surface Registration

Our method for cortical surface registration is a manual landmark based method. Alter-

natively, there are a number of automatic surface registration methods which perform

such an alignment based on geometric features such as curvature, shape indices, etc.

[TP05, FSTD98, HSB+00]. The advantage of automatic methods is that they do not

involve manual input and therefore they are ideally suited for large-scale studies. How-

ever, accurate alignment of the brain anatomy involves higher level knowledge which is

difficult to incorporate in such methods. These methods showconsistent misalignment

of certain areas, such as Broch’s area. Sulcal folds are sometimes misregistered when

there are branches. Manual landmark based methods overcomethese difficulties by

using user input in the form of expert labeled sulci. Moreover, these methods are ideally

suited for abnormal anatomy. Also they could be useful for performing more accurate

registration in a region of interest by marking more landmarks in this region. The dis-

advantage of manual techniques is that a considerable amount of training is required.

Also manual effort is needed in order to identify the sulcal curves. In order to address

these issues, and take advantage of both types of methods, wewould like to formulate a

semi-automatic method where only some of the sulcal curves are labeled manually when

automatic geometric feature based methods do not give a correct registration. This can

lead to minimization of the manual tracing effort without sacrificing accuracy and con-

trol in the surface registration process.
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6.2 Registration of DTI images

Diffusion Tensor Imaging (DTI) produces in vivo images weighted with characteristics

of water molecule diffusion inside a tissue [LAS+02]. In each voxel, it produces a3× 3

diffusion tensor which indicates the principle directionsof water diffusion. This imag-

ing modality is particularly useful to infer the white-matter connectivity of the brain

[BJW+03]. The tensor data produced by the DTI images is used to reconstruct fiber

tracts in the white matter (tractography). Recently, more advanced models of the diffu-

sion process have been proposed that aim to overcome the weaknesses of the diffusion

tensor model. Amongst others, these include q-space imaging [HYN+08] and general-

ized diffusion tensor imaging [ OM].

In order to perform intersubject comparison and analysis ofDTI data, accurate align-

ment of white matter is important. Particularly, since the sulcal curves are closely related

to the function of the brain, any such comparison needs accurate alignment of the sulci.

The volumetric registration technique presented in Chapter 5 makes such an alignment

possible. We plan to use our volumetric registration techniques for intersubject compar-

isons of DTI data and fiber tracks. We will perform intersubject alignment of brains

using T1 weighted MR data. The deformation field obtained this way can then be

applied to the diffusion tensors to reorient them appropriately [APBG01]. Their vari-

ance can be quantified across subjects using the Lie group structure of the diffusion

tensors [LRD06]. This kind of analysis can help identify similarities and differences in

white matter connectivity across a population of subjects.
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