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SUMMARY

In this thesis, it is proposed to solve for the accelerations and internal forces of mul-
tiple connected rigid bodies using recursive formulations and screw theory. Screw
theory allows for compact notation of the equations of motion and kinematics. The
concept of a single articulated inertia modeling the behavior of an entire subchain
is used to simplify the equations such that a recursive solution is possible for sys-
tems with no kinematic loops. In planar cases, the graphical interpretation of the
equations introduces the connection between projective geometry and dynamics with
screw theory. Projective geometry uses subspace decompositions and projections to
extract useful information from problems. Similarly in dynamics, to find the reac-
tion forces on all the joints, the splitting of all the internal forces into active and
reactive subspaces is required. The splitting of body accelerations into active and
reactive parts is also needed in order to understand how each solution affects the
next recursion. Together the two decompositions form a symmetric and dualistic set
of projections that is used for both single rigid bodies and multiple articulated rigid
body chains. These projections are applied to the equations of motion yielding a
new set of recursive equations with fewer steps. Each projected articulated equation
maintains the two separate parts of active and reactive components. Examining the
special cases presented when either of the two parts is zero for either the forces or ac-
celerations indicates the physical interpretation of the parts. A similar non-recursive

formulation is introduced to solve systems with kinematic loops. Several planar and

xiii



spatial examples are included to illustrate solutions to projections, open and closed
loop accelerations, and articulated inertias. A MATLAB toolbox is developed, de-
scribed, and used in some of the examples implementing screw theory and projective
articulated dynamics. Suggestions on further development are made that enhance

the usability and understanding of multibody dynamics with screw theory.
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CHAPTER 1

INTRODUCTION

The study of motion has always inspired scientists throughout history. The explo-
ration of motions has guided pioneers such as Galileo, Newton, Euler, Lagrange and
Einstein to define new frontiers in science. One of the many branches of mechanics is
rigid body dynamics. It is the study of rigid bodies as they interact with each other
and the motions and forces that describe them. These are complex systems with
many conceptual and mathematical problems. As a result there are a number of dif-
ferent methods used to describe them, each with its own notation [1]. Most common
is the vector method and its association with the Newtonian and Eulerian form of
the equations of motion. Alternatively there are variational methods used with the
Lagrangian form of the equations of motion for holonimic systems. These two meth-
ods are combined in an unified method based on Hamilton’s principle. In addition,
there are mathematical variations of the above methods including tensor calculus,
Gibbs-Appell equations for quasi-coordinates, Hormel equations, Lie groups, quater-

nions and even graph theory. After three centuries of development, the plethora of



methods and formulations for rigid body dynamics may confuse prospective students.
Of importance is not the mathematics behind the formulations but the physical in-
sight they may offer. One of these methods which describes dynamics with physically

meaningful quantities is screw theory.

1.1 Screws

It is convenient to use compact notation for describing rigid body motions. Three
translational and three rotational velocities are encapsulated into a single spatial
quantity, the velocity twist. Together with the acceleration twist, they describe the
motion of a rigid body.

A single spatial quantity, the wrench, encapsulates the force and moment vectors
needed to describe loads on a rigid body. Both twists and wrenches are split into a
magnitude and a geometrical screw quantity.

Screws describe helical fields, which are defined by a particular axis and a pitch.
In general there are five quantities needed to describe a screw: four quantities are
required to locate the screw axis and one quantity specifies the screw pitch. A scalar
magnitude and a screw comprise the six quantities in a twist or wrench. Screws
serve the same function in rigid body dynamics as unit direction vectors in particle
dynamics. For example, the velocity vector of a particle consists of the constitutive
part, the magnitude, and the geometrical part, a unit direction vector. The magnitude

represents the speed, and the unit vector the direction it is moving. For rigid bodies



the velocity twist consists of the geometrical part the screw is moving along and the
constitutive part, how fast it is moving.

Spatial inertias are tensor quantities that transform acceleration twists into
wrenches and can be represented as 6 x 6 symmetric positive definite matrices. With
spatial quantities, invariants such as kinetic energy or power are easily defined and
calculated. Power is the linear form between forces and velocities, and kinetic energy
a quadratic form of the velocities.

The components of spatial quantities, such as twists and wrenches, may change
as they are expressed in different coordinate systems. However, the information they
represent remains unchanged. Invariant screw properties such as the location and di-
rection of the screw axis, or the screw pitch can always be extracted from twists and
wrenches. The best way to represent screws is through a unit twist or wrench. This is
similar to representing the two independent parameters of a direction using the three
components of a unit vector. Although only five quantities are needed to describe
a screw, six are often used with the added constraint of the unit magnitude. This
concept is also similar to homogeneous coordinates where redundant components are
used to simplify the notation. Also similar to homogeneous coordinates, the coor-
dinate transformations are performed by multiplying a single matrix that represents
both a translation and a rotation.

Since both twists and wrenches contain screws there is a certain geometrical sym-

metry between them. The equations used to extract information from twists have



symmetrical duals with wrenches. The dual relationships involving velocities, accel-
erations, forces, and momenta are used to gain physical insight in the equations of

dynamics.

1.2 Related Work

Screws were first used to describe statics, kinematics, and dynamics by Ball [2].
More recently, the foundation of modern recursive spatial notation was developed
by Featherstone [3]. This is a fundumental source of modern robotic articulated
dynamics involving screw theory. Although it deals mostly with open loop rigid body
chains, the articulated inertia concept and its prospect of computational efficiency has
made the spatial notation very popular in the field of robotics. The initial driving
force behind such work was the need for efficient computational methods for solving
complex multibody systems.

The linear recursive O(N) methods developed were most efficient for a large num-
ber of bodies. Compared to the standard O(N?) method the new methods were more
efficient for problems with seven rigid bodies or more. Most common industrial appli-
cations involve robots with six or less rigid bodies, which makes these new methods
about on par with the standard methods. However, there are more benefits uncovered
by these methods that do not directly address the need for computational efficiency,
but are important for the information they convey.

Multibody dynamics methods for constrained tree structures with kinematic loops



were later developed by [4, 5, 6, 7, 8, 9]. In particular, Jain et al. [6] used topol-
ogy and optimal control operators to develop a method similar to Kalman filtering.
In addition, Wehage and Balczynski [8, 9] used topology to develop simultaneous
stacked form for the equations. The stacked form is converted into recursive form
utilizing block matrix factorizations. In addition, projections are used to extract rel-
evant information from the stacked quantities. Another interesting stacked recursive
method is by Lathrop [7]. Recursively all the unknowns forces are eliminated and
replaced by known quantities in the stacked equations of motion which are solved for
the accelerations with a linear recursive method.

The effects of external forces to articulated chains were developed by Lilly [4].
Contacts were modeled as external reaction forces that forced the system to accelerate
along particular directions. This model was extended into problems where a common
end effector was connected to multiple robots working together, simultaneously. To
achieve this, the unknown reaction forces were eliminated using projections. A similar
process is used later in this text to model internal forces.

Using recursive spatial notation Phee [10] introduces concepts from graph theory
and networks to solve multibody systems. On the other hand, Ploen et al. [11]
uses Lie algebra to transform the Newton-Euler equations of motion into recursive
equations. In addition, the computational efficiency is examined and improved using
a square factorization of the mass matrices. More optimal computational efficiency

in recursive methods is developed by Stelzle etr al. [12] in eliminating negligible



computations from the transformation matrices and recursive factors.

The geometrical properties of screws are explained by Lipkin and Duffy [13]. An
overview of projective geometry, mappings and the principles of duality are found
in Pedoe [14]. Although not specific to screws, projective geometry is abstract and
applies directly to spatial quantities. Orthogonality, reciprocity, and duality of screws
are also explained by Roth [15]. The physical insight of spatial articulated inertias is
summarized by Lipkin [16]. Spatial articulated inertias are shown to have six general
principal axes, as opposed to the three that single rigid body inertias have. Finally, the
articulated recursive spatial algorithms together with duality projections and other
geometrical principles are used to completely analyze the loadings and motions of a
single constrained rigid body by Alexiou and Lipkin [17]. These projective solutions

contain the fundamental building blocks for this text.

1.3 Velocity Twists

To describe the velocity of a rigid body with spatial notation both the linear and

angular velocity vectors are needed.

Definition 1 The velocity twist of a rigid body expressed at a point P is



where Up is the linear velocity vector of the body expressed at P and & the angular

velocity of the rigid body.

This vector combination conveys enough information to describe the motion as a
simultaneous rotation and translation about an axis is space. The instantaneous path
followed by any point on the rigid body through time is a helical curve. Similarly,
all the linear velocity vectors of a rigid body describe a helical vector field as seen in
Figure 1.1. By definition, the linear velocity vector vg of any point () lying on the

twist axis is parallel to the angular velocity vector w. The screw pitch p is defined by

’l_)Q = pu_J (12)

The pitch is the scalar factor between the linear velocity vector ¥ and the angular
velocity vector w. The linear velocity vector at reference point P is

Tp = p +7 X @ (1.3)

where 7 is the position vector from point P to point Q).

The spatial velocity is now split into two parts

vp = + (14)

which represent a rotation of w about an axis located by 7 and a translation pw
parallel to the axis of w. The velocity twist vp magnitude is defined as the magnitute
of the angular velocity || if @ # 0. If || = 0, then the velocity twist represents a

7



Figure 1.1: The helical field of linear velocity for any point on a rigid body as a
result of general motion. The net velocity vp at any point consists of two parts, Up;
the linear velocity parallel to the screw axis, and vpy the tangential velocity that
represents the rotational motion of the body about the screw axis.

pure translation along vp. The geometrical information in vp is a screw axis located
by 7 in the direction of @ and the pitch, p, which has units of length representing the
translation along the axis per revolution. A pitch of zero indicates a purely rotational
motion and an infinite pitch indicates a purely translational motion. As shown earlier
when |w| = 0 and |vp| # 0 the screw is degenerate with p = co. Thus, a unit screw
with |w| =1 has a linear velocity along the screw axis equal to the screw pitch.

The first part of (1.4) is associated with a line vector since it contains the orien-
tation and location of the screw axis. The other part is associated with a free vector

because its components are independent to the reference point.



To extract the geometrical information from the components of the velocity twist

vp, (1.3) is projected along the screw axis as

wop = 0T pw+ " (F x ©) (1.5a)
= po’@ (1.5b)
which is solved for the pitch
oTop
= 1.6
P= 7 (1.6)

Also, to find the closest position of the screw axis, (1.3) is projected on the plane

perpendicular to the screw axis as

WXVp = WXpw+wx(FXw) (1.7a)
= wXx (FXw) (1.7b)
= (@o)r— (07w (1.7¢)

which is solved for the position vector

Fo= 1.9
rL (@70) (1.9)
In general there might be a component of 7 along @w and therefore
r = T,+mne (1.10)
w X Up _
—— t 1.11
o) T (1.11)
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where e is the unit direction vector

E
€l

I
I
I

(1.12)

&

€l
S

€l

and 7 is an arbitrary scalar.

1.4 Acceleration Twists

Rigid body accelerations do not form helical vector fields. The reason is that the
linear acceleration of any point on a rigid body contains velocity related terms. This
is called the material acceleration a™ and it is the total derivative of the velocity

vector such that

am" = —v (1.13)

Assuming the velocity is a function of position and time, v = v (p, t) then the material

acceleration is split into two parts

ov  Ovdp
a"t = =4+ —— 1.14
ot op dt (1.14a)
o
= G+ 8—;@ (1.14b)
where a is called the local acceleration and is defined by
0

a=—7 1.15
=270 (1.15)

The change of the velocity vector v while holding everything constant and changing

the position p of the reference point is calculated from the velocity vector expansion

10



<l
Il
X
£l
+
=3
X
€l

(1.16)

From Figure 1.1 the position vector of the screw axis is ¢ and the position of the

reference point is p then ¥ = ¢ — p. A small change in p changes v as

Av = o(p+ Ap,t) —v(p,t) (1.17a)
= [p@+(G—p— Ap) x @] — [ + (7 — p) x @] (1.17b)
= —Apxw (1.17¢)
= wxAp (1.17d)

Therefore
o
55 =9 (1.18)

To relate the material acceleration with the local acceleration for a rigid body

rotating by @ (1.14a) simplifies to

Il
QI
+
€l
X
4]

(1.19)

where w X v is called the convective acceleration.
For particles and rigid bodies, forces through the center of mass and material

accelerations are related by a scalar mass such that

F = ma™ (1.20)

11



where F' is the net force vector, m is the mass, and @ is the material linear ac-
celeration of the center of mass. When local acceleration is used, a convective force
must be introduced into the equations of motion to compensate for the difference.

Substituting (1.19) into (1.20) the linear equations of motion become

F =ma+ o xmv (1.21)

where a is the local linear acceleration vector, @ the angular velocity of the body and
v the linear velocity vector.

The local vector acceleration does form a helical vector field and can be represented
by a screw quantity. Together with the angular acceleration vector they form the

spatial acceleration.

Definition 2 The acceleration twist of a rigid body expressed at a point P is

ap = (1.22)

o]

where ap 1s the local acceleration vector of the body expressed at P and & the angular

acceleration of the rigid body.

This acceleration is also a screw quantity and can be split into two parts

a= - (1.23)

12



Figure 1.2: Material acceleration of a constant spinning disk has a centripetal com-
ponent since the rigid body at P follows a circular path.

with @ the angular acceleration vector, 7 a position vector to the screw axis and h its
pitch.

By definition, the spatial acceleration measures a different quantity from the mate-
rial acceleration. The material acceleration measures the acceleration of a particular
point on the rigid body, while spatial acceleration measures the acceleration state of
the entire rigid body at a fixed location in space. Consider the case shown in Figure
1.2 where a free disk is spinning with constant angular velocity @w about its center.
The acceleration of the particles on the disk under P follow a circular motion and
therefore experience a velocity related centripetal acceleration. Said otherwise, the
linear velocity vector of that particle changes direction with time and thus it expe-
riences acceleration. On the other hand, in Figure 1.3, the linear velocity vector of
the rigid body under P is constant, if the measuring point P is fixed in space and
it doesn’t move with the rigid body. The spatial acceleration is then zero since the

velocity state of the rigid body is constant.

13



a=0 |

Figure 1.3: Spatial acceleration of a constant spinning disk is zero because the velocity
of the rigid body at the fixed spatial location P is constant.

The distinction between measuring a particular point on a body, and measuring
the entire body at a particular location is crucial to the understanding of screw theory.
The velocity twist is a function of position, orientation, and time. The change

with time is the spatial acceleration

o
Ot

a (1.24)

which is the spatial form of (1.15). The change of position and orientation is epxressed

through an infinitesimal screw motion

Ao = (1.25)

where Ap is the change of the location of the reference point and A# the change of

the orientation of the reference coordinate frame. If the reference frame is moving

14



along with the body then
Ao = vAt (1.26)

The total derivative of the velocity twist is then split in two parts

dv ov Ov d_a

& = ot aed (1.272)
ov

= —_— 1.27b

a+ 95" ( )

which is the spatial form of (1.14a). The partial of v with respect to o is a 6 x 6
matrix indicating how each of the components of v change as the reference coordinate

frame changes with components

P o
v C
ol (1.28)
0o e om
9 06
As seen in (1.18)
o
5%:@X (1.29)
Also, since the angular velocity vector does not change with postion
ow -
— =0 1.30
5 (130

For the changes with orientation section 3.3 of [1] defined the change of any arbitrary

vector A with an infinitesimal rotation At as

AA = A x A (1.31)
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If the vector is fixed and the reference frame changes by Af then the apparent change

AA = —Afx A (1.32)

= AxAD (1.33)

Applying substituting ¥ and @ for A yields

5 U X (1.34)
and
g—‘g _ox (1.35)
Finally, assembling all the partials together in spatial form
% _ ajx _6 (1.36)
UX WX
= —(vx)" (1.37)
where vx is the spatial cross product operator
WX vX
UX = (1.38)
0 wx
Equation (1.27a) simplifies to
% —a—(vx)"v (1.39)
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or in component form,

= — (1.40)

&
o]

which is the spatial version of equation (1.19).

1.5 Force Wrenches

Spatial loadings need to be defined to formulate the equations of motion. Just as
twists describe motion, wrenches describe loads. The combination of force and torque

about a point P defines the load wrench fp as

Definition 3 The force wrench of a rigid body at a point P is expressed as

fp= (1.41)

where f is the force vector acting on the body and Tp is the equipollent moment vector

about P.

A force and moment combination represents a helical field of moments around the
application axis of the force as shown in Figure 1.4.

Similar to a velocity twist, any force wrench is split into two components which
describe a force on a particular line and a pure couple about that line. Using the

17



Figure 1.4: The helical field of net moments about any point on a rigid body as a
result of general loading. The net moment 7p has two parts, 7p; which is the moment
about the application axis, and 7py the resulting tangential moment that represents
the force f applied at a distance.

same concepts of the position vector 7 to the screw axis and the screw pitch p, the

two parts of a spatial force are

fp= + (1.42)

The first part is associated with a line vector, and the second with a free vector.
The force wrench fp has magnitude | f | The screw axis is the application axis
of f. The rest of the geometrical information contained in fp is calculated using the

equipollent moment equation

Tp=7x f+pf (1.43)
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The pitch of the screw is found by projecting (1.43) along the screw axis as

ff7p = ff(rxf)+fof (1.44a)
= of"'f (1.44b)
which is solved as
f7p
=4 __Z 1.45
=Ty (1.45)

The closest position of the screw axis is found by projecting (1.43) on the plane

perpendicular to the screw axis as

fxmp = fx(Fxf)+fxpf (1.46a)
= fx(rxf) (1.46b)
= (ffHr=(fr)f (1.46¢)
= (f'f)r. (1.46d)

If 7, is assumed to lie on the plane perpendicular to f and f77, = 0 then
fxtp=(f"F)rL (1.47)

which is solved for the position vector

T = 7T (1.48)
If a component of 7 along the screw axis exists then
r = 1. +0o0u (1.49)
fx7p _
—— + du 1.50
7T (1.50)
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where u the unit direction vector

[~
|

~q|
Il
Il

(1.51)

=
|

~
sy

and ¢ an arbitrary scalar.

1.6 Coordinate Transformations

Translating a velocity twist v4 and a force wrench f4 from point A to another point
B can be done utilizing position vector 74,5 between points A and B. The linear
velocity is vp = U4 —Tap X @ and the moment is Tg = T4 — 7 ap X f The term 74p X

corresponds to the vector cross product which is defined in terms of a 3 x 3 matrix as

Definition 4 The skew symmetric vector cross product operator is

x 0 —z wy
y|*=| 2z 0 —x (1.52)
z -y x 0

Then the spatial form of the translations are

vp = (Xa)va (1.53)

f5 = (X2 fa (1.54)
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with the 6 x 6 spatial transformation

1 —7a X

Note that (Fx)" = —7x and (5X4)"" = (4 X5p).
Rotations are actually easier to define since both linear and angular parts trans-
form the same way. Using F, an orthogonal 3 x 3 rotation matrix from coordinate

frames B’ to B, any ep: transforms as ég = Fep:. Thus,

Definition 5 A general twist transformation from A to B with translation 745 fol-

lowed by rotation E is described by the transformation matriz

FEF F (fABX)T

0 E

and its inverse

ET A X ET
aXp = (1.57)
0 ET

Definition 6 A general wrench transformation from A to B with translation 7ap

followed by rotation E is described by the transformation matriz

(Xa)" = (1.58)
FE (’FABX)T FE
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and its inverse

r ET 0
(4 XB)" = (1.59)
A X ET ET
Spatial accelerations transform the same way velocities do. The transformation

of an acceleration twist from coordinate frame A to coordinate frame B is defined as

ap = (pXa)aa using the same transformation matrix as (1.56).

1.7 Momentum Wrench

A moving rigid body has a linear and an angular momentum associated with it. The

spatial momentum as defined in [3] is

P= + (1.60)

which represents the linear momentum p acting on a line through the center of mass,
and the intrinsic angular momentum A about the center of mass. The intrinsic angular

momentum 1s

h=1Io (1.61)

where [ is the angular inertia about the center of mass and @ is its angular velocity
vector. The linear momentum is proportional to the linear velocity vector of the
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center of mass and thus
p=m(v0—7Xw) (1.62)

where v is the linear velocity vector of the reference point and 7 is the relative position
vector of the center of mass from the reference point.
Assembling the linear and angular parts together the spatial momentum is defined

as

pP= (1.63)

Io+7ixm(v—7xo)

The 7 x p term represents the moment of momentum about the reference point.
Momentum wrenches transform the same way force wrenches transform. The
momentum transformation from coordinate frame A to coordinate frame B is defined

as
Ps = (3Xa) " Py (1.64)

using the transformation matrix (3X4) " from (1.58).

1.8 Spatial Inertia

The spatial inertia is defined as the tensor that multiplies a velocity twist to produce

a momentum wrench. Therefore, by factoring out the velocity terms from momentum
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the symmetric 6 x 6 inertia tensor is defined as

P=1Iv (1.65)
where
, ml m (7 x) (1.66)
m (7Fx) T+m(Fx)([Fx)"
and

Sl

v = (1.67)

Note that m (7x) (7x)" is the 3 x 3 angular inertia matrix of a point mass m with
relative position vector 7.
The transformation of the spatial inertia from coordinate frame A to coordinate

frame B is easily defined from equation (1.65) as
IB: (AXB)TIA (AXB) (168)

which can be interpreted from right to left as transforming the spatial velocities from
B to A, then evaluating the spatial momentum at A and transforming back the

momentum to B.
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1.9 Kinetic Energy and Power

It is easy to show that under the spatial transformations the kinetic energy of a rigid
body is an invariant quantity. If the kinetic energy is evaluated at a coordinate system
Aas K = %vﬁ[ Av4 then by transforming all the quantities to a coordinate system B
the kinetic energy becomes K = % (AXB’UB)T (BXA)T I (pXa), Xpvp = %UJEIBUB.
Thus the kinetic energy is the same regardless on where it is evaluated.

Power is also an invariant defined as the linear form of a velocity twist with a force
wrench. Power evaluated on a coordinate system A as P = v’ f4 is transformed to a
coordinate system B by P = (AXB’UB)T (AXB)_T f5 = vk fp. If forces and velocities

produce zero power then they represent reciprocal screws.

1.10 Summary

Spatial notation using screws provides compact forms for rigid body motions and
loads. In addition, the geometrical properties of such quantities are immediately
available. With screw theory the motions and loadings of the entire rigid body are
considered. On the other hand, with vector analysis the motion or load at a partic-
ular point on the body is examined. This conceptual difference is important to the
understanding of this spatial notation.

Velocities and accelerations are defined as twists and momenta and forces as

wrenches. Transformations between different coordinate frames are established for
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both twists and wrenches. Spatial inertias are defined by relating the velocity twist
to the momentum wrench for a rigid body. The spatial form of the parallel axis
theorem is defined to transform inertias between different coordinate frames. Finally,

kinetic energy and power are compacted into spatial form.
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CHAPTER 2

KINEMATICS

In this chapter joints are modeled using unit twists. A linear chain of rigid bodies
models the typical multibody case and recursive equations are developed for the
spatial velocities and accelerations. The notation used is shown in Figure 2.1. On
each body ¢ there is a local coordinate system ¢ and a joint that connects the body
with its parent body 7 — 1. The relationships presented below were developed in

Chapter 2 of Featherstone[3].

2.1 Velocity Kinematics

Twists are used to describe the motion of rigid bodies. The relative motion twist v"

between two joined bodies is split into two parts
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Local Coordinate Systems on Joints
Towards base of chain i /

Towards tip of chain

—

‘ Fixed Global Coordinate system

Figure 2.1: A linear chain of rigid bodies represents the basic multibody case. For
each body ¢ there is a local coordinate system and a joint that connects that body
with its parent body ¢ — 1.

where s is a unit twist and ¢ is the twist magnitude. The unit twist conveys the
geometrical information whereas, the constitutive portion is the magnitude. If the
joint has a single degree of freedom then it can be modeled by a screw. For example,
a revolute joint is modeled by a zero pitch screw and a prismatic joint by an infinite
pitch screw. The joint axis is thus represented by a unit twist s. The twist magnitude
¢ represents the joint speed.

This notation is extended to multiple degrees of freedom with multiple sequential

screws, such that
v = 51G1 + Soq + . .. + Skqk (22)

where k is the number of degrees of freedom, s; through s, the unit twists representing
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each joint, and ¢; through ¢, each joint speed. Equation (2.2) is compacted into

v = 5q (2.3)

where s is the 6 x k joint space matrix

S= |8 S ... S (2.4)

and ¢ the k£ x 1 joint speed matrix

¢

G

d
Each column of s represents a base screw for the subspace of relative motions between

joined bodied.

As an example, a slider pin joint is modeled with the slider in the Z the direction

and the pin about the z axis. The individual joint axes are

&I

S = (2.6)

[aw]]
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and

0
Sy = (2.7)
z
The 6 x 2 matrix joint space is
s = S1 So
z 0
= (2.8)
0 z
Definition 7 Let joint i connect body i to body i — 1, then by
v = Vi1 + 8iG; (2.9)

v; and v;_1 are the velocities twists of bodies i and © — 1, s; the joint axis, and ¢; is

the joint speed.

Remark 8 The Jacobian J of a robotic manipulator is the collection of all the joint
azes such that J = [s1...sn]|. This Jacobian can be used to link the equations of

motion from the joint space form to the spatial form.
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2.2 Acceleration Kinematics

The acceleration kinematics are defined by substituting (2.9) into (1.24) for each body

a; = %vi (2.10a)
0 .

- o (Vi1 + 5id;) (2.10b)
g, .

= a;_1+ 5 (8:d:) (2.10¢)

= a;_1+ quz + %qz (210d)

where a; and a;_; are the spatial accelerations of bodies ¢ and i — 1, s; is the joint
axis, ¢; the joint speed, and §; the joint acceleration. In order to calculate the rate of

change of s; the joint axis is expanded from (1.4) into

5 = (2.11)

where p is the joint axis pitch, € is its direction, and 7 its location. It is known from

[3] that the rate of change any vector e fixed to a moving rigid body is

Oe

G =oxe (2.12)
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where @ is the angular velocity of the body. Therefore the rate of change of the joint

axis is

Os; o | pet+rxe
= — 2.13
ot ot ) (2.13a)
€
2 (pe)+ 2 (Fxe
pe) + = (T x €)
= | ” ” (2.13b)
9 —
-~ ae
wx(pe)+ox(Fxe)+ZLxe
_ (2.13c)
wXe
WX DX pE+T X €
= (2.13d)
0 wx e
which is generalized as
0s;
;t =X s; (2.14)
where v is the velocity twist
v
v = (2.15)
w
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and vx is the spatial cross product operator

vX = (2.16)

The acceleration kinematics are defined recursively from (2.10d) and (2.14) as

Definition 9 Let joint i connect body i to bodyi—1, then the accelerations are related

by

a; = a;—1 + 8;G; + v; X 8;q; (2.17)

with a; and a;_q1 the spatial accelerations of bodies i and v — 1, s; the joint axis, v; the

spatial velocity and ¢; and §; then joint speed and acceleration.

Remark 10 The bias acceleration term v; X s;q; 1s the convective acceleration of the
joint s;. It is a degenerate screw which is reciprocal to v; because it always has zero

magnitude.

Sometimes the velocity related terms are grouped into one bias acceleration quan-

tity k; such that

a; = a;_1 + quz + K (218)

with

K = v; X qu, (219)
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which allows for slightly more compact notation.
Multiple degree of freedom joints are modeled using the joint space s; as a collec-

tion of individual joint axes.

2.3 Summary

The velocity and acceleration kinematics are fundamental tools for recursive modeling
of rigid body dynamics. Joints are modeled as the basis screw of the relative motion
between bodies. The joint space represents multiple sequential basis screws used to
model multiple degree of freedom joints. The velocity difference between two succes-
sive bodies is proportional to the screw axis of the joint between them. Differentiating
the velocity kinematics yields the acceleration kinematics. The relative acceleration
between bodies contains a part along the joint axes as well as bias accelerations in

other directions.
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CHAPTER 3

EQUATIONS OF MOTION

The Newton-Euler equations of motion follow from Newtons 27¢ law. In spatial form,
the net load wrench is equal to the rate of change of the momentum wrench. The net
load of a joined rigid body contains internal and external loads. Usually, the equations
of motion are not solved in recursive form. In [3, 16] the concept of articulated inertia
is introduced. This inertia replaces the rigid body inertia in the equations of motion
modifying them in such a way that a recursive solution for joint accelererations is
possible. In fact, the calculation of the articulated body inertias is also a recursive

algorithm.

3.1 Free Body Diagram

In a serial chain of N rigid bodies there are generally three force wrenches acting on

a body i as seen in Figure 3.1: applied force wrench g;, internal wrench f; through
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Figure 3.1: Free body diagram of body 7 in chain of rigid bodies. The forces acting
on body 7 include any applied forces g;, the internal forces f; from the previous joint,
and the internal reaction forces — f; ;1 from the next joint.

joint ¢ from the previous body, and the internal wrench — f;,; through the joint i 41

from the next body. The net force wrench acting on rigid body i is

NPT = fi— finn+ g (3.1)

Internal forces maintain the joint constraints between bodies and carry the motive
forces of joint actuation. Internal forces act as equal and opposite forces on the
two connected bodies. Applied forces are external forces that are applied by the

environment. These may include body forces such as gravity or air resistance.

3.2 Joint Torque

Joint torques provide power to the system through the motion of the joints. If a joint

with joint velocity ¢; applies a joint torque 7; then the power added to the system is
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This power is the result of the internal force f; through the joint and the relative

velocity between the two connected bodies v; — v;_;. This power is then
W; = (v; — Uz‘—l)T fi (3.3)
and from (2.9)
Wi = (si¢:)" fi (3.4)
By equating (3.2) and (3.4) and eliminating ¢; the joint torque 7; is
Ti = 51 f; (3.5)

where s; is the joint axis, and f; the internal force through the joint.

This definition also shows how joint axes project spatial forces into joint torques.
This operation resolves forces to their the net torques about the direction of the joint.
This projection is part of a group of projections that transform spatial quantities into

components.

3.3 Newton-Euler Equations

The development of the spatial equations of motion follows Chapter 3 of [3]. Newton’s

274 law in spatial form for each body i is

Y = % (Ziv;) (3.6a)
d d
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where fNET is the net force wrench acting on i, I; the spatial inertia and v; the
velocity twist. The rate of change of the spatial inertia is defined in Section 3.3 of [3]

as

%I,- — L (0)T — ()T I, (3.7)

Substituting (1.27a) and (3.7) into (3.6b) the equations of motion simplify to
fiNET = Iz [ai — (’UiX)T ’Ui:| + |:Iz (’UiX)T — (’UiX)T Iz Vi
= Lia; — (Uz‘X)T L;v; (3.8)
Using the net forces (3.1) from the free body diagram the spatial Newton-Euler equa-

tions of motion are defined. Note that the spatial cross product vx in the equations

of motion is identical to the spatial cross product in kinematics.

Definition 11 The equations of motion for a rigid body i are
fi = fivr + g0 = Liai — (v;x)" T, (3.9)

where f; and f;11 are internal forces on the body through joints © and i + 1, I; the
spatial inertia, a; and v; are spatial acceleration and velocity, and v;x s the spatial

velocity cross product operator as defined in equation (2.16).

Sometimes the velocity related forces are grouped together so that the equations

of motion are expressed as

fi = fix1 = Liai + p; (3.10)
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with the bias force
pi = — (0:x)" T — g; (3.11)
Note that for the last body in the chain N (3.10) simplifies to

v =Iyan +pn (3.12)

which corresponds to a single free floating rigid body. This type of simplification can

be achieved for any body in the chain with the use of the articulated inertias.

3.4 Articulated Inertia Idea

Articulated body inertias were introduced by [3] as means for simplification of the
equations of motion. Articulated inertias replace body inertias in the equations of

motion such that
fi = Asa; + d; (3.13)

where f; is the internal load from joint 7, A; the articulated inertia of the body, a;
the spatial acceleration and d; an articulated bias force. Conceptually the articulated
equations of motion model a free floating chain as seen in Figure 3.2. To accelerate
body ¢ as part of the chain by a; a force f; is needed. The articulated inertia A;
contains the single body inertia I; and parts of the inertias for the rest of the bodies
up the chain. The advantage of the articulated equations of motion (3.13) over the
standard equations (3.10) is that the internal forces f;,; from the successive body have
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Figure 3.2: The basic idea of articulated inertias is to model all the bodies from body
7 to the tip of a chain as one single body. This allows a simpler interaction between
the internal force f; and the resulting acceleration a;.

been eliminated. Therefore there is a one-to-one relationship between the acceleration
a; and the internal force f;.

A simple example is shown in Figure 3.3. A unit acceleration in the x direction
along the joint of the sphere requires a force of magnitude m applied to the cylinder.
On the other hand, a unit acceleration in the y direction away from the joint requires a
force of magnitude 2m applied to the cylinder. The 3 x 3 articulated inertia submatrix

relating linear acceleration and forces is

m 0 0
Asxs3= 10 2m 0 (3.14)
0 0 2m

The apparent mass of the system depends on the direction in which an applied
force acts. This is achieved by generalizing the inertia matrix to increase the number
of independent quantities. Similar effects are observed when moments are applied
on the system and the resulting angular accelerations are observed. In general, the
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Figure 3.3: Example of articulated body inertia. A sphere of mass m has a cylindrical
cutout in the x direction. Inside there is a sliding cylindrical body also of mass m.
The direction of an applied force to the cylinder changes the apparent mass of the
system. A force in the y direction is results in an apparent mass of 2m. A force in the
x direction changes the apparent mass to m. The directional dependence on apparent
mass is encapsulated into the 6 x 6 articulated inertia matrix.

calculations of articulated inertias can be very complex. The subject of topology
and graph theory is often utilized to establish efficient recursions for the articulated
inertias. When systems consist of serial chains of rigid bodies the calculations revert

to a single recursion down the chain.

3.5 Recursive Articulated Inertias

A solution to calculating articulated inertias is developed in [3]. This is recursive

method from the tip of the chain down to the base. It is assumed that all joint axes
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s;, joint velocities ¢;, velocity twists v;, body inertias I;, bias accelerations x;, joint
torques 7; and bias forces p; are known from (2.9), (2.19) and (3.11).

For the terminal body the equations of motion (3.10) are

v =Inan +pn (3.15)

Comparing to the articulated equations of motion (3.13)

fnv =Anan +dy (3.16)

it is apparent that the articulated inertia for the terminal body is always

Ay = Iy (3.17)

and the articulated bias force

dN = PN (318)

To calculate recursively the articulated inertia for a body 7 in the middle of the

chain it is assumed that the articulated inertia for body ¢ 4+ 1 is known such that

fir1 = Ait10i41 + dia (3.19)

where f;,1 is the internal force, A;,; the articulated inertia, a;,; the acceleration of
body i + 1 and d;,; the articulated bias force. Knowing A;,; and d;,; the articu-
lated inertia A; and bias force d; is calculated from the equations of motion and the

kinematics. The equation of motion for body ¢ (3.10) is

fi = fix1 + Liai + pi (3.20)
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The acceleration kinematics (2.17) for body ¢ + 1 is
Aip1 = Q; + Sip1Gip1 + Kig1 (3.21)
The joint torque (3.5) for joint 7 + 1 is equal to
Tiv1 = Sip1 firl (3.22)
Substituting (3.21) into (3.19) and then into (3.22) yields
Tiv1 = (s Aiasin) din + st (A (@ + Rip) + diga) (3.23)
which is solved for the joint accelerations ¢;; as
Gir = (5T Aisi)  [Tinn — 85 (A (05 + Kir) + di)] (3.24)

Then the joint accelerations are back substituted into (3.21) relating the acceleration

of body i to that of body i + 1 as

-1
i1 = Sip1 (571 Air1sin)  [Tin — Sipa (Aiga (@ + Rigr) +dig)] + @i+ R

(3.25)

The acceleration of body ¢ + 1 is back substituted into the articulated equations of

motion (3.19) as

fir1 = (Sz—‘:-l)TTi—i-l +(1- Si+13;5rl)T (Aig1 (@i + Kiv1) + diga) (3.26)

where s/, is the weighted pseudo-inverse of the joint space s,

—1
81 = (31T+1Az‘+131'+1) SiTJrlAiH (3.27)

43



Finally, the internal force f;+1 (3.26) is substituted into the equations of motion (3.20)

for body 7 to yield expressions for the articulated quantities

fi = Asa; + d; (3.28)
where
Ar=L+ (1= sisin) A (3.29)
and
d; =p; + (S;Zrl)T Tin+ (1— si+1sjﬁrl)T (Ait1kiv1 +dit1) (3.30)

With each recursion a new articulated inertia is calculated moving towards the
base of the chain.

Equation (3.24) can be used with the acceleration kinematics (2.17) to solve for
all the joint accelerations. A complete algorithm for simulating rigid body chains is

shown in the next section.

3.6 Recursive Algorithm
1. Assumptions

e All the joints are modeled using the joint axes s;.
e All the spatial inertias I; are known.

e All joint velocities ¢; are known.
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e All the joint torques 7; are known.

e All applied loads g; are known.

2. Kinematics

(a) Initial Values

e The base of the chain is connected to the ground which has zero ve-

locity.

(b) For all bodies with i =1...

e The velocity twists are

Vo = [0]

N

V; = V-1 + Sig;

e The bias accelerations are

e The bias forces are

3. Articulated Inertias

(a) Initial Values

Ki = U X 8iQ;

pi = — (Uz‘x)T Liv; — g;
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4.

e The terminal articulated inertia is

e The terminal articulated bias force is

dN = PN (336)

(b) For all bodies withi =N —1...1

e Joint pseudo-inverse is

-1

St = (31T+1Az‘+131'+1) SiTJrlAiJrl (3.37)
e The articulated inertia is
Ai = Iz -+ (1 — Si+13;-:_1)T Ai+1 (338)

e The articulated bias force is
T T
di =pi+ (s711) T+ (1= si1sfy)” (A +dia)  (3.39)
Joint Accelerations

(a) Initial Values

e The base of the chain is connected to the ground which has zero ac-

celeration.
ag = [0] (3.40)
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(b) For all bodies with i =1... N

e The joint acceleration is
G; = (siTAisi)_l [7i — 5] (A (0o + ;) + d;)] (3.41)

e The acceleration twist is
a; = a;_1 + S;G; + K; (3.42)

Once all the joint accelerations are determined, they can be integrated to find the

values of the joint velocities and positions at subsequent times.

3.7 Questions

There are some important questions evident at this point that are the primary driving

forces behind this research:

1. “What is the physical interpretation of the terms used to calculate articulated
inertias?” Articulated inertias are an essential part of spatial multibody dy-

namics and are cryptic at this point.

2. “What are the reaction forces caused by the joint constraints?” Knowing just
the joint accelerations is not enough to completely describe multibody systems.
Reaction forces are just as important, and a systematic way of extracting such

information is needed. This is accomplished through projections in later chap-
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ters, where the relationship between reaction forces and articulated inertias is

explored.

“What other structures can be modeled besides linear chains of rigid bodies?”
Linear chains are just a small subset of multibody systems. The greater set
contains tree structures and branches, kinematic loops, and constraints to the

environment.

“What are the obvious advantages of the spatial notation?” The initial lure into
the spatial notation is the recursive nature and the potential computational
efficiency. Other potential benefits are the compactness of the notation and the

rich information delivered with each solution.
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CHAPTER 4

GRAPHICAL VIEW OF

PLANAR DYNAMICS

In this chapter planar dynamics are linked to geometrical constructions. Twists are
represented as points in the plane, and wrenches as lines. Representing the kinematics
and dynamics graphically requires ways of visualizing the addition of two or more
points and the addition of two or more lines. Finally, the idea that forces cause
accelerations and accelerations require forces is viewed as a way of mapping points
to lines and vice versa. Also some examples of planar joints are presented describing

the specific accelerations and forces they require.

4.1 Planar Twists

In mechanics, planar motion of rigid body is generally a rotation about a particular
point called a pole. When this pole is located at infinity the motion is a pure trans-
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lation. This is the projection of a zero pitch twist on a plane. This projection ignores
any linear velocity out of the plane and all angular velocities along the plane. The

easiest way to perform this projection is through the planar subspace matrix

>
<>
(@]

(@n]]
o
>

where 2, 7 and k are the three unit vectors of a Cartesian coordinate system. If a

general spatial twist expressed at the origin as

<l

V3p — (42)

€l

with the component vectors

Vg

(4.3)

Sl
Il
S
<

Uy

and

(4.4)

€l
Il
&
<




then the planar twist is calculated with

Vop — DT’U3D (45)
which is equal to
Vg
Wy

This planar velocity twist now conveys important information about the motion
of the rigid body. One is the magnitude of the twist which is equal to w,. The other
is the location of the pole of the twist. This location is the point where the twist has
zero linear velocity and it represents the point the rigid body is rotating about. If
this location is point P, finding it requires the twist transformations projected on a
plane. These transformations for the spatial case are described in (1.56) and in the

planar case are defined as

Xop = DT X3pD (4.7)

with X3p any spatial transformation and D the planar subspace matrix. Then the

planar transformation matrix Xp from the origin to any point P = (zp,yp) is defined
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as

1 0 —yp
Xe=101 up (4.8)
00 1
Now the location of the twist pole is found by solving the following equations
Vy —Ypw, =0
(4.9)
vy +xpw, =0
yielding the solution for the pole P as
Uy Vg
=|-—— 4.10
(wroom) = (-2 2) (4.10)

This point P and the magnitude w, completely describe a planar rigid body motion.
Since twists describe rigid body motion, planar twists must contain information about

point P. In Chapter 5 planar twists are viewed as a set of homogeneous coordinates

for P.

4.2 Twist Addition

In looking at the kinematic equations for multibody systems frequently, two or more
relative twists need to be added to yield a resultant twist. In a plane this operation is
the geometrical addition of two or more points. Such operations are often encountered
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in projective geometry, but are easy to describe even without the explicit help of such
an abstract mathematical tool.

The addition of two planar velocities twists v; and v, results in a planar twist vs.
Understanding the geometrical properties of the resulting twist is the topic covered

in this section.

4.2.1 Addition of two rotations

Figure 4.1 graphically shows the addition of two planar velocity twists. Given two
velocities vy and v, each a rotation about points Q1 = (zg1, Yo1) and Q2 = (g2, Yo2)

with magnitudes of w; and ws, then their sum v3 = v; + v5 has magnitude

W3 = W1 + Wa (411)
located at a point
P=0Q+6(Q2— Q1) (4.12)
with
P
== 4.13
ﬂ w1 + Wa ( )

Thus P is a linear combination of (); and (Q, which means that it lies on the line
through these two points. The proportionality ratio § indicates the distance of P
from (), relative to the distance of Q5 from @);. In addition, the proportionality ratio

[ also defines the rotational velocity w, relative to the sum w; + ws.
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Figure 4.1: The two pure rotations v; and v, add up to a pure rotation with the pole
proportionally along the line that connects the centers of rotation.

This calculation is equivalent to the problem in statics where a load applied on
a simply supported beam is countered by two reaction forces at the two ends of the
beam as seen on Figure 4.2. The relative strength of each reaction force is proportional

to the proximity of the applied force F. The proportionality ratio is

R,
== 4.14
and the load is

These are similar to (4.13) and (4.11). In planar dynamics the relative strength of
each rotation is proportional to the proximity of the resulting rotation.

The result may not always be a rotation. In the case where w; = —ws the
proportionality ratio becomes 3 = oo making the result a pure translation to the
perpendicular of the line through @); and );. Sometimes a translation is described

as a pure rotation about an infinite distant point.
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A A

Figure 4.2: Lever rule in statics. The relative magnitide of a reaction force R; is
proportional to the proximity of the applied force F'.

4.2.2 Addition of a rotation with a translation

The addition of a rotation to a translation is shown in Figure 4.3. Given a rotation
v1 about a point Q = (z¢g,yo) with magnitude w, and a translation ve with speed u
along the direction e = [cos A, sin A], then their sum is also a rotation with magnitude

w but located at point P,
P=Q+p (4.16)

where n = [—sin A, cos )] is the direction perpendicular to e, and p = u/w the distance
away from Q).

It is not possible for the result to be a translation. The only special case is
when both vy, v, are translations and so vs = v; + v, represents the addition of two
translations. Such a case results in a translation along the direction of the vector sum
of the two translations. An extremely degenerate case arises when the two translations
are equal in strength but run in opposite directions resulting in a zero twist. This
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Figure 4.3: A pure rotation v; and a translation vy add up to a pure rotation with
the pole along a line perpendicular to vy and through the center of v;. The distance
along this line from the center of v; is equal to p = u/w.

represents no motion and is neither a rotation or a translation.

4.3 Planar Wrenches

In planar rigid body dynamics loads represent the application of a net force along a
particular line called a polar. A pure couple represents a special case where the polar
moves to infinity. Normally the polar line represents the collection of points with zero
net moment about them. This is the planar projection of a zero pitch wrench. This
projection is also performed by the projection matrix D since it ignores all forces out
of the plane, and all moments along the plane. If a general spatial wrench expressed

on the origin is

k|

fap = (4.17)

Rl
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with the component vectors

fa

£, (4.18)

|
I

[

and

(4.19)

il
Il
\]
<

then the planar wrench is calculated with

fap = D" fap (4.20)

which is equal to

fa

o= 1, (4.21)

This planar force wrench conveys important information about the loading of the

rigid body. One is the magnitude of the net force which is equal to

PR (122
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The other is the location and direction of the wrench polar. This line represents
the location and direction of an equipollent pure force. Finding any point P on the
polar requires the planar wrench transformation matrix. This transformation matrix

is projected from (1.58) with
X;7 = DTX;7D (4.23)

The planar wrench transformation matrix from the origin to any point P = (xp, yp)

by component is

X"=10 1 o0 (4.24)

A wrench f expressed on the origin as

Jo
f=1r1, (4.25)

Tz

when transformed on a point P = (xp,yp) is

fr= Xp'f

fa

= £, (4.26)

ypfe —xpfy + 72
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If point P is located somewhere along the axis of application of f then the net moment

of fp has to be equal to zero and thus the equation of the application axis is given by

7.t ypfe— mPfy =0

(4.27)

By normalizing the first two components of f the application axis has a direction

e= { fo fy }
F F
where

PR

The scalar F' represents the magnitude of the wrench.

If point P is the closest point of the axis to the origin then

P=nd
where
Tz
d=—=
F
and

n:{f_y _&}
P P

(4.28)

(4.29)

(4.30)

(4.31)

(4.32)

The scalar d represents the shortest distance of the line to the origin and n the unit

direction vector perpendicular to the axis.

Now the distance d of the axis to the origin, its direction e, and the magnitude

of the wrench F' describe the loading of the rigid body completely. In Chapter 5 it
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is shown that a planar wrench is a set of homogeneous coordinates for the polar line

through P.

4.4 Wrench Addition

Looking at the equations of motion and the free body diagrams of multibody systems,
often two or more wrenches need to be added to yield a net wrench. This operation
on a plane is the geometrical addition of two or more lines. The addition of two
planar force wrenches f; and f> results in a planar wrench f3. Understanding the

magnitude, direction, and position of this wrench is the topic of this section.

Figure 4.4: Two forces f; and f5 add according to the parallelogram rule, where the
net force passes through the point of intersection of the two lines and the magnitudes
add vectorially.
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4.4.1 Addition of two pure forces

Figure 4.4 graphically show the addition of two general force wrenches. Given two

planar forces

S

flm f21:
= | fu and  fo=| f, (4.33)
T1 T2

with a directions e; and e, magnitudes F; and F3, and positions d; and dy the polar

of the resulting wrench f3 = f; + f, passes through the point P which is the common

point of the application axes of f; and f,. Point P is calculated from (4.27) applied

to fi1 and fy to form the set

The solution is

where

T1z T foh: - foly =0

(4.34)

To, + fo21: - fo2y =0

= (T, Yp)
_ (?/1 - ?/27 €2 Yy — €1 y2) (4.35)
€1 — €y €1 — €9 €1 — €2

fly f2y
== and ey=-"—> 4.36
' flz: ? f21: ( )
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and

T1 T2
= —— and == 4.37

The scalars e; and e, are the slopes of the lines for f;, f, and y; and ¥, the intercep-
tions of the lines with the y-axis.

The direction of the pole is

1
€3 = FS |: fm1+fm2 fy1+fy2 <438)
where
F3 = \/(fm + fm2)2 + (fyr + fy2)2 (4.39)

The scalar F3 is the magnitude of f; + f5.

The minimum position of the resulting line with the origin is d3 = (71 + 73) / F3

4.4.2 Addition of two parallel forces

When the two lines of action are parallel the resulting wrench is also parallel. It lies
proportionally between the initial wrenches as seen in Figure 4.5. Looking down the
lines of action, it appears similar to the twist addition of two pure rotations, since

the axes of rotation are always parallel.
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Figure 4.5: The sum of two parallel forces is similar to the addition of two pure
rotations. The result is located proportionally between the two componets according

to the rule of the lever.

Starting from two parallel forces

Fi cos A
Ji=| F/sin\ and

T1

their sum f3 = f; + f5 has the same direction

€3 = [ CcosS A sin A }

as f; and fy. The magnitude F3 is

F3:F1+F2

The distance d3 to the polar is

ds = dy + 3 (dy — dy)

where (3 is the proportionality ratio

 F + F
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f2

F5cos A
F,sin A

T2

(4.40)

(4.41)

(4.42)

(4.43)

(4.44)



Figure 4.6: A force and a couple create a parallel force located a distance p away.
This distance increases as the couple becomes stronger.

and d;, dy the polar distances

71 T2
dy=—= and dy=— 4.4
! F1 2 172 ( 5)

The similarities between the addition of two parallel lines, and two points indi-

cate that there is some kind of common behavior which may even apply to the less

geometrical features of twists and wrenches.

4.4.3 Addition of a force and a moment

Given a pure force f; and a pure couple f, the sum f3 = f; + f5 is a pure force. It is

parallel to f; at a perpendicular distance

p= (4.46)

el

where F' is the magnitude of force f; and 7 the magnitude of the pure couple fo. The

magnitude of f3 is equal to F.
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4.5 Velocity Kinematics

The velocity kinematics in planar form is very easy to visualize and understand.

Figure 4.7 graphically shows the planar kinematics equation
Vi = Ui—1 + 8iG; (4.47)

as defined in (2.9). Shown here is the most general case involving only rotational
joints. The reason rotational joints are the most general case is because any prismatic
joint can be modeled as revolute joint located at infinity. In the following figures there
are two connected bodies, a connecting joint, and the center of gravity of the body
that is being examined. The velocity v; is the sum of the previous body velocity
v;_1 and the relative velocity about the joint s;¢;. Thus the pole of v; lies somewhere
on the line that connects the poles for v;_; and s;¢;. The exact location on the line
depends on the relative strength of the two components.

If all the joint velocities ¢; are known, this method can be applied recursively to
find the velocities of all the bodies graphically. Looking at Figure 4.7, the joint is at
distance k; away from the velocity pole of the previous body. Along the same line,
the new velocity pole is located a distance 3;k; away, where 3, is the proportionality

ratio

qi
G P — 4.48
’ Gi + wi—1 ( )

Also, w; and w;_; are the magnitudes of the velocity twists v; and v;_; where
wi = w1+ g; (4.49)
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Figure 4.7: Planar velocity kinematics. The velocity of any body is the sum of the
velocity of the previous body and the relative velocity between them. The resulting
velocity always lies on the connecting line.

To model planar prismatic joints the process is similar. The addition of a rotation
with a translation is seen in Figure 4.3. The addition of the rotation v;_; to the

translation s;q; yields an offset rotation by a distance

p= 1 (4.50)

Wi—1

The magnitude of the new velocity remains unchanged as

W; = W;—1 (451)
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Figure 4.8: The planar acceleration kinematics. Each successive body adds a relative
acceleration about the joint and a degenerate bias acceleration on the line between
the velocity center and the joint.

4.6 Acceleration Kinematics

The acceleration kinematics in planar form involves a slightly more complicated pro-
cess than the velocity kinematics. Figure 4.8 shows graphically the acceleration kine-

matics equation
a; = a;_1 + quz +v; X quz (452)

as defined in (2.17). The acceleration a; is the sum of three quantities. The first is the
acceleration of the previous body a; ;. The second is the relative joint acceleration
s;G;- Both are usually rotations and their poles are easy to find.

The third quantity v; X s;q; is the bias acceleration needed since the joint is moving
on a curve around the pole of v;. This quantity is a translation in the direction of
the line that connects v; and s;. This is the same line that connects v; and v;_;. The
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magnitude of the bias acceleration is

|vi X 8:G;| = wi—1dik; (4.53)

with k; the distance shown in Figure 4.7. In Figure 4.8 the combination s;q; + v; X s;¢;

is shown as a rotation at an offset distance of

pi = Sy (4.54)
4

away from the joint. The body acceleration a; is proportionally on the line connecting

this bias acceleration and a;_.

4.7 Equations of Motion

The planar equations of motion are visualized using lines to represent the polars of
wrenches, and points to represent the poles of twists. Figure 4.9 shows graphically

the Newton-Euler equations of motion
f = La; + p; (4.55)
with
pi = — (uix)" Ly (4.56)

the bias forces as defined in (3.10). The net force f*** on the left hand side is equal
to the sum of the two forces on the right hand side.

One is the force needed to accelerate the body about a; and is equal to [;a;. This
mapping of a twist to a wrench through the inertia matrix is an important part of
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Figure 4.9: Planar Newton-Euler equations of motion. The balance of forces in each
body includes the inertial forces resulting from the body acceleration, the centripetal
force on a line between the velocity center and the center of mass, and the net internal
forces from the joints.

dynamics. In fact, the location of the inertial force I;a; is associated with an instant
axis of percussion type of calculation and is discussed in the next chapter. In general,
the shortest distance between the center of gravity and the axis or percussion is
nonzero and depends on the inertial properties of the body.

The other quantity is the centripetal force p;, = — (vix)T L;v;. This is the force
needed to produce the centripetal acceleration which allows the body to rotate about
its instant velocity center v;. It can be shown that in the planar case this force is
through the center of gravity and towards the pole of v;. This force points towards the
instantaneous center of motion keeping the body in orbit around v;. The magnitude
of the centripetal force is m;l;w? where m; is the mass of body 4 and I; the distance
between v; and the center of gravity.

When the joint is not powered, then the net force f** passes through the joint
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creating zero net moment about the joint. Otherwise a joint torque 7; appears as the
distance p, that the net force has from the joint. This distance is

Ti
T rmet
Fi

Pi (4.57)

where F" is the magnitude of f7*¢.

4.8 Examples of Planar Joints

This section contains examples with different joint types. Quantities needed for the
solution of planar multibody systems are defined. All of the quantities are expressed
in a coordinate system located on the joint and aligned with the direction of the
x-axis towards the center of gravity as seen in Figure 4.10. The planar inertia matrix

is then

with r; the radius of gyration for the body and C; the distance of the center of gravity

from the joint. The general velocity twist of the previous body is

(4.59)

Vi-1 = Uy,




&Y m,= mass Body i,
p;=radius of gyration

Figure 4.10: Local coordinate system used in planar examples.

and the previous body acceleration twist is

(4.60)

Q;—1 =

Before working with the kinematic equations (4.47) and (4.52) and the equations
of motion (4.55), the bias accelerations and the bias forces need to be computed. The

bias accelerations are defined as
K; = U; X quz (461)
and the centripetal forces

pi = — (vix)" L, (4.62)
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with the planar spatial cross product operator v; X projected as

0 Wz Uy
vix =\ w, 0 —u, (4.63)
0 0 0

T
where the velocity twist is v; = { Ve, Uy Wo } .

4.8.1 Revolute Joint

A planar pin joint is defined by the joint axis direction

0
si= 10 (4.64)
1
and the joint velocity
i = |0i] (4.65)

The velocity kinematics then returns the velocity twist

(4.66)




which is used to calculate the bias accelerations

inﬂei

Ki= | v, 0 (4.67)

0

and is a translation from v; towards the joint s;. The velocity twist is also used to

calculate the bias forces

—m; {vyil (wzi71 + 9,) + C; (wzpl n 91)2]
MUy, (wzH + 91-) (4.68)

Cimi’l)mFl (wzH + 91)

Di

The ratio of the third component to the second is C'. The second component is a
y-axis force and the third component is the net moment about a point a distance C'
away in the positive xz-axis. The center of gravity is located a distance C' away and
therefore p; represents a force through the center of gravity.

This is verified by transforming p; to the center of gravity with the help of the

transformation matrix (4.24).
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4.8.2 Prismatic Joint

A planar prismatic joint is defined by the joint axis direction

Cos \;

Si = | sin )\ (4.69)

0
where ); is the orientation angle of the slider. With the joint velocity

the velocity kinematics returns the velocity twist

Vg, , + U; COS \;
Vi = Uy, 4 + u; sin )\, (471)

Wz

This velocity twist is used to calculate the bias acceleration

—Wy, Ui SIN A,
Ki = Wz, Ui COS N\ (4.72)

0

74



The bias acceleration is a translation perpendicular to s;. The velocity twist is also

used to calculate the bias forces

. 2
—MiWs, (vyH + u; sin )\i) - m;Ciws, |

pi Mw,_, (Va,_, + u; cos ;) (4.73)

miwzi,1 Cz (/Uzi71 + U; COS >\7,)

which is also a force through the center of gravity.

4.8.3 Revolute and Prismatic Joint

A planar 2DOF pin and prismatic joint is defined by the joint axes directions

cos; O
Si= | sin); O (4.74)
0 1

where ); is the orientation angle of the slider. Using the joint velocities

Uy
¢ = (4.75)
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the velocity twist is

Vi = | vy, +u;sin);

Ug,_, + U; COS N\,

Wiy -+ 9,

This velocity twist is used to calculate the bias acceleration

K; =

— (wziflui sin )\z — vyHH,-)
Wy,_, U; COS )\, — vxiﬂ@i

0

(4.76)

(4.77)

The bias acceleration is a combination of two translations. The velocity twist is also

used to calculate the bias forces

pi =

—m; vy, + 1 sin \;) (wZH + 9,-) - m;C; (wzH - 9,-)2

m; (’0132.71 -+ u; Ccos )\z) (wzH + 91)

m;C; (vg,_, +u;cos \;) (wzH + 91)

which as expected is a force through the center of gravity.
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4.8.4 Plane Joint

A planar 2DOF twin prismatic joint is defined by the joint axes directions

si= |0 1 (4.79)

Using the joint velocities

¢ = (4.80)

the velocity twist is

Vi = Uy; 1 + Uy (481)

This velocity twist is used to calculate the bias acceleration

Uy, Way
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The bias acceleration is a translation perpendicular to the relative velocity s;¢;. The

velocity twist is also used to calculate the bias forces

2
MWz, 4 (uyi + inﬂ) - mioiwzi,l

Di miw,, (um + vxifl) (4.83)

mioiwziﬂ (umz + Umiﬂ)

4.9 Questions

The planar analysis helps to visualize concepts like twists and wrenches. This aids in
visualizing some parts of a multibody system. At this point there are no answers to

the questions posed in the previous chapter, just some hints, and a few new questions:

1. “Is it possible to visualize the multibody problem solution?” The planar explana-
tion of kinematics and dynamics assumes quantities such as joint accelerations
and net forces are known. In general these would be considered unknown quan-
tities. But this type of visualization is important because it provides checks and

balances in the development of multibody solutions.

2. “Are twists really points, and wrenches really lines?” Planar twists and
wrenches are expressed as the combination of a geometrical construct and a
scalar magnitude. This type of description for points and lines resembles ho-
mogeneous coordinate descriptions. The components are different but the idea
is similar enough. In the next chapter this observation links planar dynamics

78



to projective geometry.

3. “What can geometry tell us about screw algebra?” In projective geometry there
are important ideas that may have significant impact in dynamics. These in-

clude mappings and decompositions of geometrical elements, and the funda-

mental properties of duality.

4. “How 1is geometry going to help us answer the questions asked in the end of
the previous chapter?” Geometry provides the tools needed to proceed in a
divide and conquer type of approach for dynamics. Ultimately it provides as-
sociations and projections for the different quantities involved. Then the flow

of information from known to unknown quantities can be assembled piece by

piece.

79



CHAPTER 5

PLANAR PROJECTIVE

GEOMETRY

In this chapter homogeneous coordinates are introduced to describe points, lines, and
conic curves in a plane. First, the basic ideas of mappings, duality and decompo-
sitions are presented. Then a transformation is used to define an alternative set of
homogeneous coordinates with the same components as planar screws. This then rep-
resents planar twists as points, planar wrenches as lines and planar inertias as conic
sections. Then mappings, duality and decompositions are used to examine rigid body

velocities, accelerations, forces, and momenta.
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5.1 Homogeneous Coordinates

5.1.1 Points in Homogeneous Coordinates

Homogeneous coordinates are used to describe points and lines on a plane. These
coordinates contain more information than needed. Planar points and lines require a
minimum of two components, but homogeneous coordinates supply three components.

Typically a point P is defined as

Dbo

" (5.1)

D2

which is normalized by dividing by py # 0 to

1
P = (5.2)
ri
with
CcoSs A
n= (5.3)
sin A

and r the distance of the point from the origin. The unit vector 77 is the direction vec-

tor from the origin to the point. As seen in Figure 5.1, any point P has homogeneous
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coordinates

Do

P =1 porcos\ (5.4)

PoT Sin A

for any py # 0. With homogeneous coordinates a scalar multiple of a point such as
2P still designates the same point as P. Normalized homogeneous coordinates with
po = 1 contain only the geometrical information filtering out the redundancy. These
are called the base coordinates for that point. If a point moves to infinity with r — oo

it can be designated with finite coordinates if py — 0. For example, if P is

P =1 cos\ (5.5)

sin A

then it is a point at infinity.
Homogeneous coordinates provide the tools to perform point algebra. The addi-

tion of two points

2

Py
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Figure 5.1: Standard homogeneous coordinates. Both points and lines use the unit
position vector 77 and the scalar distance r in their definitions.

and

1
Q= qx (5.7)
Qy
results in the mid-point
2
Dy T Gy
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with base coordinates

P + Q — Pztqxz

Point addition is also used when a linear combination two points is needed such as

P=Q+ [(Qs — Q1) with 3 a scalar proportionality ratio.

5.1.2 Lines in Homogeneous Coordinates

A typical a line L is defined as

which is normalized by dividing by [ = 1/I? + I3 to

—r
I —
7
with
CcoSs A
n =
sin A
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and r the minimum distance of the line from the origin. The unit vector 7 is the
outward perpendicular to the direction of the line from the origin. As seen in Figure

5.1, line L has homogeneous coordinates

—rl

L= lcos\ (5.13)

[sin A

for any [ # 0. With homogeneous coordinates a scalar multiple of a line such as
2L still designates the same line as L. Without loss of generality the homogeneous

coordinates for lines can also be defined as

r
L= (5.14a)
-7
or
rl
L=1 _lcos\ (5.15)
—[sin A

The reason for this change of convention is so that linear forms between points and
lines takes on meaningful values as seen in the next section.
Normalized homogeneous coordinates with [ = 1 contain only the geometrical

information filtering out the redundancy. These are called the base coordinates for

85



that line. If a line moves to infinity with » — oo it can be designated with finite

coordinates if [ — 0. For example, if L is

L=y (5.16)

then it is the line at infinity.

Line coordinates are defined such that the equation of that line is given by
P'L=0 (5.17)

where P is any point on the plane. For example if

1
Dy
then the equation of the line is
P'L=0 & 7 — Py COSA — pysin A =0 (5.19)

This is the equation for the line L shown in Figure 5.1, with r the minimum distance
of the line to the origin and (cos A, sin \) the unit vector normal to the line. Analogous
to point algebra, line algebra can be performed to calculate linear combinations of

lines.
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Two unit independent lines L; and L, have a linear combination of

where (0 is a proportionality ratio. This represents a pencil of lines through the
intersection point P. The proof is simple. Point P can always be found by solving

two scalar equations

PTLl =0
(5.21)
PTL2 == O
Then point P also belongs to any linear combination L since
P'L = P'Li+P'B(Ly, — L) (5.22a)
= PTL,+ B(PTLy — P"L,) (5.22b)
=0 (5.22¢)
5.1.3 Point and Line Algebra
Between an arbitrary point P and an arbitrary line L the linear form
t=P'L (5.23)

is proportional to the minimum distance between them. If the normalized homoge-
neous coordinates are used for both P and L then ¢ is equal to the minimum distance.

This presumes the convention for line coordinates shown in (5.14a) is used. Otherwise
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the minimum distance would be equal to —t. If the point and the line are coincident

then t = 0. Therefore the expression
P'L=0 (5.24)

is interpreted as either all the points P that lie on the line L, or all the lines L that
pass through the point P. This dual interpretation makes the notation powerful and
relevant for dynamics. A similar duality exists in spatial screw algebra between twists
and wrenches.

Homogeneous coordinates can be used in the calculation of lines that join two
points, or points that meet two lines. The sets of equations needed to solve such
problems are a pair of linear forms. These can be also viewed as projections.

Finding the line L that joins two points P and () with

P=|,, (5.25)

Dy

and

Q= q (5.26)

dy
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requires the two equations

PTL=0
(5.27)
QTL=0
By subtracting these two equations the direction normal of the line is
sinA = —(pe — ) /d (5.28)
cosA = (p,—qy)/d (5.29)
where
d= /(e — )" + (0 — @) (5.30)
The minimum distance of the line to the origin is
r = (pyde — Patly) /d (5.31)
In homogeneous coordinates this line is
- Pyqae — P2y -
L=1 —(p,—q) (5.32)
i Pz — Qg |

Dually finding the point P where two lines L; and L, meet requires the two

equations

PTL1 == O
(5.33)

PTL2:O
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These are solved as a system of two equations with two unknowns and result in the

point

sin ()\1 — )\2)

P = D) sin )\1 — T sin )\2 (534)

71 COS Ay — T'9 COS g

with the pairs r1, A\; and ry, Ay the defining properties of the two lines respectively.

5.2 Conic Mappings and Duality

5.2.1 Conics and Algebraic Mappings

Besides points and lines, conic sections also have homogeneous coordinates. These
curves are used to map points to lines and vice versa in projective geometry. The map-
pings have both geometrical and algebraic meaning. A conic C has six independent

homogeneous coordinates and is represented with a symmetric 3 x 3 matrix

Ch C3 C4

C=| e ¢ e (5.35)

C4 C5 C2

This conic maps a point P to a line L through matrix multiplication so that

L=CP (5.36)
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Figure 5.2: Mapping of an exterior point P to a line L through a conic C. A tangential
point () maps to a tangential line M through Q.

and the inverse
P=C"'L (5.37)

is a unique one-to-one mapping.

This one-to-one mapping is also defined geometrically using the graphical represen-
tation of conic sections. Any point maps to a line through a geometric construction.
There are three set of points relative to the conic: inside points, coincident points,
and outside points. The first two are shown in Figure 5.2 as points P and (). The
third is shown in Figure 5.3 as point P. In order to understand these mappings the
conic C must be associated with a curve on the plane. The equation of the curve is

given by the collection of points @) that have
QTCQ =0 (5.38)
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Figure 5.3: Mapping of an interior point P to a line L through a conic C. Any two
arbitrary points on L maps to two lines that intersect at P.

Any point ) which is incident to its map M = C'Q is incident with the conic C. The
curve C' is defined by this collection of points (). The dual to this is defined by the

equation

MTC'M =0 (5.39)

which defines all the lines M that are tangent to the conic at the mapped points
Q = C~'M. The curve C' is then defined by a collection of tangent lines. This means
that any point ) which is coincident to the conic C' maps to a line L which is tangent

to the conic and coincident to Q).
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5.2.2 Conics and Geometrical Mappings

A full rank conic C can be a circle, an ellipse, a hyperbola, or a parabola. The
mappings and geometric constructions work for either of these types of curves.
Exterior points to the conic map as shown in Figure 5.2. The geometric construc-

tion of the map between the point P and the line L is:

1. Draw the two lines that pass through P and are tangent to the conic.

2. Each tangent intersects the conic on one point.

3. Connect the two intersection points to form line L.

This of course may work in reverse to map an interior line to an exterior point.
An interior line is one that intersects the conic, in two distinct points.
Interior points to the conic map as shown in Figure 5.3. The geometric construc-

tion of the map between the point P and the line L is:

1. Draw two arbitrary lines through P which intersect the conic on two points

each.
2. For each set of two points draw the two tangent lines with the conic.
3. Each set of two tangent lines joins on one point.
4. Two points are thus defined from the two sets of two tangent lines.

5. Connect these two points to form line L.
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From (5.38) it is obvious that in order to have real solutions for @), the symmetric
matrix C' must not be positive definite. If it is positive definite then no real ) can
be coincident to the curve C'. Therefore it would be impossible to sketch the curve
on the real plane. Despite the fact that a positive definite C' represents an imaginary
conic, it is still capable of mapping real points into real lines and vice versa. This
is important because the positive definite inertia matrix maps twists into wrenches.
Interestingly, a point P at infinity maps to a line through the center of the conic, and
the line at infinity to a point on the center of the conic. This works for both real and
imaginary conics. The center of a conic can always be defined as the real point @
that minimizes QT CQ (Q is in base coordinates).

The closer a point P moves to the conic curve the closer its mapped line moves
to the curve too. In the limit, where the point becomes incident to the curve, the

mapped line becomes tangent to the curve and incident to the point.

5.2.3 Duality and Decompositions

The construction for interior points is based on the principle of correlation:
Theorem 12 Any line L on a point Q maps to point P = CL on the line M = C1Q.

Proof. If line M passes through P then PTM =0 < (CL)' C7'Q =0« LTQ =
0 which is only true if point @) is on line L. m
This demonstrates that all algebraic equations between points and lines have dual

forms when all the components are mapped with the same conic. For example, the
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minimum distance between a point P and a line M is ordinarily defined as

t=PTM (5.40)

Dual to this is the definition

t=L"Q (5.41)

where line L = C~'P and point Q = CM. This demonstrates dually that linear
forms are invariant to conic mappings and so either set of points and lines is equally
sufficient.

This duality provides uniform ways of decomposing points and lines. If a point P

on the plane is a linear combination of three base points )1, Q2 and Q3 so that

P = u1Q1 + UQQQ -+ U3Q3 (542)

then any line L = C'P on the plane can be decomposed dually by three base lines

Ml = CQh M2 = CQQ and M3 = CQg so that

L= UlMl + ’U,QMQ + U3M3 (543)

with the same proportionality ratios.
In Figure 5.4 a special case is shown where () and ()3 are coincident to the
conic. Also the tangent lines through ), and ()3 intersect at ;. By definition then

QICQy =0 and QTCQ3 = 0 but also QTCQ, =0 and QT CQ; = 0.
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Figure 5.4: Special decomposition of a point P so the components are easily extracted
with simple projections.

By premultiplying (5.42) with Q7 C, QC and QI C the projections

QICP = Q[CQuy (5.44a)
Q0P = Q;0Q3us (5.44b)
Q0P = Q50Qquy (5.44c)

are used to solve for the scalar components

w o= [(QTcq,) Qe P (5.45a)
wm = Q@) Qic|p (5.45b)
ug = :(QgTCQg)_ngTc*:P (5.45¢)
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Dual to this is the line decomposition from (5.43) with components

w o= |[(MTC'My) T MTC L (5.46a)
wy = |[(MIC'My) T MECT| L (5.46b)
us = |(MIC'Mz) T MECT| L (5.46¢)

There are other similar ways of decomposing points and lines. All use particular
points that lie on mapped lines resulting in some sort of decoupling in the projection
equations. In planar dynamics such relationships already exist between joint axes and
reaction forces. The fact that reaction forces provide zero power is used to decompose
accelerations and forces. In the following sections the link between geometrical points

and lines with physical accelerations and forces is made.

5.3 Alternative Homogeneous Coordinates

5.3.1 Transformation To Alternative Coordinates

Standard homogeneous coordinates are used to describe points and lines in the plane.
In addition, planar twists and wrenches may also be used to designate points and

lines through their poles and polars. Changing from one notation to the other is
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performed with the help of a 3 x 3 transformation matrix 7,

The transformation matrix is orthonormal since 77T = 1.

5.3.2 Points in Alternative Coordinates

0 0 1
0 -1 0
1 0 0

(5.47)

Points in the alternative homogeneous coordinates are defined by transforming (5.4)

with T to yield

PoT Sin A

—Por COS A

Dbo

The normalized coordinates using planar vectors are

where

)
I

—sin A

CcoSs A
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is the unit vector perpendicular to 77 as seen in Figure 5.5. The transformation matrix
performs a 7/2 counter-clockwise rotation of the planar vectors components. The
new point coordinates seem a bit awkward, but on closer examination they resemble
a planar twist located at P and expressed at the origin. Using the definition of the

pole (4.10) and the planar twist in (4.6), a homogeneous point is equal to

Por Sin A WoYp
—porcos A | T | —w.xp (5.51)
Do Wy

If all the components are converted into polar coordinates with

Tp rsin A
= (5.52)
Yp 7 COS A
then the twist is equal to the point if
bo = W, (553)
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Figure 5.5: Alternate homogeneous coordinates. Both points and lines use the unit
direction vector € and the scalar distance r in their definitions.

5.3.3 Lines in Alternative Coordinates

Lines in the alternative homogeneous coordinates are defined by transforming (5.14a)

with T to yield

—[sin A

L= lcos A\ (5.54)

rl

The normalized coordinates using planar vectors are

L= (5.55)

These coordinates provide a simpler definition for lines since they use the unit vector
¢ along the line and its minimum distance to the origin r. Standard homogeneous
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coordinates use unit vectors perpendicular to the line. They also resemble planar

wrenches along L expressed at the origin. Using the equation for the line (4.27) and

the planar wrench in (4.21), a homogeneous line is equal to

—[sin A fx
lcosA | = fy
Ir Tpfy — Ypfa

If all the quantities are expressed in polar coordinates such that

Tp 7 COS A

Yp rsin A

fa —F'sin A
Iy Fcos A

where

F=\/12+1

then the homogeneous line is equal to

—Ilsin \ —F'sin \
lcosA | = F cos A
Ir (rcosA) (FcosA) + (rsinA) (F'sin \)

101

(5.56)

(5.57)

(5.58)

(5.59)

(5.60)



which is true if [ = F'.

From the viewpoint of geometry, the expression P L = 0 represents a point P and
a line L with zero distance between them. From the viewpoint of dynamics where
points are velocities and lines are forces, this equation represents wrenches and twists
that produce zero power. These are called reciprocal screws. If s is the unit twist

about a joint axis then
sTR=0 (5.61)

defines all possible reaction forces for that joint as the pencil of forces R. Mathemat-
ically R is the null-space of s and is called the reaction subspace. For example, the

prismatic joint

CcoSs A

§= | sin A\ (5.62)

in the direction of (cos A, sin A) has the reaction space spanned by

—sinA 0
R= cosA O (5.63)
0 1

since sTR = 0. The two basis reactions are a force through the joint, and a pure
couple. Any reaction force wrench is a linear combination of these two reactions.
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5.4 Inertia Mappings and Decomposition

In projective geometry a conic section C' maps points P into lines L = C'P. In
dynamics an inertia matrix I maps acceleration twists a into force wrenches f = Ia
as if the body is at rest and v = 0. The process is identical, except the inertia matrix
I is usually positive definite, and always positive semi-definite. Thus, usually a conic
section for I cannot be sketched with real points. However, since inertias are conic
mappings they can be used to decompose forces and accelerations.

Inertia mappings define a unique inertial force f = Ia for every acceleration a as
seen in Figure 5.6. The acceleration a also defines a point in homogeneous coordinates
called the pole of a. The force f defines a line in homogeneous coordinates called
the polar of f. The point uniquely maps to the line using the inertia matrix. In
dynamics, the polar of f is called the axis of percussion for the pole of a.

A simple planar example demonstrates how to locate the axis of percussion. Con-
sider the body shown in Figure 5.6. A coordinate frame is placed at the acceleration
pole a and with the local z-axis along the line that connects a and the center of
gravity. If the body has mass m, radius of gyration p, and the center of gravity is at

distance d then the inertia matrix is

I'=10 m dm (5.64)
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Figure 5.6: Inertia maps accelerations into forces. Accelerations are points and forces
are lines on the plane. The line is the axis of percussion of the point.

The force f needed to accelerate the body about a is f = Ia if the body is at rest. If

the angular acceleration is « then the acceleration twist is

a=| o (5.65)

and the force required is

f= mdo (5.66)

m(p* + d?) «
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Obviously f has no z-axis component and its axis of application is located by nor-
malizing the force wrench. Dividing the wrench by its magnitude mda yields the

shortest distance [ of the application axis as

l=d+ % (5.67)

The force lies on the so-called “axis of percussion.” This axis defines the applica-
tion line for a force that rotationally accelerates a free body about a specified point.
In the world of sports, the effect of the axis of percussion is called the “sweet spot;”
where all of the energy of the athlete is transfered most efficiently to the ball. In this
case, the rotation caused by f occurs about a. The minimum distance r of the axis

of percussion to the center of gravity is

= £ (5.68)

where p is the radius of gyration of the rigid body and d the distance from a to the
center of gravity. The farther away a is, the closer f is and vice versa. There are
two limiting cases with d = 0 or d = oco. In the first case, an acceleration twist
about the center of gravity needs a force wrench at infinity which represents a pure
couple, and in the second case, an acceleration twist at infinity which represents a
pure translation needs a force wrench through the center of gravity.

Figure 5.7 demonstrates mappings in power relations. A powerless force f passes
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Figure 5.7: Mappings in power relations. A powerless force f passes through the
velocity v, or a powerless acceleration a lies on the line of action the momentum p.

through the rigid body velocity v such that
vTf=0 (5.69)

If f represents a force applied on a single rigid body (3.9) relates this force to an

acceleration a such that
f=1Ia— (vx)" Iv (5.70)

The power relationship expands to

vTf = vTIa— o (vx)" v (5.71a)
= (Iv)"a (5.71b)
= pla=0 (5.71c)



where
p=1Iv (5.72)

is the momentum wrench.

In fact, in general the power is defined as
P=qlf (5.73)
or
P=9p"a (5.74)

since both calculations are equivalent.

A reaction force f that produces no power has an application axis that passes
through the instant center of motion v. Equivalently the resulting acceleration a lies
on the application axis of the momentum h. Powerless forces define reaction forces,
and powerless accelerations define reactive accelerations. This equivalency is used
in the next chapter to decompose forces and accelerations according to reactive and
active components. Mappings in power relationships are very important because they

intertwine forces, velocities, accelerations and momenta.

5.5 Extension to 3D Spatial Quantities

Projective geometry provides the tools for defining geometrical construction in a
general NV dimensional space and is not limited to the planar case. In spatial dynamics
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both twists and wrenches are screw quantities with the dualities, mappings, and
projections similar to those in the planar cases. Screws are lines in space with a
pitch quantity associated with them. Therefore a minimum of five quantities are
needed to describe them. Spatial twists and wrenches are a form of homogeneous
coordinates for screws containing one extra redundant coordinate to describe the five
dimensional quantity of a screw. Both represent screws because screws are self-dual.
On the other hand, planar twists represent points, and planar wrenches lines which
also are dual to each other. The principles and concepts developed for the planar
cases are easily extended to the spatial case by changing points and lines into screws
and increasing the number of homogeneous coordinates needed to describe them from
3 to 6. Reciprocity, duality, and mappings exist between twists and wrenches in both
spatial and planar cases.

Spatial inertias map twists into wrenches. Although in the plane they are conics,
in the spatial case they are of higher dimension. Spatial inertias still provide unique
mappings and are used to dually decompose twists and wrenches according to power
relationships. For example, in the previous section the planar power relationships
extend to the spatial case simply by redefining the quantities involved as spatial
screws. The concept, notation, and mathematics are identical between the two cases.

Often in the following chapters the figures and examples reflect planar cases which
are easier to visualize, but the notation and mathematics is also valid for the spatial

case. When a quantity such as a joint axis s is depicted in a figure as a point it may
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represent a planar twist, but it may also represent a spatial twist. Unless all 3 or 6

components are explicitly defined, there is no way of separating the planar and the

spatial cases mathematically.

5.6 Questions

1.

“Which part of projective geometry and mappings is most useful in dynamics?”
Homogeneous coordinates in projective geometry are used for decompositions
and projections. For example, any point on the plane is a linear combination of
three base points. These base points are the subspaces that decompose all the
points on a plane. The association between geometry and dynamics described

above allows twists and wrenches to be decomposed similarly.

“Which subspaces define components with meaningful information?” In dynam-
ics it is always meaningful to classify quantities in terms of power. For example,
reaction forces are wrenches that provide zero power. The subspaces are defined
according to their power relation. With mappings these power relations help

define subspaces for any wrench or twist.
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CHAPTER 6

SUBSPACES

Power is used to decompose spatial twists and wrenches onto subspaces. The decom-
positions yield meaningful projections for the components. Applying these projections
to the kinematics and the equations of motion result in direct solutions of the un-
known quantities. This chapter connects concepts described in previous chapters and
provides powerful tools for solving multibody problems. This method of projective
dynamics is used in the next chapters for solving multibody chains, trees, and loops.
It is also implemented as a MATLAB toolbox using object oriented programming

allowing for high level formulation and solution of problems.

6.1 Basic decomposition

Joints in multibody systems are modeled by their joint axis s. This is the subspace of

relative motion between the two bodies the joint connects. The joint axis also defines
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the reaction subspace R as its null-space through the equation
sTR=0 (6.1)
This gives one meaningful subspace for the accelerations and one for the reaction
forces. To perform the decomposition, the acceleration and force spaces have to be
completed with additional subspaces.
One simple way of completing the planar space is shown in Figure 6.1. The force
space [F] is given as
-7 n on (6:2)
where

T=1Is (6.3)

and R; and Ry are any two independent unit reaction forces. The force subspace T
represents the axis of percussion for the joint as defined in Section 5.4.

Any force f is decomposed as a linear combination of the subspaces
f=TY + Rip; + Rapy (6.4)

with ¢, p, and u, the components of the decomposition. Sometimes this is abbrevi-

ated to
f=T¢+ Rp (6.5)

with 1 the active force component, R the reaction subspace
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Figure 6.1: Simple planar decomposition of twists and wrenches through three unit
forces and their mapped accelerations. Both the joint space s and the reaction sub-
space R are used.

and p the reaction force component

u= | (6.7)

Ha
This decomposition is meaningful because for a force to accelerate the body around
the joint without a reaction force it must lie only in the percussion subspace f = T.
Sometimes the 11 component of a force wrench is called the active force component
since it does not contribute to the reaction forces.
In the spatial case a joint may have k degrees of freedom and therefore the joint

space is

S r— (63
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and the axes of percussion are

T = {Isl Isk} (6.9)

Since there are 6 — k reaction forces possible the reaction space is
R= {Rl Rﬁ_k} (6.10)
such that
sTR=0 (6.11)

The force decomposition is similar to the planar case

f=Ty+ Ru (6.12)
but the components are
(Ch
Y= : (6.13)
(o
and
M1
p=| (6.14)
He—k
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Since decompositions in the plane (6.5) and space (6.12) have identical notation it
is unnecessary to define the two cases separately. Unless the components are defined
explicitly the following decompositions and subsequent projections apply to both
cases.

The acceleration space [A] is derived as a mapping of the force space [F],

[A] = I'[F]

- | 0] (6.15)

where s is the joint axis and U = I"'R are the complementary accelerations. If the
joint is ignored and a reaction force f = Ry is applied to a stationary body, with

v = 0, then the resulting acceleration is
a=I"'f=Up (6.16)
In general, acceleration a is expressed as a linear combination of the subspaces
a=sp+Up (6.17)

where subspace U is called the reactive acceleration space. The above decomposition
is used with any applied wrench f and any body velocity v.

Acceleration and force decompositions are related by s R = 0 and the dual ex-
pression 77U = 0.

One of the problems with the decompositions is the fact that not all subspaces

are represented by unit twists or unit wrenches. Although by definition s and R are
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unit quantities, their maps T and U are not. For example, if s is a single degree
of freedom joint, the acceleration component si is easily interpreted as unit twist s
multiplied by its magnitude v in whatever units is appropriate for the joint. On the
other hand, the force quantity 7' is a non-unit wrench 7" multiplied by the same 1)
in the same acceleration units. The interpretations of T', U, 1) and p are less direct.

Another problem occurs when projecting the decompositions to extract the com-
ponents since large coupled matrices need to be inverted. For example, in the planar

case shown in Figure 6.1 the projection

R'a = R (s +Up)

= (R"U) p (6.18)

is solved for the component u as

-1

p=(R"U)  R'a (6.19)

which requires the inversion of
R'U = R'I'R
RII'R, RTI 'R,

= (6.20)
RIT'R, RII 'R,

In Figure 5.4 of the previous chapter the decoupling of the components is possible

because two of the points considered are incident to their mapped lines. In addition,

the third point considered is lying in the inersection of those two mapped lines. As
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a result, the projections simplified to the point where each projection is used to
calculate one of the components without the need for solving simultaneous systems
of equations.

In dynamics, since the inertia matrix is positive defnite, it is impossible that an

acceleration a maps to an incident force Ia such that
a’la =0 (6.21)

As a result, decoupling of the component equations is rare. To avoid this problem U
can be chosen such that the matrix RTU is a diagonal matrix.

If U is chosen such that
U"R = [Ug-nxot (6.22)

and 7T such that

sTT = sk (6.23)
then

R'a = R (s +Up)
= RTUp
= u (6.24)

Solving for 1 = R a is much simpler than in the example above. Of course, depending
on k the degrees-of-freedom of the joint, the result of UTR and s'T can either be
scalars or identity matrices. In the subsequent development, a number 1 may also
designate an identity matrix of appropriate size and a number 0, a zero matrix.
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6.2 Decompositions and Pseudo-Inverses

The requirements that sTT = 1 and RTU = 1 are achieved easily with the use of
weighted pseudo-inverses. These do not violate the reaction space definition s’ R = 0
and its dual TTU = 0.

In Chapter 3 a natural decomposition of the internal forces is derived from (3.26)

using the articulated inertia A; and the joint torque 7,;. This equation is

fi= (3+)T7i + (1 - 3i3+)T (Az (ai_l + /ﬁli) + dz) (625)

where the subspace
(S;-i_)T = AiSi (SzTAiSi)_l (626)

and s is called the weighted pseudo-inverse of s;. The first part of f; is the active

component since

(2 (2

sify = s (s*)T Ti + 87 (1 - (sj)T szT) (A (ai—1 + k) + dy) (6.27)
= 7+ (S-T - SzT) (A; (a1 + k) + d;) (6.28)

7

= T (6.29)

and thus only 7; contributes power to the joint.

Therefore if T; is the weighted pseudo-inverse of a;,such that

T'i = AiSi (SzTA,‘S,‘)_l (630)
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then by definition

sITy = sTAss; (siTAisi)_l (6.31)

=1 (6.32)

Dually, if U; is the weighted pseudo-inverse of R;, such that

U= A7'R; (R AT'R;) (6.33)

then by definition
R/U; = RA7'R; (Rl A'R;) (6.34)
=1 (6.35)

It is equally valid to define the subspaces using the single rigid body inertia I;

instead of the articulated inertia A;. The body inertia subspaces are
T, = Ls; (s Lis;) (6.36)

and

1

The choice depends on which equations of motion are been used. In general,
when considering multiple connected rigid bodies the articulated inertias are used.
Therefore, in the following sections the definition may vary depending on context. If
the internal forces are used with (3.10) then I; is used. If the internal forces are used
with (3.13) then A; is used.
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6.2.1 Wrench Decomposition
The force decomposition with pseudo-inverses is
f=TQ+ Rp (6.38)
where
T = As (s7As) ™ (6.39)

and R is the reaction space. Both force components () and p have force units as
expected.

The power of a body with v = sq is

W = o'f (6.40)
= (s9)" (TQ+ Rp) (6.41)
= ¢'s'TQ (6.42)
= ¢'Q (6.43)

6.2.2 Twist Decomposition

The acceleration decomposition with pseudo-inverses is
a=syp+Uy (6.44)

where

1

U=A"'R(RTAT'R)” (6.45)
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and s is the joint space. Both acceleration components ¢/ and + have acceleration
units as expected.

It is trivial to show that

T'U = |(s"As) " sTA| [ATR(RTAT'R) | (6.462)
— (s"As)” (s"R) (RTAT'R) ™ (6.46b)
— 0 (6.46¢)

6.2.3 Planar Inerpretation

Figure 6.2 shows the planar decomposition which differs from the basic decomposition
of Figure 6.1 in that the reactive acceleration subspaces U; and U, are relocated along
the axis of percussion T' to meet the reaction subspaces Ry and R;. This diagonalizes

RTU because as seen in the planar example

RTU, RTU,
R'U = (6.47)

RIU, RIU,

10
= (6.48)

The diagonal terms RlTUg =0 and R2TU1 = 0 represent the fact that U; and U, lie on

Ry and R; respectively.
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Figure 6.2: Planar decomposition that decouples the projections. The reactive accel-
erations U; and U, lie on Ry, and R; respectively which diagonilizes the projections.
The subspaces use the pseudo-inverses so that their components are in the right units.
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6.3 Component Projections

Force components are extracted using projections. Using sTR = 0, sTT = 1 and

(6.38)
sTf = sT(TQ+ Rp) (6.49)
— TTQ (6.50)
) (6.51)

In addition, using 77U =0, UTR = 1 and (6.38)

UTf = UT(TQ + Rp) (6.52)
= U'Ru (6.53)
= U (6.54)

Acceleration components are also extracted using projections. Using (6.44)

T = T (s 4+ Ur) (6.55)
— TTsy (6.56)
= % (6.57)
and
RT'a = R"(s¢+U7) (6.58)
= R'Uxy (6.59)
— (6.60)
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6.3.1 Projection Summary

The component projections are

Q = s'f (6.61a)

p = U'f (6.61Db)
and

v = R'a (6.62a)

v = T'a (6.62b)

These follow naturally from the definition of the subspaces T and U with pseudo-
inverses. These linear forms return either force or acceleration magnitudes. These
projections can also be applied to velocities and momenta since their decompositions

are similar to accelerations and forces.

6.3.2 Joint Space Inertias
A single pinned rigid body at rest, with v = 0, has
f=1a (6.63)

Using a general decomposed acceleration (6.44) into the equations of motion (3.10)

yields
f = Ia (6.64)

= I(sp+Uy) (6.65)
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Substituting into (6.61a) projects into

Q = s'(Isy+IUv) (6.66)

= (s"Is)v (6.67)

where s Is the joint space inertia of the joint. This relates joint torques @ with
active accelerations .
Dually, using a general decomposed force (6.38) into the equations of motion (3.10)

yields

a = I'f (6.68)

— ["Y(TQ + Ry) (6.69)
Substituting into (6.62a) projects into

v = R'IY(TQ+ Ru) (6.70)

= (R'"I"'R)p (6.71)

where RTT1R the reaction space inverse inertia of the joint. This relates reactive
accelerations v with reaction forces p.

These are totally decoupled since p depends only on v and v depends only on Q).

For example if a body, is pinned to the ground and the joint accelerates by ¢ =

then its acceleration is

a = sq (6.72)
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with v = 0. Assuming the body is at rest, with v = 0, and therefore without bias

forces, the reaction forces are

p=U"f=U"Ta=0 (6.73)

where U is defined in (6.37). The joint torque needed for such an acceleration is

Q = s'f (6.74a)
= s'la (6.74b)
= (s"Is)g (6.74¢)

6.4 Inertia decomposition

The subspace decompositions are used to decompose a single rigid body inertia I.
The subspaces used are accordingly defined in (6.36) and (6.37).
Using the force component projections (6.61a), (6.61b) in the force decomposition

(6.38) yields the subspace identity
Ts" +RUT =1 (6.75)
which is used to decompose inertias into two parts
I=Ts"T+RU"I (6.76)

Joints are split in two parts with relative motion between them and equal and opposite

forces acting on both parts. The forces needed to accelerate each part of the joint are
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a, Total Inertia is

C !> I[=TSTTHRUT |

-t Ia,=RU"Ia

Figure 6.3: Inertias decompose into two parts. A) The inertia that accelerates the
body by a; which is along the joint. B) The inertia that accelerates the body by a,
which is along the reactive acceleration space.

seen in Figure 6.3 which describes the inertia decomposition. The first part
fi=Iay=Ts"Ia (6.77)

represents the active force f; needed to accelerate the body by a; along the joint

when its base is fixed. The second part
fo=1Iay = RU"Ia (6.78)

represents the reactive force f; needed to accelerate the base of the joint by a, with
no acceleration along the joint.

The inverse inertias also decompose into two parts
IV =sTT'1I ' +UR'T! (6.79)

Internal forces are split into two parts. One part contains the reaction forces and the
other the active forces. Active forces power the joint while reactions ensure that the
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Total Mobility is
@ H=sT"I"+UR™I

|

|
_J
P

If] =sT'T'f

" p=URTf

a=I(+1y

VLTI o

Figure 6.4: Inverse inertias decompose into two parts. A) The inverse inertia that
produces force f; along the joint. B) The inverse inertia that produces force f, along
the reaction space.

joint does not accelerate apart. The resulting accelerations from each type of force
are seen in Figure 6.4 which describes the inverse inertia decomposition. The active

force f; results in an acceleration
=1 =sTTT'f (6.80)

which represents the motion of the joint. The reaction force f; results in an acceler-

ation
ay=1"'f =URTI'f (6.81)

which represents the motion of the base of the joint.
If a resting body is pinned to the ground and a force f is applied on it then (6.44)
is
a1 = $1¢, (6.82)
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and (3.10) is

fi—f=hLa (6.83)

If the joint is not powered then @); = 0 and the internal force (6.38) is

Ji=Riy (6.84)

The active acceleration projection (6.62b) is

Y, = Tla (6.85)
= T'H (A=) (6.86)
= 717 Ry, - TILS (6.87)
— _TTy (6.88)
since
TTI'Ry = (sThsi) ' sTLIT'R, (6.89)
= (sThs:) ™' (sTRy) (6.90)
= 0 (6.91)

The body acceleration is then decomposed as

ap = S1¢ (6.92)

= — (sT7IY) f (6.93)

which indicates that [ST T _1} is the effective inverse inertia for a constrained body.
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If a resting body has acceleration a; with no joint torque then (3.10) is

fi =Tha (6.94)
and (6.61b) is
= Ul h (6.95)
— U'lLa (6.96)
since @)1 = 0 then (6.38) is
fi=(RU L) ay (6.97)

which makes [RU T } the effective inertia of the base of the joint.

The same methodology can be used to decompose articulated inertias using the
subspaces defined by (6.30) and (6.33). Then with two joined bodies the effective
inertia of one body is added to the articulated inertia of the other body to create the
articulated inertia of the system. The generalization of this procedure is in Chap-
ter 7 where the articulated inertia idea is fully expanded for both free floating and

constrained chains of rigid bodies.

6.5 Projective Kinematics

The acceleration of a rigid body in a chain of rigid bodies is defined by the acceleration

kinematics (4.52) as

a; = a;_1 + quz + K; (698)
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with a;_; the acceleration of the previous body, s; the joint axis, v; the velocity of
the body, k; = v; X s;q; the bias acceleration, ¢; the joint velocity and ¢; the joint

acceleration. This acceleration is decomposed into two parts from (6.44)
a; — Sﬂ/Ji + Uz’}/z

where s; is the joint axis and U; the reactive acceleration space defined by the

pseudo-inverse
Ui = A7'R, (RTAT'R,) ™ (6.99)
Substituting (4.52) into (6.62b) yields

Q/Jz‘ = Tz‘T (ai—l + 5;G; + lﬁ:i)

= G+ T (ai_1 + ki) (6.100)

This projection relates the absolute acceleration along the joint ¢, and the relative
joint acceleration ¢;. Given 1, the unknown ¢ can be calculated easily since all
other terms are generally considered to be known. Figure 6.5 describes the difference

between the relative and absolute measurements for the joint. Substituting (4.52)

into (6.62a) yields
Vi = Ry (aio1 + sis + k)
= R (ai_1 + k) (6.101)

This projection calculates the reactive joint accelerations «y, directly since it doesn’t

contain any unknowns pertaining to body ¢. This reactive acceleration is the result
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&
— o,
Q'J”z- v;=T/a
2 9~ VirVi1

Figure 6.5: The relative joint acceleration ¢§; is the difference of the two absolute
accelerations ¢, and 1, ; along joint ¢. They are both projected from the spatial
quantities using the percussion subspace T;.

of reaction forces. Reaction forces ensure that the base of the joint moves with the
previous body and thus the resulting reactive acceleration is directly related to the

acceleration of the previous body.

6.6 Projective Dynamics
The equations of motion from (3.9) for a body in a chain of rigid bodies is
fi = fir = Liai — (0:x)" L, (6.102)

with f; and f;; the internal forces for joints ¢ and i + 1 respectively, I; the spatial

inertia, a; the acceleration twist and — (vix)T I;v; the bias forces on the body. The
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introduction of the articulated inertia idea from (3.13) transforms this equation to
fi = Aja; + d; (6.103)

with A, the articulated inertia of the body and d; the articulated bias forces. Force

wrenches decompose into two parts from (6.38)
Ji = TiQ; + R, (6.104)

where R; is the reactive force subspace and T; the active force subspace defined by

the pseudo-inverse
T'i = AiSi (SzTAiSi)_l (6105)

The joint torque @); is assumed to be a known quantity for each joint. Substituting

(6.103) into (6.61b) projects the reaction forces

pi = U (Aai + di)

Solving equation (6.103) for a; and substituting into (6.62b) yields

v = TIAT(fi—di)

= TVA N (TQ: — dy) (6.107)

which relates the active acceleration v, directly to the applied torque Q;.
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6.7 Projective Articulated Equations of Motion

Substituting the components 7, and 1, from (6.101) and (6.107) into the acceleration
decomposition (6.44) yields an expression for the body acceleration which contains

only known quantities. This solution for the body acceleration is
a; = s;T] A7 (T,Qi — d;) + UiR! (a1 + k) (6.108)

An equivalent equation with the single rigid body inertias is presented in the next
section. The first part is the active acceleration due to the active force T;@Q); and the
bias force d; projected through the effective mobility s; 7' A;'. The second part is the
reactive acceleration due to the previous body acceleration a;_; and the bias acceler-
ation k; projected through the projection matrix U; RI. The reactive acceleration is
the acceleration needed to enforce the joint constraint.

Similarly, substituting the component v, from (6.101) into u; from (6.106a) and
then into the force decomposition (6.38) yields an expression for the internal force of

the body which contains only known quantities

An equivalent equation with single rigid body inertias is presented in the next section.
The first part contains the active forces along the axis of percussion T;. The second
part contains the reaction forces due to the acceleration of the base of the joint a;_;
and the bias acceleration k; projected through the effective inertia R;Ul A;, and the
bias forces d; projected through R;UT.
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Finally the relative joint acceleration is calculated by premultiplying (2.17) with

TT and solving for ¢;
G =T, (a; — ai—1 — K;) (6.110)

which is a projection of the relative spatial acceleration through the joint. This joint
acceleration is often the end product of most dynamics algorithms. There is always
a trade-off between speed and information. The end product for the decomposition
methods is not just ¢; but the ability to extract any quantity needed, and to observe
the flow of information from known to unknown quantities. Equations (6.108) and
(6.109) provide all the information needed not only to solve problems in multibody
dynamics, but also to observe the relationships between the quantities involved.
These basic equations for multibody dynamics allow for ideas such as articulated
inertias or effective inverse inertias to be defined with a few simple steps. In fact,
these decomposed solutions for accelerations and forces act as basic building blocks
for constructing ideas, methods, algorithms, and solutions to multibody problems. In
the next chapter articulated inertias are derived as an example for the decompositions

as building blocks.

6.8 Projective Newton-Euler Equations of Motion

Using the Newton-Euler equations of motion (3.10) and the subspace definitions in

(6.36) and (6.37) it is possible to solve for the accelerations and forces. The steps are
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similar to the articulated projections except for the following substitutions

di — pit fin (6.112)
Equations (6.108) and (6.109) for body inertias are

a; = SiT;-TIi_l (T;Qz — Pi — f1‘+1) + UzR? (CL,‘_l + lﬁli) (6113&)

fi = TiQi+ RU! (I (ai—1 + ki) + pi + fis1) (6.113b)

These are called the acceleration and force propagators. They are used non recusively
to build solutions for constrained rigid body chains which do not require the definition
of the articulated inertias. Next chapter contains the definition of articulated inertias

and constrained chain equations.

6.9 Planar Example

Before the development of multibody articulated systems an example is presented
that illustrates the use of the decompositions as a tool for complex problem solution.

A car has wheelbase L and its center of gravity is located a distance of e L from the
front wheels. The car is cornering and accelerating at the same time as seen in Figure
6.6. An applied force fa acting along the direction of the front wheels is responsible
for accelerating the body. This force is a simple way of modeling the torque produced

by the engine on the front wheels. The steering angle of the front wheels is such that
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Figure 6.6: Example of a car cornering and accelerating at the same time. The tire
forces needed to maintain cornering are calculated with projective dynamics.

the radius of turn is d. The speed of the car measured on the rear wheels is V' = wd
with w the rotational velocity of the car around the corner.

Using projective dynamics the angular acceleration w and the magnitudes of the
two reaction forces p; and pu, are calculated as functions of the angular velocity w and
the applied force f4. The system is modeled using a revolute joint s on the instant

center of rotation. The joint space s and reaction space R are

s=190 and R=1|9 L (6.114)
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expressed on the instant center of rotation. The car velocity is calculated directly

from (2.9) as

0
v=sw=| @ (6.115)
w
and from (2.19) the bias acceleration x is
0
K=vXsw= | (6.116)
0

The inertia matrix of the car, transformed to the joint using (1.68), is

m 0 —m(l—¢)L

—m(l—e)L md m(p®+d®+(1—¢)*L?)

with m the mass and p the radius of gyration of the car. The bias force defined in

(3.11) as

p=—(vx)" Iv (6.118)
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is

and the applied force wrench is

fa=

with F4 the magnitude of the force

f

—mdw?

—m (1 —¢) Lw?

Vd? + L2Fy

. The equations of motion (3.10) are

+ fa=Ila+p

(6.119)

(6.120)

(6.121)

with f the internal force for the joint and a the acceleration twist of the car. The

internal force is decomposed by (6.38) as

= la+p—fa

= TQ+ Ru
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The active force subspace from (6.30) is

1

T = Is(s"Is) (6.124)
[ _ (1—e)L ]
T = 4 (6.125)
p2+d2+(1—¢)2L2
1
and the reactive acceleration subspace from (6.33) is
U = I''R(RTI'R)™ (6.126)
1 0
U = _4d Vd2 L2 (6.127)
L L
d?4+(1—¢)L? —dVd? 1 L2
| L(p+d2+(1—¢)?L2)  L(p2+d2+(1—€)?L2) |
The reactive acceleration component from (6.101) is
v = R (v x sw) (6.128)
0
o= (6.129)
0

which is logical since by definition a = sw.

Since the joint is not powered by a torque then () = 0 and so the angular accel-
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eration from (6.107) is

w = T'TI ' (fa—p) (6.130)
F Vd? + L?
w = |2 il - (6.131)
m p?+d?+ (1 —¢)” L2
The reaction force components from (6.106a) are
p = UTTUy+UT (p— fa) (6.132)

c(—e)L?—p* JPIL? 2
— : "W — edmw
§ = prat-erir L (6.133)
Cal’ . dp (1 —e) VBt L2

p2+d24+(1—¢)2L2 L

These represent the actual tire forces needed to maintain the motion of the car.
The first component is the force of the rear tires, and the second of the front tires.
In general both are negative numbers indicating that the forces act from the tires
towards the center of rotation and not away from the center of rotation. In addition,
as the applied force F, increases, the tire forces on the rear tires increase slightly,

whereas the tire forces or the front tires decreases slightly.
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CHAPTER 7

ARTICULATED INERTIAS

In this chapter articulated inertias are calculated using subspace decomposition.
There are two general types of articulated inertia calculations for any body i in a
rigid body chain. The first splits the chain on joint i and calculates the acceleration
a; resulting from the internal force f; as seen in Figure 7.1 where A; is the articulated
inertia for the free floating chain. The second splits the chain at joint ¢ + 1 and
calculates the acceleration a; resulting from the internal force —f;,; as seen in Fig-
ure 7.2 where A; ! is the articulated mobility for a constrained chain. The subspace

decomposition allows for meaningful inertia and mobility decomposition.

7.1 Free Floating Chain

From (3.13) the definition of the articulated inertia A; for a free floating chain is
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Figure 7.1: Articulated inertia A; for free floating chain. The acceleration a; resulting
from the inernal force f; includes the effect from all subsequent bodies.

Figure 7.2: Articulated mobility A; ! for constrained chain. The acceleration a; re-
sulting from the internal force — f;;; includes the effect from all the previous bodies.
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which relates the internal force f; with the spatial acceleration a; and the articulated
bias forces d;. Articulated inertias are calculated recursively using (3.29) and (3.30).
In this section the force decomposition (6.38) is used for an alternative method.

The articulated inertia starts with the terminal body where
Ay = Iy (7.2)
For i = N (3.10) becomes
v =Inan +pn (7.3)
Next it is assumed that the articulated inertia for body 7 4 1 exists as
firr = Aip1aig1 + dia (7.4)

from which the articulated inertia for body i is calculated. From (6.109) the internal

force of joint 7 4 1 is

fir1 = Ti1Qiv1 + Ria U}y (A (a5 + Kiv) + dig1) (7.5)

The internal force f;,; is substituted into (3.10) yielding

fi = Aja; + d; (7.6)

with
A = L+ RiaUlL A (7.7a)
di = pi+Ti1Qiv1 + RiaUl 1 (Aip1kivt + disr) (7.7b)
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The articulated inertia of a body is the sum of the body inertia and a projection of
the articulated inertia for the rest of the chain. This projection is interpreted with
the help of the inertia decomposition in (6.76) and Figure 6.3. It represents the forces

needed to accelerate the base of joint i + 1 by a;.

7.1.1 Articulated Inertia Algorithm

Equations (7.7a) and (7.7b) are used recursively from i = N to i = 1 to calculate all

the articulated inertias A; and articulated bias forces d; with the following algorithm.

1. Given quantities for all bodies in the chain

Spatial inertia I;

Joint space s;

Reaction space R;

Spatial velocity v;

Applied forces g;

Joint torques @);

Joint velocities ¢;

2. Initial values:

° I{N:’UNXSNQN
o Ay=1Iy
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o dy = — (vn)" X Iyvn + gn
® TN = ANSN (81]\}141\181\[)_1

o Uy = Ay Ry (RS AN Ry) ™

3. Recursion from7i=N —-1tot=1

Ai =1+ Rin Ul A

o d;=— (%‘)T X Liv; + g; + Ti41Qi1 + Ria Ul 1 (Aiy1kip + dir)

T'i = AiSi (SzTA,‘S,‘)_l

U; = A7'R; (RFA7'R) ™

The decompositions can help with eliminating the steps that require the inversion

of the 6 x 6 articulated inertia matrix. Using the identity (6.75) the substitution

RUI' =1-"T;s! (7.8)

7

eliminates the need for explicit calculation of U;. If a joint has only one degree of
freedom the calculation of T;s! is much easier computationally than R;U[.
Although computational efficiency was originally the driving force behind the
advances of articulated body inertias, it is not a primary concern in this thesis. The
decomposition method presented in the previous chapter is flexible, modular, and

complete.
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7.2 Articulated Inertia Example

An example of articulated inertias is shown in Figure 7.3. Two floating identical
bodies are connected at an angle ¢ of each other. A horizontal force f; accelerates
both bodies. The acceleration of the first body is used to define the effective mass in

the horizontal direction. If the two bodies are initially at rest with
v=20 (7.9)
then the articulated equations of motion for body 1 is
fi =414, (7.10)

with A; the articulated inertia and f; the applied force. If a horizontal force F) is
needed to accelerate body 1 in the horizontal direction by a, then the effective mass

in that direction is

Fy

Qy

(7.11)

my =

If F, is the magnitude of the horizontal force and a, the magnitude of the linear

acceleration in the horizontal direction then the effective mass in that direction is

My = {Al}[l,l] (7.12)

with {41}, ;) the first row and first column component of A;. All the screw quantities
described below are expressed on the origin which coincides with the joint coordinate
CJ;.
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Figure 7.3: Articulated inertia example. A horizontal force f; accelerates two con-
nected identical bodies. The effective mass in the horizontal direction is derived from
the ratio of the force to the linear acceleration in the horizontal direction. The effec-
tive mass is a function of the configuration angle ¢ and the inertia properties of the
two bodies.

The articulated inertias are calculated using the single rigid body inertia for body

1
m 0 0
L=10 m my, (7.13)
0 2L m (L2147
and body 2
m 0 —%Lsing
I = 0 m mL (1 + 1 cos ) (7.14)
—2Lsing mL (14 cosp) mp® + (3 + cosp) mL?
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with m the mass of the bodies and p their radius of gyration. The joint axes are

0 0
s1=10 and So=| —L (7.15)
1 1
The reaction spaces are
10 1 0
Ri=10 1 and Ro= 1|0 1 (7.16)
00 0 L
Going through the articulated inertia analysis, (7.2) is
and from (6.33) the reactive acceleration space is
Uy = A;'R, (RTA;'R,)™ (7.18)
1 0
— _2L2 sin 1+ 2L2 cos ®©
L2+4p2 L2+4p2
2L sin __2Lcosy
L2+4p2 L2+4p2
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which is used to calculate the articulated inertia for body 1. From (7.7a)

Al == Il + R2U2TA2 (719)
m(L2 cos? <p+4p2) mL2 . mL3 .
m+ Ry T244,7 SILp COS o7 S cos ¢
— mL?2 sin © cos + m(L2 sin? <p+4p2) L i mL3 sin2 <p+4mLp2
T2 4pz SIMPCOS Y m L214p7 msy 21402
_mL? _ L | mL%sin® p4+4mLp? 2 . 5,72  mLicos?y
iz Sipcosp  m3 + T7 4,7 mp*° + 4mL 71,7

Equation (7.12) returns the effective mass in the horizontal direction as

m,  L?+8p® 4 L*cos® ¢

— 7.2
m L2 + 4p? (7.:20)
Using the size ratio
L
A= — 7.21
p (7.21)
(7.20) becomes
2 1 2
mg 84 A" (1+cos’yp) (7.22)

m M+ 4
which is plotted in Figure 7.4. The smaller the rotational inertia of the bodies the
smaller the radius of gyration p is relative to the size L and therefore \ increases.
The effective mass ratio m,/m decreases as the size ratio A increases. The limiting
case where A\ — oo represents bodies that are point masses and the effective mass of

the system reaches its minimum of

lim 2 =1+ cos? g (7.23)
A—oo M
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Planar Articulated Inertia

25
2.0 -
e 3 "
g2
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3
D
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r=16
0.0 T T T T T T T T
0 10 20 30 40 50 60 70 80 90

Orientation (deg)

Figure 7.4: Effective mass of planar articulated example as a function of the orienta-
tion angle . As the size ratio X increases the effective mass decreases.

On the other hand when the location of the joints approaches the center of mass and

A — 0 the effective mass ratio approaches its maximum of

lim X2 _ o (7.24)
A—0 m

7.3 Articulated Horizontal Chain of Multiple
Rigid Bodies

Extending the above example as seen in Figure to multiple horizontal bodies with

zero angle between them allows for a tabulated form of the articulated inertia of the
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Number of Bodies =i

Figure 7.5: Articulated Inertia for a horizontal chain of rigid bodies. With the addi-
tion of each successive body the effective center of mass is located by the distance d;

and the diagonal terms of articulated inertia matrix expressed on d; are m,, m,, and
A,.

first body varying the number of bodies.

A horizontal chain of rigid bodies has the following properties. For a chain of ¢
rigid bodies spaced a distance L apart each with a radius of gyration of p, the effective
center of gravity of the first body is located a distance d; from the first joint. The
articulated inertia of a single rigid body expressed on the center of gravity d; = L/2

is

m 0 0
Ai=10 m 0 (7.25)
0 0 mp?

Then the articulated inertia of the i-th body expressed on its effective center of gravity
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di is

m, 0 0
0 my, O
0 0 A,

(7.26)

where m,, m, and A, are shown below as a function of the number of bodies i

2
d;/L mg/m my/m A, /mp
1
5 1 1 1
122412 9 2248 22248
2 2248 A244 A248
1 A%4+40X22480 3 A443222448 3244002448
2 A%4+3222+48 A 42402116 AL +3202 448
1254842445602 4448 4 A0 7222440004256 | 4X841120% 1448024256
2 A6 47201440072 +256 A0+60A% 24012464 A0+720% 4400024256

with A = L/p.

The behavior of these quantities is better understood when viewed graphically.

The relative distance d;/L is shown in Figure 7.6 as a function of the size ratio A.

The effective mass m,/m is shown in Figure 7.7 as a function of .

effective rotational inertia A, /mp? is shown in Figure 7.8 as function of .

Finally the

Seen in the graphs for the three and four body systems for specific ranges of the size

ratio the quantities are close to the two body systems within about 10%. Interesting

is the case where A = 2.0 and the behavior of an articulated multibody system is

identical to the two body system. For the effective center of gravity for A > 1.0 the
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0.9]

0.8]

0.71

0.67

Figure 7.6: The location of the effective center of gravity in a two body system. The
x-axis is the size ratio L/p and the y-axis is the relative location d/ L.

2.57

Figure 7.7: The effective mass in the vertical direction in a two body system. The
x-axis is the size ratio L/p and the y-axis is the relative mass m,/m.
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2.57

Figure 7.8: The effective rotational inertia in a two body system. The z-axis is the
size ratio L/p and the y-axis is the relative ineretia A, /mp?.

ratio d3/dy < 1.1 and d4/dy < 1.1. Even for the rest of the A the relative locations
are not more than 20% off the two body system. For the articulated mass the three
and four body systems behave like the two body system for A > 1.5 within 10%.
The articulated rotational inertia of multibody systems with values A < 3.0 exhibit
very strong similarity to the two body system well within 5%. But for systems with
A > 3.0 each successive body contributes significantly to the articulated quantity.
Typically for rectangular shapes A < 3.46 and for elliptical shapes \ < 2.24. But
for rhomboidal shapes A < 4.90. If the shapes are elliptical disks with their height
h = L/2 and length L then the radius of gyration is p = L/2 which yields the size
ratio of A = 2.0. As shown in the graphs above this is a special case where each
successive body contributes nothing to the values of the articulated quantities for

more that two bodies. As a result the location of the effective center of gravity for a
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six body system is identical to the location for a two body system which is equal to

122 +12
2 M2 48
2

= 3L (7.27)

7.4 Constrained Chain

The definition of the articulated mobility A;* for a constrained chain is
a;i=—Nfir1+ b (7.28)

which relates the internal force f;;; with the spatial acceleration a; and the artic-
ulated bias accelerations b;. Articulated mobilities are defined recursively from the
acceleration decomposition (6.44). Articulated mobilities are used extensively by [4]
and several different methods for mobility calculation are derived. Unfortunately the
recursive method developed contained an error as the acceleration propagator om-
mited a force related term. A corrected version of this method is shown below. This
method is recursive and uses projection matrices.

The acceleration of the first body using the acceleration propagator from (6.113a)

is
a1 = SlTlTIl_l (TlQl —P1— fg) + UlRfﬁll (729&)
which when compared to the articulated mobility definition

a; = —Al_lfg + bl (730)

155



the articulated quantities are

AP = s TH (7.31a)

by = siTP Y (TiQy — p1) + Ui R Ky (7.31Db)
To derive the articulated mobility for body i the articulated mobility of body i —1
ai-1 = =N fi + big (7.32)
is used together with the equations of motion (3.10)
Ji=Lai+ fiq1+pi (7.33)
and the acceleration decomposition (6.113a) as a system of three spatial equations
a; =1n; — ;T I fior + UiRT (a1 + k) (7.34a)
with 7, the active projected acceleration
ne = s (TQi - p) (7.35)

The articulated mobility relates a known force f;,; to the unknown acceleration a;.
Other unknowns in this systems are the internal force f; and the previous body

acceleration a;_1.

Substituting (7.33) into (7.32) and then into (7.34a) yields

(L + UGRIAL L) ay = — (T I = UiRTAZL) fin +
+; = UiR] (A — b1 — #)  (7.36)

156



which is solved as
a; = —N; " fip1+ b (7.37)
with
AV = (L4 URTANL) T (sTTI — UiRTACY) (7.38a)
b = (1+URIANL) ™ (n, — URT (Afhp — by — i) (7.38b)

71—

These recursive equations are used from the base to the tip of the chain to calculate

the overall articulated mobility A=! of the system
At =AY (7.39)

If the system has six or more degrees of freedom then A~! is not singular and is the

inverse of the operational space inertia as defined by [4].

7.4.1 Articulated Mobility Algorithm

Equations (7.38a) and (7.38b) are used recursively from i = 1 to N to calculate all
the articulated mobilities A; ' and articulated bias accelerations b; with the following

algorithm.
1. Given variables for all bodies in the chain

e Spatial inertia I;

e Joint space s;
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Reaction space R;

Spatial velocity v;

Applied forces g;

Joint torques Q);

Joint velocities ¢;
2. Initial values:

® K1 =V X Slql

® D1 = — (le)T Livy

Tl = 1131<S{1—13)_1

Uy =IL"'Ry(RTI]'Ry)™!
o At =5TTI!

by = s/ TEITH (TQy — pr) + Ui RT Ky

3. Recursion from i =2toi=N

® K; = V; X quz
T
o pi=—(vix)" L

T, = I;si(sT I;s) ™1

Ui=I'"R(RF'I;'R) ™1

n; = SiTiTIi_l (Tz‘Qz‘ - pi)
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Figure 7.9: Articulated mobility example. The first joint C'J; is pinned to the ground
and a pure couple is applied to body 2.

o A = (1+URIANL) ™ (T L — UiRTAY)

o b= (1+U;RTANL) ™ (0, — URT (A ps — bioy — r3))

7.5 Example of Articulated Mobility

The same example as in Section 7.2 is used but with the first joint C'J; connected to
the ground and a pure couple f5 is applied to body 2 as seen in Figure 7.9.

Equations (6.36) and (6.37) are used to find the subspaces

0 1 0
Tl = #Ijlpz and Ul = 0 1 (740)
i ]. i i O - in_[:lpz
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and

2L sinp 1 0
_L2+4p2
T2 — 2L cos and U2 — _ 2L%sing 1+ 2L2 cos ¢
L2+4p2 L2+4p2 L2+4p2
1 2Lsinp __2Lcosy
L2+4p2 L2+4p2

Equation (7.31a) is used to find the articulated mobility of body 1

m(L%+4p?)

and from (7.38a) the articulated mobility of body 2 is

0 0 0
A_l _ 0 2L2<2L2(c0s go+3)+4p2) _ L(GL2 (cos go+§)+12p2)
2 m<L4<i+sin2 @)+6L2p2+4p2) m<L4<i+sin2 @)+6L2p2+4p2)
0 L<2L2 (cos <p+%)+4p2) 412 (cos go+%)+4p2
L _m<L4<%+sin2 @)+6L2p2+4p2) m<L4<i+sin2 @)+6L2p2+4p2)

From (7.37) the application of a pure couple 7

fa=10
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(7.42)

(7.43)

(7.44)



on body 2 accelerates the body by
_ —1
az = =Ny fi

0

7L

- (
(

m(L4

6L2(cos p+%)+12p?)
++sin? o) +6L2p>+4p?)
fr<4L2 (cos <p+%)+4p2)
m(L4(§+sin? ) +6L2p2+4p2) |

which represents a twist about a point on the y = 0 axis located at

T - {02}[2]
L L{az}y

Spfcosp+In? 43
n?cosp+ 22 +1

with the ratio

n=~L/p

(7.45)

(7.46)

(7.47)

(7.48)

(7.49)

indicating the relative size compared to the radius of gyration. The position of the

twist is shown in the polar Figure 7.10 as a function of the configuration angle .

It is important to point out that the position of the acceleration twist resulting

from a pure couple is important because it provides valuable information about the

inertial properties of the system. In the planar case, if a pure couple f applied on any

connected body in a chain results in the acceleration a, then the point defined by a is

the effective center of mass of that body. As a result any force reciprocal to a results

in purely translational motion. This is a result of duality and inertia mappings.
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7.6 Chain Splitting

Using articulated inertias the calculation of the acceleration of a body i requires the
acceleration of the previous body i — 1. On the other hand with articulated mobilities
calculating the acceleration of body i requires the internal forces f;,; acting on the
body. It is possible to combine these two methods to establish direct solutions for
acceleration a; without first calculating a;_; or f; ;.

Conceptually this is done by splitting the linear chain into two problems. One is
the articulated inertia problem for the sub-chain from body i + 1 up to the tip n as
seen in Figure 7.11. The internal force f;,; accelerates this sub-chain and the motion

a;+1 of the first body in the sub-chain is described by the equation

firr = Aip1aig1 + dia (7.50)

where A;11 and d;;; are defined recursively from (7.7a) and (7.7b). The internal force

solution for the articulated inertia problem is

fir1 = TiaQia + Ria Ul (Aig (0 + K1) + diga) (7.51)

as defined using decompositions in (6.109). This relates the previous body accelera-
tion a; to the internal force f;, ;.

The other problem is the articulated mobility problem for the sub-chain for body 4
down to the ground. The internal force f;,; accelerates this sub-chain and the motion

a; of the tip of the sub-chain is described by the equation
a; = b, — Ai_lfH_l (752)
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where A; ! and b; are defined recursively from (7.38a) and (7.38b).
Combining these two problems by substituting (7.51) into (7.52) and moving all

the terms related to a; on the left hand side returns

(1 + A;1R1+1U£1Ai+1) a; =b; — A [TiHQiH + Ri+1U£1 (Aip1kipr + di+1)}

(3

(7.53)

which is solved for

a; = (14 A7 Ry US Agr) ™ [bi = A [T Qi + Ria UL (Aipakigs + dign)] ]

(7.54)

Now given any end conditions on an open linear chain such as a base acceleration ay
or an externally applied force on the tip f,,; through the recursions of b; and d;,; a
direct solution for the accelerations is computed.

Similarly, to solve for the internal forces, (7.52) is substituted into (7.51) elimi-

nating the accelerations
(L4 Rip1Ul A AT fin = Ti1Qisn + Ria Uy (Aigr (b + Kiga) + disa)  (7.55)
This equation is solved, using the definition of the subspace U; = A; ' R; (RiTAi_ 1Ri) -

and symmetry, as

firn=(1+ A;1R1+1U£1Ai+1)_T [Ti41Qis1 + Risa Uy (Aisr (b + Kiga) + disr)]

(7.56)

This method eliminates the recursion up the chain with the kinematics to solve for
all the accelerations. In addition, it provides a direct force propagator from the tip of
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the chain down to body i and an acceleration propagator from the base up to body ¢
at the same time. This method answers the question of what total effect an externally
applied load has on any body in the chain with one calculation.

There is a simple algorithm to this method.

1. Calculate A;,; and d;,; using the articulated inertia recursion algorithm.
2. Calculate subspaces T;,; and U;,; from the same algorithm.

3. Calculate A;' and b; using the articulated mobility recursive algorithm.
4. Use (7.54) for the acceleration of body i.

5. Use (7.56) for the internal force on joint 7 + 1.

7.7 Questions

The articulated inertias and articulated mobilities are tools for understanding the
behavior of multibody systems. The power of this type of analysis is that it provides
useful insight on system behavior. Planar cases are easier to understand and often
the observed patterns can be extended to three dimensions.

As these ideas unfold, further questions arise.

1. “Can programming techniques such as object oriented structures be used to con-
struct a spatial toolbox for numerical or symbolic problem solutions?” Programs
such as MATLAB® are useful in describing and solving problems. Version 5.0
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and above support object oriented techniques for user toolboxes. New datatypes
that extend simple matrices to screw specific quantities can handle screw algebra
transparently for the user. Then a few simple commands can describe complex
multibody systems without the need for explicit component by component def-

initions yielding a high-level language for dynamics.

“Is it possible to solve multibody systems in a mon-recursive way?” Sometimes
just putting everything in big matrices helps show patterns in the solutions.
In addition, matrices are a convenient way of representing multibody systems
which are not just linear chains of bodies. Modified recursive representations can

handle multibody structures but stacked formulations are easier to implement.

“Is it possible to use decompositions and articulated quantities to model contacts
with the environment?” When parts of a multibody system are in contact with
the environment the reaction forces are not known and cannot be considered just
applied forces. Using decompositions and the articulated mobilities, a solution
may be found that modifies the unconstrained accelerations and computes the

constrained accelerations.
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Figure 7.10: In the articulated mobility example the location z of the instant center
of acceleration for body 2 is illustrated using a polar plot. The angle ¢ is the relative
orientation between the two bodies and the ratio n the relative location of x with
respect to the size L.
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Figure 7.11: Chain splitting reveals the effect of externally applied forces F' and base
constraints to any internal force f;. The system is split into a constrained chain from
the base to body 7 and a free floating chain from body 7 + 1 to the tip.

167



CHAPTER 8

MATLAB SPATIAL TOOLBOX

(SPAT)

MATLAB® +v5.0 and above allow for object oriented programing. This style of pro-
graming is ideally suited for a dynamics toolbox using screw theory. Object oriented
programing is based on programming operators that manipulate user defined objects.
The spatial toolbox (SPAT) defines two new objects. One holds coordinate frame
information and the other spatial quantities. Operators are defined to perform the
screw algebra and coordinate frame transformations needed for high level modeling
of rigid body dynamics. This chapter is a reference for the functions that define this
toolbox. In addition, there are some small examples to aid in the understanding of
some of the functions. In the end there is a simulation example modeled using this

toolbox.
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8.1 Constants and Functions

8.1.1 Elementary Unit Vectors

Four vector constants are globally declared, i_, j_, k_, and o_ that represent the three
unit vectors, and the zero vector. They can be used to construct vectors component

by component.
Example 13 The mathematical expression 31 — 2) + k is typed in MATLAB as

3xi_— 2% j_o+ ko

1 0 0 3
=3|lo|-2l1|+]o0o|=] -2 (8.1)
0 0 1 1

8.1.2 Rotation Matrices

The function E=elrot(vector,angle) is declared returning the 3 x 3 elementary
rotational matrix that corresponds to a rotation by an angle about a vector. The
vector does not have to be a unit vector, since the function normalizes it before its

used.
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Example 14 A rotation about the direction 2 — 7 by an angle /3 is typed as

elrot(2*i-— j-,pi/3)

0.9 —-0.2 —0.3873

= | —02 06 —0.7746 (8.2)

0.3873 0.7746 0.5

8.1.3 Vector Cross Product

The function b=cr(a) is declared returning the 3 x 3 skew symmetric matrix of the

cross product operator.

Definition 15 If a vector has components 77 = { Ty z } then the operator cross

product operator v X is defined as

0 —z wy
TX=1 2 0 -z (8.3)
-y x 0

This notation is used to evaluate cross products such as ¢ = a x b with matrix

multiplication. In MATLAB this operation is typed in as c=cr(a) *b.

8.1.4 Spatial Cross Product

The function vx=cr(v) is also used when the argument v is a 6 x 1 quantity such as

the value of a screw.
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Definition 16 If a screw has components v1 = { o o7 } then the cross product

operator is defined as

€l
X
4]
X

vX = (8.4)

with wx and vX the vector cross product operators. The result is a singular 6 X 6

matriz with zero trace.

In multibody dynamics a different type of spatial cross product is used in bias

forces but that can be evaluated by vx=-cr(v)’.

8.2 Coordinate Systems

In general, a coordinate system has the following three quantities associated with it:
1) A character string representing a descriptive name for that coordinate system

2) A vector representing the global position of the coordinate origin and

3) A rotation matrix representing the orientation of the coordinate system.

New coordinate systems without specific definition of position or orientation assumes
the default global coordinates when initialized. The global position is a 3 x 1 zero

vector and the global orientation is a 3 x 3 identity matrix.

Remark 17 The orientation matriz E is a local to global rotational transformation.
In essence, each column of E 1is the global representation of the local 7, 7 and k
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directions. Hence for any local vector a its global representation a, is

a, = Ea (8.5)

The orientation matriz E of a coordinate system is best defined with the elrot ()

function as shown in the coordinate system example later.

8.2.1 Coordinate Constructor

A coordinate system is declared with the A=coord(arguments) constructor. It can
be called with any number of arguments. Below is a list of some possible constructor

calls

e A=coord returns the global coordinate system which has its origin at o_ and
its unit vectors are aligned with i_ , j_ ,and k_. The name, position, and
orientation of the global coordinate system are used since neither is specified as

a parameter.

e B=coord(A) makes a copy of coord A.

e A=coord(n,r) names the coord the character string n and sets its origin as the

vector r.

Example 18 The definition A=coord(’foo’,2*%%_) returns a coord A named

’foo’ with its origin at 21 and aligned with the global orientations.
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e A=coord(n,r,E) is the same as above, but now it reorients coord A according

to the rotation matrix E.

Example 19 The definition example A=coord (’foo’,2*%i_,elrot (k_,pi/2))
returns a coord A named ’foo’ with it’s origin at 22, but rotated in the k direc-
tion by m/2. This results in the local @ direction corresponding with the global J

and the local ) direction with the global —1.

e Z=coord(A,B,C,..) with A,B,C,.. being other coord objects, assumes that
each successive coord is declared local to the previous one. The result is the
global representation of the last coord. The first coord is local to the global

coord, and therefore an absolute coordinate. The rest are relative coordinates.

Example 20 The coordinate system attached on the end of a hook joint is defined
as shown in Figure 8.1:

Starting from the default coordinate system XY Z the tip coordinate system xyz is
defined by a series of rotations and translations. First the translations along the local
z directions are defined with the relative coordinate A=coord (h*k_). Then a rotation
¢ along the local y coordinate is defined by E1=elrot (j_,phi) and a rotation v along
the local x coordinate by E2=elrot (i-,psi). The tip coordinate is defined with the

series A,E1,E2 and A. Assembling the parts with T=coord (’Tip’,A,E1,E2,4) returns
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Figure 8.1: Example of coordinate definition on a hook joint. Starting from the
default coordinate system XY Z a translation along z of h, a rotation along y of ¢, a
rotation along x of ¢ and a translation along z of h define the tip coordinate system
TYz.

the following information:

hsin ¢ cos ¢

Origin at T = —hsiny (8.6)

h + hcos ¢ cos

cos¢ singsinty sin¢gcosy

Orientation as E = 0 cos —siny (8.7)

—sing cos¢gsinty cos@cosy
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8.2.2 Member Functions and Operators

The member functions and operators provide ways of accessing the information stored
inside the coord objects. In addition, they provide functionality by establishing op-

erators for expressions such as addition, and equality tests.

e name(A) is used to return the character string of a coord. To change the name
of a coord the constructor A=coord(n,A) is called redefining coord A with the

new name string n.
e pos(A) returns the position vector of the origin of the coordinate system.

e orient (A) returns the orientation matrix of the coordinate system. This matrix

provides the local to global transformation for the coordinate system.

e A+B adds the relative coordinate B to A and returns the result as an absolute co-
ordinate. Addition here is not associative since A+B is not the same conceptually

as B+A. Essentially A+B returns the function coord(A,B).

e B-A returns the relative position and orientation of B with respect to A. This
is useful in extracting the relative position and orientation of one coordinate

system with respect to another coordinate system.

e A==B or A”=B tests for equality or inequality between coords. Two coords are
considered equal when both their positions and orientations are equal. Two

equal coords may have different names.
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e xform(A,B) returns a 6 x 6 transformation matrix between two coordinate

systems for transforming screws that represent twists.

Definition 21 The twist transformation between two coordinate systems is A

and B declared as follows

EJI;EA E]g(fA—fB) X EA
xform(A, B) = (8.8)

033 ELEa

with 74 and E4 the position and orientation of coord A, and g and Eg the
position and orientation of coord B. This transformation is derived from the
two transformation steps of moving from coord A to the global coordinate system

and then to coord B.

e yform(A,B) same as xform but returns transformation matrix for a wrench.

Definition 22 The wrench transformation between two coordinate systems is

A and B declared as follows

ELEs 033
yform(A, B) = (8.9)

E]g(?:A—fB) XEA EJI;EA

The following identity is used in the transformation of inertias and mobilities.

yform(A, B) = [xform(B, A)]" (8.10)
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8.3 Screw and Inertia Quantities

In general each screw quantity has the following four properties associated with it.
One is a character string representing a descriptive name for the screw, another is
a number from 0 to 3 representing different screw types, a coord object represents
the coordinate system the screw is expressed in, and finally a matrix with the screw
value. The value of a screw usually contains six rows and may contain one or more

columns.

8.3.1 Screw Constructor

A spatial screw or inertia quantity is declared by the s=screw(stype,arguments)
constructor. The stype argument is a number ranging from 0 to 3 depending on
what type of screw quantity is being declared. An stype of 0 represents a twist, a
stype of 1 represents a wrench, a stype of 2 represents an inertia, and a stype of 3
represents an inverse inertia or mobility. This type of screw type definition is rarely
used as more specific constructors are defined. The rest of the arguments can vary
in number, and may be of different types. Here is a list of some general constructor

forms that do not require a specific stype declaration:

e s=screw returns an empty screw. There is no name and coordinates system

associated with this default screw.

e s=screw(u) makes a copy of the screw u. It assumes the name, and coordinate
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system of its argument.

e s=screw(u,A) also makes a copy of the screw u but transforms its contents to a
coordinate system A. This notation can be used in addition to the declarations

below, adding as the last argument a coordinate system.

8.3.2 Twist Function

The function call s=twist (arguments) is equivalent to the constructor call
s=screw(0,arguments).

A twist is used to describe rigid body motions.

e s=twist(A, [v;w]) creates a screw type 0 at coord A with contents the 6 x 1
quantity derived from the two vectors v and w. Twists assume the first vector
represents the linear motion of a body, and the second vector the angular part.
The linear motion of a body changes as the position of the coordinate system
moves, in contrast with the angular part which only depends on the orientation

of the coordinate system.

Definition 23 Any vector whose components does not change when expressed
at different positions is called an isophoric wvector. On the other hand, any
vector whose components vary with the position it is represented in is called
an anisophoric vector. These terms are derived from Greek and describe either

constant or not constant directions.
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Screws like twists and wrenches always contain one isophoric and one

anisophoric vector.

Definition 24 In this toolbox twists carry the anisotropic vector first and then
the isophoric one. This arrangement is called having axis screw style. On the
other hand, wrenches carry the isophoric vector first and then the anisophoric

making them have ray screw style.

This convention for screw arrangements is adopted so that the linear part is
always the first vector and the angular is the second. This is useful in power

and kinetic energy calculations.

8.3.3 Wrench Function

The function call s=wrench (arguments) is equivalent to the constructor call
s=screw(l,arguments).

A wrench is used to describe forces and torques on a rigid body.

e s=wrench(A, [f;t]) creates a screw type 1 at coord A with contents the 6 x 1
quantity derived from the two vectors £ and t. Wrenches assume the first vector
represents the linear load of a body, and the second vector the angular part. In
contrast to twists, the linear part is the isophoric vector and the angular part

the anisophoric vector. As a result wrenches transform differently from twists.

Remark 25 To manually transform the wrench quantity [f;t] from coord A
to B the calculation yform(4,B)*[f;t] is needed. Similarly to transform the
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twist quantity [v;w] from coord A to B the calculation zform(A4,B)*[v;w] is

needed.

8.3.4 Spatial Inertia Function

The function call s=spi(arguments) is equivalent to the constructor call
s=screw(2,arguments).

A spatial inertia transforms twists into wrenches. It is usually constructed on a
coord that represents the center of gravity and the principal inertial axis, and then

transformed to any coordinate system the user wishes.

e T=spi(A,IC) creates a screw type 2 at coord A with contents the 6 x 6 quantity

IC.

Example 26 If 4 is aligned properly then IC should be a diagonal matriz and is
declared using the MATLAB diag () function. As an example if m is the rigid
body mass, and Iz, Iy, and Iz are the moments of inertia about the local i, j and

k azis then the spatial inertia at A is I=spi(4,diag([m,m,m,Iz,Iy,Iz])).

Remark 27 Sometimes the spatial inertia is defined on one coordinate sys-
tem and transformed to another coordinate system using the constructor call
I=spi(A,IC,B). This assigns the value IC on A and transforms the inertia to

B. Spatial inertia transformations are easily obtained from the transformations
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of twists and wrenches. The spatial inertia transformation from A to B is de-

clared as

Ip=X"I,X (8.11)

with the matriz X being

X = xform(B, A) (8.12)

Equation (8.11) is interpreted from right to left as:

1. Transform any twists from B to A with xform(B, A)
2. Multiply by I4 the spatial inertia at A to produce a wrench at A.

3. Transform that wrench back to B from A with yform (A, B) = xform” (B, A)

8.3.5 Spatial Mobility Function

The function call s=spm(arguments) is equivalent to the constructor call
s=screw(3,arguments).

A spatial mobility is functionally the inverse of the spatial inertia since it trans-
forms wrenches into twists. The single rigid body mobility is the mathematical inverse

of the single rigid body inertia, but other forms of the mobility are sometimes singular.

e M=spm(A,MC) creates a screw type 3 at coord A with contents the 6 x 6 quantity

MC.
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Example 28 If A is aligned properly then the mobility of a single rigid body MC
1s the diagonal matrix which is the inverse of the inertia matriz IC, and thus

MC=inv (IC).

Remark 29 A spatial mobility declared in one coordinate system and then
transformed to another is declared with M=spm(4,MC,B). The rules of trans-
formation are derived from the transformation of twists and wrenches. It is

shown that the spatial mobility transformation rule is
Mg =XMyXT (8.13)

with X = xform(A, B).

8.3.6 Other Constructor Options

Using a number st for declaring the screw type, there are several common options

for the screw constructor as shown below:

e s=screw(st,n,A, [v;w]) this declares a screw of type st with name n at coord

A with contents [v;w]. This declaration is general and very versatile.

Example 30 Defining a wrench representing a force of magnitude 10 along the
7 direction passing through a point located at 2@ in addition to a torque of mag-

nitude 5 along the —k direction is accomplished with the following declaration:
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f=screw(1, ’myforces’,coord(’A’,2%i_), [10%j_; -5%k_] )returns

fa= (8.14)

e s=screw(u,A, [v;w]) this copies the screw u transforms it to coord A and ap-
pends the quantity [v;w] returning the result. This is a very powerful way to

extend the content of existing screws.

Example 31 FEzxtending the force system declared above by appending a separate
force of magnitude 2 along the — direction and passing through a point at 14 5)

with zero torque is accomplished with the following declaration:
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f=screw(f,coord(’B’,i_+5%j_), [-2%i_;0_]) and returns

0 -2
10 0
0 0
fB= (8.15)
0 0
0 0
5 0

Finally this force system is transformed to the global coordinate system with:

f=screw(f,coord(’global’)) and returns

0 -2
10 O
0 O
fglobal = (816)
0 O
0 O
15 10

8.3.7 Member Functions and Operators

The member functions provide ways of extracting useful information from screw ob-

jects. Also the operators add functionality by allowing algebraic expressions to be
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evaluated allowing manipulation of equations involving screw quantities. For multi-
body systems screws need to be added, subtracted, multiplied and inverted to solve
dynamics problems. Below is a list of all the possible functions and operators for

screw objects:

e cs(s) returns a coord object with the coordinate system that screw s is de-

clared in.

e val(s) returns the value of the screw s as a MATLAB matrix.

e double(s) similar to val(s) but first it transforms the screw to the global

coordinates and then returns its value.

e s’ returns the transpose of any screw quantity. The result is a screw of the

same type but with its contents transposed.

e s|A transforms the contents of any screw quantity s into the coord A. The rules
of transformation are observed for twists, wrenches, spatial inertias, and spatial
mobilities. All the operators described below use this form to transforms all

their arguments into the same coordinate system automatically.

e s&A transplants any screw quantity s into the coord A. It is useful when the

same screw quantity is applied to many different coordinate systems.

Example 32 An example is a system of many similar rigid bodies with the
same spatial inertia declared as I. Then it can be applied to the first body as
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I1=I€cgl with cgl the coord representing the center of gravity. Similarly for

body 2 the spatial inertia would be I2=I8cg2 and so on so forth.

s=a+b returns the addition of two similar type screws a and b. This operator
first checks to see if the two screws are declared on the same coordinate system,
and if not then screw a is transformed to the coordinate system of screw b.
Then it adds the two screws component by component. The same procedure

applied to subtraction operator with syntax s=a-b.

s=[a,b] appends the screw quantities in a with those in b. It follows the trans-
formation convention of always transforms the first argument to the coordinate

system of the second.

Example 33 This operation is very useful in calculating the Jacobian of a
multibody chain, by appending all the individual joint azes (twists) by typing
J=[s1,s2,..,sN]. Fven if all the individual joint axes are declared on their
own coordinate system, the resulting Jacobian is a twist in the coordinate sys-
tem that sN is declared in. Then by calling the function Jcoord the Jacobian

18 resolved into the global coordinate system.

s=[a;b] is similar to the previous operator but it appends the rows of the two
screws. It is intended to be used only when the arguments are transposed and

appending the columns does not have the desired effect.
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Remark 34 Although included for compatibility reasons, this operator is to be

avoided and if needed use the syntaxr s=[a’,b’]".

inv(I) inverts the value of the spatial inertia or mobility. The inverse of an
spatial inertia is a spatial mobility, and the inverse of a spatial mobility is a
spatial inertia. Note that sometimes inertias or mobilities may be singular, and
cannot be inverted. This function can be called with twist and wrench screw

types, and the result is of the opposite screw type.

c=axb is screw multiplication and it has a different meaning depending in the
argument types. Any of the following rules apply regardless of which argument
type comes first and which second. Although mathematically axb is different

from b*a the resulting type is the same.

1. screw = number * screw

This multiplication rule states that the product of a screw quantity with a
MATLAB matrix results in a screw quantity of the same type. The same

rule applies to both pre- and post-multiplication forms.

Example 35 vr=s*qp is used when a twist joint axis s, is multiplied by
a vector of generalized velocities qp. The result is the twist of relative

velocities vr between the two ends of the joint.

2. number = twist * wrench
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This multiplication rule states that the product of any twist with a wrench

is a MATLAB matrix. This rule applies even if the order was reversed.

Example 36 @=s’*f Here the joint axis twist s’ is multiplied with the

internal force wrench f to produce the vector of generalized torques @.

. wrench = inertia * twist

This multiplication rule states that the product of a spatial inertia with a

twist is a wrench.

Example 37 f=I*a Here the product of the spatial inertia I with the rigid

body spatial acceleration a results in the internal force wrench f.

. twist = mobility * wrench

This multiplication rule states that the product of a spatial mobility with

a wrench is a twist.

Example 38 a=Mxf Here the product of the spatial mobility M with the

internal force f results in the rigid body spatial acceleration a.

. number = mobility * inertia

This multiplication rule states that when a spatial inertia is multiplied by

a mobility the result is a MATLAB matrix.

Example 39 MxI=1 Here a single rigid body mobility M is multiplied by

the body’s spatial inertia I to produce a 6 X 6 identity matrix.
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e k bias(v,s,qgp) this is a special function that returns the bias acceleration
twist which is equal to kK = v x s¢ with vx the spatial form of the cross product

operator for twists.

e p_bias(v,I) this is a special function that returns the bias force wrench which
is equal to p = v x v with vx the spatial form of the cross product operator

for wrenches.

8.3.8 Screw Information Functions

Some functions are being redefined for screw quantities while others apply only to

SCrews.

e name(s) returns the name of a screw quantity.

e size(s) returns the size of the contents of the screw. The number of columns
is the number of individual screws appended together in s, while the number
of rows should be equal to 6 for every screw quantity. The transpose operator
switches rows with columns and through this function, the toolbox figures out

if an argument to a function is a regular or a transposed screw.

e isovec(s) returns the isophoric vector of a screw. The definition for isophoric

vector is on page 178 .

e anisovec(s) returns the anisophoric vector of a screw.
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dirvec(s) returns a unit vector along the screw axis.

posvec(s) returns the location of the screw axis relative to the reference point.
A screw s expressed on the coordinate frame coord (posvec(s)) has both vector

parts of the screw parallel to each other.

pitch(s) returns the pitch of a screw. The pitch is the ratio of the anisophoric
vector component along the axis of the screw to the magnitude of the isophoric

vector.

subs(s,vars,expr) performs the substitution of vars with expr in s. This is
intended to be used when the screw has symbolic content, and if all the symbolic
variables are being substituted with numbers it converts the screw contents to

numbers also.

Example 40 For example, if the screw s uses a symbolic variable tau from its
declaration on some coordinate system A as s=wrench (4, [o_;tau*k_]), then
the call subs(s, ’tau’,0.5) replaces tau with the number 0.5 and returns
the numerically evaluated result, making the contents of that wrench equal to

[o-;0.5%k_].

simplify(s) returns a symbolically simplified version of the screw. Best used
after complex symbolic operations involving multiple screw multiplications with

trigonometric content.

190



Figure 8.2: Geometry of a spining top. The orientation is given by the precession
angle ¢, the nutation angle 6 and the spin angle ). The top consists of a weighless
support rod with length [ and a disk of radius r, thickness A and mass m.

8.4 Example Simulation

A spinning top shown in Figure 8.2 is used as a simulation example. The top consists
of a disk with radius r and thickness h. It is located a distance [ from the base. The
top has mass m = 5kg, radius r = 6¢cm, thickness h = 1em and height | = 4em. The
spherical joint on the base has a coefficient of friction of v = 0.004Nms/rad.

Initially the top has nutation angle § = 7/20rad and spin rate of ) = 200rad/s.
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Spinning Top with Friction
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Figure 8.3: Solution of a spining top with friction. Initialy the spin rate is 6 =
200rad/s and the tilt angle ¢ = 7/20. When friction reduces the spin rate below
60rad/s the tilt angle increases until the top falls over on its side.

The spin 1 and precession ¢ are initially zero. In this example a MATLAB program is
used to simulate the spinning top. The source code for finding the joint accelerations
in this example is shown in the next section. The simulation is run for approximately
ty = 3.5s until the top slows down enough to fall over.

Figure 8.3 shows the notation angle # as a function of the spin rate ¢ Because of
friction the spin rate continuously decreases. Until the spin rate falls under 100rad/s,
the tilt angle wobbles around the initial value of 7/20. Between the spin rates of
100rad/s and 60rad/s the tilt angle slowly drifts away and when the spin rate drops
below 60rad/s the tilt angle rapidly increases indicating that the top is falling over.

Figure 8.4 shows the reaction force components as a function of time. The reaction
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Spinning Top with Friction
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Figure 8.4: Reaction forces on the joint for the spinning top as it slows down.

forces along the spinning axis of the top are constant and equal approximately to
i, = mgsiny. When the top slows down and start to fall over these reaction forces
also drop as the tilt angle 1) increases. The other line in the figure shows the magnitude
of the reaction forces in the plane perpendicular to the spin axis. These fluctuate as

the top wobbles and increase as the top falls over.

8.4.1 Source Code for Example

Joint Accelerations

The following MATLAB function takes two vectors of joint angles q and joint veloc-
ities qp and returns the joint accelerations gpp.

function gpp=topsim(q,qp)
T John Alexiou, 1999.
T
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% Simulation of a spinning top with viscus friction in the joint.
%» Arguments q and gp are 3x1 vectors containing the joint angles
% and joint velocities as defined in the workspace.

h

% Uses SPAT toolbox. All units are in SI.

% Definition of a global structure ’tops’ containing the geometry
% defined at the workspace.

global tops

% Extraction of geometry form tops

m = tops.m; Jmass of disk

1 = tops.1; Jheight of disk from joint

r = tops.r; Jradius of disk

h = tops.h; Jthickness of disk

cf = tops.cf; hcoefficient of friction on joint Q=-cf*qp
g = 9.81; hgravity acceleration

phi = q(1); Jprecession angle from q

th = q(2); Jnutation angle from q

psi = q(3); %hspin angle from q

%sCoordinate System definitions

hcoord() is the constructor for coordinate systems

helrot() returns 3x3 elementary rotation matrix

%i-,j- and k- are three unit vectors and o- is the zero vector

%CJ is world coord rotated by phi about x-dir and th about y-dir
CJ = coord(’Joint’,elrot(k_,phi),elrot(j_,th));

%CG is coord CJ translated by 1 in local z-dir
CG = coord(’CG’,CJ,1xk.);

%6x6 Diagonal Inertia Matrix
IC = diag([m,m,m,m/12%(3*r"2+h"2) ,m/12% (3*r"2+h"2) ,m/2*r"2]) ;

%spi() is the spatial inertia constructor
%I at CG has value IC and it is xformed to CJ
I = spi(’Inertia Matrix’,CG,IC,CJ);

ZMobility is the inverse of Inertia
M = inv(I);
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%Joint torques define the frictional forces
Q = -cf*qp;

JWeight of the disk is applied on the location of CG
Jwrench() is the wrench constructor

hpos() returns a 3x1 position vector of a coord system
%lk_;o_] is the value of a unit wrench in the global z-dir
%fg is defined on pos(CG) and xformed to CJ

fg = wrench(’Weight’,coord(pos(CG)) ,-m*xgx[k_;o0_],CJ);

%The spherical 3DOF joint axis is defined on CJ
%twist() is the twist constructor
s = twist(’Joint Space’,CJ, [zeros(3);eye(3)]);

%The reaction space of the joint is defined on CJ
R = wrench(’Reaction Space’,CJ, [eye(3);zeros(3)]);

%The percussion space is defined by the pseudo-inverse of s
T = Ixs*inv(s’*Ixs);

%The reactive acceleration space is defined by the pseudo-inverse
of R
U = M#Rxinv(R’*Mx*R) ;

%The velocity twist is defined from the joint velocities qp
vV = s*qp;

%The cross product operator for velocity is 6x6 matrix

%val() returns the value of spatial quantity

hcr() returns either the vector or spatial cross product operator
vx = cr(val(v));

JBias accelerations use vx
k = vx*sxqp; %bias acceleration
%Bias forces use -vx’ the minus transpose of vx

p = (-vx’)*I*v; %bias force

J#Reactive accelerations components are
gamma = R’x*k;

%Joint accelerations are equal to the active accelerations components
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gpp = T’*Mx(TxQ+fg-p);

J#Reaction force components are
mu = U’*(I*Uxgamma+p-fg);

State Space Rate of Change

The following MATLAB code is used multiple times by the ode45() Matlab function
which numerically integrates multiple differential equations. It takes the state space
vector of the system and returns the rate of change of the state space.

function yp=topode(t,y)

h

% Argument t is simulation time and

% y is the state space vector of the top.
% Returns yp the rate of chage of y.

% The first three components of y defines the joint angles.
q = y(1:3);

% The last three components of y defines the joint velocities.
qp = y(4:6);

% The joint accelerations are calculated from topgpp()
qpp = topqpp(q,qp);

% The rate of change of y contains the joint velocities
% in the first three components and the joint accelerations
% in the last three components.

yp = [ap;qppl;
Simulation Initialization
The following MATLAB function initializes all the variables and calls the ode45()

for the simulation time.

function ys=top

yA Solve a top problem

% top initializes all variables and calls ode45() for solution
% which is returned by this function back to the workspace.

% Initialize system information in tops structure
global tops
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tops.m = 5.00; Ymass

tops.l = 0.04; %distance of CG from pivot
tops.r = 0.06; %radius of disk

tops.h = 0.01; %height of disk

tops.cf = 0.004; %friction coeff

% Ask user about initial conditions and simulation time

th = input(’Initial Nutation [pi/2]=’);
wz = input(’Initial spin [180]=’);
tf = input(’Simulation time [2]=7);

% Create initial state space variable

q = [0;th;0]1;
qp = [0;0;wz];
yO = [q;qp];

% Call numerical integrator function ode45()
[t,y] = oded45(’topode’, [0 tf],y0);

% Return the solution of joint angles and velocities.
ys = [t,y];

8.5 Summary

Coordinate frames contain two defining quantities. One is the position vector of
the origin of the frame, and the other the 3 x 3 orthonormal matrix describing the
orientation of the local 7,7 and k vectors. Twists and wrenches contain 6 x k subspace
matrices with each column representing a different screw. They also contain the
coordinate frame they are expressed in. Spatial inertias and mobilities are 6 x 6
quantities that map twists into wrenches and vice versa. A coordinate frame is also
associated with them.

If quantities are defined right, then the toolbox can be used to express spatial

relationships with high level algebra. Addition, linear forms, projections and scalings
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are performed transparently to the user without ever the need for component by
component manual calculation.
Removing the comments from the spinning top source listing makes it apparent

that the number of equations needed to model the system is really small.
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CHAPTER 9

TREES AND LOOPS

An alternative to recursive methods is the stacked form. The stacked form uses block
matrices to describe the motions and loads of the entire system. When rigid body
systems form tree like structures the stacked form incorporates the topology and
hierarchy of each body. The matrix that associates connected bodies is usually called
the connectivity or adjacency matrix. According to graph theory, rigid bodies are
treated as nodes, and joints as chords that connect various nodes. The equations of
motion in stacked form can incorporate any rigid body chain or tree structure. In
fact, general contacts between bodies, or with the environment that form kinematical
loops are treated with a different connectivity matrix called the contact matrix. The
accelerations are solved for by correcting the open loop solution with the necessary
contact forces. Articulated inertias and articulated mobilities are well suited for

associating contact forces and resulting accelerations.
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Figure 9.1: Example of rigid body tree structure. Body 1 is the root and bodies 4, 7,
8 and 9 are tips of each branch.

9.1 Stacked Form and Rigid Body Trees

9.1.1 Adjacency Matrix

A linear system of n rigid bodies is a special case of a tree system. A tree system has
multiple branches but only one root body. Each body in the system has one parent
body and multiple child bodies. For example, body 6 in Figure 9.1 has two children,
bodies 7 and 8, and body 5 as a parent. Body 1 is the root because all other bodies
are children to it. Body 8 is the tip of the chain that goes through bodies 1, 5, 6 and
8.

To mathematically describe such a tree structure of n rigid bodies, a n x n adja-

cency matrix C' is defined such that:

Definition 41 If body j is the immediate parent of body i then Ci; = [1]exe, otherwise
1t 18 C,‘j = [O]GXG'
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For the example shown in Figure 9.1 the 9 x 9 adjacency matrix is

000O0O0OOO®O0OO@ 0
1 00000O0O0OO0O

01 000O0O0O0OQO0

where each row ¢ places a 1 in the j-th column indicating that body j is the parent of
body i. Therefore the row corresponding to the root of the system is a row of zeros.
With this notation a 0 or a 1 may actually be a zero or a identity matrix depending
on the context the adjacency matrix is used in.

The adjacency matrix of a serial chain is a block diagonal matrix with ones in the
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cells under the diagonal such as

This means that each body ¢ has a parent the body ¢ — 1.

9.1.2 Stacked Form

The adjacency matrix is used to transform equations from a recursive to a stacked
form. In the recursive form equations are applied sequentially from one body to
the next moving either from root to tip or vice versa. In the stacked form, similar
recursive equations are joined together to form large block matrix equations. As an

example, the stacked form of the velocity kinematics equation (2.9) is

v==Cv+5¢ (9.3)

with C' the adjacency matrix and the following definitions for the remaining quantities.
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The stacked velocity twists

the stacked joint velocities

and the stacked joint axes

{{si}}

S1

S2
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(9.6)

(9.7)
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With this notation the expression C'v represents a stacked form of all the parent body
velocities. Together with the stacked form of all the relative velocities Sq they add
up to the velocity v of all the bodies.

Specifically, with the stacked form a quantity defined by single brackets such as
¢ = {#,} represents a nx 1 block matrix, and with double brackets such as ¢ = {{#;}}
a n X n block diagonal matrix.

Now all the indexed quantities associated with each rigid body have non-indexed

stacked equivalents. In general, the following definitions apply

1. Joint velocities ¢ = {¢;}

2. Joint accelerations § = {g;}

3. Body velocities v = {v;}

4. Body accelerations a = {a;}

5. Bias accelerations k = {k;}

6. Forces f = {f;}

7. Bias forces p = {p;}

8. Joint axes S = {{s;}} and reaction spaces R = {{R;}}

9. Body inertias I = {{I;}}

10. Percussion space T' = {{7;}} and quake space U = {{U,}}
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11. Joint torques @ = {Q;} and reaction forces u = {u,}
12. Active accelerations o = {{a;}} and reactive accelerations v = {{v,}}

13. Articulated inertias A = {{A;}} and articulated mobilities A~' = {{A; '} }

14. Articulated bias forces d = {d;} and articulated bias accelerations b = {b;}

The velocity and acceleration kinematics for any tree system are expressed with

a single equation relating block quantities. The acceleration kinematics

a=Ca+SG+k (9.10)
can be solved for the accelerations as

a=A"1(SG+ k) (9.11)
with

At=(1-0)" (9.12)

The lower triangular matrix A~! is called the trunk matrix. Each row i of A™! has

ones in the j-th column if body j is between body i and the root. The trunk matrix

205



of the system shown in Figure 9.1 is

AM'=11700010000 (9.13)

Interpreting the trunk matrix requires looking at it row by row. For example the
8-th row has ones in columns 1, 5, 6 and 8. This means that these bodies form a
continuous chain with body 1 the root and body 8 the tip. So each row indicates
which bodies lie in the path to the root. For a serial chain A is a lower triangular
matrix with ones from the diagonal and down.

Similar to the adjacency matrix C indicating which bodies are parents, its trans-
pose CT indicates which bodies are children. It is used in the equations of motion
since the internal forces from all the children need to be added up to the internal

forces of a body to form the net forces acting on each body. The stacked form of the
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equations of motion (3.10) is

f=C"f+Ia+p

or

ATf=Ta+p

The definition of articulated inertias A from (3.13) is

f=Aa+d
which is used to decompose forces
f=TQ+ Ry
and accelerations into
a=SY+Uy

(9.14)

(9.15)

(9.16)

(9.17)

(9.18)

with the force and acceleration subspaces are defined from (6.30) and (6.33) as

T = AS(STAS)™

U = A'R(RTA'R)™
and the projected components from (6.61a) and (6.61b)

Q = S'f
p = U'f
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and from (6.62b) and (6.62a)

v = TTa

v = R'a

(9.23)

(9.24)

Substituting (9.16) into (9.22) and then into (9.17), the internal forces are ex-

pressed as

f=TQ+ RUTAa+ RU"d

(9.25)

These forces are substituted into the right hand side of (9.14) and the left hand side

is compared to (9.16) yielding the expression

Aa+d= (C"TRUTA+1I)a+ (p+C"TQ + C"RU"d)

which is split into
A=C"RUTA+1I
and
d=p+C"TQ+C"RU"d
The first expression is
(1-C"RUT)A=1

which defines the articulation matrix L as

(9.26)

(9.27)

(9.28)

(9.29)

(9.30)



with
L=(1-CTRUT)™ (9.31)
The second expression is then
d=Lp+ LCTTQ (9.32)

There is a possible computational shortcut in calculating L since C'is an adjacency
matrix and C™ = 0. When the Taylor series expansion is applied to (9.31) the series

is truncated to contain only n terms resulting in

L = (1-Cc"RUT)™ (9.33)

— 14+ CTRUT + (C"RUT)* + ...+ (CTRUT)" ™ (9.34)

Substituting (9.18) into (9.16) and then into (9.21) and solving for the active

acceleration components
p=TT"A"N(TQ —d) (9.35)
Also substituting (9.10) in (9.24) results into the reactive acceleration components
v = RY (Ca+ k) (9.36)
These acceleration components are assembled into (9.18) as

a = STTA™(TQ —d) +UR" (Ca + k) (9.37)
(1-UR"C)a = ST"A™'(TQ—-d)+UR"x (9.38)
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which is solved for the accelerations as
a=L"[ST"A™(TQ — d) + UR"k] (9.39)

where

1

L"=(1-UR"C)" (9.40)

Substituting (9.10) into (9.16) and then into (9.22) gives the reaction force com-

ponent
p=U"(A(Ca+k)+d) (9.41)
Using (9.17) the internal force solution is
f=TQ+ RU" (A(Ca+ k) +d)
which depends on the accelerations a.
Rearranging (9.10) into
SG=Aa—k (9.42)

and pre-multiplying by the percussion space T7 projects the body accelerations into

the relative joint accelerations

i=T" (Aa — k) (9.43)

9.2 Direct Solution

Applying equations (3.10) and (7.37) in stacked form to any system results in a
direct solution of accelerations similar to that in Section 7.6. Equation (9.14) shows
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the stacked form of (3.10) as
f = CTf+Ia+p (9.44a)
f = (1-C") (Ia+p) (9.44b)

where C' is the adjacency matrix, f are the internal forces, a are the accelerations, I

are the body inertias and p are the bias forces. The stacked form of (7.37) is
a=b—ACTf (9.45)

where b are the articulated bias accelerations and A~! the articulated mobilities.

Substituting (9.44b) into (9.45) yields
a = b—A'C"(1-C") (Ia+p) (9.46)
(I+A7CT"(1-C")I)a = b—ATCT(1-C")p (9.47)
which is solved for the body accelerations as
a=(1+ACT(1-CTY )" (b—ATCT (1-CT)p) (9.48)

This is a direct solution for the accelerations that can be used after all the articulated
mobilities are known. It may replace the last recursion needed to solve for all the

accelerations starting from the base towards the tips.

9.3 Stacked Form and Contacts Between Bodies

Many methods for solving constrained multibody systems reply on a similar idea.
First the system is split into an open loop structure, and the open loop accelerations
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are calculated. Then the forces needed to close the loops are calculated. Finally,
these contact forces are use to calculate the close loop accelerations. This section
follows the methodology developed in [4] but in a stacked form. The adaptation of

the contacts in stacked form utilizes the contact matrix used in [9].

9.3.1 Contact Matrix

A constrained system has m contacts between its n bodies. Each contact is described

by a separate row in the m x n contact matrix G as defined below.

Definition 42 The k-th contact between bodies i and j is modeled by Gy; = 1 and

Grj = —1.

An example is shown in Figure 9.2 with a contact matrix

00010010 0
G = (9.49)

0000O0OO0O0 1 -1

The branch matrix Y is defined as

YT =GA™! (9.50)

where A™! is the trunk matrix. For the example shown above T is equal to

0111 -1 -1 -10 0
T — (9.51)

6ooo0oo0 1 1 0 1 -1
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Figure 9.2: A constrained tree system, with two contacts. Body 4 and body 7 make
the first contact, and body 8 and body 9 the second.

This shows the two sides of the kinematic loop. Starting from the common ancestor
one branch of the loop is indicated by ones and the other by minus ones. For example
in Figure 9.2 the first constraint is a kinematic loop where all the bodies have body
1 as a common ancestor. From body 1 the two branches of the loop are bodies 2, 3,

4 and 5, 6, 7.

9.3.2 Stacked Form

In stacked form the velocity kinematics (9.3) are defined as

Av = 5§ (9.52)

and the acceleration kinematics (9.10) as

Aa = S§+vx 8¢ (9.53)

where A=1-C.
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Similarly the kinematics of the contact are defined as
Gv = 20 (9.54)
and
Ga = 20 +v x 20 (9.55)

where G is the contact matrix, z is the relative motion spaces between the contacts,
and 9, 0 the contact velocities and accelerations. These equations are velocity and
acceleration constrain equations where the net relative velocity around a kinematic
loop is zero. This is similar to circuit rule that the net voltage change around a loop
is zero.

Using the contact kinematics requires knowledge of 6. Tt can either be calculated
by integrating 0 if the contact accelerations are known or by projecting the velocity
twists v directly. Integration usually introduces errors and explicit calculation of 6

may be difficult. Alternatively, from (9.54) multiplying both sides with z7.J yields
2120 = 2T JGv (9.56)
where
J="IY" (9.57)
and [ is the stacked inertia of the system. Equation (9.56) is solved for

0= (z"Jz2)" TG (9.58)
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The contact forces F' acting on each of the contacting bodies must lie in the

reaction space of the contact since contacts are powerless. Therefore

F = B¢ (9.59)
where

2TB=0 (9.60)

and ¢ are the contact reaction force magnitudes.

The stacked equations of motion with contacts are derived from (9.14) as
ATf=Ia+p+G'F (9.61)

where GT I are the net contact forces acting on each body.

9.4 Overview of Constrained Equations

There are three main steps in solving general tree systems with contacts. First the
contacts are broken and an articulated inertia analysis is performed on the resulting
open loop tree structure to solve for the open loop accelerations. Then an articulated
mobility analysis is performed to establish the effect of contact forces on the body
accelerations. Finally the contact forces are solved for using projections and these
forces are propagated down through the tree to solve for the closed loop accelerations.
The body accelerations are projected into joint accelerations which are then integrated

for the next time step.
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9.4.1 Open Loop Accelerations

If u are the open loop tree accelerations, then the equations of motion for the system

(9.14) are
ATf=Tu+p (9.62)

The recursive articulated inertia method in (7.7a) and (7.7b) is used to compute
the articulated quantities A and d. Also the decomposition matrices 7', U and L are
calculated from (9.19), (9.20) and (9.40). Then the open loop accelerations are solved

using (9.39) as
u=L"[ST"A™(TQ — d) + UR" k] (9.63)

It would probably be more efficient to use the recursive method in equation (6.108)

moving from base towards the tips with

where u; is the open loop acceleration of the parent body.

9.4.2 Contact Forces

Before the contact forces are calculated it is important to establish their effect to
the rest of the chain. From the definition of the articulated mobility (7.37) the

accelerations are
a=b—A'GTF (9.65)
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If the contacts are ignored so F' = 0 then the open loop accelerations u are
u=>" (9.66)
Thus the closed loop accelerations as a function of contact forces, are
a=u—A'G'F (9.67)

where a are the closed loop accelerations, u the open loop accelerations, A~! the
articulated mobilities and F' the contact forces. Without any contact forces a = wu.
Otherwise F' corrects the open loop accelerations u such that the contact constraints
are enforced.

Substituting (9.59) into (9.67) and then into (9.55) yields

H+vxz0 = Gu—GA'GTB¢ (9.68)
BT (zé tox zé) — B'Gu— B'GA'GT B¢ (9.69)

which is solved for
§= (B'GA'G"B) ™ B (Gu—v x 20) (9.70)

since the reaction forces are powerless and Bz = 0. Finally (9.70) is back substituted

into (9.59) to yield the contact forces
F=T (Gu —v X 29) (9.71)

where

1

I'=B(B"GA™'GTB) ' BT (9.72)
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It is possible I' may not exist if (BTGA™'GTB) is singular. In that case the kine-
matic loops introduce arbitrary forces through the system. This is similar to singular

configurations in serial robots where arbitrary motions exist between the links.

9.4.3 Closed Loop Solution

Once the contact forces F' are known they can either be substituted into (9.67)
a=u—AN'G'F (9.73)
Then the joint accelerations are calculated by either the recursive projection (6.110)
Gi =T (a; — ai—1 — ki) (9.74)
or the stacked form (9.43)
§=T" (Aa — k) (9.75)

The joint accelerations are then be integrated to calculate the joint velocities and

orientations for the next time frame. The contact joint velocities used are calculated

from (9.58)
0= (z"J2)" TG (9.76)
with
J="_IYT (9.77)

the branch composite inertia matrix.
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9.5 Constrained Projective Dynamics Algorithm
1. Preparatory Work

e The contact matrix G is defined according to which bodies are in contact.
e The contact motion space z

e The contact reaction space B such that 7B =0
2. Open Loop Accelerations

e Articulated inertia analysis
e Articulated mobility analysis

e Open loop accelerations are u = LT [STTA™' (TQ — d) + UR" k]
3. Kinematics

e The branch composite inertia matrix is J = TIYT
e The contact velocities are projected with 6 = (ZTJZ)_l 2T JGv

e The contact bias accelerations are v = v x 26
4. Contact Forces

e The contact reactive inertia is ' = B (BTG—’A_lG—’TB)_1 BT

e The contact forces are F' =TI"(Gu — v)

5. Closed Loop Accelerations
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e Closed loop accelerations are a = u — A~ !GTF

9.6 Planar Constrained Example

A slider crank mechanism consists of three bodies as seen in Figure 9.3. The three
bodies have masses m; = 0.40, ms = 0.15 and m3 = 0.30 and the lengths of the
links are r = 2.29, [ = 5.00, and ¢ = 0.5. The center of gravity of body 1 is located a
distance r /4 from the joint. For the second body a distance [/2 and for the third body
a distance t. The angular inertias on their center of gravities are I,; = 0.1464m,r?,
L5 = 0.0866m5l?, and I3 = 0.666mt>.

The initial conditions are

" 0.400
=19 |=1| 1603 (9.78)
0 —0.4355
and
0 20.00
q=106 | =| 239343 (9.79)
@ ~3.9343
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Figure 9.3: Example of constrained projective dynamics with a slider crank mecha-
nism. The three relative sequential rotations v, 6, and ¢ are constrained such that
Y+O+o=m7/2
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which results in the planar velocity twists

v = 0

20.0

Using MATLAB® and SPAT the articulated mobility of body 3 is

At

Vo =

—21.344

50.483

—3.934

—668.13

173.01

—100.98

—42.89

3.087

—6.853

and open loop planar accelerations are

Uy = 0

5.3123

—1199.3
Uy =

21.7

—207.4

V3 =

—146.22

36.20

—22.30

us =

933.409

21.7561

149.1452

(9.80)

(9.81)

(9.82)

Since the piston constraint is not enforced the open loop acceleration ug is not a pure

translation in the vertical direction. The contact motion space is

Z3 = 1
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The contact force (9.59) is defined as
Fy = Bit, (9.84)

where Bs is the reaction subspace of the contact which contains two unit force
wrenches. One is a force along the horizontal direction and through the center of
gravity of the third body and the other a unit torque. Since the center of gravity is
at a height of

h = rsin(¢)+Isin(+60) +tsin (¥ + 0 + @) (9.85)

= 5.925 (9.86)

relative to the origin the subspace Bj is

1.000 0
By = 0 0 (9.87)
—5.925 1

The contact reaction space Bs restricts motion in the horizontal direction and rotation

for the third body. The constraint closing equation (9.67) is
as = Uus — Agng (988)

and the contact force components (9.70) are

€, = (BIA;'Bs) "' Blug (9.89)
7.459

— (9.90)
3.729
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since v X 2303 = 0 by definition of z3 and the current vs. The total contact force is

F; = Bj&, (9.91)
7.459
= 0 (9.92)
—40. 464
The closed loop acceleration is

as = uz— A;'F3 (9.93)

0
= | 196.17 (9.94)

0

which obviously is a pure translation in the vertical direction. Therefore the contact

force F3 has forced body three to slide along the vertical direction only.

9.7 Summary

An alternative to the recursive formulation is the stacked form. Quantities are
grouped together in large block matrices. The topology and hierarchy of the system
is described with the adjacency matrix. Expressing the kinematics and equations of

motion in stacked form, stacked decompositions and projections are possible. The

224



stacked form is well suited for constrained systems as the complexity of closed kine-
matic loops is described with the contact matrix. The methodology for closed loop
accelerations involves three main steps. First the contacts are ignored and the system
is treated as an open loop system. Then the contact forces are calculated as reac-
tion forces, and finally entered into the equations of motion to yield the closed loop

accelerations.
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CHAPTER 10

CONCLUSION AND REMARKS

10.1 Contributions

The subject of this thesis is the theoretical development and understanding of the
dynamic behavior of multibody systems. It uses concepts and principles from various
areas of mathematics, physics, and engineering. In the past twenty years, research
in multibody dynamics has had a renewed interest by various researchers. Although,
some of this thesis is a structured summary of previously developed methods, listed

below are some original contributions:

1. Visualization for the equations of motion and kinematics of planar multibody

systems.
2. Summary of planar joints and related bias forces and accelerations.

3. Alternative planar homogeneous coordinates and their equivalency to planar
twist and wrenches.
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10.

11.

12.

13.

A generalization from planar to spatial representation that preserves the equiv-

alency and links projective geometry to dynamics.
Dualistic subspace decomposition with respect to power relationships.

Recursive articulated projective dynamics. The dualistic projections of kine-
matics and equations of motion provide projected solutions for forces and ac-

celerations.
Inertia and mobility decomposition and projection through the joint subspaces.
Interpretation of articulated inertia recursion through inertia decomposition.

Correction of the acceleration propagator and articulated mobility recursive

algorithm.
Direct solution of multibody dynamics based on chain splitting.
Object oriented MATLAB® toolbox for spatial dynamics.

Stacked form of dualistic decomposition, articulated projective dynamics and

direct solutions.

Integration of articulated projective dynamics into constrained multibody sys-

tems with kinematic loops.
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10.2 Future Work

10.2.1 Greater Duality and Symmetry

Duality starts as a property of projective geometry. It is then propagated into the
subspace decompositions and therefore into the solution of problems in dynamics.
On the other hand, the duality and symmetry between systems such as serial and
parallel robots seem to originate not from the methodology used but from the systems
themselves. Recognizing and linking together all the possible manifestations of duality
may be possible in such a way that a deeper understanding of the laws of motion
can be reached. In general, the eigen structure of principal axes always has a dual
representation in both translational and rotational modes. Also, power is seen to
have duality as it may be used to decompose both forces and accelerations. Typically,
power helps in the definition of workless forces in a moving system. Dually it assists
in the definition of workless accelerative motions in the same moving system. With
power expressions, forces and velocities are related the same way as accelerations and

momenta. All these important variables are always be intertwined by duality.

10.2.2 Convergence in Chains

The articulated inertia components become increasingly complex with each iteration.
On the other hand, numerically the result may not differ significantly from the val-

ues on previous iterations. This was demonstrated when the articulated inertia was
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calculated for a planar horizontal chain of rigid bodies. The expressions needed to
calculate the components contained polynomials of incresing power. Some of the
components when evaluated had negligible changes for each iteration.

Examining the conditions under which complex recursions can be omitted and
developing a strategy may greatly improove the computational efficiency in complex
systems.

It may even be possible to calculate the articulated inertias for some simpler
cases just by inspection. Some components may change in a linear fashion with each
iteration which provide fast estimates for these components with out any recursions.
Also, there may be simple algebraic formulas that estimate some of the other values

based on the fact that three iterations are almost as precise as six iterations.

10.2.3 Visualization of Articulated Inertias

Together with duality, some other concepts of projective geometry propagate through
dynamics. In the plane there is a similarity between planar inertias and conic sections.
This similarity must propagate into the spatial case, as well. Just as conic sections
map points into lines, hyperconics map screws into screws in the spatial case. Both
map the basis elements of their respective spaces and therefore neither their function
nor their behavior change as the dimensionality of the space increases.

To help in the deeper understanding of the laws of motion, it may be necessary to

find appropriate ways of visualizing hyperconics such as inertias. Even in the planar
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cases regular conics are visualized by conic curves such as an ellipse or a parabola.
But planar inertias are imaginary conics and therefore do not have any real points
on the plane. They still map real points into real lines just as regular conics do. And
here is an interesting point. If an imaginary conic is expressed in such coordinates
as to be represented by a positive definite diagonal matrix, then changing the sign
of the homogeneous part this matrix represents a real conic. The lines that this real
conic maps are symmetrically located from the lines that the imaginary conic maps.
This is a point symmetry around the center of the conic. So by graphing this similar
real conic and considering its symmetric lines or points, an idea of the behavior of
the imaginary conic is established.

Of course this trick works in the planar case, but visualizing a spatial hyperconic,
real or imaginary, is a task considerably more difficult. A curve on a plane is easily
visualized as one of the sections of a spatial surface through the plane. But how is a

three dimensional surface visualized as a section of a six dimensional hypersurface?

10.2.4 Special Cases

The kinematics and equations of motion in planar cases are easily viewed graphically
by representing twists as points and wrenches as lines. With the addition of the
subspaces and projections it is possible to visualize some special cases and understand
better the relationships between all the quantities involved. For example when a force

wrench is said to be workless it means that its screw is reciprocal to the velocity twist.
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By making points or lines coincident or moving them to infinity special cases may
be examined. Then the kinematics, dynamics, and subspace decompositions provide
information on how the remaining variables preserve these special relationships.

The step from planar to spatial in visualization and the study of special cases
provides tools in the design of multibody systems. From robot arms, suspension
systems, to sports, and even space exploration the process of designing mechanisms for
particular uses would be greatly improved by geometrical constructions and graphical

visualization tools.
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