
Net-X: System eXtensions for Supporting
Multiple Channels, Multiple Interfaces,

and Other Interface Capabilities∗

Technical Report

August 2006

Pradeep Kyasanur Chandrakanth Chereddi Nitin H. Vaidya
University of Illinois at Urbana-Champaign

kyasanur@crhc.uiuc.edu, chereddi@gmail.com, nhv@uiuc.edu

Abstract— There are several interface capabilities that
may be available in next generation wireless networks.
Some examples of interface capabilities include the ability
to set the channel of operation and data rate on a frequent
basis, and the ability to equip devices with multiple radio
interfaces and multiple antennas. It may be possible to
significantly improve the performance of wireless networks
by exploiting the interface capabilities through carefully
designed protocols. However, current operating systems
have poor support for implementing protocols that need
to use the available interface capabilities. The goal of
the Net-X project is to develop operating system support
for utilizing interface capabilities. As a first step in this
direction, we have developed an architecture in Linux to
support the use of multiple channels, multiple interfaces,
and interface switching. This support has been used to
implement a set of multichannel protocols that we had
previously developed. In this report, we will describe
the new architectural support, implementation of the
multichannel protocols, and the use of the protocols in
a mesh network. We also describe how the architecture
may be extended to support the use of other interface
capabilities as well.

I. INTRODUCTION

Newer generation wireless radio hardware pro-
vide support for setting several radio parameters,
such as the channel of operation, the data rate, and
the transmission power, on a frequent1 basis. In
addition, with reducing hardware costs, it is possible
to increase theresourcesavailable at each host by

∗This work was funded in part by National Science Foundation.
1The radio parameters could be potentially set several timesevery

second, and for some parameters could be set on a per-packet basis.

providing for multiple interfaces, multiple antennas,
etc. Collectively, we may view the different radio
parameters and hardware resources asinterface ca-
pabilities that are available in the network.

Common operating systems have strived tohide
the interface capabilities from higher layers of the
protocol stack (e.g., network layer is usually un-
aware of the notion of channels and data rates).
While the ability to hide interface capabilities sim-
plifies the design of higher layer protocols, it may
also severely limit the ability to exploit the available
capabilities. For example, because the network layer
is only aware of the notion of interfaces, kernel
routing tables typically only allow for specifying the
interface to use over a route. As a result, there is no
support for explicitly associating routes with other
kinds of interface capabilities, such as channels and
data rates. However, our past work [1] on utilizing
multiple channels has demonstrated the need for
channel-aware link and routing protocols for effec-
tive utilization of channels, and we believe that such
“aware” protocols are needed to effectively exploit
other interface capabilities as well. Therefore, there
is a need to developextensionsto the existing
operating systems to allow higher layer protocols
to utilize interface capabilities.

The goal of theNet-X project is to develop
generic support for utilizing interface capabilities,
such that the support is cleanly integrated into the
network stack. As a first step in this direction, we

2

have focused on providing support for utilizing mul-
tiple channels and multiple interfaces. We have de-
veloped generic architectural support in Linux that
provides higher layers fine-grained control over the
channels and interfaces used for sending out data.
Although our initial implementation has focused
on the use of multiple channels, the architecture
itself can support other interface capabilities, such
as multiple data rates and multiple transmission
powers.

In this report, we will describe our efforts on
building a multichannel multi-interface testbed. Our
work was motivated by the lack of kernel support for
implementation of a set of multichannel protocols
[2] that we had developed. The testbed imple-
mentation includes new architectural extensions for
supporting the use of multiple channels and multiple
interfaces, and one set of multichannel protocols [2]
to demonstrate the use of the extensions. We will
also describe how our implementation can be used
to support other interface capabilities as well.

The rest of this report is organized as follows. We
present related testbed work to support multichannel
protocols in Section II. Section III provides an
overview of the multichannel protocols that we
have developed. Section IV identifies the need for
new operating system support to exploit interface
capabilities. Section V presents the implementation
architecture, and the details of the implementation
are in Section VI, Section VII, and Section VIII.
We describe extensions to the implementation for
building a mesh network in Section IX. Sample
results are presented in Section X, and we conclude
in Section XI.

II. RELATED WORK

There have been several research initiatives on
building wireless network testbeds [3]–[9]. How-
ever, there have been relatively fewer attempts at
building multichannel wireless testbeds [10]–[13].
Of these, [10], [12], [13] assume that interfaces
are fixed to a channel for long intervals of time.
Therefore, in those implementations, switching in-
terfaces from one channel to another can be done
infrequently, possibly using user-space scripts, with-
out requiring support from the kernel. In contrast,
our solutions require more fine-grained interface

switching, which requires additional architectural
support.

“VirtualWifi” [11], [14] is a virtualization ar-
chitecture that abstracts a single wireless interface
into multiple virtual interfaces. VirtualWifi provides
support for switching the physical interface across
the channels used by each virtual interface. Virtu-
alWifi has some similarity to our implementation,
but does not offer all the features necessary for
controlled switching among multiple channels. Vir-
tualWifi exports one virtual interface per channel,
which exposesthe available channels (by exposing
one IP address per channel) to the user applications,
and may necessitate modifying these applications.
In contrast, our workhides the notion of multiple
channels from user applications, and therefore, does
not require any modifications to existing applica-
tions.

A feature of our implementation is that it exports
a single virtual interface to abstract out multiple in-
terfaces. There are other testbed works that can also
abstract multiple real interfaces into a single virtual
interface [15]–[17]. However, those approaches are
not designed to support the notion of using multiple
channels or interface switching between channels.

Architectural changes have been proposed by
wireless researchers to support other protocols in
ad hoc networks. One well studied architectural
problem is to support on-demand routing [3], [4],
[17], which requires mechanisms to buffer data
packets while a route is being discovered. We im-
plement the on-demand discovery component of the
proposed multichannel routing protocol using the
same approach as in [4]. However, implementing the
other aspects of the multichannel protocols, such as
interface management, requires additional support,
as they require close interaction with the device
drivers.

We are not aware of any testbed works that allow
higher layer protocols to control the use of data
rates, transmission powers, antennas on a frequent
basis.

III. OVERVIEW OF SUPPORTED MULTICHANNEL

PROTOCOLS

The Net-X testbed is used to implement a set of
multichannel protocols that we have previously de-

3

veloped [1]. Here, we will provide a brief overview
of the protocols.

The focus of our multichannel protocols is the
effective use of multiple channels when there are
fewer interfaces per node than channels. We develop
two protocols: an interface management protocol to
assign channels to interfaces, and a routing protocol
to select good routes in a multichannel network. The
testbed implementation of the protocols requires
each node to have two interfaces, though we will
later describe extensions to support the use of a
single interface at each node.

One interface at each node is called a “fixed
interface” and is assigned for long intervals2 of time
to a “fixed channel”. The second interface at each
node is called a “switchable interface” and can be
switched between any of the remaining channels, as
necessary. The fixed channel of a node is selected
using a fixed channel selection protocol, which tries
to equally distribute the fixed interfaces of different
nodes on different channels. All data sent to a
node must be over the fixed channel, because the
node is guaranteed to always listen to the fixed
channel. A node may send data to a neighbor using
the fixed interface if both nodes use a common
fixed channel; otherwise, the switchable interface is
tuned to the neighbor’s fixed channel, and data is
sent out over the switchable interface. Each node
periodically sends out broadcast “hello” messages.
Hello messages include the fixed channel of the
node, and the fixed channels of all 1-hop neighbors.
Using this mechanism, a node can eventually learn
about the fixed channels used by all nodes in its 2-
hop neighborhood, and this information is used in
balancing channel assignment.

The routing protocol supports a new multichannel
routing metric (MCR). The metric is incorporated
into an on-demand routing protocol. More details
about the routing metric, as well as other aspects of
the interface management and routing protocols are
in [1].

2The intervals are long when compared to packet transmissiontime
and interface switching delay.

IV. A RCHITECTURAL SUPPORT FOR HIGHER

LAYER CONTROL OVER MULTIPLE CHANNELS

The multichannel protocols described in the pre-
vious section require (switchable) interfaces to po-
tentially switch on a frequent basis. Although exist-
ing interface hardware allows for switching on a fre-
quent basis, kernel support for higher layer control
over frequent switching is absent. In this section,
we motivate the need for new architectural support
in kernel for supporting multichannel protocols that
require interface switching.

Existing off-the-shelf hardware do allow inter-
faces to be switched by the driver, but common
operating system kernels are not designed to utilize
this feature. Operating systems have always tried to
abstract out the details of the underlying hardware
from higher layer applications. We want to continue
to preserve this design principle of abstracting out
non-essential features, and provide a clean mech-
anism for higher layer protocols to control the
use of channels and interfaces. For example, user
applications need not be aware of the notion of
multiple channels, multiple interfaces, and interface
switching. Routing and link-layer protocols may be
aware of the notion of channels and interfaces, but
need not be aware of the detailed procedures used to
implement interface switching. These requirements
necessitate changes to the operating system kernel.
As we argue next, supporting multiple interfaces
and interface switching in multichannel networks
requires non-trivial changes to the kernel. Our ap-
proach is to develop a genericchannel abstraction
layer to support interface switching. The channel
abstraction layer could be used to implement other
multichannel protocols that require interface switch-
ing, in addition to the protocols that we have imple-
mented. The abstraction layer can also be extended
to support other interface capabilities, such as data
rate and transmission power.

A. Need for new support

We identify the features needed to implement
interface switched multichannel protocols (that are
missing in current operating systems) by using
Linux as an example. The key features that are
lacking in Linux are as follows:

4

1. Specifying the channel to use for reaching a
neighbor:

Common operating systems do not allow the
network layer to control the channels (or other radio
features, such as data rates, transmission powers,
and antennas) used to reach a neighboring node.
Instead, the kernel routing tables only provide con-
trol over the interface to use to reach a neighboring
node. In a single channel network, there is no benefit
in explicitly selecting channels because all nodes
have to use a common channel. This lack of explicit
channel support is not a problem in those multi-
channel networks where each interface is associated
with exactly one channel, i.e., there is an one-to-
one mapping between interfaces and channels. For
example, there is an one-to-one mapping between
interfaces and channels in a network where each
node hasm interfaces, and the interfaces of a node
are always fixed on somem channels. In this setting,
the channel to use to reach a neighboring node can
be indirectly specified by the specifying interface to
use, since each interface is associated with a unique
channel.

However, we are interested in the scenario where
the number of interfaces per node could be signifi-
cantly smaller than the number of channels. There-
fore, there is no longer an one-to-one mapping be-
tween channels and interfaces3. Under this scenario,
we have shown that a good strategy is to use the
same (switchable) interface to send data to different
neighboring nodes over possibly different channels.
To support the notion of switchable interfaces, we
need to to control the channels to use to reach a
node.

For example, consider the scenario shown in
Figure 1. In the figure, suppose that each node
has a single interface. Also suppose that node B
is listening to channel 1 and node C is listening to
channel 2. Under this scenario, when A has to send
some data to B, it has to send the data over channel
1, and similarly data to C has to be sent over channel
2 (the interface at A has to be switched between
channels 1 and 2, when it is so required). This ex-

3Similarly, a single interface could be used with different data
rates, or with different transmission powers, to reach different nodes.
Therefore, there may not be a one-to-one mapping between an
interface, and the data rates and transmission powers that are used.

1 B

A

C2

Fig. 1. Example illustrating the lack of kernel support for multi-
channel protocols.

ample shows that the channel to use for transmitting
a packet may vary based on destinations, even if
the same interface is used for all destinations. In
general, without support for specifying the channels
to use to reach a neighboring node, it is difficult to
implement those multichannel protocols that use a
singleinterface to send data to different neighboring
nodes overdifferentchannels.

2. Specifying channels to use for broadcast:
In a single channel network, broadcast packets

sent out on the wireless channel are typically re-
ceived by nodes within the transmission range of
the sender. The wireless broadcast property is used
to efficiently exchange information with multiple
neighbors (for example, during route discovery).
In a multichannel network, different nodes may
be listening to different channels. Therefore, to
allow broadcast packets in a multichannel network
to reach all the nodes that would have received
the packet in a single-channel network, copies of
the broadcast packet may have to be sent out on
multiple channels4. For example, in Figure 1, node
A will have to send a copy of any broadcast packet
on both channel 1 and channel 2 to ensure that its
neighbors B and C can receive the packet.

There are several existing applications that use
broadcast communication, for example, the address
resolution protocol (ARP). To ensure that the use
of multiple channels is transparent to such appli-
cations, it is necessary that the kernel send out
copies of broadcast packets on multiple channels,
when necessary. However, there is no support in the
existing kernel to specify which channels broadcast
packets have to be sent out on, or to actually

4A similar feature may be needed if an interface is equipped with
multi-beam antennas. A beam may only reach a subset of neighbors,
and copies of packets may have to be sent over each beam.

5

create and send out copies of broadcast packets
on multiple channels. Therefore, there is a need to
incorporate mechanisms in the kernel for supporting
multichannel broadcast.

3. Buffering and scheduling support
As we discussed earlier, interfaces may have to

be switched between different channels to enable
communication among neighboring nodes that are
on different channels, and to support broadcasts. A
switch is required when a packet has to be sent
out on some channelc, and at that time there is
no interface tuned to channelc. Suppose that the
kernel can decide whether a switch is necessary to
send out some packet. Even then, the kernel has
to decide whether an immediate switch is feasible.
For example, if an interface is still transmitting an
earlier packet, or has buffered some other packets
for transmission, then an immediate switch may
result in the loss of those packets that are awaiting
transmission in the interface queue. Therefore, there
is a need for mechanisms in the kernel to decide if
earlier transmissions are complete, before switching
an interface.

When an interface cannot be immediately
switched to a new channel, packets have to be
buffered in a channel queue until the interface can
be switched. Switching an interface incurs a non-
negligible delay (around 5 ms with the interfaces
used in our testbed), and switching too frequently
may significantly degrade performance. Therefore,
there is a need for a queuing algorithm to buffer
packets, as well as a scheduling algorithm to trans-
mit buffered packets using a policy that reduces
frequent switching, yet ensures queuing delay is not
too large.

B. Design choices

The earlier discussions clearly identify the need
for several new features in the kernel for support-
ing the use of multiple channels, especially when
interfaces have to switch between channels. The
Linux kernel’s networking stack is organized into
multiple layers to ease implementation and improve
extensibility. For example, IP belongs to the network
layer, while the device drivers that control access
to the interface hardware are part of the link layer.
Once we have decided to add support for multiple

channels and interface switching, the next question
is to identify the layer where the support can be
added. Handling multiple channels and interface
switching requires close interaction with the inter-
face device driver. Based on this requirement, we
have three possible locations for adding support:

1) Add the required support directly into the
device driver. This approach offers the most
control in accessing the interfaces, but has
two main drawbacks. First, this approach ties
in our implementation with a specific device
driver. Second, multiple interfaces cannot be
cleanly handled within the device driver of a
single interface.

2) Add the required support into the network
layer (for example, as a “Netfilter” hook [18]).
This approach insulates the implementation
from the specifics of device drivers. However,
multiple interfaces are visible to the network
layer, and this may require modifications to
some protocols that are at (or below) the
network layer (such as ARP).

3) Add the required support as a new module that
operates between the network layer (as well
as ARP) and the device drivers. The module
may be logically viewed as belonging to the
link layer. This approach has the benefit of
being insulated from device driver specifics,
while presenting a single virtual interface to
the network layer. The virtual interface can
abstract multiple interfaces that may be actu-
ally available, and insulates the network layer
from the need to know the details of managing
multiple interfaces. We choose this approach,
and implement a newchannel abstraction
layer module.

The option we have chosen has some additional
benefits. Linux already has the ability to “bond”
multiple interfaces into a single virtual interface
using a link layer “bonding driver” that resides
between the network layer and the device drivers.
The bonding driver is typically used for grouping
multiple Ethernet-based devices into a single virtual
device. The bonding driver offers features that allow
for load balancing (striping) over the available inter-
faces, interface fail-over support, etc. There is also
a set of user space tools which support management

6

operations, such as specifying which real interfaces
to group into a single virtual interface. We have
implemented the channel abstraction layer as a new
feature of the bonding driver. In the next section,
we describe the implementation of the multichannel
protocols proposed in [1] using the interface switch-
ing support provided by the channel abstraction
layer.

V. IMPLEMENTATION

In this section, we will first describe the im-
plementation architecture, and then describe the
implementation of each of the key components.

A. Implementation architecture

The multichannel implementation architecture is
shown in Figure 2. Our implementation has three
main components, which collectively implement
one set of multichannel protocols.

• Channel abstraction layer: This kernel compo-
nent manages multiple channels and interfaces,
and provides support for fast interface switch-
ing. This component is generic enough to sup-
port other multichannel protocols, and other
interface capabilities, such as data rates and
transmission powers. The channel abstraction
layer abstracts the details of multiple channels
and interfaces from the higher layers, and is
controlled by “IOCTL” commands from the
userspace daemon.

• Kernel multichannel routing support: This
component is used to provide kernel support for
on-demand routing. The component informs
the userspace daemon when a route discovery
has to be initiated, and buffers data packets
while the route discovery is pending.

• Userspace daemon: The userspace daemon im-
plements the less time-critical components of
higher layer multichannel protocols (our mul-
tichannel protocols include two an interface
management protocol and a routing protocol).
Most of the higher layer protocol functionality
is implemented in this component.

The kernel components interact with the Linux
TCP/IP implementation and the interface device
drivers, while the userspace daemon is built using
standard userspace networking libraries. Most of
the multichannel protocol has been built into the

userspace daemon. The kernel components support
only a small set of essential features. In later
sections, we describe the implementation of each
component, as well as the interaction between com-
ponents.

VI. CHANNEL ABSTRACTION MODULE

In this section, we will describe the channel
abstraction module (CAL). The module is imple-
mented as a new feature of the bonding driver
present in the Linux kernel. Figure 2 shows the key
components of CAL:

• Unicast component: Enables specifying the
channel to use to reach a neighbor.

• Broadcast component: Provides support for
sending broadcast packets over multiple chan-
nels.

• Scheduling and queuing component: Supports
interface switching by buffering packets when
necessary, and scheduling switching across
channels.

In addition, we modify the madwifi drivers to
better support channel switching. The details of the
components and driver modifications are presented
below.

A. Unicast component

The unicast component provides support for spec-
ifying the channel to use to reach a neighbor.
The unicast component maintains a table called
the “Unicast table” as shown in Figure 2. The
unicast table is composed of tuples. Each tuple has
a destination IP address, a channel the destination
is expected to be listening on, and a real interface
to use to transmit to the neighbor. The unicast table
is populated by an user space multichannel protocol
via IOCTL calls (entries can be added or deleted).

When the CAL receives a unicast packet from the
network layer, it hands the packet off to the unicast
component. The destination address of the packet is
looked up in the unicast table to identify the channel
and the interface to use for reaching the destination.
After this, the packet is handed off to the queuing
component for subsequent transmission.

The unicast component can be easily extended
to support other interface capabilities. For example,
the tuple associated with each destination could

7

ChannelIP addr Interface

192.168.0.1 ath0 1

192.168.0.1 ath1 2

UNICAST TABLE BROADCAST TABLE

Channel Interface

1 ath0

2 ath1

3 ath1

Queues of ath0

1 2 3

Schedule

To interface ath0

Queues of ath1

1 2 3

Schedule

To interface ath1

ACTIVE ROUTES

192.168.0.1 792

IP addr Time left

Copies
Make

LookupPacket?
BroadcastLookup No Yes

Assign to
queues

Route
Available? Buffer

Packets

netlink messages

APPLICATIONS

USER

CHANNEL ABSTRACTION LAYER

USERPSACE DAEMON

LINUX TCP/IP STACK

LOCAL OUT hook

PRE−ROUTING hook

POST−ROUTING hook

KERNEL MULTICHANNEL
ROUTING SUPPORT

route foundre−inject packets

Yes No

Process
protocol packets

Process Handle
IOCTL calls

MULTICHANNEL INTERFACE

MANAGEMENT

PROTOCOL

Control path

Data packets

PROTOCOLROUTING

Fig. 2. Architecture for implementing multichannel protocols. The figure assumes that two interfaces, “ath0” and “ath1”, are available.

8

include additional entries to specify the data rate
and the transmission power. The IOCTL calls can
be extended (or new IOCTL calls added) to include
data rate and transmission powers. When the packet
is handed down to the device driver, the rates and
transmission powers to use can be given to the
driver.

B. Broadcast component

The broadcast component provides support for
sending out copies of a broadcast packet on mul-
tiple channels. The broadcast component maintains
a table called the “Broadcast table” as shown in
Figure 2. The broadcast table maintains a list of
channels on which copies of a broadcast packet
have to be sent out on, and the interfaces to use
for sending out the copies. The table is populated
by an user space multichannel protocol. This table
structure offers protocols the flexibility of changing
the set of channels to use for broadcast over time, as
well as controlling the specific interface to use for
broadcast. Therefore, protocols that use a common
channel for broadcast, protocols that send a copy of
broadcast packet over all the available channels, can
all use this broadcast architecture.

When the CAL receives a broadcast packet from
the network layer, it hands the packet off to the
broadcast component. The broadcast component
creates a copy of the packet for each channel listed
in the table, and hands off the copies of the packet
to the queuing component.

A similar mechanism can be used to support
other interface capabilities that may require multiple
transmissions to support broadcast. For example,
the broadcast list can be extended to specify the
antenna beam on which a packet has to be sent out,
to support broadcasts with multi-beam antennas.

C. Scheduling and queuing component

The scheduling and queuing component is the
most complex part of CAL. For each available
interface, the component maintains a separate set
of channel queues as shown in Figure 2. The user
space multichannel protocol, on startup, can specify
the list of channels supported by each interface
using ioctl calls. This architecture allows different
interfaces to support a possibly different set of
channels.

The queuing component receives a packet, from
either the unicast or the broadcast component, along
with information about the channel and interface to
use for sending out the packet. Using this infor-
mation, the packet is inserted into the appropriate
channel queue for subsequent transmission. Each
interface runs a separate scheduler to send out
the packets. In our current implementation, we use
identical round-robin schedulers on all interfaces.

The queuing procedure is useful to support inter-
face capabilities that incur a non-negligible delay
for switching from one mode5 to the other. For
example, multi-beam antennas may incur a non-
negligible beam switching delay. Similarly, certain
hardware may not allow changing the data rate or
transmission power on a per-packet basis. In such
scenarios, a queue can be associated with each
mode of an interface capability, thereby reducing
the frequency of switching the mode of operation
(and hence reduce the switching cost).

The scheduler is responsible for controlling in-
terface switching. Since interface switching delay
is not negligible (around 5 ms for our hardware),
we want to amortize the switching cost by sending
multiple packets on each channel (if possible) before
switching to a new channel. However, waiting for
too long on a channel increases packet delay. Once
the interface is switched to a channel, it stays
on that channel for at leastTmin duration. If the
channel is continuously loaded, then the scheduler
decides to switch to a different channel (only if
another channel has packets queued for it) after
Tmax duration (Tmax > Tmin).

Figure 3 describes the scheduler operation. The
scheduler maintains an estimateTfin of the time
needed to transmit packets it has already given to the
interface device driver (these packets are stored in
a separate queue within the device driver). Initially,
after a switch,Tfin is set to zero. For each packet
that is sent to the device driver,Tfin is incremented
by an estimate of the time needed to transmit that
packet. The estimate is derived based on the size
of the packet and the transmission data rate (we
ignore channel contention as it is not critical to

5We use the term “mode” to refer to the different values of an
interface capability. For example, the different data rates correspond
to the different modes available with the data rate capability.

9

have very accurate estimates). The scheduler sends
out packets to the interface driver until either the
channel queue is empty (in which case,Tfin is set
to the maximum of its current value andTmin), or
Tfin exceedsTmax. At this time, a timer is set to
expire afterTfin duration, if packets are pending
for any other channel. When the timer expires, if
some other channel has queued packets, then the
interface may have to be switched.

Before the interface is actually switched, the
device driver is queried to see if all packets, which
had been given to the driver since the last switch,
have been transmitted. Such a querying interface
is not common in most wireless drivers, and we
have built a custom querying interface in the device
driver that we use (details are in Section VI-D). If
some packets are still pending, the actual switch
is deferred for some more time (forTdefer time,
currently set to 10 ms). The driver flushes its queue
when a switch is requested. Therefore, deferring
switching allows any pending packets to be sent out.
After deferral, the interface is switched to the next
channel that has buffered packets, using a round-
robin service policy.

Although our current implementation has used a
round-robin scheduling policy, it is fairly simple to
provide alternate scheduling policies. For example,
the scheduler can be easily modified to provide
higher priority to certain nodes, or certain channels.
Similarly, different scheduling policies may be ap-
propriate for different interface capabilities.

The scheduling component also collects the chan-
nel usage statistics for different channels. This in-
formation is exported through theproc filesystem,
and can also be accessed throughioctl calls. The
statistics can be used by higher layer multichannel
protocols to do intelligent channel assignment, route
selection, etc.

D. Driver modifications

CAL has been designed for use with any existing
driver. However, without making some driver mod-
ifications, the switching delay could be excessive,
and many packets could be lost after a switch (the
packets present in the interface driver queue). In this
section, we describe the driver modifications that we
have implemented to improve performance.

Our testbed uses wireless interfaces that are based
on atheros chipsets [19] controlled by “madwifi”
open source driver. Our device driver modifications
have been made to the madwifi driver. We have
not yet looked at the feasibility of making these
modifications to other drivers.

1) Reducing channel switching delay:An IEEE
802.11 wireless interface operating in the ad hoc
mode is associated with two identifiers called the
ESSID (set by the administrator), and BSSID (cho-
sen by the node that first came up with that ESSID),
and these identifiers are sent out periodically in
beacon packets. When a wireless interface, running
in the ad hoc mode, switches to a new channel, it is
expected to listen for networks which advertise the
same ESSID as itself. If no advertisements are heard
within a specified time period, then the interface is
supposed to create a new network by advertising a
different randomly chosen BSSID. This process of
listening for beacons and advertising a new BSSID,
if necessary, can take up to 100 ms (the time for only
switching channels is about 5 ms). Therefore, the
overall interface switching delay can be excessive
when normal beaconing is used.

In multichannel protocols, the beaconing proce-
dure after a switch is not really required if all nodes
belong to the same network. To reduce the channel
switching delay, we changed the behavior of the
interface after a channel switch request has been
made, so as to not search for any beacons. Instead, at
startup, all nodes are initialized with a pre-specified
BSSID (in addition to the ESSID). This removes
the need for scanning for beacons after the switch.
Beacons have been disabled in a similar fashion in
some other testbed projects as well [20]. Using this
technique, we have reduced the interface switching
delay to about 5 ms.

Some capability-specific modifications may be
required for other interface capabilities as well.
However, with the generic CAL architecture, we
expect such modifications to be fairly small and re-
stricted to minor aspects of the driver functionality.

2) Query support:As we discussed in Section
VI-C, there is a need for the scheduling component
to estimate the queue size in the interface driver.
To support this, we overloaded a statistics function
already provided in Linux wireless device drivers

10

Defer to finish

����
����
����

����
����
����

TIME
Switch to
channel 1

T_fin
Switch to
channel 2

queue is empty or T_fin = T_max
Schedule transmissions until

pending transmissions

Fig. 3. Example time line of scheduling.

called get wirelessstats(). This function normally
returns basic book keeping counters, which are
wireless specific. In the returned data structure, there
was an unused field, which we now use to return the
number of packets which have been handed down to
the driver, but have still not been transmitted. This
information is used by the scheduling component
to prevent packet losses due to premature channel
switching.

E. Functionality exported by CAL

The userspace daemon communicates with CAL
using a set of IOCTL calls. IOCTL calls are a com-
mon way in Linux for interaction between kernel
and userspace components. The list of IOCTL calls
provided by CAL and their functionality is listed
in Table I. We will describe later the sequence
in which these IOCTL calls are invoked by the
userspace daemon. More details about the CAL
implementation are in Chereddi’s thesis [21].

The same IOCTL calls can potentially be ex-
tended to take additional parameters to support
other interface capabilities. Alternatively, it is also
possible to provide new IOCTLs to support other
interface capabilities.

VII. K ERNEL MULTICHANNEL ROUTING

SUPPORT

The kernel multichannel routing (KMCR) module
provides support for on-demand routing. For exam-
ple, when an application initiates communication
to a destination that is not a direct neighbor, a
new route may have to be setup if no route to the
destination is already available. The route discovery
protocol is implemented as part of the userspace
daemon. However, a mechanism is needed to invoke

the discovery process when a new route is desired
by the application. Clearly, the only place where
access to all application packets is available is in
the kernel. Therefore, several earlier routing imple-
mentations [3], [4], [17] have included support in
the kernel to initiate route discovery.

The on-demand route discovery process should
be transparent to applications. While the on-demand
route discovery is in progress, any packets sent by
the application have to be buffered, and later sent
out once a new route is available. This buffering is
required to prevent packet drops. Note that higher-
layer protocols such as TCP are severely affected by
the loss of the initial packets in a connection. For
example, TCP incurs a large timeout if the initial
SYN packet, used for connection establishment, is
lost. Packet buffering has been implemented in past
works in two different ways. In one approach [17],
application packets are sent up to the userspace and
stored by a userspace daemon, and re-injected once
the route is discovered. In the second approach [4],
packets are buffered in the kernel itself. We follow
the second approach because it avoids the context
switching overheads of sending a packet up to the
userspace.

The kernel routing support is implemented as a
module which can be loaded into the Linux kernel.
The module utilizes the Linux Netfilter support [18],
and the implementation was based on the AODV
implementation from Uppsala university [4], [22].
Figure 2 shows the structure of KMCR module.
The KMCR module maintains a “active route table”
containing a list of nodes to which routes are
available. Each node in the list is also associated
with a “time left” field that represents the time

11

IOCTL call Function
AddValidChannel Specify the channels that may be used by an interface.
UnicastEntry Add, update, or modify an entry in the unicast table.
BroadcastEntry Add or remove an entry in the broadcast table.
SwitchChannel Explicitly switch an interface to a new channel.
GetStatistics Return per-channel usage statistics.

TABLE I

L IST OF IOCTL CALLS EXPOSED BY CHANNEL ABSTRACTION LAYER.

period after which the route to that node is deemed
to be inactive.

The Netfilter library offers “hooks” to intercept
packets traversing through the networking stack.
The “LOCAL OUT” hook intercepts packets that
originate in the node, before the routes to be used
by the packets are computed. The KMCR module
adds itself to the LOCAL OUT hook. If a packet
received on the LOCAL OUT hook is destined for
a node (using the wireless interface) that does not
currently have a route, then a new route has to be
discovered. Otherwise, if a route exists, the packet is
returned without any modifications. When a route is
not available, KMCR requests the userspace daemon
to find a new route. After that, any packets to that
destination are captured from the LOCAL OUT
hook and buffered in the KMCR module until a new
route is discovered. After a route is discovered, the
KMCR module is notified by the userspace daemon,
which then re-injects the buffered packets. If the
route discovery fails, then any packets that had been
buffered, pending route discovery, are dropped.

The KMCR module also adds itself to two other
netfilter hooks; the “PRE-ROUTING” hook and
the “POST-ROUTING” hook. The PRE-ROUTING
hook intercepts packets received by a node from
an external node, while the POST-ROUTING hook
intercepts packets that are destined for an external
node. Packets received on the PRE-ROUTING hook
over the switchable interface are dropped (as the
switchable interface is not intended for receiving
data). Suppose X is a node corresponding to either
the source of a packet intercepted on the PRE-
ROUTING hook (that is received over the fixed
interface), or the destination of a packet intercepted
on the POST-ROUTING hook. Then, the time left
for the route to X, contained in the active route table,
is reset to a maximumLifeTimevalue (we set the

LifeTime value to 30 seconds in our implementa-
tion). Essentially, when packets are intercepted on
the PRE-ROUTING and POST-ROUTING hooks,
it indicates that the routes used by the packets are
active. If no packet is intercepted along a route over
a time longer than theLifeTimevalue, then the route
is assumed to be not in use. The userspace daemon
periodically checks which routes in the active route
table are no longer in use, and removes them.

The communication between the KMCR module
and the userspace daemon is implemented using
“netlink” messages. Netlink library is a feature in
Linux to support communication between kernel
and userspace. Netlink offers more flexibility than
IOCTL calls by allowing two way communication,
and is especially useful when more than a few
bytes of information have to be exchanged. The
list of netlink messages implemented by the KMCR
module, and their functionality is listed in Table II.

VIII. U SERSPACE DAEMON

The userspace daemon implements the interface
management and routing protocols by utilizing the
features offered by the CAL module and the KMCR
module. Recall that an overview of the protocols
was provided in Section III. In this section, we
focus on issues specific to the implementation of the
protocols. The implementation currently supports at
most two interfaces per node, but can be easily
extended to support more than two interfaces. The
userspace daemon should be started only after the
CAL and KMCR modules have already been loaded
into the kernel. Our current userspace implemen-
tation assumes that two interfaces are available at
each node (and can be easily extended to handle
more than two interfaces). In the next section, we
describe extensions to handle nodes with a single
interface.

12

Netlink message Function
AddRoute Add an entry into active table. Implies route discovery was successful.
DiscoveryFailed Inform KMCR that route discovery failed.
DeleteRoute Remove an entry from active route table.
InitiateDiscovery Request sent by KMCR to userspace for initiating route discovery.
IsRouteActive Query KMCR if the requested route is active.
RouteStatus Response from KMCR to userspace on the status of the requested route.

TABLE II

L IST OF NETLINK MESSAGES SUPPORTED BY THE KERNEL MULTICHANNEL SUPPORT MODULE.

Initialization: The userspace daemon is provided
with a list of valid channels and a list of available
interfaces in a configuration file. Using this infor-
mation, the daemon initializes the kernel modules
as shown in Figure 4. The initialization protocol
first informs CAL of the set of valid channels
associated with each interface. Next, using the fixed
channel selection protocol (Section III) one of the
available channels is randomly chosen as the fixed
channel, and one of the interfaces is switched to the
fixed channel, while the second interface is switched
to any of the remaining channels. After that, the
broadcast list is initialized such that the fixed inter-
face is used to transmit on the fixed channel, and
the switchable interface is used to transmit on the
remaining channels. Once these initialization steps
are complete, the hello packets announcing the fixed
channel can be sent out. After that, whenever the
fixed channel of the node is changed, a request is
sent to the CAL to switch the fixed interface.

Managing received hello packets:As described in
Section III, hello packets received from a neighbor
enables a node to discover the channels used by
its neighbor. When the fixed channel being used
by a neighbor is first discovered, a new entry is
added into the unicast table of CAL by sending a
UnicastEntry message. Later, if the channel used by
the neighbor changes, CAL is updated by another
UnicastEntry message. Similarly, if no hello mes-
sages have been received from a neighbor for more
than a timeout duration, then the entry correspond-
ing to the neighbor is removed from the CAL using
a UnicastEntry message.

Route discovery and maintenance:The route dis-
covery process is initiated by the KMCR module, as
we described earlier. Figure 5 shows the interaction
between the KMCR module, the userspace daemon,

and the CAL module to set up a new route. When
the KMCR module at some node S discovers the
need for a new route to some node D, it sends an Ini-
tiateDiscovery request to the userspace module. The
userspace module then queries the CAL module to
obtain the switching cost of using different channels
(recall that switching cost of channels is used by the
routing metric). After that, a route request (RREQ)
packet is sent out. Intermediate nodes on receiving
the RREQ again query their CAL to obtain the
switching cost, which is included while forwarding
the RREQ. The destination on receiving the RREQ
responds with a route reply (RREP) packet. The
source node S on receiving the RREP adds a new
entry in the unicast table of the CAL for node D,
and the channel to use for node D is set to the
channel used to reach the first hop node on the
route to node D. After that, the KMCR module is
informed of the successful route discovery through
an AddRoute message. If a route discovery fails,
then the KMCR module is informed of the failure
using the DiscoveryFailed message.

Intermediate nodes that forward the RREP con-
taining the route from S to D have to also add
information about the route into their kernel tables.
Typically, after a route is set up from S to D,
the route is used for bi-directional communication.
Therefore, intermediate nodes have to add a route to
both the source S and the destination D to ensure
that data packets between S and D, sent in either
direction, are forwarded. The process of adding a
route is similar to the procedure followed by node
S, which was described above (though the process
has to be invoked twice to add routes to both S and
D).

Route maintenance involves removing routes
from the KMCR table that have not been active for a

13

BroadcastEntry(add, 1:ath0, 2:ath1, 3: ath1)

Userspace daemon Channel Abstraction Layer

AddValidChannel(ath0, 1, 2, 3)

AddValidChannel(ath1, 1, 2, 3)

SwitchChannel(ath0, 1)

SwitchChannel(ath1, 2)

Fig. 4. Commands invoked at initialization. The figure assumes that two interfaces (ath0, ath1) and three channels (1, 2,3) are available.
The values in parenthesis are parameters included in the IOCTL calls. For example, the values in the BroadcastEntry calllist the interface
to use for each broadcast channel.

UnicastEntry(D, channel = x)

Kernel multichannel Userspace daemon
routing support

Channel Abstraction Layer

GetStatistics()

AddRoute(D, N)

Send RREQ(D)

Receive RREP(D, N)

InitiateDiscovery(D)

Fig. 5. Commands invoked during route discovery. The example assumes that a route is being discovered to node D, and the next hop on
the discovered route is node N.

long time or have been identified as broken. Inactive
routes are discovered by the userspace daemon by
periodically querying the KMCR module with the
IsRouteActive message (the response is received
in the RouteStatus message). Broken routes are
identified when the next hop is not reachable, or
when a route error message is received. In all cases,
the route is removed from the active route table
of KMCR by sending the DeleteRoute message,
and from the unicast table of CAL by sending the
UnicastEntry message.

The multichannel protocol implementation de-
scribed above provides most of the support required
for running a multihop multichannel network, pro-
vided each node is equipped with two interfaces.
The protocols allow any node in the network to
communicate with any other node. In our work,
we have assumed that there is a separate address

assignment protocol to assign addresses to individ-
ual nodes. Any of the address assignment protocols
proposed in the literature [23], or even manual
assignment (if appropriate), could be used with our
implementation. Our testbed experiments have used
manual address assignment, and we defer to future
work automated address assignment.

The current userspace daemon implementation
may be used as a template to implement other
multichannel protocols. In addition, we believe that
the implementation may serve as a template for
building higher layer protocols to exploit other inter-
face capabilities as well. For example, it is possible
to develop higher layer protocols for utilizing the
multi-rate capabilities. Such a protocol may require
neighbor discovery and routing mechanisms, and
our implementation may be used to guide the multi-
rate protocol implementation.

14

IX. M ESH NETWORKING EXTENSIONS

Multihop wireless mesh is one network architec-
ture for providing last mile wireless connectivity.
This architecture has been used in building com-
munity wireless networks [24], [25] city-wide wire-
less networks [26], among others. In this section,
we describe extensions to our implementation to
support mesh networking. The mesh networking
implementation demonstrates the feasibility of using
multiple channels in a mesh network.

Figure 6 describes the mesh networking archi-
tecture that we support. Nodes in the network are
classified into two types; “mesh nodes” that run the
software we have implemented, and “client nodes”
that are unmodified. Client nodes are equipped with
one IEEE 802.11 interface, while mesh nodes have
either one or two interfaces. Some of the mesh
nodes are connected to the Internet and act as
“gateways”. Mesh nodes form a backbone network
that is fully connected, and a mesh node is capable
of communicating with any other mesh node. A
client node connects to one of the mesh nodes that
is in its direct communication range. The mesh
nodes are viewed by the clients as access points.
All mesh nodes and client nodes are capable of
communicating with hosts in the Internet, but the
client nodes do not communicate with any mesh
node other than the node they are connected to
directly.

Mesh nodes equipped with two interfaces support
the multichannel protocols presented in Section III,
and can potentially transmit on any channel. Single
interface mesh nodes support a modified interface
management protocol which requires them to be
fixed on a specific channel, but support the default
multichannel routing protocol used by two interface
nodes. In the rest of this section, we describe exten-
sions to the implementation to provide support for
gateways, support for mesh nodes that have a single
interface, and support for allowing unmodified client
nodes to connect to the Internet through a mesh
node.

A. Gateway support

A gateway node uses a wired interface to connect
to the Internet, while using two wireless interfaces
to participate in the mesh backbone. In our testbed,

the mesh network uses a private address space that
is not visible to the Internet. Therefore, to allow
nodes in the mesh network to communicate with
nodes in the Internet, network address translation
(NAT) is required at the gateway node6. Standard
Linux distributions provide NAT support, and the
translation can be set up using the “iptables” tool.

When an application on a mesh node initiates
communication with a node in the Internet, the
packets have to be first routed from that node to
the gateway node, and from there on to the Internet.
IP packets have a destination field in the IP header
containing the address of the destination, and this
is used by the routing tables in the mesh nodes for
deciding the channel and next hop node to use while
forwarding a packet. When a packet is destined to
the Internet, the gateway is an intermediate desti-
nation, with the actual destination located in the
Internet. If the destination address in a IP packet
is set to that of the final destination, then there is
no information in the packet to guide it toward the
gateway node. On the other hand, if the destination
address is set to that of the gateway node, then
the final destination address is not contained in the
packet.

To ensure that a packet contains the address of
both the gateway node and the final destination
(without requiring modifications to IP), we use a
packet encapsulationapproach (a similar approach
was used by [22]). At the source mesh node, in the
first step, an IP packet is created with the destination
address in the IP header set to the address of the
node in the Internet. After that, the packet is encap-
sulated with a second IP header7, and the destination
address in the second header is set to that of the
gateway. When the packet reaches the gateway, the
gateway node decapsulates any packets that are
encapsulated, and then forwards the packet on to the
Internet. The process of encapsulation/decapsulation
and network address translation is shown for an
example scenario in Figure 7.

6The address translation ensures that packets originating in any
mesh node appear to the nodes in the Internet to be originating from
the gateway node, on the wired interface

7This mechanism is provided for in the IP protocol, and is called
the IP in IP mode. The mode is often used to tunnel packets over
multiple IP hops, for supporting mechanisms such as mobile IP.

15

��������
��������

��������

��������

��������

Internet

Two interface gateway node Two interface mesh node

Single interface mesh node Single interface client

Fig. 6. The mesh networking architecture supported by our implementation.

Internet

192.168.0.1192.168.0.10

A GW

Step 1: Encapsulate to 192.168.0.1 Wired IP = 130.126.141.227

Step 2: Decapsulate
Step 3: Translate source address to 130.126.141.227

Fig. 7. Steps involved in sending a packet to the Internet. Source node A encapsulates the packet, which is forwarded to the gateway node
GW. Gateway node decapsulates the packet, translates the address and forwards the packet to Internet.

The support for encapsulation and decapsulation
is implemented in the KMCR module. The encap-
sulation is done in the LOCAL OUT netfilter hook
at each mesh node (only for packets destined to
the Internet), while the decapsulation is done in
the PRE-ROUTING netfilter hook (only at gateway
nodes). Note that packets that are coming in from
the Internet to a mesh node do not need encap-
sulation, because the network address translation
implicitly ensures that packets to mesh nodes are
first routed to the gateway node.

Discovering gateway nodes:A gateway node sends
out a broadcast advertisement informing other nodes
that it is a gateway. The advertisement message has
a “hop” field containing the number of hops to the

gateway node. Initially, the field is set to zero, and
every node that forwards the message increases the
hop field by one. The message is forwarded only
up to a pre-specified maximum number of hops
which can be suitably chosen. A node receiving
the advertisement message will learn the address
of the gateway node and the number of hops to
the gateway. Similar gateway discovery mechanisms
have been proposed in the past as well [23].

Our implementation supports multiple gateways
in the mesh network. Having multiple gateways
provides resilience to failures, and allows traffic to
the Internet to be distributed across nodes. When a
node receives advertisement messages from multiple
gateways, it selects one of the gateways as the

16

gateway it intends to use. In our implementation,
the gateway that is fewest hops away is selected,
with ties broken arbitrarily. The gateway selection
mechanism can be easily extended to use other
cost metrics, instead of basing the selection on the
number of hops to the gateway.

B. Single interface support

Mesh nodes that are equipped with a single inter-
face cannot support the hybrid interface assignment
strategy which requires at least one fixed interface
and one switchable interface. It is possible that a
mesh network may be incrementally deployed, with
some of the nodes having only a single interface. We
aim to allow single interface nodes to participate in
the mesh network, though at the cost of not being
able to communicate directly with all neighbors.

A node S with a single interface keeps its inter-
face fixed on one of the available channels (the al-
gorithm for selecting the fixed channel is described
below). The fixed channel is chosen such that the
node S has at least one multi-interface node, say
M, that can be directly reached on the fixed channel.
Single interface nodes implement the full multichan-
nel routing protocol presented earlier. Therefore, if
the single interface node has to communicate with
any other neighboring node that is not sharing a
fixed channel with itself, it can do so by routing via
node M. This ensures that node S can communicate
with any other node in the network via node M.

During initialization, a single interface node S
first randomly selects a channel and switches to that
channel. After that, node S sends out a broadcast
message on that channel advertising its presence.
Any multi-interface mesh node M that receives this
advertised message8 responds back with a unicast
acknowledgment announcing its presence. If node
S receives an acknowledgment, node S learns the
availability of a multi-interface node M on that
channel. Node S then fixes its single interface to
the channel it is already on, completing the fixed
channel selection. On the other hand, if node S
does not receive any acknowledgments, it learns
that there are no multi-interface nodes on its current

8Note that a multi-interface node M would receive the message
only if the channel on which the message has been sent happensto
be M’s fixed channel.

channel within its communication range. Node S
then switches its interface to the next available
channel and repeats the discovery procedure, and the
process continues through the available channels till
a channel with a multi-interface neighbor is found.
After initialization, the fixed channel selection algo-
rithm is repeated whenever no multi-interface nodes
are reachable on the fixed channel. The discovery
procedure could be extended to select fixed channels
based on other metrics, such as the number of multi-
interface nodes on a channel, or the load on a
channel.

The fixed channel selection procedure described
above allows a single interface node to be connected
to the mesh network if it has at least one multi-
interface node in its neighborhood. This requirement
is conservative as it does not allow for a single inter-
face node S to connect to the rest of mesh network
through another single interface node, say X. Note
that if X is connected to mesh backbone, then S
could connect to the mesh backbone through X. We
do not allow a single interface node to be connected
through another single interface node because of
the possibility of network partitions. For example,
node X may believe it is connected to the mesh
backbone through node S, while node S believes
it is connected through node X. In that scenario,
nodes S and X could be connected to each other, but
not to other nodes in the mesh network. Then, even
though the mesh nodes form a connected network
when all nodes use a common channel, they may no
longer be connected if some single interface nodes
are only connected to other single interface nodes. It
is possible to have a more elaborate protocol which
ensures that a set of connected single interface nodes
are also connected to at least one multi-interface
node, but we defer such an extension to future work.

C. Support for client nodes

Client nodes do not run any of the software that
we have implemented. Instead, client nodes view
mesh nodes as “access points” and connect to them
using standard IEEE 802.11 protocol rules. A client
node is allowed to connect to any of its neighboring
mesh nodes on the fixed interface of the mesh node.
In typical wireless networks, clients connect to
access points using the “managed” mode provided

17

for in IEEE 802.11. However, in our implementation
mesh nodes are connected to each other using the
“ad hoc” mode, and therefore a client will have to
connect to the fixed interface of a mesh node in
the “ad hoc” node. An alternate solution would be
to have an extra interface at each mesh node, and
set up the extra interface to operate as an access
point in the managed mode. Then, clients could
connect to the extra interface in the managed mode.
Our approach (of connecting to the fixed interface)
avoids the need for an extra interface.

Our implementation requires the mesh nodes to
be assigned addresses with a common subnet prefix,
while client addresses must belong to a different
subnet prefix. The userspace daemon adds a default
entry into the unicast table of the channel abstrac-
tion layer. The default entry ensures that packets
to any destinations not in the unicast table are sent
out on the node’s fixed channel. This ensures that
packets sent to clients are sent out on the fixed
interface (because no entries are added into unicast
table for clients). Clients have to be configured to
connect to any of the mesh nodes in its vicinity
on the fixed channel of the mesh node9. In our
implementation, clients are allowed to only commu-
nicate with nodes in the Internet, or with other nodes
in the mesh network. However, our implementation
could be extended to allow mesh nodes to connect
to client nodes as well. Packets sent out by a client
are network address translated by the mesh node
to which it is connected, and then sent on to the
Internet or another mesh node. Figure 8 illustrates
the process of a client communicating with a node in
the Internet. Apart from the minimal configuration
requirements, clients can run without requiring any
other changes.

X. TESTBED EXPERIMENTATION

The multichannel implementation has been eval-
uated on a testbed that we have built. Nodes in the
testbed comprise ofNet 4521boxes from Soekris
[27]. Figure 9 shows a picture of a testbed node.
Each node is currently equipped with two wireless
interfaces (one pcmcia interface and one mini-pci

9The standard IEEE 802.11 beacons continue to be sent out on the
fixed channel in our implementation, and enables clients to discover
the channel on which a mesh node is available.

Fig. 9. Picture of a testbed node. Each testbed node is equipped
with two wireless interfaces.

interface), and it is possible to have up to 3 wireless
radios using this hardware platform. The wireless
cards are based onAtheroschipset [19], and support
IEEE 802.11a/b/g protocols.

The multichannel implementation has been care-
fully tested for correctness on the testbed. We have
set up scenarios with gateway nodes, single interface
mesh nodes and client nodes, and verified the cor-
rect operation of the protocols. The performance of
channel abstraction layer has been extensively stud-
ied in Chereddi’s thesis [21]. The CAL performance
was measured while operating it as part of the
multichannel implementation described here (we do
not restate those results here), and the results there
demonstrate significant performance improvements
when multiple channels are used. In addition, [21]
also includes a study on the interface switching
delay and a study on the number of orthogonal
channels available in our testbed. In the rest of this
section, we present sample results to demonstrate
the benefits of our implementation in single hop and
multihop scenarios.

A. Single hop experiments

We measure the performance of the multichannel
implementation under a single hop scenario. Five
nodes are placed such that each node can directly
communicate with any other node. The nodes are
numbered from0 to 4 and nodei sets up a flow
to node (i + 1) mod 5. We vary the number of
channels in the network from one to four. All nodes
are equipped with two interfaces. The channel data

18

address to 130.126.141.227

����
����
����
���� GW InternetA

Client

192.168.0.10192.168.1.1

Translate source
address to 192.168.0.10

192.168.0.1

Wired IP = 130.126.141.227

Translate source

Fig. 8. Client communication process. Client packets are network address translated at its mesh router, node A. Exampleassumes that
client address space is 192.168.1.*, while mesh node address space is 192.168.0.*.

rate is set to 6 Mbps. The experiments are run with
both TCP and UDP traffic (flows are run for 100 s),
and traffic is created using the iperf tool [28]. Iperf
creates back-logged traffic.

Figure 10 plots the aggregate throughput for both
TCP and UDP traffic. As we can see from the
figure, when more channels are available, there is
a substantial improvement in the throughput. With
UDP traffic, each node has data to transmit on
exactly one channel. Therefore, interface switching
is not required at any of the nodes. However,
with TCP traffic, each node has to send TCP data
packets along the flow it is initiating, and send
TCP ACK packets along the flow it is receiving
data. These two data streams may potentially be
on different channels, and therefore, may require
interface switching (in experiments using three or
four channels). However, we see that in spite of
interface switching, TCP performance is comparable
to UDP (up to three channels).

We have found that TCP performance starts de-
grading when more than three channels are used.
Looking at the TCP traffic received over one second
intervals, we see that in certain intervals the nodes
receive no packets, implying that TCP timeouts
are occurring in experiments with more than three
channels. TCP timeouts arise when there are mul-
tiple packet losses. We speculate that packet losses
are occurring because of cross-channel interference
when more than three channels are used. Our in-
terference experiments (see [21] suggested that five
orthogonal channels may be available for use in
our testbed. However, those experiments only con-
sidered aggregate throughput and did not consider
packet losses. In addition, those results considered
interference when traffic was present on only two

 0

 5

 10

 15

 20

 1 2 3 4

A
gg

re
ga

te
 th

ro
ug

hp
ut

 (
M

bp
s)

Number of channels

UDP traffic

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 3 4

A
gg

re
ga

te
 th

ro
ug

hp
ut

 (
M

bp
s)

Number of channels

TCP traffic

Fig. 10. Throughput in a single hop network with varying number
of channels. Channel data rate is 6 Mbps.

channels at a time. In this testbed experiment, all
nodes are close to each other, and traffic is present
on all channels simultaneously, which may lead to
increased cross channel interference. UDP does not
slow down in the face of packet losses. Therefore,
UDP throughput continues to improve even if a few
packets are lost because of cross-channel interfer-
ence.

19

B. Multihop experiments

The performance of the multichannel implemen-
tation under multihop scenarios is measured by
setting up a chain of five nodes. A flow (TCP or
UDP) is set up from the first node in the chain to the
last node in the chain (i.e., a 4-hop flow is set up).
The flow throughput is measured while the number
of channels is varied from one to four. Channel data
rate is set to 6 Mbps.

Figure 11 plots the flow throughput for both TCP
and UDP traffic. As we can see from the figure,
when more channels are available, there is a sub-
stantial improvement in the throughput, though the
magnitude of improvement is less with TCP traffic.
TCP throughput depends on the end-to-end delay in
addition to the available bandwidth. The interface
switching delay is 5 ms with our testbed nodes, and
the delay experienced by packets could be higher
because of the queuing introduced by the channel
abstraction layer. We suspect that this increased
delay could be limiting the performance improve-
ments. Note that although a single TCP flow may
not utilize all the available bandwidth, other flows in
the vicinity could still utilize the unused bandwidth.
Therefore, the aggregate network throughput is still
expected to increase even with multihop traffic.
Similar to one hop experiments, TCP throughput
in a chain topology is also lower with more than
three channels. As before, we speculate that this is
because of the increased packet losses arising out
of cross channel interference.

XI. CONCLUSIONS

In this report, we described the implementation of
the one set of multichannel protocols on the Net-X
testbed. The prototype implementation has demon-
strated the feasibility of using multiple channels
when only two interfaces are available. As part of
the implementation, we developed a generic chan-
nel abstraction architecture to support multichannel
protocols. The architecture and the protocol suite
that we have developed may be useful to develop
other multichannel protocols as well.

The channel abstraction architecture was de-
signed to support the use of multiple channels, mul-
tiple interfaces, and frequent interface switching.
Several commercially available radios now export

 0

 1

 2

 3

 4

 5

 1 2 3 4

C
ha

in
 th

ro
ug

hp
ut

 (
M

bp
s)

Number of channels

UDP traffic

 0

 0.5

 1

 1.5

 2

 1 2 3 4

C
ha

in
 th

ro
ug

hp
ut

 (
M

bp
s)

Number of channels

TCP traffic

Fig. 11. Throughput in a 4-hop chain topology with varying number
of channels. Channel data rate is 6 Mbps.

a rich set of interface capabilities to the user, such
as the ability to set the data rate and transmission
power on a per-packet basis. However, to benefit
from these features, new higher layer protocols may
be required. We argued that the implementation of
higher layer protocols that utilize other interface
capabilities will require new kernel support as well,
and provided examples to identify how the channel
abstraction layer may be extended to provide the
desired support. We believe that the channel ab-
straction layer design can serve as a blueprint for
building support for most of the interface capabil-
ities. It is part of our ongoing work to implement
protocols to exploit other interface capabilities on
the Net-X testbed.

REFERENCES

[1] Pradeep Kyasanur,Mutichannel Wireless Networks: Capacity
and Protocols, Ph.D. thesis, University of Illinois at Urbana-
Champaign, 2006.

20

[2] Pradeep Kyasanur and Nitin H. Vaidya, “Routing and Link-
layer Protocols for Multi-Channel Multi-Interface Ad hoc Wire-
less Networks,” Sigmobile Mobile Computing and Communi-
cations Review, vol. 10, no. 1, pp. 31–43, Jan 2006.

[3] D. Maltz, J. Broch, and D. Johnson, “Experiences Designing
and Building a Multi-Hop Wireless Ad-Hoc Network Testbed,”
Tech. Rep. TR99-116, CMU, 1999.

[4] H. Lunndgren, D. Lundberg, J. Nielsen, E. Nordstrom, and
C. Tscudin, “A Large-scale Testbed for Reproducible Ad Hoc
Protocol Evaluations,” inWCNC, 2002.

[5] B. A. Chambers, “The Grid Roofnet: A Rooftop Ad Hoc
Wireless Network,” M.S. thesis, MIT, 2002.

[6] R. Karrer, A. Sabharwal, and E. Knightly, “Enabling Large-
scale Wireless Broadband: The Case for TAPs,” inHotnets,
2003.

[7] B. White, J. Lepreau, and S. Guruprasad, “Lowering the Barrier
to Wireless and Mobile Experimentation,” inHotnets, 2002.

[8] D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachandran,
H. Kremo, R. Siracusa, H. Liu, and M. Singh, “Overview of the
ORBIT Radio Grid Testbed for Evaluation of Next-Generation
Wireless Network Protocols,” inWCNC, 2005.

[9] P. De, A. Raniwala, S. Sharma, and T. Chiueh, “MiNT: A
Miniaturized Network Testbed for Mobile Wireless Research,”
in Infocom, 2005.

[10] Atul Adya, Paramvir Bahl, Jitendra Padhye, Alec Wolman, and
Lidong Zhou, “A Multi-Radio Unification Protocol for IEEE
802.11 Wireless Networks,” inIEEE International Conference
on Broadband Networks (Broadnets), 2004.

[11] Ranveer Chandra, Paramvir Bahl, and Pradeep Bahl, “MultiNet:
Connecting to Multiple IEEE 802.11 Networks Using a Single
Wireless Card,” inIEEE Infocom, Hong Kong, March 2004.

[12] Richard Draves, Jitendra Padhye, and Brian Zill, “Routing in
Multi-Radio, Multi-Hop Wireless Mesh Networks,” inACM
Mobicom, 2004.

[13] Ashish Raniwala and Tzi-cker Chiueh, “Architecture and
Algorithms for an IEEE 802.11-Based Multi-Channel Wireless
Mesh Network,” inInfocom, 2005.

[14] “Virtual Wifi software page,”
http://research.microsoft.com/netres/projects/virtualwifi.

[15] Patrick Stuedi and Gustavo Alonso, “Transparent Heteroge-
neous Mobile Ad Hoc Networks,” inACM MobiQuitous, 2005.

[16] Nicolas Boulicault, Guillaume Chelius, and Eric Fleury, “Ex-
periments of Ana4: An Implementation of a 2.5 Framework for
Deploying Real Multi-hop Ad-hoc and Mesh Networks,” in
REALMAN, 2005.

[17] Vikas Kawadia, Yongguang Zhang, and Binita Gupta, “Sys-
tem Services for Implementing Ad-Hoc Routing: Architecture,
Implementation and Experiences,” inMobisys, 2003.

[18] “Netfilter: Linux packet filtering framework,”
http://www.netfilter.org/.

[19] “Atheros Inc,” http://www.atheros.com.
[20] John Bicket, Daniel Aguayo, Sanjit Biswas, and Robert Moris,

“Architecture and Evaluation of an Unplanned 802.11b Mesh
Network,” in ACM Mobicom, 2005.

[21] Chandrakanth Chereddi, “System architecture for multichannel
multi-interface wireless networks,” M.S. thesis, University of
Illinois at Urbana-Champaign, 2006.

[22] “AODV-UU: AODV implementation
from Uppsala University, version 0.9.1,”
http://core.it.uu.se/AdHoc/ImplementationPortal.

[23] Matthew J. Miller, William D. List, and Nitin H. Vaidya,“A Hy-
brid Network Implementation to Extend Infrastructure Reach,”
Tech. Rep., University of Illinois at Urbana-Champaign, 2003.

[24] “Champaign-Urbana Community Wireless Network,”
http://www.cuwireless.net/.

[25] “Seattle Wireless,” http://www.seattlewireless.net/.
[26] “Municipal Wireless,” http://www.muniwireless.com/.
[27] “Net 4521 hardware from Soekris,”

http://www.soekris.com/net4521.htm.
[28] “Iperf version 2.0.2,” May 2005,

http://dast.nlanr.net/Projects/Iperf/.

