Net-X: System eXtensions for Supporting
Multiple Channels, Multiple Interfaces,
and Other Interface Capabilities

Technical Report

August 2006

Pradeep Kyasanur Chandrakanth Chereddi Nitin H. Vaidya
University of lllinois at Urbana-Champaign
kyasanur@crhc.uiuc.edu, chereddi@gmail.com, nhv@entiuc.

Abstract— There are severalinterface capabilities that —providing for multiple interfaces, multiple antennas,
may be available in next generation wireless networks. etc. Collectively, we may view the different radio
Some examples of interface capabilities include the abilit parameters and hardware resourceintesface ca-

to set the channel of operation and data rate on a frequent . yijiiies that are available in the network.
basis, and the ability to equip devices with multiple radio

interfaces and multiple antennas. It may be possible to Common operating systems have strivechide
Eig”iﬁc?r?t.'y imﬁro‘.’e thfe performzr.'l‘_’? of "r‘:"e'eshs ”et"‘;OT;S the interface capabilities from higher layers of the
exploiting the interface capabilities through carefu .

d}e/sigrllaed prgotocols. However,pcurrent operzg[ing systems protocol stack (e'.g" network layer is usually un-
have poor support for implementing protocols that need awa_‘re of thET _nOt'On_ of .Channels and data rqtes).
to use the available interface capabilities. The goal of While the ability to hide interface capabilities sim-
the Net-X project is to develop operating system support plifies the design of higher layer protocols, it may
for utilizing interface capabilities. As a first step in this g|so severely limit the ability to exploit the available
direction, we have developed an architecture in Linux to capabilities. For example, because the network layer

support the use of multiple channels, multiple interfaces, ;oo\ aware of the notion of interfaces, kernel
and interface switching. This support has been used to

implement a set of multichannel protocols that we had "outing tables typically only allow for specifying the
previously developed. In this report, we will describe interface to use over a route. As a result, there is no

the new architectural support, implementation of the support for explicitly associating routes with other
multichannel protocols, and the use of the protocols in kinds of interface capabilities, such as channels and
a mesh network. We also describe how the architecture ggta rates. However, our past work [1] on utilizing
may be extended to support the use of other interface multiple channels has demonstrated the need for
capabilities as well. . .
channel-aware link and routing protocols for effec-
|. INTRODUCTION tive utilization of channels, and we believe that such

Newer generation wireless radio hardware prodWareé” protocols are needed to effectively exploit
vide support for setting several radio parameter%ther interface capabilities as well. Therefore, there
such as the channel of operation, the data rate, 4hd® Need to develogxtensionsto the existing
the transmission power, on a frequeritasis. In OPerating systems to allow higher layer protocols
addition, with reducing hardware costs, it is possibl@ Utilize interface capabilities.
to increase theesourcesavailable at each host by The goal of theNet-X project is to develop

*This work was funded in part by National Science Foundation.generlc support for utilizing interface capabilities,

“The radio parameters could be potentially set several tevesy SUCH that the support is cleanl_y mt_egrgted into the
second, and for some parameters could be set on a per-packst bnetwork stack. As a first step in this direction, we

have focused on providing support for utilizing mulswitching, which requires additional architectural
tiple channels and multiple interfaces. We have dsupport.
veloped ggneric archite_ctural support in Linux that sty alWwifi” [11], [14] is a virtualization ar-
provides hlghelr layers fine-grained cont.rol over th&itecture that abstracts a single wireless interface
channels and interfaces used for sending out dgfgo multiple virtual interfaces. VirtualWifi provides
Although our initial implementation has focusedypport for switching the physical interface across
on the use of multiple channels, the architectufge channels used by each virtual interface. Virtu-
itself can support other interface capabilities, sugihyifi has some similarity to our implementation,
as multiple data rates and multiple transmissigyt does not offer all the features necessary for
powers. controlled switching among multiple channels. Vir-
In this report, we will describe our efforts ortualWifi exports one virtual interface per channel,
building a multichannel multi-interface testbed. Ouwhich exposedhe available channels (by exposing
work was motivated by the lack of kernel support fasne IP address per channel) to the user applications,
implementation of a set of multichannel protocoland may necessitate modifying these applications.
[2] that we had developed. The testbed impléa contrast, our workhidesthe notion of multiple
mentation includes new architectural extensions fohannels from user applications, and therefore, does
supporting the use of multiple channels and multiptet require any modifications to existing applica-
interfaces, and one set of multichannel protocols [#pns.
to demonstrate the use of the extensions. We will o feature of our implementation is that it exports

also describe how our implementation can be usgdingle virtual interface to abstract out multiple in-
to support other interface capabilities as well. terfaces. There are other testbed works that can also

The rest of this report is organized as follows. wabstract multiple real interfaces into a single virtual

present related testbed work to support multichanrigférface [15]-[17]. However, those approaches are
protocols in Section Il. Section Ill provides ar'©t designed to support the notion of using multiple

overview of the multichannel protocols that w&hannels or interface switching between channels.
have developed. Section IV identifies the need for Architectural changes have been proposed by
new operating system support to exploit interfacgireless researchers to support other protocols in
capabilities. Section V presents the implementati@ad hoc networks. One well studied architectural

architecture, and the details of the implementatigmoblem is to support on-demand routing [3], [4],
are in Section VI, Section VII, and Section VIIL.[17], which requires mechanisms to buffer data
We describe extensions to the implementation fpackets while a route is being discovered. We im-
building a mesh network in Section IX. Sampl@lement the on-demand discovery component of the
results are presented in Section X, and we conclugposed multichannel routing protocol using the
in Section XI. same approach as in [4]. However, implementing the
other aspects of the multichannel protocols, such as
Il. RELATED WORK interface management, requires additional support,

There have been several research initiatives 86 they require close interaction with the device
building wireless network testbeds [3]-[9]. Howdrivers.
ever, there have been relatively fewer attempts atwWe are not aware of any testbed works that allow
building multichannel wireless testbeds [10]-[13higher layer protocols to control the use of data
Of these, [10], [12], [13] assume that interfacestes, transmission powers, antennas on a frequent
are fixed to a channel for long intervals of timebasis.
Therefore, in those implementations, switching in-
terfaces from one channel to another can be donl: OVERVIEW OF SUPPORTED MULTICHANNEL
infrequently, possibly using user-space scripts, with- PROTOCOLS
out requiring support from the kernel. In contrast, The Net-X testbed is used to implement a set of
our solutions require more fine-grained interfaaaultichannel protocols that we have previously de-

veloped [1]. Here, we will provide a brief overview [V. ARCHITECTURAL SUPPORT FOR HIGHER
of the protocols. LAYER CONTROL OVER MULTIPLE CHANNELS

The focus of our multichannel protocols is the The multichannel protocols described in the pre-
effective use of multiple channels when there akgous section require (switchable) interfaces to po-
fewer interfaces per node than channels. We develeptially switch on a frequent basis. Although exist-
two protocols: an interface management protocol fieg interface hardware allows for switching on a fre-
assign channels to interfaces, and a routing protocplent basis, kernel support for higher layer control
to select good routes in a multichannel network. Thwver frequent switching is absent. In this section,
testbed implementation of the protocols requirege motivate the need for new architectural support
each node to have two interfaces, though we wil kernel for supporting multichannel protocols that
later describe extensions to support the use ofrequire interface switching.

single interface at each node. Existing off-the-shelf hardware do allow inter-

One interface at each node is called a “fixe@CeS 10 be switched by the driver, but common
interface” and is assigned for long intenzats time operating system kgrnels are not designed to ytlllze
to a “fixed channel”. The second interface at eadfjis feature. Operating systems have always tried to

node is called a “switchable interface” and can FPstract out the details of the underlying hardware
switched between any of the remaining channels, 5&M higher layer applications. We want to continue
necessary. The fixed channel of a node is select@dPreserve this design principle of abstracting out
using a fixed channel selection protocol, which trig¥on-essential features, and provide a clean mech-
to equally distribute the fixed interfaces of differerNiSm for higher layer protocols to control the
nodes on different channels. All data sent to 45€ Of channels and interfaces. For example, user
node must be over the fixed channel, because ffPlications need not be aware of the notion of
node is guaranteed to always listen to the fixdgultiple channels, multiple interfaces, and interface
channel. A node may send data to a neighbor usif§fitching. Routing and link-layer protocols may be
the fixed interface if both nodes use a commdivare of the notion of channels and interfaces, but
fixed channel; otherwise, the switchable interface §€d not be aware of the detailed procedures used to
tuned to the neighbor's fixed channel, and datal@plem_ent interface switching. The_se requirements
sent out over the switchable interface. Each nof&Cessitate changes to the operating system kernel.
periodically sends out broadcast “hello” messagdsS W€ argue next, supporting multiple interfaces
Hello messages include the fixed channel of tfd interface switching in multichannel networks
node, and the fixed channels of all 1-hop neighbof&auires non-trivial changes to the kernel. Our ap-
Using this mechanism, a node can eventually leaPfPach is to develop a genemhannel abstraction
about the fixed channels used by all nodes in its #Yer {0 support interface switching. The channel

hop neighborhood, and this information is used fPstraction layer could be used to implement other
balancing channel assignment. multichannel protocols that require interface switch-

ing, in addition to the protocols that we have imple-
The routing protocol supports a new multichannetented. The abstraction layer can also be extended
routing metric (MCR). The metric is incorporatedo support other interface capabilities, such as data
into an on-demand routing protocol. More detailgate and transmission power.
about the routing metric, as well as other aspects of
f[he[li?terface management and routing protocols a{e Need for new support
in [1].

We identify the features needed to implement
interface switched multichannel protocols (that are
missing in current operating systems) by using

“The intervals are long when compared to packet transmisisizn L|nu_x a_S a_n example. The key features that are
and interface switching delay. lacking in Linux are as follows:

1. Specifying the channel to use for reaching a 9
neighbor: 1

Common operating systems do not allow the @
network layer to control the channels (or other radio \
features, such as data rates, transmission powers, 2 @
and antennas) used to reach a neighboring node.
Instead, the kernel routing tables only provide CO'&.’g. 1. Example illustrating the lack of kernel support foulti
trol over the interface to use to reach a neighborirgannel protocols.
node. In a single channel network, there is no benefit
in explicitly selecting channels because all nodes

have to use a common channel. This lack of expliciinple shows that the channel to use for transmitting
channel support is not a problem in those multy packet may vary based on destinations, even if
channel networks where each interface is associafgd same interface is used for all destinations. In
with exactly one channel, i.e., there is an one-tganeral, without support for specifying the channels
one mapping between interfaces and channels. fgryse to reach a neighboring node, it is difficult to
example, there is an one-to-one mapping betweghhlement those multichannel protocols that use a

interfaces and channels in a network where eagpgleinterface to send data to different neighboring
node hasn interfaces, and the interfaces of a no%des ovedifferentchannels.

are always fixed on some channels. In this setting, .
y g C%queC|fy|ng channels to use for broadcast:

the channel to use to reach a neighboring node N a sinale channel network. broadcast packets
be indirectly specified by the specifying interface to 9 : ’ - P
gt out on the wireless channel are typically re-

use, since each interface is associated with a unicf:L? o .
channel. eived by nodes within the transmission range of

the sender. The wireless broadcast property is used
However, we are interested in the scenario whegg efficiently exchange information with multiple
the number of interfaces per node could be Signiﬂeighbors (for example, during route discovery).
cantly smaller than the number of channels. Thergr 3 multichannel network, different nodes may
fore, there is no longer an one-to-one mapping bge |istening to different channels. Therefore, to
tween channels and interfaée&nder this scenario, 5)low broadcast packets in a multichannel network
we have shown that a good strategy is to use ¢ reach all the nodes that would have received
same (switchable) interface to send data to differefie packet in a single-channel network, copies of
neighboring nodes over possibly different channelge proadcast packet may have to be sent out on
To support the notion of switchable interfaces, Weultiple channels For example, in Figure 1, node
need to to control the channels to use to reachaayill have to send a copy of any broadcast packet
node. on both channel 1 and channel 2 to ensure that its

For example, consider the scenario shown freighbors B and C can receive the packet.

Figure 1. In the figure, suppose that each nodeThere are several existing applications that use
has a single interface. Also suppose that nodeBoadcast communication, for example, the address
is listening to channel 1 and node C is listening t@solution protocol (ARP). To ensure that the use
channel 2. Under this scenario, when A has to sesfl multiple channels is transparent to such appli-
some data to B, it has to send the data over changgtions, it is necessary that the kernel send out
1, and similarly data to C has to be sent over channgpies of broadcast packets on multiple channels,
2 (the interface at A has to be switched betwe&ihen necessary. However, there is no support in the
channels 1 and 2, when it is so required). This existing kernel to specify which channels broadcast

packets have to be sent out on, or to actually

3Similarly, a single interface could be used with differerstal
rates, or with different transmission powers, to reachedifit nodes. “A similar feature may be needed if an interface is equippeti wi
Therefore, there may not be a one-to-one mapping between raaglti-beam antennas. A beam may only reach a subset of raighb
interface, and the data rates and transmission powers ihatsad. and copies of packets may have to be sent over each beam.

create and send out copies of broadcast packetsnnels and interface switching, the next question
on multiple channels. Therefore, there is a need i to identify the layer where the support can be
incorporate mechanisms in the kernel for supportirsglded. Handling multiple channels and interface
multichannel broadcast. switching requires close interaction with the inter-
3. Buffering and scheduling support face device driver. Based on this requirement, we

As we discussed earlier, interfaces may have hgve three possible locations for adding support:

be switched between different channels to enable1) Add the required support directly into the

communication among neighboring nodes that are device driver. This approach offers the most
on different channels, and to support broadcasts. A control in accessing the interfaces, but has

switch is required when a packet has to be sent two main drawbacks. First, this approach ties
out on some channel, and at that time there is in our implementation with a specific device

no interface tuned to channel Suppose that the driver. Second, multiple interfaces cannot be
kernel can decide whether a switch is necessary to cleanly handled within the device driver of a
send out some packet. Even then, the kernel has single interface.

to decide whether an immediate switch is feasible.2) Add the required support into the network

For example, if an interface is still transmitting an layer (for example, as a “Netfilter” hook [18]).
earlier packet, or has buffered some other packets This approach insulates the implementation

for transmission, then an immediate switch may from the specifics of device drivers. However,
result in the loss of those packets that are awaiting muiltiple interfaces are visible to the network
transmission in the interface queue. Therefore, there |ayer, and this may require modifications to
is a need for mechanisms in the kernel to decide if some protocols that are at (or below) the
earlier transmissions are complete, before switching network layer (such as ARP).

an interface. 3) Add the required support as a new module that

When an interface cannot be immediately = operates between the network layer (as well
switched to a new channel, packets have to be as ARP) and the device drivers. The module
buffered in a channel queue until the interface can ~ may be logically viewed as belonging to the
be switched. Switching an interface incurs a non- link layer. This approach has the benefit of
negligible delay (around 5 ms with the interfaces being insulated from device driver specifics,
used in our testbed), and switching too frequently ~ While presenting a single virtual interface to
may significantly degrade performance. Therefore, the network layer. The virtual interface can
there is a need for a queuing algorithm to buffer ~ abstract multiple interfaces that may be actu-
packets, as well as a scheduling algorithm to trans- ally available, and insulates the network layer
mit buffered packets using a policy that reduces fromthe need to know the details of managing

frequent switching, yet ensures queuing delay is not ~ multiple interfaces. We choose this approach,
too large. and implement a newchannel abstraction

layer module.

B. Design choices The option we have chosen has some additional

The earlier discussions clearly identify the nedokenefits. Linux already has the ability to “bond”
for several new features in the kernel for suppontaultiple interfaces into a single virtual interface
ing the use of multiple channels, especially whamsing a link layer “bonding driver” that resides
interfaces have to switch between channels. Thetween the network layer and the device drivers.
Linux kernel's networking stack is organized intd’he bonding driver is typically used for grouping
multiple layers to ease implementation and improveultiple Ethernet-based devices into a single virtual
extensibility. For example, IP belongs to the netwoidevice. The bonding driver offers features that allow
layer, while the device drivers that control accedsr load balancing (striping) over the available inter-
to the interface hardware are part of the link layefiaces, interface fail-over support, etc. There is also
Once we have decided to add support for multipleset of user space tools which support management

operations, such as specifying which real interfacaserspace daemon. The kernel components support
to group into a single virtual interface. We havenly a small set of essential features. In later
implemented the channel abstraction layer as a nsections, we describe the implementation of each
feature of the bonding driver. In the next sectiomomponent, as well as the interaction between com-
we describe the implementation of the multichannpbnents.

protocols proposed in [1] using the interface switch-

ing support provided by the channel abstraction VI. CHANNEL ABSTRACTION MODULE

layer. In this section, we will describe the channel
abstraction module (CAL). The module is imple-
V. IMPLEMENTATION mented as a new feature of the bonding driver

In this section, we will first describe the im-present in the Linux kernel. Figure 2 shows the key
plementation architecture, and then describe tbemponents of CAL:

implementation of h of the k mponents. . .
plementation of each of the key components « Unicast component: Enables specifying the

A. Implementation architecture channel to use to reach a neighbor.

The multichannel implementation architecture is * Broadcast component: Provides support for
shown in Figure 2. Our implementation has three S€nding broadcast packets over multiple chan-
main components, which collectively implement N€ls- . .
one set of multichannel protocols. . Schedullng z.and. queuing component: Supports

. Channel abstraction layer: This kernel compo- interface switching by buffering packets when

. . necessary, and scheduling switching across
nent manages multiple channels and interfaces,

: : . channels.
and provides support for fast interface switch- N _ e
ing. This component is generic enough to sup- In addition, we modify the madwifi drivers to

port other multichannel protocols, and othdpetter support channel switching. The details of the
interface capabilities, such as data rates aRgMmponents and driver modifications are presented

transmission powers. The channel abstractiOf!oW-
layer abstracts the details of multiple channel§ \jnicast component

and interfaces from the higher layers, and is . .
controlled by “lIOCTL" commands from the | N€ Unicastcomponent provides support for spec-
ifying the channel to use to reach a neighbor.

userspace daemon. Th . . bl led
« Kernel multichannel routing support: This € unicast component maintains a table calle

component is used to provide kernel supportfé?? “Unicast .table" as shown in Figure 2. The

on-demand routing. The component informdnicast table is composed of tuples. Each tuple has
the userspace daemon when a route discovér estination IP ad_dresg, a channel the dc_astlnatlon
has to be initiated, and buffers data packe'[% expected to b.e Ilstenlng.on, and a reall intertace
while the route discovery is pending. to use to transmit to the neighbor. The unicast table

« Userspace daemon: The userspace daemon E%populated by an user space multichannel protocol
plements the less time-critical components 32 IOCTL calls (entries can be added or deleted).
higher layer multichannel protocols (our mul- When the CAL receives a unicast packet from the
tichannel protocols include two an interfac@etwork layer, it hands the packet off to the unicast
management protocol and a routing protocolfomponent. The destination address of the packet is
Most of the higher layer protocol functionalitylooked up in the unicast table to identify the channel
is implemented in this component. and the interface to use for reaching the destination.

The kernel components interact with the Linuffter this, the packet is handed off to the queuing

TCP/IP implementation and the interface devic@mponent for subsequent transmission.

drivers, while the userspace daemon is built usingThe unicast component can be easily extended
standard userspace networking libraries. Most tf support other interface capabilities. For example,
the multichannel protocol has been built into thihe tuple associated with each destination could

-~—— > Data packets

+----- = Control path
| 1
| i USERPSACE DAEMON
i i MULTICHANNEL INTERFACE
i L R == TR =
i ; ROUTING PROTOCOL MANAGEMENT
; USER i PROTOCOL
| i A <~ i A
i APPLICATIONS ; S X
I i Y RN v
i i Process Process Handle
! ; protocol packets netlink messages IOCTL calls
: | \ b A
B Rt]]
1 1
1 1
1 1
' i :
prmrmemrm e b = 1
! | LOCAL OUT hook KERNEL MULTICHANNEL :
é i * ROUTING SUPPORT .
| :
; | Yes Route No !
i ~ Available? »| Buffer :
; LINUX TCP/IP STACK:A re—inject packets route found Packets :
| i :
é ; ACTIVE ROUTES .
i | PRE-ROUTING hook »| IPaddr | Time left !
! = = 1
! i POST-ROUTING hook 192.168.01 792 I
! ; 1
| i .
e e a 1
] |
1
CHANNEL ABSTRACTION LAYER
UNICAST TABLE Yes BROADCAST TABLE
IP addr| Interface Channel Lookup Bg;i?(‘;?ft ' Lookup Channel Interface
192.168.0L athO 1 Make 1 ath0
192.168.0l athl 2 Copies 2 athl
3 athl
~ Queuesofath0 - -1 Queues of athl
: Assign to : :
: :

v

To interface athO

Fig. 2. Architecture for implementing multichannel protts: The figure assumes that two interfaces, “ath0” and “atlre available.

v

To interface athl

include additional entries to specify the data rate The queuing component receives a packet, from
and the transmission power. The IOCTL calls cagither the unicast or the broadcast component, along
be extended (or new IOCTL calls added) to includeith information about the channel and interface to
data rate and transmission powers. When the paclisé for sending out the packet. Using this infor-
is handed down to the device driver, the rates anthtion, the packet is inserted into the appropriate
transmission powers to use can be given to tiebannel queue for subsequent transmission. Each
driver. interface runs a separate scheduler to send out
the packets. In our current implementation, we use
B. Broadcast component . : . :
identical round-robin schedulers on all interfaces.

The broadcast component provides support forThe queuing procedure is useful to support inter-

sending out copies of a broadcast packet on mul-) . o
. . ___face capabilities that incur a non-negligible delay
tiple channels. The broadcast component maintajns~_ """ .
« . of switching from one modeto the other. For
a table called the “Broadcast table” as shown in .)
: e ., example, multi-beam antennas may incur a non-
Figure 2. The broadcast table maintains a list of " . " L 7)
) . negligible beam switching delay. Similarly, certain
channels on which copies of a broadcast packe !
: ardware may not allow changing the data rate or
have to be sent out on, and the interfaces to use . .
[gnsmission power on a per-packet basis. In such

for sending out the copies. The table is pOpUIatecenarios, a queue can be associated with each

by an user space multichannel protocol. This tabjﬁaode of an interface capability, thereby reducing

structure offers protocols the flexibility of changinqhe frequency of switching the mode of operation
the set of channels to use for broadcast over time,@%d hence reduce the switching cost)

well as controlling the specific interface to use fo ' _ o
broadcast. Therefore, protocols that use a commonl he scheduler is responsible for controlling in-
channel for broadcast, protocols that send a copytgfface switching. Since interface switching delay

broadcast packet over all the available channels, d¬ negligible (around 5 ms for our hardware),

When the CAL receives a broadcast packet fromultlple packets on each channel (if possible) before

the network layer, it hands the packet off to thSW|tch|ng to a new channel. However, waiting for

broadcast component. The broadcast compon 0 long on a channel increases packet delay. Once

. interface is switched to a channel, it stays
creates a copy of the packet for each channel |ISt8§ that channel for at least, . duration. If the

Itg izi tqal?eli,inagn?:or:ﬁggﬁe%f{ the copies of the paCkagalnnel is con.tinuously Iqaded, then the scheduller
o) ' decides to switch to a different channel (only if
A similar mechanism can be used t0 SUPPOfhother channel has packets queued for it) after
other interface capabilities that may require multlp@mm duration Cuee > Tonin)-

transmissions to support broadcast. For example,_. . .
the broadcast list can be extended to specify theFlgure 3 describes the scheduler operation. The

antenna beam on which a packet has to be sent g&theduler maintains an estimalg;, of the time

to support broadcasts with multi-beam antennas..neéded to tra.nsmlt.packets it has already given to the
interface device driver (these packets are stored in

C. Scheduling and queuing component a separate queue within the device driver). Initially,

The scheduling and queuing component is tidter a switch,Ty;, is set to zero. For each packet
most Complex part of CAL. For each ava”abl@at is sent to the device dr|Vd;‘fZ'n is incremented
interface, the component maintains a separate B¥tan estimate of the time needed to transmit that
of channel queues as shown in Figure 2. The ugdcket. The estimate is derived based on the size
space multichannel protocol, on startup, can specflyy the packet and the transmission data rate (we
the list of channels supported by each interfa¢ghore channel contention as it is not critical to
usingioctl calls. This architecture allows different :

We use the term “mode” to refer to the different values of an

interfaces to support a pOSS|ny different set (Mterface capability. For example, the different datagaterrespond
channels. to the different modes available with the data rate capigibili

have very accurate estimates). The scheduler send®ur testbed uses wireless interfaces that are based
out packets to the interface driver until either then atheros chipsets [19] controlled by “madwifi”
channel queue is empty (in which cagg;, is set open source driver. Our device driver modifications
to the maximum of its current value and,;,), or have been made to the madwifi driver. We have
Ty, exceedsl,.,. At this time, a timer is set to not yet looked at the feasibility of making these
expire afterT,, duration, if packets are pendingmodifications to other drivers.

for any other channel. When the timer expires, if 1) Reducing channel switching delagn IEEE
some other channel has queued packets, then 8% 11 wireless interface operating in the ad hoc
interface may have to be switched. mode is associated with two identifiers called the

Before the interface is actually switched, th&SSID (set by the administrator), and BSSID (cho-
device driver is queried to see if all packets, whicken by the node that first came up with that ESSID),
had been given to the driver since the last switchnd these identifiers are sent out periodically in
have been transmitted. Such a querying interfabeacon packets. When a wireless interface, running
is not common in most wireless drivers, and wié the ad hoc mode, switches to a new channel, it is
have built a custom querying interface in the deviaxpected to listen for networks which advertise the
driver that we use (details are in Section VI-D). Ifame ESSID as itself. If no advertisements are heard
some packets are still pending, the actual switetithin a specified time period, then the interface is
is deferred for some more time (fdf,. ;.. time, supposed to create a new network by advertising a
currently set to 10 ms). The driver flushes its queukifferent randomly chosen BSSID. This process of
when a switch is requested. Therefore, deferrinigtening for beacons and advertising a new BSSID,
switching allows any pending packets to be sent oiftnecessary, can take up to 100 ms (the time for only
After deferral, the interface is switched to the nexdwitching channels is about 5 ms). Therefore, the
channel that has buffered packets, using a rourwlerall interface switching delay can be excessive
robin service policy. when normal beaconing is used.

Although our current implementation has used a In multichannel protocols, the beaconing proce-
round-robin scheduling policy, it is fairly simple todure after a switch is not really required if all nodes
provide alternate scheduling policies. For examplieelong to the same network. To reduce the channel
the scheduler can be easily modified to providsvitching delay, we changed the behavior of the
higher priority to certain nodes, or certain channelgiterface after a channel switch request has been
Similarly, different scheduling policies may be apmade, so as to not search for any beacons. Instead, at
propriate for different interface capabilities. startup, all nodes are initialized with a pre-specified

The scheduling component also collects the chad®SSID (in addition to the ESSID). This removes
nel usage statistics for different channels. This ife need for scanning for beacons after the switch.
formation is exported through thﬂoc fi|esystem, Beacons have been disabled in a similar fashion in
and can also be accessed througttl calls. The Some other testbed projects as well [20]. Using this
statistics can be used by higher layer multichanigchnique, we have reduced the interface switching
protocols to do intelligent channel assignment, roué€lay to about 5 ms.

selection, etc. Some capability-specific modifications may be
. o required for other interface capabilities as well.
D. Driver modifications However, with the generic CAL architecture, we

CAL has been designed for use with any existirgkpect such modifications to be fairly small and re-
driver. However, without making some driver modstricted to minor aspects of the driver functionality.
ifications, the switching delay could be excessive, 2) Query support:As we discussed in Section
and many packets could be lost after a switch (thd-C, there is a need for the scheduling component
packets present in the interface driver queue). In th estimate the queue size in the interface driver.
section, we describe the driver modifications that wi® support this, we overloaded a statistics function
have implemented to improve performance. already provided in Linux wireless device drivers

10

Schedule transmissions until Defer to finish
queue is empty or T_fin = T_max pending transmissio

= ¢

-~ 1 ————= |
Switch to Switch tc
channel 1 TIME —— channel

Fig. 3. Example time line of scheduling.

called getwirelessstats() This function normally the discovery process when a new route is desired
returns basic book keeping counters, which aby the application. Clearly, the only place where
wireless specific. In the returned data structure, thexecess to all application packets is available is in
was an unused field, which we now use to return ttiee kernel. Therefore, several earlier routing imple-
number of packets which have been handed downmentations [3], [4], [17] have included support in
the driver, but have still not been transmitted. Thikie kernel to initiate route discovery.

information is used by the scheduling component

to prevent packet losses due to premature chanBeThe on-demand rogte .dISCOVGI’.y process should
switching. e transparent to applications. While the on-demand

route discovery is in progress, any packets sent by
E. Functionality exported by CAL the application have to be buffered, and later sent

The userspace daemon communicates with c/Qut once a new route is available. This buffering is
using a set of IOCTL calls. IOCTL calls are a comequired to prevent packet drops. Note that higher-

mon way in Linux for interaction between kernel2Yer Protocols such as TCP are severely affected by

and userspace components. The list of IOCTL calfte loss of the initial packets in a connection. For

provided by CAL and their functionality is listed®*@mple, TCP incurs a large timeout if the initial
in Table I. We will describe later the sequencéYN packet, used for connection establishment, is

in which these IOCTL calls are invoked by thdost. chket buﬁering has been implemented in past
userspace daemon. More details about the CAYOTKS in two different ways. In one approach [17],

implementation are in Chereddi's thesis [21]. application packets are sent up to the userspace and
stored by a userspace daemon, and re-injected once

Tdhed same kloc-ga, gallsl can potentially be exyg royte is discovered. In the second approach [4],
tended to take additional parameters 10 SUPPYL yats are buffered in the kernel itself. We follow

other interface capabilities. Alternatively, it is als e second approach because it avoids the context

possible to provide new IOCTLs to support oth&litching overheads of sending a packet up to the
interface capabilities. userspace.

VIl. KERNEL MULTICHANNEL ROUTING
SUPPORT

The kernel routing support is implemented as a
module which can be loaded into the Linux kernel.

The kernel multichannel routing (KMCR) modul€eThe module utilizes the Linux Netfilter support [18],
provides support for on-demand routing. For exarand the implementation was based on the AODV
ple, when an application initiates communicatiomplementation from Uppsala university [4], [22].
to a destination that is not a direct neighbor, Bigure 2 shows the structure of KMCR module.
new route may have to be setup if no route to thehe KMCR module maintains a “active route table”
destination is already available. The route discovecgpntaining a list of nodes to which routes are
protocol is implemented as part of the userspaaeailable. Each node in the list is also associated
daemon. However, a mechanism is needed to invokéh a “time left” field that represents the time

11

IOCTL call Function
AddValidChannel Specify the channels that may be used by an interface.
UnicastEntry Add, update, or modify an entry in the unicast table.
BroadcastEntry Add or remove an entry in the broadcast table.
SwitchChannel Explicitly switch an interface to a new channel.
GetStatistics Return per-channel usage statistics.

TABLE |

LISTOFIOCTL CALLS EXPOSED BY CHANNEL ABSTRACTION LAYER

period after which the route to that node is deemédfeTime value to 30 seconds in our implementa-
to be inactive. tion). Essentially, when packets are intercepted on
the PRE-ROUTING and POST-ROUTING hooks,

The Netfilter library offers “hooks” to intercept. '~ .
packets traversing through the networking stacﬁ%.'nd'cates that the routes used by the packets are

The “LOCAL OUT” hook intercepts packets tha{;\ctive. If no packet is intercepted along a route over
originate in the node, before the routes to be usBd'me longer than thElfeTlmevaIue, then the route
by the packets are computed. The KMCR modul® assumed to be not in use. The userspace daemon

adds itself to the LOCAL OUT hook. If a packelEeriodically checks which routes in the active route

received on the LOCAL OUT hook is destined fo able are no longer in use, and removes them.

a node (using the wireless interface) that does notThe communication between the KMCR module
currently have a route, then a new route has to Bad the userspace daemon is implemented using
discovered. Otherwise, if a route exists, the packettetlink” messages. Netlink library is a feature in
returned without any modifications. When a route lgnux to support communication between kernel
not available, KMCR requests the userspace daen@ifl userspace. Netlink offers more flexibility than
to find a new route. After that, any packets to th&CTL calls by allowing two way communication,
destination are captured from the LOCAL OURNd is especially useful when more than a few
hook and buffered in the KMCR module until a neWytes of information have to be exchanged. The
route is discovered. After a route is discovered, thist of netlink messages implemented by the KMCR
KMCR module is notified by the userspace daemomodule, and their functionality is listed in Table II.
which then re-injects the buffered packets. If the

route discovery fails, then any packets that had been VIII. U SERSPACE DAEMON

buffered, pending route discovery, are dropped. The userspace daemon implements the interface

The KMCR module also adds itself to two othemanagement and routing protocols by utilizing the
netfilter hooks; the “PRE-ROUTING” hook andfeatures offered by the CAL module and the KMCR
the “POST-ROUTING” hook. The PRE-ROUTINGmodule. Recall that an overview of the protocols
hook intercepts packets received by a node frawas provided in Section Ill. In this section, we
an external node, while the POST-ROUTING hoafocus on issues specific to the implementation of the
intercepts packets that are destined for an exterpabtocols. The implementation currently supports at
node. Packets received on the PRE-ROUTING hoatkost two interfaces per node, but can be easily
over the switchable interface are dropped (as tbgtended to support more than two interfaces. The
switchable interface is not intended for receivingserspace daemon should be started only after the
data). Suppose X is a node corresponding to eitf@AL and KMCR modules have already been loaded
the source of a packet intercepted on the PRE{o the kernel. Our current userspace implemen-
ROUTING hook (that is received over the fixedation assumes that two interfaces are available at
interface), or the destination of a packet interceptedch node (and can be easily extended to handle
on the POST-ROUTING hook. Then, the time leftnore than two interfaces). In the next section, we
for the route to X, contained in the active route tableescribe extensions to handle nodes with a single
is reset to a maximunhifeTimevalue (we set the interface.

12

Netlink message Function

AddRoute Add an entry into active table. Implies route discovery wascgssful.

DiscoveryFailed Inform KMCR that route discovery failed.

DeleteRoute Remove an entry from active route table.

InitiateDiscovery Request sent by KMCR to userspace for initiating route disgo

IsRouteActive Query KMCR if the requested route is active.

RouteStatus Response from KMCR to userspace on the status of the requesite.
TABLE I

LIST OF NETLINK MESSAGES SUPPORTED BY THE KERNEL MULTICHANNESUPPORT MODULE

Initialization: The userspace daemon is providegind the CAL module to set up a new route. When
with a list of valid channels and a list of availablehe KMCR module at some node S discovers the
interfaces in a configuration file. Using this inforneed for a new route to some node D, it sends an Ini-
mation, the daemon initializes the kernel modulémteDiscovery request to the userspace module. The
as shown in Figure 4. The initialization protocoliserspace module then queries the CAL module to
first informs CAL of the set of valid channelsobtain the switching cost of using different channels
associated with each interface. Next, using the fixécbcall that switching cost of channels is used by the
channel selection protocol (Section Ill) one of theouting metric). After that, a route request (RREQ)
available channels is randomly chosen as the fixpedcket is sent out. Intermediate nodes on receiving
channel, and one of the interfaces is switched to tttee RREQ again query their CAL to obtain the
fixed channel, while the second interface is switcheslitching cost, which is included while forwarding
to any of the remaining channels. After that, ththe RREQ. The destination on receiving the RREQ
broadcast list is initialized such that the fixed interesponds with a route reply (RREP) packet. The
face is used to transmit on the fixed channel, asdurce node S on receiving the RREP adds a new
the switchable interface is used to transmit on tlemtry in the unicast table of the CAL for node D,
remaining channels. Once these initialization stepad the channel to use for node D is set to the
are complete, the hello packets announcing the fixekdannel used to reach the first hop node on the
channel can be sent out. After that, whenever theute to node D. After that, the KMCR module is
fixed channel of the node is changed, a requestingormed of the successful route discovery through
sent to the CAL to switch the fixed interface. an AddRoute message. If a route discovery fails,

M . ved hell ketsAs d ived i then the KMCR module is informed of the failure
anaging received netlo packetsis described in using the DiscoveryFailed message.

Section 1ll, hello packets received from a neighbor
enables a node to discover the channels used byntermediate nodes that forward the RREP con-
its neighbor. When the fixed channel being usedining the route from S to D have to also add
by a neighbor is first discovered, a new entry isformation about the route into their kernel tables.
added into the unicast table of CAL by sending &ypically, after a route is set up from S to D,
UnicastEntry message. Later, if the channel used the route is used for bi-directional communication.
the neighbor changes, CAL is updated by anoth€&herefore, intermediate nodes have to add a route to
UnicastEntry message. Similarly, if no hello medioth the source S and the destination D to ensure
sages have been received from a neighbor for mahat data packets between S and D, sent in either
than a timeout duration, then the entry correspondirection, are forwarded. The process of adding a
ing to the neighbor is removed from the CAL usingoute is similar to the procedure followed by node
a UnicastEntry message. S, which was described above (though the process

. : i . has to be invoked twice to add routes to both S and
Route discovery and maintenanceThe route dis- D)

covery process is initiated by the KMCR module, as
we described earlier. Figure 5 shows the interactionRoute maintenance involves removing routes
between the KMCR module, the userspace daem@nom the KMCR table that have not been active for a

13
Userspace daemon Channel Abstraction La

AddValidChannel(athO, 1, 2, 3)
AddValidChannel(athl, 1, 2, 3)

SwitchChannel(atho, 1)
SwitchChannel(athl, 2)

Y

BroadcastEntry(add, 1:ath0, 2:ath1, 3: athl)

Y

Fig. 4. Commands invoked at initialization. The figure asssirthat two interfaces (athO, athl) and three channels @) &e available.
The values in parenthesis are parameters included in th&LQ@lls. For example, the values in the BroadcastEntry lcstlithe interface
to use for each broadcast channel.

Kernel multichannel Userspace daemon Channel Abstraction Layel
routing support

InitiateDiscovery(D)

- GetStatistics()
Send RREQ(D)

Receive RREP(D, N)
UnicastEntry(D, channel = x)

AddRoute(D, N)

A

Fig. 5. Commands invoked during route discovery. The examagbumes that a route is being discovered to node D, and xhéoe on
the discovered route is node N.

long time or have been identified as broken. Inactiassignment protocol to assign addresses to individ-
routes are discovered by the userspace daemonulay nodes. Any of the address assignment protocols
periodically querying the KMCR module with theproposed in the literature [23], or even manual

IsRouteActive message (the response is receivaskignment (if appropriate), could be used with our

in the RouteStatus message). Broken routes arglementation. Our testbed experiments have used
identified when the next hop is not reachable, onanual address assignment, and we defer to future
when a route error message is received. In all case®srk automated address assignment.

the route is removed from the active route table
of KMCR by sending the DeleteRoute message,
and from the unicast table of CAL by sending thﬁ1
UnicastEntry message.

The current userspace daemon implementation
ay be used as a template to implement other
ultichannel protocols. In addition, we believe that
the implementation may serve as a template for

The multichannel protocol implementation debuilding higher layer protocols to exploit other inter-
scribed above provides most of the support requiréate capabilities as well. For example, it is possible
for running a multihop multichannel network, proto develop higher layer protocols for utilizing the
vided each node is equipped with two interfacesulti-rate capabilities. Such a protocol may require
The protocols allow any node in the network taeighbor discovery and routing mechanisms, and
communicate with any other node. In our worlkgur implementation may be used to guide the multi-
we have assumed that there is a separate address protocol implementation.

14

IX. MESH NETWORKING EXTENSIONS the mesh network uses a private address space that
Multihop wireless mesh is one network architec,i-s not visible to the Internet. Therefore, to allow
nodes in the mesh network to communicate with

ture for providing last mile wireless connectivity. X :
This architecture has been used in building Corﬂpdes in the Internet, network address translation

munity wireless networks [24], [25] city-wide wire-(NAT) is. rgquired at th? gateway nddeStandard
less networks [26], among others. In this sectioh!nux distributions provide NAT support, and the

we describe extensions to our implementation {Bamslatlon can be set up using the “iptables” tool.

support mesh networking. The mesh networking When an application on a mesh node initiates
implementation demonstrates the feasibility of usimpmmunication with a node in the Internet, the
multiple channels in a mesh network. packets have to be first routed from that node to

Figure 6 describes the mesh networking arcH?€ gateway node, and from there on to the Internet.
tecture that we support. Nodes in the network al@ Packets have a destination field in the IP header
classified into two types: “mesh nodes” that run trfé)ntalnlng the address of thg destination, and this
software we have implemented, and “client node&® used Dy the routing tables in the mesh nodes for
that are unmodified. Client nodes are equipped wil§ciding the channel and next hop node to use while
one IEEE 802.11 interface, while mesh nodes ha{fgfwarding a packet. When a packet is destined to
either one or two interfaces. Some of the medhe Internet, the gateway is an intermediate desti-
nodes are connected to the Internet and act "H@fion, with the actual destination located in the
“gateways”. Mesh nodes form a backbone netwolRternet. If the destin_ation ad_dress inalP pack_et
that is fully connected, and a mesh node is capal$eSet to that of the final destination, then there is
of communicating with any other mesh node. RO information in the packet to gwcje it towar.d the
client node connects to one of the mesh nodes t§&teway node. On the other hand, if the destination
is in its direct communication range. The mesfddress is set to that of the gateway node, then

nodes are viewed by the clients as access poirff final destination address is not contained in the
All mesh nodes and client nodes are capable RRCket.

communicating with hosts in the Internet, but the To ensure that a packet contains the address of
client nodes do not communicate with any mesjoth the gateway node and the final destination
node other than the node they are connected ({githout requiring modifications to IP), we use a
directly. packet encapsulatioapproach (a similar approach

Mesh nodes equipped with two interfaces suppoies used by [22]). At the source mesh node, in the
the multichannel protocols presented in Section Ififst step, an IP packet is created with the destination
and can potentially transmit on any channel. Singgldress in the IP header set to the address of the
interface mesh nodes support a modified interfagede in the Internet. After that, the packet is encap-
management protocol which requires them to isellated with a second IP headeand the destination
fixed on a specific channel, but support the defa@éldress in the second header is set to that of the
multichannel routing protocol used by two interfacgateway. When the packet reaches the gateway, the
nodes. In the rest of this section, we describe extediteway node decapsulates any packets that are
sions to the implementation to provide support f@ncapsulated, and then forwards the packet on to the
gateways, support for mesh nodes that have a sinfjléernet. The process of encapsulation/decapsulation
interface, and support for allowing unmodified clier@nd network address translation is shown for an
nodes to connect to the Internet through a me€kample scenario in Figure 7.
node.

5The address translation ensures that packets originatirany
mesh node appear to the nodes in the Internet to be originttm

A gateway node uses a wired interface to connél§ 9ateway node, on the wired interface _

. . . . This mechanism is provided for in the IP protocol, and isezhll

to the Internet, while using two wireless interfaceg,

o) IP in IP mode. The mode is often used to tunnel packets over
to participate in the mesh backbone. In our testbeslitiple IP hops, for supporting mechanisms such as mobile |

A. Gateway support

15

IEI Two interface gateway node ﬁ Two interface mesh node
ﬁ Single interface mesh node Hﬂ:[” Single interface client

Fig. 6. The mesh networking architecture supported by oynlémentation.

192.168.0.10 192.168.0.1

AL

Step 1: Encapsulate to 192.168.0.1 ~ Wired IP =130.126.141.227
Step 2: Decapsulate

Step 3: Translate source address to 130.126.141

Fig. 7. Steps involved in sending a packet to the Internetr@onode A encapsulates the packet, which is forwardedetgdlteway node
GW. Gateway node decapsulates the packet, translates dnesacand forwards the packet to Internet.

The support for encapsulation and decapsulatigateway node. Initially, the field is set to zero, and
is implemented in the KMCR module. The encapevery node that forwards the message increases the
sulation is done in the LOCAL OUT netfilter hookhop field by one. The message is forwarded only
at each mesh node (only for packets destined up to a pre-specified maximum number of hops
the Internet), while the decapsulation is done iwhich can be suitably chosen. A node receiving
the PRE-ROUTING netfilter hook (only at gatewayhe advertisement message will learn the address
nodes). Note that packets that are coming in froaf the gateway node and the number of hops to
the Internet to a mesh node do not need encdpe gateway. Similar gateway discovery mechanisms
sulation, because the network address translatizave been proposed in the past as well [23].
implicitly ensures that packets to mesh nodes are

first routed to the gateway node. Our implementation supports multiple gateways

in the mesh network. Having multiple gateways
Discovering gateway nodesA gateway node sendsprovides resilience to failures, and allows traffic to
out a broadcast advertisement informing other nodis® Internet to be distributed across nodes. When a
that it is a gateway. The advertisement message Inasle receives advertisement messages from multiple
a “hop” field containing the number of hops to thgateways, it selects one of the gateways as the

16

gateway it intends to use. In our implementatiochannel within its communication range. Node S
the gateway that is fewest hops away is selecteden switches its interface to the next available
with ties broken arbitrarily. The gateway selectionhannel and repeats the discovery procedure, and the
mechanism can be easily extended to use otlpeocess continues through the available channels till
cost metrics, instead of basing the selection on thechannel with a multi-interface neighbor is found.

number of hops to the gateway. After initialization, the fixed channel selection algo-
. . rithm is repeated whenever no multi-interface nodes
B. Single interface support are reachable on the fixed channel. The discovery

Mesh nodes that are equipped W|th a Sing'e inté?rocedure COUld be extended to Se|eCt f|Xed Channe|S

face cannot support the hybrid interface assignmé?ﬁsed on other metrics, such as the number of multi-
strategy which requires at least one fixed interfatéierface nodes on a channel, or the load on a
and one switchable interface. It is possible that@@annel.
mesh network may be incrementally deployed, with The fixed channel selection procedure described
some of the nodes having only a single interface. Véd@ove allows a single interface node to be connected
aim to allow single interface nodes to participate o the mesh network if it has at least one multi-
the mesh network, though at the cost of not beingterface node in its neighborhood. This requirement
able to communicate directly with all neighbors. is conservative as it does not allow for a single inter-
A node S with a single interface keeps its intefaCe node S to connect to the rest of mesh network

face fixed on one of the available channels (the dlirough another single interface node, say X. Note
gorithm for selecting the fixed channel is describdfat if X is connected to mesh backbone, then S
below). The fixed channel is chosen such that t§8uld connect to the mesh backbone through X. We
node S has at least one multi-interface node, sgg not allow a single interface node to be connected
M, that can be directly reached on the fixed channéfrough another single interface node because of
Single interface nodes implement the full multicharihe possibility of network partitions. For example,

nel routing protocol presented earlier. Therefore, fode X may believe it is connected to the mesh

the single interface node has to communicate wiBi@ckbone through node S, while node S believes
any other neighboring node that is not sharing iyis connected through node X. In that scenario,

fixed channel with itself, it can do so by routing vid'odes S and X could be connected to each other, but

node M. This ensures that node S can communic&@ to other nodes in the mesh network. Then, even
W|th any Other node in the network Via node M though the meSh nOdeS fOI’m a Connected network

e : . hen all nodes use a common channel, they may no
During initialization, a single interface node

. : onger be connected if some single interface nodes
first randomly selects a channel and switches to tha .)

die only connected to other single interface nodes. It
channel. After that, node S sends out a broadcas d :
IS possible to have a more elaborate protocol which

Qr(?ssr‘sglfi-i?] rt]e:?:ctecg?ars‘?]erlloazictlavﬂtltﬂggrgseil\)/ fssfr?é sures that a set of connected single interface nodes
y re also connected to at least one multi-interface

advertised messagygesponds back with a unicasf :

o Hode, but we defer such an extension to future work.
acknowledgment announcing its presence. If node
S receives an acknowledgment, node S learns the _
availability of a multi-interface node M on thatC. Support for client nodes

channel. Node S then fixes its single interface to Client nodes do not run any of the software that
the channel it is already on, completing the fixefle have implemented. Instead, client nodes view
channel selection. On the other hand, if node fesh nodes as “access points” and connect to them
does not receive any acknowledgments, it leargging standard IEEE 802.11 protocol rules. A client
that there are no multi-interface nodes on its currefigde is allowed to connect to any of its neighboring
6 . _ mesh nodes on the fixed interface of the mesh node.
Note that a multi-interface node M would receive the messaiﬁ typical wireless networks. clients connect to

only if the channel on which the message has been sent happen . -]
be M's fixed channel. access points using the “managed” mode provided

17

forin IEEE 802.11. However, in our implementation
mesh nodes are connected to each other using the
“ad hoc” mode, and therefore a client will have to
connect to the fixed interface of a mesh node in
the “ad hoc” node. An alternate solution would be
to have an extra interface at each mesh node, and
set up the extra interface to operate as an access
point in the managed mode. Then, clients could
connect to the extra interface in the managed mode.
Our approach (of connecting to the fixed interface)
avoids the need for an extra interface.

Our implementation requires the mesh nodes k@. 9. Picture of a testbed node. Each testbed node is ezgliipp
be assigned addresses with a common subnet prefii, wo wireless interfaces.
while client addresses must belong to a different
subnet prefix. The userspace daemon adds a default
entry into the unicast table of the channel abstraisterface), and it is possible to have up to 3 wireless
tion layer. The default entry ensures that packetsdios using this hardware platform. The wireless
to any destinations not in the unicast table are sesrds are based oktheroschipset [19], and support
out on the node’s fixed channel. This ensures th@EE 802.11a/b/g protocols.

packets sent to clients are sent out on the f'_xedThe multichannel implementation has been care-
interface (because no entries are added into UNICRRH, tested for correctness on the testbed. We have
table for clients). fCI'ﬁmS ha;l/e to be configured 19"y, scenarios with gateway nodes, single interface
connr:actf.to c?nyho t Ie Teﬁ nod?]s 'gd'ts VICINIBfesh nodes and client nodes, and verified the cor-
on ;[€ Tixed € alr]ne of t e” mez n l‘m OUI rect operation of the protocols. The performance of
Implementation, clients are allowed to only ComMys,nne| abstraction layer has been extensively stud-
nicate with nodes in the Internet, or with other nodqéd in Chereddi's thesis [21]. The CAL performance
in the mesh network. However, our |mplementat|q;‘\}aS measured while operating it as part of the
COUllq be e>étended to”allowkmesh nodes :)o Conlr,‘?ﬁbltichannel implementation described here (we do
to client nodes as well. Packets sent out by a cligql; restate those results here), and the results there
are network address translated by the mesh n onstrate significant performance improvements
to which it is connected, and the_n sent on 10 Mehen multiple channels are used. In addition, [21]
Internet or anothgr mesh nodg. F!gure.8 |IIustrat3§So includes a study on the interface switching
the process of a client communicating with a node fblay and a study on the number of orthogonal
the Internet. Apart from the minimal configuration,annels available in our testbed. In the rest of this
requirements, clients can run without requiring anyy.tion, we present sample results to demonstrate

other changes. the benefits of our implementation in single hop and
multihop scenarios.
X. TESTBED EXPERIMENTATION

The multichannel implementation has been evak Single hop experiments
uated on a testbed that we have built. Nodes in th
testbed comprise oNet 4521boxes from Soekris implementation under a single hop scenario. Five

[27]. Figure 9 shows a picture of a testbed nodfyyes are placed such that each node can directly
Each node is currently equipped with two wir€less, o nicate with any other node. The nodes are
interfaces (one pcmcia interface and one mini-pgl, - bered from0 to 4 and nodei sets up a flow

. _ to node (i + 1) mod 5. We vary the number of
The standard IEEE 802.11 beacons continue to be sent oueon t

fixed channel in our implementation, and enables clientsigooster Clhannel_s in the _network from one to four. All nodes
the channel on which a mesh node is available. are equipped with two interfaces. The channel data

®\We measure the performance of the multichannel

18

Wired IP = 130.126.141.227

192.168.1.1 192.168.0.10 192.168.0.1
il i G
Client Translate source Translate source

address t0 192.168.0.10 address to 130.126.141.227

Fig. 8. Client communication process. Client packets atwvork address translated at its mesh router, node A. Exaregsemes that
client address space is 192.168.1.*, while mesh node asidpece is 192.168.0.*.

rate is set to 6 Mbps. The experiments are run with UDP traffic
both TCP and UDP traffic (flows are run for 100s), 20
and traffic is created using the iperf tool [28]. Iperf
creates back-logged traffic.

15

Figure 10 plots the aggregate throughput for both

TCP and UDP traffic. As we can see from the o1 |
figure, when more channels are available, there is
a substantial improvement in the throughput. With > |
UDP traffic, each node has data to transmit on .

1 2 3 4

exactly one channel. Therefore, interface switching
is not required at any of the nodes. However, Number of channels
with TCP traffic, each node has to send TCP data
packets along the flow it is initiating, and send
TCP ACK packets along the flow it is receiving
data. These two data streams may potentially be
on different channels, and therefore, may require
interface switching (in experiments using three or
four channels). However, we see that in spite of
interface switching, TCP performance is comparable
to UDP (up to three channels).

Aggregate throughput (Mbps

TCP traffic

14 |
12 t
10 |

1 2 3

Number of channels

Aggregate throughput (Mbps)

o N b~ O ©

We have found that TCP performance starts de-
grading when more than three channels are used.
Looking at the TCP traffic received over one second
intervals, we see that in certain intervals the nodeg. 10. Throughput in a single hop network with varying nemb
receive no packets, implying that TCP timeout channels. Channel data rate is 6 Mbps.
are occurring in experiments with more than three
channels. TCP timeouts arise when there are mul-
tiple packet losses. We speculate that packet losses
are occurring because of cross-channel interfererdd@nnels at a time. In this testbed experiment, all
when more than three channels are used. Our medes are close to each other, and traffic is present
terference experiments (see [21] suggested that fore all channels simultaneously, which may lead to
orthogonal channels may be available for use increased cross channel interference. UDP does not
our testbed. However, those experiments only coslow down in the face of packet losses. Therefore,
sidered aggregate throughput and did not considébP throughput continues to improve even if a few
packet losses. In addition, those results considemgackets are lost because of cross-channel interfer-
interference when traffic was present on only twence.

19

Chain throughput (Mbps)

Number of channels

TCP traffic

=
o
‘

o
[¢)]

Chain throughput (Mbps)

B. Multihop experiments UDP traffic
The performance of the multichannel implemen- 5
tation under multihop scenarios is measured by |
setting up a chain of five nodes. A flow (TCP or
UDP) is set up from the first node in the chain to the 3t]
last node in the chain (i.e., a 4-hop flow is set up).
The flow throughput is measured while the number 2]
of channels is varied from one to four. Channel data Ll |
rate is set to 6 Mbps. j
Figure 11 plots the flow throughput for both TCP 0 5 3 4
and UDP traffic. As we can see from the figure,
when more channels are available, there is a sub-
stantial improvement in the throughput, though the
magnitude of improvement is less with TCP traffic. | | |
TCP throughput depends on the end-to-end delay in
addition to the available bandwidth. The interface |
switching delay is 5 ms with our testbed nodes, and
the delay experienced by packets could be higher o |
because of the queuing introduced by the channel
abstraction layer. We suspect that this increased - al]
delay could be limiting the performance improve-
ments. Note that although a single TCP flow may 0) 3 4
not utilize all the available bandwidth, other flows in Number of channels
the vicinity could still utilize the unused bandwidth.
Therefore, the aggregate network throughput is sfilb. 11. Throughput in a 4-hop chain topology with varyingmher
expected to increase even with multihop traffi€f channels. Channel data rate is 6 Mbps.
Similar to one hop experiments, TCP throughput
in a chain topology is also lower with more than
three channels. As before, we speculate that thisaigich set of interface capabilities to the user, such
because of the increased packet losses arising asitthe ability to set the data rate and transmission

of cross channel interference. power on a per-packet basis. However, to benefit
from these features, new higher layer protocols may
Xl. CONCLUSIONS be required. We argued that the implementation of

In this report, we described the implementation dfigher layer protocols that utilize other interface
the one set of multichannel protocols on the Net-x@pabilities will require new kernel support as well,
testbed. The prototype implementation has demat?d provided examples to identify how the channel
strated the feasibility of using multiple channelgbstraction layer may be extended to provide the
when only two interfaces are available. As part ¢fesired support. We believe that the channel ab-
the implementation, we developed a generic chagiraction layer design can serve as a blueprint for
nel abstraction architecture to support multichann¥ilding support for most of the interface capabil-
protocols. The architecture and the protocol suitées. It is part of our ongoing work to implement
that we have developed may be useful to devel@potocols to exploit other interface capabilities on
other multichannel protocols as well. the Net-X testbed.

‘ The channel abstraction architecture was de- REEFERENCES
signed to support the use of multiple channels, mul- _ _ ,
inle interfaces. and frequent interface switchin [1] Pradeep KyasanurMutichannel Wireless Networks: Capacity
tiple inte ’ q 9. and Protocols Ph.D. thesis, University of lllinois at Urbana-

Several commercially available radios now export Champaign, 2006.

(2]

(3]

(4]

(5]
(6]

(7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

Pradeep Kyasanur and Nitin H. Vaidya, “Routing and Link{24]

layer Protocols for Multi-Channel Multi-Interface Ad hociid-

less Networks,” Sigmobile Mobile Computing and Communi{25]
[26]
D. Maltz, J. Broch, and D. Johnson, “Experiences Designi [27]

cations Revieywvol. 10, no. 1, pp. 31-43, Jan 2006.

and Building a Multi-Hop Wireless Ad-Hoc Network Testbed,”
Tech. Rep. TR99-116, CMU, 1999.

H. Lunndgren, D. Lundberg, J. Nielsen, E. Nordstrom, and
C. Tscudin, “A Large-scale Testbed for Reproducible Ad Hoc
Protocol Evaluations,” iWCNG 2002.

B. A. Chambers, “The Grid Roofnet: A Rooftop Ad Hoc
Wireless Network,” M.S. thesis, MIT, 2002.

R. Karrer, A. Sabharwal, and E. Knightly, “Enabling Larg
scale Wireless Broadband: The Case for TAPs,” Hotnets
2003.

B. White, J. Lepreau, and S. Guruprasad, “Lowering theiBa

to Wireless and Mobile Experimentation,” kotnets 2002.

D. Raychaudhuri, I. Seskar, M. Ott, S. Ganu, K. Ramachamd
H. Kremo, R. Siracusa, H. Liu, and M. Singh, “Overview of the
ORBIT Radio Grid Testbed for Evaluation of Next-Generation
Wireless Network Protocols,” ilWCNG 2005.

P. De, A. Raniwala, S. Sharma, and T. Chiueh, “MINT: A
Miniaturized Network Testbed for Mobile Wireless Resedrch
in Infocom 2005.

Atul Adya, Paramvir Bahl, Jitendra Padhye, Alec Wolmand
Lidong Zhou, “A Multi-Radio Unification Protocol for IEEE
802.11 Wireless Networks,” ifEEE International Conference
on Broadband Networks (Broadnet2004.

Ranveer Chandra, Paramvir Bahl, and Pradeep Bahl, tiNied:
Connecting to Multiple IEEE 802.11 Networks Using a Single
Wireless Card,” inEEE Infocom Hong Kong, March 2004.
Richard Draves, Jitendra Padhye, and Brian Zill, “Ragitin
Multi-Radio, Multi-Hop Wireless Mesh Networks,” ilCM
Mobicom 2004.

Ashish Raniwala and Tzi-cker Chiueh, “Architecturedan
Algorithms for an IEEE 802.11-Based Multi-Channel Wirales
Mesh Network,” inInfocom 2005.

“Virtual Wifi software
http://research.microsoft.com/netres/projects/iifi.
Patrick Stuedi and Gustavo Alonso, “Transparent Heger
neous Mobile Ad Hoc Networks,” id\CM MobiQuitous 2005.
Nicolas Boulicault, Guillaume Chelius, and Eric FlgurEx-
periments of Ana4: An Implementation of a 2.5 Framework for
Deploying Real Multi-hop Ad-hoc and Mesh Networks,” in
REALMAN 2005.

Vikas Kawadia, Yongguang Zhang, and Binita Gupta, “Sys
tem Services for Implementing Ad-Hoc Routing: Architeetur
Implementation and Experiences,” Mobisys 2003.

“Netfilter: Linux packet filtering framework,”
http://www.netfilter.org/.

“Atheros Inc,” http://www.atheros.com.

John Bicket, Daniel Aguayo, Sanjit Biswas, and Robedrig],
“Architecture and Evaluation of an Unplanned 802.11b Mesh
Network,” in ACM Mobicom 2005.

Chandrakanth Chereddi, “System architecture for ichénnel
multi-interface wireless networks,” M.S. thesis, Univgrsof
lllinois at Urbana-Champaign, 2006.

“AODV-UU: AODV implementation
from Uppsala University, version 0.9.1”
http://core.it.uu.se/AdHoc/ImplementationPortal.

Matthew J. Miller, William D. List, and Nitin H. VaidyaA Hy-

brid Network Implementation to Extend Infrastructure Rgac
Tech. Rep., University of lllinois at Urbana-Champaign020

page,”

(28]

20

“Champaign-Urbana Community =~ Wireless Network,”
http://www.cuwireless.net/.

“Seattle Wireless,” http://www.seattlewirelesg/ne

“Municipal Wireless,” http://www.muniwireless.cam

“Net 4521 hardware from Soekris,”
http://www.soekris.com/net4521.htm.

“Iperf version 2.0.2) May 2005,

http://dast.nlanr.net/Projects/Iperf/.

