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Abstract

Darts is enjoyed both as a pub game and as a professional competitive activity. Yet most
players aim for the highest scoring region of the board, regardless of their skill level. By modeling
a dart throw as a 2-dimensional Gaussian random variable, we show that this is not always the
optimal strategy. We develop a method, using the EM algorithm, for a player to obtain a
personalized heatmap, where the bright regions correspond to the aiming locations with high
(expected) payoffs. This method does not depend in any way on our Gaussian assumption, and
we discuss alternative models as well.
Keywords: EM algorithm, importance sampling, Monte Carlo, statistics of games

1 Introduction

Familiar to most, the game of darts is played by throwing small metal missiles (darts) at a circular
target (dartboard). Figure 1 shows a standard dartboard. A player receives a different score for
landing a dart in different sections of the board. In most common dart games, the board’s small
concentric circle, called the “double bullseye” (DB) or just “bullseye”, is worth 50 points. The
surrounding ring, called the “single bullseye” (SB), is worth 25. The rest of the board is divided
into 20 pie-sliced sections, each having a different point value from 1 to 20. There is a “double”
ring and a “triple” ring spanning these pie-slices, which multiply the score by a factor of 2 or 3,
respectively.

Not being expert dart players, but statisticians, we were curious whether there is some way to
optimize our score. In Section 2, under a simple Gaussian model for dart throws, we describe an
efficient method to try to optimize your score by choosing an optimal location at which to aim. If
you can throw relatively accurately (as measured by the variance in the Gaussian model), there are
some surprising places you might consider aiming the dart.

The optimal aiming spot changes depending on the variance. Hence we describe an algorithm by
which you can estimate your variance based on the scores of as few as 50 throws aimed at the double
bullseye. The algorithm is a straightforward implementation of the EM algorithm [DLR77], and
the simple model we consider allows a closed-form solution. In Sections 3 and 4 we consider more
realistic models, Gaussian with general covariance and skew-Gaussian, and we turn to importance
sampling [Liu08] to approximate the expectations in the E-steps. The M-steps, on the other hand,
remain analogous to the maximum likelihood calculations; therefore we feel that these provide nice
teaching examples to introduce the EM algorithm in conjunction with Monte Carlo methods.

Not surprisingly, we are not the first to consider optimal scoring for darts: [Ste97] compares
aiming at the T19 and T20 for players with an advanced level of accuracy, and [Per99] considers
aiming at the high-scoring triples and bullseyes for players at an amateur level. In a study on
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Figure 1: The standard dartboard. The dotted region is called “single 20” (S20), worth 20 points; the solid
region is called “double 20” (D20), worth 40 points; the striped region is called “triple 20” (T20), worth 60
points.

decision theory, [Kor07] displays a heatmap where the colors reflect the expected score as a function
of the aiming point on the dartboard. In this paper we also compute heatmaps of the expected
score function, but in addition, we propose a method to estimate a player’s skill level using the EM
algorithm. Therefore any player can obtain personalized heatmap, so long as he or she is willing
to aim 50 or so throws at the bullseye.

It is important to note that we are not proposing an optimal strategy for a specific darts game.
In some settings, a player may need to aim at a specific region and it may not make sense for the
player to try to maximize his or her score. See [Koh82] for an example of paper that takes such
matters into consideration. On the other hand, our analysis is focused on simply maximizing one’s
expected score. This can be appropriate for situations that arise in many common darts games, and
may even be applicable to other problems that involve aiming at targets with interesting geometry
(e.g. shooting or military applications, pitching in baseball).

Software for our algorithms is available as an R package [R D08], and also in the form of a
simple web application. Both can be found at http://stat.stanford.edu/~ryantibs/darts/.

2 A mathematical model of darts

Let Z be a random variable denoting the 2-dimensional position of a dart throw, and let s(Z)
denote the score. Then the expected score is

E[s(Z)] = 50 · P(Z ∈ DB) + 25 · P(Z ∈ SB)+

20∑

i=1

[
i · P(Z ∈ Si) + 2i · P(Z ∈ Di) + 3i · P(Z ∈ Ti)

]
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where Si,Di and Ti are the single, double and triple regions of pie-slice i.
Perhaps the simplest model is to suppose that Z is uniformly distributed on the board B, that

is, for any region S

P(Z ∈ S) =
area(S ∩B)

area(B)
.

Using the board measurements given in A.1, we can compute the appropriate probabilities (areas)
to get

E[s(Z)] =
370619.8075

28900
≈ 12.82.

Surprisingly, this is a higher average than is achieved by many beginning players. (The first
author scored an average of 11.65 over 100 throws, and he was trying his best!) How can this be?
First of all, a beginner will occasionally miss the board entirely, which corresponds to a score of 0.
But more importantly, most beginners aim at the 20; since this is adjacent to the 5 and 1, it may
not be advantageous for a sufficiently inaccurate player to aim here.

A follow-up question is: where is the best place to aim? As the uniform model is not a very
realistic model for dart throws, we turn to the Gaussian model as a natural extension. Later, in
Section 3, we consider a Gaussian model with a general covariance matrix. Here we consider a
simpler spherical model. Let the origin (0, 0) correspond to the center of the board, and consider
the model

Z = µ+ ε, ε ∼ N (0, σ2I)

where I is the 2 × 2 identity matrix. The point µ = (µx, µy) represents the location at which the
player is aiming, and σ2 controls the size of the error ε. (Smaller σ2 means a more accurate player.)
Given this setup, our question becomes: what choice of µ produces the largest value of Eµ,σ2 [s(Z)]?

2.1 Choosing where to aim

For a given σ2, consider choosing µ to maximize

Eµ,σ2 [s(Z)] =

∫∫
1

2πσ2
e−‖(x,y)−µ‖2/2σ2

s(x, y) dx dy. (1)

While this is too difficult to approach analytically, we note that the above quantity is simply

(fσ2 ∗ s)(µ)

where ∗ represents a convolution, in this case, the convolution of the bivariate N (0, σ2I) density
fσ2 with the score s. In fact, by the convolution theorem

fσ2 ∗ s = F−1
[
F(fσ2) · F(s)

]

where F and F−1 denote the Fourier transform and inverse Fourier transform, respectively. Thus
we can make two 2-dimensional arrays of the Gaussian density and the score function evaluated,
say, on a millimeter scale across the dartboard, and rapidly compute their convolution using two
FFTs (fast Fourier transform) and one inverse FFT.

Once we have computed this convolution, we have the expected score (1) evaluated at every µ on
a fine grid. It is interesting to note that this simple convolution idea was not noted in the previous
work on statistical modelling of darts [Ste97, Per99], with the authors using instead naive Monte
Carlo to approximate the above expectations. This convolution approach is especially useful for
creating a heatmap of the expected score, which would be infeasible using Monte Carlo methods.
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Some heatmaps are shown in Figure 2, for σ = 5, 26.9, and 64.6. The latter two values were
chosen because, as we shall see shortly, these are estimates of σ that correspond to author 2 and
author 1, respectively. Here σ is given in millimeters; for reference, the board has a radius of 170
mm, and recall the rest of the measurements in A.1.

The bright colors (yellow through white) correspond to the high expected scores. It is important
to note that the heatmaps change considerably as we vary σ. For σ = 0 (perfect accuracy), the
optimal µ lies in the T20, the highest scoring region of the board. When σ = 5, the best place to
aim is still (the center of) the T20. But for σ = 26.9, it turns out that the best place to aim is in
the T19, close to the the border it shares with the 7. For σ = 64.6, one can achieve essentially the
same (maximum) expected score by aiming in a large spot around the center, and the optimal spot
is to the lower-left of the bullseye.

2.2 Estimating the accuracy of a player

Since the optimal location µ∗(σ) depends strongly on σ, we consider a method for estimating a
player’s σ2 so that he or she can implement the optimal strategy. Suppose a player throws n
independent darts, aiming each time at the center of the board. If we knew the board positions
Z1, . . . Zn, the standard sample variance calculation would provide an estimate of σ2. However,
having a player record the position of each throw would be too time-consuming and prone to
measurement error. Also, few players would want to do this for a large number of throws; it is
much easier instead to just record the score of each dart throw.

In what follows, we use just the scores to arrive at an estimate of σ2. This may seem surprising at
first, because there seems relatively little information to estimate σ2 just knowing the score, which
for most numbers (for example, 13), restricts the position to lie in a relatively large region (pie-slice)
of the board. This ambiguity is resolved by scores uniquely corresponding to the bullseyes, double
rings, and triple rings, and so it is helpful to record many scores. Unlike recording the positions, it
seems a reasonable task to record at least n = 50 scores.

Since we observe incomplete data, this problem is well-suited to an application of the EM
algorithm [DLR77]. This algorithm, used widely in applied statistics, was introduced for problems
in which maximization of a likelihood based on complete (but unobserved) data Z is simple, and
the distribution of the unobserved Z based on the observations X is somewhat tractable or at least
easy to simulate from. In our setting, the observed data are the scores X = (X1, . . . Xn) for a player
aiming n darts at the center µ = 0, and the unobserved data are the positions Z = (Z1, . . . Zn)
where the darts actually landed.

Let ℓ(σ2;X,Z) denote the complete data log-likelihood. The EM algorithm (in this case esti-
mating only one parameter, σ2) begins with an initial estimate σ2

0 , and then repeats the following
two steps until convergence:

E-step: compute Q(σ2) = Eσ2

t
[ℓ(σ2;X,Z)|X];

M-step: let σ2
t+1 = argmaxσ2 Q(σ2).

With µ = 0, the complete data log-likelihood is (up to a constant)

ℓ(σ2;X,Z) =

{
−n log σ2 − 1

2σ2

∑n
i=1(Z

2
i,x + Z2

i,y) if Xi = s(Zi) ∀i

−∞ otherwise.

Therefore the expectation in the E-step is

Eσ2

0

[ℓ(σ2;X,Z)|X] = −n log σ2 −
1

2σ2

n∑

i=1

Eσ2

0

(Z2
i,x + Z2

i,y|Xi).
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Figure 2: Heatmaps of Eµ,σ2 [s(Z)] for to σ = 5, 26.9, and 64.6 (arranged from top to bottom). The color
gradient for each plot is scaled to its own range of scores. Adjacent to each heatmap, the optimal aiming
location is given by a blue dot on the dartboard.
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We are left with the task of computing the above expectations in the summation. It turns out that
these can be computed algebraically, using the symmetry of our Gaussian distribution; for details
see A.2.

As for the M-step, note that C =
∑n

i=1 Eσ2

0

(Z2
i,x + Z2

i,y|Xi) does not depend on σ2. Hence we

choose σ2 to maximize −n log σ2 − C/2σ2, which gives σ2 = C/2n.
In practice, the EM algorithm gives quite an accurate estimate of σ2, even when n is only

moderately large. Figure 3 considers the case when n = 50: for each σ = 1, . . . 100, we generated
independent Z1, . . . Zn ∼ N (0, σ2I). We computed the maximum likelihood estimate of σ2 based
on the complete data (Z1, . . . Zn) (shown in blue), which is simply

σ̂2
MLE =

1

2n

n∑

i=1

(Z2
i,x + Z2

i,y),

and compared this with the EM estimate based on the scores (X1, . . . Xn) (shown in red). The two
estimates are very close for all values of σ.
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Figure 3: The MLE and EM estimate, from n = 50 points drawn independently from N (0, σ2I), and σ
ranging over 1, 2, . . .100. For each σ we actually repeated this 10 times; shown are the mean plus and minus
one standard error over these trials.

Author 1 and author 2 each threw 100 darts at the bullseye and recorded their scores, from
which we estimate their standard deviations to be σ1 = 64.6 and σ2 = 26.9, respectively. Thus
Figure 2 shows their personalized heatmaps. To maximize his expected score, author 1 should be
aiming at the S8, close to the bullseye. Meanwhile, author 2 (who is a fairly skilled darts player)
should be aiming at the T19.
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3 A more general Gaussian model

In this section, we consider a more general Gaussian model for throwing errors

ε ∼ N (0,Σ)

which allows for an arbitrary covariance matrix Σ. This flexibility is important, as a player’s
distribution of throwing errors may not be circularly symmetric. For example, it is common for
most players to have a smaller variance in the horizontal direction than in the vertical one, since
the throwing motion is up-and-down with no (intentional) lateral component. Also, a right-handed
player may possess a different “tilt” to his or her error distribution (defined by the sign of the
correlation) than a left-handed player. In this new setting, we follow the same approach as before:
first we estimate model parameters using the EM algorithm, then we compute a heatmap of the
expected score function.

3.1 Estimating the covariance

We can estimate Σ using a similar EM strategy as before, having observed the scores X1, . . . Xn of
throws aimed at the board’s center, but not the positions Z1, . . . Zn. As µ = 0, the complete data
log-likelihood is

ℓ(Σ;X,Z) = −
n

2
log |Σ| −

1

2

n∑

i=1

ZT
i Σ

−1Zi

with Xi = s(Zi) for all i. It is convenient to simplify

n∑

i=1

ZT
i Σ

−1Zi = tr

(
Σ−1

n∑

i=1

ZiZ
T
i

)

using the fact that trace is linear and invariant under commutation. Thus we must compute

EΣ0
[ℓ(Σ;X,Z)|X] = −

n

2
log |Σ| −

1

2
tr

(
Σ−1

n∑

i=1

EΣ0
(ZiZ

T
i |Xi)

)
.

Maximization over Σ is a problem identical to that of maximum likelihood for a multivariate Gaus-
sian with unknown covariance. Hence the usual maximum likelihood calculations (see [MKB79])
give

Σ =
1

n

n∑

i=1

EΣ0
(ZiZ

T
i |Xi).

The expectations above can no longer be done in closed form as in the simple Gaussian case.
Hence we use importance sampling [Liu08] which is a popular and useful Monte Carlo technique to
approximate expectations that may be otherwise difficult to compute. For example, consider the
term

EΣ0
(Z2

i,x|Xi) =

∫∫
x2 p(x, y) dx dy,

where p is the density of Zi|Xi (Gaussian conditional on being in the region of the board defined
by the score Xi). In practice, it is hard to draw samples from this distribution, and hence it is hard
to estimate the expectation by simple Monte Carlo simulation. The idea of importance sampling
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is to replace samples from p with samples from some q that is “close” to p but easier to draw from.
As long as p = 0 whenever q = 0, we can write

∫∫
x2p(x, y) dx dy =

∫∫
x2w(x, y)q(x, y) dx dy

where w = p/q. Drawing samples z1, . . . zm from q, we estimate the above by

1

m

m∑

j=1

z2i,xw(zi,x, zi,y)

or, if the density is known only up to some constant

1
m

∑m
j=1 z

2
i,xw(zi,x, zi,y)

1
m

∑m
j=1w(zi,x, zi,y)

.

There are many choices for q, and the optimal q, measured in terms of the variance of the estimate,
is proportional to x2 · p(x, y) [Liu08]. In our case, we choose q to be the uniform distribution over
the region of the board defined by the score Xi, because these distributions are easy to draw from.
The weights in this case are easily seen to be just w(x, y) = fΣ0

(x, y), the bivariate Gaussian density
with covariance Σ0.

3.2 Computing the heatmap

Having estimated a player’s covariance Σ, a personalized heatmap can be constructed just as before.
The expected score if the player tries to aim at a location µ is

(fΣ ∗ s)(µ).

Again we approximate this by evaluating fΣ and s over a grid and taking the convolution of these
two 2-d arrays, which can be quickly computed using two FFTs and one inverse FFT.

From their same set of n = 100 scores (as before), we estimate the covariances for author 1 and
author 2 to be

Σ1 =

[
1820.6 −471.1
−471.1 4702.2

]
, Σ2 =

[
320.5 −154.2

−154.2 1530.9

]

respectively. See Figure 4 for their personalized heatmaps.
The flexibility in this new model leads to some interesting results. For example, consider the

case of author 2: from the scores of his 100 throws aimed at the bullseye, recall that we estimate
his marginal standard deviation to be σ = 26.9 according to the simple Gaussian model. The
corresponding heatmap instructs him to aim at the T19. However, under the more general Gaussian
model, we estimate his x and y standard deviations to be σx = 17.9 and σy = 39.1, and the new
heatmap tells him to aim slightly above the T20. This change occurs because the general model
can adapt to the fact that author 2 has substantially better accuracy in the x direction. Intuitively,
he should be aiming at the 20 since his darts will often remain in this (vertical) pie-slice, and he
won’t hit the 5 or 1 (horizontal errors) often enough for it to be worthwhile aiming elsewhere.

4 Model extensions and considerations

The Gaussian distribution is a natural model in the EM context because of its simplicity and its
ubiquity in statistics. Additionally, there are many studies from cognitive science indicating that in
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Figure 4: Author 1’s and author 2’s covariances Σ1,Σ2 were estimated, and shown above are their person-
alized heatmaps (from top to bottom). Drawn on each dartboard is an ellipse denoting the 70% level set of
N (0,Σi), and the optimal location is marked with a blue dot.

motor control, movement errors are indeed Gaussian (see [TGM+05], for example). In the context
of dart throwing, however, it may be that the errors in the y direction are skewed downwards.
An argument for this comes from an analysis of a player’s dart-throwing motion: in the vertical
direction, the throwing motion is mostly flat with a sharp drop at the end, and hence more darts
could veer towards the floor than head for the ceiling. Below we investigate a distribution that
allows for this possibility.

4.1 Skew-Gaussian

In this setting we model the x and y coordinates of ε as independent Gaussian and skew-Gaussian,
respectively. We have

εx ∼ N (0, σ2), εy ∼ SN (0, ω2, α)

9



and so we have three parameters to estimate. With µ = 0, the complete data log-likelihood is

ℓ(σ2, ω2, α;X,Z) = −n log σ −
1

2σ2

n∑

i=1

Z2
i,x − n log ω −

1

2ω2

n∑

i=1

Z2
i,y +

n∑

i=1

log Φ

(
αZi,y

ω

)

with Xi = s(Zi) for all i. Examining the above, we can decouple this into two separate problems:
one in estimating σ2, and the other in estimating ω2, α. In the first problem we compute

C1 =
n∑

i=1

Eσ2

0

(Z2
i,x|Xi)

which can be done in closed form (see A.3), and then we take the maximizing value σ2 = C1/n. In
the second we must consider

C2 =

n∑

i=1

Eω2

0
,α0

(Z2
i,y|Xi), C3 =

n∑

i=1

Eω2

0
,α0

[
log Φ

(
αZi,y

ω

)]
.

We can compute C2 by importance sampling, again choosing the proposal density q to be the
uniform distribution over the appropriate board region. At first glance, the term C3 causes a bit
of trouble because the parameters over which we need to maximize, ω2 and α, are entangled in the
expectation. However, we can use the highly accurate piecewise-quadratic approximation

log Φ(x) ≈ a+ bx+ cx2, (a, b, c) =





(−0.693, 0.727,−0.412) if x ≤ 0

(−0.693, 0.758,−0.232) if 0 < x ≤ 1.5

(−0.306, 0.221,−0.040) if 1.5 < x

(see A.4 for derivation details). Then with

K1 =

n∑

i=1

Eω2

0
,α0

[b(Zi,y) · Zi,y|Xi], K2 =

n∑

i=1

Eω2

0
,α0

[c(Zi,y) · Z
2
i,y|Xi]

computed via importance sampling, maximization over ω2 and α yields the simple updates

ω2 = C2/n, α = −K1/K2 ·
√

C2/n.

Notice that these updates would be analogous to the ML solutions, had we again used the piecewise-
quadratic approximation for log Φ.

Once we have the estimates σ2, ω2, α, the heatmap is again given by the convolution

fσ2,ω2,α ∗ s

where fσ2,ω2,α is the product of the N (0, σ2) and SN (0, ω2, α) densities. We estimated these
parameters for author 1 and author 2, using the scores of their n = 100 throws aimed at the
board’s center. As expected, the skewness parameter α is negative in both cases, meaning that
there is a downwards vertical skew. However, the size of the skew is not large enough to produce
heatmaps that differ significantly from Figure 4, and hence we omit them here.
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4.2 Non-constant variance and non-independence of throws

A player’s variance may decrease as the game progresses, since he or she may improve with practice.
With this in mind, it is important that a player is sufficiently “warmed up” before he or she throws
darts at the bullseye to get an estimate of their model parameters, and hence their personalized
heatmap. Moreover, we can offer an argument for the optimal strategy being robust against small
changes in accuracy. Consider the simple Gaussian model of Section 2, and recall that a player’s
accuracy was parametrized by the marginal variance parameter σ2. Shown in Figure 5 is the optimal
aiming location µ∗(σ) = argmaxµ Eµ,σ2 [s(Z)] as σ varies from 0 to 100, calculated at increments
of 0.1. The path appears to be continuous except for a single jump at σ = 16.4. Aside from being
interesting, this is important because it indicates that small changes in σ amount to small changes
in the optimal strategy (again, except for σ in an interval around 16.4).
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σ=16.4

Figure 5: Path of the optimal location µ∗ parametrized by σ. Starting at σ = 0, the optimal µ is in the
center of the T20, and moves slightly up and to the left. Then it jumps to the T19 at σ = 16.4. From here
it curls into the center of the board, stopping a bit lower than and the left of the bullseye at σ = 100.

Furthermore, the assumption that dart throws are independent seems unlikely to be true in
reality. Muscle memory plays a large role in any game that requires considerable control of fine
motor skills. It can be both frustrating to repeat a misthrow, and joyous to rehit the T20, with a
high amount of precision and seemingly little effort on a successive dart throw. Though accounting
for this dependence can become very complicated, a simplified model may be worth considering.
For instance, we might view the current throw as a mixture of two Gaussians, one centered at the
spot where a playing is aiming and the other centered at the spot that this player hit previously.
Another example from the time series literature would be an autoregressive model, in which the
current throw is Gaussian conditional on the previous throws.
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5 Discussion

We have developed a method for obtaining a personalized strategy, under various models for dart
throws. This strategy is based on the scores of a player’s throws aimed at the bullseye (as opposed
to, for example, the positions of these throws) and therefore it is practically feasible for a player to
gather the needed data. Finally, the strategy is represented by a heatmap of the expected score as
a function of the aiming point.

Recall the simple Gaussian model presented in Section 2: here we were mainly concerned with
the optimal aiming location. Consider the optimal (expected) score itself: not surprisingly, the
optimal score decreases as the variance σ2 increases. In fact, this optimal score curve is very steep,
and it nearly achieves exponential decline. One might ask whether there was much was much
thought put into the design of the current dartboard’s arrangement of the numbers 1, . . . 20. In
researching this question, we found that the person credited with devising this arrangement is Brian
Gamlin, a carpenter from Bury, Lancashire, in 1896 [Cha09]. Gamlin boasted that his arrangement
penalized drunkards for their inaccuracy, but still it remained unclear how he chose the particular
sequence of numbers.

Therefore we decided to develop a quantitative measure for the difficulty of an arbitrary ar-
rangement. Since every arrangement yields a different optimal score curve, we simply chose the
integral under this curve (over some finite limits) as our measure of difficulty. Hence a lower value
corresponds to a more challenging arrangement, and we sought the arrangement that minimized
this criterion. Using the Metropolis-Hastings algorithm [Liu08], we managed to find an arrange-
ment that achieves lower value of this integral than the current board; in fact, its optimal score
curve lies below that of the current arrangement for every σ2.

Interestingly enough, the arrangement we found is simply a mirror image of an arrangement
given by [Cur04], which was proposed because it maximizes the sum of absolute differences be-
tween adjacent numbers. Though this seems to be inspired by mathematical elegance more than
reality, it turned out to be unbeatable by our Metropolis-Hastings search! Supplementary ma-
terials (including a longer discussion of our search for challenging arrangements) are available at
http://stat.stanford.edu/~ryantibs/darts/.
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A Appendix

A.1 Dartboard measurements

Here are the relevant dartboard measurements, taken from the British Darts Organization playing
rules [Ald06]. All measurements are in millimeters.
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Center to DB wire 6.35

Center to SB wire 15.9

Center to inner triple wire 99

Center to outer triple wire 107

Center to inner double wire 162

Center to outer double wire 170

A.2 Computing conditional expectations for the simple Gaussian EM

Recall that we are in the setting Zi ∼ N (0, σ2
0I) and we are to compute the conditional expectation

E(Z2
i,x+Z2

i,y|Xi), where Xi denotes the score Xi = s(Zi). In general, we can describe a score Xi as
being achieved by landing in ∪jAj , where each region Aj can be expressed as [rj,1, rj,2]× [θj,1, θj,2]
in polar coordinates. For example, the score Xi = 20 can be achieved by landing in 3 such regions:
the two S20 chunks and the D10. So

E(Z2
i,x + Z2

i,y|Xi) = E(Z2
i,x + Z2

i,y|Zi ∈ ∪jAj)

=

∑
j

∫∫
Aj
(x2 + y2)e−(x2+y2)/2σ2

0 dx dy
∑

j

∫∫
Aj

e−(x2+y2)/2σ2

0 dx dy

=

∑
j

∫ rj,2
rj,1

∫ θj,2
θj,1

r3e−r2/2σ2

0 dθ dr
∑

j

∫ rj,2
rj,1

∫ θj,2
θj,1

re−r2/2σ2

0 dθ dr

where we used a change of variables to polar coordinates in the last step. The integrals over θ will
contribute a common factor of

θj,2 − θj,1 =

{
2π if Xi = 25 or 50

π/10 otherwise

to both the numerator and denominator, and hence this will cancel. The integrals over r can be
computed exactly (using integration by parts in the numerator), and therefore we are left with

E(Z2
i,x + Z2

i,y|Xi) =

∑
j [(r

2
j,1 + 2σ2

0)e
−rj,1/2σ2

0 − (r2j,2 + 2σ2
0)e

−rj,2/2σ2

0 ]
∑

j(e
−rj,1/2σ2

0 − e−rj,2/2σ2

0 )
.

A.3 Computing conditional expectations for the skew-Gaussian EM

Here we have Zi,x ∼ N (0, σ2
0) (recall that it is the y component Zi,y that is skewed), and we need

to compute the conditional expectation E(Zi,x|Xi). Following the same arguments as A.2, we have

E(Z2
i,x|Xi) =

∑
j

∫ rj,2
rj,1

∫ θj,2
θj,1

r3 cos2 θe−r2/2σ2

0 dθ dr
∑

j

∫ rj,2
rj,1

∫ θj,2
θj,1

re−r2/2σ2

0 dθ dr
.

This is only slightly more complicated, since the integrals over θ no longer cancel. We compute
∫ θj,2

θj,1

cos2 θ dθ = △θj/2 + [sin(2θj,2)− sin(2θj,1)]/4

where △θj = θj,2 − θj,1, and the integrals over r are the same as before, giving

E(Z2
i,x|Xi) =

∑
j [(r

2
j,1 + 2σ2

0)e
−rj,1/2σ2

0 − (r2j,2 + 2σ2
0)e

−rj,2/2σ2

0 ] · [2△θj + sin(2θj,2)− sin(2θj,1)]
∑

j(e
−rj,1/2σ2

0 − e−rj,2/2σ2

0 ) · 4△θj
.
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A.4 Approximation of the logarithm of the standard normal CDF

We take a very simple-minded approach to approximating log Φ(x) with a piecewise-quadratic
function a + bx + cx2: on each of the intervals [−3, 0], [0, 1.5], [1.5, 3], we obtain the coefficients
(a, b, c) using ordinary least squares and a fine grid of points. This gives the coefficient values

(a, b, c) =





(−0.693, 0.727,−0.412) if x ≤ 0

(−0.693, 0.758,−0.232) if 0 < x ≤ 1.5

(−0.306, 0.221,−0.040) if 1.5 < x

.

In Figure 6 we plotted log Φ(x) for x ∈ [−3, 3], and on top we plotted the approximation, with the
colors coding the regions. The approximation is very accurate over [−3, 3], and a standard normal
random variable lies in this interval with probability > 0.999.
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Figure 6: The function logΦ(x) is plotted in black, and its piecewise-quadratic approximation is plotted in
color.
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