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FOREWORD

The purpose and the history of these volumes were described in the
prefatory material to vol, I. The present second volume contains chapters
on Bessel functions and other particular confluent hypergeometric
functions, on orthogonal polynomials and related matters, and on elliptic
functions and integralss The method of compilation was similar to that
of the first volume. Of the chapters presented here, Magnus participated
actively in the preparation of Chapters [X and XJ, Oberhettinger of
Chapter VII, and Tricomi of Chapters VIII, TX, X, and XIII. Since the
final version of several of the later chapters in this volume was pre-
pared after the author of the first draft left Pasadena, the editorial work
was much more onerous, and in several cases the revised version differs
considerably from the first draft.

For Bessel functions we drew heavily on Watson’s Treatise for a
(comparatively) brief summary of the topics to be found there, while
results obtained since the publication of Watson’s book are presented in
more detail, Functions of the parabolic cylinder are described fairly
fully, those of the paraboloid of revolution only very briefly: a recent
" book by H. Buchholz (Die konfluente hypergeometrische Funktion,
Springer-Verlag, 1953) gives full information on the latter functions. In
the case of functions defined by integrals (error functions, exponential
integral, and the like) we adopted (by no means unanimously) notations
which are a compromise between the notations which seem the best ones
from the mathematical point of view and those most convenient for the
user of existing mathematical tables. In the chapters on orthogonal
polynomials we summarized briefly some aspects of the general theory,
using extensively Szegd’s book: mainly we presented the properties of
the classical orthogonal polynomials, although we found it useful to
include some of the less well-known polynomials, polynomials of a
discrete variable, hyperspherical harmonics, and some biorthogonal
systems of polynomials of several variables. The chapter on elliptic

ix



x SPECIAL FUNCTIONS

functions and integrals is comparatively brief but we hope that it will be
found to contain most of the material frequently required when dealinz
with these functions, In particular, we have included more material on
elliptic integrals of the third kind than is ofter found in presentations
as brief as ows, and attempted to include practically everything that may
be required in dealing with Lamé functions or ellipsoidal wave functions.
We hope that the tabular arrangement of many of the formulas of Chapter
XIII will contribute to the usefulness of this chapter,

As in the first volume, a list of references has been given at the end
of each chapter. The length of this list varies with the subject in hand,
In the case of elliptic functions and integrals we listed merely some of
the newer books, and thecse memoirs or older books to which we explicitly
refer. In cases where bibliographies are available, we give very few
references to work covered in the bibliographies, and more numerous
references tobooks and papers which have appeared since the publication
of the bibliographies.

At the end of the volume there is an Index of notations and a Subject
index. Notations introduced in vol, T are often used here without further
explanation. Their definition may be located by means of the Index of
notations appended to vol. I, The system of references is the same as in
vol, 1. In the text, references to literature state the name of the author
followed by the year of publication, more details being given in the list
ofreferences at the end of the chapter, Equations within the same section
are referred to simply by number, equations in other sections by the
number of the equation, Chapters are numbered consecutively, Chapters
I to VI being in vol: I, Chapters VII to XIII in the present volume, Thus
3,7(27) refers to equation (27) in section 3,7 and will be found on p. 159
of vol, I, while 9,7(12) is on p. 144 of the present volume,

Since the editor had less assistance inthe preparation of this velume
than in the preparation of vol. I,errors and mistakes are more likely to
be prevalent here. Suggestions for improvement and corrections will be
gratefully received,

A.ERDELYI
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CHAPTER VII
BESSEL FUNCTIONS

) FIRST PART: THEORY
7.1. Introduction

Bessel functions are probably the most frequently used higher trans-
cendental functions. Broadly speaking they occur in connection with
partial differential equations, usually when the variables are separated,
or else in connection with certain definite integrals. We skall briefly
describe both types of applications and will start with the latter.

In 1770, Lagrange investigated the elliptic motion of a planet about
the sun. Let @, b be the semi-major and semi-minor axes, of the elliptic
orbit; write e = ™' (a2 — 52)* for the eccentricity; also let r, M, E, be
respectively, the radius vector, mean anomaly, and eccentric anomaly,
The equations obtained by Lagrange are

(1) M=E -esink,
2) r=a(l-ecosE)=adM/dE.

They give rise to the expansions

(3) sink = § 4  sin(nl), cosE=B°+ 020 B cos (nM)

n=1 n=1
in which Bessel, in 1819, expressed the coefficients in the form of
integrals. For instance

A4 =%an)" [7 cosE cos(nE — ne sinE) dE.

0
By easy manipulations the integral occurring here can be expressed in
terms of Bessel coefficients [compare 7,3(2)and the recurrence relations
of 7.2(56)], and the first expansion (3) becomes
(4) sinE =% 020 sin (nM) Jn(ne)/n.

n=1
Similarly, the second expansion (3) can be transformed into

(5) cosE =—Y%e+2 E cos (nM) J"l(ne)/n.

n=-1

1



2 SPECIAL FUNCTIONS 7.1

Later, in 1824, Bessel made the integral, see 7,3(2), the basis for the
examination of the functions which now bear his name.

Bessel functions occur most frequently in connection with differential
equations, In Watson’s monumental Treatise (Watson, 1944), which is the
standard work on Bessel functions, the history of these functions is
traced back to James Bernoulli (about 1700). Since Euler (1764) and
Poisson (1823) Bessel functions are associated most commonly with the
partial differential equations of the potential, wave motion, or diffusion,
in cylindrical or spherical polar coordinates, However, Bessel functions
occasionally occur in connection with other differential equations or
systems of coordinates,

Let x, ¥, z be Cartesian coordinates, p, ¢, z, cylindrical coordinates,
and r, 6, &, spherical polar coordinates, determined by the equations

(6) x=pcosg, y=psing, z=z,
(7) x=rsin@cos¢, y=rsinOsing, z=rcosb,
In these coordinates we have
- - -1 -2
(8) AF—Fu+Fn+F”—Fpp+p Fp+p F¢¢+F”,
F F

F. F
(9) AF=F +2L+—82 | cng—L+ 0é |
rr r r r? r? sin? ¢

If solutions of the wave equation AF = £2F = 0 in the form f(p) g () k (2)
or f(r) g(0) h(¢) are sought, one obtains, in the respective cases, the
ordinary differential equations for f,

d*f o df -
(10) i ' E” + (B2 -a?-v?p ) f=0,
dz
ay -t “n +[E2=v @+ D r 2 f=0,

dr?

in which a and v are separation constants. The general solutions ofthese
equations are respectively:

12) f)=2Z [pk? - a®*]

(13) f=r"%2Z ,, *r),

where Z  denotes any Bessel function, or a linear combination with
constant coefficients of Bessel functions of order v.

The wave equation, and its solutions in various systems of coordi-
nates, can be used to give a physically plausible approach to the theory
of Bessel functions (Weyrich, 1937). Spherical waves of frequency v,
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wave length A, and wave number k& = 27/, originating ata source (£, 7, ¢),
may be described by the wave function
RV e~ i2mW-RAN) = g=1 o= izmt+ iR

where R is the distance between the points (&, %, {) and (x, y, z). If the
z-axis is covered with sources of uniform density and phase, the resulting
wave motion may be obtained by superposition in the form

(1) w =™ [T (52 + (2~ O)17% exp lik[p® + (2 ~ O} 4¢

where p® = 2% + ¥, and by Huyghens’ principle this function representsa
cylindrical wave. With { =z + p sinh r, equation (14) may be written as

. o .
(15) u = e izt j‘ e ikpcoshr dr,
-0

thus leading to Sommerfeld’s integral representation of the Bessel func-
tions of the third kind.
Notations: In this chapter we adhere to the notations used in Watson’s

Bessel functions. It may be worth while to mention a few notations which

occur in the literature but are not used here.
In Gray-Mathews, (1922, p. 25 and 23, respectively), two functions
Fv(z) and Gv(z) are introduced by

(16) F, (2) =z7%J (22%),

(17 G () =%in H'D (2).
Jahnke-Emde (1945, p. 128) has

(18) A (2)=T(w+1) G277 J,(2).

In Whittaker-Watson (1946, p. 373), the modified Hankel function K, (z) is
defined by -

(19) K (2) =%n (L (2) = L(2)] ctn (va).

This differs from our notation sec. 7.2 (13).

A function closely related to Neumann’s function Yv(z), 7.2(4),is
denoted by Y (z) (Katson, 1944, p. 63) or by Y, () (Gray-Mathews, 1922,
p. 24):

(20) Y (2)=Y (2) =¥ (2) e " sec (vm).

For other notations of the ‘‘related’’ functions see sec. 756,
7.2. Bessel’s differential equation

7.2.1. Bessel functions of general order

Bessel functions are solutions of Bessel’s differential equation
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dz? dz dz Z

+(z2~ 1) w=0;

d? d; d d;
1) V,w=2z? w+z w+(z2—vz)w=z—- z w)

v, z are unrestricted, but for the present we assume that v is not an
integer.(For integer values of vsee sec, 7.2 4.) The differential equation (1)
is a limiting case of the hypergeometric differential equation (cf. Klein,
1933, p. 156); it has a singularity of the regular type at z = 0 and an
irregular singularity at z = «; all other points are ordinary points of the
differential equation. The standard method of obtaining solutions of a
linear differential equation in the neighborhood of a regular singularity
(Whittaker-Watson, 1927, 10,3) leads to the solution

@ ) = I DG/ 01T+ v+ D

and ely(z). The first solution, J,(z), is called the Bessel function of
the first kind; z is the variable, v the order of the Bessel function. It is
easily seen that the series for z7% Jv(z) converges absolutely, and
uniformly in any bounded domain of z and v. Equation (2) may be written
as

(3) JV(Z) =(%2z)Y 0Fl(1/+ 1;-Y%2z3)/T(v+1)
=Gz)Ve ¥ F v+ %20+ 1 2i2)/Tw+1)

by Kummer’s relation, 6.3 (7).
The linear combinations

4) Y ()= (sinvm) ™! [J,(2) cos (va) = J_,(2)],
B) HD(2)=Jd (2) +iY () =[i sin(wm)]7' [J_ (2) - I, (2) iV,

(6) H (:)(z) =J,(z) -iY (2) =G sin vi) "' [, (2) e T J_,(2)]

are likewise solutions of (1). ¥ is called the Bessel function of the
second kind or Neumann’s function. H ¢} and H 2’ are the Bessel
functions of the third kind, also called the first and second Hankel
functions. From (5) and (6) we have

@ I, =%IEDE)+RD @),

® Y, =% [H(,:’(Z) ~-H? (2)1/i.
From the definition it is seen that

(9) B =e™THIVG), HP2(2)=e THP ().
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Also, if z denotes the complex number conjugate to z, and similarly for
other quantities, we have

(10) J,G) = J5@), Y, (2) = ¥y(2),

H) = 829E), HPE)= 206,

In particular, J  and Y, are real if the order, v, is real and the variable z
is positive. All the four Bessel functions are single-valued in the z-plane
cut along the negative real axis from 0 to —e, For general v, they all
have branch points at z = 0, The Bessel function of the first kind is
clearly an entire function of v, and later it will be seen that, with a
suitable definition for integer v = n, the Bessel functions of the second
and third kind are also entire functions of v,

7.2.2. Modified Bessel functions of general order

If z is replaced by iz, Bessel’s differential equation (1) becomes

d? d
(11) zzd—l:+z—w—(z2+vz)w=0.
¥4 V4

If v is not an integer (for integer values of v see sec. 7.25), Jv(iz) and
J_V (iz) are two linearly independent solutions of (11), but more often the
function
(12) L) =e %7 (ze %)= T %2)* /[T (m + v+ 1)]
m=20
Gs2)” (Y4z)7e™*

-2 1 ,2) =
N'e+1) ofs (v+1:% 2% Ne+1)

=272 kA Y (22)/T(v+1)

F v+ %52v+1;22)

[compare 6.9(11)] and J:_V(z) are used, They are known as the modified
Bessel functions of the first kind and are real when v is real and z is
positive.

The function

(13) K (z)=% =(sin vr) ! (L) - L()]=(% 7/z)" Wo‘v(2z)

[compare 6.9(14)] is likewise a solution of (11). It is known as the mod-
ified Bessel function of the third kind or Basset’s function (although
the present definition is due to Macdonald).

Clearly we have
(14) K_ (z2)=K (2),
and from (12), (5) and (6) it follows that
(15) K (2)=Y%ime V™ H N (ze %)=~} me T VAVTH @)(ze 14T,
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so that
(16) Kv(ze RTY = Y ine 4 V"HS)(ze MYy = —Yige” t# V"HLZ)(Z),

21 . L
(17) HS)(Z) - __l e-lA 'uTrKy(ze—zA ),
7

K (z) is real when v is real and z is positive.

7.2.3. Kelvin’s function and related functions

Kelvin’s functions ber (x)and bei(x)(x real)are defined by the equation
(18) ber(x) + i bei (x) = J (xe **7) = I, (xe iy,

Extensions of this definition to Bessel functions of any order and complex
z are given by the relations

- (19) ber (2) £: beiy(z):Jy(Zeii%Tr)’
(20) ker, (z) i keiy (z) = e* #PTK_(zeti%),

Instead of (20) we may use
(21) hery(z) +1i heiy(z) = H,L"(ze ihmy

(22) her_(z) =i hei (z) = H'? (ze~ %)

so that
(23) 2 kery(z) =~—nhei (z); 2kei, 2)=n ber,, (2).

The functions bery (z), bei,, (z), ker,u(z), keiv (2), hery(z), hei  (z) -are
real when v isreal and z isreal andpositive, (For details see McLachlan,
1934, pp. 119, 168.)

7.2.4. Bessel functions of integer order

Bessel functions of the first kind of .integer order are known as Bessel
coefficients. If n is a positive integer, the first n ~ 1 tems in the in-
finite series defining J__(z) vanish because of the poles of the gamma
function in the denominator. The remaining gamma functions may be re-
written as factorials, and we have

J_ ()= S (D" %> /[m!(m-n)],

or, withm=n+1,1=0,1, 2, ...,
(24) J_ () =(=1J (2).

‘This relation holds for all integers n.
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Bessel coefficients are generated by the expansion of exp[%z (¢ - ¢t™")]
in powers of ¢. To prove this we note that

o0 o0
ekt e7h o S (UYL S (Y% zT)%/m!,
l=o0 mn=0
and the coefficient of t" in this expansion is exactly Jn (z). This leads to
the generating function

explY%z(t—tNj= £ n J, (),

n =-o0

or, replacing z by az and ¢t by ¢/a to the more general expression

(25) expllz(t-at™= 3 (/"I (a2)

n=—00

= Jy(ax)+ 3 J (az) [t/a)" + Ct/a)7"]

n=1
for the Bessel coefficients. With a = 1 and ¢ = e *? we obtain the formula
of Jacobi-Anger
(26) eizeind = B o g ()

=J () +2 21 I @ cos@ng) +2i £ J,,_ ()sinl2n - 1) ¢

and with ¢ = ie %
(27) eizcos¢= §

n=-—o0

i"ein? J (2)=J (2) +2 b3 i"J (z) cos(n &)
n=1

If v is an integer, the right-hand sides of (4), (5), (6) appear in inde-
terminate form. However the limits of these right-hand sides as v » n
(integer) exist and may be taken as the definition of Ressel functions of
the second and third kinds of integer order. Clearly it will be sufficient
to evaluate

Yn(z) = lim Y _(2) n=0,1,2,4es,
vV n

By L’Bospital’s rule applied to (4) we obtain
ad, ad
@8) ¥, () =" [3—” ~epr L ] .
v=n

v v

From (2) and 1,7(1)

3Jv_ . 00 a i npion YEm+1)
(29) Py =J,(2) log(AZ)—mzo(—l) % 2) TormaD’
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aJ_ =) ¢(—V+m+1)
Y o . 1 -D* 4 vtan
(30) Py J_V(z)log(/22)+m§°( D" (22) oy A ———

and from formulas 1.,17(11) and 1,17(12) for m <n — 1,
lim ¢g~v+m+1)/T~v+m+D=D""(n-m=11!,

vV-=>n

so that from (30) and (24)

dd_ not
( V) =(-D" l:— J, (@) log(ez) + 2 (42)** " (n-m-1)l/m!

(71/ m=0

o0 - ( + 1~ -1
¢ § nrnggome _Ymrlon
r=n r(m+1—n)m!J
(For special values of v in (29) see Mitra, 1925, Airey, 1935 a, and also
Miller, 1940,) With a new index of summation Il = m — n, the infinite sum
in this expression can be written as

S DG+ /I )],

=0

and so we obtain

B 7Y, ()=2J,&) loglhz)= "3 C42)* " (n-m=1) Um !
[0}

_ 0§ Cplggynrn Pt Degle )
=0 - I'm+l)!

which may be written as

(32) 7Y (2)=2[y+logHN I ()= "5 (42)* (a=m=1) Um!

n=0
o (1/2z)n+2m
- 2 —1’"'“ h h = ee e
m=0[( ) m!(n+m)! Basnthn) n=hZ3 e
where we have used 1.7 (9) and put
}Lm=1—!+2_!+'°°+m—! m=]—9213""9 h0=0'

I v = 0, it follows from (30) that the finite sum in (32) is to be omitted.
Therefore, we have

(33) 7Y (2) =21y +1oglhz)]J (2) -2 S (-1 (42)% (m!)72h _,
m=0

with the same meaning of k  as in (32). It is to be noticed that according
to (28)
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(34-) Y_n(z) = lim [COS (#”)]-1 [Ju(Z) COS(}L?T)-J_#(Z)]

u3n sin(;m)
==D"Y, () n=1,2,3....

With this definition of Y (z) and Y_ (z) and with the corresponding
definition of Bessel functions of the third kind, all Bessel functions
become entire functions of v.

7.2.5. Modified Bessel functions of integer order
From (24) and (12) we have
(35) .I_n(Z)=.In(Z) n= 17 2: 3: R

We therefore take 'In(z) and Kn(z)as a fundamental system of solutions of
(11) where

L, oI
(36) K ()= lim K (2)=(-1)"% [ ‘;'v_ __v} _

V= n aV

In a similar manner as in sec, 7.2 4 we obtain
(n-m-=-1D!

m!

(3D K ()= D" L) log(4z)+ % 2 (D" (42)* "

+HED" 5 G [Pt ma D)+ Yme D)/ n !+ m) 1]
n=1,2,3,llll

In case n =0 we have
(38) K () =—I () logG2) + S (42)* y(m+1)/[m D2,
mn=0

With the definition of K, (z) completed in this manner, we have an entire
function of v.

7.2.6. Spherical Bessel functions

The Bessel functions and modified Bessel functions reduce to com-
binations of elementary functions if and onmly if v is half of an odd in-
teger (Watson, 1944, 4.7 to 4,75), We shall express here Kn+% (z) for
n=0,12,..,, in terms of elementary functions. The corresponding
expressions for the other Bessel functions follow from (16), (17), (7),
and (8), and are recordedinsec,7,11, Whenn=0,1,2, vss , andv=n+%
we have from 7.3 (16)

7

% o,z
(39) K,.+%(z)=<—) £ JT et e/22) m

2z nl
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Now the binomial expansion of (1 + %¢/2z)" terminates and at once leads
to the representation of K, (z) in finite terms in the form

%
(40) Kn+'/z(z)=<—2ﬂ*) e: % (2)7n Fa+m+1)
z

n=0 m!ITm+1=-m

TUsing Hankel’s symbol

—-2m

(v, m) = {422 ~1) (4?2 =-3%) «+. [422-(2m - D3

m!
=% +v+m)/Im!T % +p-m),
[compare 1,20(3)], this can be written as

4D K @) = Ga/2)% e £ (n+%, m) 22)7"

n=0
Hence, for instance if n = 0, we have
(42) K‘A (z) =% n/2)% ™2,

From (42) and also 7,11(22) we obtain the representation

Y% n .-z
T A [ 4 e
(43) K, (2) = (=1) (——2z> . (zdz> —.

For the other types of Bessel functions see formulas 7,11(1)to7.11(13).

Bessel functions whose order is half of an odd integer often occur in
connection with spherical waves, and in this context Sommerfeld’s nota-
tion,

@9 ¢, @) =Gn/2)4J_,, (),

(45) ¢M(@) = Gn/2)*% 2", @),

46) ¢2() = Gn/2)5 B, ),

is often used. Sometimes ¢ _(z) denotes a slightly different function
(Watson, 1944, 3.41), For a class of polynomials connected with the
spherical Bessel functions compare Krall and Frink (1949) and Burchnall,
(1951).

7.2.7. Products of Bessel functions

Tn order to obtain an expression for the product Ju(az) J,(Bz) of two
Bessel functions in the form of a series of ascending powers of z we use
(2) and Cauchy’s rule for the multiplication of power series. Thus the
coefficient of (~1)® (% az)* (% B2)” (%4 az)® is found to be

§O B/ Tw+n+1) m=n)!T(u+m—n+ Dl
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This may be expressed as a terminating hypergeometric series by means
of formulas 1.2(3),1.20(5), and 2.1(2) andleads tothe expansion

@7 T'v+ 1 J (B2) Ju(az) =Gaz)* (B2

R (D* GBaz) .
ATy iem mpmm v 1870,

This expansion simplifies when 8 = a, because then the hypergeometric
series may be summed by Gauss’s formula 2,1(14), so that
N\ DR B)PHR T (ph p+ 2m+ 1)
48 I, I (= ), a :
m 2o m!T(p+m+ DI wv+m+ DI w+p+m+1)

In the notation of generalized hypergeometric series
) I'+DDI'(p+1) Jy(z) J#(z)
=G F G+ hv+ Y L v+ B 14w, Ly,
1l+v+p;-2z2),
From (48) we easily deduce the expansion
% Iv+n+¥%)(£2i2)"

tiz g =g A (22)Y ) .
¢ ”(Z) a ( ),,Zo n!TRv+n+1)

7.2.8. Miscellaneous results

Differentiation formulas and recurrence relations follow. From (2) we

find that

(50) —Z— [z"Jv(z)] =27 3 D" G2 [ T (m +)] = z”Jv_I(z),
z

r=0

6D = 7T, = § D" 6™ n =D 1T m v v+ 1)
z n=
=-z7 Jy+‘l (Z),

and hence by repeated differentiation

(52) <‘i) [Z'V J (Z)] =z""" ‘V'm(z)v
zdz v

(53) ( : ) 27 J, ()] =D 277" J,, (2) =123 ...

zaz

From (50) and (51) it is obvious that
(54) =z J'v(z) +vd(2) =z Jm (z),
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(55) z J;/(z) —-v Jv(z) =—z JV_H ()

and hence

(56) J,_ (D) +J,,,(2)=2vz""J (2),
(57 JV_1 (2)=d, ., (2) =2 J, ().

By virtue of (4), (5), (6) the same relations are valid for Bessel functions
of the second and third kind. Relations (12), (13), and the previous
results give similar formulas for the modified Bessel functions. For these

see sec. 7,11,
From the recurrence relations the following inequality (Szdsz, 1950)
may be derived

[JV(;\:)]2 - Jv_‘ (%) Jz/+l @>w+D™ [Jv(x)]2 v>0, xreal

WRONSKIANS

The Wronskian of two solutions w
of exp [ - [ 27" dzl.

(58) Wiw,, w,}=w, w) ~w, w] = Cz™".

, and w, of (1) is a constant multiple

The constant C can be computed from the first terms of the series expan-
sions of the solutions involved. If we take w, = Jy(z),w2 = J_V(z) we
find from the series (2) that

lim zW ==/ [TA~)T X+ ==2r""sinlvn) =C,

220
and therefore we have

(59) W[Jy, J_V) == 2(7z)"" sin{vn).

If v is an integer, this Wronskian vanishes, thus confirming the result
of sec., 7.24 about the linear dependence of Jn and J_n. For other
Wronskians of Bessel functions or modified Bessel functions see sec. 7,11,

From (59) and (54) it follows that
(60) J (z) Jv(z) + J—v (z) Jv—l (2) = 2(72)~" sin (vn).

-y+1

For other similar formulas see sec. 7,11,

ANALYTIC CONTINUATION

The Bessel function of the first kind of variable ze ™7 where m js any

integer, may be expressed by (2) as
61 J (ze™T) =e®™J (2) m=t1,+2, %3, ....

For the correspondin g relations for the othertypes of Bessel functions see
secs 7.11.
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DIFFERENTIAL EQUATIONS

Alarge classof differential equations whosesolutionsmay be expressed
in terms of Bessel functions has been obtained by Lommel. One of
Lommel’s transformations is

z=BL7%, w={""v
where ( is the independent variable and v the new dependent variable.
This tranformations carries (1) into
2

zdv
) ¢

It w, (z) and w, (z) are any two linearly independent solﬁtions of Bessel’s
equation, the general solution of (62) is

(63) v, ={%w,(BLY) and wv,=(¢%w,(BL).

For other differential equations whose solutions can be expressed in
terms of Bessel functions see Kamke(1948, p. 440).

The general solution of the inhomogeneous Bessel equation

d%w dw (%= 3?) £

+ — + — =

et e z

may be obtained by the method of variation of parameters in the form

(65) w =A4w (2) + Bw,(z) + u(z)

d
+(1-2a) ¢ }lg +(Bye”)? +(a? = w2 y)] v =0,

(64) z?

where w, (z) and w,(z) are two linearly independent solutions of the
homogeneous equation (1), u (z) is a particular solution of (64) defined by

(66) Cu(z) ==w,(2)f] ™ w, () f(0) di +w,(2) [ &~ w, () f(o) det

and C is the constant in the Wronskian of w, and w, [cf. (58)].

The functions JV' (z) and asz' (z) + bJV(z) satisfy the following
differential equations respectively,
2

(67) z2(z2 - 1?) ‘i +2(z%~ 31/2)%“)— +[(z2~v®2 = (2241w =0,

"dz? z

2 dw

_ 202 2y _p21 22
e z[a2(z2+v? ]dz

+[a?(z2 = v)2 4+ 2abz2 + b%2(z2 = )] w = 0.

68) z2[e?2(z2- 13 + b7

7.3. Integral representations

7.3.1. Bessel coefficients
If Cauchy’s theorem of residues is applied to 7,2(25) we obtain
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() 2md (az)=a" Lt-"_' exp [%z(t-a®t™]dt n=0,1,2, .00,

C is any simple closed contour in the t-plane around the origin. H in
(1) we put @ = 1 and choose C to be the unit circle around the origin,
t=e'®, we have

@ 20J ()= [ T et D) 1g 22 [T cos(z singp-ng) do
n=0, 1’ 2,00-0

This is Bessel’s representation.

7.3.2. Integral representations of the Poisson type

For general v we have Poisson’s integral representation [for a general-
ization of this formula see 7,8(11)]

@) Twv+l)d (2) = 27 % (% z)V fo%wcos(z sin @) (cos P d ¢

Rev> -~ 14,

This result may be proved by expanding cos(z sin ¢) into a series of
powers of z and integrating term by term. In this process one encounters
the integral

fo%w(sin @2 (cos @) d ¢

which is found to be equal to
YTw+B Tm+%)/Tm+v+])
by virtue of 1,5(19)s Therefore, we have

. %o F (L1ys L 2m Fw+%) T'(m+%)
PG+ A)J”(Z) =" ha) m‘2-=0 D" - Em)!'Tw+m+1)

Using the duplication formula from 1.2(15) of the gamma function for
(2m)! = I'(2m + 1) and remembering also 7.2(2) the result (3) is estab-
lished. Slight modifications of (3) are given in sec. 7,12,

[Poisson’s integral, in the form of 7,12(6), may be used to derive an
inequality for J, (z). Let v be real, v> ~ % and z = x + iy (x, ¥ real);
then we obtain

T+ 1) |J, ()| < 7% Ghlz)¥ f_::e'r' (cos $)% d ¢
and by virtue of 1,5 (19)
@ 14, < [%z|¥ VT (w+ D)

[see also 7,10(22)]1.
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7.3.3. Representations by loop integrals

Bessel functions for unrestricted values of the order v may be repre-
sented as loop integrals. Let a be a complex number with Re a > 0; then
we have the representation

() 2 J, (az)= zvf_(::) exp%alt-z2t™")] ¢t 77 ' dt

= (z/2) [ explale-%z2:™")] 7V de
-0
Rea>0, |argt|<m
(0+) .

Here the symbol, f_oo denotes, as usual, integration along acontour
which starts at infinity on the negative real t-axis, encircles the origin
counter-clockwise, and returns to its starting point. Clearly (5) is an
extension of (1), for the integrand in (5) is one-valued, and the loop may

be deformed into a closed contour around the origin, if v is an integer.
To prove (5), we use the expansion

exp[—az z/(4-l)]= OEO: (—].)'l (% aZZ)'m t_m/’"!
n=0

in (5) and integrate term by term. From 1.6 (6) we obtain
f_(::)ea’t_"‘ Yt =2mia™ /T (m + v+ 1)

Therefore, we have

+ 17, =y
T explat —%az?t™ e~V de
~00

=2mi%2)"" ¥ D* Ga2)® /I (n+v+1)],
m=0
and using 7,2(2) this establishes (5).

The corresponding loop integral for the other types of Bessel functions
may be obtained using formulas 7.2(4) to 7.2(6) and formulas 7,2(12) and
7.2(13). For these see McLachlan and Meyers (1937).

When Re v > -1 and a is real and positive, the contour in (5) may be
deformed into one parallel to the imaginary axis, leading to

. v c+ico %a(t-zzt_i) -y~1
(6) 2va(az)—Z -J:_-—iooe L d c,a>0, Rev>-~1,

HANKEL’S REPRESENTATIONS

Generalizations of Poisson’s integral (3) were given by Hankel. The
first of these is

(@) 2m J(2)=a % T G=-2) Cz)” [ H 71N tt(e2 — 1) 7% 4y,
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v + % not a negative integer. The path of integration is the figure eight
indicated in the diagram below.

/"\\ -
N
I/ Ve — — > _———Il’ \
T t T — — t i
\ -1 7 - 1 4
\\/ \\//
t~plane

The initial amplitude of (¢ ~ 1) and (¢ + 1) at the point of intersection
with the positive real axis on the right-hand side of ¢t = 1 is zero. To
prove (7) we replace the original contour by the dotted one. If we assume
that Re (v + %) > 0 and make the radii of the circlesaround % 1 tend to zero,
then we obtain

(1+,~1-)
J

. 1 1 3 -
et (12— 1)¥™% dt = 2i cos (vm) f__' et (1~ 2V % gy
Re v > -,
Iftheintegral on the right-hand side is expressed by 7,12(7), we obtain
(7). By the theory of analytic continuation the restriction Re v > — 1 may

be omitted as long as v + % is not a positive integer.
Another representation [for a related expression compare 7.8(13)]is

(8) 2mJ () =n AT (% +1) e (%2)7
CrET iz ) g
o e

v+%4£0,-1,-2,..., dLargt<2n+8, -8<argz<m-20.

X

The path of integration is indicated in the figure below,
/

t - plane
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and 'the initial and final values of arg ¢ are taken to be & and 27 + &, To
prove (8) we take the contour to lie outside the unit circle, Then we have

TC+)63-D7"%= § T®+v+m)e 22" ml,
n=0
We insert this in (8) and integrate term by term. Then from 1.6(6) with
¢ =ze %7 we obtain

f(o+) p2v=2m =t Gzt gy 9L ia 2V 2R e-isw(v+m)/r(zv+ 2m + 1)
]
o0e

-6<argz<m-24.
Thus we have

o0 222V T (Y% +v4+m)
J - 4 ~1)* (4 z)V+em
()= nz.'o( )" Uhz) m!T@2m+2v+1)

Using the duplication formula from 1,2(15) for the gamma function, (8)
is established.
7.3.4. Schlafli’s, Gubler’s, Sonine’s and related integral representations
From the results of secs 7.3.3 a number of representations in the
form of definite integrals may be obtained.
SCHLA“FLI'S REPRESENTATIONS

In (5) we interchange a and z, put a = 1, and deform the loop into a
path consisting of the real axis from —= to -1 (arg ¢t = —7#), the unit
circle in the positive sense around the origin (~# < arg ¢ < «), and the
real axis from -1 to — e (arg ¢ = 7). The result is Schléfli’s representation

(9 7, ()= [7cos (= sing ~ vg) d ~ sin (vm) fo‘”e-@ sishS+v8) 8
Re z >0.

Tt still holds in case Re z=0 provided that Re v > 0, Formula (9) reduces
to (2) in case v is an integer. Also 7.2(4) and (9) admit a similar
expression for Neumann’s function

(10) 7 ¥ (2)= _f:’ sin (z sint - vt) dt = _f;m(e”‘+e"’” cos vm) ¢ 25t gy
Rez >0.

[For the first integral on the right-hand side of (9) and (10) compare
7 5(32).] Generalizations of (9) and (10) are given in formulas 7,12(17)
and 7,12(18).

GUBLER’S REPRESENTATIONS

From (8)another representgtion for Jy(z )maybe derived by specializing



18 SPECIAL FUNCTIONS 7.3.4

the contour. t-plane
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_—— e e — —_——— — -

\\ //_ > /
- -~

We choose 8 = %7 and deform the contour into the dotted line, If Re v <%
and the radii of the circles around £ 1 tend to zero, we obtain the result

(1) T'h-v) I, (z)= 27 % (4 z)"”[fo' (1-t)"""% cos (zt—vm) dt
—sin (vmr) j:(1+t2)'v'%e_z'dt] Rez>0, Rew<¥4.

This formula corresponds to Poisson’s integral (3). If in (12) v is replaced
by ~v and this is combined with (3) and also 7,2(4), the corresponding
expression for Neumann’s function is

12 T(w+%) Yv(z) =27 %Y z)V[IO' (1-£2)""%sin (zt) dt
~[Tet (L + 2% ar] Rez >0, Rewv>-%.
By introducing Struve’s function 7,5(78) in (12) we have
(13) [H, ()~ Y, )T (v+24) = 277 (420 [7 e™* (L4 %) * ds
Re z >0,
Now in (8) we take § = 0 and as a path of integration the dotted line.

Replacing z by ze %7 and v by —v we obtain, as we suppose Re v > -%
in order that the radii of the indentations around ¢ = %1 may tend to zero,

(14) I._V(z) =0 32T (%= }(%z) [sin(2vn) fiw e (t2-1)7"% dt
+ cos (vm) f_: et (1 -2V % 1] Rev>-%, Rez>0,
Hence and by the aid of formulas 7,2(13),7,2(12),and 7,2(14) we obtain
the result
(15) T+ %) K (o) = n% (%2 [~ e~ (2~ 1" % ds
Rev>-%, BRez>0.
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Hence, withz ~ 1 =v/z, we have

(16) F(V+l/2)KV(Z) =Y n/2)% &2 f: e oV % (L+Y%u/2)V % dv

larg z| <m, Rew>-1l

or more generally
8
A7) T+ WK, (&) = Gn/2) &2 [7° et ™% (L Ye/2) ™% dy
Re v>-Y% |8 <Y4a, S-mn<argz<8+m

7.3.5. Sommerfeld’s integrals

T we evaluate [e %57 ¢ #T=%7) 47 taken along the rectilinear con-

tows ¢, (from — %47 + ico to %7~ ie) and ¢, (from Y7 ~ie to 3/2m + io0)
(cf. figure),
a=®-

B a=® a=®+7x a=0+27
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we find from (9), (10), 7.2(5) and 7.,2(6) that
(18) nHS)(z)=_J; e izcos -reiv(-r-%rr)df’
1

(19) rrH,ﬁz’(z)=j;2 ¢ 10T g iv (T =%m) g

both integrals being convergent for Re z > 0. The contour ¢, may be
replaced by a contour C; from —5 + i to 5 — i, where 7 is a suitable
number between 0 and 7. With the notations

®=argz, a=Rer, B=Imr, r=a+if,
it is easy to verify that Re (iz cos B) is represented asymptotically by
—|z| cosh B sin (® + a)for large B, The upper or lower sign is to be taken
according as f3 2 0. Therefore the integrand of (18) vanishes exponentially
as 7> « in the shaded part of the 7-plane. We may replace ¢, by C, as
long as - < ® < Y%7 or —-%n <® < 7 - 5 according as 0 <np < Y%7 or
Yam <n <m.Thus we have

(20) n Hz(/”(z)= _J"C e 12CO8T o iy(.,--%ﬂ)df
1

and similarly
21) = HLZ’(Z)= IC e 12€0ST o iV(T-%ﬂ)dr,
2

C, being a contour from 5 — Zoo to 27 — 7 + i, The integrals are con-
vergent for
(22) —n<®P=argz<m-7, O0<n<wm,
and by the theory of analytic continuation this is the range of validity for
(20) and (21).

With these results it follows from 7.2(7) that
(23) 2n Jv(z) = IC e iZCT o iv(‘r-%ﬂ)d,,

3 -p<argz<m=-7n, O0<n<am

C, being a contour from =7 +ico to 27— 7 + i o,

Very often the contour integrals

o+ i

24) nHMG)=-i [_

ezsmha.—va.da,
o0 =177 . -
95) 7 H@(z) =i 17 g zsinha vada,
14 -0

(26) 2= JV(Z) =—1 Im"'i" e zsinha.-ya.da,

o= {7
valid when |arg z| < }27, are used. They simply are deduced from (20),
(21), and (23), respectively, taking 7 = % 7 and introducing the substitution
r=Wr+ia
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SPECIAL CASES

We choose n = 0, take the contours C, and C, to be rectilinear, and
obtain Heine’s expressions

27 771'11(}1 )(z)=—ie_i%V"£:ei‘°°5h t eV 0<arg z < m,

2) _9:,i% izcosh ¢ —
(28) 7H®Nz) = 2ie ¥V [ e et oosh (vt — ivm) dt
—ifoﬂ e o8t o5 (vt di O<argz<m

If we take n = mand C, C, to be rectilinear, we obtain
(29) 771'11(}1 Mz) =- 2je~tHvm [fme'i“’"’;h tcosh(wt +ive) dt
0

w .
+i [ e tcos (vt) di] —-n<argz <0,
0

(30) = HLZ)(z) = jg PAVT fw g izcosht =Vt g -n<argz <0,

From (27) to (30) we obtain respectively using 7.2(7)
81 = Jv(z) = gifVT [Io'”e—iz cost o os(ve) dt — sin () fo‘”e—vﬁiz cosh 7,1

O<argz <m,
(32) nJv(z) =g HAYVT [_fow e teos(vi) dt ~ sin (vn) _fowe"’"i"“h’dt]
—-n<argz <0,

In (27) let e *= v/q; then we have
33) nH{Maz)= —jg VT g¥ f:o o thrwta® M mvmt g

Imz>0, Tm(a?2z)>0,

7.3.6. Bames’ integrals

A representation of the Bessel function of the first kind as a Mellin-
Barnes integral (see 1,19) is
34) 4mJ () = [ G2 T v+ %s)/T(L+%v-Y%s) ds
[

5eee\'ro:\-a‘. x>0, —~Rev<c«l,

and may be proved by evaluating the integral in terms of the residue of the
integrand or applying Mellin’s inversion formula to 7.7 (19).
I the restriction - Re v < ¢ < 1 is removed, the integral still makes
sense, but it need not represent a Bessel function. We put
+ ico
@5) 4mid, =] " G40 TGy +%s)/TU+%v-%s)ds
’ o= oo

x>0, 0<1, -2m~Rev<o<-Cm=-D~Rev, m=1,2,,4s,
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the integral being taken along a line parallel to the imaginary axis. The
evaluation of the integral in terms of the residues of the integrand gives

==1 (%x)V"‘Zn
4 = - 3 - P .
"JV.- () 417Jy(x) dmi ,.2="o -1 nlT(v+n+1)

We define for arbitrary complex values of z and v

36) J, (=)= S D %)/ [T (w+n+ D] m=1,23,...,

n==n

and call this the cut Bessel function of the first kind. From (33) we have

(37) [ ¥ J, (N=z"d,_, (),
dz o= ' ®
d -
(38) 72- [Z J'u,n (Z)]=—Z J_U_H,.(Z).

7.3.7. Airy’s integrals

Airy s formulas,
(39) f cos (t? + 3tx) dt = (x/3)*% K, (22%%) %> 0,

oy J° | cos(®=3um)dt =~ /3% [J,,(22%") +J_,,22¥D)] >0,

can be proved as follows. In (39) we substitute ¢ = 2x*%sinh -:,'-v.Since
4(sinh v/3)® + 3 sinh (1/3) = sinh v

we obtain
_gm cos(t3 + Btx) dt = 2x%/3 _f;w cos (2x*2sinh v) cosh (v/3) dv,

and using 7.12(25) this establishes (39).
To prove (40) we express the right-hand side of (39) by means of .its

power series [see 7.2(12) and 7.2(13)] and obtain
fowcos (t% + 32x) dt
® x3m oo
=1/3
/"[Z mIT(1/3+m+1) Z 1“(1/3+m+1)m']

= =0
Here we replace x by — x and using 7,2(2) we obtain (40). For generali-
zations of the formulas (39) and (40) see Watson (1944, pp. 320-324).

7.4. Asynptotic expansions

The asymptotic behavior of Bessel functions is different according as
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the order v, the variable z, or both of these quantities increase indefi-
nitely. The power series expansions of 7.2(2)are asymptotic expansions
when z is fixed and v » =, It is comparatively easy to derive asymptotic
expansions for the case that v is fixed and z » oo; when both v and z are
large, the investigation becomes much more involved.

7.4.1. Large variable

We shall derive here the asymptotic expansion of the modified Bessel
function of the third kind, K (z). The carresponding expansions of other
Bessel functions may be obtained by means of formulas 7,2(16), 7,2(17),
and 7,2(8); the results are given in sec. 7,13.1,

We start with the integral representation 7,3 (17),

Fw+%) K (2) = Gha/2)’ e™? fo e VTR (1+Y%e/2)v H dr,
Rev>-%, |8|<¥%Un, 6b6~m<argz<d+a,

melS

substitute the binomial expansion with remainder term,

L I'(v+%)
1+ Ye/zv = Y
(1+%e/2) ) I Tt Yem)

m=0

SMe/z)"™ + Ty

and use 1,1(6) obtaining
M~1

z F'v+%+m)

(2"
TGk 22+ Ry

-37/2<arg z < 3a/2,

(1) K, ()= Cha/z)%e™ l:

n=0

where the remainder is given by
(20 M-DITG+%-MR,
=(2z)"¥ f:o e VA gy foi (-1 (1+Yot/2)V %M gy,
It is easy to see that for any fixed v with Re v > -4,
Ry=0(z|™), z-e, -3a/2+egargz<3a/2-¢ €>0.

By a more careful discussion of (2) it may be shown that the modulus of
the remainder in (1) is less than the modulus of the first neglected term
(m =M)if visreal, M >v ~ % > ~1, and Re z > 0 (MacRobert 1947,
ps 272; Watson, 1944, p. 207) and that the remainder is approximately
equal to half of the first neglected term when v and z are both real and
2z — M + % is small in comparison with z (compare Burnett, 1929). Airey
(see 1937), modified (1) so as to obtain a much closer approximation
suitable for numerical computation to high accuracy,
Using Hankel’s symbol 1,20(3)
27 r'%+v+m)

H412-12) e 422 - 2m-1)2} =

@) (wrm)= m! T G+v-m)’
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the asymptotic expansion may conveniently be written as

@) K ()= G/ e™ [ "3 Gy m) @)™ + 02| ™)

m=20
-3n/2 <arg z <3n/2.

Since only 1# appears in the definition of (v,m), the restriction Re v>-%
may be omitted.

74.2, Large order

The first reliable investigation of Bessel functions with large variable
and order was carried out by Debye (1909) by means of the method of
steepest descents, This method is based on the following consideration
(Copson, 1935, p. 330; Watson, 1944, p. 235).

Suppose a function F (z) is given in the form

(5) F(z)= fc e"4@)g(a)da

where C is a contour in the complex a-plane joining two zeros of e =% (%),
In many cases it is possible to choose C so that it passes through a zero
a, of f' (a) and that the imaginary part of f(a) is constant along C, Thus
we have f' (ao) =0 and

6) TIm[f(a)]= constant = Im [f(ao)]

along C so that Re[f(z)]changes as rapidly as possible when a traverses
C. For large z, the modulus of the integrand has a sharp maximum at a,
and only that part of C which is in the immediate neighborhood of a  will
give a significant contribution to the contour integral (5).

For the sake of simplicity we assume that both order and variable are
positive and put
(7Y z=x>0, p=p>0,

Moreover, we shall assume that the quantity v  determined by

(8) sinh v, =p/%, cosh vo=(1+p2/x2)%, v, >0

is fixed as p, x » =, We shall discuss Kp(x) only; the corresponding
expansions of other Bessel functions are listed in sec, 7,13 .2,

An integral representation for K (x) of the form (5) is immediately
obtained from 7.2(15) and Sommerfelljd’s expression 7.3 (20) in the form

(9) Kp(x):l/zi fce—‘c"sa'eipada=%ifce"f(a)da

where

(10) f(a)=cos a—ipa/x.
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According totheresultsinsec.7,3.5,the contour C starts at —7n+i e, ends
atn—ies ,where 0 < < 7, and lies entirely within the strip =7 < Re a< 7.
of the complex a-plane. The condition f' (a) = 0 leads to

(11) sina==ip/x==i sinh v,

and this equation has an infinite number of solutions

(12) a, ==iv, + 27m m=0,%1,%2, ¢eu.
From these only @ lies within the strip — 7 < Re @ <7. Hence we have
(13) a,==iloglx™ [p+ @2+ x) %} == iv,

and from (10)

(14) f(ao) =cosh v, - v, sinhov, .

The condition (6) shows that the path ofsteepest descent is the imaginary
axis, and from (9) with @ = iv we obtain

(15) Kp(x)=1/2f e~ cosh vtpy dv =Y fme—’_g(”)dv,

oo
-_—o0 -0
where

g(v) = cosh v ~ v sinh Vg

The substitution

(16) 7=g(v) - g(vo) = cosh v - cosh v, = (v - v ) sinh v,

maps the v-plane on the r-plane. The mapping is conformal except at the
points v = v + 2mim where dr/dv has a simple zero. Thus

(17) ®() =dv/dr=1[g' )]’

may be represented in a neighborhood of r =0 in the form

x Y~
18 o= ¥ p A,
n=1
and this expansion is convergent up to the next singular point r, which
corresponds to v =v  * 2.

As v increases from — = to Vs the variable 7 decreases from = to 0;
and as v continues to increase from v, to , the variable 7 increases from
0 to o, We shall determine the coefficients b in (18) so that we may take
arg r = 27 on the former, and arg 7 = 0 on the latter part of the path of
integration. Then we have

(19) K () =Ye 7 0 [T e ™ [8() - Blre 7] dr.
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Here we use (18) and apply Watson’s lemma (Copson, 1935, p. 218) to
obtain the desired asymptotic expansion

20) K, () = e e [ME by 3 " AT+ %)+ 0%,

The coefficients in (18) are obtained by Cauchy’s theorem
@D 4nib =[5 @) dr = [ [g(0) = g )1 7*" do,

the last integral being taken around a small closed contour encircling
v = v_ once in the positive direction.

Since [g ) - gl )Y17""% has a pole of order 2n + 1 at v = v we may
represent (v — )2"'H lg(@) - g{v,)] ™" * as a Taylor series. We then have

©-0)" " g0) —gw N = £ AP w-v)]

with
(22) A (")_: _ll_{.— (‘U -V )Zn'H [g(v) g(vo)]_n_% }

v=v
)
On the other hand, Cauchy’s theorem gives-
(©3) 27i 4 = [ (v~ ) Hg(v) - gl N1 "¥ dv,

taken around a closed contour encircling v = v, . A comparison between

(21) and (23) gives for the coefficients .in (20),

1 dZn
_ (n) _ _ 2nt1 ~-n=¥%
(24) b, ., =%4,) = S {dvz" w=~v )" " [glv) - gl )] }

v= vo
We thus obtain the asymptotic expansion

(25) Kp(x) =27% (p2 +x2) 7k expl ~ (p2 +x%% + p sinh™ (p/x)]

x [ 2 2™ a F(m+1/)(p +x9)” l’4"‘+0(x =~ p, x>0,

m=20
where

a = 2%~m (1 4+ p2/x2)%tin by

The first few coefficients in (25) are

1 S
@6) ag=1, ay==gor op W+apD7,
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3 77 385
— e —— (1 2 2)-| +
“"T8 " 56 F P Pams
A similar expansion derived by the method of the stationary phase
was given by J. Bijl (1937, p. 23). He gives the following result valid
forp>x%> 1.

27 |Kp(x) — 2% (p2+x) ¥ exp[-(p2+xD)* +p sinh™' (p/x)]
x "3 9% 4, T(m+Y)p2exd*/2m) |

mn=20

1 +=%pH74

SCw ™ (p24+x) X exp[-(p2+x2)% +p sinh™" (p/x)],
where w = px™* or (p? + x2)% p~'/3 according as p <z ¥* or > x¥.
For the coefficients in (27) there exists the recurrence relation

-1 -1 ,
(28) d, =-z [(ml ) pdy + <l"‘_ 1) (p2+x?)¥ d,_,]

m-1
withd j=1,d =d,6 =0, Here ( 1 ) is interpreted as zero and

the sum is formed over all [ for which m — / is odd and 0 <l <m - 3,
From (28) it follows that

(29) dg=1, d,=0, d,=-(p*+x%)% d,=10p*-(p?+x2)¥%,
ds=56p2+35§02+x2)—-(p2+x2)’4 and
d, =-2100p2(p2+x?)+ 246p2 +210(p% + x2) ~ (p? + x )%,

The corresponding expansions for J (x) and H;”(x) are obtained ina
simjlar manner from Sommerfeld’s expressions shown in 7,3(20) and
7.3(23) by the method of steepest descents(compare Debye, 1909;Watson,
1944, p. 235; Weyrich, 1937, p. 49). (For a discussion of the paths of
steepest descents for various cases see Emde, 1937, 1939, and Emde
and Riihle, 1934,) Different cases are to be distinguished according as p
is larger, less or in the neighborkood of x. They are listed in formulas
7.,13(11) to 7, 13(16). Formulas for the upper bound of the remainderof
the expansions 7,13(11) and 7,13 (14) respectively, and recurrence rela-
tions for the coefficients have been given by Meijer (1933, p. 108), and
Van Veen (1927, p. 27), respectively,

Recently (compare Schébe, 1948) two different asymptotic expansions
forthe second Hankel function have been derived from the contour integral
of 7,3(25). The terms of Schibe’s series are not elementary functions
as in Debye’s series shownin 7,13(11) and 7. 13(13) but involve the
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second Hankel function of the orders 1/3 and —2/3. The first term is just
Nicholson’s formula 7,13 (27) and Watson’s formula 7,3 (34) respectively,
7.4.3. Transitional regions Ste <

The asymptotic expansions 7.13(11),7.13(13)and 7,13 (15) foer(x)
valid in case x > p, x < p and x nearly equal to p respectively, do not
cover all possibilities since the restriction x — p = O(x'?) has to be
imposed in the last case, In the transitional region, that is when p/x is
nearly equal to 1 while |x — p| is large, other formulas have to be used,
These have been given by Nicholson (Watson, 1944, p. 248); Watson
(1944, p. 249); Schobe (1948); Tricomi (1949).

Nicholson’s formulas for integer order n ‘of the Bessel function of the
first kind are

B0 J @) ~a™t 37V (Ex)' P K, (£
(81) J,(x) ~ 37¥(Fx) [, ,, (&) + J_, 4 (&)},

according as x <n or x > n and

2 /x \ % -3/
(32) f—g (?) lx — n| .

[For the Y (x) see 7.13(24) and 7,13(26).] These formulas were derived
by means of the principle of the stationary phase (Watson, 1944, p. 229).
For this purpose we start with the integral representation 7,3 (2)

(33) 7J_(x)= " cos(ngp ~ x sing ) deb.
0

The phase is stationary where d/d¢(np — x sing) =0 or cos ¢=n/x.
Since n is supposed to be nearly equal to x, ¢ is small, and in the neigh-
borhood-of the stationary point we may replace sin ¢ by ¢ — ¢*/6. Thus

7 d, (x) ~_£.) cos[x¢%/6 ~ (x — n)pl dop
~ _I;wcos[xqﬁs/G - (x —n) ¢pldo.

This is Airy’s integral 7.3(39) and 7,3 (40) respectively, according as
% <n or x >n and the desired results (30), (31) are established.

This method of deriving Nicholson’s formula is a questionable one;
moreover the range of validity and the order of magnitude of the error
cannot be determined, [A rigorous theory of the method of the stationary
phase has been given by van der Corput (1934, 1936). This method was
applied by J. Bijl (1937) to derive asymptotic expansions for the Bessel
functions,]
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WATSON’S FORMULAS

A more precise form of Nicholson’s formula was given by Watson
(1044, p. 250)

(34) ei7r/6 H(Z)(x)=3-% we-ip(w—,,3/3—tan‘l

w)

X H,j‘:)(pw?’/?:) +0(@™".

Here the order p is not restricted to be an integer, and we have
35) w=(x?/p?~ 1%,

where arg w = 0 for x > p and arg w = %7 for x <p. The coresponding
formulas for J (x) and Y (x) are listed in formulas 7.13(28) to 7,13 (31).
In case x is nearly equal to p, w can be replaced by (%p)™* (x - p)*
[arg (x ~ p)# =0 or %7 for x > p or x < p respectively], and Nicholson’s
formulas (30), (31) are obtained.

From his asymptotic expansion, Schébe (1948) derives the result (see
end of sec. 7,3,2), fSce érrw

1/3 -3/2
(36) e H ) (x) =375 (i) _9_+ p )
p x 10 10x

wH? | ¢ _9_+L * +0(p™v2)
173 10 10% Poh
2 \
&= 3 % %)% (x —p)32

and arg (x — p)*?2 equal to 0 or 37/2 according as x> p or x < p.
‘Another formula was given by Tricomi (1949). The results are

(37 #d, Ip +@/6)"° 11=(6/p)'" 4, ()

- 1/(10p) [3¢2 A; ) +2¢ 4, ()] +0(p~%),

(38) ¥, [p+(@/6)'c]1=(6/p)"* 4,
+1/(10p) [3¢2 A} (8) + 2t 4,1+ O (p~%?).
Here, 4, (¢t) and 4, (¢t) denote the functions
(39 A4,(8) =a/3 (t/3)% 1J_, . [2(/3)¥*] + J, ,[2(:/3)*1},
40) 4, =a/3#tJ_,,, [2(/3)¥2] - J, , [2(/3)¥*}}

[see Airy’s integral 7,3 (40)]
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74 4. Uniform asymptotic expansions

DIFFERENTIAL EQUATION METHODS

The asymptotic formulas discussed so far have been obtained from
integral representations for the Bessel functions mostly from Sommerfeld’s
formulas (see 7.3.5). Another approach uses the differential equation
as its starting point.

For the following we restrict ourselves to positive real values of both
order p and argument x and transform the Bessel equation of 7,2(1) by
the substitution x = pe?s The resulting equation is

@D w (P +pHeP-Dwly)=0
The asymptotic behavior of solutions of differential equations of the form
(42) w" )+ [p2 ®2(y) =Ky wly) =0

in which p is a large parameter, has been investigated by several authors
(Horn, 1899; Schlesinger, 1907; Birkhoff, 1908; Blumenthal, 1912; Jeffreys,
1925; Jordan, 1930). The basic principle is that approximately identical
differential equations willhave approximately identical solutions. In the
work of earlier authors the comparison equation has a constant ®, and
therefore, all these methods fail in a region in which ® (y) has a zero. In
the case of the Bessel equation this failure occurs in the neighborhood of
y=0o0rx=p.

Langer (1931, 1932, 1934) used a comparison equation in which ®(y)
is essentially a suitable power of y and was thus able to cope with zeros
(of any order) of ®2(y), The solution of Langer’s comparison equation
may be expressed in terms of Bessel functions of order 1/3, The appli-
cation of Langer’s results to (28) leads to the following asymptotic
formula which is valid uniformly in 0 < x < o (Langer, 1931, pp. 60-61).

(43) ei™" H(Z) (x)=w % (w - tan™" w)*
(2) (pw ptan”' w)+ O(p™*?) w=(x2/p?-1)%,

For x > p, arg w and arg (w ~ tan™' w) are equal to zero; for x <p, arg w
is equal to %7, and arg(w — tan™' w) is equal to 37/2, [The results for
J (x)and Y (x) are listed in formulas 7,13 (32) to 7.13(35).] For a com-
parlson between numerical values of J {x) and those obtained by Langer’s
formula (43) see Fock (1934), and for an extension of (43) to complex p
and x, see Langer (1932).

In case of sufficiently small w (x nearly equal to p) w — tan™' w may
be replaced by w®/3 and Watson’s formula (34) is obtained.

The method of the “‘approximately identical’’ differential equations
was also used by Cherry (1949, p. 121), to obtain uniform asymptotic
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expansions for the Bessel functions. The differential equation for
y#J, [a(l-yH*]

is

d?w _ 5 _, 1 _
(44) duz + w [—p2+(y 2_]_)<Z'y 4_Z_y 2+a2_p2>} =0,

where
45) u=tanh™'y ~y.
Near ¥ =0, the coefficient of w in (44) can be developed in the form

5
-p? T 2+ (a2 =p2-1/35) (3u)"¥ + P (u¥?)

where P stands for a power series. Thus (44) is close to

d*w 5
- - n? -2 =0,
(46) Tz + W ( P +—36 u )

But according to formulas 7.2(62) and 7.2(63) a solution of (46) is
47 W =(pu)* K, (pu),

and if (44) is written as

d?w , 5,
(48) e +wl-p +—3gu = wf(u)

with

1
(49) f(u) —u (y-z—].) (——-y —Iy +a -p )

then, starting with the expression (47) in place of w on the right-handside
of (48), we find the solution of (48) by an iterative procedure using the
method of the variation of parameters. Further results may be found in
Cherry (1949, 1950).

7.5. Related functions

There are certain polynomials and functions which are either similar,
or in some ways analogous, to Bessel functions or which occur in inves-
tigations connected with Bessel functions. These polynomials and func-
tions are thoroughly discussed in Watson’s book (1944, Chapters 9 and 10),
Here we shall give only a very brief account of the basic properties of
some of these functions. For more detailed information the reader mnay
refer to Watson’s book.



32 SPECIAL FUNCTIONS 7.5.1

7.5.1. Neumann’s and related polynomials

Neumann’s polynomials O (z) are defined by the equation
W @=97"= £ ¢ 7,80,

=1, =2 if n>1, |[£]<]z],
and are of importance in the theory of the expansion of an arbitrary
analytic function f(z) as a series of the form

f(z) = DEO aan(z).
n=0
In order to obtain an explicit expression for O (z) we start with the

identity
Q) -8T=zT' [TeTFe /7y Re &/z < 1.
0
In 7.2(25) we put a =1, replace z by &, t - t~' by 2x/z, and obtain
e*¥/io T 4z x4 2+ 2K 4 2P (x4 (24 2],
n=0

This we substitute in (2), remark that term by term integration may be
justified if [£&/z| < 1 and compare the results with (1), Thus we obtain
‘Neumann’s integral representation

(3) 0,(2)=Y%z"" [Pz + &2+ 22 ] [x - (x22) %]} e 7% dx
0

is
e A R U VL LN TR L VL el P

where n> 0 and |6 + arg z| <Yz m.
To exhibit the polynomial nature of O, (z), we substitute

[+ 1% 61" = ,F,(-Y%n, %n; Y%; -9
tont F (% +%n, % —Y%n; 3/2; —t?)

in (3) and integrate term by term with the result that

& (n+m-1)1! —2p -
(4) 0,,(z)=%n ,.Zo W (%z)>7',
5 (n+m)! ——_
(5) 02n+,(z)=1/z(n+l/z) ———(4%z)" 72,

2o n~m)!

or, after some algebra
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<%n

© 0.)=% X nla-m-1)1042)"""Yn ! n2l
=0

In particular we have

(7 00(2).=z—', 0|(z)=z-2, 02(z)=z_'+4z-3.

Evidently O _(2) is a polynomial in z~! of degree n + 1. From (6) we have
the following inequality

® 102 2°7 n 1]z exp (% 2|2 - n>l

Hence, and from 7.3 (4) it follows that the series
S a J (60,
n=0 -

is absolutely convergent whenever the series X an(f/z)" is absolutely
convergent.
From the definition we have the relations

(9 0.(2)=-0,(2),
(10) 20/(z)=0__,(2)=0_,, (z) s,
Q) ¢=-D0,,,@D+nr+10, _(2)-2t""(n? -1 0 (2)

=2at~" (sin ¥nn)?,
(12) rz20,_(2)-(* -1 0 (2)=(n -1 20 {z) +n(sin Y4nn)?,
(13) nz 0, (@) -(* -1 O (2)==(n+1) 20 (2) +n(sin Y4nn)?,
From these relations it follows that O (z) satisfies the differential

equation
2

d
(14) zzd 5 +3zd—v +(z%2+1-nY)v=2z(cos %nn)?

V4 ¥4
+n(sin %nm)?.

If C denotes any simple closed contour around the origin, then from
(6) and 7,2(2) it follows that

(15) JC 0,(z)0.(2)dz=0 m=n and m#n,
(16) L J,(2)0 (2)dz =0 m#n,
an [, J,@ 0, (dz=mi : m> 1
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For some purposes Schléfli’s polynomial,
<Y%n
(18) S,(z2)=0, S ()= X (n-m-D! G%z)™**m1 a1,

a=0

may conveniently be used (Watson, 1944, Sections 9.3 - 9,34), It is con-
nected with Neumann’s polynomial by the relation

(19) n Sn(z) =2z 0 (z) - 2(cos Yn n)>.

The polynomials Q (z) defined by the expansion

(20) (z2- £2)~1 = So e [ (2120 () 1&] < |z,

have also been investigated by Neumann. (cf. Watson, 1944, Sections
9.4 and 9.41).

Both of Neumann’s polynomials have been generalized by ‘Gegenbauer
(Watson, 1944, Sections 9.2, 9,5), The defining expansions are

Q1) £¥/z - &) = ?oA,w(z) J, 4, (&) 1&] <z,
@2 E/=8= § B, () 10 (€) I, (O).

7.5.2. Lommel’s polynomials

Through repeated application of the recurrence relation, see 7,2(56), it
follows that J_, may be expressed in the form

(@23) J,4,()=J, IR, (2)-J, _(2)R

n-t1,v+1 &)

where R is a polynomial of degree m in z7'; it is called Lommel’s
polynomial. Similarly we have

@) D, =J_ DR, D+, (DR, _, ..

From (23), (24), and 7.11(33) we find that
(25) Rn‘v(Z) =Ymz(sinvm)”" [, 4n (2) 4y (2)
+=D*J (2) J,_, ().

-V=n
Using the power series of 7,2(48) for the product of two Bessel func-
tions we find from (25) after some reductions
$Y%a

(26) R, ()= Y

n=0

D" m-n)!T(w+m-n)

-m +2n
rl(m=-2n)IT{(v+n) Gez)
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[ (v+m)
2 2) F, Ch=Ym, — %m; v; —my Lmvmms=2 %),

'G)
Hence we can find that

@7) R, ()= (DR

(2)s
Since the Bessel functions of the second kind satisfy the same
recurrence relations 7,2(56), we obtain a relation analogous to (25)

©8) Y, @)=Y, (DR, (&)=Y, IR, _, . @

Hence, from (25) and 7,11(36) we have
(29) R, 'V(z) ==Ymz Y, @) J,_ ()-J, (Y, _ )]
Let n be an integer, m = 2n and v = %7 in (25). Using (26) and 7.11 (5)

we obtain

(30) [y, @2+ [T_ @)1 =[], ()P + [, )]

n,~y=n+1

i 22)2"2 (20 ~2m)! 2n ~m)!

=0 m!(n-m)(n—m)!

=2(mz)!

The recurrence and differentiation formulas satisfied by R may be
obtained from (25). For these formulas and also for the proof of Hurwitz’s
limit

@1 lim [%2)**™R, ., @/T@+m+D]=J, (z)

see Watson (1944, sections 9,63, 9.65). For other results see Mcdonald
(1926).
7.5.3. Anger - Weber functions

Anger’s function J_(z) and Weber’s function E_(z) are defined by
integrals of the Dessel type

(39) J,(2) +iE,(2) ="' [ eti0d - 20ind)yg,

Hence, from 7.3(9) and 7.3(10), respectively, follow the expressions
(33) I,(z)=-d,(2) + 7" sin(vn) [T ezsinht-veg,
0

= Jv(z) +7 7 sinGm) [T e [vH(1 + 04" (1 +v 2y %,
0
Re z >0,

- < - —zsinh
34) E (2)=-Y, () 7" [ " (e +e " cosvn)e tdt

==Y, @) [T e AL + v )H

+cos vrlv + (1+ v %17V H(1 + v2)7% gy Re z > 0.
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From (33) is it evident that
85) I, (2)=J (2) n=0,t1,%2,....
The e xpansion of the .integrand of (32) in powers of z and term by
term integration by the aid of 1.5(29) lead to
D" %)™
Tr+1+%)T(n+1-%)
(__ 1)" (l/2 Z)2n+1
Fn+3/2+%)T(n+38/2-%v)’

D" (%)™
=0 T(r+1+%)T(n+1-%2)

00 (_ 1),, (1/2 Z)2n+l
_ 1
cos (Yvm) nzo Tn+3/2+%)T(n+8/2~-%) "

(36) Jy(z) = cos (Y% vm) Z

n=0

o0

+ sin (Yvm) Z
n=o0

o0

87 Ey(z) = sin (% vrm)

CONNECTIONS BETWEEN THE ANGER AND THE WEBER FUNCTIONS AND
RECURRENCE RELATIONS

From (33) and (34) we have
(38) sin(wm) J,(2) = cos(vm) E (2) ~E_ (z),
(39) sinwn) E(2) = I_,(2) - cos bm) J_ ().
If we differentiate (32), we obtain
200.(2) +iEL@ = a7 [] tetl @ne-zsing ] pilomg-zeing gy
and hence using (32) again
40) 23)()=3,_,()-3,,, @),
4l 2E (2)=E,_ (z)-E ., ()
In a similar manner, from (32),we derive
42) I,_, () + 3 ,,(2) = 202" J_(2) = 2(mz) ™" 'sin (vm),
43) E,_,(2)+E,_,,(2)=2vz""E _(2) - 2(z2) "' (1 - cos va).
From (38) and 7.2(1) we find that

I @z A @+ Q=12 27 30

=g1 ;"2 sin(wr)f 7 [(-zcosht+v)e™? sinh t-227 75
14
0
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and thus it is evident that
(44) Js(z) +z71 Jl',(z) +(1-v2273 Jy(z) =7 ' 272(z = 1) sin (vm).

From (44) and (39) we find that
45) .El':(z) + 271 .El',(z) +(1=2 z—?) E _(2)

=—7'272[z + v+ (2 = v) cos (vn)]

ASYMPTOTIC EXPANSIONS

The asymptotic expansion of Jy(z) and .Ey(z) for large z and fixed v
may easily be obtained by Watson’s lemma. We substitute

46) [v +(1+02%]Y U+ 02 %= F, (s + Y%, %=Y%v; Y- 02
+vo F (1+%v,1-Y%y; 3/2, - 0%
in (33) and (34) respectively, use 2,1(2), 1,1(5), and obtain

U7 I =d, () + () sinGm) [ E (1P 27 B + %) (4=Y o), 2~
n=90

+0(e) ™) v 'S DR 2 (L4 %) (L-%) 272!
n=0
+v 0(|z|72# )],
48) E (2)=-~Y (2)- (2)"" (1 + cos vm)

xS C1r e G+ %0), G5 - %), 27+ 0(2] )]

n=20
— w(mz™) (L= cos v ['3 (<17 228 (L+Y0) (1-Y2) 277"
n=0

+0(|z]~2#-")],

For the asymptotic expansion of J,(z) and Y (z) in (47) and (48)
respectively see 7,13(3) and 7,13 (4).
The case of large |v| and |z| is discussed in Watson (1944, p. 316).

7.5.4. ‘Struve’s functions

Struve’s function is defined by a representation similar to Poisson’s
integral 7,3(3)

49 T(v+4%) Hy(z) =27 % (l/zz)”_J;JI (1 = £¥)¥"% sin (zt) dt
=27 % (%4 z)V foxﬁ'sin (z cos ¢) (sin ¢)¥ d¢ Rev>-y,
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From this expression it may be shown (Watson, 1944, p. 337) that H_(x)
is positive when x is positive and v > 4.

If (49) is transformed into a loop integral, the restriction on v may be
removed and we have

(50) B, ()=—iz ¥2T (4~ 1) C42)* [ (22 = 1)V sin (a2) ds
v#£1/2,3/2,5/2,....
‘A further representation follows from 7,2(12)
G T+ R (£2) - Y (£2)] = a A GHYT 2V
X f: etBe"‘(l +12 &7V G
B-Ya<arg <P+ Y%m; —~Yn-B<Lagz<hn-p.

(For other integral representations cf. Meijer, 1935 a, p. 628, 744; 1939;
1940, p. 198, 366; Nielsen, 1904, p. 234).
The modified Struve function is

(52) L (2)==ie ¥ H_(ze %™)

Hence we have from (49)

(53) L(2) T(v+ %) = 207% ¢42)” jo"”sinh (z cos ¢) (sin ¢)¥ dg
Rev> -4,

From (51) we have

277% (Y %)¥

L =1 -
(54) V(x) _,(x) T

L“(l +t2)Y % sin (%) dt

x>0, Rev<
A representation of Hv(z) as a series of ascending powers of z is

obtained from (49) by expanding sin (z cos ¢) in powers of z

G5 H ()= 3 (-1 G%2)*#*/[T(m+3/2) T(w+m+ 3/2)]

n=0

=277% (Y4 z)VH (Fo(153/24 v, 3/2; - Y z3/T (v + 3/2).

Hence it is evident that (% 2)7V Hv(z) is an entire function of v and z.
Furthermore we have

(56) Hy(ze im‘n) - eiﬂ'(u+l)m Hv(z) m= 1’ 2’ 3, eee

From (52) we obtain

6D L,G)= 3 (42)"**/[T(m+3/2)T(w+m+3/2)]
n=0
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= 207% (%2)V*' [F,(1; 3/2+,3/2; %2%/T (v + 3/2).

From (55) we easily obtain the differentiation farmulas

(58) i[;:’”llu(z)] =zVB__, (2),
dz v

(59) i[z VB ()] =277 E/T(v+8/2)~ 2"V R, (2).
dz 14 v+i

Carrying out the differentiation on the left-hand sides of (58) and (59) and
comparing the results we find that

60) H,_,(2) +H,,, ()= 202" B (2) + 7% (%2)/T (v + 3/2),
61 H,_,(2)-B_, (2)=2B)(2) - z7% %2)"/T (v +3/2).
From (58) and (59) it follows that the Struve function satisfies the

differential equation
62) z° B (2)+z H,(2) + (z3 -1 B (2) = A GV YT v+ %),

ASYMPTOTIC REPRESENTATIONS

Tn (51) we put z = 1, expand (1 +£2 £~2)V"¥ into a series of ascending
powers of f, integrate term by term and ‘obtain for large ¢ and fixed v

63) (&)=Y, (&) +77" 'Z [Mm+ ) 4™ ™ "/T v+ %~ m]

+ 0[P~ Jorg £ <.

For the asymptotic expansion of Yv(f) see 7,13(4). Furthermore it may
be proved that if v is real and £ > 0, the remainder after M terms is of the
same sign as, and numerically less than, the first neglected term, pro-
vided M+ % = v > 0.
For the case of large || and |£| see Watson (1944, p. 333).
Fv=n+%(n=0,1,2 400,),then (1 +22 £"2)¥"% in (51) is a poly-
nomial, and we have

(64) B, (O)=Y &+ S %= ET(m+%)/Th+1-m)
=0

Yn+% (€) is given by 7,11 (2)« Furthermore from (51) and (54) we obtain

65) B, 1@ = (D", () Loy @=L, @)
n=0, 1,2, X

Forn = 0 we obtain from {(64)
ll%(z) = % z) (1= cos z).
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When ris a positive integer we may deduce from (37) and (55) (Watson,
1944, p. 337)

<Yn
(66) B (z)= 7V S Tm+% %) 2/ T(n+Y%-m) -E_(2),
n=0
<%n
67 B_ (2)= (D" 77" Eo T -m-%) %2)"** /T (m+3/2)
-'E_n(z).

For further results concerning Struve functions see Baudoux(1946).
7.5.5. Lommel’s functions

We consider the inhomogeneous Bessel differential equation

d?w dw
68) z*? o +z = + (2= w=z#
i, v being unrestricted constants. A solution of (68) is.
] = (-D* z,u.‘H +2n
©9) 5,,,() = ) . — s
K o (p+D2= 22 [(p+3)2 =22 eoe [(u+2m + 1)2 =¥

= ! i CP G T Gu~%v+ DT G+ %v +%)
2o THu-%r+m+3/DT Gpu+%v+m+3/2)
zp,+1

T u-v+ D+ D)
x F,(L; K= Yv+3/2 Yp+Yo+3/2 - Y%z

The solution (69) becomes nugatory when one of the numbers p + v is an
odd inte ger. '

If the differential equation (68) is integrated by the method of variation
of parameters and if that solution is determined which is approximately
(p=v+D)(p+v+ DI 24 for small z, one finds

@0) s, (2) = %alsinvm) ™' [, 2) [ 24 J_, () dz=d_,(2) [ 24, (2)dz]

=Yn [Yv(z) f: zH Jv(z) dz —Jv(z) Lz Y (2) dz].

The two expressions in (70) for S, are identical when v is not an
integer. When v is an integer, the former expression is not defined, but
the latter is still valid.

- Another particular integral of (68) is

(71) S#'y(z) = s#'v(z) + 29" T B =%+ %) % p+ Y% v+ %)/ sin (vm)]
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xtcos s(p ~v) al J_, (2) = cos [Vi(p + 1) 7] J, ()}
= s#.y(z) + 22T Bu-%rv+ BT G+ %y + %)
x {sin [%(p ~v) 7] J,(2) = cos [ (u-1) a1 Y (2}

When either of the numbers y * v is an odd positive integer, S# , may be
represented by the following terminating series in descending powers of z
(cf. Watson, 1944, p. 347):

(1) S, (@ =z*" 1=~ D? =7 22
flp=-D2= 02 (u=3)2 =22z % = ou b,

In case p + v or p =~ v is an odd negative integer, s
but S#'y(z) approaches a limit (Watson, 1944, p. 348).

, in undefined,

RECURRENCE RELATIONS

From the definitions we have

(73) s#ﬂ'y(z) =z* o [(p+ D2 =02 S#'V(Z),

(74) sl'hv(z) +0/z)s, (D=@+v-Ds, , ()

u=1

) s, (2)~6/2)s, (D =(p-v-Ds, ; @)

(76) 2v/z)s, (=(p+v~-1s @) =(u=v=-Ds _, @)

u=1,v=

(7D 25! () =(u+v-Ds @+ uemv=Ds,y L, @

u=1,v~=1

From (71) .it follows that the same relations are valid if in (73) to (77)
s#'y(z) is replaced by S#’v(z).

SPECIAL CASES OF LOMMEL’S FUNCTIONS

Several of the functions associated with Bessel functions can be
expressed in terms of Lommel’s functions.

() 0, ()=z""S, , (2), 0, ,,(z)=@n+1z7"S§

.2n 2n +1 0, 2n+1 (2),

(79) S, (z)=4nS (2), S, ,,(2=2 P CON

-1,2n
(80) 4, ()=2"z""Tlw+n) (w+20)S,_, ., @/n!,

@8l) 4 @D=2"""2"""T(v+n+D@w+2n+1) S—u,u+zn+1 (2)/ml,

2n41,v

(82) J_(2) =sin(vm) so,y(z)/n— vsin(vm) s ,v(z), (144 em*l-a.'
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(83) E (2)=~(1+coswvn)s, (z)/7=v(l=cosvm)s_, (2)/m,

(84) H (z)=2""V 7% s, VT w+ 1)
=Y (2)+ 21=v g SV'V(Z)/F(V+ 1)

where the notations introduced in sec, 7.5 have been used,
Young’s function (1912) is

85 C )= 3 (1P z¥*/T(u+2m+1)=2% YT (v-1).

S -~
a0 v=3/2,1/2

ASYMPTOTIC EXPANSION

The series (72)diverges in general, but it can be shown (Watson, 1944,
pe 351) to be an asymptotic expansion of S#'V(z) when |z| is large and
larg z| < 7.

INTEGRAL REPRESENTATIONS

The integral representation
86) s, , (2)= 202 ¥ HITC 4 Y- Yo)

x j;%wJ%(' +”'_u)(z sin §) (sin )% *"#)(cos O d9
Re(v+p+1)>0

may be verified by expansion in ascending powers of z. For further
integral representations see formulas 7,12(48) to 7,12(52) and Szymanski
(1935); Meijer (1935a, 1938, 1939a, 1940, pp. 198,366).

Lommel has also investigated functions of two variables defined as

8 U w,2)= 5 D* w/)*=J (),
n=0

(88) V,(w, z) = cos Ghw + %z%/w+ Y%vm) + U__ ., w, 2).

For the theory of these see Watson (1944, sections 165 to 1659); see

also Shastri (1938).

7.5.6. Some other notations and related functions

In Nielsen’s Handbuch der Theorie der Zylinderfunktionen, some
notations (for a list of those see Nielsen’s book, p. 406) different from
those introduced in sec. 7,5 are used. These notations are

Z¥(z)=H_ (), P()=J (), Q"@E)=-E_ (2),
O¥P(z) = 227Pcos[%n (v -p)ls (2)/[T % p-% )T p+ %)L

p—~1,v
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Furthermore the following functions are investigated there:

nv(z)= w(2)+ J_v(z)], X¥(z)= %[Jy(z) -J_ ()],
a®V(z) =iV foﬂ e %% cos(vgp) d g,

aAv(z)=i'"Y f:e 2eosd sin(vgh) dep .

The last two functions are generalizations of Hansen’s integral see
7.12(2) for the Bessel coefficients. [See also formulas 7.12(40) to
7.12(45).]
7.6. Addition theorems

There are two types of expansions of Bessel functions which are
known as addition theorems., Roughly speaking, Gegenbauer’s type is
connected with the theory of spherical wave functions (in 2v + 2 dimen-
sions), while Graf’s type is more nearly related to the theory of cylindri-
cal waves. This description is not quite accurate, and the two types
coincide when v = 0, As a matter of fact these two types are developed
as two different generalizations of Neumann’s addition theorem for J,.
7.6.1. Gegenbauer's addition theorem

Gegenbauer’s addition theorem will be established for the modified
Bessel function of the third kind, Ky(z). Ve put
(1) w=(E2+22~22Z cosgp)* =[(Z - 2¢"%) (Z - z¢ *)]*%
and assume at first that z, Z, ¢, are real and 0 < z < Z. With z = 1 and
a=w in 7,12(23) we have
Q) w™ Kv(w) =Y fow expl-t—(z2+Z%- 22 Z cos ¢)/t]t™¥"" dt.

H v #£0, we use Sonine’s expansion 7,10(5)
explt™'zZ cospl

=2t/2TG) S (wan)C¥eosd) L, (22/1),
n=o0

substitute in (2), and integrate term by term using here 7,7 (37) in the
process. Thus we obtain the addition theorem (for the C¥ see sec. 3.15),

@) w? Kv(w) =%zZ)"T' )

X iEo (v+n)C¥%cos p) I,,,,(2) K, (Z)
= V#o,-].,“zg sed 9 Z<Z°
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If we make v tend to zero, we obtain,using 3.15(14),

4 K ,(w)=1()K (2)+2 b3 I.(2)K (Z) cosng z2 <27,
n=1

It follows from 7.2(12) and 7.2(13) that the series (3) converges like
3 C? (cos ¢) (2/Z)" and therefore from 3.15(1) that (3) and (4) hold,
provided that |ze ¥1¥| < |Z|,

The addition theorems for the other Bessel functions follow from (3)
by means of 7,2(16), 7.2(17), 7.2(7), and 7.2(8). 'Also see 7.15(28) to
7,15 (32).

7.6.2. Graf’s addition theorem

Graf’s addition formula

Z -z -ig % oo .
6) J (w) (‘*e') =3 J,..D J (z) e ™%,

Z~zel? ne=—o0
where we have
lze¥1®| <|Z|, w=(224Z%=22Z cos $)* = [(Z — 26 PN Z ~ze #)]*%
may be proved as follows. From 7.3.(5) we obtain
(273) 'J,,.;.,, ) ‘]n (2) e in¢= j- (o+) ' e%z(t-:"l) t_v-'(eiqb/t)" c.Zl(z)dt.
oo exp (~if3)
From 7.2(25) we have

em) £ J,(2)J (z)e™?

R=-—00
(o+) . .
= expl4Z(t =t~ Yz(te 3P -t ei®)] 17V 4y,
—ooexp{~if3) :

Now we put (Z - ze"'P) ¢t = wo, (Z ~ ze ¥%)/t = w/v and take that value
of the square root (1) which makesw > + Z when z » 0. We then may
take the contour to start from and end at — « exp (~i @) where a = arg w.
Thus we have

(27i) OEO ‘]v+n(Z) Jn(z)einqi):w-V(Z_ze—iqS)v

n=—o00
+
©n exp[Bw(v—v™ N v do.
—ooexp (~ia)
Using 7.3 (5) again we obtain (5).
Formula (5) may be written in a slightly different manner, intro-
ducing an angle ¢ by means of the equations

Z-zcosgp=wcosz, zsin¢g=wsiny,
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so that in case of real ¢ and positive z, Z and w, ¢ is the angle opposite
to z in the triangle with the sides z, Z, w. We then have

©) eI = § J,,.@)J,@)en¢
|ze¥*®| < |Z| incase v#0,%1,%2, we.

For the other Bessel functions see formulas 7,15(33) to 7,15(36).
A duplication formula for the Bessel function of the first kind and for

the modified Hanke] function in case the order is half an odd integer has
been derived by Cooke (1930). The results are

() I 4y (22)=(-1) w# m)zmth
> 1yr@Cm=2n+1)J _ () I a2V [ 12m-n+ 1)1

n=0

.y 2 Cr@m-2n+DIK,_ ,, ()12

L
8 K, %(27‘) ™ n! 2m—-n+1)!

n=20
For other similar formulas see Cooke (1930).
7.7. Integral formulas

7.7.1. Indefinite integrals
From formulas 7.2 (52) and 7.2(58), respectively, we have

(1) [z¥* J, (z)dz = PEal ) RN CO
20 [z7vH J (2} dz =—z V! J,. (@)
From sec, 7,2(57) we obtain

(3) fJV(z)a’z—2 2 s Tt @+ J,,, (dz m=1,2,3, .

Equations 7,2(4) to 7,2(6) show that (1) to (3) are valid for Y (z) and
H“’(z) H(Z’(z) For similar formulas see 7,14 (1) to 7,14 (13).
7.71.2. Finite integrals

Many definite integrals involving Bessel functions are of the con-
volution type

FxG@)=[F@)GGt-v)dv

and may be evaluated by means of the convolution formula of the Laplace
transform (Doetsch, 1937, p. 161; Widder, 1941, p. 84). According to
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this method if
f(s) = fo“’ e"*F(¢) dt = L{F}

and
g(s)=L{G}, then f(s)g(s)=LiF* G}

The formula is valid for example if L {F} and L{G} are absolutely con-
vergent.

‘As an example we shall prove Sonine’s second integral in this
manner. With

— MK %
F (o t)=a™t" 1 d (at?)
we have from (24) for Re p> -1
fula, )= LiF (o, )} = 27# s+ exp(-Ya®s™")
Now we have
flays) f,(By $)=2f) 44y (a2 + B2, s]
and this leads to Sonine’s integral
ST o g (ark) e = 0¥Y 3, (B - 9¥1 dr
=2 gt B¥%(a?+ g HWHu iyt [t(a? + BD)*]
Rev>-1, Reu>-1.
Putting ¢ = 1 and substituting 7 = (sin 6) we obtain
% .
4 fow J#(a sin 6) J,,(B cos 6) (sin M (cos O)VH dO
la® + BH)*%]
Rev>-1, Repu>~-1.

A limiting case of (4) may be mentioned separately. If we divide
both sides of (4) by BY and let 8 » O we obtain Sonine’s first integral

5) fowaﬂ(a sin 0) (sin O**' (cos )P do

=t BY (a2 + pHTEWIIN G

=2PT(p+1)a P ' J

p+#+l(a) Rep>-1, Repu>-1,

Other formulas of the convolution type are

©) [ I, =97, 0~ dr

=20 E Tl + BT (u+ BV ut% Jyapry OMTw+p+ 1)

Rep>-Y%, Rev>-Y4,
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(see Hardy, 1921, p. 169) and
(7 _I;tr'x JZV(arx)(t—‘r)-% cos[Blt-r)%1dr

=7d %% @® + )% + B J 1 %e%[(a?+ BD)% - B1}
Rev>=-Y4%,
which may be written as
8 J*7J,,12G0)¥ sinf] cosl(z - £) cos 61d0= %u J, (2) I, ()
Re v>-Y%.

Formulas (6) and (7) result from the convolution theorem in connection
with (17) and (23), (25) respectively.

An integral formula involving Struve’s function, corresponding to
Sonine’s first integral (5), is

9) fo%WH#(z sin ) (sin 6)**" (cos 6)2°*' d6

=F(p+1-)2pz-p-"ﬂp+“+,(z) Rep>-1, Repu>-3/2,

and may be established as follows. We expand the Struve function under
the integral sign according to 7,5(55) and integrate term by term using
1.5(19).

In many cases the representations 7,2(47) to 7.2(49) of a product of
two Bessel functions as a power series may be used for the evaluation
of integrals involving Bessel functions. Forinstance we have from 7,2(2)
and 1.5(19)

IO%WJ,,@Z sin 6)(sin 8 (cos 6)*¥ d@
1§ D22 Tlorm+ YT+ %)

2 =, m!Tw+m+ DI 2v+m+1)

and by 7.2(49) this leads to the result
(10) ffw J (22 sin 6)(sin 6) (cos 6)*¥ d6

=%z V745 T (v+%) [, (2)]? Re v>-%.
Similarly we prove Neumann’s formula
(1) [¥7d,, (22 cos6) cosl(u=2)61d0 = %n J,(z) J (2)
Re(v+ p)>-1
in the proof of which we use formulas 7,2(2), 1,5(19) and 7,2 (49).

A generalization of Neumann’s formula
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(12) 1r(2az)'”'(2BZ)-'yJ (az) J,(B2)
—f_’;: B (cos )V N2)VH I, (A2) d6
Re(v+p) >~1, A. [2c056(a e?+B2%e —:8)])(

may be proved as follows. We expand the Bessel function under the
integral sign according to 7.2(2) and obtain

mlaz) 4 (Bz)™Y Ju(az) J,(Bz)

—i (-1 272 P
B m!Tm+v+p+l)

®=0
w [ B~ Y)(cos )* V(a2 e W4 B2 e79)" 46,
-xw

But the integral is expressible as a hypergeometric function ,F, [also
compare 2,4(11)] and by 7.2(47)the truth of (12) is obvious, [For a
related representation see 7,14 (60).]

Another class of integral formulas may be derived from the addition
theorem in sections 7.6 and 7,15, From 7,15(31) we have

(13) =lJ (2))* = fo” J, (22 sin ) cos(2n¢) dgb n=0,1,2, e,

or, more generally, if Z  denotes any Bessel function of the first, sec-
ond, or third kind, we obtain from formulas 7, 15(28), 7.15(29), and

'3.15(17)
(14) f" wZ (w)C¥ (cos ) (sinqS)z”dqﬁ

=2aT(m+20)Q229)YZ (), (2VIm!T )]
w=(22+y%2- 22y cosd)*, Rev>-Y%, m= 0, 1,2, ecae s
For other formulas of a similar type see formulas 7,14(14) to 7,14 (23)
and Watson (1944, p. 373); Copson (1932 ); Rutgers (1941); B. N. Bose
(1948); MacRobert (1947, p. 383).
7.73. Infinite integrals with exponential functions

The formula
(15) 2Vt g g~v y>‘+“+” I'(v+1) fowJu(at') J(Br) e “vt A1 g,

_i TA+p+v+2m)
B m!IT(p+m+1)

=0
F(-m, —p=m; v+1; B2 a™®) (% a® y72)"
Re(x+u+2)>0, Relytiatipf)>0
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may be proved by replacing the Bessel function product by its power
series expansion 7.2(47), then integrating term by term, and also using
'1.1(5)s In some special cases the right-hand side of (15) reduces to
simpler expressions, If,for example, we put A + v = p and let 8 tend to
zero, we obtain Hankel’s integral

(16) Qy/a)*yPT (p+ l)j: e"'”‘J#(at) tP" de
=T (u+p) ,F(hp+ Y Yp+ Yop+ Y p+l;-a® y™2)
=T (u+p)(1+ a2y 2) % ukp
x F ap+Y%p, Bh+Y%u-Ypsu+1; a’/(a® + y?)]
Re(p+ >0, Re(ytia)>0,

The second expression (16) is derived from the first one using the trans-
formation formula of 2,10(6) for the hypergeometric function.
From the second formula in (16) we see thatif p=p+1

(17 j;me-ytJ#(at) t*de =.1'r% Ca*T{p+4% 2+ a?) %k
Sce e_ﬂ'ut‘u‘. Re(2p+1)>0, Re(ytia)>0.
If in (16) p = 1, we obtain from 2.8(4)
(18) [~ e™*d (@) de = a™M(y? + a®)E[(y? + a®)¥ — yI
Re p>-1, Rely tia)>0,

Furthermore from the second expression in (16) with y = 0, using
2.1(14) we have
(19) fomJﬂ(at) tP 1 de=2P"" g PT (%u+ %pl/ T+ %pu-%p)

-Re py<Rep<3/2, a>0.

In the same manner a number of similar integral formulas containing
the square of the integration variable in the exponential function may be
established. For example the relation

(20) 2V*HY g BTV Y VHUAAT (14 1) f: J (at) JZ,(/St)e"Vzzz N dy

-E Tlm + %v+ %p+ %)
R=0 m!F(m+u+1)
x o F, (my—p-m;v+1; Bz a"?) (=% a%y7?)"
Re(u+y+,\)>0, Rey2>0

may be derived using the expression of 7.2(47) and integrating term by
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term. We shall now investigate some special cases in which (20) re-
duces to simpler expressions.
Let B = a; then we obtain using 2.1(14)

@) [T (et d ar) e Y a

TFGA+%p+%y)

ITp+Tw+1)

% JF Cov+Yop+ %6, Yov+Yop+ L v+ Yop+ YA p+ L, v+ L, p+v+15-ay %)
Re(wv+A+p)>0, Rey®>0,

Let B tend to zero in (20)« Then the expression on the right-hand
side of (20) reduces to a confluent hypergeometric function, and we
obtain withw+ A=+

@2) T+ D [7d,(an ™ " 177" as
=Ry PTGhp+%p) Ga/* F,Ghp+%p;p+L-%a® vy
=%y PT Gp+%p) G afy)* expl=Y%a?y™?)
x F,Giu-Y%p+Lip+1; %a’y™?)
Rey?>0, Re(p+p)>0.

= 2-v-p,-| y-v-)r,u. av+,u,

Furthermore we have
@3) [T (ar) e de =Yk y T exp2 a? y L (270 0ty
Rey?>0, Rep>-1,
(24) fomJ#(at) e.'y2 ¢ A gy = a”'(Zyz)""" exp(-4%a?y™?)
Re u>~ 1; Re 2> 0,
@5) [ J, (at) J,(B0) ™"t bde
=Yy 2 expl~Yy 2 (a® + B L (4 aBy™)
Rev>-1, Rey®>0.

Formulas (23) and (24) originate from (22), and (25) from (20).
A formula similar to (16)

(26) T (% + ) 7% (2B)7Y (a + B)*# f:e""KV(ﬁt) 4 ds
=T+ T (=3 ,F lv+pv+Y%; p+%; (a=p)/(a+ Bl

=(2a)"% %(a+ BT (u+ )T (=)
X Folv+pp 2v+ 2 1- B%/a?)
Re(p £1)>0, Re(a+B)>0
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may be proved by inserting here 7.3(15) for K_(Bt), interchanging the
order of integration, and then using 2,12(5)s From (26) and 2.8(47) for
a =0 we have

27) J7K (B ¢+ de= 2872 BHT G+ %) T (g = %v)
Re(x tv)>0, Re B>0.
Furthermore from (23) and 7.2(13) we obtain

(28) f: K“(at) 7t gp = Ya% y~' sec B%um) exp (272 a?/y?)

x K, (2_3 a?/y?) —-1<Reu<l
Furthermore one may consult Shabde (1935), Mohan (1942, p. 171); Sinha
(1942).

%.7.4. The discontinuous integral of Weber and Schafheitlin

We shall now investigate the integral f J (at) J,(bt) t ™ dt in which
a, b, are positive real, It turns out that even when the integral converges
for all positive a and b, its analytic expression is different, according as
a is smaller, equal to, or larger than b. The results are

(29) 2° b4 PHT (u+ DI G+ %v+%p-Y%p)
<[ J,(at) J,,(bt) 7P dt = aP T 4+ Y v+% p~Y% p)

x JF, M+ Yv+Y%p-%p, %+Yp~Yov-Y%p; p+1; a?/b?)
Re(w+p-A+1)>0, Rep>-1, 0<a<b,

with a corresponding expression for 0 < b < a [interchange @ and 4 in
(29)] and

(30) J,~ I (at) I, (at) 1P de

~ (%a)P ' T (p) T Ghv+%pu+%~Y%p)
2T Ch+ Y v—Ypu+%p) T Co+Yv+ Yop+%p) T o+ Yp-Y% v+ Y% p)
Re(v+pu+1)>Rep>0, a>0.

The proof of these results follows, We use (12) with a=a, 8=b,z =1t in
the integrand of (29),interchange the order of integration, evaluate the
integral with respect to ¢ by (19), and obtain

fo ® J#(at) J, (bt) £~ Fds

TG+ Yu-Y%p+%)
FTGp+Bv+%p+ %)

i o st
K

x (a2 e® 4 b2 e~ ©)hlv=u~1)4g,
But the integrand on the right-hand side is expressible as a hypergeo-

=g~ gk pv 2RV HHu-Yp=%
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metric function ,F;, compare 2.4(11), and we immediately obtain the
expressions (29) and (30) according as b > a or b = a, In some special
cases the hypergeometric function reduces to a simpler function. For in-
stance the formulas 7,14 (28) to 7,14(31) are derived from (29) and (30)
byputting p = v = %,

An integral related to the Weber-Schafheitlin integral but with one
Bessel function replaced by a modified Bessel function of the third kind
can likewise be expressed in terms of hypergeometric functions, but it
has nodiscontinuityat ¢ = b, We obtain

(3D 2% @¥PHT (w+1) [7K (as) J,(Be) e dt

=BT %v-Yp+Y%u+ BT Bv=Yp-Y%u+%)
x i Ghv-Yp+Kp+K, Yov-Yop-You+ % v+1; -B% a?)

Re(a £iB)>0, Re(v - p+11u)>0,
byexpanding J(Bt) in a power series of 7,2(2) and integrating term by
term using (27). Further integrals of a similar type are given in formulas
7.14(35) to 7,14(39), Here formulas 7,14(35) and 7,14 (36) are conse-
quences of (31). The other formulas were given by Dixon and Ferrar(1930).

7.1.5. Sonine and Gegenbauer’s integrals and generalizations
~ Discontinuous integrals of a more general type than (29) to (30) have
been investigated by Sonine and Gegenbauer, The integral
(32) f“Ju(bz) Jv[a (t2+2z2)%] (02 + z2) %V iuti g
0
=0 a<b, Rev>Rep>-1,
=bH g V2 V(g2 _ p2)% vk =% Jv-p.- [z(a? - b2)%]
a>b, Rev>Repu>-1,
may be established by replacing the second Bessel function under the
integral sign byusing 7.3 (6), interchanging the order of mtegratlon, and
using (24) and again 7.3 (6).
Generalizations of (32) have been given by Bailey (1935 a), and by
Gupta (1943). For instance according to Bailey, we have

.} \ -1
(339 [7T,60 e B T, lo, G+ 20512422 M e =0
n=1 n
b>a,+a,+++a,, Relv,+we+y, +%m=-%)>Rep>-1,
oo n —%
34) [T, 6" 0 J, [o, 62+ 2251624 22) " " de
n=1 n

=2 i) i 2 g (z,a,)

n=1

b>a +a +eeta, Re (v, +, hoee by +¥%m+3/2)>Re p>0,
m n
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Another generalization of (32) is due to Sonine, To obtain this let us
consider for a positive integer m and Re a > 0 the integral

fc zP7! J, b (= 24 D822+ ¢ TRE (22 —a®) " T H Y (a2) de,

where C is a contour consisting of the upper semicircle |z| = R and its
diameter, with an indentation at z = 0, When R approaches o, and the
indentation shrinks to a point, the contribution of the circular arcs in C
vanishes if @ > b, Re (+v) < Re p <(2m + 4) + Re p. Expanding the inte-
grand i m ascendmg powers of (z2-a?) we find that the residue at the pole
z?=q’is

-R - R
2 ( ’ ) 1af™2 J [b(a? + (D% (a2 + L) HEH D (aalk.

m! ada
From Cauchy’s residue theorem and 7,2(16) we find that
35) J; tP7' 152 + LRI G2+ LD THE (2 —a?)

X [H ) at) e i7 -V g m(at)] dt

=—2 ( > iap'zJ [b(a?+¢D)%1(a2+¢2)” %“H“)(aa)}
ada

a>b, Re(iv) <Rep<2m+4+Rep, Re(a)<0, m=0,1,2, 0.
Similar formulas and special cases are listed in 7.14 (46) to 7,14 (59).

7.7.6. Macdonald’s and Nicholson’s formulas

Representations of a product of Bessel functions as an infinite in-
tegral have been given by Macdonald and Nicholson. Macdonald’s formula

(36) S expl-Y%e =%t~ 2+ 21K, (:2/0)¢7" de = 2K () K, (2)

largz| <@, |argZ|<m, [arg(z +Z)| <Y4nm
is an immediate consequence of
2I,(x) K (X)
(37) f:o exp[-tat =J5t™ (k2 + X L (xX/t) ¢™ dt =
2K () LX)
according as X > x or X < x, We prove (37) for positive real x and X and
obtain (36) for positive z, Z, by 7.2(13); the extension to complex z, Z,

follows from the theory of analytic continuation. Putting a = x, 8 =X,
y?=%t, in (25) we have

(38) I (xX/t)=t exp[(x®+ X?)/(2¢)] f:o J, &) I, (Xv) e 02, g
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Inserting this into (37) we obtain
_I:o expl~%t—%t7"(x% + X?)] L(xX/t) ™" dt

=f: J, ) I, (Xv) vdv f:e,"/zt(lwz)dt
=2_f:(1+vz)“l J;V(Z‘U) JV(Xv)vdvr .

and using 7,14 (57) this proves (37).
Nicholson’s formulas '

(39) K, (2)K,(2)=2 f :Km(zz coshe) cosh [(x —)¢] de
=2 j:oKv_#(zz cosht) cosh [(x + v)¢] dt Rez>0

may be proved as follows, From 7,12(21) we have
K, (2)K (z)=% f_: f_: e~z (eoshtteosho) oo gh (1) cosh (o) dt do.

Now we make the transformation t + v =24, ¢t —v = 27, and after some
reductions we obtain

Kv(z)K#(z)'= % f_: f_:e'zgcmhgcmh"’ cosh [(p+v)¢]
x cosh [(p ~ ) p1d{ dy.

With 7.12(21) this proves (39).
Another formula due to Nicholson is (Watson, 1944, p. 444)

(40) [Jv(z)]2 + [YV(Z')]Z =872 _I:o K (2z sinht) cosh (2ve) dt
" Rez>0,

For similar formulas, especially integrals for the product of two
Bessel functions, see Watson (1944, p. 445); Chaundy (1931); Dixon and
Ferrar (1930, 1933); Meijer (1935, p. 241, 1935 b, 1936, 1936 a, 1940,
P+ 366), For the sum or difference of a product of two Bessel functions,

see Buchholz (1939, 1947).

7.7.7. Integrals with respect to the order

A formula due to Ramanujan (Watson, 1944, p. 449) valid for real y
anda, b >0, Re(v+ p) > 1,

) [Lamd,, @b, (b)Y dx
=(2 cos Y%y)hWH) (a2 g~ i%y y p2 ¢ iR)TH L) g idy rmp)
XJV+#3[2cossz(a2e'i%7+ b2 ¢ H47)]%} ly| < m,
=0 lyl >

may be proved by applying Fourier’s inversion formula to 7,7(12).
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The cylindrical and the spkerical wave function may be expressed,
respectively, as

42) K [(a?+ 5% - 2ab cos¢)*]
=(2/n) J, K @)K, (b) coshlln - ¢) x)dx,

R - % -
(43) @?+b2-2ab cosp)™% ¢ ih(a®+b?~2ab cos ¢) =Y n(ab)™%
x Jo xe™ H®(ka) HY (kb) tanh (7x) P_,, . (~cos¢)dx
Imk <0,
Equation (42) may be obtained from Macdonald’s formula 7,7(36) and

(43) from the residue theorem in connection with 7,15(41); (42) is
a special case of a formula given by Crum (1940),

44) I-:Ki(f+n)(a)Ki(§+n)(b) e 77N dy = Kie-g)e) e EB7U,

where 4, B, C, are the angles of the triangle whose sides are of lengths
a, b, Cs
Another generalization of (42) and (43) is

45) w7 Ky(w) =UT () Had)™"
X fw sech(zx)(v - 1/z+iac)KV_%+i"(a) 1;1—%+ix(b)

Ch i (—cose) dx w={(a?+b?~2ab cosp)¥
(for the definition of CV see sec, 3,15), For the proof of (45) use
76 (3) and the residue theorem.

Other formulas are

(46) f: K ix (@) cosxy)dx =% ze ~acoshy
47 f: K . (a) cosh (Janx) cos (xy) dx = Yim cos (a sinhy),

(48) _f:c K ., (@) sinh (47x) sin (xy) dx = Y% 7 sin (a sinhy).

They may be derived from formulas 7.12(21), 7.12(25), and 7.12(26)
respectively. For other results compare Ramanujan (1920, 1927, pp.
200, 224, 229); Fox (1929); MacRobert (1931, 1937); Crum (1940).

7.8. Relations between Bessel and Legendre functions

The Bessel and the modified Bessel functions may be expressed as
a limiting case of the Legendre functions, In the expressions 3,2(14)
and 3 4(6)for the Legendre functions we replace z by cosh (z/v)and x by



56 SPECIAL FUNCTIONS ’ 7.8

cos (x/v), respectively, to obtain
P ¥ (coshz/v) T'(p+1)
= [tanh (4 2/V)]* ,F {~v, 1+v; 1+ p; - [sinh (% 2/v)]%,

P #(cosx/v) T (p+1)
=[tan (ex/VII# Ft—-v, 1+v; L+ y; [sin (%x/v)]2 e
We now let v approach « and use 7,2(12) and 7,2(3) to obtain

, _ (4 z)*
(1) LT“, o Pv#(coshz/v) = TG D ———oF (u+1; Yz2)= Iu(z),
i
(2) vlin; VP HFcosx/v) = F((Ax)l) oFi (p+1l;-Y%x?) = J#(x).

A similar relation (see qule, 1934) may be derived from 3.2 (41). It is
3) lkl)noo { Q’;[y/(iz)] e YT (M
ie i%wr”% (1/22)1/-”

= F(V+3/2) OF“ (V+3/2; _22/4)

= ie VR VT(Y, 7 2)% JW% ().

Relations analogous to (1) and (2) may be obtained for Legendre
functions of the second kind either from (1) and 3,3 (4) or from (2) and
3,4(13). These relations are

lim » ”’e"”"”Q”’(coshz/V) K (z)

V> oo

@
lim v*Q ”’(cosx/v)-—/an ().

EX)

We now turn to some integral relationships between Bessel and Legendre
functions, Comparing the hypergeometric series on the right-hand side of
7.7(26) with 3.2(16) we obtain

5) Tev-wWlv-p+1) Pfj(z)
=% m) 7% (22_1)‘%#f0 e K, ., (&) e+ % dt
Rez>-1, Relv—p+1)>0, Relv+p)<O
and similarly from 7,7(16) and 3.2(41)
(6) 0Q4(z)= Bm)¥ (22~ 1)%ke i”"”_]:o e"® 1, @ tH% dy
Re(v+p)>-1, Rez>1,
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Applying Whipple’s formulas 3.3(13) and 3.3 (14) to (5) and (6), respec-
tively, we obtain four further integral representations

(7) Tly-p+l) Qﬁ(z) =e W (z2-1)"%Vv¥
X f: e-tz(zz_l)'% K#(t’) £V de Re(v £ p)>—1,

(8) Tlv-pPrz)= (z2~ l)zy_f;m e'tz(zz'l)-% 'I_#(t) t¥dt
Re(v + p) < 0,

© Tl+p+ D PRG) = (2= D)Hvh [Tz 07 1 gy v gy
Re(v+ p)>-1,

(1) D(v+ p+ 1) P (cos 0) = [ e™**=0J (¢ sin6) ¥ dt

Re(v+p)>~1, 0<6<4%m

Equation (9) follows from(8) by means of 3.3 (1) and (10) follows from (9)
by means of 3.4(1).

A simple example of a representation of Bessel’s functions of the
first kind by means of an integral involving Legendre functions is Gegen-
bauer’s generalization of Poisson’s integral,

(1) 2¥ 7% T+ B Th+20)i" 27 J,, ()/[n 1T (20)]

= J;We ize0sd C¥(cos ¢b) (sin $)2¥ dep
ReV>"'l/29 ﬂ=0, 1,2,0",
This can be derived from Sonine’s formula 7,10(5). We replace y by
cos ¢, multiply both sides by C”(cos¢) (sin )*”, integrate term by term
with respect to ¢, and use 3,15(17).
A similar formula -
(12) (2a/2)% i"(sin$)*™% C¥(cos ¢) I, (2)
= foﬂ elizcosfcmd J,,_y (z sin 6 sin¢) C¥ (cos 6)»(sin 0% de
Rev>~Y%, |argz|<m, n=0,1,2, .
may be derived from the addition theorem 7,15(17). For further formulas

of these types see Meijer (1934, 1938); MacRobert (1936, 1940); Bailey

(1935 a).
Finally we mention Whittaker’s loop. integral which is related to

Hankel’s integral 7,3 (8). It is
(13) 7372 Jy(z)= (1/22)1/2 e ~him (V+%)f(—l.+'l+)e ith L (6) dt
) id L]

e

~Yr+d<argz<¥%m+8, |8|<Ynm
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To prove this formula we assume that the contour lies entirely outside
the circle [t| = 1; then we expand @ _y, (t) in descending powers of ¢
according to 3,2(5) and proceed as in sec. 7,3, From (13) we obtain a
corresponding expression for the second Hankel function

. =T H )
(14) »%2 H':,Z)(Z) cos (vr) = (% z)% e A Hh)in -y € Py () di
e .

~Yn+S<argz<%m+5, |8 <Ynm,

where we have used 7,2(6) and 3,3 (8).
An expansion of Legendre’s function P_(cos 8) in a series of Bessel
functions,

(15) P,(cos )= (0/sin 0 5 a, (0) )™ J, [w+%)6]

has been given by Szegd (1933)s The a_(6) are elementary functions,
regular in 0 < Re 0 <7, In particular,a =1, a, = 273 (ctn 6 - 67"), ete.
(15) is uniformly convergent in 0 < 6 < 6 — ¢ where € >0 and

0,=2(2%~ 1) 7=(0,828 +++) .
This formula may be derived as follows. In 7,10(15) we put s =1, z =6,

2=1-1%62% and v =-¥% to obtain

2cost = %7 )* b3 21" (g2 — ;)= g=m th Jm_%(o)/m!,

m=-0
and hence

(02— 2" g% ™% J _, (O/m!.

2(cost — cos ) = (%n)%

I p18

If we use this expansion in Mehler’s integral 3,7(27), integrate term by
term, and use 7,3(3) we obtain (15).
In the paper by Szegé already referred to, similar expansions are

given for P_(cosh {), Q,(cos@)and Q_(cosh {) on pages 450, 449, and
448, respectively,
7.9. Zeros of Bessel functions

A detailed discussion of this subject is contained in Chapter XV of
Watson’s book. Some further results have been obtained since the orig-
inal publication of Watson’s book in 1922 and are not included in the
1944 edition. Here we shall discuss briefly the more important results.

GENERAL RESULTS
From general theorems on differential equations (Ince, 1944, Chap. X)
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follow the statements:
a) Any zero of any solution of 7.2(1) or 7,2(11) is a simple zero,
the only possible exception being the origin.
b) The real zeros of two real linearly independent solutions of
7.2(1) separate one another. Here a real solution is defined by
a Jv(x) + bY, (x) with real a, b, v, and positive real x.

BESSEL FUNCTIONS OF THE FIRST XKIND

For the special case of the function Jy(z) the following theorems may
be proved, ’

The zeros of JV (z) and J; (z) for real v are symmetrical with respect
to the axes of coordinates.,

For real v, J (z) has an infinite number of real zeros (Watson, 1944,
p. 478; Wilson, 1939).

Ify, 1»¥,, are the positive zeros of J,(x) arranged in ascending
order of magnitude, then

0<)’y,1<yy+1,1<yy,z<yy+|,z<yy,3<"' v>-1,

(Watson, 1944, p. 479).

When v>-1and 4, B, C, D, are real numbers such that AD - BC #0,
then the positive zeros of AJV(x) + BxJ; (x) and CJV(x) + Dx J; (x)
separate one another and no function of this type can have a repeated
zero other than x = 0 (Watson, 1944, p. 480).

When 4 and B are real and v > —1, then the function

AJ () +BzdJ, (2)

has only real zeros except that it has two purely imaginary zeros when
A/B + v <0 (Watson, 1944, p. 482). For an asymptotic formula for these
positive zeros see Moore (1920).

For v> 1 the function J_V(z) has an infinity of real zeros and also
2[v] conjugate complex zeros, among them twopure imaginary zeros when
[v]is an odd integer (Hurwitz’s theorem). (For different proofs see Watson,
1944, p. 483; Obreschkoff, 1929; Pdlya, 1929; Falkenberg, 1932; Hille
Szegd, 1943)

A generalization of Hurwitz’s theorem due to Hilb (1922) states that
the principal branch of the function

AJV(Z)+BJ_V(Z), (4, B,real, B#0, v>0)

has [v] complex zeros with a positive real part in case [v] is even; when
[v] is odd there exist [v] ~ 1 or [v] + 1 complex zeros with a positive real
part according as (4/B) 2 0.
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The number of zeros of 2~ J, (2) between the imaginary axis and the
line on which '

Rez=mar+ % Rev+4)n

is equal to m for sufficiently large m, and all the zeros of J (z) lie in-
side a strip |Im z| < A where '4 is bounded when v is bounded.

'‘Let y,,y, and y, be the smallest positive zeros of J &), J,, () and
J (%) respectwely, then we have (Watson, 1944, p. 485)

vy + 1% <. Yy <2 +1) (w+ %,
vy + 1% < -y:, < [2w(v + DI%,

when v 0, and
[v(v - D* <yp <W?- 1)%
when v > L. For better bounds and for results on the following zeros see

Mayr (1935).
“The formula

yy=v+1,855,757v"® + 103,315v" 2 + 0(v™")

and similar formulas for other zeros of the Bessel functions of the first
and 'second kind have been given by Trlcomm(1948) 'For further information
about the zeros of J, (x) and J, (x) see Blckley(1943) Bickley and Miller,
(1945);Gatteschi (1950) Olver (1950)-

It has been proved by Siegel (1929) that J (z) is not an algebraic-
number when v is rational and z is an algebraic number other than zero.
This theorem proves Bourget’s conjecture that J,(z) and J . (2)
(m= 1, 2, 3, «+.) have no common zeros other than zero (Watson, 1944,p
484).

Investigations about the zeros v, of dJ,, (z) regarded as a function of
v, with fixed z have been carried out by Coulomb(1936) They show that
for positive real values of z,the v_are real and simple and asymptotically
near to negative integers (cf. also Gray and Mathews, 1922, p. 88).

The graph of J (x) for fixed v > — 1 and variable x 2 0 resembles the
graph of a damped oscillation. The successive areas of ‘half-waves”
above and below the axis, form a decreasing sequence (Cooke, 1937).

The factorization theorem for entire functions (Copson, 1935, p. 158)
leads to the representation of z7¥ .Jv (2) as an infinite product (Watson ,
1944, p. 497). We consider those zeros of z™ Jv(z) for a fixed v ¥ -1,
-2 -3,..., which lie in the half-plane Re z> O (those are symmetrical
to the real axis) and arrange them according to non-decreasing real parts
(in case there exist zeros on the imaginary axis only those with a posi-
tive imaginary part are considered). This sequence is denoted by Yu,n
(mn=1,2,3,ess ) Then we have
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D Tlw+D R (2= o Q- 22y ).
1 ’

'A similar expansion is (Buchholz, 1947),
@ 2M6) %) ™)@ = T =220 )7,

n=
Here the . y ,n is a sequence formed of the zeros of z'™¥ dJ.(2) in the
‘same manner as the sequence Yy, Was formed of the zeros of z7YJ (z)
Forming the logarithmic derlvatlve of (1) and using 7.2(51) we obtain

(B) I, @V () == 2z g (2 2 )

n=1

Hence the following power series valid for |z| <y, may be derived

@ %J,,,@/ &= E 5, 2

,V
where

- B3 -21
(5) SZI;”:';Z:I.Y ;

V,n

and in particular (Nielsen, 1904, p. 360)

6) S, ,=27%w+1, S, =27+ @+

For further similar expansions andrelations see sec, 7,15; Forsyth (1921);
Buchholz (1947).

BESSEL FUNCTIONS OF THE SECOND KIND

The oldest result on zeros of Bessel functions of the second kind is a
theorem by Schafheitlin (Watson, 1944, p. 482) according to which the
principal branch of ¥, (z) has no zeros with a positive real part other than
real zeros. This result has been extended by Hilb(1922), When [4] is
even, than Y (z) has [v] complex zeros in |arg z| < J; . When [v] is odd,
then Y (z)has [v] -~ or [v] + 1 complex zeros in the same range, accord-
ing as cos (vm) $0. Thus Y 2 (2) and Y (z2)(n=0,1,2, 4ss,) have 22
complex zeros in |arg z| < % m

Y, () (n an integer) has complex zeros in the left-half-plane on all
branches and in the right-half-plane on all branches but the principal
branch. Furthermore Yv (z) has positive real zeros only if v is rational but
not an integer. In the latter case Y_(z) has positive real zeros on the
principal branch and other real zeros only if v is rational but not an in-
teger. In the latter case Yv (z) has real zeros only on the branch for which
2mvin 7.11(41)is an integer, (Hillmann, 1949).

2n+1
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For the zeros of linear combinations of J (z) and Y (z) see Watson,
(1944, Chap. XV);Hilb(1922); Hillmann (1949), For a t.heorem similar to
Bourget’s hypothesis see Banerjee (1936).

For a combination of products of the Bessel functions of the first and
second kind we have the theorem (Gray-Mathews, 1922, p. 82):If v is real
and @ and b are positive, then

J, (ax) Y (bx) ~ J,(bx) ¥ (ax)

is a single-valued even function of x, whose zeros are all real and simple
(see also Jahnke-Emde, 1945, p. 204; for similar combinations Carslaw
and Jaeger, 1940; Kline, 1948).

BESSEL FUNCTIONS OF THE THIRD KIND

Investigations about the zeros on the principal branch of the first and
second Hankel functions for real non-negative v have been carried out by
Falkenberg and Hilb (1916), and Falkenberg (1932), The results are:
H“ Y(z), v> 0, is free of zeros in 0 L arg z £ 7. The zeros, for v> 0, of
HY" in < arg z <0 and those of H @) in0< arg z < 7 lie symmetncally
with respect to the imaginary axis.

There are no pure imaginary zeros except when v = (2k ~ 1) + %
(k=1,2,3, .40, ) in which case there is one such zero.

The total number of the zeros of H S" () (2) on the principal branch is
equal to

0 if 0<v<3/2
2k-1 i v=Qk-D+%
2[{7 if (2k 1)+l/<V<2k+l/2 k=123,oo-o

A theorem analogous to Bourget’s hypothesis states that H"+** (x)and
Hm +(2)(x) have no common zeros when . is real > ~land m = 1 2,3, au0s

(Banerjee, 1935),
MODIFIED BESSEL FUNCTIONS OF THE THIRD KIND

For v 20, K, (z) has no zeros for which |arg z| < )4 = The number of
zeros in Iarg 4 | <7 is the even 1nteger nearest to v — % unless v ~ 1/2 is
an integer, in which case the number is v — % (Watson; 1944, p. 511).

When v + 1 is positive real, and m a positive integer, K_(z) and
K, ,, (z) have no common zero.

i f(z) and g(z) are given analytic functions without common zeros
such that g(z)/f(z) is meromorphic, and Re [g(z)/f(2)1> O for Re z > 0,

then the function

F2)=f(2) K, (2) ~g(&) K (2)
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has no zeros .in the right-half of the complex plane (Erdélyi and Kermack,

1945),

The zeros of K (z) and I (az) K (bz) - K (az) I (bz) regarded as a
function of v are all purely imaginary, and these functions have an .infi-
nite number of zeros (Gray-Mathews, 1922, p. 88); compare also Polya,
(1926)and Bruijn (1950). The function G (z) corresponding toequation (iii)
in Polya’s paper is 2K ._(A).

7.10. Series and integral representations of arbifrary functions

7.10.1. Neumann series

A Neumann series is a series of the type

M nE- 0 a, J‘u+n @)
By the expamsion 7,2(2):it is evident that its circle of convergence is
identical with that of the power series £ a_ (% 2" w+n+ D).

The Neumann series expansion of a function f(z) which is given by a
power series can easily be obtained. For this purpose we first give the
Neumann series of a power of z

@ #%2*=2 w+2)To+n)d,,,, 6V,

v not a negative integer, whichmay be verified by insertingfor J, (2) its
power series, see7,2(2), and rearranging the right-hand side in powers
of z. All the coefficients except that of z” vanish,
Now let
f)= % b, 2t

=0

If each power of z is replaced by its Neumann series (2), we obtain

flz)=2z"% Eo b12“” .§o (v+l‘+ 2m) T (v +1 +m) J'u+l+m (z)/m!,

and hence
flz)=2"% n2= L% J o en (2)s
where
<%n
@) a =2"""(w+n) 2 27*Tlw+n-s)b, _, /s!

s8=0
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_Conversely, the bl may be expressed in terms of the a, (Nielsen, 1904,
p. 271) as

sx1 v+l
@ b Iw+l+D=2"1"7 32 (-1)--( )a,_h.
a=0 m

Some cases in which a simpler expression may be found for the sum in
(3) are of special interest, For example we take

foy=e® = $ Gptzlit,
l=0
‘Then we have from (3) after some algebra
a, =i"y" 2" T(w+n+1) LF, Yn, % =Yan; 1en —v; vy A/,

or, introducing Gegenbauer’s polynomial 3.15(8) we obtain Sonine’s
formula

(6) z¥e =2"TW) £ i"w+n)CYG) J,, () v£0,-1,~2,....
n=0

The expansion of a Bessel function as a Neumann series

6) (%a)hJ (az) Tiw+1)

I M8

, 2F (eny ptms v+ L @ T(p+n)p+20)Jd,,, ()/n!

n
may easily be established in a similar manner. We expand the left-hand
side of (6) in a power series of z and use (3). In the same manner we
obtain the Neumann series of T.ommel’s function 7.5(69),

v (u+1+20)T(u+14+n)
- pntt
@ s, @ -2 ,.Zo T T Y@

Hence, using 7.5(82) to 7.5 (84) similar expressions for Anger’s, Weber’s,
and Struve’s functions may be obtained. For further results compare sec.
7.15; Nielsen, 1904, Ch, XX; Watson, 1944, Ch, XVI; Baudoux, 1945, 1946,

.The theory of the expansion of a function f (x) of a real variable x in a
Neumann series is based on the integral formulas [cf. 7,14 (32)]

0 m#n,

fo e J'U+2n+1 @) Jy+2|l+l (6)dz =

(4n+2v+2)7’
. m=n, pI> - 1-
Hence, we derive formally the expansion

8) f)= 3 (v4244n) d, 40, @ 707 f0) 4y, O de

n=0

v>-—-1
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The theory of this expansion has been given by Wilkins (1948, 1950).
The special case v = 0 has been formerly investigated by Webb, Kapteyn,
Bateman (Watson, 1944, p. 533); Korn (1931) and Titchmarsh (1948,
pe 352}, (For the term by term integration of a Neumann series see Hardy,

1926.)
A series of the type

9 nE'O @, ayn(2) Iy, (2)

is called a Neumann series of the second kind. If the product of the two
Bessel functions is replaced by its power series of 7,2(48) we obtain the
relation

) e £ o @), @)= li bzt
n=0 =0

where.

]
(1)) T(v+14%n) T(u 1+ %n)b,= 2717074 Sy (“’“‘)

m=1

and hence (Nielsen, 1904, p. 292)

(12) a_=2"**"(v+ p+n)

XE g-esp F'v+ ptn—-sIT(w+1=-s+%n) (u+l—-s+%n)
n=2s s!1T(v+p+n—-2s +1)

s= 0

provided neither g, nor v, nor p + v is a negative integer, Formula (12)
gives the expansion of a power series in a Neumann series, and it may be
shown that the Neumann series thus obtained converges uniformly within
the interior of the circle of convergence of the power series,

A simple example is the expansion of a power of z, We easily obtain
from (12)

()t © v+pt2n v+p+n
19 S oD - »ngo e ( ! ) Jyin @), (2.

(For further results see Nielsen, 1904, Chap. XXI; Watson, 1944, ps 525;
and Banerjee, 1939,) For series involving the product of an arbitrary
number of Bessel functions see Stevenson (1928).

A modified form of Neumann’s series is the series

(14) E a, z"J ()

n=-0

From the loop integral, see 7.3(5), we immediately obtain the following
equation
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(15) (2= )™ J (s = ¥ = § GorAns™nJ, (ssV/nl.

n=20

With s =1 and 7> = 1 — A? we obtain the multiplication theorem of the
Bessel function

16 J, 02 =AY $ [Kz(1=-ADI"J,, (zV/n!.

n=0

Hence, making A approach 0 we deduce that
17D %2)?=Tw+) £ Ha"Jd,, (h!
n=0

a farmula analogous to (2).
Equation (17) is useful for the conversion of a power series into a
series of the type mentioned above. We obtain

(18) § blzu:z—'” § anz"JV+n(z)

=0 n=0
where
o I'v+s+1)
(19) a = —_— e 228-n+1/b .
n SZO n—-s)! s
and hence

200 T+n+Db = 3 (-D* 27" *a__ /g

$s=0
(Nielsen, 1904, Ch. XXI).
7.10.2. Kapteyn series

Series of the form
@) ¥ a J, [v+n)z]
n=20

are known as Kapteyn series. From the .inequality (Watson, 1944, p. 270)

)

it is evident that (21) converges throughout a domain in which

sinam aean_zz)%

[1+Q~-2%)%]"e

z

amw

(22) |Jplaz)|< (1 +

@) ¥ o @)

n=20

is absolutely convergent where
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(24) w(z)=ze" "2’%/[1 + (1 -z%)%],
The expansion of a power of z in a Kapteyn series
@) C52)'=(52) " (v + )2
x $ Tw+l+n)w+l+2n)™v d p142,llv+ 1+ 20) 2]/ ]
r=0

v not a negative integer, may be verified by replacing each Bessel func-
tion on the right-hand side by its power series 7.2(2). The series (25)
converges throughout the region

26) |w(2)| <.

With (25) we may transform a power series into a Kapteyn series, .If
each power of z in

@D f()=§ b,
=0
is replaced by .its Kapteyn series (25), we find after some algebra

@8) f)=z"% a J, [w+n)zl,
n=0

n - vtn

v not a negative integer, where
< %n

(29) a, =% S (w+n—=25)2Tw+n=s)Bv+Yn)2e—n-v,
s=0

The series in (29) is absolutely convergent when
lw(z)| <1 and |w(z)| < |w(p)]

where p is the radius of convergence of (27).
A Kapteyn series of the second kind is a series of the type

(30) ? L% Syyryn s+ Yp +0) 214, ) [Chv +%p +n) 2],

It may be shown (Nielsen, 1904, p. 307) that
B1) G2 =+ TA+)TQ+)p)

N z (v+P+n ) (.u+'p+2n)—v_p-'
n=0 n
X dy e lvtp+2n) 21, [w+p+2n) 2],

where v, p, v + p, are not negative integers.
Now, let

82) f(2)= ¥ b,2¢,
=0
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then (Nielsen, 1904, p. 308) we have

(33) flz)=z %040 I @, Iy gamlav+hp+n)zl dy \  [Ghv+ Y p+in)z],
n=20

where
(34) v+ Y%p+ Yn)hvthptnt 2"/‘("‘*/"*’")arl
<
Sy
~ z" Gv+¥p+n-2s) T Gv+hn-s+ DI Hp+Yn-s+1)
2, Gev+lsp+n)7°
(’/2V+’/2p+n—-s—1>
X b .
s n>=2s

For further results and examples see Nielsen (1904, Chaps. XXII, XXIII);
Watson (1944, Chap. XVII); Bailey, (1932); Budden (1926).
7.1¢ 3. Schlomilch series

Series of the form
(35) flx)=Y%a, + ;§, a_J,(mx)

have been investigated by Schlémilch., There is an expansion theorem for
an arbitrary function of the real variable x over the interval (0, #) (Gray

and Mathews, 1922, p. 40; Watson, 1944, ps 619).
For a function f (x) which possesses, in the interval 0 <x <, a con-

tinuous derivative of bounded variation there is an expansion (35) with
(36) a,=2f(0)+ 2a~" _I:Tv fo% 7! v sin @) d¢p dv,

ATy .
(37 a, =27"! fowvcos(mv)fo ﬂf ( sin @) do dv.

A generalized Schlémilch series is
(38) = la, J (mx)+ b, H,(mx)] (Y mx)"".

The theory of such expansions may be found in Watson (1944, Chap. XIX)
and Nielsen (1904, p. 134). In a paper by Cooke (1928), the results
stated in Watson’s book are partly simplified and extended. The theory is
based on the formulas

(39) f%ﬂJy(z sin 8)(sin 6)Y*'(cos 6)7%¥ d0
0
=27V AT (% -1) 27" sinz -1<Rev<,
(40) fol/ml'lv(z sin 0)(sin 0)V*' (cos 6) "2V d6

=2V AT (Y% =) 2V (1 - cosz) -3/2<Rev< 1/2,
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which may easily be derived fromequations 7.7 (5) and 7,7 (9) putting there
g =vand p=—v- Y%, Now, let us assume the validity of the expansions

@D f@= X fo, J,me)+ b, B, ma)] (4ma)™
: “WH<v<H, -m<x<Lm
Here, we replace x by x sin 6, multiply both sides by
(sin 0)2¥*! (cos 6)727,

integrate with respect to 6 from zero to %7 and use (39) and (40)s Thus
we obtain formally

fO%Wf(x sin 8) (sin 6)2¥*" (cos 6)"2¥ d6

=7 0—) X la, sin(me) + b, (1 - cosma))/ (),

and hence for the coefficients of the expansion (41)
42) T4~ e = ma %
x [7 ¢ sin (mt) f%W f (¢ sin 6)(sin 6)*¥*' (cos 6) 2% dbd:,
-1 o]

43) I'(%-4) b, =- ma %
X f_:t cos (mt) foyﬂ f(t sin ) (sin 6)2¥*! (cos 6)~2¥d @ dt.

The series (41)with the coefficients (42) and (43) is called the Schlémilch
series of f(x).

In the paper by Cooke, already referred to, it is proved that the class
of functions for which (41) with the coefficients (42) and (43) is valid in
any interval excluding 0, * 7, is the class for which the theory of Fourier
series applies, Furthermore theorems analogous tothe Riemann-Lebesgue,
Parseval, Riesz-Fischer theorems on Fourier series are established. In
this connection see also Cooke (1927, 1929, 1930b, 1936); Wilton (1927);
Jesmanowicz,(1938); Wilkins (1950 a). '

Let us now consider some simple examples of the Schlémilch expan-
sion (41). We take f(x) = (ax)™ R_(ax) (a arbitrary). This is an odd
function of x [compare 7,5(55)] and we have g =0 in (41)s On account
of (40) we obtain from (43)

nb, =-(-1)" 27V o sin(an)/ (m? - a?)
and thus
(44) n(ax)7¥ H (ax)=- 2v*sin(an) Z (-1)= zm 5 (%mx)-vﬂv(mx)
n=1 m-—a

—7<x<m Rewvr>-3/2
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Dividing both sides of (44) by sin(an) and making a approach zero we
obtain [see 7.5(55)]
45) n 5T w+3/2)+ § E1F CGhme)™ "' H (mx) =0

| O0<x<m Rev>-3/2

Now let flx) = (ax)™” J,(ax). Here f(x) is an even function of x, and
therefore, 6, = 0, From (42) and (39) we obtain

ma, = -1 27" gin(ar) m¥/[a(m? - a?)],

and therefore,
46) nlax)™ Jy(tz:vz)=-—=2"’+1 a”! sin(arn)

x 2 (<1)* m2(m?- a®)"' %ma) ™ I (ma)
m=1 .
0<x<m Rev>-%

Making a approach zero in (46) we obtain

7)) WTw+D+ S D* Gma)™ I (mx) =0

-¥%<v<¥h and 0<x<7m or v>% and O<x<m

From (45) and (47) one sees that there are generalized Schlémilch
series with non-vanishing coefficients which converge and whose sum
vanishes almost everywhere. Such series are known as null series (Nielsen,
1904, Chap. XXV; Fox, 1926; Cooke, 1930). The existence of null series
indicates that the Schlémilch expansion of a function, if it exists at all,
is not unique,

For other results and examples concerning Schlémilch and related
series, see Pennell (1932); Bennet (1932); Doetsch (1935); Erdélyi (1937);
Kober (1935); Watson (1931); Infield, et. al. (1947); Magnus and Ober-
hettinger (1948, pp. 58-62). Expansions where the Bessel and Struve
functions in (38) are replaced by their squares have been given by

Thielmann (1934).

7.10 4. Fourier-Bessel and Dini series

Let v>~1 and let x = y, and x = y, be two positive zeros of J (¥)
(in this case all the zeros of JV (x) are real; see sec. 7.9). Using 7.2(56)
we then find from 7,14 (9) and 7,14 (10), respectively, that

0 n #m,

@s) [’

]

td (y,8) J (y,t)de =
l/2[:71/_H (ym)]2 n=m.
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Similarly if A, and A, denote two positive zeros (see sec. 7.9) of the
function z J' (z) + a J,(z), where v > - and a is any given constant, we

infer from formulas 7.14(9), 7.14(10), 7.2(54) and 7 2(55) that
@9) [)ed, (A 6)J, (A 0)de=0 n #m,
=J%AT2A2 [J;()tm)]2+0\_2- v3) [J, (A )17} n=m

The integral formula (48) expresses an orthogonal property of Bessel
functions and suggest the expansion of an arbitrary function f(x) of a
real variable x in the form

50 f@= £ a0y,

with
6D %lJ,,, & 0P a, = [1ef0) I, 0, Ods,

wher¢ Yis Vps Vg eee  aE the positive zeros of thé function Jy(x) ar-
ranged in ascending order of magnitude, This expansion is called the
Fourier-Bessel expansion of f(x).

Similarly from (49) we have

(52) f)= £ b, 7,0,

with |

(53) AL, (A N2+ A2 D) [T A 1%E 8,
=222 [12d, 0,0 f@)de, -

where v > -J2 and A,, A,, ... ‘are the positive zeros of the function
z J )(z) + a J,,(z) arranged in ascending order of magnitude. This expan-
sion is called the Dini expansion of f (x).

The theory of the Fourier-Bessel and Dini expansion is given in
Watson (1944, Chap. XVIII) and the following theorem may be stated:
Let t* f(t) be absolutely integrable over (0, 1) and let v > ~%; then if
0 < x < 1, the expansions (50) and (52) behave in the same way as an
ordinary Fourier series (see also Moore, 1911; Stone, 1927; MacRobert,
1931; Titchmarsh, 1946, p. 70). For the bekavior near x =1 and x = 0
see Watson (1944, pps 5%, 602, 615) and Young (1941); for the Gibbs
phenomenon Cooke (1927), Wilton (1928), Moore (1930). For series similar
to (50) and (52) but with the square of the Bessel function see Thielmann

(1934).
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Let for example f(x) = x¥, then we obtain from (50), (53) and 7,7(1)
(34) x¥= }'i 2d,(y, Dly, d,4, )] 0<x<l,

Y 21, 4,0\, 2, (A)
(56) =¥~ E T O+ AZ LT 0T

=1
0<x<l, a+v>0
If f(x) = J, (x2), then we obtain from 7,14 (9)

56y L) J (xz) _ E : Ya Ju(-y.l x)

J(ﬁ ) 0<x<l,

2 2
n=1 Ve~ % )Jv-ﬂ Y

(57) J (xz)

S’ 2 D, Ly (M) L&) -z L) I, (2]
L DT AN LO0F T IO

0O<x<l
For further examples see sec, 7,15.

An expansion in series of Bessel functions which is suitable for a
positive finite interval has been given by Titchmarsh(1923a, XIII- XVI)
(see also MacRobert, 1931).

Let f(x) be defined for @ < x < b (@ > 0). Then the expansion.in

question is
68 f) = £ a, 10,0, DY, by, -, 0, 0,0, B,
where z = y_ is the m-th positive root of

J, az) Y (bz) - Yv(az) J,(bz) =0,

and

(59) lJ,(y, a)]? - W, ly, Bl*la,
=Yayild (y, a))? fab [, Gy, ) Y (y,0) = Y (y,8) J,(y, b)if (t)dt.

GENERALIZED DIRICHLET SERIES
Series of the form
$ %
fls) = nz 2,9 K, (A s),

s=g+in A <A <eee<)A <oer, lim A =

n-» oo
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have been investigated by Greenwood (1941). For v = % they reduce to the
Dirichlet series

f(s)= 4n)*% 3 a, e_xhs.

n=1

For various theorems concerning these series see Greenwood (1941),

7.106.5. Integral representations of arbitrary functions

The theory of Schlémilch series (compare 7.10.3) gives a method of
expressing an arbitrary function as a series of the functions J, and H .
Similar methods may be applied to corresponding expressions of an
arbitrary function as an integral involving Bessel and related functions.
We always suppose for the following that f(t) is a real function of the
real variable ¢ and is of bounded variation in the neighborhood of ¢ = x,
I f(¢) is not continuous at ¢ = x, in the following formulas f(x) must
be replaced by %[f(x + 0) + f(x — 0)], The conditions on v in some of
the following expansion formulas have beenrelaxed by Cherry (1949a).

The simplest type of such a representation is Hankel’s integral formula

(60) flx)= j‘: J, (ex)ede [ * fw) J, (vt)vdo,
valid if v > ~% and

fowt%]f(t).l de

is convergent, or v> -1 and

_f:"t%v(t)ldt and fo' tvHf(e)] de

are convergents The theory of the expression (60) has been . thoroughly
discussed by Watson (1944, Chap. XIV); Titchmarsh (1948, p. 240) and
Tricomi. In case v=1%, (60)reduces toFourier’s sine and cosine integral

respectively,
A generalization of Hankel’s integral is due to Hardy (1925), who gave
the formula

61) f@&) =[5 G (x)edr [; F_(ve) vf () dv,
where

s (_l)u (l/zz)v+2a+2n

(62) F, ()= )

o Ta@+m+Dl@+m+v+1)

(2)

v+2a=-1,v 7.

TNa)'(v+a)

22 -y=2a s




74 SPECIAL FUNCTIONS 7.10,5

(63) Gv(z) =cos{a ﬂ) Jv(z) + sin(aw) Y, (z),

valid under the following conditions (Cooke, 1925):

i) ae>-1 a+wv>-1, v+2a<3/2 |v|<3/2
(ii) ¢7 f(¢) integrable over (0, §), o=min(1+2v+ 2q, %), &0,
(iii) ¢* f(¢) integrable over (5, ).

The theory of the expansion formula (61) has been given by Cooke(1925).
SPECIAL CASES OF HARDY'S FORMULA

T a =0, we obtain Fv(z) =J, (2), Gv(z) = J,(2). This case reduces
to BHankel’s formula (60). If @ = %, we obtain Fv(z) = Hv(z), Gv(z) =
Y V(z). This leads to

(64) fG) = [T Y, (ct) £ dr [* B, (v2) vf (v) do.

If a = -~ %, we obtain

(65) f(x)

o .. “l ¥~ 7% .
= - Io Y, (xt) ¢ dt'/; [-Em— Hv(vt)] vf (v) dv.
Ifv=1%, we obtain
FV(Z) =YHnz)"% Copey(2) G, ()= Y%rz) % sin(z—an

where C, ., (z) is Young’s function 7.5 (85)
Weber and Orr’s formula

* J@x)Y (at)—=J (a) Y_(tx) st
6 - Y Y Y 2 d
(66) 1) L 0@+ V@

x [T 1, @) Y (at) = ¥ (01) J,(ad)] vf @) dv,

em'\'“\.

valid forvreal and [ t%|f(t)| d¢t convergent, reduces to Fourier’s sine
integral in case v = * % (Titchmarsh, 1923; Watson, 1944, p. 468).

Another formula due to Titchmarsh (1925) is
67) f)=m [T () ede [~ @/de) [t A, o)) of () dv

where

(68) Fv(z) = sin (@ 11){[:]1,(2)]2 - [Yv(z)]Z} — 2 coslan) Jv(z) Y, (2),

x (_ 1),; 1—\( +a+ 1/) =% _2y+2a+tem
69) A_()= ), pemrer A _* :
v 2oTl@+m+ DT (v+a+m+ DI Cr+a+m+1)
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valid under the following conditions (Cooke, 1925)

(i) a>-1, a+2v>-1 1>a+v>-% [|V<L
(ii) ¢ f(¢) integrable over (0, 8), o =min(l +2v + 2a, 1),
(iii) ¢f(t) integrable over (3, =), &> 0.

The theory of the expansion formula (67) has been given by Cooke (1925),
Special cases of (68) and (69) are

a=0, I—‘V(z) =- 2'Jy(z) Yy(z), Ay(z) = [Jy(z)]z,
a=-y, Ay(z) = Jv(z) J_y.(z),
a=-2y, A (2) =[J_, (2)]%

A generalization of Laplace’s integral involving Bessel functions has

been given by Meijer (1940, pp. 599, 702):

(70) (%) = (zi)"" fcc“” I () (@)% dt [ K () (0)* () do.
=i 0

As K (2) = K_,(z) 72 (14) we also have

(71) fl)=(270)™" J,_ o [LGu) + 'L (x)] (x£)* dt

xJ K, (f) r)¥ f(0) do

C+ix

(cf. also Boas, 1942), In case v = + %, (71) reduces to‘Laplace’s formula.
Other integral representations of arhitrary functions are

(712) f&)==% [t J@) dt [Z H? @) v™" f(0) dv
- joo 0

(Kontorovich and 'Lebedev, 1938),

(78) fl) =72 [~ e¥mUtOK (o) db

if{xtt)
o0 )
X L_we/‘"(”")K i eel@) f() do a>0,

(Crum, 1940),

= J (e +dJ_ (e o v
(74) f(x) =% ﬁ ot Lo + e f0) dv

(Titchmarsh, 1946, p. 83),
(75) xf(x) = 2772 [ " K () ¢ sinh (m) dt [ K, (0) f () do

(Lebedev, 1946), '
(76) f@) =)™ [T 1K (x) de ST () o) do

[ 1= -] .
(Lebedev, 1947). For further examples see Hardy.(1927), and 'Hardy and
Titchmarsh (1933),
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DUAL INTEGRAL EQUATIONS INVOLVING BESSEL FUNCTIONS

In some problems of potential - and electromagnetic or acoustic
radiation theory the unknown function satisfies one integral equation
over part of the range (0, ) and a different equation over the rest of the
range (Nicholson, 1924; King, 1935, 1936; Sommerfeld, 1943), The pair
of equations (Titchmarsh, 1948, p. 337; Busbridge, 1938)

L7y ) J ey)dy = g ) 0<x<l,
(77)
T 16, ey) dy =0 %> 1

has the solution
(78) T4 o) f(x)
= (2x)! —’Aa'foi t'+l/’°"<]v+%a(xt) de f(:»g(vt) p¥* (1~ p2)%he? dv,
supposed a> 0. .
The special case a= 1, v= 1, g(x) = 1 has the solution
Yaflx)=x"2sinx —x"" cos x.
The pair (Tranter, 1951)
f:yql(y) J, (xy) dy = f(x) 0<x<],

(79)
f:@(y) J, (xy) dy = F (x) x> 1

has the solution

(80) () = HG) + Ghay)® [ e L) J,,, Gy) dt,
where
(681) BG) =F() J,,,6) +y [ 2 F @) J, () dx,
(82) L&) =(¥m) ™% fotx”“ [fx) - f:o yH(y) J,(xy) dyl (¢* —=2®) 7% dx.
The solution of
ST @) J(xy) dy =G ) 0<x<],

(83)
17y @) J,(xy) dy =g ) x> 1

is
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(88) () =K () + Gy ® [] 17 £0) J,_, (ty) dt,
where

(85) K(y) =/

'w xg(x) J_(xy) dx,

(86) %mt®™ £(8) =M(0) +¢ 'f;t(tz ~x)" % U (x) dx

(87) M) =27 G() - x”[, K(y) J, (xy) dy.

7
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SECOND PART: FORMULAS

7.11. Elementary relations and miscellaneous formulas
SPHERICAL BESSEL FUNCTIONS

In (l)to (13)n=0, 1, 2, es ey

. <kn
V) J, 4 (2) =Cs 72) % [sin(z = %nm I (<1 (n+%, 2m) (22)72"
‘ m=0
<Y¥n=Y% .
+cos(z-Ynm) S (1)@ +% 2m+ D (22)7%7",
m=0
<K n=-%
@ Y, @) =Gr) % [sinG-Y%nan) I (-1 (1+% 2m+1)22)% "
m=0
: <%n
~cos(z ~Ynm % 1)@ +%, 2m) (22)72"),

@ BY @=Gr ¥ e ita % m) (22)7,

n=0

@) H®, )=Chnz) % it e™" 2 )"+ % m) @),

(B) d_,y @ ==Y, ) Y_ _,()=D"J (),

© B, () =i-1rHY () HE () =-i(-D" Y, ().

-ne-

sin z
b

, e
(1) J,,y(2) = 1P Ghnz) ¥ 2% (zdz )

z

Ccos 2

’

d n
®) ¥, ()= (=11 (472) ¥ z7*" (‘;E)

z

©) Hr(.'l%(z)=-i(-l)"(l/zﬂz)-%z"“(d) ¢ ,

zdz/ =z
(10) B, () =i (-1 (4 2) 7% 2 i) —
" zdz z
(1) ¥ (2) =Ga/2)* J +%(Z)=(_1)nzn( d \" .SE,
" " zdz z

d n iz
(12) ¢£™(2) = (4 n/2)* H‘l’%(2)=—i(-1)"2"<— i,
n n zdz

z
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1 | d n ,~iz
(13) 4’(2)(2):(%”/2)% H(zl%(2)=i(—l)"z"< ) e—..
n . n dz -

(19) Jy @)=Y _, (&) = (nz) 7 sinz,

(15) ¥, (2) == J_y, () = = (72) % cos 2,
(16) 'L, (2) = (47 z) ~* sinh z,

AD AP =i BN (@) == il ) H e,
(18) H,P(@) =i HB)(2) =iGhm2) ™% e ™5

RECURRENCE RELATIONS AND DIFFERENTIATION FORMULAS FOR
MODIFIED BESSEL FUNCTIONS

19) (-d ) YL =2 T,_ (2),
zdz
. d ¥ -y -y=n"
(20) 'E [z L(Z)]:Z Iv“ (2),

(21) <i> [ K ()] = (=D" 2™ K,,_, (),
zdz

d } -y - 1\m  ~y=a
(22) (zdz) ™K ()] =(-1)" 2 K, ()

(28) I_, ()~ 1,,(2)= 227! L, (2),
@) L, )+ 1,,()=21,@),

(25) K, (2)-K_,, (2 =-2vz7" K_(2),
(26) K ,_,(2) +K_,,(2) == 2K’ (2).

v=1

v=1
WRONSKIANS AND RELATED FORMULAS

; ] ]
W(wl, w,) =w, w, —w, w,

@ W, dJ.)=-2r2)""sin(va),
(28) W(J,, ¥,)=2(z2)",
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29 W, B = £2i(z2)7",
(30) W(H'), B!?) =-4i(z)™",
(81) W(I, L) =-2(z2)"" sinr),
(32) W(I,K)==z"".

33) J,(z)d_,,,(2) +J_(2) J,_ (2) = 2(z2)™" sinfn),
34) BN B2 () -B! (2) HP(2) == 4i(z2) 7",
(35) J, @)Y, (2)-Y () J,_ (2) =2(n2)"",

36) J,_, () H() - J () B, (2) = 2(wi) ™",

87 J, @ H? (2)-J,_ (2) H() = 2(miz)™",

(38 L)L, (-1, ()L _ () ==2(z2)"" sin@n),

(39) Kv+$z) 'Iv(z) + Kv(z) '_Q“ (zy=z""'.

FUNCTIONS OF VARIABLE ze '™, (m integer)

(40) d(ze inmy _ g inmY dJ, (2),

@1 Yv(ze iRy _ ginTY Yv(z) +2i Sifl(mmj) cos (wv) J. (2),
sin (ww) v
(42) HS)(ze immy _ _ sin[(m - 1) m] F(z) = o= i sin (m 1) BP0,
sin(zv) v sin(m) ¥
@, inmy _ sin[(m + 1) m] ) jmy SiD (mav) g
43) H Y (ze*T) —s,in(m/) H) (z) + e ) v (),
(44) '1;(28 imﬂ) —e i"‘m"l;(z),
(45) K (ze inmy _ o= inTY K (z)-in sin (m m) I (z)

sinfm) Y
In case v is an integer equal to n, then

. sin(m)

lim —

v+n sin(wv)

- l(_l)n(l+l)’

where [ is equal to m — 1, m or m + 1 respectively.



7.12 BESSEL FUNCTIONS 81
7.12. Integral representations
BESSEL COEFFICIENTS

1) = Jn(z) = f:cos (zsin ¢ ~n¢) do,
@ nd (2)=i"" f:e 20089 (o5 (n &) d,
3) = on (z)=2 _I:Aw cos (z sin ¢) cos (2n ¢) d¢,
@ = Ippay(2) =2 _I:AW sin (z sin ¢) sin[(27 + 1) ¢] d ¢.
In(1)to 4)nequals0,1,2,.... '

POISSON’S INTEGRAL
6G) T'lw+%) J,(2)= 277% (% 2V fo%w cos (z sin ¢) (cos ¢)?*¥ d¢,
© =5 G [T e (cos 9 dgh
D =A% [ e Q-
(8) =277% (4 2z)V fo‘ (1-£t?)?Y™% cos (zt) dt,
9)  =a%(Hz)? [Teiz®? (sin ¢) ¥ dg,

o

(10) 'tv + %) 'Iv(z) =n % (Y%z)Y f_“ e"* (1 —t2)¥™% dt,
in (5) to (10) Re v> - %.

HEINE’S FORMULA
(1) = Yv(z) =g ihVTy; _I;;”e-i“’os tcos (vt) dt

- J;m eizemht [oosh (bt — fvm) + e "V cosh (ve)] de}
U<argz <m

MEHLER - SONINE FORMULAS

(12) TCs=0) J () = 2% (Yx)"V _I-T (62 = )"V sin (xt) di,

1) Trh-17Y =27 % (%x)7V f‘m (t2 = DV7% cos (xt) dt,

in both formulas x>0, =% <Re v < %.
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(14) « Jv(x) =2 _f:o sin(x cosht — % vr) cosh (vit) dt,

(15) 7 ¥ (x)=-2 f:o cos (x cosht - %) cosh(vt) dt,

in formulas (14) and (15)x >0,-1<Re v < 1.
(16) 7 d, (x)= f:o e Visin(x cosht — Yovm) dt + j;%wcos (x sint —vt) dt
' x>0, Rev>0.
Generalizations of Schl&fli’s integrals (Lambe, 1931)

Kv
(17) n<"+y> J,[? - y)¥1= [ 7=t cos (x sint - vt) dt
x-y

— sin(un) [ eVt ycoshtmzsinhe gy Re(x + y)> 0.
(o]

xry ¥ 2 2)% 7 L ycost _: .
(18) = Y, [(x2-v?) ]=fo e tsin (x sint - vt) dt
-y

- <] -— - - .
_f (evt+ycosht+e vit~ycasht zsmhtdt
[¢]

cosvm) e
Rex>Rey>0.

MODIFIED HANKEL FUNCTIONS
(19) T'5 -v) K (z)= 7% G%2)7Y [CeT (12 - 1)V %de
! Rez>0, Rev<ly,

20) TG+ K (2) = % B2)” [ e ¢ (sinh £)27 ds
0 Rez>0, Rev>-Y%,

(21) K ()= foooe_"“h'cosh () di Re z >0,
(22) T+ %K ()= %n)¥ 2V e™? fom e~ #vh (1+ %W h di

Bez>0, Rev>-Y4%,

(23) Ky(az)z Y a¥ f:oe-%z (t+a? t_')t-y_l it
Re z >0, Re(azz) >O’

(24) Ky(az) = Yo Hhvm g f;” e %z (t-a? t_‘)t"v~l dt
: Imz>0, Im(a?z)>0,
(25) K (%) cos (%4 Vrr)=f:° cos (x sinht) cosh(vt) dt,

(26) K, (x) sin Mvr) = JN sin (¥ sinht) sinh (v¢) dt,
0

in formulas (25) and (26) x >0, -1 <Rev < 1.
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27 K () = 7 A Q22T w+%) f:o (t2 + 22"V % cos t dt
Rev>-%, largz|<%m
HANKEL FUNCTIONS
28) iTrh-v) 'HL"(Z) =27"% (Y%2)7¥ f:o e (- 1)V 4

Inz>0, Rewv<l

@9) ~ i T Ci=2) B = 207% G42)™ [ e (2 = D% dy
Tmz<0, Rewv<,

o . %
30) i T (% = v) HS)(Z):(%Z)-V 277-% j‘o ¢ 2V(1+t2) % eu(l+t2) dt
Imz>0, Rewv<l,
) o0 i A
(B1) =i D =) () = 207% (42)™ [~ (14 1)K o 4eY g
[¢]
Imz<0, Rewvc<,
(38 T + %) BE) = Chmz) ¥ ¢ 1 E=Hvmsm)
oo i3 1
x [T etV R (L4 Yisz™)V% 4y 3
[¢]
Rewo~% |8]<¥hm b6-%r<agz<s+on
(33) T+ %) HP () = Q)% e =i G-Hvmim)
iS5
N j‘(_)mel e~ tVHh (1 = Y%itz"HYV% gr
™S -] )
Rew>~%, |8 <%a, =37/2+8<argz <Y q+5,

BARNES’ REPRESENTATION

(34) 2#° H.(J Wz) = - e-i%v-rrj‘_;c_"'ii: [(=v=s)T(rs) (~%iz)¥** ds
. larg(~iz)| < Ysm,
[ (—v~3s)T(=s) C4iz)*** ds

larg G2} < % m,

.1 ~C +ix
(35) 272 H(:)(z) =ezév-rrj‘ s

~C —ic©
C is any positive number exceeding Re v.
86) 2mi J (x) = ST E) M +s + D17 H2)7*%ds
-0
x> 0’ Re v»> O,
(37) »*? H(L’Zz) =—e 7V ¢o5 () (22)Y
x [T ) T(-20 =) T +s + %) (-2i2)* ds

|arg (~iz)| <87/2, 2w not an odd integer,
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(38) »*2 H (;‘:’(z) =e 127V o5 () (22)Y

x [T s) T-20=8) Tlw+s + %) (2iz) ds
larg(iz)| < 837/2, 2v not an odd integer,

(39) 272 i K (2) = C4n/2)% e "% cos ()

x [TTOT¢~s~) T¢~s+1) (22) ds
|arg z| < 37/2, 2v not an odd integer.

INTEGRALS EXPRESSED IN TERMS OF RELATED FUNCTIONS
(a0) [ o”" cos (z cos ¢) cos veb dp = w4 cos Gham] ™" (3 (2) + J_(2)]
< —vsinChom s, @) = 7[4sinCom]™ [E () -E_ ()],
@1 fo T sin(z cos &) cos v deb = m[4 éin Com1™ [3,(z) -~ I_ (2)]
= cos(om) 5, ,(2) == nl4 cos G41m)] ™" [E (2) + E_,(2)]
(42) [ cos(z sin ¢) cos vg dgp =~ v sinb) s_, (),

(43) |7 cos (z sin ¢) sin v¢ d¢p = = v(1 ~ coswn) s -1 @)
o 1]
(44) |7 sin(z sin ¢) sin wp d¢p = sin(vm) s 0. @)
0

(45) foﬁ sin (z sin ¢) cos v dp =(1 + cos wr)'so’v(z),
46) [ emt it S U[S () —nE (2)- 7Y (2)]
n’=0,1,2,o--, ReZ>0,

@D [C e ey SR (IS () rE )+ r Y ()]
ﬂ=0’]_’2’...’ Rez>0‘,

@48) S, () =Z“f°°° e F (G =Yp+ Y%y, %=t - Yo Y5 -27) dt,

Re z>0,
49 Su.v(z) = z#H fom te ™ LF Ge=Yep+Yv, =Y u-Y2v; 3/2; -t?) dt,
Re z> 0,

(60) S, (2) = [% em#simht oogh (1) di,
J 1)
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(51) v So'v(z) =z J;m e~ 3" iginh (vt) cosh ¢ d,
(52) S, (2) =z [~ ™™t cosh(vt) cosh ¢ d,
in (50) to (52) Re z > 0.

7.13. Asymptotic expansions
7.13.1. Large variable

(1) BPG) =G e it A () 1y (22027 + 0(12) M)

m=0

~-g<argz <2m,

@ BE() = Grz)% e i EHrmAmIS (0 i) + 0(2) )]

R=0

-2p<argz<m,
For an appraisal of the remainder after the M -th term for complex v and
- Y7 < arg z < 32/2 and for - 37/2 < arg z < Y% 7 see Watson (1944,
p+219). These results have been extended to the range —~ 7 < arg z <27
and - 27 < arg z < 7 by Meijer (1932, pp. 656, 852, 948, 1079). For the
asymptotic behavior of a function expressed as an infinite Hanke! func-
tion series see Meixner (1949).

B J (=0 mz) % Ycos (z — Yowr — % m)

X(E D"y 2m) (227 + 0|2 ™)

—sinE-Y%ur-¥m) 'S (-1 (4, 2m+1)(22)25 1+ 02| ¥ "N}
rn=0 s

-n<arg z <,

(4) Y, (2) =04 7z) % isin(z = %omr - % n)

« [”§:'° 1" (&, 2m) (22)72% + O(|z|~2)]

+cos(z = Yur-%m['E (-1 (1, 2m+1) (22) 72 7140 (|z["2¥- )]}
mn=0 )
—n<arg z < 7.

For formulas for the remainder after the M-th term see Watson (1944,
pp. 206, 209) and in case of complex v Meijer, (1932, ref. above). For
further formulas see Burnett (1929).
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() L()=@m) %1 'S (<1 (o m) (227" + 0(|2|™)]
n=0

rie=t S () my @) 4 0z
m=0
- YUm<argz <3n/2,

(6) IV(Z) =(22)"% 77 ¥2 cos (m) {Mii [e? —i(=1)" e"i7v77)
m=0 .
xT(m+% = T (m+%+0)(22)7%/m L+ 0(Jz] ™)}
-37/2 <argz <%m,
(D K (=Ca/2)f e[ 'St m) 22)7" 4 0(z] 7]

n=0

~3n/2<arg 2 <3a/2

Throughout these formulas

(, M) =2""4(41? =N 41?2 =32 vee (402 = 2m - D]} /m !
=THG+v+m)/[m!T % +v-m)l

7.13.2. Large order

8) 217'Ip(x)=2% (p?+x2) % expl(p? + x%)% — p sinh™'(p/x)]

(5 2P a, Tt ) (7 + 2070 4 0]
n=0

x>0,
1 5 2 2\~
.(9) a, =1, a1=-§+ﬂ(1+x/p) ,
3 77 385
. ____(1 2, 2y=1 , — " 1 2/, 2 2
% =T g L +¥ x°/p%) *Sie Q+x%/p%)"

(For other expansions of Ip (x) see Lehmer, 1944; Nontroll, 1946)
10) K (x) = 2% (p? + 22 7¥ exp[-(p? + 3% + p sinh™' (p/x)]
('S 2% a T(m+¥) @2 +207% + 0G™M)]
mn=0
p»%>0, a_asin(9),
(11) = H;"(x) = 2% (x2 = p2) ¥ exp[i(x? - p2)* + ip sin~ " (p/x)]

e BT 'S 9mp P(malf) (i c2-pD)HR 4+ 0]
— m
. m=0 x>p>0,
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—5—( x2/p?)"Y,

(12) b,=1, 5

°°|r-4

3 7 385
b — 1- 2/ 21 __1 2/ 2y=2 s
=T g7 LT/ gL/

(13) n HV () =~ 2% (p? - x2) 7% exp[-(p2 ~x))* + p cosh ™" (p/x)]

x [ 2 (-D"2"b T(m+%) (p2-x2)"# L O(x"M]

p>x>0, b, asin (12),
(14) 27 J, (x) = 2% (p2 = x3) 7% exp[(p? - x2)% — p sinh ™" (p/x)]
x['S 2% b Tim+%) (2 -xZ)-%" +0 (™M)
n=0
p>x>0, b, asin(12),

(15) ﬂ.H;‘.’(x) ~~2/3 § e2tnt1)miss Bn (ex) sinl(m + 1) #/3]

n=0

x T (m + 1/3) (x/6) "= #1173
pxx px>0, e=1l-p/x, e=olx
(16) By(ex)=1, B (ex)=ex, B, lex) =K(en)® -,

),

1 1
B, (e )=-6 (ex)3—E ex, B (ex)——(ex) —2—(ex)2+%
' 1 43
_— _ L \3
B _(ex) = 50 (ex)® 60(6 )% + 84006

(For B, B,, B, see Airey, 1916, p. 520.)
PURE IMAGINARY ORDER

(17) 2= Jip(x) =2%(p?+x2) % expli(p? +x2)*% ~ip sinh ™' (p/x) - ¥ i nl

x e%W[”g'0 (20)* a, Tm+%) (@ +2)7% + 0]
Ps x> O, al as in (9),
(18) Kip'.(x) =27% (x2 - p?)™¥ exp[~(x2~p?* ~p sin"' (p/x)]
x["S (-1 255 Tlm+¥ *=p)™¥ +0G™)]
n=0

x>p>0, b, asin(12)
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(19) Kip(x) = 2% (Pz —x¥) " g hpm

xi”f.' 2" b T(m+%) (p? e

r=0

xsin[ %7 m +p cosh™ (p/x) = (p2 ~xD*% + Y]+ 0 ("M}
p>x>0, b_as in (12),

(20) K, ()~ 13re 7 & (<1 C_(ex) sinllm + D) /3]

mR=0

x C(im + 1/3) (x/6) ~tn #1373
pxx p x>0, €e=1l-p/x, e=olx

T3y,
| '
2D C (ex) =1, C, (ex)=ex, C,(ex)=%(ex)? +'2—5’

Co(ex) = (ex) + ez, €, (ex) mmlen)? 4 mdex)? + —
E + — > = —
3 €X 6 €EX 15€x 4 €EX 24 €EX +24 €EX +ﬂ)
43
Cs(ex) =—_ex)% +— (ex)® + €x,
120 6 4800

(22) #H‘i;\)(x) =2%(p2+x) ¥ expli(p?+xD% - ip .sinh_' (p/%)]

x epm=ikm M5! (e o b T(m+ %) (p*+x?) 74"+ 0(x™M)]

r=0

p, x>0, b asin (12}
7.13.3. Transitional regions
NICHOLSON'’S FORMULAS
(x ~ n, n integer > 0)
(23) J () ~ 3722 (&) /2 1T, (&) + I, . (&),
(28) ¥, () ~ 37V (&) [, (&) I, (D),
x >n, f= '3— (sz)_% (= _x)alz,

(25) J (@) ~ 7" 37VE(E/x)C K, (),

(26) ¥ (=)~ - 378 (g/x)\ R [ 4 (6) +'1;V3(f)],
n> x, f=—§—(%x)'% (x ~-n)*?,
(27) e im/6 H’:z )(x) ~ 3—1/6 (f/x) 1/3 H1(2/3)(f) .
f:; %x)"% (x = n)¥2, forx>n,

argle —n)=0; forx<n, arglx-n)=m
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WATSON’S FORMULAS

(28) Jp ) =3"%w [, (pw?/3) cos & — Y,,a(pw3/3) sind] +0 (p™"),

(29) Yp(x) =3"%w [J, (pw?/3) sind + Y . (pw¥/3) cos 81+ 0 (p™"),
x>p, O=pw-pw¥3-ptan'w+n/6, w=u&p?-1%,
80) J,(x) = 3% n ' wePK, . (pw/3) +0(p™"),

(L) ¥, &) ==3"%weP*[L , (pw/3) + L, (pw?/3)] +C(p~"

-1/3
x<p, a=pw+w?/3~tanh™' w), w=(1-x%/p?)¥,
7.13.4. Uniform asymptotic expressions
LANGER’S FORMULAS

(32) J, @) =w™* (- tan™" w)* [J, . (z) cos (#/6) ~ ¥, (2) sin (w/6)]
+ 0(p™?),
(33) Yp(x) =w % (w—tan"" w)*% [J”B(z) sin(#/6) + Y, ,, (z) cos (/6)]
+ 0(p~*3),
x>p, w=&2/p2-1D*% z=pw-tan""w),
(39 J, ) =7""w™* (tanh™ w —w) % K, (2) + O(p™*?),

(85) ¥, (&) =—w ™% (tanh™ w —w)#1 T, , (2)+ L, ()}+ 0(p™*)
x <p, w=(1—x2/p2)%, z = p(tanh™" w - w),

7.14. Integral formulas

7.14.1. Finite integrals

W J**""I(2)dz=2""""T,, (),
@ [ LD dz=2z"""_ @),
@) [z K () dz=-2"""K_,, (2),

(4) fz_”“ Kv(z) dz==z"Y*"K _ (2),

v-1

G [2¥d (Ddz=2""n T+ %) 2 [J (B _ (2) =B (2) J,_ (2)],

(6) [zYK (2)dz=2"""n*Tw+¥)z[K (DL _ (2 +L () K,_ (2)],
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(7D fz#Jv(z) dz=(u+v-1z Jv(z) S# (D) -2 Iy (z) S#’V(z),

(5) and (7) are also valid, when the Bessel function of the first kind is
replaced by the Bessel function of the second or third kind.

Let w_(z) and ¥ (z) be any Bessel function of the first, second, or
third kind and the order » and u respectively; then

8 JUBE—-a?) z+ (2 - p?)/z] w_(az) W#(/S z)dz
=z[aW (Rz)w/(az) -~ Bw, (a2) W.,(B2)]
=azW (B2w,_(az)-Bz W _(B2)w (az)
+ (g -2) W, (B2)w, (az),

-1, v-

9) fzwv(az) WV(Bz) dz=2(B%~ )"
x B Wvﬂ (B2) wv(az) -a Wv('Bz) W (a2)],

(10) fzwv(az) W (az)dz

= %Zz[Qwv(az) Wv(az)—w (az)W

(az) —wv_,(az) WvH(az)],

v+1 -1

(ay [z w (a2) W (az) dz = @2y w (az) ¥ (az)

/ 4
+(2))7 a2 I:wvﬂ(az) c?Wv(az)_ w_(az) E?L(QZ)-:I .
v v

Let vv(z) and V (z) be any modified Bessel function of the first or
second kind and the order v and p respectively, then,

(12)  JUB% - a® z + (JP=?)/2) v, (az) V#(B z) dz
=z [~a V#(,B 2) vL(az) + ,va(az) V;(B 2)k
13) [z v, (a2)]® dz

~ 122 tv, (az)]? - [vv(az)]2 (1+a 2272v2).

For other indefinite integrals see Watson (1944, pp. 163-138); Thielmann
(1929); McLachlan (1934, p. 115); McLachlan and Meyers (1936, p. 437);
Straubel (1941, 1942); Picht (1949); Horton (1950); Luke (1950).

(14) fol/m J#[z (sin 6)2] J, [z (cos 6)?] (sin @ cos )~ d9
=K@ T+ J, 4,2z Rev>0, Repu>0,
(15) [ J [z(sin6)?] J,[z (cos 6)2] ctn 6.d0 = %, (2)/u

Rev>-1, Reu>0,
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(16) [ J,[z(sin6)?] J, [z (cos )] sin 6 cos 6.4 6

LD SO LI

(2)
=0 vtut2m +1

A7 [ 7 1 (sin @21 J, [z (cos 0)2] (sin 627" (cos 625" dp,

Rev>-1, Rep>-1,

(Bailey, 1930, p. 419, 1930¢c, p. 203; Rutgers, 1931,)
(18 fo/m J\(z sin6) J (z sin 6) (sin 0)2*1 (cos G)2! dg,
(19) fo%w Jy(z sin 6) J, (z cos 6) (sin 6) 2+ (cos 6) 24! dg,

(Bailey, 1938, p. 145.)
20) [*71J (2 sin6)]* (sin§)**** (cos O)**' df
0

(Bailey, 1938, p. 141.)

Vule . . ey
@D [ [J,(z sin6)* sin 96 =2 arzans @ ‘ Re v>-1,
s See er‘rdl'n
@2 [ tNsin (z - 1) J,(¢) dt,
0
@) J thcos(z - 2) J () dt,
(Bailey, 1930c, p. 204, 205.)
(24) sinmlv+ p J;%WK#WQZ cos ) cos[(u~v)6]d6
=ha[I_(2) ’I_ﬂ(z) -1 (2) 'Iﬂ'(z)]. |Re(p+2)| <1.
7.14.2. Infinite integrals
INTEGRALS WITH EXPONENTIAL FUNCTIONS
(25) fx Y, (at) e-'y2 t? dt
=-Y%n% 37" exp v a®/y*?
[ ( 2/y) tanv7r+— (—-— az/y>secm],
|Re v| < %.

26) [T et T H " (2x/0) di = 2K (22) H ) (25),
(Hardy, 1927.)
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00, 2 .2 v 1 ] 1
@7 [T L(a)e™ t de =Yk y " exp (E az/f) I%V(E az/yz)
Rev>~1, Rey?*>0.
[see also 7,14 (60) to 7.14(79)1.

SPECIAL CASES OF THE WEBER -SCHAFHEITLIN INTEGRAL

(28) f:q t~! Jﬂ(at) sin (bt) dt = p~! sinlp sin~'(6/a)] b <a,
=atp  sinGhap [b + (b2 — a?)¥]7H b> a,

Re p>-1.

(29) fow t! J#(at) cos (bt) dt = p~" cos [u sin™" (b/a)] b<a,
=pu~ " a* cos (% pn) [b+(b2-a?)k]+ b>a,

Re u>0,

(30) f0°° Jp_(at) cos (bt) dt = (a? ~ b2 ™% cos [y sin ™" (b/a)] b<a,
=—atsinGun) B2 —a®) % b + (b2 - aH ]+ b>aq,

Re p>-1.

(31) f: Jp_(at) sin (bt) dt =(a?® — b2) ™% sin[pusin™'(b/a)] b<a,
=atcos Gum) b2 - a®) "% [b+ (b2 = a?) %]+ b>a,

Re u>-2,

For the corresponding integrals for the Neumann function, see Nielsen,
(1904, p. 195).

(32) ¥rlv? —p? f:o J#(at)‘Jy(at) t™' dt = sin (v - ) =,
' Re(v + p)> 0.
7% Ga) VT (p+ )

aTG+v+ )L+ DT w+%
Re(v+ >0,

33) [7J, () J, (at) e~ e =

By Tw-pw J;m Ju(at) Jy(bt)t“'”“ dt

= 2;;—1J+I ap,b-'u(bz - a2)v-u-l b> a,

=0 b <a,

Rev>Re u>~1,
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INTEGRALS RELATED WITH THE WEBER-SCHAFHEITLIN INTEGRAL
(35) 2°*' v+ 1) a¥*'™P [ K (at) T, (be) £ ™7 dt
o}
=b*T h~Yp+Yu+%) T % —-Y%p-Y%pu+%)

X 2F, G-Yp +Y%u+%e, B-Yp-Yu+huv; v+ 1; b%/a?),
Relv—p+1£p)>0, a>b,

(36) 2°*2T°(1 - p) f:oK#(at) K (Be) t™Pds
=V BYF, G+ Y+ p=Yop, Yo+ Yo=Y p—Y 05 1~ p; 1~ B2/ a?)
xTG+%v+%u-Y%p) TG +%v~You—%p)
xTG-Y%v+UBu-Yp) TG ~-Yov—You-%p)
Re(a+ 8)>0, Re(ptptr+1)>0,
(37 1/2”f:° Y#(at) J,(bt)t™Pdt = sintsa (v = p~p)

x f:‘ K, (a) T, (be) ¢ P ds a>b, Re(lv—p+12p)n>0,

(39 [T Y, 60, (@)™ de
== [1Y (@) J,60) + &/ n)coslin(p+ v+ wIK (@)K (b} ~Pds
a>b, Re(p+v-p>-~1, Rep>-1,
(89) J7J, (B8 K, (ar) 47 de

=20)” AT+ p+ 1) (a® + 69777
Re(w+ 1> [Re p|, Re a>[ImAl.

For further combinations see Dixon and Ferrar (1930).
INTEGRALS INVOLVING PRODUCTS OF THREE AND MORE BESSEL
FUNCTIONS
@0) [T P71, @) T, (60) dy(et) de,

Watson,(1934).
'J}\(ct)

(aD) [P, () J,, (be) dt,
K}\(ct)
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. 7,60
(42) jo tP7" T (at) Kp(ct) dt,
K (bt)

43) [ 7 K, (at) K (b)) K (c2) dt,
(Bailey, 1935a, 1936.)
@) S 17, (@) [J, (b)) = ' 72V dx

a?*7 ' T (V)

" omb T+¥ T2y + %) F Gy Y=v; 20+ Y a?/b?)

0 <Rev,

(45) fo“’JV(ax) Y, (ax) J,(bx) ¥ (bx) x2**" dx

a?* b~ (8v+1)
2T (/2- W (2v+3/2) 2

F(v+1/2, 3v+1; 2v+3/2; a®/b?)

~1/3<Rev<1/2

(For other formulas see Nlcholson, 1920, 1927; Titchmarsh, 1927; Mitra,
1933; Mayr, 1933; Sinka, 1943,)

INTEGRALS OF THE SONINE GEGENBAUER TYPE

46 [ I K, la?+ 2951 (62 + 22)7HY 15 dy
0
:by.a—Vz,u.-V‘H(az+bZ)%V~%#"%K [z(a +b2)4]

Reu>-1, Rez>0.
@7 f°°° I, () K la(e* ~ y AT (12 = y ) HY goH gy
= l/zne'i'”(”"ﬂ'%)b#a'vy”‘#'y (a2 + bz)%v-'/zu—%
XH(Z) [y(a +b2)/]

y=u=1

Rev<1l, Rep>-1, arglt2-y»% =0 if >y,

veps~1

arg(t? - y¥)° =m0 if t<y, where o=7% and -%, respectively.

(48) fowJu(bt) HZ(IZ)[a(zz-g.xZ)%] (62 + x2)~ %Ykt gy

=a VhHx V(g2 — pR)Y VTR H(i)p__ [x (a2 — b2)*#]
a>b,

[x(bz_GZ)‘/z]
a <b,
Rev>l{ey_>-1, x>0.

= 2inT bhaTVy V(B2 - 2PV HATRE
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(49) f: HLZ)[G (t2+x %] (t24+x2) %V p2ut gy

= 24 g TRV D (i 1) B

V-#—l(ax)

Re(%v-%)>Re p> -1
(50) fowKu[a(‘z““zz)%] (£2+22)7HY g20%1 gy

=<2”'a-”"" z'+”'—”l—‘(y+1) Ku '(az)

i 2>0, Rep>-Ll

(51) fom Ju(bt) (t2422)7V bt de = (40)7" 2 VPRV (bz)/T'(v)
Re(29-%)>Re u>-1, Rez>O0.
52) [7J, (be) e male?-y )% ¢y ¢ de memir @b (g2 g2k
0
arg(t2 ~y2) % =Yr if <y,

v=p=1

(53) me i@ 6D (g2 2% _ g f: cos (bt) K [a (:? = 52)*1ds

oo |
=—xi fo cos (bt) Héz’[a(bz—tz)%]d;, Cce ecmtal

(For similar formulas see Watson, 1944, p. 417-418; Mayr, 1932; Gupta,
1943b.) '

(54) e "%"(p"’)j:c tP! J#[b (62 +y2)%]1 (¢2 +y2) %1 (12 =.q2)" """
x1cosem(p — )] J, (at) + sin[Yam(p -] Y (at)ide

=.f_i 2-m-| ( d ) {ap_z J#[b (a2+ yz)%] (aZ +)’2)-_%“H_’(J”(a a)}

m! ada

a>b, Re(tv)<Rep<2m+4+Rep, Relia)<0, m=0,1,2, .,
(55) j-ow Ve Jp[b(tz+yz)%] 2+ yz)'%“(tz + BZ)‘-m—I
x {eos[mlp ~ )] J (ar) +sin[nlp -2)] Y (at)} de

m! BdB
aZ;bQ Re(iv)(Rep<2m+'4+'Rey, ReB>0, m=-0, 1, 2,000,

—c0en 20 (S2) 18070,y - - Ko )

(56) [ ¥+ T [b(G2 +y ] (24 y DB G2 4 B I, (ar) ds

=BYJ, bl - B 1 * —BH 4K (apB)
a>b, Ref>0, -1<Rev<2+Rey,
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(57) [T ¥, (be) I, (ar) G2 + BN de = BYHT (B) K, (aB)
a>b, Rew>-1, Relv-pu)<2, RefB>0.
(58) [ ¥ J, () €%+ B de = B¥ K (ap)
a>0, Ref>0, -1<Rew<3/2,
(59) [T t¥*J (at) €%+ BD TV di = ok gY M 27K, (aB)/T(p+1)

~1<Rev<2Rep+3/2
For similar integrals see Watson (1944 p. 434-435J).

PRODUCTS OF BESSEL FUNCTIONS

- Zet ~t \%(lyv+u)
(60) K, (2) K, () = [~ e-w-vn(_e_l)

Ze ty zet

xK, JZ2+22+222 cosh2¢)%#1dt Re(Z)>0, Re z>0.

X —xet?

- X + xe t % vtu)
- sin vrr va(w)]de - 2 sinvn fo eVt <m>

) X — ge 16\ B wtw
61 20d,00 7,0 = [e ‘DQ(L) [cos v I, ,(w)

x leos vr J , (@) —sinwn Y, (D)]dt

X>x>0, Re(p-1)<%, w=(X2%x2-2xX cos )%
Q=(X?2+x%+2Xx cosht)f

(Dixon and Ferrar, 1933, p. 193, 194).
(62) J#(z) 'Jy(z) + Y#(z) Yv(z)

=472 f: K#+V(2z sinh ¢) [e¥ ¥ tcosvr + e "BVt cos pal dt
Rez>0, J[Re(v+p|<Ll
(63) J,(2)J, (=) +¥,(2) ¥, (2)
=472 f’m KV_#(2z sinh ¢) [e Tty e W)t os (x - tldt
0
Rez>0, |[Re(v-4)| <1
(64) J, @) J, () =Y @) Y (x) = 4z f: Y 4, (2% cosht)cosh[(p-v)¢]d:s

x>0,
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65) I, Y, &)+ J,@) Y, =-4a"" [, J

u+v(2x cosht) coshl{p—v)¢ 1de

x>0,
66) J,(2) Y, (2) - J (2) ¥ (2)
=47"2 j:o Kv+u(2z sinh?) [e ¥ #) tsin (ur) - e W)t sin (vn)]de
Rez>0, |Re(v+p)|<1l
67) J,(2) Y (2) -, (2) Y (2)
=4772 sin[(p - v) 7] fom Kv_u(2z sinht) e~ @Kt gy
Rez>0, |Re(v-p)l <],
(68) K,(x) L (x)= [~ d,, (2x sinht) e ®#)de
Re(v-p)<3/2, Re(v+p>-1, x>0,

(69) [Ky(s\c)]2 sin(pr) =7 f:o Jo(2x sinht) sinh(2vt) dt
|Rev| <%, =x>0.

(70) [Ky(x)]2 cos(vm)=~n fow Y (2x sinht) cosh(2vt) dt
|Rev| <%, x>0,
() L&) K, )+ @)K, (x)=2 J:° J,4,, (2% sinht) cosh[(u - v)t]d:
Re(v+ p)>-1, |Re(p-1v)|<3/2, x>0,

(72) Iv(x) Ku(x) _ -Iu(x) K, (x)=2 J;m Jv+u(2x sinht) sinh [(x - v)¢]d:t
Re(v+p)>-1, |Re(p-1)|<3/2, x>0,

(73) Ip'(x) K (x) - cos{(v - p)al Iv(x) Ku(x)
= sin[7(p - »)] f:c Yv_u(Zx sinht) e~ Wtult gy
x>0, |Re(v-p)| <1, Re(w+p>-%,

Y ( ad ( o0
VZ)—Y (Z) yz)=_4ﬂ-lf KO(ZZSinhl)C_Ztht

J .
(74) 4, ) v v dv o

Re z >0,

. 0
(75) Iv(x) K, (x) _ Kv(x) ag(x)
dv ov

+ cos(vm) [Ky(x)]2 x>0, |Rey| <%,

=7 f:o Y, (2x sinht) sink (2vt)dt
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For most of these formulas see Dixon and Ferrar (1930) and Meijer (1936,
ps 519).

_ - _ xe T+ yet Kwtu)
(1) PG HEy) = )™ [ om0 (—>
ye
x H:/z_:ﬂ[(x2+yz+2xy cosh 22)%1d: |Re (v—p)| <3/2,
idv \ hw+up)
T x —ye
77D 2= K#(x) Iy(y) = _f_ﬂ e iv® (x——)w"_'qs)

[(:\72 +v2—2xy cos$)%]dep — 2sin (va)

/é(v+p.)
% +ye~
x f ( 4 > [(x +y2 + 2xy cosht)%1dt

x+yel
x>,
Dixon and Ferrar (1933).

(718) LK, ()= [ 77, [2(z£)% sinbe] e~ En2)eeb 2
Rev>-%, Re(é-2z)>0,
(79) K_(z)K_(£)=2cos (vn) f:sz[2(zf)% sinht] e "€ *2leosht gy
~%<Rev<%, Re(*+£%)?2x0.
[see also 7,14(25) to 7.14 (27)].

INTEGRALS INVOLVING STRUVE’S FUNCTIONS

(% p) 2477 tan (4 pnr)
‘ Fro-%u+1)
~1<Reu<l, Rewv>Repu-3/2,
ﬂ% F(ﬂ"‘l/) 2THY
T(p+v+ %) T (p+ %) T (+%)
Re(u+ v)>0,

82) [7H (22)(2 - 1YV iV de = %k T (h-0) 2% [J, ()]
z>0, |Rev|<¥%.

For further integrals involving Struve’s functions see Mohan (1942);
Horton (1950).

(80) S+ R, () de =

(81) f:’ H ()R ()™ dt =

7.15. Series of Bessel functions

SERIES OF THE NEUMANN TYPE

(1) z¥e”*=2"T(v) ?o (v+n) C:(y) Iv+n (z),
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T{p+n)T@+1-p) (u+2a)
T+ lep-n)Tlw+n+1) #*n

(If v~p is a non-negative integer this expression reduces to a finite sum.)

N o ( %+ 2n) T A
3) J, (= sin) = (4r2) 7% (sin®)” ) (”If(* +") - (1’)’ " e
o n+w

(2 G421, () = ) @).

n=0

x C* (cos 0) d .y, 5 (2),

_ > (w+1l+20) T(v+1+n)
@ B,GT0+%) =4 %Zo 1 Gn s 2ra D@ s D Jr+ree D

00 —1)
) Jv(Z) 7= sinvm |:1f"1 'JO(Z)+ z (V-zll-n-'--l(/—)n)J" (Z):I >

© (420777 d (a2) J,(B2) <[a* B¥/T (v + 1] 2 (y+2m)

(2)

y+2m

V' D"T(y+m+n) a®
x im0 nllm=-n)C(n+p+ )% !

(0 (82)77#7J (a2) J,(B2) = o B¥/[T (p+ D Tlw+ D]

F (-n,-n—pv+1; 8 /az)]

y (S' (y+2m) T (y +m)

— L emyy+my p+ L+ L o2, BY) Joysom @),

n=0
(Bailey, 1935,)
8) Y%=z 'Jﬂ(z cos ¢ cos®) J, (z sing sin®)

= (cos ¢ cos ®F (sin ¢ sin PV s ED"(p+v+2n+1)J
n=0

LAv+2n+ (=

XF(#+-v+n+1)F(~v+n+ 1)
nIT(+n+1) [Cl+ DI

) [~n, p+v+n +1; v+ 1; (sin qS)z]

Flnp+tven+Lv+ ] (sin®)?]
i, v not a negative integer.
(Watson, 1944, p. 370; Dailey, 1929).
©) z¥=2T(A+Y%y) 3 (%z)%”" Iyppan(2)/n !

n=20

I'w-p+n)

10) Tw-p) J () =T (u+ 1) Z s TintDanl
v+n n

BT @),

v #p  p 0ot a negative integer,
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(% z sin20)¥*?"
n!T(w+n+1

(11) J,(z cos6) J,(z sin6) = 2
n=0

v+2n (z)

v not a negative integer,

1 1 o il h " 1 1 1
(12) G+B™ J[+R)*¥= Y L )
v n=o0 m ! v+nm
< o 4] < J2l,
13) +DPY [G+R¥]= Y sy (%),
n=0o m! vtnm
} 51 < |z,
14 APz -a)*1= X (a2)"PHD (@)/T(m-v+1),

me=-—00

15) B (1-a)%¥1=1-a)% £ Gaz)"vEY

_ m=p+1
n==—00

)/ Tm-v+1),

(16) C4m2) 7% cos[(z2-220)%1= & +*¥J _  ()/T(m-w+D),

= v
m==—00

(1) Chnz) *sinl(z®+ 22)%]= £ " VJ_ . ()/T(m~v+),

(18) (s2 =A™ BV [2(s2 = 72)%] = s H%ze® sV HOY (28)/m!,
v n=0 vtnm

(19) (s2 737" Ky[z(sZ - %] = § M ze®)n s~V K, in (zs)/m!,
n=0

(20) (va)~ " sinlwm) = J,(2) J_,(2) + 2 s J e (2) J__ (2

n=1

1) J, (2z cos O) = [J (z)]Z +2 E JAV— (2) J/w+ (2) cos (2r 0)
Rev>0, -%n< 0< Y%n,

@) [J,@F=2 £ (D" J,,,6)J,.,6) Re z >0,

23) J, (22) =Y%me* £ (D ITE/2-017" T, ()], @),

n=20

24) J, k-t = J, () I,&x) + S oy +¢77 J (x) T_(x),

n=1
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(25) J,lx(t+27 D] =[J, (] + S (Dr@ra [J, )77,

n=1

(26) ber (2%x) = J, ) I, (x) +2 3 (-1 J, (0) T, ),

n=1
(27) bei (2% x) = 2 °z_°0 D" ) T, @),

(For further examples see Bailey, 1935, p. 235; Wi_se, 1935; Banerjee,
1939; Bateman and Rice, 1935; Fox, 1927; Rice, 1944; Rutgers, 1%42;
Nielsen, 1904, Ch. XIX to XXI.)

ADDITION THEOREMS AND RELATED SERIES

w =z +Z%~ 227 cos¢)”* and CY(z) is Gegenbauer’s polynomial (see
'section 3,15).

28) wH"P(w) = (%22)7VT () S w+ n)C” (cos ¢) Jvh(z)HS,:"fz)(Z)

n=o
vEO-1,-2, ..., |et®|<|Z],
29) HMDw) = J, (z) HPD(Z) + 2 2 I, @) BIO(Z) cos (ng)
lze *1%| < |Z],
(B0 w™J,w) =4z DT W £ (w4mClleos @), () J,,,2)

v#E0, -1,-2, ...,
B J,w)=d,)d,(2)+2 3 J @) J (Z)cosug),

rn=1

(32) w_VJ_V(w) =Y%2Z)"'T (V) § (—1)"(.V+n)C:(cos &)J n(z)JV+n(Z)
n=g (.
v£0,-1,-2,..., J|ze¥® <|Z],

Lete ¥ =(Z - ze " ®)/w and |ze 1¥| < |Z|.

-y

(33) Y ) e¥= 5 ¥, 2)J @)e™?,

n=-—oc

(34) Ay e = $ pULAZ) g () ind,

n=-—00
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(35) K (w)e""z’— S K

n=—0o00

Z)I,(z) e,

v+n

36) Lw)e™= § (I, @)1 ()e™?,

n=—o

(37) (2z sinkgp) ™V J (22 sin¥ )

2T () § (v+n) 27V, (2)]% C¥ (cos ¢)
n=0
vEOQ ~1,-2, ...,
(38) J,(2z sin% ) = [J, (12 +2 § 7, cos (ng),

or

@9 I L+t = § 17, (), ),
£l <lincase v£0, + 1, 2, ...,
@) ¥ I [z¢7"=0)]= S (-1re*J,_ () J ()

n==—0o0

l(/<lincasev#0Q,t1,%2,...,

4l) (z23+22-2227 cosqﬁ)_l/’ exp [ti[z2+2%~-2227 cos¢)%]

=2inzZ)™% F (n+ %) I, @VH WP @) P, (cos §)
n=90

n+¥%
|ze *i%| <|Z],

42) %42)?TE) =TT 1+3) 3 w+n)TQuv+n)ld,, (]2/n!,

n=0
(43) (sin asinB)%7YJ. _, (z sina sinf) e izcosaces 3
v-4%

i"n‘(v+n)

o 1—-\(21/ n) v+n

= 22K (r2) K L WI)° ) (:)C7 {cos o) C (cos B),

(44) cos(z cos) =2VT () S C1rG+2n)zVJ () C 7 (cos ¢),
n=0

'u+2n

v+2n+1

(45) sin(z cos¢) =2YT (1) § 1+ 2n+ D27V (z)C,;H(cos b).
n=20
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SERIES OF THE KAPTEYN TYPE

46) vn ¥ (Vz)—smwr[l 22 E (-1)"J (nz)/(n? - 23],

n=1

4?7) vr E (vz)—2(sm/2w)2—4v 2 [sin %um + % nm)]? J(nz)/(n ~12),

n=1

48) (1-2)"%=1+2 ¥ [J (n2)]?,

n=1

49) [(1-297%-11= § J [w+¥21J,,[+%z],
n=0

50 z"'sinz=1-z 2 (4n2=-1"! [J n2)1%,

n=1

G) 1-2"'=1+2 3 J, (n2),

n=1

SCHLdMILCH AND RELATED SERIES

(52) T'w+1) $ cos (mt)(‘/zrnx)"’Jv(mx)=—% O<x<t<m,

m=1
=Y +ahaT (1~ 2/x?)V % 0<t<x<m,
Re v>-%, (Cooke, 1928),
(53) b5 (/mx)—”J (mx) Ghmy)™ J (my) == 2T (p+ DT (v + N

m=1
+a7t [T+ DT v+ %] F Gh= v Y p+ 15 2%y ?)
a>y>x>0, pv>=J, (Cooke, 1928),

(50) Tw+3/2) 3 cos (mt) Ghme)™ " B (ma) = = (v + ) 7%
== O<x<t<w Rev>-1, (Cooke, 1930, p. 58),
=—a k4 s (1= 22/x )V F v+ %, Y3 v +8/21-2%/x%)
O<t<x<m Rev>-1, (Cooke, 1930, p. 58),

(65) 27=-2T(w+1D £ (-D* %a/a)Ym™ J (mnv/a)

a=1

L<x<a, v>0,
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(56) = dJ, (x) = 237V S m'v(@am? -D7'H,(2mx)

=1
O<xgm wx-Y%
67 ¥ 7* -2 Tw+%) %' B (ax)+7i T (v+ B%a)' "™ (ax)
=2v+ %) gﬁ_' m{m?=a?) [l = (=1)* ¢ @7} (y m)'-V‘Jv(m)
0<x<m w>kh
For (55).to (57) see Pennel (1932).

EXPANSIONS OF THE FOURIER -BESSEL TYPE

In the following formulas v and z are arbitrary, but v £-1,-2,-3,..
The zeros of z™"'J (z) arranged in ascending magnitudes of Re vy, > O
arety  ,00=1,2,8,...,). Then (Buchholz, 1947 )

(58) —J((L))[J (2)Y (X2)-J (X2) ¥ (2)]

= 5 Iy, VI, Xy, Vd,4,y, N2 2=y )7

n=1 +n
O<x< X<l

69 J,w/J,@=2 5 y, @y, NI 29,0, 0

=x+22% £ 0,0, Dy, 00, 0 0, T
‘ 0<x<],
60) J,,, xz}/J,(2) = 22 E Iy by, n D yp =2, (v, D177,
6D %log X~ £ J,(ey,) 0, (Xy,) Iy, J, by, )72

OsxSXSly yn=yo,n’

62 [1,N7"=1-2 F [y, 2=y )" +y 1, N7

(63) [7,(N 72 =1+4 £ B, G% -y )70+ (22 =93 )11, v, )72
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6 19,17 =227 422§ [GT-yE )7 10, )

65) [J,(2)172=4z"2 + 1
+4 21 i (22 =92 )72+ G2 =yt )T Gy, D172

For (62) to (65) see Forsyth(1921).
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CBAPTER VIII

FUNCTIONS OF THE PARABOLIC CYLINDER AND OF THE
PARABOL(QID OF REVOLUTION

8.1. Introduction

Let Xy Xps Xgs be Cartesian coordinates in the three-dimensional
- space. We define coordinates of the parabolic cylinder &, 7, {, by

(1) x,=én, %,=%&-Y%n" =x,=¢(
and coordinates of the paraboloid of revolution &, 7, ¢, by
(2) x,=&ncosg, x,={¢nsing, =x,=%E-Yn2.
Let
& 9% o

be Laplace’s operator, and let f be any function of x only. The partial
differential equation

@) Au +f(x3) u=0

transformed to the coordinates of the parabolic cylinder is

2 2 2
@ (§z+n2)_,(6u 6u>+6u+f(é_)u=0

+
9& 3172 ac 2
and it has particular solutions of the form U (&) V() W({) where U, V,
W, satisfy the ordinary differential equations
2 2
iz TOENU=0 o

2

(5

+(on2=-N V=0,

14
VL +[f(Q) -l W=0,

with arbitrary constants o, A. Again, with a constant k%, the partial differ-
115

(6)
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ential equation
Au+k*u=0

transformed to the coordinates of the paraboloid of revolution is

2 -2 1_i _a_”_ —1_i _a_i
el )]

2

+ (&2

2. =
FyE +k*u=0,
and it has particular solutions of the form U(¢£) V() W(¢), where U
satisfies the ordinary differential equation

d?U dU

+ &N —— 4 (B8 ~apP P NU =0,
iE & iz &E-ap* &
V satisfies an equation similar to (8)except that the sign of A is reversed,
and W satisfies

2
d¢?
For solutions which are one-valued and continuous on the paraboloids

= constant or n = constant, 2y must be an integer.

In the case of a more than three-dimensional space several general-
izations of this approach to the investigation of (3)are possible. For some
of them see P. Humbert (1920 a, b, ¢, d).

‘The ‘solutions of (5) and (8) can be expressed in terms of confluent
hypergeometric functions. 'Although (8) contains two essentially indepen-
dent constants, and therefore is as general as the confluent hypergeo-
metric equation 6,1(2) itself, the special cases where 2y is an integer and
where %, ), are real are particularly important for certain boundary value
problems. These cases, and the solutions of (5) will be discussed in
this chapter.

8

) +4u2 W =0,

PARABOLIC CYLINDER FUNCTIONS
8.2. Definitions and elementary properties

By a simple change of variable, 8.1 (5) can be transformed into
d%y
dz?

The solutions of (1) are called parabolic cylinder functions or Weber-

Hermite functions. They can be expressed in terms of confluent hypergeo-
metric functions. ¥ we define

(1) +(v+%-Y%z3)y=0,
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@) D)= 2% e %% 2 w(1/2-1/2; 3/2; 2%/2)

3) = 2RO 2R gy, - (2 D)
" (%)
=.2%V -z%/4 [_@_1 1,12
4) e CO—%0) Y%y, Y Yz?)
z T'(-%)

""5}?1"(__—1/2,,) @(1/2—11/2; 3/2; 221/2)]

[see 6,1(1), 6,9(2) and sec. 6,5, for the notations] we find that
(5) DV(Z), DV(—z), D_ _,Gz), D ,(=iz),

—- —m
satisfy (1)s The values of D ,(z) and of its derivative at z = 0 are seen
from (4). Since a solution of (1) is completely determined by its value
and the value of its derivative at z = 0, and since there are precisely
two linearly independent solutions of (1), we find the following relations:

rw+l) , .,
6 D) =# BTD_ (2 +e D (iz)]
. 2% .
(7) =e 7D _(-z) +———F(i)v) e'(”“)m/zD_V_,(iZ)
. 27)% .
(8) - eV"”DV(—z) +% e w+t)mif2 D-v—l (-—iz)_

and those which can be obtained from these by substituting ~z for z,
These relations show how any three of the solutions in (5) are connected.

The parabolic cylinder functions are entire functions of z. If v =1 is
a non-negative integer, we find from (4) that

© e* /4D ()=27%H (27% 2)

is a polynomial; # (x)is called the Hermite polynomial of degree n (see
Chap. 10). If v is not -an integer, Dv(z) and DV(—Z) are linearly indepen-
dent. For all values of v, DV (z) and D_,,_,(%iz) are linearly independent.
The Wronskian determinants are

d ;
10) D)D) =D (2) 2D ()= @m)*/T ),
dz dz

ey i2)=D_

d
(11) D, (z) — D iz) — D _(2) = —i exp(-Yvm).
dz dz 7V
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If v and z are real, the values of Dv (z) are also real, For the differential
equation 8,1 (5) we can also give real and linearly independent solutions
in terms of the D if o, A, are real, If we assume 0> 0, we can transform
8.1(5) into

2

d
(12)dT};-+(1/;x2—p)y=0

where &= (40) %x, p=— A(40) ™%, and we find that the real and imaginary
parts of

1+
(13) Dip_% (i o x

satisfy (12), Cther sets of solutions of (12) which are real on the real
axis are

(% = %p)
ot Dipo e 74 4 Doy ey )
T

F(% %i'p) im 171
YAt A(1+z)[Dw-( #2) + Dy (e TR = 5, ()

Rel 2% e3P/ [(1 4 e 2R % —~ 1]% e-il'yl/2+7T/B)D‘ ot (ve iﬂ/4)¥=y2(x)

—Im{2A 3rp/4 [ +e—27'rp)%+1],4 ~ity'r24ms8 D, (xe iﬂ/‘)}=y3(x)

ip~%
where y' = arg I' (4 + ip). y, and y, behave simply at x = 0:

Y, @ =1 5©@=0, (=0 y(©0)=1,
and y, and y, behave simply at x = c:

¥, = (2/x)% e%P[(1 + e Z"P)% +11% sin N1 +0E™Y]

¥, = (2/x)* e#TP[(1+ e ™A% ~1]% cos[g(x)1 [1 + OGN,

where
g(x) =1/4x2—p log x +Ha+ 1/2)/'.
We also have
¥, (=x) = ,(x).
J. C. P. Viller has made y, and y, the basis for the computation of
numerical tables;.y, and y, have been discussed by Wells and Spence,

(1945)and by Darwin (1949j.
From (2) and 6,6 (6), 6,6(7) we find
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(14) D, ,z)-zD (2)+vD,,_ () =0,
and from 6,6 (10) we have

(15) di;[e%zznv('z)h(—w (1) e¥2°D ()
¥4 vem

’

d" ' o
(].6) m[e_/l‘zzDV(z)]z(—l)m e AZZDV"_M (Z) m=]., 2, 3, see o
Therefore, we obtain from (15), (16) and from Taylor’s theorem

(17) D (w+y) = ¥ § Co)m )™ D_, (x)

mn==0
= e by T 2 (V) y" D, &)
n=0 \"

and for v = 0 this gives the generating function of the D (z) [i.e., of the
Hermite polynomials, see (9) and Chap. 10l

(18) ezt Y

n=0

tn
w1

If v is a negative integer, the D (2) can be expressed in terms of the
error function

, =1)" d® .
(19) D_ - (z)= 2% e-—%z2 [e/zz2 Erfc (2,_4 z)],
" m! dz"
and if v = ~% in terms of a modified Bessel function of the third kind,

(20) D_y, (2) = (42 )% K, (4z?).
8.3. Integral representations and integrals

INTEGRAL REPRESENTATIONS OF PARABOLIC CYLINDER FUNCTIONS

Dy(z)
2%1/ Y e TR VT oL I Y (=
(1) = - e hZ fo etz TRy (14 ) A1) gy
T Re v <0, largz|<¥m,
(2) =}‘—(?/A(I:TI)) ze'%zzf:oe_%tzzt'%('+y) (1+8)%7v ds
=N

Rev<l, |argz|<Y%n,
e"l/“"'2 -

3) =ﬁfo ¢ ~Ft=Yit® ymvm dt Re v <0,
-v
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2 Y Yz? o —y?
4 Dv(z)= —) e* fo € tY cos (zt = Ym) dt
7
Rev>-1,
6 D_, la/z)¥]
e Halz z¥ v [P (21)]7) f: e # Y™ exp[~(2at)*] dt
Re v»> o,
6 D, (2)= QRvK % %z 27!

xftoor(s) FMGrv+Y-s)THBv=-Y%~5s) %z ds

FGiv+ R T Chv-%)
'larg z."l < %n, V%+1/2,—1/2,— 3/2, sesy

(D D, D, (=2 ] J,,, (") cos (ot ~ Yovm) e ™* &b
Re z > 0, Rewy>~ 1,
Kmi s
Dv(ze "‘)Dv(ze Ky
-
® T = J I,y Che?) e Mdt Re v<0, Rez20,
23/2
. o0 2 -
(9) —m fo KV"‘% (t ) cos (Zt - IZ'VIT) € ’tdt
0<~Rev<],
1l o -
(10) =—— fo (cosh t)¥ (sinh £)¥~" exp (- % z? sinh £) dt
4

Rev>0, |argz|<Xm,

The integral representations (1), (2), (3), (4), (5), can be proved by
verifying that the right-hand sides satisfy the differential equation 8,2(1)
and assume the correct initial values at z = 0. Equations (1) and (2) can
also be derived from 6.5(2), 6.5(6) and 8.,2(1). In (6), the path of in-
tegration must be chosen in such a way that it separates the poles of
I'(s) from those of the two other gamma-factors in the numerator of the
integrand; the formula is a consequence of 6.11(9).

The integral representations (7),(8), (9),were proved by Meijer (1935b,
1937a) and (10) was proved by Bailey(1937). J,, K, denote Bessel
functions of order v ; see 7.2(2), 7.2(13).
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There exists a very large number of other integral representations for
the D or a product of two parabolic cylinder functions. For representa-
tions of D see Meijer (1934, 1935a, 1938a). An integral representation
of D, involving other confluent hypergeometric functions was given by

Meijer (1941). For results related to (7), (8), (9), see also Meijer (1937b).
INTEGRALS INVOLVING PARABOLIC CYLINDER FUNCTIONS

(1) [7 e7# 87 A2 D [2(ke)*] ds
0

21-,6—11/‘{ 7.,% F(B)
T T+ %B+%)

(z+k.)',3/2 F(i Eiﬁ_-‘-_l Z-—k)
2’ 21 2 ) Z+k
Re >0, Rez/k>0,
12) [ % D_ @) ¢% Bla, o5 - Hpe?) de

_ m I'Qe)Tr'(%v-c+a)
2¢¥8Y T (%) T (a+%+%0)
1-p| <1, Rec>0, Rev>2Relc-a),

(13) _f;m e%tz D_V(t) t*72 @ la, c; - Y%pt?) de

¥ IFQ2c-1) T % v+%—c+a)
Qethv=Y IF%+%v) T(a+%w)
|[1-p| <1, Rec>%, Rev>2Re(c~a)-1,

(19) [7e7e XD, (1) J,., (2) de
=2 T (v+ %) n~% 2! e"l/‘z2 v, %; %2?) Re v> -4,

(15) Q2ap)% f-‘: e-(x'y)z/(2#) e%yz D_(y) dy

Fla,c+%;a+%+%v; 1-p)

Fla,c-%;a+%v; l—p)

=~(1—,u)%” exz/(fl—4#) Dv[x (1_#)-%} 0<Repu<l,
(16) [ et~ LeW T4 D [ (1-p)¥1dy
= @m% AEY (LN UN [ (371 1)% &) Re A> 0,

4D 7@ 7,5 77D _ i

- 2
xVH gh% D_, &) Re v>-%,

(18) ST D, (e 7y (x24yD) " dy=C4a¥ T (v ¥ ¥°D_,_ (x)

Re v> -1,
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(19) [ e3%/4:7 D (1) dr = 27% T o) cosCum) Re >0,

@0) [T e % T D (o) de
o
~ - 2-@-%111-'(#)
ST Up+ %o+ k) Re >0,
@) [, *e)D @) de

m 2hutiv e [ 1 1 ]

p=v | TCh=-%p (%) T T %0 T - %)

Re > Re v if lower signs are taken,

Y% - %) - Y(-%2)
T (=)

@2) J7 D, (0] di = % 277

(23) J™ D, 0% de = (2m*% n ) n=0,1,2 00

In these formulas, F, ®, J, ), denote the hypergeometric and the con-
fluent hypergeometric series, the Bessel function of the first kind and

the logarithmic derivative of the I"-function.
Equation (11) follows from 6,11(12) and the inversion formula of the

'Laplace transformation. 'According to 2,1(26), 2.1(2), the right-hand side
in (I11) reduces to an elementary function if 8 = v + 1 or if v=~ 2,
n=0,1,2 o « For the proof of (12), and (13) see Erd€lyi (1936).
More general formulas of this type involving an ,F; (sec.4.1) instead of
® have been given by Mitra(1946). A proof of (14) was given by Meijer,
(1938).To prove (15) it suffices to express D, by (3) and to interchange
the order of integrations; if y tends to 1, the right-hand side in (15)tends
to ¥, Formula (16) is essentially the same as (15) and formulas (17),
(18) are due to R. S. Varma(1936, 1937); Watson (1910) has proved (19),
and formulas (20), (21) were given by Erdélyi (1938); for v = p, we
obtain (22) and (23) from (21). We also see from (21), that the Dn(t),
n=0,1,2,..., form an orthogonal system in (-, o).

8.4. Asynmplotic expansions

From 8.3(6) it can be shown that (see Whittaker-Watson, 1927) for
large values of |z| and a fixed value of ¥

e i (=30, 5% = Yo, 2_,,_,]
(1) D ()=2z"e [,,:o TChaT + 0|22

~Yw<argz <¥Ymn,



8.5.1 PARABOLIC CYLINDER FUNCTIONS 123

~%v) (B-%v)
D —_ LV Yz? n n 2|=N -1
2) D (z2)=z"e [n=o Tl +0]z?|
(2n)% Y (%) (%+%v) -
- Ti,, =V— AZ n Ly 2|=N-1
'-v) ¢ ¢ n!az?)m + Ol
n=0 n/4 < argz < 5a/4,
N %) B-%)
_ v -.%zz 2V, 2V, -N -
3) D, (x)=z"e [:20 i S TR

% N
LLD s et § U0 G, +0|zzl'”'E|
v nl (22"
~5n/4 < argz <-u/4,

where the notation
4) (a)0 =1, (a)'n =ala+1) eesila+n-1), n=1,2,3, «we,
is used,

The behavior of D_(z) for [v| » = and for arbitrary values of z which
satisfy |z| < |v|% has been completely discussed by Schwid (1935), His
results are based on Langer’s method (1932). As a special case we have

the following result which, in the form given here, has been stated by
Cherry (1949):

If |z| is bounded and |arg(~v)| < %, then, for |v| »

G) D_(2)=27% exp[¥%vlogl-2) = Yv— ~2)% 21 [1+0|v| %],

8.5. Representation of functions in terms of the D _(x)

8.5.1. Series

From 6,12(3) we have as a special case, for positive real values of x:
o0

2%v y -D"D, (x)
%) | nl2"(n-%v)

n=-0

1 D, )=

= vk "D, &)
TG-%) Zonl2"e+ %-%)

This can be considered as an interpolation formula for the function
D (x) of v, the points of interpolation being the non-negative even or
odd integers., An expansion of Dy(x) D#(x) in terms of the Dn(2% x),
(n =0, 1, 2, e ,) has been given by Dhar (1935). Shanker (1939) proved
the addition theorem
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. . _ 1 . . 2
(2) Dv(x cost +y sint) = exp[% (x sint —y cost)?]
(-

x 2 (V) (tane)"D,_ () D (y) Cee ?‘N\l“‘l\
o \2

n=

which holds for real values of t, x, y and 0 <t <#/4, Re v >0,
Erdélyi (1936) proved the expansion [see 8,4 (4)]

PSY D H%-2p) (%42
(3) WK'#(12ZZY)=2'K'Z%[2 Ez )lll l(/2+ Il-)l Dw-%—l(z)+R;]
z

in which R | denotes a remainder term. If y is half of an odd integer, the
series terminates. In all other cases the series is divergent in general,
but the remainder term can be estimated, in particular if |argz| <} 7 and
p is large, showing the asymptotic nature of the expansion

From the expansion 6,12(6), an expansion of Dv(z) in terms of the
Bessel functions can be derived, where the Bessel functions become
elementary functions because their order is half an odd integer, In partic-
ular, we have

=0

- Al

' -«)
”% z%v

T KET ()

where
k=%v+4%>0, (=(2x)%z,

and the terms indicated by «+» are of the order of x~® provided that { is
bounded.

The Sturm-Liouville problems connected with 8,2(12) lead to certain
orthogonal sets of functions for a finite interval (0, x ). These are essen-
tially parabolic cylinder functions whose order is of the type ip — %
(p real) and for which the variable has an argument, %7 or -%7, (see
sec, 8,2). For an application see Magnus (1941); for Sturm-Liouville pro-
blems in general see Chap. 10 inthe book by Ince (1944).

D ()= tcos £—276 k722 [(1-24%/8)sin - {cos {1+ e}

{sin {-27%k T2 [(1~¢®) sin ¢~ £(1-24%/3) cos {1+ oo}

8.5.2. Representation by integrals with respect to the parameter

Cherry’s theorem (1949). If f(x) is of bounded variation in any finite
interval of the real variable x and is absolutely integrable in (-, ), then

“%Hico R4k - _
@) -4mif)= f ———dv [ D,(0)D_,_, ()

Y = iso sinve

+D k) D, D] (o) de

-y
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where
(5) k= e%irr, k= e ~AiT

The condition that f be absolutely integrable, can be replaced by

€,
2O

© fo-eir® (L ) e 00l

%
for x » t o, where a is real and > % and where ¢, c,, are constants
(which may be different for x » + « and x » — «), Condition (6) is needed
in some boundary value problems (see Magnus, 1940). Equation (4) is
analogous to the inversion theorem for Fourier integrals. It can be sim-
plified if f(x) is an even or an odd function of x.

Cherry (1949) has applied (4) to the function f(x) = Du(hx) for x > 0,
f(x) = 0 for x <0, In a formal sense [although (4) and (6) are not sat-
isfied], Erdélyi’s formula for the expression of a plane wave in coor-
dinates of the parabolic cylinder is a special case of Cherry’s theorem,
viza:

(1) =2i(2m)% exp[-%i(£2 =5?) cos b - %i & sino]

=%+ joo d 12 v
- f v [(ta"/ #) D (~h&D_,_, (hy)

sinvm cos¥h ¢

% =io0

(ctn %)
D, (hE)Dv(—hq):,

(cf.Erd€lyi, 1941). Here £ is given by (5), and (7) holds for all real values
of £, 7+ For the diffraction problem of a plane wave incident on a half-
* plane, Cherry (1949), gives the formula

(8) ~2i D [h({ cos Yp+ 1 sin %P D_, [k (n cos Yo p ~- ¢ sintsh)]

=% +icc 1 v
=/ dv (tan % ¢) D,, Cho)D

-1 (i)
= ioo sinvr  cos % ¢ v=t
for the secondary wave (‘“Sommerfeld’s wave’’),

A special case of 6,15(15) is the expression of a

wave *’ in terms of solutions of 8,2(1), viz.
(9) 2% 72 HP%E(E? + 9]
= [T D_l%(1+4) 1D

¢—ioco

“* cylindrical

e B L] T %) T G+ %) do
where -1 < ¢ <0, &, 7, real, Re ik > 0. Another expression for the left-
hand side in (9) in terms of an integral taken over the parameter of parabolic
cylinder functions can be obtained from Cherry’s theorem; see also

Magnus (1941).
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Erdélyi (1941) also proved the following formulas which can be con-
sidered as linear and bilinear continuous generating functions of D  [see
also 6, 2(20)]

(10) 5— ff_:"ny(z)zvr(-u) dy = ¢ 2 -at-%t?
e ¢ <0, [|argt| < n/4,
1 v g

(11) - Om)® f [D *)D_,_, Gy)+D (%) D_ _ e Ly)] Y
278 v v v sm(-—wr)

' 1 1- t . txy
=(1+22)7% exp|— —(xz D+ -
PI7 Toz Y
-1<c¢<0, |argt]<¥n,
8.6. Zeros and descriptive properties

For any fixed value of v the formulas 8,4(1) to 8.4(3) give a descrip-
tion of D_(z) for large values of |z|; if v and z are real, then D (z) is
also real in spite of the appearance of 8,4(2) and 8,4 (3). If v is real,
Dy(z) has [v + 1] real zeros, where [v + 1] denotes the greatest positive
integer less than v + 1 or zero if such a positive integer does not exist,
This result can be derived from a discussion of the differential equation
8.2(1)s Hv="n=10,1, 2, v s D, (2) has exactly n real zeros (and no
other zeros). For other results about real zeros of the solutions of 8.2(1)
which are real on the real axis see Auluck (1941); for asymptotic formulas
for the real zeros of D (x) if v is real see Tricomi (1947).

FUNCTIONS OF THE PARABOLOID OF REVOLUTION

The results of the two following sections comprise only a small part of
the formulas which arise from boundary value problems of Au+x?u=0 for
the paraboloid of revolution. The whole subject has been thoroughly inves-
tigated by Buchholz; the formulas in sections 8.7 and 8,8 indicate which
type of results can be found in the papers to which a reference is made.

8.7. The solutions of a particular confluent hypergeomefric eguation

If in 8.1(8) k, p, A are arbitrary complex constants, we have a differ-
ential equation which is equivalent to the confluent hypergeometric
equation, However, if k and A are real and 2 p is an integer, 8,1(8)maybe
reduced to

-1 2_ 282 _A )y =
d.f + & d£+(4§ p2¢ 4r)u=0
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where

2 p=0,1,2, e, andr &,real.

Equation (1) has the solutions

@) &M, (£igD), ETVW, o (30 &P

(for the notations see sec. 6,9). They are connected by the relations

(4) e kimipt) Mi‘r. %p &) =g Ximtp+) M—i‘r. %p ~if)

plexpler—Y%in(p+1)] .
- o
® Il +Yp—ir) "l‘i'.Ap( i£)

plexplrr+ %in(p+1)]
T+ Y%p+ir)

where £ denotes a real, positive variable, and arg *i{= =% 7. For £+ o
and fixed values of r, p we have:

(6) Wi‘r, %p(if) =,§:i‘r e"%if -KTT [1 + 0(5—')]
@ Wiy i) = €7 HEHRTT[L4 O£,

V.iryp @)

-iT, Y%p
The corresponding expression of the. ¥ - functions in 3) can be derived
from (4), (5), (6), and (7).

The function

(8) e-%iﬂ' (p+l)M .

; i (p+1
11'.'Ap(‘§) = XTI I

(-i&)

is real for real, positive values of £ (if 7, p are real),
If p and £ are fixed and 7 is large, 6,13(8) gives the following asym-
ptotic representations:

© W (£i&) = 2% i g FIT HiT(£) K o UmT

=it Y%p

tiT, %p
x cosh [(r— 2(r€)% +%ia] [1 + O(+7%)],
(10) W_ (xig) = 2% g tiT r;i‘r(fr)'% e ATT
+iT, %p
x cos [Fir~2(é)% Y%l [1+ O(H)],
where 7, &, are real and positive.

Erdélyi (1937) investigated the case where |7| and |£| are both large
but where 7/ ¢ is a fixed negative number, This result is

(1) M

-iT,u

Wi (b 2 tanh B\ %
[i7(2 sinh B)2] = T (2 pu+ 1) e #i7 WwHh) ;=p (ﬂ)
7

x sin[7(sinh2 B8 + 2 B8) — (u~ W) 7] [1 + O (:7%)]
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where 7, B, p + %, are real and positive.
For the solution of certain boundary-value problems, the following

functions are needed. Let {_ be a fixed real positive number. Then there
exists a sequence of real numbers 7, n =1, 2, 3, ., such that

Ty <71, <71y e and M, (l{o) =0,

i ,%p

The functions

w % .
(12) 2—4 Mi'rn, %P (lg)

are orthogonal in (0, { ). In order to compute the r_ for a given {, and
in order to find the normalizing factors for the functions (12), Buchholz

(1943) gave the formula
(13) GO™*7*eu GO

y T(+%p) i D(+%+%p) (%)

r4+%p) 2, TU+1+%p) 1!
l 2
X l:[o [ e l/+‘/p)2]

[zx(%lél)+ g/nép z+x(/4|§l)]

where r, {, are real, > 0, £ # 0, and also similar formulas for the partial
derivatives
d d 3%
o’ 9.’ oradc
of the function (13).
8.8. Integrals and series involving functions of the paraboloid of

revolution

As a consequence of 6,15(15) we have

ei(x+y) -

W_ (—2' W ( 2iy)
T4y 2(xy)% 'I:-;oe ix) " cos 7S

1)
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This is the representation of a spherical wave with the center in the
focus of the paraboloid in terms of the functions of the paraboloid in
revolution, Formula (1) was first proved by Meixner (1933) who also
derived the formula

27 plp! . ) )Rert)
@) ml‘(p +1+2ia)T(p+1 —'2LG)WM-zia,%p(x+7)

= f_°° T'Y%p+h+ila+ )T [%p+Y%+i(a—r)]

xI'%p+%—ila+ )T hp+%-ila= 1]
><Mia.+i'r,'/4p(x) Mia.+ %i'r.%p(y) dr
Rex>0, Rey>0, p=0,1,2, eer s

The integral representations for more complicated types of waves
with a singularity at the focus of the paraboloid of revolution were given

by Buchholz (1947). Cne of his results is

@) (wy)¥ i ["— P TIR )PP( “'y)
2(x +v) nt Y X+y

0PN @ p)! o +ico
- p!;!l:n—-p)! J;_iw M(s+%p+%) T(=s+Y%p+%)

x F

35 _s AP(—sz)W s, Y%p (-2iy) ds
where

x>y20, o<k%+Y%p,
and where F, stands for
E, = F(-n+p,n+p+1l,~s+%+Y%p;p+1,p+1; 1),

[see 4.1(1) for the definition of the generalized hypergeometric seriesl.
If n =p, (3) becomes equivalent to 6.15(15). It should be noted, that
H" s an elementary function, see 7,2(6)
Tﬁe expression of a spherical wave, the center of which is at an
arbitrary point, in terms of the functions of the paraboloid of revolution
was also given by Buchholz (1947). If

R =1{lx v =y - (xg —.)l())]"’+4~:\¢0y0+.4~x,yl
-8(xgyy,x ly,I cos(¢p, — »qu)}%
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and if x, y,, %,, ¥,, are real and positive and x > X5 ¥ > ¥, then,
for a real 0 < Y%,

iR
Y e _ oo COSP(¢0 —:¢1)
(4) Gy x,v,) 'L.—R——"'z pfo (2"80.;:) pip!

x 237" [T 0 (s + %+ Yp) Ties + % + Yip)

x[M

where § (=1and § ,=0ifp>0.
For the plane wave Buchholz (1947) gives a mixed series and integral
representation:

- %p (-2ix,) Ms’ Yp (~2iy,) W_s' ¥p (—Qixo‘)Ws' Xp (-2iy,)lds.

(5) explilx ~y) cos 0+ 2(xy)* sin 8 cos $]

1 2-8
- : %P P )
(xy)* sin 6 p;o plp! if cos pg

x (277" 77 Dis + %+ %p) Tlos + % + %p)(tan %6)%

o =10
X Ms’ Xp (-2ix) Ms’ %P(—Qiy) ds.

There correspond certain series expansions tothe integral representa-
tions in this section, In the simplest case, the formula corresponding to

(1) is
e i(x+y) o
(6) W =..(x_yvz- HEO (1" W_n_%'o(—mx‘) W_n_%'o—sz).
For a large number of other series and integrals see Buchholz (1943,
1947, 1948, 1949).
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CBAPTER IX

THE INCOMPLETE GAMMA FUNCTIONS AND
RELATED FUNCTIONS

9.1. Introduction
A considerable number of functions occurring in applied mathematical

work can be expressed in terms of the incomplete gamma functions,

1 yla w)=["e % dt Re a> 0,
0

2) TI'(g x) = f:oe-tta_' dt =T'(a) - y(aq, %),

which in their turn are closely connected with the particular case ¢ = 1
of the confluent hypergeometric functions ®(q, c; x) and ¥(a, c¢; x). By
6.5(1), 6-5 (2), and 6.5 (6) we have

B) ygx)=a'x%"*®(, 1+a;x)=a'x°®(a, 1 + a; -x),
@ T(gx)=x%"*¥ (], l+a;x)=e"*¥(l-q l1l-a;x)

When @ = 1, the confluent hyperge ometric equation 6,1(2) has the ele-
mentary solution
e*x 1-¢
'so that the special confluent hypergeometric functions to be discussed
in this chapter satisfy simple differential equations of the first order.
In many ways it is advantageous to adopt the slightly modified function

x * _, g-
(5) y(a,x)=r(a) foe tpa=t de
e e ltaim et 81 )
Tl o THYTFAT g BT

as the basic function because this is a single-valued entire function of
both a and x and is real for real values of a and x.

‘The following functions are expressible in terms of the incomplete
gamma functions: the exponential and the logarithmic integral, sine and
cosine integrals, error functions and Fresnel integrals and their gener-
alizations. Definitions and notations of these functions vary considerably.

133
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‘The notations to be used here will be explained in the sections dealing
with these functions.

THE INCOMPLETE GAMMA FUNCTIONS
9.2. Definitions and elementary properties

The incomplete gamma functions were first investigated for real x. by
'Legendre (1811, Vol. 1, pp. 339-343 and later works). The significance
of the decomposition

(D) T'(a)=y(a x) + (g x)

was recognized by Prym (1877) who seems to have been the first to
investigate the functional behavior of these functions (which he denotes
by P and Q).

There are several notations for these functions. At present the most
frequent notation besides the one adopted here is the notation used in
astrophysics and nuclear physics,

En(x) = f:o e ™y " du=x"""T(1-n, x).

The alternative notation K (x) is sometimes used. For the formulas in
this notation see Placzek (1946), Le Caine (1948), and Busbridge (1950).

The older theory of the incomplete gamma functions is presented, and
references to the literature are given in Nielsen (1906a, especially in
Chap. XV, and 1906b). A more recent account is found in Bshmer (1939).

It is customary to define the incomplete gamma functions by the
incomplete Eulerian integrals of the second kind 9,1(1) and 9.1(2).
However, in order to avoid convergence difficulties in 9.1 (1) when Re <0
we shall adopt 9.1(3) and 9.1(4) as the definitions of the incomplete
gamma functions with the remark that x*and W are defined uniquely by
the conventions of Chap, VI, Apart from the notation, 9,1(2) was known
to Legendre. While y*(q, x) is an entire function of both @ and x, the
function y{a, x) itself fails to be defined for a = 0, - '1, - 2, ... . The
function I'{a, x) is an entire function of @, but in general, except when
a is an integer, it is a many-valued function of x with a branch-point
atx =0,

The recurrence relations

x

2 yla+l x)=ayla x) -x%7%,
3) T (a+lL x)=al (g x) +x% 7%,

are simple consequences of the definitions and can be derived from the
incomplete Fulerian integrals of the second kind by integration by parts.
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They can be used as an alternative definition of the functions under con-

sideration.
We have the convergent expansions in ascending powers of x,

xa+n -] (_)n,xa+n
RN S e
@) yiax=e (@) 4, Z nl a+n
n=20 n n=
) (_)n atn
6) Tgn=T@-) -,
. amo !l atn
valid for all x, and a £# 0, - 1, - 2, ... , with
I'(a +n)

(a)o=1, (a) =ala+1) sssa+n-1)

" T ()

n= 1"2, L I
and the asymptotic expansions in descending powers of x,
- - IS (1- ) .
® Tax=xlex| ) 5 4 0| ™M)

~  (-x)"
m=0

|x| 5 o, -3m/2<argx<37/2, M=1,2,...,

M=1 (1_ ) -
M (s x)=F(a)"‘a"e"[ ) e+ Ot ”):l.

mn=0
Either from the power series expansion or from the definitions one
obtains the differentiation formulas

dy(a, x}  dI'(q %)
dx  dx

a=t -
e ¥,

(8

dx"

n

9 "%y (g )] = )" 2™ " y(a + n, x),

(10)

[e* y(ag, x)] =" (1~ a) e*y(a~-n, x),
dxn n

n

(1D ™ T'(g 2] =("x"*"I"'(a+n, x),

dx"

n

d
~[e*T(q 0)]="(1~-ad_ e T (a—n x),

(12) I

the last four forn =0, 1, 2,+.. .
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The continued fraction expansion

(13) T'(q «) =

2-a

1+ o6

is due to'Legendre and can be derived from (3). Cther continued fractions
have been obtained by Schlémich (1871), and Tannery (1882).

Whenever a is a positive integer, the confluent hypergeometric func-
tions ®(a, c; x) and ¥(a, ¢; x) may be expressed .in terms of incomplete
gamma functions by means of the formulas

a n

(14) d(r+ 1, a+ 1;x)=—' - [e‘x"_a'-y(a, x)] n=0,1,2, 444,
n. X
(15) ¥(@+1, a+1; %)
1 " -
[e‘x" aF:(a, x)] n=0, 1,2, se0 e

=nv!(1-a)n dxn

‘The first formula is meaningless for negative integers a, but it retains a
meaning if it is divided by I'(a + 1) before a approaches a negative
integer. The second formula looses its meaning when ¢ is a positive
integer.

9.2.1, The case of integer a

In this section
n

6 e, )=, =

a=0 M:

xﬂl

n=0,1,2,...,

is the truncated exponential series, and £ _(x) is the integral defined in
sec. 9,2, We have

(17 yQ+n,x)=n!ll-e""e &),
18 I'(l+n x)=n !e"en(x),
(19) (A= n, x) =x""'En(x).

By repeated integrations by parts we also have
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nl

_ﬂ n— !
(20) I'=n, x)=() [E|(x)—e"‘ 3 (L m"“:l
n=20 x
n=1’2,3,.o-.

‘The function y{(a, x) does not exist when a = - n, but we have from 9.1 (5)
(21) y*(=n, x) =x".

It may be pointed out that for positive integer @ and integer c, the
confluent hypergeometric functions ®(a, c; x) and ¥(a, ¢; x) may be
expressed in terms of the functions discussed here. For @, witha =1 +n
and ¢ = 2, 3, .44, this follows from (14). For other integers c, we have
to divide (14) by I'(c + 1), and write (}4) in terms of y* before letting ¢
be an integer. For Y witta=1+nandec=1,0,-1,-2,..., we have
(15) and (19). The case ¢ = 2, 3, ... , can be reduced to the formerome
by applying 6.5 (6).

When a is close to an integer, we may obtain useful approximations to
incomplete gamma functions by evaluating their derivatives with respect
to a for an integer a. By manipulating the integral representation 9,1(5)
one can prove
(22) W;Z’ N logr-E, @),

a= 0

and other results follow by application of the recwrrence relations.
9.3. Integral representations and integral formulas

The basic integral representations are the incomplete Eulerian integrals
of the second kind, 9,1 (1) and 9.1 (2). The first of these fails to converge
when Re @ < 0. Tt may be replaced by a loop .integral

V) ylax) == Qisinra™ 2% [ e (cw)* du

where — 7 < arg(~u) < 7 on the loop of integration, x is arbitrary, # 0, and
a is not an integer. With the unit circle ~u =cos §+isin 6, - <0< 7,
as the path of integration one obtains

(2) y(ag x)=x% cosec 7a f:e"cmecos (a6 + x sin 6) d6.

A real integral for Re @ <0, x <0 may be derived from 6,11 (13).
For ['(q, x) the basic integral representations are 9,1(2) and

e *x?® 00 Tt,ma
o ran-c [
) %% ~Fai-a vy de.
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The latter integral is obtained when 6.5(2) is applied to the last ¥
function in 9.1(4). Legendre’s continued fraction 9.2 (13) is a consequence
of (3).

Other integral representations are

4) y(q %)= x%"‘f: e Tt Ha! 'Ja[2(xt) %] dt Re ¢>0,
2x%a -z oo -y y
(5) T'ia x)='1_,—(l_—a)— Jo et %K J2(x)*]de Re a<1,

6) T(2-2a) T (a - ix) I (g ix)

1 t
C o [Pt o (AR
Jy e [t+2i 2 '( 2i9 "V Ty

1 1 3 t )
oy 0L 339 —a;t—-Zi dt Rea<l, Rex>O0,

‘The last of these is due to Tricomi (1950 a).
‘Some of the more important integral formulas are

00 r
(7) fo e-stt,@"’ ‘-y(a, t) dt = a(l(-‘: :)53- , (]_, a+ 35 a+1; ———>

+

Re(a+p) >0, Res>0,

0 - T'a+p) s
% =st, A1 A . L
(8) fo e~ %t 1“@, t)de B(1+S)a+ﬁ2[';<l,a+B,B+1,1+S>

Re >0, Re(a+pB8)>0, Res>-Y4,
L - - 2 -l
©) [T e ty(a t?) dt =2 T (2a) s~ e* /8D _, (27% 5)
Rea>-%, a#0, Res >0,
(10) T(a) x> f; e T2 A=1 (B, x - xt) dt
= (B I'(a-p) y(a x) Rea>ReB>-1, aB#£0.

The hyperge ometric function reduces to an elementary function if 8§ =1
in (7) or a=1 in (8); in (9), D is the parabolic cylinder function. It may
be noted that (3) to (9) are Laplace integrals. For other integrals see
Nielsen (1906b, c), Le Caine (1948), and Busbridge (1950).

9.4. Series

The power series and continued fraction expansions were mentioned in
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sec. 9,2, Using the expansion

1§ e,

t>0, Rex>0

X+t .= (x)n_H

in 9,3 (3), we obtain the expansion in inverse factorials

() T(gn=e=z2) 2 Re x>0,

n=0 (x)n+l

where

1
- ~t,=a (Y !
" TO-a Jgemen, =) (1 27 A(>dt

From 9,1 (1), we have
, 2 \emt
ylg x+y)—y(a, x) =e ¥ 57! fo e |1+ ~— du.

x

If ly| < |x|, we may expand (1 + u/x)*"" in the binomial series, integrate
term by term, and use 9,1 (17), Thus we obtain Nielsen’s expansion

@ Tax)=Tlazx+y)=ylgx+y) -yl »)

—ergot $ Ql-a,x)™"[l-e"e ()] lyl < lx),.
n=0
which is useful for numerical computation.

Incomplete gamma functions occur in a large number of series expan-
sions, many of which may be obtained by specializing parameters in the
expansions of Chap. VI and will not be given in full. It is noteworthy
that with 2 = 0, @ = — 1, the coefficients in 6,12(7) can be expressed in
terms of the truncated exponential series; 6,12 (6) becomes

(3) yla x)=T(a) e *x% >3 e, (-1 x%"'In+a(2x%),
n=0

and is rapidly convergent for all x £ O provided that a is not a negative
integer. In the expansion 6.12(11) the coefficients may be expressed .in
terms of Laguerre polynomials.

I x and y are positive and x > y, we have

00

@) T %) y(aq y)=e 77 (x)* Z G+ (@, "
n=0

n!

L (a.)(x) L (a)(y)

‘The limiting case as y » 0 of this expansion is



140 SPECIAL FUNCTIONS 9.4

L :'a.)(x)

n=0 n+1

5) T'(q x) =e™*x%

x>0

and it coincides with the particular case a = 1 of the expansion 6,12 (3)
of the ¥-function in a series of Laguerre polynomials.
For other expansions see Nielsen(1906a, sections 82, and 83).

9.5. Asymptotic representations

For a-» =, x = 0(|a|), the first series 9,2(4) is an asymptotic expan-
sion; for x » « and a = o0{|x|), we have 9,2(6). If x and a are of the same
order of magnitude, an expansion may be obtained from 6.13 (17), but it
is not at all easy to find the general form of that expansion or to discuss
conditions under which it represents y(q, x) asymptotically as both a and
x increase. Considerable complications arise when x and a + 1 are nearly
equal, more precisely if a» « and x = a + 1+ o (|d|).

Tricomi (1950b) has made a through investigation of the problem. He
introduces the parameter

5

1N z-=

x-a

and distinguishes two cases according as z is small or large,
If z+.0 and |argz| < 37/4, he proves that I' (1 + @, x) is asymptotically
represented by

(2) e~*x'te >3 l(dn! =g~

n=~0

where the coefficients

(3) n!l"(a)-:{d [e-af(lﬂ)a]} Ly
=0

dt"

are certain polynomials of degree [n/2] in & These polynomials have
been 'studied extensively (Tricomil951). In particular, we have

-z . 0+l 2
@ TA+a2= e [1 2 4 z =+ 0(-’|a'|2ﬁ|x—-d|"‘)] .

x-a _(x-a)z (x-a)

If 2 > o (when x and a are nearly equal), one has to distinguish two
cases according as Re a is positive or negative. In the latter case
Tricomi uses the function

(5) ¥,(q x) =T"(a) x% y*(q, — x) x >0,

He then finds when a + + » and y is bounded,
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©6) yll+aa+2ad%y]l=T(1+a) [%+n%Eefly) +0(a™)],

(7) T () y,fl-a a+2(22% 9]
=_nctn(an) + 27% Erfi ) + 0 (a™%).

For a=n we have in particular
® e [n+ (2n)% 4]
=expln + (2n)% vyl [% - 7% Erf ) + 0@(n™%)].
See also Furch(1939) and a contribution by Blanch in Placzek (1946).

9.6. Zeros and descriptive properties

Information about zeros for real zand x may be derived from the results
of sec. 6,16 It turns out that y (e, x) has

(i) no real zeros (apart from x = 0) if ¢ > 0,

(ii) one negative zero x' and no positive zero if
1-2n<a<2~-2n, where = 1,2, 3, vss,)

(iii) one negative zero x' and one positive zero x” if
-2n<a<l=2n,n=1,2 4000

The general behavior of these zeros as functions of @ canbe seen from
the altitude chart (p. 142) of y*.

Approximations to the zeros for large a have been obtained by Tricomi
(1950b); he proves that

(D x' =-(1-a[1+2%50-a7%y*a +0(a™],
14l I
@) 2" == ra=——log "D 1ot (log lap2l

1+7 sinam

Here y*(a) is the unique positive root of the equation

B) Erf &) = (r/2* ctn(ay),

and 7= 0,278463 . ++ is the unique positive root of the equation
4) 1l+x+logx=0, .

I a >0 is fixed, clearly y{(a, x) is a monotonic increasing function
of x for x > 0, and increases from zero to ['(a) as x increases from zero
to oo. It can be shown that for a fixed x > 0, the function I' (g, x)/T" (a) is
a monotonic decreasing function of a for @ > 0. In the other quadrants
of the real @, x, plane the incomplete gamma functions were investigated

by Tricomi (1951), who puts
(5) T (g x)==-a"'e™*x*C(q x), a0, x>0,

©) y,(ax)=a'e*x%g (g x) a>0, %<0,
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(D yM=aq-x)=T(a+1) e*k(q x a>0, x>0,
and proves

aG aG Jg, 9

<0, —<0, H1cg, 21,9, k<1

Ox da ax da

throughout their domains of definition, |k| < % for a > 1, and further-
more that £ as a function of x has only one maximum or minimum if
0 < @ <1, while it has two maxima or minima if ¢ > 1.

The altitude chart (p. 142) is taken from Tricomi’s paper. It shows
the curves y*(a, x) = constant.

SPECJAL INCOMPLETE GAMMA FUNCTIONS
9.7. The exponential and logarithmic integral
The principal functions to be ‘considered are

() E,)=-Eilx)=J e 't 'dt=T0, x)=e™*¥(L 1, 2),

@ E*@)=-f et ds x>0,
*ode _
(3) 1i(’¢)='/v ——=FEi(logx)=-E, (- log x).
logt
0o

Tn (2), the integral is a Cauchy principal value, i.e.,

lim(_f_.__€+f:) as ¢ 0, e>0;
this function is denoted by Fi(x) in Jahnke -Emde (p. 2). We have the
following relations between the functions defined in (1) and (2)
(4) —E,(xeii”)=E*(x) tin x>0,

The following formulas, and some others, can be obtained by making
a - 0 in the results of the first part of this Chapter:

(- x)"

n=1 n!n

(5) Eil-x)=7y+logx+

[ x
=y+logx-e™* % (1+1/2+---+1/n)—?,
n=1 n

oo

6) E*x)=y+logx+ z

n=1

xn

nln
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wkere y is Euler’s constant of sec. 1,7.2,
M-1

!
(7) E,(x)=x°'e-x[ > (:’:)m +0(jx|™)

n=0

|| > 00, —3n/2<argx<37/2, M=1,2, ...,

M-1 1
(8) E*(x)=x"'e’[ s |—u]
x
m=0

x>0, x>0, M=1,2,...,

4" Ei (- %)
© LEED et onirre e ) ne=l,2 ...,
dx n
B0 " Q!
(10)—"T=e Ei(-x) + Z ST n=1,2, 000,

m= 0

(1 fo""e'“zﬁ“' Eil(~t) dt =~ (F(P))ﬁ . 1(1 B B+1; __>

Re >0, Res>-4
To these we add Raabe’s integrals

(12)/—Mdt—-—[e“‘E (ax) +e ™™ E (ax)]
0

a?+1?

a>0, x>0,

(13)f Lo ) Yo E, (ax) - e~ E¥(an)]
o a” +i

a>0, x>0,
both of which may be deduced from (1) and (2), and

19 TG+ et dt=e" E [(@+b)c) Re ¢ >0,
(15) [~ e *logtdi =x"" E, (x) Re x >0,

(16) . [T ¢om? E (¢) dt = a [l (q x) - x%E | (2)] Rex>0, a#0,

For other integrals see Nielsen(1906, especially Chapters II and IV),
Le Caine (1948), Busbridge (1950).
From 9,4(5) we have
v L @)
(17) E,(x):e"z n %

n=20

x>0,

n+1l
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and from 9.4 (2)

(18) E,(x+y)=E,(x) +e”* s n!(—x)-""[l-—e'yen(y)]
n=0

ly| < |x].

The formulas for li (x) may be derived from those for El (x).

Certain generalizations of the exponential integral function occur
in the investigation of wave propagation in a dissipative medium. A
typical example is

j: e Uy 'dt where u={(a?+t3)%,
For this and related functions see Harvard University (1949b).
9.8. Sine and cosine integrals

The definitions used in modern tables are

1) six =/ sint L EiGx) - Fi )],
oo t 2%

* sint
@ Six= dt=l+six,
o t 2

(3) Cix= / °°ts s =;—[Ei (ix) + Ei (= in)],

@) Ei(zix)=Cix ti six
Here *i = exp (x %in). Nielsen (1906) uses the same definition of si,
and writes ci instead of Ci. Some authors define the symbols Ci, Si,

somewhat differently.
Si x and also si x are entire functions of x,

5) Six)=-Si(x), silx)=-rm-sinx.

Cixisa many-valued function, with a logarithmic branch-point at x = 0,
However,

x
l-cost
(6) Cix=y+logx—f — dt,
t
)

so that Ci x — log x is an even entirefunction of x. In particular, we
have

(7) Cilxet™=Cix tin, x>0,
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The following formulas, and many others, are obtained by straight-
forward manipulation of the definitions or of results in the earlier parts
of this chapter:

X (L)n g 2nt
(8 Six=Yr+six= ,
,go Cr+D!12r+1
(9) Cix=y+logx+ (—_)n -
TYTRTT & GaTen’
H=1 u ,
R=Q

N=-1 (_\m
+sinx'[ z () (2m +0(lx| ZN):I

m=1 -n<argx<m M,N=12,...,
Mo e (2m !

(11) Cix=cosx[ —— 1+ 0 (x| ™)

2= 1

-1 (2)® (2m)!
+sinx[ z'() ,(”'?) +O (x| %" ‘)]

—77<al‘gx<77, Af N=].,2,.oo,

o0 1
(12) fo e St Ci @) dt =—§—log 1+s? Re s >0,
s
w0 1
(13) fo e tsi@)dt =~— tan"' s, Res >0,
s
(14) j:o e 't log(1 +¢2) dt = [Ci ()12 + [si (5)]2 Res >0,

(15) f smxs1xa’x—f cost1xdx——Z—,

(16) f: six Ci x dx =~ log 2, fow (si x)? dx=f0°° (Cix)2dx=Y%nm

For other integrals see Nielsen(1906b, especially Chap, IV).
The notations

x dt
(17) Shix = [ sinh¢ —=- i SiGx),
)

*eosht -1

(18) Chix=y+logx-t[ — dt =Ci(ix) - %in
)
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are also used. The generalizations
z dt 1
(19) fo sinu —, u=I(a?+1?)*%
u

and other similar generalizations have been discussed (Harvard University

1949a).
9.9. The error functions

The principal functions in this group are

() Erfzx= [ e di=Y%y(%, 29 =2 0(1/2, 3/2; ~x?)
2
=xe™* ®(1, 3/2; x?),

@ Erfcx=[ et di=Y%a%—Erfx=%00%, x2)=Y%e™ Wk, % x?),

(8) Erfix=—iErf(ix)= "' dr=x ®(1/2, 3/2; 2?),

4) He)=207% [*e™ dr=207% Exfx=1- 27" Erf x,

5) alx)=(2/n)* fo"e-%tz dt =207% Exf (27% x).

The first three are the most convenient for mathematical work, and (2) is
the function, although not the notation, originally introduced by Kramp
(1799). The function (4) is more convenient for numerical work, and (5)
arises in statistics where it is frequently used. There is a great variety
of notations,

All the error functions are entire functions; Erf x and Frfi x are odd
functions of x. Most of the following formulas are either straighforward
deductions from the definitions or else specializations of earlier results
of this section:

ot (=) x 2t 20t

-xz <
© otz Zo A1@n+D) n;g /2 °

n=

hng 2n+1 2 ()r gyt

= K _.xt -z
) Erflx—"zzo o) e ngo G2,

Y B S LY AN e
(8) Erfc x=X%e z — = + O (x| )

m=0 Rex>0, X > o0, M=1,2,o|o,

_ _ S o) R
(9) Erfix =—Y%in%+Y%e* Z x—z’;—:—,+0(|x| )

m=-0 x>0, X > o0, M=‘]., 2, e
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10) [~ bt gt w0t exp (2 ) Eate( 2 Rea >0
o = exp 1o’ ric —é-a— ea >0,
s? s
5 Erfe | —
a ' \ 2a

(11) f: Erf(at) e " ¥*dt = s ™' exp (4
larga| <47, Res >0,

(12) [T Erf(at)% e~ stde = %(an)% s~V a + s)7%
0 Res>0, Rel@a+s)>0,

(ls)f Erfc (at™%)e~5tdt = Y%n* s~ e'"s larga| <47, Res>0,

(14) f Erfi (at) e -a%s%-st dt =—— exp ( ) ( 2
a?

Res>0, |arga|<Mkm,

dt

T3 =ea2 Y% 7 - (Erf 2)?] Rea>0,

(15) j;'e"aztz
(16) f:EI‘ftdt =X Erfx..%(]__:e‘xz),

d**! Erf x 2
(17) —_— ='(—)n e x Hn(x) n = 0, ]., 2, 0 o
dxn+|

where /, is the Hermite polynomial of Chap, X,
A series of Nielsen’s type is given below:

(18) Erf[(x+y)%]

, 1.3 (2n -1 1y
e n (2n-~1) y+1,y)
& 204 o (21) PO
See enu.-\-a‘_ ly| < |x|.

Expansions in series of Bessel functions (Tricomi, 1951) follow:

(19) Ed @) =%@n)% e £ o (1) 2" I ,, (22),

n=20

(20) ErtG*) = n)* § DA 1 ),

n=-0

61 Efi@¥) =G 3 (DIel1 o

n=-0
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The first of these expansions is a particular case of 9,4 (3), the other
two can be verified by means of the Laplace transformation.

"The most recentmonograph on error functions is that by Rosser (1948)
who discusses the double integral

(22) j:e_szz dy f: e"‘2 dx n=1,2 eeuse

as afunction of the complex variablesp, zandalso other related integrals.
Repeated integrals of the error function have been mvestlgated by Hartree
(1936) who puts

(23) i%erfc x = 27 % Erfc x, i"erfcx = fw i"Verfc ¢ dt,
x
9.10. Fresnel integrals and generalizations

Fresnel’s integrals are

C ) =02n% _I;I t™% cos t dt,

S@W=2a7% [ 1% sint de.

Instead of these, we shall consider the more general integrals introduced

by B&hmer (1939)
(1) Ck, a= f:o £ cos ¢ dt

=Y%e AT (g ix) + Y%e AT (g, - ix),
2) S, a =f:° t* ' sintdt

1 1y 1 v ) ‘
= ;e/{;ﬂar\ (aa - ix) - 2— e-/’”m’r‘ (a’ ix)' S-P‘ em"*- .
! i

The same functions, with a different notation, have been discussed by
Bateman (1946). Clearly we have

(8) T'(q ix) =e%i™[C(x, @) —i S(x, d)]

Fresnel’s integrals are:
%
@) Ce) =(m* [* cos ) di =%~ 2n ™ Clx, %)
=20 7% [e T Brf (e V417 2 %) 4+ e %I Erf (e TR £ %)),
1 'x% -
5) S(x)=(2/7r)/‘f° sin(¢2) dt =% - (20) 7% S (x, %)

=i2n) e R iR 41T x %) — e R Erf (e THIT 4 %],
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There follows a brief collection of formulas;:

> (_)nx x 2m ta

6) Clx, @) =T (a) cos(Ban) ~ z m’
a0 2m)! @2m + a

o

(D S(x, @) =T'(a) sin (K an) ~ Z Cm+D!Cm+1l+a)
n =0

( )m 2n +1+a

8) C(x, a) = ~x*[P (x) sinx + Q(x) cosx],
(9) S(x, @) =x*[P(x) cosx — Q(x) sinx],

where
M=1 R (] =

10 Pw=§ 2 f,m Van 0 (] 4 1)
n=0 x

and

0 = f o" ( O 0Dt (e |2 -2)
. x>0, —-gmg<argx<m M=1,2 s,
(11) j: e *tC(t, A dt =57 T'(a) [cos Hham) - %(s + )™= Y (s =)™
Re s >0, ~1<Reaq
(12) j;"’ et 5(s, @) dt = s I'(a) [sin Gam) — %ils + i) % %i(s - i)™%
Res >0, -1<Rea,
(13) fom tBVC@, @) dt = BT T (a + B) cos[%la+ Q) 7]
Re8>0, 0<Re(a+pB)<«l,
(14) [ ¢ S(t, A di= B T(a+ ) sinllila+ B) n]
Re3>0, O<Re(a+pB)<1,
(15) C() =J, () + I, (&) + J, &)+,
(16) S =J,, &) +J,,(x) +J,,, @) +one .

An integral representation of
[Clx, d)? +[S(x, ]?
follows from 9,3(6).
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The curve represented parametrically by
(17 €=Ct,a)y, n=S5( @ t>0

for a fixed a, 0 < @ < 1, is a spiral and has been investigated by Bshmer
(1939). It reduces to Cornu’s spiral when a = %. It may be of interest
to note that this spiral has a simple “‘intrinsic equation’’

(].8) p= (as)1—1/a

where p is the radius of curvature and s is the arc length.



152 SPECIAL FUNCTIONS

REFERENCES

Bateman, Harry, 1946: Proc. Nat. Acad. Sci. 32, 70-72.

Bdhmer, Eugen, 1939: Differenzengleichungen und bestimmte Integrale, Leipzig.
Busbridge, 1. W., 1950: Quart. J. Math. Oxford Ser. (2) 1, 176-184.

Furch, R., 1939: Z. Physik 112, 92-95.

Hartree, D. R., 1936: Manchester Memoirs 80, 85- 102.

Harvard University, 1949a: Annals of the Computation Laboratory, Vols. XVIII
and XIX. Generalized sine - and cosine - integral functions. Parts | and II,
Harvard University Press, Cambridge, Mass.

Harvard University, 1949b: Annals of the Computation Laboratory, Vol. XXI,
Tables of the generalized exponential - integral functions, Harvard University
Press, Cambridge, Mass.

Jahnke, Eugen and Fritz Emde, 1945: Tables of functions with formulas and
curves, Dover Publications, New York.

Kramp, Christian, 1799: Analyse des Re’fractions, Strasbourg and Leipzig.

Le Caine, J., 1948: National Researck Council of Canada, Division of Atomic
Energy, Document No. MT- 131(NRC 1553), 45 pp.

Legendre, A. M.. 1811: Exercises de calcul intégral, Paris.
Nielsen, Niels, 1906 a: Handbuch der Theorie der Gammafunktion, Leipzig, 326 pp.

Nielsen, Niels, 1906b: Theorie des Integrallogarithmus und verwandter Trans-
cendenten, 106 pp., B. G. Teubner, Leipzig.

Nielsen, Niels, 1906 c: Monatsch. Math. Phys. 17, 47-58.

Placzek, George, 1946: National Research Council of Canada, Division of Atomic
Energy, Document No. MT- 1, 39 pp.

Prym, F. E., 1877: J. Math. 82, 165- 172.
Rosser, J. B., 1948 Theory and application of

22 2
foz e*%4xand j‘;z eP Y dy _f‘;ye-x dx
Mapleton House, Brooklyn, New York.

Schlomilch, Oskar, 1871: Z. Math, Phys. 16, 261-262.
Tannery, Jules, 1882: Comptes Rendus 94, 1698- 1701, 95, 75.
Tricomi, F.G., 1950a: Boll. Un. Mat. Ital. (3) 4, 341-344.
Tricomi, F. G., 1950b: Z. Math. 53, 136-148.

Tricomi, F. G., 1951: Ann. Mat. Pura Appl. (4) 28, 263- 289.
Tricomi, F. G., 1951: J. D’Analyse Math. 1, 209-231.



CHAPTER X
ORTHOGONAL POLYNOMIALS

The standard textbook on this subject is the book by Szegd (1939) to
which we shall refer frequently, There is a systematic bibliography up to
1938, by Shohat, Hille, and Walsh (1940)s Although the present chapter is
concerned witn orthogonal polynomials only, in the introductory sections
we consider more generally systems of orthogonal functions. For further
information on this latter topic the reader may be referred to books by
Kaczmarz and Steinhaus (1935) and by Tricomi (1948), and by Vitali and
Sansone (1946).

10.1. Systems of orthogonal functions

With an interval (2, b) and a weight function w(x) which is non-
negative there, we may associate the scalar product

1) (v,, @,) = fab w(x) @, (x) @, (x) dx

which is defined for all functions @for which w* @is quadratically inte-
grable in (@, b), More generally, a scalar product may be defined by a
Stieltjes integral

2 (¢, @)= fab o, (%) p,x) dalx)

where a(x) is a non-decreasing function. If a(x) is absolutely continuous,
(2) reduces to (1) with w (x) = a(x), On the other hand, if a(x) is a jump
function, that is constant except for jumps of the magnitude w ;atx = x_,
then (2) reduces to a sum

@) (@, @) =Zw; 0k ) q,x))
1
which is the appropriate definition for functions of a discrete variable.
The above definitions refer to real functions of a real variable, and

to this case we shall restrict ourselves throughout this chapter. If the
functions in question are complex-valued, or else if the domain of inte-

153
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gration is an arc in the complex plane rather than a segment of the real
axis, then @, (x) in all these definitions must be replaced by the con-
jugate complex quantity.

Except in the last few sections (where we use definition (3)), we shall
use definition (1) mostly, and shall assume moreover that w (x) is positive
almost everywhere and integrable. It should be mentioned, however, that
many of the results of the introductory sections hold for the definition
(2), and therefore also for the definition (3), of a scalar product.

Two functions are said to be orthogonal if their scalar product van-
ishes, A family of functions is an ortkogonal system, on the interval
(a, b) and with the weight function w (x) (or distribution a(x)), if for any
two distinct members of the family, (¢,, @,) = O, Since the space of
quadratically integrable functions is separable, it follows that an orthog-
onal system consists either of a finite number or at most of adenumerable
infinity of elements. Thus an orthogonal system can always be written as
a (finite or infinite) sequence, @, (x), @, (x), <. or shortly { Cp"(x)i, and the
orthogonal property is then expressed as

We shall assume that 1@, (x}} does not contain any null function, ie.,
that (¢, , ¢,) is positive for all &, It is then easy to see that the functions
of any finite subset of an orthogonal system are linearly independent,
that is that a relation of the form

(5) c,@(x)+c, @ (x)+ e+ c, P (x)=0
cannot be valid almost everywhere in (g, ), except when ¢, = ¢, = 1o =

¢, = 0. (Form the scalar product with @, (x) for A = 0, 1, «.. , k)
The functions i(pn(x)} form an orthonormal system if

0 if h#Ek,
©) (94, @) = {1 if h=k.

Every orthogonal system can be normalized by replacing @, (x) by

(q)h’ ‘Ph)-% QD,, (x)o

A (finite or infinite) sequence ¢y (x)} of linearly independent func-
tions can be orthogonalized with respect to the scalar product (2) by
the formation of suitable linear combinations. For instance we may put
recurrently

(D) @, ) = ¢,(x)
Q%) = py @ ) + ¥, (%)

O, ()= 1, o @ () + g @ () + o+ By &)+ ¢ (%)
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and see that {¢_(x)} is an orthogonal system if we take
(8) #mz—(¢n’ CP.)/(CPM, q)n) M=0, 1, 1.1,"‘11
Alternatively, we may put

9) cph(x) =AY+ A ¢ (x) + et A v, (x) /\m;é 0

-and determine the A’s so that lcpn(x)} is an orthogonal system. One pos-
sible determination leads to

(¢01 d’o) (l//c,, l//,) oo (l/lo, l/ln)
(!r//" lr//o) (!!/11 ly-//|) b (!r//"lr//n)

(10) ‘75"("): ............................
(wn—l’ ’Jlo) (l[ln_,, ([;1) cee ("bn—l’ l/)n)

U, (x) Y, &) Y, (=)

It is clear that {¢ (%)} is an orthogonal system, for (10)is orthogonal to
d;o(x), Y, (), vee Y, (x) and hence to b, (x) for all m < n. Moreover,
any orthogonal system of the form (9) is a constant multiple of 1 (x)i.

In order to normalize the system (9), we introduce Gram’s determinant
G , which is the cofactor of ¢ _,, (x) in the expression(10)for ¢ , (x)s G_
is also the discriminant of the positive definite quadratic form

SR U8, 0ol + e + &, ¥, (D1 wla) da

in 50, «s s &, and hence positive. We also put G_ = 1. The orthonormal

system of the form (9) with A__ >0 is then uniquely determined as
1) ¢, &)= _, 6)* ¢ @)
Furthermore the following integral representation can be established
(12) ¢, @) =n=D"" [ (&, ey €D (£ s £, 2 %)
xw (&) e wl( _VdE o dE _, n=1,2, e

where the integral is an n-tuple integral over (e, b) and

Yolzy) Uy () oo b (x )

¥ = )
(13) rl(xo, s x") Y, (xn) ¥, (x") . (/;n(xn)

(See Szegs, 1939, sec. 2.1.) .
In this chapter we shall be concerned with the orthogonalization, in
the form (9), of the functions ¢ (x) = x". Thus we obtain a sequence of
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orthogonal polynomials tp (x)l,n = 0, 1, 2, «.. where p, (x) is a polynomial
in x of exact degree &, and (p,, p,) =0 fork, k=0,1,2, wcand & # k.

The interval and the weight function (or distribution) determine the
system of orthogonal polynomials up to an arbitrary constant factor in
each p (x). The polynonials may be standardized by the adoption of
additional requirements.The three most frequently used additional require-
ments are: (i) {p (x)} shall be an orthonormal system and the coefficient
of x" in pn(x) shall be positive; (ii) the coefficient of x" in p,(x) shall
have a prescribed value (usually unity); (iii) for a given x | (for instance
x=a), p (x,) shall have a prescribed value.

10.2. The approximation problem

Let Li be the class of all functions f(x) for which the (Lebesgue)
integral

fab wix) [f(x)]? dx

exists and is finite, and let {p (x)} be an orthonormal system in L2 . In
approximating any function f(x) of L2 by a linear combination

¢, @)+ et e @ (x),
we regard

M I(,)= f;zb wx) [f(x)-c, @ (&)~ =c, ¢, &)]*dx

as the measure of accuracy of this approximation. It is easy to seé that
the best possible choice for ¢, is that of the Fourier coefficients

(2) ah = (f, CPh)o

In fact, expanding [ ++ 12 in (1) we {ind

Lic)=f u@lNtde+ £ ci-2 3 apc,

2 C 2
al+ 2 (¢, —-a,)
o h h= o h hR" ?

= fab w (x) [f(x))? dx - .

I M=

that is the best approximation is the (n + 1)st partial sum of the (gener-
alized) Fourier series

(3) aocPo(x) +a,9, (x) + ooe

of f(x), and the measure of the accuracy of this approximation is

@ @)=L w@f@Pd- 2 o

=0
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Since I (a,)> 0, it follows that = a? is convergent and we have Bessel’s
inequality

5) h§ a2 < [° wix) [f)]? da.
=0 a
It may happen that Parseval’s formula

© = ais [Pw 6 d

h=0
holds for every function f(x) of LZ. Then the orthonormal system te, ()
is said to be closed in L:. In this case clearly

(7) fbw(x)[f(x)— iahcph(x)]zdxeo as n- oo,
a h=1

and we say that the partial sums of the Fourier series (3) converge in
the mean to f(x)s In L2, every closed orthogonal system isalso complete,
ises, if (f, ¢,) = O for all 4, then f(x) vanishes almost everywhere. This -
is aconsequence of the Riesz-Fischer theorem (cf. for instance Kaczmarz
and Steinhaus, 1935, or Tricomi, 1948, sec. 3.3).

For a finite interval (a, b) every function of L: can be approximated
arbitrarily closely, in the mean, by a continuous function, and by the
theorem of Weierstrass the continuous function can be approximated by a
polynomial. Thus for a finite interval and ¢ _(x) = x", or @ (x) = p (x),
we may make [ (a,) arbitrarily small by making n sufficiently large. In
other words, any system of orthogonal polynomials for a finite interval is
closed. This need no longer be true if the interval (a, b) is of infinite
length (Szegd 1939, sec. 3.1)«

10.3. General properties of orthogonal polynomials

A weight function w(x) on an interval (s, b) determines a system of
orthogonal polynomials {p (x} uniquely apart from a constant factor in
each polynomial. The numbers

(D) cn=fabw(x)x"dx
are the moments of the weight function, and with ¢ _(x) = x" we have

(2) (l/lm’ l/ln)=cm+r|'

In the notation of sec. 10.1 we then have



158 SPECIAL FUNCTIONS 10.3

c, ¢ v ¢, 1 X, e x;
¢, ¢, ey 1 x, oo %]

(3) Gn= L A I NI R A ’ \Pn= L I RN A =H(x x).
c ¢ . 1 x . x" r>s

n Cht1 "0 Cop

o 1 n

i €y Gt Coy
) pn(x)=cn
n=1 cn‘l Cp oo CZn-l

k
(5) pn(x)=n‘c

n(g £)? fli[(x—fv)w(fy)dfvl

r>s

Since 1, %, «es , " are orthogonal to p,(x), we have

G
6 h=( )kz—n'
6 h,=(p.p, C..

For the normalized polynomials k = (G __,/G n)%, but we shall not stand-
ardize our polynomials at this stage. »

Any polynomial of degree m < n is a linear combination of p (%),
P (%), «es p, (x) and hence orthogonal to p, (x). This leads to a simple
proof of the following theorem on the zeros of orthogonal polynomials.
All zeros of p (x) are simple, and located in the interior of the interval
(a, b). For if p(x) changed its sign in (2, b) only at m < n points, we
could construct a polynomial 7, (x) of degree m so that P, (x) 7, (x)>0
in (a, b), and this contradicts (p » m ) = 0. It can also "be shown that
between two consecutive zeros of P, (x) there is exactly one zero of

P+ &), and at least one zero of p (x) for each m > n (Szegd, 1939, sec,
3.3)s

Any three consecutive polynomials are connected by a linear relation.
We use the following notations: k _ is the coefficient of x", and k the
coefficient of x™®7', in p,x);r =k /k ,andk = (pn, p,)s We shall then

prove the recurrence formula

(7) P"“(x)"—'(Anx +Bn)pn(x)—cnpn-l(x) n= I., 2, 3, ses
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in which

® 4,=k ,/k, B =40 r )

n nVn+t

Cn=Anhn/(An— hn"l)zkn‘ﬂ kn-l hn/(krzthn-l)'

To prove (7), we remark that with the value (8) of 4 , the expression
P () -4 .%P (%) is a polynomial of degree n or less, "and consequently
of the form

Yo Ppl®)+ ¥, ooy @)+ ety po(x)

From the orthogonal property of the p (x), we find that y, = y, =+ =
=y,=0, and '

- An(pn’ xpn-—l) =Y (pn—l ’ pn—l)'

Now, xp _ (x)-(k _,/k ) p,(®) is a polynomial of degree n — 1 or less,
and hence

- An hn kn—i/kn = yl hn-i
or y, = C . Lastly, the value of B follows on comparing coefficients of
x™ on both sides of (7). The recurrence formula (7) remains valid for

n =0 if we put

9 p_,x)=0

This convention will be retained throughout this chapter.
It may be noted that conversely, a system of polynomials satisfying a

recurrence relation (7) with positive An and C , is an orthogonal system.
From (7) we easily obtain the Christoffel-Darboux formula

k. p@p,()~p &) p, ., &)
E .k x -y

n+l 'n

10 % 5'p e,

and for y > x,

) 2 A7, W1 = e, @) p,, @) =P @), @

nt1

Let {pn(x)} be the system of orthogonal polynomials for the weight
function w (x), and let p(x) be a polynomial of degree I which is non-
negative in (@, b) and has simple zeros at x , x,, +es y ¥ ;o The orthogonal
polynomials ¢ _(x), belonging to the weight function p(x) w(x) arethen
given by Christoffel’s formula
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pn(x) pn+1(x) o pn+l(x)

(12) ¢, plx)g (=) = PaGy) Py () e by ) ,

P, (%)) Prr () e Pn+z(xz)

in which ¢ is an arbitrary constant factor (Szegs, 1939, sec. 25). If
some of the zeros of p(x) are multiple zeros, (12) must be replaced by a
confluent form.

Orthogonal polynomials have some important extremum properties,
The first of these can be derived from the result at the beginning of sec.
10,2 and reads: Tke integral

(13) S @) w(x) da

in which = _(x) denotes any polynomial of degree n with the leading term
x" becomes a minimum if and only if n_(x) = ek;'pn(x) where ¢ is a
constant and |e¢] = 1, The second property involves the polynomials

19 K = £ 47 @p, 6)

which are defined for complex x, ¥ (x is the conjugate complex of x). We
may remark here that for finite x , a and for x, < @, the polynomials
K, (x,, x) are orthogonal with respect to the weight function (x~x j)w (x)
(cf. (10) and (11))s The extremum property in question may be formulated
as follows (Szegd, 1939, theorem 3,1.3). Let #_(x) be an arbitrary poly-
nomial of degree n with complex coefficients such that the integral (13)
is equal to unity. For any fixed (possibly complex) x  the maximum of
lm (& )|? is reached if and only if

ﬂ"(x) = e[Kn(xo, xo)]_% K"(xo, x)
where || = 1. The maximum itself is K _(x , x ).

10.4. Mechanical quadrature

Many interesting properties of orthogonal polynomials depend on their
connection with problems of interpolation and mechanical quadrature. In
this section we can give no more than a brief description of some of the
basic results, and refer to Szegd’s book (1939, sec. 34, chapters XIV,

XV) for further information.
Let %, %,, oo , , be n distinct points of the interval (a, ) and let
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1) 7, @=E-x)x-x,)e x-x),
L@)=(x-x)" 7 (x)/a'(x) : V=1, eee, s

The ZV(x) are the fundamental polynomials associated with the abscissae
%y ees s %, in the Lagrangean interpolation

2 LEx)=

I }As

1 flx )1 (x)

of the function f(x).
If the integral

3) I=f wl)fG)dx

is to be computed for a function whose values at the x , are given, it
seems natural to use (2) and compute
(4) J=fabw(x)L(x)dx= i1 flx ) fa"w(x) I (%) dx

v=
in the expectation that J will be an approximation to Z Actually, for any
%y, o o %, we have I= J for all polynomials f(x) of degree <n-1L
However, if we choose the x, to be the n zeros of p , (x), the orthogonal
polynomial of degree n associated with the weight function w (x), then
I=J for all polynomials f(x) of degree < 2n — 1. For in this case f(x)
—~ L (x) is a polynomial of degree < 2n — 1 vanishing at all the zeros of
p,(x) and hence of the form p ,(x) 7 _, (x) where = _, (x) is a polynomial
of degree <n — 1, Then

I-J= [P we) &) - L) dx=(p,, m, )= 0.

-1
It is customary to write
b n
(5) J=fa wlx) Lix)dx= X A, flx)
y=1

where the A are called the Christoffel numbers. They are connected
with the monients of w (x) by the relations

n

(6) Exhl\. =Ch h=0,1,...,n—1

=1 v 'vn

obtained by choosing f(x) = x*, The Christoffel numbers are positive,
and the following formulas hold:

P wx)p (%) ’ p, (x) ]2
= —_ L dx = )| —— d
() A, '/‘: p;(xv)(x—-xv) x ] w (x) p;(xv)(x—xv) x
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k ., h/k 1
A =-— ntl “n’n = .
(8) vn p;(xv) Pr+s (xv) K(xv’ xv)

If we denote by x|, x, , e, x_, the n zeros of p,(x)and by y, , s,
¥ . the & numbers in (a, ) defined by

(9) aV" w(x)dx =X, ++A, =A

1 vn

then we have a number of separation theorems

(10) « v <x <x

v=i,n v,n+1 Vyn
(]'1) yv-l, n < yV, n+1 <yv,n

12) =, , <y

v,n <xy+l,n

13) A <A <A, L

v=-i,n v,n+1
10.5. Continued fractions

The recurrence formula 10,3(7) suggests the continued fraction
1] c,| Cz|

1 - -
m |4, x+B, |Ad,x+B, |4,x+B,

14

h

where 4, B , C_ are given by 10,3(8). The nt® convergent R, /S, is

defined as the finite fraction obtained by stopping at the term 4__ x+B __,
in (1) so that

2 R,=0, S,=1; R

[¢]

=1 S, =4 x +Bo=pl(x)/p0(x).
Both R and S satisfy the recurrence relation

(3) Xn"‘l=(An x+ Bn) Xn - Cu Xn-'

ye
The initial conditions are

@) forR,:X,=0, X,=1; forS:X =1, X, =p,(x)p,)
Referring to 10.3(7) it is seen that

() S, =p,&/p, &)=k p, )

In order to express also R, we introduce the associated polynomial

b
© qn(x)=/ LAl AR
a X

-



10.6 ORTHOGONAL POLYNOMIALS 163

which is a polynomial of degree n —~ 1, From 10,3 (7)
9,4, ®)-4 x+B)g ()+C,q,_ (x)
=-Anf: p,()w()dt=0 n=1,2 e,
Moreover, ¢,(x) =0, ¢, (x) = fab k,w()dt=k c ,and hence

M R, =Ck,c,)" g &)

We thus see that R /S is a rational function of x with simple poles
atx =%, « The residues at these poles can be computed from

1 b
lim e )T _f P L wa -,

Xz, Yo, &) plG) t-x

see 10,4 (7), and we have the decomposition in partial fractions

Rn - ko S Avn

S'I kyc x—%,

€:))

o y=1 n

On expansion of the sum in descending powers of x the relation 10.4 (6)
shows that-the first 27n coefficients are the moments c, . Hence we obtain
formally

o0

R,k
(0 lim <& =—0 Y Zh_,

nveo S kiey, T %

For a finite interval (a, b), and for any x in the complex plane cut
along the segment (a, b) of the real axis, Markoff proved that lim R_/S
exists and (9) is valid. Moreover,

R & b
(10) lim —n =20 f wl)
o Ja

n-»00 n k|c x -1

in this case (Szeg¢, 1939, sec. 3.5)s Intervals of infinite length present
formidable difficulties which are discussed in the theory of (Stieltjes
and Hamburger) moment problems. For these see Shohat and Tamarkin

(1943).

10.6. The classical polynomials

The orthogonal polynomials belonging to the intervals and weight
functions listed in the following table arise very frequently and have
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been studied in great detail. They are known as the classical orthogonal
polynomials.

CLASSICAL ORTHOGONAL POLYNOMIALS

a b w (x) NAME

-1 1 1 Legendre or spherical

-1 1 (1-x2)\% Gegenbauer or ultraspherical
-1 1 (l—x)a(1+x)'3 Jacobi or hypergeometric
~o0 o exp(~x?) Hermite

0 ) x%e”* (generalized) Laguerre.

All these polynomials have a number of properties in common of which
the three most important ones are:

(i) tp () is a system of orthogonal polynomials;
(ii) p,(x) satisfies a differential equation of the form
A)y" +B(x)y' + A y=0
where 4 (x) and B (x) are independent of n, and A_ is independent
of x;
(iii) there is a generalized Rodrigues’ formula
O p@ e L e 7
Pl oy T P
where K is a constant and X is a polynomial in x whose coeffi-
cients are independent of n.

Conversely, any of these three properties characterizes the classical
orthogonal polynomials in the sense that any system of orthogonal poly-
nomials which has one of these properties can be reduced to a classical
system, For (i), this has been proved by Hahn (1935) and Krall (1936);
for (ii) by Bochner (1939)((in this case there are some trivial exceptions);
and for (iii) by Tricomi (1948a). We shall briefly indicate the argument
in this last case.

Let ip"(x)i be a sequence of polynomials, p_(x) of exact degree n, for
which (1) holds for every n = 0, 1, 2, «. , the polynomial X being of
degree k. Note that it is not necessary to assume that the p (x) are
orthogonal polynomials or that w (x) is a weight function. From (1), with

n =1, we have

2) K,p,&)=X"+Xwx) wlx)
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First let £ =0. Then X is a constant and w %w is a linear function of
%+ By a linear change of the independent variable we may make w 7w
= —2x, hence w = exp(~x?), and the polynomials are the Hermite poly-
nomials, see 10,13(7). Next let & = 1, Then a linear change of x brings

w'(x)_K, p,x)-X"
wlx) X
into the form w¥w = -1 + a/x, so that X = x, w = x%e”

the Laguerre polynomials, see 10,12(5).
We now discuss k > 2, In this case we may take

(3)

*, and we have

[
4) X= 1 (x-a)
r=1t
and at first we assume all the a_different from each other. From (3)
k

w '(x) _ a,

wlx) 2, x-a,

so that (1) becomes

n

(=K T (x-a) " 0 G-a) 7]

p,(x)=K_ r=‘x—-ar x"[r=1 x-a, ,

and for n = 2 this fails to be a quadratic polynomial except when & = 2,
The case of repeated factors in (4) can be excluded by a similar consid-
eration, so that in (4) we must have k = 2, a, £ a,e By a linear change
of x we may make a, =-1, a, = 1, and write

X =(1-x)2 w(x)=(1—x)°'(1+x)ﬁ
so that this case leads to Jacobi polynomials, see 10.8(10).
It may be mentioned that Hahn (1949) has extended these results
considerably. He replaced the differential operator df (x)/dx by the more
general linear operator

flgx + 0) - fx)

Lf(x)=
i) g-Dx+ow

and showed that in this more general case each of conditions (i), (ii),
(iii), and of two further conditions, characterizes the same family d
orthogonal polynomials. The classical polynomials are limiting cases
of Hahn’s polynomials, and so are the polynomials of sections 22-25.
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10.7. General properties of the classical orthogonal polynomials

Many important properties of the classical orthogonal polynomials
follow easily from the generalized Rodrigues’ formula 10,6(1). We assume
a > —~1 in the Laguerre case and @ > -1, 8 > —1 in the Jacobi case.

In each case we have in 10,6(l) a w(x) which is non-negative and
integrable in (a, &) Moreover, since all derivatives up to and including
the (n = 1)st of w (x) X” vanish at a and b, we may integrate by parts n
times in
dﬂ

o [w(x) X ] dx,

(,p)=K;' ] &)

obtain
(¢, p,)= DK [* ™) wx) X" dx

and hence (f, p,) = 0 if f is a polynomial of degree < n. In other words,
the polynomials 10,6(1) form an orthogonal system in the interval (e, b)
with the weight function w(x), and all the results of the previous sections
are valid for these functions. In particular, we have the recurrence formula
10.3(7) with the notation 10,3(8) which we shall use again in the present
section.

In deriving the differential equation from 10,6(1) we shall write D
instead of d/dx. From 10.6(1) and from Leibniz’ formula of the differ-

entiationof a product we have
D" XD wX™]1=K [XD?Gp )+ (+1) X D(wp)
+%n+ 1) X" wp .
On the other hand, using 10.6(3),
D" XD (wX™1=D""{K p, + (- 1) X TwX"}
= K MK, p, + (2 - DX 1D (wp )+ + DIK, p, +a=1) X Juwp }

since K| p, + (n — 1) X’is at most a linear function of x. Comparison of
the two results yields the differential equation

d® dy

(].) XE:-YZ—+K,p‘(x)'E+/\ny=O

for y = p  (x), where
@) A, =-nlk, K, +%E-1DX"L
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The self-adjoint form of the differential equation is
d dy

B) — [Awx)— | +A wl)y=0.
dx dx "

For the details of the proof see Tricomi (1948a, p. 210-212). Since X is
at most a quadratic polynomial, and p,(x) is a linear polynomial, the
differential equation (1) can be reduced to the hypergeometric equation
or to one of its special or limiting cases.

For the classical polynomials we also have the differentiation formula

dp, (x)

@ X dx

=(an +I/_>nX”x)pn(x) +B,.p,- @)

where _
(5) an=nX'(0)—l/2X” T Anan=_Cn[kl K! +m-%)X"],

and 4_, C , %k ,r have the same meaning as in sec. 10,3, By means of
10,3 (7), the right-hand side of (4) can be expressed in terms of p, and

Pty

The proof of (4) in Tricomi (1948a, p. 212-215) is based on the fact
that

Xp:(x) -YUnX" xpn(x)
is a polynomial of degree < n and hence of the form
a,p,@+B, P, &+y,p &)+ +y p )

The coefficients a_, «. , y, are then determined by the orthogonal prop-
erty. In the determination of 3 the differential equation (3) is also used.

Finally we note that by n successive integrations by parts as at the
beginning of this section,

© h,=(p,p)=ED"E oK fabX"w(x)dx,

from 10,4 (8), 10,3(7), and (4)

D A=Ak X, VB I, &, 7
=4, b, (B /X, Dplx, N7

and from (6)

® (<Drk K >0.
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Each of the following six sections is devoted to one of the principal
families of classical orthogonal polynomials. Each of these six sections
is organized on the following plan:

(i) Standardization of the polynomials,
(ii) Computation of the ten constants

() hn’ kn’ Tno An’ Bn’ Cn’ Kn’ An’ Cp> Bn
given by 10,7(6), 10.3(8), 10.7(2), 10.7(5).

(iii) Statement of the recurrence relation, differential equation, and
other relations, except that whenever these relations are
cumbersome, it will be left to the reader to substitute the
values of the ten constants (9) into the general formulas of
this and the previous sections.

(iv) Connection with functions of the hypergeometric type and com-
plete integration of the differential equation.

(v) Generating function or functions.,

(vi) Integral representations. »

(vii) Addition theorems, series expansions,and miscellaneous results.

Asymptotic properties, zeros, expansion problems will be discussed in

later sections.

We shall use the notation

d
D=—
(10 -
and shall put
T ,
aun (a)o =1, (a)n =# =ala+]1) +se (@ +n - 1).

Accounts of the classical orthogonal polynomials are given in the
works referred to in the introduction, and also in the book by Magnus and
Oberhettinger (1948, Chap. V).

10.8. Jacobi polynomials

We shall use Szego’s notation Pn(a'm (x) for the suitably standardized
-orthogonal polynomials associated with

1) a==-1, b=1, wlx)= (1-2)2A+x)’, X=1-x2,

In order to make the weight function non-negative and integrable, we
assume

(2) a>-1, B>-L

Many of the formal relations are valid without this restriction.
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(i) Standardization.

@) p(a.ﬁ)(1)=(n+a) =(a+1)n
" n !

n

(i1) Constants.

4 Qr+a+B+Vnllw+a+B+Dh = 298 T'(n4+ g+ 1) T'(n+ B+1)

6 k=27 (2n+a+3>’ - nfa - B)
n

_2n+a+B

6) 2+ Dr+a+B+DA4 =Cn+a+B+1D2n+a+B+2)
(M 20+De+a+B+12r+a+B)B =(a®-B*2n+a+L+1)
8 @+Dh+a+B+1)2r+a+B)C =@+a)n+pB)2n+a+B+2)
© K =(-2"n!, XA =nG+a+B+1), a =r,

2n +a+B) B, =20+ aa+p)

(ii1) Rodrigues’ formula.
(10) 272! P& Bl = (1" (1= 2)7* (1 + %) BD (1 - x)**" (1+2)A*7],

Recurrence formula:

(1) 2G+ D@+ a+ B +12n + a+ B) P % Alx)
=2n+a+ B +D[(2n+a+B)2n+a+B+2)x +a® - B2] pia.ﬁ)(x_)
2@ +a)n+B)2n+a+ B+ 2)P,(l‘1'1ﬁ)(x).

From (10) we obtain the explicit expression

(12) P& A z)=27" ) (’”") ('” ) (x = D" (x + 1)
o m m

n-
which shows that
(13) P& Alex) = (-1)" P ¥+ (),

Differential equation:

(14) A-x3)y" +[B-a-(a+B+2Dx]ly’+nn+a+B+1)y=0,
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Differentiation formula:

(15) @n+a+B) (1~ xz)-;- P @ By)
X

=nlla-B)-(2n +a+ B)x] P’(la'ﬁ)(x) +2@ + a)n + B) P ®:A)(x),

(iv) Hypergeometric functions. Equation (14) can be reduced to the
hypergeometric differential equation 2,1(1), and the Jacobi polynomial
is that solution of (14) which is regular and has the value (3) at x = 1.
From the formulas of sec. 2,9,

(16) P @ A)x) = (”

+a
) Flen,n+a+B+1;a+1; %~%x)

n

= (D" (n+B) Flenyn+a+B+1; 8+ 1%+ %)
n

x—-1
( ) G+ Bx)" F (—n, ~n-f; a+1; 1)
( B) (Y%x - )" F (——n,—n a,B+1x+1>

From this we find the further differentiation formula

(17) 2" D" P ANy = (n + a+ B + 1) P @tmBta)(y)
m=1,2, weyn

which confirms statement (i) of sec. 10,6,
It follows from 2,9(14) that the function Q| (a, 'B)(x) defined by
"+a+51"(n +a+DTR+8+1)

(x — 1)*¥et! (4 + 1)8

xFln+l, n+a+l; 2n+a+B+2; 2(1-x)""]

(18) T'(2n+a+B+2) Qi“-ﬁ)(x) _

is ‘a second solution of (14). It is known as the Jacobi function of the
second kind. This function is not a polynomial, but it satisfies the same
recurrence formula (11), and the differentiation formula (15), as the
Jacobi polynomial (except that n = 0 is not admissible with the Q);
it vanishes at infinity when Re (a + 8) > —n — 1. For the various trans-
formations of the hypergeometric series in (18), and for its analytic

continuation, see sec. 2,1.4.
Jacobi polynomials and Jacobi functions of the second kind are con-
nected by several relations. From the connection between various solu-

tions of the hypergeometric equation, see sec- 2,9, we have
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(19) Q,(,a"B)(x) =-Y% 7 coseclan) Pr(.a'ﬁ)(x)
Fa)Th+8+1)
Fa+a+B+1)
xF+l~n~a-B;1-ak%- %

There is also the integral relation

(20) Qia'ﬁ)(x) =Lx -1 %+ 1)7A f_li(x—t)_' (l—t)a(1+t)/3Pn(a'/3)(t)dt

+ 204671 (x-1"%x+ 1)

valid for all points x in the complex plane cut along the segment (-1, 1),
This segment is a branchcut, and Q(:'B Jassumes different values accord-
ing as x approaches a point{ on the branchcut from the upper half-plane

(£+10) or from the lower half-plane (£—:0), The values of Qi""ﬁ) (£ £i0)
may be computed from (19), taking arg (x — 1) = 7 for x = £+ i0, and
arg (x ~ 1) =~z for x = £ - {0, In particular,
(21) QBN E+ 10) - Q@ PN E- i0)

I'a) Tz + B +1)
Ta+a+B+1)

Q-8 (1+¢&)A

= —i 2%*B sin(an)

xFln+l,~n~-a=-B;1-ah-%& ~1<é<
On the cut itself, one may use the function
(22) Q@B (&) = %IQ @A+ i0)+ QPN ¢~ i0)] —l<é<1

which is real when a and B are real. From (19)
(23) Qr(la’ﬁ)(f)=—l/§77 cosec(aﬂ)Pr(la"B)(f)
'z +B+1)
Th+a+pB+1)

xFn+l,-n-a-B;1-a%-%&) -1<é<],

(1-&)y*@+ o~

+ 29%87 1 ¢os(an)

Jacobi functions of the second kind are also connected with the
polynomials

(24) q*FAx)= f_‘1 (t=2)"" (1=)*(1+2)P [P @BXe)~ P @B)(x)] ds

associated with Jacobi polynomials according to 10,5(6), for clearly
(20) may be rewritten as

(25) Qia'ﬁ)(x) = Ylx-1)"%x+1)8 qr(la BXx) + Qéa BNx) P fla'ﬁ Nx)s
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Other relations connecting the P and Q are
(26) P @F)x) Q @B)x) - P @B)x) Q @F)(x)

I'(a+a)T(B +n)

1) (x4 1)B
n!Cn+a+B+1) - D D)

=298 (2n + a + B)

d
@) P L 0@ By) _ 0eb)yy L p @by

=_2a+ﬁ I'n + a+ 1)F(n+.B;+ D (x —1)2"! (x+1)—’8_l
nll'r+a+B+1) ’

and from these it follows that ()(:'ﬂ) satisfies the same differentiation

formula (15) as Pn(a-ﬂ) .
From the theory of hypergeometric functions one obtains integral
representations for.Qn(“ A), The simplest of these is

(28) Q,(la"ﬂ)(x) =27 Ny ~ 1) (g + 1)7F
x f_: (x—)™ " (A=) (1 + )" Bds,

valid when x is in the complex plane cut along the segment (-1, 1).
(v) Generating function.

(20) ¥ P@ANx)zn= 2%*BR™N(1-z +R)*(1+z+R)FA
n=0 |z] <1

where

(30) R=(1-2xz+2z)*
and R = 1 when z = 0. For several ways of proving (29) see Szegd (1939,
secs 4.4). For particular values of a, 8 there are other generating func-

tions,
(vi) Integral representations. From Rodrigues’ formula (10), we have

1 1:2-1\" f1-: V¥ /1+:t\”
(31) P@B)x) = f — M de
n 2ni (x+) 2 t—x 1-—x 1+x

where x # % 1, the contour of integration is a simple closed contour, in
the positive sense, around ¢ = x. The points ¢ = + ] are outside the
contour, and [(1 ~ £)/(1 = x)]%and [(Q + ¢)/(1 + x)]P are to be taken as
unity when t = x,

Further integral representations may be obtained, from integrals
representing hypergeometric functions, by means of (16).
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(vii) Miscellaneous results. We may apply Christoffel’s formula
10.3(12) to wlx) = (1 - )2 + 2)8, px) = (1 - x). In virtue of (3) we
obtain

(32) (n+%a+%B+1)(1- x)P,(,aH'ﬁ)(x)
=(+a+DP@AR)-(u+1)PeBy)
and similarly

(33) (n+%a+%B+ D(L+x)P Bty
=+ B+ 1P A+ (n+ 1) P @B)x),

These. are examples of relations between contiguous hypergeometric
functions (see 2,8(31) to 2.8(45)): other relations of this nature are

34) (1-2) PO A x) 1 (1 +x) P @B (x) = 2P @:B)(x)
35) @n+a+B)PE " Ax)=(n+a+ B)PEPUx)-(ns+B)P EF)(x)
86) 2n+a+B)P @A V(x)=(n+a+B)P @2 B)%)+(n+ a) P 2 :F)(x)

(37) P @B (x) — Pt B)(x) = P @ B)(y),

Repeated application of these formulas results in the expression of
P (ath, B+k)(x) for any integers k, k in terms of P, @.8)(y),
" From Rodrigues’ formula (10) we have

(38) 2n [T (L~9)A+y) P& PAy)dy
- P’(lci+11, ﬁ+1)(0)_ Qa -x)aH 1+ x)ﬁH P’(la;:"ﬁﬂ)(x).

Toscano (1949) found a counterpart of Rodrigues’ formula in terms of
finite differences. We define the difference operator by

(39) A, F(d)=Fla+D-Fla), ALF=AAT"F)
and write Toscano’s result in the form
o) n!T{a+L+n+1) P’(la-ﬁ)(x)

_(—1)"F(a+n+1) n Ma+B8+n+1)
- — Yx)rt @ C{a+1)

(% —‘/zx)‘”‘:l-

Lastly we quote the important limit

2
41) lim [ _aP(a"B) (cos-)] lim [ n—aP’(la’B) ( —; 2)]
n-» oo n-» oo n

= (%2)7%J (2)
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where J_is the Bessel function of the first kind. This formula holds for
arbitrary  and 3, uniformly inany bounded region of the complex z-plane,

10.9. Gegenbauer polynomials

We use Gegenbauer’s notation Ci\(x) for the suitably standardized
~ polynomials associated with
() a=-1, b=1 wl)=(1-x2 % X=1-x2,

These polynomials are also known as ultraspherical polynomials and are
often denoted by P, Yz). Clearly, Gegenbauer polynomials are constant
multiples of Jacobi polynomials with a = B8 = A = %, In order to have a
real and integrable weight function we assume

(2) A>-— 1/2s

although many of the formal relations are valid without this restriction.
For these polynomials see also sec. 3,15,

(i) Standardization.

2A-1 2ZA
(3) Cé(l): ( n+ ) =( )n

n n!

By comparison with 10,8(3)
@ (+%), Chx)= (2N, P& 2)a) a=X-%.

The standardization (3) fails when 2 is zero or a negative integer. The
only exception in the range (2)is A = 0 and for this we standardize accord-
ing to

2
(5) Cg(l)= 1, C2(1)=-— n=1, 2, (XTI
n
and have
-1 ,
(6) CL6)= lim A" CMx) = 2(’(’%T)P,§‘%v'é>(x).

In many formulas of this section A = 0 must be excluded, This case will
be considered in sec. 10.10.
(ii) Constants.

(M G+ Da!lTWhA =a%(2)), TO+%)
® nlk =2"W),, r =0, @A) K =2)"(A+%),

9 G+1)4 =2m+x), B, =0, (+1)C =n+2r-1
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(10 A,=n(+2)), a,=0, B =n+2r-1
(iii) Rodrigues® formula.
LD 27et A+ %) (-2 TE M) = (1) (20), D(1-x )M E]
(12) CMx)=1, CNx)=22x.
Recurrence formula
(13) (o +DCA, (@)= 2( + N 2CN2) - + 20 - 1D €M (o).

Differential equation
(14) A=-xy" —=QA+Vxy’+nm+2))y=0.

Differentiation formula
d
(as) (=% — CMx) = —nx €M) + (0 + 20 = 1) CP_ ()

=(n +2/\) xC)\(x)— n+1) C>‘ , @),

Parity
(16) CMwx) = (-1)" CNa)

Explicit representations

\ 50, ),
a7 Cn(cos 8) =m2= 0 m cos(n—-2m)8
["- 2] ( l)m (/\.)
)\ _ ~ n—m n=2n
(18) C7x) = 2 o—’"' 2! (2x)
0 if nis odd,
(19) CMO) =
(-1)= (/\)m/m! if n=2mis even,

(iv) Hypergeometric functions. The d1fferent1al equation (14) can be
reduced to the hypergeometric equation, and oN ~(x) is that solution which
is regular at x = 1 and has the value (3) there. Moreover, in the case of
Gegenbauer polynomials the hypergeometric series in question admit of
quadratic transformation, see sec, 2,1,5, and we obtain the following
representations:
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(20) n!C}:(x)= QN F (nyn+20 2+ %; %~ Yx)
=(=1" (2/\)nF(~n, n+ 20 A+ % %+ %x)

1 2
=2"(\) x~1)"F (—n, ~n— A +—; 2n-2)\+1; )
" 2 1-x

1 x-1
=(2)) ( +— x) (—n,—n /\+ 3 A+ >
2 x+1

(21) C}Z\m (%)= (D" (A)"" Fl—mym+ )\; %; x?)

m:

(2'\)"’"'19( MA+¥% 1-2x?)
(2m)‘ m, m + + 75 x

A ,
=El—/))'"— P A% =% (252 1)
2

22) CN

2n +1

(x)—(-l)'" ( )m+‘l 2x F<~m,m+/\+ 1;i;x2>
m! 2

- (2 /\)Zm +1

@ 1)YxF(—m,m+/\+1;/\+l/é;1—x2)
m+1)!

(_A)___ PO\ ¥, %)(2x 1).
), .

From these representations in conjunction with (13) and (19) one
obtains

(23) D™ CMx)=2" (A)_ CMN** (x) m=1,2, v,
(24) DC?_I (x)=xD Cé(x) -n Ci\(x)

25) DCY, ) =xD C M)+ (n+ 23) C M)

26) 2(n + 1) [ CMx) dx = CM, () - CM_ ()

27) Dc§(0)={

0 if nis even,

2(-1)" ()\)m s/m! i n=2m+1is odd.
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A second solution of the differential equation (14) can be obtained
from the work of 10,8(iv) by means of the connection, (4), (6), (21), or
(22), between Gegenbauer and Jacobi polynomials. No generally accepted
notation or standardization seems to exist in this case.

(v) Generating functions. From 10,8 (29),

& 1
(28) z %_;)gﬁ Ci}(x)zn= A% R~1(1 = xz + R)%~A
n=20 n

|z] <1, R=(1-2xz+22%, R=1whenz=0;

but in this case there is a simpler generating function, viz.

(29) § Cé(x)z"=(1—2x2+zz)'>‘ |z] <1
n=0

which can be verlfled by puttm§ = cos 0, factorizing the right-hand

side as (1 - eifz)™ 19%2)™, expanding in the binomial series, and

using (17). A third generatmg functlon

n

30) I CMx) —— =T+ %) e*** 0%z sin6)4 ™M, _, (z sin0)

n=o0 " (2)\)n

is connected with (29) by means of the Laplace transformation.

(vi) Integral representations. Each of the generating functions leads
to a contour integral representation of Gegenbauer polynomials. In addi-
tion, we have the real integrals

21"2AT (2 + 1)
n! [TM(A)]?

(31) C’}(x)= /W x+x2-1)* cosql” (Singo)”\" do
o]

A
32) C 0) =
(82) C'(cos 7% al T () (cosp - —cos@)' ™ g

AT (A + %)(2N), - 6),_&/ cos (n + N
0

both for A > 0. For (31) see 8,15(22) and Seidel and Szdsz (1950). Equa-
tion (32)is Mehler’s integral 3.15(28); there is a second integral obtained
by replacing ¢ and @ by # — ¢ and 7 — 6 respectively. Mehler’s integral
suggests a functional transformation which will carry ultraspherical
polynomials into powers.

(vii) Miscellaneous results. From the connection with Legendre
functions,

(33) n1CMx) =T+ H)(2N), 4 (2 - DI HAPEN ),
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we have the addition theorem

(34) Ci‘(coso cos iy + sin @ siny cos Q)

2
= 3 2'(2A+2m—1)(n—m)![(l\)""]
m=0 (2A-1)

ntm +1
x (sin O)" Ci‘_": (cos @) (sin )* C:‘_t' (cos ¢) C}_% (cos ©).
Relations between contiguous hypergeometric functions are

35) 2A(1-x2) Ci‘_"" )=Cr+n~-1) Ci‘_, (x) - nxCi\(x)
=(n + 202 CM (x) - (n + 1) CY,, ()

36) (n+ N CA @) = (- D [CA,, ) - €A (1.
The differentiation formula
@7) 2= M D2 - DM = (D) 0! CM x 2 - 1D7¥]

follows from (11) and a linear transformation of the hypergeometric series
in (21) and (22). It is due to Tricomi (1949). We note also Gegenbauer’s

integral

(38) n! f: g ixcost Ci‘ (cos @)(sin 0)2>‘d0

=2 AT+ HEN, "2y, (@)
and the expansion in a trigonometric series

' R r 2
39 ') C}’:(cos 9)=2 Z (A)" T ((n: m-:)xji) cos[(n+2m +21)6 ~Ax]
m=o m! n+m

0<Aax<l, 0<éb<n

(Szegd, 1939, p. 95).
10.10., Legendre polynomials
Legendre polynomials P (x) are the suitably standardized polynomials
associated with
1) a=-1, b=1 wk)=1, X=1-x2,

These polynomials are also known as spherical polynomials. Clearly
they are Jacobi polynomials with @ = 8 = 0, and also Gegenbauer poly-
nomials with A = 4. Legendre polynomials, and more generally Legendre
functions have been studied extensively (cf. chapter III).
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(i) Standardization.
2 P(D=1

Hence
@) P (x)=C%) =P (x).

(ii) Constants.

y
@ h =sW, k”=2"gn=2"(2')", . 20
ni

(5) Kn=(—2)”n!, (n+1~)An=2n+1, B, =0, (n+1)Cn=—n
6) A,=n(w+1), a =0, B =n.

(iii) Rodrigues’ formula.

(7) 2"n!P () =D"[(x* - 1)"]

[N

3
(8 P,x)=1 P &)=x, Pz(x)=§x2—

Recurrence formula

9 @+1P ,  (x)=2n+1) xP”(x) - nP"_1 (x).

n+1
Christoffel-Darboux formula

n+1

(10) S ©Cm+1) P, (%) P (y) =
=0

n x

Differential equation
(11) Q=% y" =2xy’+a(n + 1)y =0.
Differentiation and integration formulas

(12) Q=22 P @) =nlP,_, ) =xP ()=(n + 1) [P, &)~ P, ()]
(13) %P ()= P’_ (x)=nP_x)

(19) P, &)~ 2P (x)=(a+ 1P, (x)

(15) 2r+ 1) fP”(x) dx=P , (x)-P _ (x).

In these formulas P’ (x) = dP, (x)/dx.

1P, 6 P, 0) = Py ) Py )

179
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Explicit representations, parity, special values

[" ] 290 —
(6 P =2 S (-1)-("> ( " 2'">x..-z.
R=0 m n

(17) P (cos6) = 3 g, 8,y COS(—2m)0
=0

(18) P -x)=(-D"P (x), P (+D=(xD"
19) P, @=(D*g,, P, , ©)=0

(20) P;. (0)=0, P;_+1(0)= -D"* 2m + l)g. .

Here

1
@1) g.=(/2).=2_2. (2m) . )
m

m!
(iv) Hypergeomettic functions. See also 10.9(iv).

(22) P (x)=F(-n,n+1; 1; % - Yx)
=2"g x"F(=Y%n, % -Yn; %; x7%)

(23) P, (cos O=F(-n,n+1;1;sin?%0) =(-=1)"F(-n, n+ 1; 1; cos2%0)

(24) P, (x)=(-1)* g Fl-m, m +%; %; x?)

3
(25) P (x)=(-1)" (2m+1)g. < F (_.m,m+E; %;xz)

2m +1

(26) P (x)=2"m!g C:f.%(x) n>m.

dx*

Information about asecond solution of Legendre’s differential equation
(11) may be obtained from 10.8(iv). Such a second solution isthe Legendre
function of the second kind

@7 Q &) =QL ).

In the complex x-plane cut along the segment (-1, 1)

28) 27"22 + 1)1 (D)2 Qn(x)
=x-D""Flrn+Ln+1; 2 +2; 201 -x)""]
=+ "Flr+Lnr+12n+2; 2(1 +x)7']
=x " VF(1/2+1/2 1 +n/2;3/2 +n; 27 2),
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The Legendre function of the second kind is not apolynomial: it satisfies
the same recurrence relation (9) and the same differentiation formulas
(12) - (15) as the Legendre polynomials, except that n = 0 is inadmissible
in these formulas when written for Q.

29) Q, (-x)= 1" Q_(x)

x+1 1 x+1
o Q|(x)=-2—xlog T -1

1
(30) Qo(x) ='E IOg

X -
(31) Qn(x) =27 f_“ Q-2 (x ~2)""" " de

(32) Q,6) = [[7lx + (x? ~ 1)% coshe] ™" ds

(33) Qn(cosh )= f; [2(coshz — cosh 4)]_% e~ (n¥¥)z g,
Rez>Red, Imz=Im{¢

(34) Q=% [ -0 P () de.
[(n+1)/2] .

2n -4k +3
(35) Qn(x)=00(x)Pn"‘)‘k; Ck-Dh-k+D

n—2k+1 (x).

The last formula is equivalent to the special case a= 8 =0 of 10,8.25;
for the proof in the form (35) see Hobson (1931, pp. 53-54)« The point at
infinity is a zero of multiplicity n + 1 of Q _(x); and this function has no
other zero in the cut x-plane.

The segment of the real axis frora ~1 to 1 is a branchcut of ¢ (x), and

36) Q. (£+i0)~Q (£-i0)=-miP (£) ~1<é<l.

On the branchcut we may define a second solution of Legendre’s equation

by

(37) Q (&) =%Q (£+i0)+%Q (£-i0) —1< é<
We then have
(38) Q (&)=%F (-7 P () ds ~l< <l

where the integral is a Cauchy principal value, that is

lim(f_f—€+f§'+e) as ¢>0, ¢-0.
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(v) Generating functions.

(39) s Pn(x)z”=(1—2xz+z‘°‘)"% -1<x<1, |[z]<1

n=20

v 1
40 z -n—'Pn(cose)z"=e’°°“9Jo(z sin §)

n=20

o0 _1 n
(41) Z fl+l)/z P (cos0) x™*' = F(sin %6, @

n=20

x=tan %@ O<o<ltm, 0<O<m

The first two formulas are particular cases of 10,9(29) and 10,9(30).
The last formula may be derived from (39),and F (%, @) denotes Legendre’s
incomplete elliptic integral of the first kind with modulus %

(vi) Integral representations.

(42) P (cos @)= "' fow (cos @+ isinf cos P" dgp
=7 j;” (cos 0+ isin6 cos @)~ """ do
y -1 (9 -% 1
(43) P (cos0)=2"n j;) (cos p~cos0) ™ cos(n + %) pdp 0<6<n

W) P ()= 2m)"" O (1= 202 + 2% 271 2

45) P ()= (=2 2z [ (1= 297 (2 ~ )" gz

Equation (44) follows from (39), and (45) from Rodrigues’ formula. The
integral in (45) is known as Schlafli’s integral. Laplace’s first and
second integral, (42), may be deduced from (45) when the contour of
integration is taken to be the tircle

z=x+(x2=1%¢i? -7< @<m,

and Mehler’s integral (43) may be deduced from Laplace’s integral
(Whittaker and Watson 1940, sections 15,23 and 15.231).
(vii) Miscellaneous results. With the notation

(46) P" (cos 0)=(-2)" m!g (sin6)" C:_*'Z‘ (cos 6)

for the associated Legendre function of the first kind [see 3.4(l) and
3.15(4)] we have from 10,9 (34) the addition theorem of Legendre poly-

nomials
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(47) P _(cos@ cosy + sin@ siny cos @) =P (cos6) P _(cos ¥)

- !
+2 2 M P (cos6) P" (cos ) cosn q.

,=,(n+m)!

We note the expansion in a trigonometric series

2 X @), g, ..
(48) P _ (cosf)= — .Zo G, sin[(n + 2m) 6] no=2,3, e

and the integral formulas
93/2

1 _ -y -
@9) J_,A-2)*P (x)dx ST

(50) IO”PZ. (cos 6) d = ﬂg: , J;ﬂPz. 41 (cosB) cos0dO=mg, g, .,

1" %N,

_— = ReA>~1
205+ %N _,, °

(51) foi RS Pz. (x)dx =
D= (% - '/z)t)‘,l

Re A>-2
21+ %N, ©

(52) foi xxPZm_“(x) dx =

and the bilinear expansion

“ n(n+1)

o Zn+l
(53) ) ———P ()P ()=2log2~1-logll-x)(1+y)]

-l<x<y< L

10.11. Tchebichef polynomials

Sometimes (especially in the French literature) orthogonal polynomials
in general are called Tchebichef polynomials. There are also several
special systems of orthogonal polynomials called Tchebichef polynomials.,
In this chapter we shall reserve the name Tchebichef polynomials of the
first and second kind for the suitably standardized orthogonal polynomials
associated with

D a=-1, b=1, wk&=0-x3%%, X=1-x2,

Clearly these polynomials are multiples of Jacobi polynomials with
a= B = -7 for the polynomials of the first kind T _(x) and with a.= 8 =%
for the polynomials of the second kind U_(x). Also, the Jacobi poly-
nomials in question are ultraspherical polynomials with A = O for the



184 SPECIAL FUNCTIONS ) 10.11

polynomials of the first kind and with X = 1 for the polynomials of the
second kind.

The orthogonal relationship for Tchebichef polynomials of the first
kind reads

f_: T. (x) Tn(x)(l—xz)-% dx =0 m# ne

If we substitute x = cos @ and note that cosn 6 is a polynomial of exact
degree n in cos 6, we see that T, (x) must be a constant multiple of
cosn 0; and we show in a similar manner that U_(x) is a constant multiple
of csc @ sin(n + 1) 6. We standardize our polynomials by putting

in(n + 1)6
(2) T (cos@)=cosn6, U (cosb) Smamr v .

sin 0

Many identities involving Tchebichef polynomials are paraphrases of
well-known trigonometric identities. As an example, we mention the
connection between the two kinds of Tchebichef polynomials,

@) TW=U&-xU_, &
@ Q=-xU _ )=xT &)-T_,, &)

Tchebichef polynomials are ultraspherical polynomials with A =0, 1.
From 10,9(23) it is seen that C};(x) can be expressed as a derivative of
a Tchebichef polynomial whenever X is a positive integer.

(i) Standardization. This is given by (2). It follows that

(5) T (x)=%nC°(x)=(g, )" PH7H)y) n=1,2,

©) U )=Cllx)=(2g, )" PR () n=0,1, e

where Cg is defined by 10.9(6) and g by 10.10(21).
(ii) Constants. For T (x)

(D hy=m h =%mn n=1,2,
(8) kn=2"—1, r.=0, K =(-1)"2"nlg

9 4,=2, B =0, C_ =1

(10) )\n=n2, a =0, B =n.
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For U . (x)

1) b =%m, k=2 r =0, K =(-1)"2""'nlg _
(12) 4 =2, B =0, C,=1

(13) A,=nr+2) @ =0, B =n+l

(iii) Rodrigues’ formulas.

(14) 2" (), T (&) = (-1)* (1 - x®)% D"[(1 - x2)"7%]

(15) 2" %), U &) =1+ 1A - x2)7% DP(1 - x2)"¥H],
Recurrence formula [z (x) is either T (x) or U, (x)]

(16) z,,, () =2xz (x) -z _, &),

Christoffel-Darboux formula,

I N N R MO EROEENOEIN )

where z _ is either ' or U, , but in the case of T, the first term (m =0)
of the sum must be halved,
Differential equations.

(18) A=-=x)y" —xy’+n? =0 for y=T (x)

(19) 1-x)y" =82y "+r(+2)y=0 for y=U (x)

Differentiation formulas (primes denote differentiation with respect to x)
(20) Q=23 TAx)=n[T,_,(x) - xT,(x)]

21) 1-x2) U/)=(+1)U _ &)-nxU (x).

Explicit representations

[nlz]
n ~D*(n-m-1) n—2m
(22) T"'(x) =? ,,Zo m!(@n~2m)! (22) n=l2, e

[2d e
(23) U (x)= z (_1)_(L 2x)* 2,

2o mln-2m)!
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(iv) Hypergeometric functions.,

(24) T (x)=F(-n, n; %; % - Yx)

(25) Un(x)=(n+1)F (—-n,n+l;i;£—i),
2 2 2

From these relations and from 10,9 (iv)
26) D* T (x)= 27" (m ~ D1 nC"__ (x) Ry m
(27) D* U, (x)=2" m!C*!(x) ' n>m
(28) T’ =nU,_, (). |

(v) Generating functions.

1-22

1-2xz +2°2

29) 1+2 ) T,G)z"=

n=1

80 1+2 £ 27" T (x) 2" = —log(1~ 22z + 22)

n=1

31) °E° Un(x-)z"=(1-2xz +z2)"Y

n=20

32) 3 g T @)z"=2%R™ (1-xz+R)

n=20
@3) 3 g, U)z"=27%RT (L-xz+ R)X,
n=20

In all five formulas

-1<x<1, |z|<L
In the last two formulas

R=(1-2xz +2%)%,
Equation (31) is a special case of 10.9(29), and (30) is a limiting case
of the same relation: (29) can be derived from (30)s R = 1 and log R>=0
when z = 0, Formulas (32) and (33) are special cases of 10.9(28).

(vi) Integral representations. Contour integrals which represent
Tchebichef polynomials follow from any of the generating functions.
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(vii) Miscellaneous results.

@4) 2T, )T, (&)=T,, &) -T,_, & nym
35) 262-DU, _ U _ =T, &)-T,_, & nym
36) 2T,V U _ )=V, _ )+ U _ _ (&) n>m
@7 2T U, _ @ =U, _&-U_ _ (& -

(38) 2'|'_T"(:c)]z =1+2T, (x), 2T (U _ (x)=U

2n=1 (x)

39) 2(1-x%)[U,_,(0)]>=1-2T, (x)

40 3T, =Y%+hU, @), "3 T, G)=%U, @

+1
rR=0 n= 2

41y 2 -x? 2 U, (x) 1-

&’ =0

z +2 ®)

42) 20-23"3 U, W =x-T, , @
n=0

All these formulas are paraphrases of trigonometric identities,

Mehler’s integral 10,10(43) may be interpreted as a relation between
Legendre and Tchebichef polynomials, Inverting this relationship, Tricomi
(1935) found

43) e+ DA+ [ -0*P (=T )+ T, &)

W) i+ B -2)% [1e-2)%P (Vde =T (x)-T,,, ().
From 10,9(21) and 10,9(22) we obtain

(45) PU¥)N2x2 - 1) =g U, (x)

(46) xPCAAN2x2 - 1) =g T, . (x).

Finally we note the principal value integrals
4D . G- A=y E T, dy =7 U, @)
48) £ G- A=y U,_ () dy =-n T, () n=1,2..

which are paraphrases of trigonomeiric integrals and are of importance
in the theory of the integral equation sometimes called the airfoil equation,
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10.12. Laguerre polynomials

The polynomials L? (x) are the suitably standardized orthogonal poly-
nomials associated with

1) a=0, b=o, wh)l=e"*x% X==x a>-1.

Instead of Lg(x) it is usual to write L (x). This is the polynomial intro-
duced by Laguerre. The L%(x) are often called generalized Laguerre
polynomials, but we shall call them Laguerre polynomials simply. Equiv-
alent polynomials have also been discussed by Sonine (1880, p. 41).

(i) Standardization. We shall adopt the standardization /cn =(=1Y/=nl,
The standardizations k= (~1)" and, less frequently, & =1 are some-
times used,

(ii) Constants.

(2) n!hn=r‘(a+n+ 1), n!k"=(—1)",

nr"=—(n+a), K =n!
(3) (n+1)An=—1, (n+1)Bn=2n+a+1, (n+1)Cn=n+a
4 X,=n, a,=n B, =-@+a

(iii) Relationships.

(5) n!L%(x)=e*x™*D"(e™* P i)

(6) L:(x)=1, L“‘(x)=a+1—x

(7) LZ‘(x): 2 <n+a (—x)
m =0

n-m/ ml!

8 w+1) L:'H(x)—(2n+a+1-—x) L:' )+ (n+ a)L:'_i(x-)=0

n

m! @ a
© ) ooy LWL
D! 1
n + [LeG) LE, () - L, (=) LEG)]

Th+arD) x—y

(10) xy"" +(a+1-2)y "+ny=0, y=L%(x)

2

1 L
(11) z)’+ (n+a+ re )z:O, z=e'%‘x’4aL:(x)

2 4 4x
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d
(12) x— L*x)=nL*x)-(n + a)La..|(x)
dx " n n

=(n+1)Li'+‘(x)—(n+a+1—x)L':(x)

a n+a (a+1)n
(13) Ln(0)=( ' ): —=.

n

(iv) Hypergeometric functions. Laguerre polynomials are connected
with the confluent hypergeometric functions of Chapter VI. Fromthe
explicit representation (7)

(14) L%(x)= <n+a ) O(-n, a+1; x)
n

=(_1) Y(-n-q 1-a;x).
n!

From this we have
d att

(15) — L%(x)=-L%1 (x)
dx n n

confirming statement (i) of sec. 10,6,
d

(16) — (L% ()~ L2, ()] = L® @),
dx n n n

and many other formulas which are instances of relations between con-
tiguous confluent hypergeometric functions.

The general solution of Laguerre’s differential equation (10) may be
obtained from the theory of confluent hypergeometric functions,

(v) Generating functions.

oo xz
(17) 2 L%(x)z"=(1-2)"""exp |z| < 1
n=0 zZ -
(18) s Ck+a+ DI L2(x)z" = (xz) %22 Ja[2(xz)%]
n=0
19 = Lo (x) z" = e *(1 + 2)* |z] <1
n=0

(20) Li(x)Li(y)z"

ot n!
z F'e+a+1)

n=o0

%
=(1-2)""exp (——z ;+ y) (xyz)™** I [2 (:yz) ] |z| < L

-z -2z
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The function on the right-hand side of (17) is the most common gen-
erating function and may be established by means of (7). Equation (18)
is due to Doetsch and follows from (17) by means of the Laplace trans-
formation. Equation (19) follows from (7) and is due to Erd€lyi. Equation
(20) is a bilinear generating function and is known as the Hille-Hardy
formula (see also Myller-Lebedeff, 1907).

(vi) Integral representations. Contour integrals representing Laguerre
polynomials may be obtained from the Rodrigues formula (5) and from any
of the generating functions in an obvious manner, In addition, the connec-
tion (14) with confluent hypergeometric functions may be exploited (cf.
sec. 6,11). We mention only the following integrals

(21) n!L%x)=e*x7%e [Tetintha g [2(x)%]de
0

3 1 1+ k v
(22) 27i 2aLi(x)=(_]_)"eéxf(1+)e-,izz <1 Z> (l—zz)éa—% dz
-2
k=n+1/2a+12.

The first of these is a consequence of 6.11(5); and the second is due to
Tricomi.

(vii) Miscellaneous results. The number of results under this heading
is tremendous, and many of them were discovered several times. We give
a small selection only and do not attempt to credit the formulas to their
original discoverers.

Contiguous polynomials. In addition to the recurrence formula (8) we

have

23) xL2* ()= (r + @+ D L3G&) ~ (o + DV L®, (&)
=(+a) L% (x) - (n —x) L%(x)

@4) Lo (x) = L2(x) - Lo, ()

25 r+ L% =G+DLE (¥)-k+1-x) L&)

Differentiation formulas and indefinite integrals. In addition to (5)
and (12) we have

26) D lx~" expex)]= (1" rlx """ L3(x") exp(-x ")
(27) D= [xa'L: WN=r-m+a+ 1):- x&" L:""‘ (%)

(28) n!D*[e”* xa'L"’I'(x)]= (m +n)le™®x% " LO78 ()

n+n
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(29) fme—y Ley)dy =e ™ * [L%(x) - L%_,(*)]
30) T(a+B+n+1) [ G-y yoL2(y) dy
=T(a+n+ DT (B)x**AL:*Bx)

G L LWL G-Ndy=J"L_, Gdy=L,, &-L,, . @\

Further indefinite integrals follow from the product theorem of Laplace

Rea>-1, RepB>0

tr msforms.
Laplace integrals. With the notation

CIF @)= f:" e StF (¢) dt

we have
T'a+n+1)s=-1)"
Rea>-1, Res>0

@) COLE O

33) n!T(a+1) L[tA L2()]
TR+l (a+n+)s P F(-n,B+La+1;s7")
Re8>-1, Res>0
(34) L% J @(k)¥)] = nl k¥as=a =t ¢ =45 L (k/s),

Limit formulas.

(35) L%x)= Jim P (@ A)X1 - 2x/B)

36) lim [n™*L%(x/n)]= x_%"'Ja(2x%).
Finite difference formula. With the notation

A f(@) = fla+1)-fla), A2+'f(a)= A (A? f(a)) n=1,2, e
we have
AZf(a)= i (-1~ (n ) fla+m) n=1,2, «u
m=20 m
and hence

IF'@g+n+1) - x

Le - (1) .
37 L&) = 0" —rs @ Ta+ D
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Finite sums. In addition to those already recorded we have

38 2 Le)=L%"'()=x""[x-n) L) +(a+n) L2 ()]

R=0

39) L%x)= $ (m ) (a-B), LA ()

=0

(40) L20w) = ) (" i “) AT (L= D" L ()
m

R =0

@y 3 L, (:'c)L/s (y)=L‘:+B“(x+y)

R=0

(42) n!1L%G) Lo ()

=T@+n+1) 2 [mIT(a+m+ )] (ey)™ LO22 (x + )
=20
Infinite series: generating functions have already been given [(17) to
(20)], Bessel function expansions are in sec, 10,15, and other examples
of infinite series involving Laguerre polynomials are in sec. 10.20.

10.13. Hermite polynomials

Hermite polynomials are orthogonal polynomials associated with the
interval (—oc¢, o) and an exponential weight function. Unfortunately, the
notations adopted by different authors vary a great deal. The simplest
form of the exponential weight function seems to be exp (-x?), but for
applications in mathematical statistics exp(-%x?) is preferable. Ofthe
most important books on the subject, Courant-Hilbert, Doetsch, Sansone,
Szegs use exp(—x?), and Appell and Kampe de Fériet, Jahnke-Emde,
Magnus- Oberhettinger, Polya-Szego, and Tricomi use the weight function
exp (-%x?). In this chapter we shall adopt Szegs’s (1939) notation and
regard Hermite polynomials, H (x), as the suitably standardized orthog-
onal polynomials associated with

(1) a=-w, b=o, wlx)=expl-x?), X=1

The orthogonal polynomials associated with the weight function
exp(~%x?) may be denoted by He (x). These polynomials may also be
expressed in terms of parabolic cylinder functions [see 8.2(9)]

(i) Standardization. We shall adopt the standardization K, = -1
This agrees with the standardization adopted, among other authors, by
Courant-Hilbert, Feldhelm, Hille, and Szego. The standardization K =1
is used by Doetsch, Erdé€lyi, Sansone, and others.
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Hermite polynomials, so standardized, have been expressed by Szegd
and Koschmieder in terms of Laguerre polynomials.

(2 H, x)=(-D" 2% m! L:% (x2)
(3) H2m+,(x)=(—l)" g2 1 m!xLlf(xz).

These expressions show that Hn(x) is an even or an odd function of x
according as n is even or odd. These formulas are analogous to (and are
in fact limiting cases of) 10 9(21) and 10.9(22).

(ii) Constants.

4) }ln=ﬂ'£ 2% !, k. =2% r =0
(5) K"=(—1)", 4 =2, B =0, C =2n

(6) A, =2n, a, =0, B =2n,
(iii) Relationships.
@D H (&)=(Dre* Dn =

® H )=l H, (x)=2x

[n/2]
~1)* (2 n—2nm
© B an 3 CUIET

ano m!=-2m)!

Here [n/2] is n/2 or (n = 1)/2 according as n is even or odd.
€10) H (x)—Zan(x)+2nH"_1(x)=0

nti

an z H_ (x)H (y)=Hn+1(x)H O ~H,&H,, )

qn+|

=0 " ml nl{x-y)

(12) " ~2xy "+ 2ny =0, y=H (x)
(13) z" +(2r +1~22)z =0, z=ex9(—1/zx2)Hn(x)
(14) H (-x)=CD"H (x), H!(x)=2nH _ &)

(15) H,, ©)=(=1)* @m)!/m!, ©0)=0.

2+1
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(iv) Hypergeometric functions. Hermite polynomials are connected
with parabolic cylinder functions which are special confluent hypergeo-
metric functions
(16) H ()= 2%" exp %422 D (2% x) = 2" W(~Y%n, %; x)

(17) m!H,, @)=CD" 2m)! &(-m, Y%; x?)
(18) m!H, , (x)= (1" 2m + 1)! 2z ®(-m, 3/2; x)..

The general solution of Hermite’s differential equation (12), or of the
self-adjoint form (13) (which is virtually Weber’s equation), may be
obtained from the theory of parabolic cylinder functions.

(v) Generating functions.

(19) § Hn(x) z"/n!l= exp(2xz — z2)

n=0

(20) S (-D* H,, (x) z2%/(2m)! = exp(z?) cos (2% x2)

=0

) z=¥Y/2m+ D= exp(z?) sin (2% xz)

. SRR

n=o0 1_22

Equation (19) is the well-known generating function, (20) and (21) may be
derived from (19), and (22) is Mehler’s formula.

(vi) Integral representations. Contour integrals follow in the usual
manner from (7) or from any of the generating functions. In addition, the
connection with parabolic cylinder functions may be exploited (see sec.
8.3). We note explicitly

2 ) o _,2
(23) e™ H (x)= gntt =% _I; et t" cos(2xt — Yna)dt.
(vii) Miscellaneous results. See remarks under 10,12 (vii).
Limits.

. (<1rm* x -y
@0 Jlin | e Mo (G ) | =77 coo

. 1n" x 974 &i
(25) llm 22._m‘ H2u+l —2—’”2— =447 SlnXx.

n 00

@) S (1 H

2=0 2m +1

(2 2)"
n!

H ) H (y)=(1-~ z23)7% exp {

Integrals,
(26) [T H (dy=H, 0~ H _ @)

@7 JTH, () dy =120+ D17 W, &)= H ,,, (0]
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00 2m)!
28) | e-yz H, (xy)dy= w4 (2m) (x2-1)"
-0 m.
0 2 !
f e’ yH,, +'(xy)dy—r,-/(L‘Jr—x(xz—l)"'

- m:

@9 [, eyl (xy)dy = a¥nlP_(x).

llere P _(x) is the I.egendre polynomial.
Gauss transforms.

GUF 1= @r)™* [ F(y) expl=(x ~ y)¥/(2u)] dy
is the Gauss transform (with parameter u). We have
30) GEIH (1= - 2w H _[(1-2u)"%x] 0<u<¥%
G GAH (M=2x)"  GEly"l= Q)™ H (x).

Connection with Laguerre polynomials. In addition to (2) and (3) we
have '

(32) z (Z‘)HZk(x)HZ"'Zk(y)=("1)nn!Ln(x2'+y2)

k=0

33) J7 e [ ()% cos 2% xy)dy = n% 2" nIL_(x?)
0

34) T+ a+ D [1 =25 H, &% 0)de=(=1)" % (20)IT (a+ %)L )
-1

Re a>'_1/2c

The first two of these formulas are due to Feldheim, the last one to

Uspensky (1927).
Finite sums. In addition to those already given we have, among
others, the following relations.

(35) E @*m)7H, (12 = @ a)THH ) -H )H_,, ()}

win (m, n)
(36) 2 (—2)kk'( ) ( ) amp YV H ()= H | (x)

k=0

mm(nn)
(37) 2kk1(:)(z> @ =H_ @ H_ ()

(38) 2 ()H(sz)H L2259 =250 H (x + )

k=90
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\ 2
39 ) ( 2:) H, %) H, _ (2%y)

k=0

2", k+y)+ H, (x-y)]

”2‘I mr
al ar
4y Y e )y ()

2 4 e + g2)¥%n +oeee 4
(aI ar) ; a, x a x,
n! " (a? 2)% :
! e tal

Equation (35) is due to Demir and Hsii. The last three formulas are
addition theorems and can easily be proved by means of the generating
function (19). In (40) the sum is extended over all non-negative integers
My eee , m _whose sum is n.

Infinite series. Generating functions have already been given [(19)
to (22)]. For expansions in spherical Dessel functions see sec. 10,15,
and for other infinite series involving Hermite polynomials see sec,10,20.

10.14. Asymptotic behavior of Jacobi, Gegenbauer and Legendre poly-
nomials

The behavior of Jacobi polynomials as n » « and at the same time
% » 1 in a suitable manner, is given by 10,8(41), The corresponding
behavior as x»>—1follows from 10.8(13), and the behavior of Gegenbauer
and Legendre polynomials may be obtained by means of 10,9(4) and
10.10(3). The behavior of Jacobi polynomials as 8 » o and x » 1 in a
suitable manner is given by 10,12(35).

For the investigation of the convergence of infinite series of Jacobi
polynomials, and for many other purposes, it is desirable to determine
the behavior of Jacobi polynomials for fixed a, 8, x, and for n » «, The
example of Tchebichef polynomials

Tn(cosﬁ)= cosnf, x=cosf

suggests that the asymptotic behavior will be different according as x
is on the interval (-1, 1) (@ real) or outside it {8 complex). Also the end-
points of the interval have to be considered separately. In the present
section we shall entirely omit the case in which x is outside (-1, 1) and
refer the reader in this respect to Szegd (1939, Chapter VIII). We shall
give certain results for -1 <x< 1; and all estimates given in this section
hold uniformly in any interval =1 + ¢ <x < 1 — € (¢ > 0), We shall also

give important results for the case that x is in the neighborhood of *+ 1.
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Proofs of the results to be given are based either on explicit series
or integral representations (with integral representations the method of
steepest descent is frequently used), on generating functions (Darboux’s
method), or else on the differential equations (I.iouville’s method and its
later developenients).

Darboux has proved (from the generating function)

(1) P (cos @) =2 g 5. (s), coslln—-m+4%)0~Y%m+4%) 7]
cos 0) = _
n B & G-m+ ), (2 sin O)" %
+0 (™) 0<f<n

where g _ is defined by 10,10(21).
A similar formula was obtained by Stieltjes in a manner permitting to

estimate the remainder.
=1

2 nlg cos[(n+m+%)0-(om+%)n]
2) P 0) =— 2 : +R _(0)
@) £, (cos 7 mZo (m+%) ,, (2sin 9)" ** M
0<fO<nm
where
2 nlg A
(3) IR, (6) <~ # ;
)| M < 7 (M+’/2)n+' (2 sin g)¥ **

and
(4) A=2sinf if sin?6>%
A=|cos 6" if sin?0<¥%
so that in any event 1 <4 <2,
If 2 sin@> 1, i.e., for /6 < 8 < 57/6, we may make M - o in both (1)

and (2) and obtain convergent trigonometric expansions of Legendre poly-

nomials.,
For the neighborhood of x = 1 we have Hilb’s fornula

6) P, (cos ) =(fcsc®* J [(n+%)0]+ 0™

valid uniformly for 0 < 6 < 7 — ¢ (¢ > 0), For more precise bounds for the
error term see Szegd (1939, p. 189). For an expansion of Legendre poly-
nomials in series of Bessel functions see Szegs (1933). If 10.14(11) is
specialized for ¢ = 8 = 0 and the confluent hypergeometric function there
is expanded in a series of Bessel functions by means of 6,12(6), the

result is
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(6) P (x)=[4/(x + 3)"H! =€ /Cnt)) [J0(2§%)+—§—2 J(26%)+0(n )]
1

where
2(x + N E= 1 - x)(2n + 1)%,

Some of these results can be extended to Gegenbauer polynomials and
to a lesser extent also to Jacobi polynomials.

(@) CMeos)=2 Mf W, -,

n! .o (n-—-m+)\)"l m!

cos[(n=m+X)6—-Y(mn+A)rl

Zom oy s +0(n™¥%)
A£40,-1,-2,.., 0<6O<nm
M-
@) c{}(cose)=2”2“”) 2 a-»,

INOVIE o (m+ )\)mLl m!

cos[(n+m+A)0=%(m+\)r]
2 sin@))\“

X +RM(6) 0<a<l, 0<8<n

C+2))  (1-)), 4
[CO12 G +X),,, M @ sino)

© RO < 2

and 4 is given by (4).
cosiln+%{a+B+1)]0- (% a+y) 7}
(wn)% (sin¥% )** % (cos Y% 6) %

(10) Pia,ﬁ)(cose) = + 032

a, Breal, 0<f<m

A formula of Hilb’s type for Jacobi polynomials has been given by
Szegd and by Ran: see Szegd (1939, p. 191). Tricomi (1950a) obtained the
expansion

1+x Y ¥"S TW+m)T(a+n+1)
p @.8) —e"2
(11) P> Flx)=e ( 2 ) 2 A TW) Ta+m+1)

xA_(k, Yoa+ %) [z/2E]" ®-n -4, a+m+1; 2)

=0

where

(12) k=n+%a+%, N=n+a+B8+1, =x=1-4z/(2k+2z) lz| < 2|%[,
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® is the confluent hypergeometric series and the 4  are the coefficients
defined in sec. 6.12, Using the expansion 6,12(6), a Bessel function
expansion may be obtained for Jacobi polynomials. In the particular case
a= B =0 it leads to (6).

10.15. Asymptotic behavior of Laguerre and Hermite polynomials

The general remarks of the preceding section apply here too, but the
situation is more involved on account of the infinite interval. The poly-
nomials are oscillatory in part of the interval, and monotonic outside this
part.

The asymptotic behavior of Laguerre and Hermite polynomials as
n » o and at the same time x » 0 in a suitable manner is given by 10,12
(36), 10.13(24), and 10,13 (25).

Fur real a and fixed x > 0, or uniformly in 0 < € <x < @ <=, we have

Fejér’s formula
(1) L%x)= ah et g THhaTk p ke o5 [2(nx)% =Y am = Kn] + O(¥*¥)

which has been generalized by Perron (see Szegd, 1939, p. 192). Sansone
(1950) gave a two-term approximation with an estimate of the error. This
formula fails for small x, but there is a formula of Hilb’s type

e Yara I'n+a+l) . -
(2) e # xA Ln(x)=ml— Ja_[(Vx)A]‘FO(n% %)

valid for ¢ > -1 uniformly in 0 < x < @ < =, The notation

B) v=4n+2a+2

is used in (2), and will be retained throughout this section.

The behavior of Laguerre polynomials when n> = and x is unrestricted
has been investigated by several authors (see sec. 6.13). We shall
confine ourselves to a brief survey here, based on a memoir by Tricomi
(1949). Tricomi distinguishes four cases according as x is near 0, in
the oscillatory region, near v, or in the monotonic region.

The expansion

@) nle ™ LOx)=Tlarn+ Da/D7H S a* /) g, (vxl%)

n=0
which is a particular case of 6,12(11) and in which
5) ‘Ao*= 1, 4%=0, A%f=lia+

(m+2)A";+2=(m+a+1)A";—l/2VA*

m =1 m=].,2, LYY
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converges uniformly in any bounded region of the complex variable x.
By considering the order of magnitude of successive terms, one sees
that (4) has the character of an asymptotic expansion as n - « provided
that x = O(n}\) with A < 1/3, This establishes the behavior of La;l(x)
““near’’ the origin,

A similar expansion,

(6) n!ux)%eeh= L‘:(x) =T(a+n+1)

I p18

A B Go/uw)hrT , (Quxl¥)
V]

with appropriate coefficients is due to Toscano (1949), in case z =n to
Tricomi (1941).

In the oscillatory region, 0 <x < v, Tricomi puts

(7) x=vcos?, 0<0<%nm 40=1(20-5sin20)+7

and proves that for a fixed 6

(8 e7%* L:(x) =2(=1)"(2cos 0)~% (7w sin 26)"%

x[ "' 4@X6) (v sin 20)* sin (@ + 3m7/2) + 0(a~¥)]
m=0
where
9) A2)g)=1 A(“)(0)=—1— —5—-——(1—3a2)sin26—1 .
° ’ ! 12 4sin20

For the general expression for the 4 :“)see Tricomi (1949).
Near the transition point v,

_ 4 1/3 tz
(10 e ¥ 12w =y, {40+ (s ) |40
3+5a r(1/3) .
+ T <t_2l—‘(2/3)> A(t)] +C(n )}
where

(11) ¢t =(4u/3)7"3 (v — %),

3+5a I'(1/8)
—(_ no-a /3 . —=1/3 -1 ~5/3
(12) =y, =(=1"2 [6 v +~——10 ———F(" 3)1/ +0(n )],

(13) 4() = @/3)(e/3)% A, ,, [2(e/3)¥*]+ J, . [2(2/3)*2 ]}

is the Airy function, and 4/(¢) is the derivative of 4 (¢).
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Finally, in the monotonic region

(14) x =v cosh?8, 6>0, 46 =1v(sinh26-26)
15 e k= Li(x) =(-1)" e_®(2 cosh 6) "*(zv sinh 26) 7%

« "' 1= 4[2] (6) C4v sinh20)7" + 0]

mn=0

where

(o] (g) - [a] (g L 5 :
(].6) Aoa (0)—19 A1 (0)—‘1—2' m—(l—-?)az) s1nh20+ ]. .
In the following summary of the corresponding results for Hermite
polynomials we use the abbreviations

Yen if nis even,
Y¥n~% if nis odd,
For a fixed real x (or uniformly in any bounded interval)

(18) T(%n + 1) exp (-%x?) Hn(x)

=T+ DcosN¥x=Y%nm)+ 0]

Szegé (1939, p. 194) gives a second term explicitly, and also the general
form of the asymptotic expansions

For the behavior of Hermite polynomials for n » « and unrestricted x
we have the Plancherel-Rotach formulas (Szegs 1939, p. 195). Tricomi’s
work covers this case too if use is made of 10,13(2) and 10,13(3). The
Bessel functions involved in (4) when a = £ % are so-called spherical
Bessel functions and can be expressed in closed form, They serve as
asymptotic expansions provided that for ‘'some A < 1/3 the quantityn”
is bounded as n » oo,

The oscillatory region is 0 < |x| < 2m*, and here the expansion (8),
with @ = * )4, may be used, In the neighborhood of the transition points
x = +2m"* we have (10), and in the monotonic region |x| > 2m”* we have
(15).

The basic expansions in series of spherical Bessel functions are.
particular cases of the more general expansions given by Tricomi (1941):

(17) N=2n+1, m={

(19) e‘hxz H, (x)=(-D" g2+ 4, 22 3 (2m)'-'C; C}r_,(Zm%x)

r=0

@0) e H, , )= (-1" 22 (3/2), x I @m)TC! G (2m¥% )

2m +1 r=0
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where
(21) Qc(z) =z 'sinz, Q_,(Z) =z %cosz
22) G,,,x)=@r+1G,()-22G,__, @) F=0,1,2 e,

and the coefficients C _also satisfy certain recurrence relations, The
expansions (19) and (20) are convergent. They can also be used as
asymptotic representations asm- o, and for this purpose it is convenient
to take h = %.

10.16. Zeros of Jacobi and related polynomials

Let us define Jacobi polynomials for all values of a, 8, x by 10.8(12),
and let us denote by N (a,B)the number of zeros of P"(o"ﬁ)(x) in the
interval (=1, 1), If a> -1 and 8 > -1, Jacobi polynomials are orthogonal
polynomials associated with the weight function 10,8(1), and by sec.
10.3 all their zeros are simple and located in (~1, 1). For other real
values of a and B the number of zeros in (-1, 1) is indicated in the figure

B
a=-n a=-n+l a=~n+2 a=~2 a=-1 |
I
______ t—__T_.__._-L—.__._i__._ a
l
0 1 2 n-1 n |
—— g =-1
|
0 1 n-2 n-1
P2
n-3 |n-2 I
L p--3
l
|
0 |
r B=-n+1
|

o
F
™
|
|
2

N,(a, B) for real @ and 8.
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We see from 10,8(12) that for negative integer a, P fl""'B)(x) has a zero
of order |a| at x = 1, and for negative integer 8 it has a zero of order
|8| at x = =1, In the interval (~c, —1) there are N (1-a-B~2n, B)
zeros, in the interval (1, o) there are Ni(l—a—B—2n, a) zeros, All
zeros not accounted for in this enumeration occur in conjugate complex
pairs.

Gegenbauer polynomials are defined by 10,9(18) for all values of
A, x. They are orthogonal polynomials, and all their zeros.are simple
and in the interval (=1, 1), if A > =%. For other real values of A, the
number of their zeros can be deduced from the result on Jacobi poly-
nomials by means of 10.9(4).

The location of zeros of orthogonal Jacobi polynomials, and of their
particular cases, in (-1, 1) has been investigated by many authors. We
refer the reader to Szegs (1939, Chapter VI), and for more recent work in
particular to papers by Gatteschi; Geronimus; Lowan, Davids, and
Levenson; and Tricomi listed at the end of this chapter.

We assume

(1) a>-1, B>-1, A>-Y%, x=cosd 0<0<q,

and arrange the zeros in a monotonic sequence,

@2 PL#F)eos6,)=0, 0<6,<0,<+<0 <m

3) P'(‘a'"e)(x.)=0, —1<xn<xn_|<-l---<x|<1, x, =cosf .

For ultraspherical polynomials
4) X, tx, = 0

and hence it is sufficient to investigate the positive zeros (1<m<¥%n).
For Jacobi polynomials

%, =%, @, B n)

and for Gegenbauer polynmials
x, =x (A, n)=x_(-% A-%,n)
If m and n (and in the case of Jacobi polynomials also one of the
parameters a, ) are fixed, we have the following monotonic properties:

(5) xm(a, B, -1 as a- o, T1 as f-o o
m=1, we,n

(6) xn(}\,n)JrO as Ao o« m=1, w., %0l
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The last of these relations, for instance, means that the m-th (positive)
zero of a Gegenbauer polynomial is a strictly decreasing function of A
(for A > ~%) and tends to 0 as A » =. From (5) and (6) there follow corre-
sponding statements for 6, . Since we know 6, (%, %, n) from 10,11(5)
and 10.11(6), we have the following inequalities

(00 Cm-1Da<@r+1)0, (a, £ n)<2mn
~%<a B<HB 1<m<a

8) (m=~"a/n<0_ () n)<ma/ln+1) 0<A<l, 1<m<Ykn,

For further results see Szegs (1939, Chapter VI). Tricomi (1947)
pointed out that the asymptotic behavior of the zeros of any function can
be deduced from the asymptotic behavior of the function itself and has
applied this principle to many functions, among them orthogonal poly-
nomials (see Tricomi 1950, Gatteschi 1949, 1949a). It transpires that
the asymptotic distribution of the zeros towards the middle of the interval
depends on the zeros of trigonometric functions [see 1.14(5)] and the
zeros near the end-points depend on the zeros of Bessel functions [see
the remark following 10,14 (12)].

Asymptotic formulas for the Christoffel numbers may be derived from
asymptotic formulas for the zeros by means of 10.7(7),

For numerical values of the zeros and Christoffel numbers of Legendre
polynomials see Lowan, Davids, and Levenson (1942, 1943).

10.17. Zeros of Laguerre and Hermite polynomials

The polynomial defined by 10,12(7) for all values of ¢ and x, has n
positive zeros if a > =1, [n + a] positive zeros if —~n < a < -1, no positive
zeros if a < —n; it hasa zeroof order & at x =0 when a= -k, k=1,2, «.,n;
and it has one negative zero if (@ + l)n <0, All the zeros not accounted
for in this enumeration occur in conjugate complex pairs. The Hermite
polynomial of degree n has n real zeros which are situated symmetrically
around the origin.

For detailed information on the location of the zeros of orthogonal
Laguerre polynomials (i«. for a > —~1) and of Hermite polynomials we
refer to Szegd (1939, Chapter VI), and to papers by Greenwood and Miller
(1948), W, Hahn (1934), Salzer and Zucker (1949), Spencer (1937), and
Tricomi.

We assume

1) a>-1, x>0
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and arrange the zeros of L‘:(x) in increasing order so that
(2 Lx_)=0, O0<x <x,<w<x, 2x_= x_ (a, n)

For fixed m, n we find again that x is an increasing function of a.
For bounds for the zeros see Szego (1939, Chapter VI), and W, Hahn
(1934). The asymptotic representations of Laguerre and Hermite poly-
nomials can be used to find approximations for the zeros (Tricomi 1949).
It is clear from sec. 10,15 that we have to distinguish three cases. The
““first’’ zeros are those for which m remains bounded while n » o these
are investigated by means of 10,15(2)s The ‘“middle’’ zeros are those
for which |m — % n| remains bounded while n -+ os: these are deduced from
10,15 (8)« The ““last’’ zeros, for which n — m remains bounded as n + oo,
are deduced from 10,15(10). The resulting approximations give satis-
factory numerical results even for moderate values of n, for instance n=10.

Asymptotic formulas for Christoffel numbers may be derived from
10,7 (7).

For numerical values of the zeros and Christoffel numbers of Laguerre
polynomials, L (x), see Salzer and Zucker (1949).

10.18. Inequalities for the classical polynomials

For inequalities for general orthogonal polynomials and for their
application to the classical polynomials, see Szegé (1939, Chapter VII),

In the notation of sec.10,3,there is the following result for monotonic
weight functions (Szegs 1939, Theorem 7,2)s If w (x) is non-decreasing
[non-increasing] and b [a] is finite, then [ (x)]* lp ,(x)| attains its max-
imum in (a, b) at b[al.

Application of this to those of the classical orthogonal polynomials
whose weight function is monotonic, at once leads to the inequalities

(1) |P (®»)|<1 -1<x<1
@) [(Q-x)/2]%a%% |p @0)(y) <1 -1<x<l, ax-%
(8) e~%* IL (=) <1 x>0,

Another fruitful source of inequalities is the Sonine-Pdlya theorem
(Szego 1939, Theorem 7.31,1 and footnote), If in the differential equation

4) )y 1+opl)y=0

k(x) and ¢(x)are positive and continuously differentiable, and if & (x) ¢ (x)
is monotonic, then the successive (relative) maxima of |y| form an increas-
ing or decreasing sequence according as k(x) ¢(x) is decreasing or
increasing.
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The following results can be proved by constructing the differential
equation satisfied by the functions involved, and applying the Sonine-
Pélya theorem.

The successive maxima of [Pn (x)l, 2 > 2, as x increases from 0 tol
form an increasing sequence. [This confirms (1),] The successive maxima
of (sin 6)% !P (cos 0)|, n > 2, as 6 increases from 0 to % = form an increas-
ing sequence. "As an apphcatlon, it can be proved that

(5) (sin@)* [P (cos 0)| < (% m)”! _ 0<6<m
Furthermore,

© |P/)< Hnle+]) -1<x<1.
For Gegenbauer polynomials

(2x
M max_ |CMx) =M= ) A>0
=1 S x S nl!
\,

@ _mex . I = 1620 = ’

-m <A<0, Anot integer

()] max IC

_mex r @] <2[@2m+ DEA+2m + DIT% Q) |/m!

=m—%<A<0, Anot integer.
10) (sinOMCMeos )] < Y [T 0<xa<l, 0<@<m

For Jacobi polynomials we put
(11) g = max(a, B)
and obtain
-1
(12) max [P @A) = max P @B (1) = (” +q )
-1<z< ? n n

a>-1, B>-1, q¢>-%

If-1<a, B <-Y%, the largest maximum of IPB(a'B)(xH is one of the two

nearest to x = (8 — a)/(a + B + 1), and this maximum is of the order of

n™% as n > oo, Among the numerous estimates for large n we mention only
dﬂ

(13) T P,(,a"B)(x)=0(nq), g =max(2m + a, 2m + B, m — 1)
x

n -» oo,
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For the special Laguerre polynomial L° we already have (3). Bounds
for L% may be obtained from this by using 10,12(39) with 8 = O. The

result is

(14) |L2Gx)| <la+1) ()" e* a>0

(15) |Lz'(x)| <[2-(a+ 1),l (n)~' Je*s -1<a<0.

The following results can be proved by applying the Sonine-Pdlya
theorem to the differential equation satisfied by the functions involved.
For any real a, the successive maxima of

e ~hx pHath |Li'(x)|
form an increasing sequence provided that 2n + a+ 1> 1 and

x> max}0, (a? - 1)/(2n + a + 1)},

The successive maxima of
-l 1
e Thx yhatk |Le(x)|
form an increasing sequence provided that x > 0 and

%2> max(0, a? - %).
The successive maxima of
e k= |Lc:(x)|
form a decreasing sequence when a > -1,
0<x<(2a+1D2n+a+1)/(a+1)
and an increasing sequence when a> -1,
%> 2a+1)2n+a+ D/(a+ 1)
The successive maxima of
e~#x x%aLz' (x)
form a decreasing sequence if
0<x<2n+a+1,
and an increasing sequence when

x>2n+a+1>0,

All these statements are contained inthe following more general result,
For real g and B, the successive maxima for x > 0 of

e %hx 5B |L%(x)|
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form an increasing or decreasing sequence according as

4BB-a)a-2B)+2n+a+1)(2a-48+1)x - (a-28+1) x?

is negative or positive,
For an asymptotic estimate see Szegs (1939, Theorem 7.6.4); improve-
ments of this estimate may be derived from Tricomi’s expansion 10,15(4).
Bounds for Hermite polynomials may be derived from (14) and (15) by
means of 10,13(2) and 10,13 (4). See also Sansone (1950a).

(].6) exp(—%xz) |H2m (x)| < 92n m!(z_gm)

(A7) =7 exp(-%x?) |H, ,, &) < 22 2 (m + Dig .,
where

(18) g,=%) /nl=(zn)"* + 0(n™¥?),

H. Cramér has proved

(19) exp(-%=x?) |H (x)| < k2%"(n1)*

where k is a constant for which Charlier (1931) gave the approximation
1,086435. Sansone (1950) gave bounds valid for complex values of the
variable.

From the Sonine-Pdlya theorem it may be proved that the successive
maxima of |H (x)|, and likewise those of exp(-}2x?) |H (%), for x > 0
form an increasing sequence.

Let p_  be the r-th (relative) maximum of f(x) |p (%)|, where f(x) is
a fixed non-negatlve function and {p (%)} is a sequence of orthogonal *
polynomials. The results derived from the Sonine-Pdlya theorem state
monotonic properties of y_  as 7 increases while n is fixed. The study
of numerical tables led John Todd to some conjectures about monotonic
properties of y_ for fixed r and increasing n.The following results were
subsequently proved. For

fx)=1, p x)=P (x),

and counting maxima from x = 1 (to the left), Cooper (1950) proved that
B, ,isa decreasing function of n for sufficiently large n, and Szegé
(1950) proved that this true for all n > r + 1, For

f(x)= 1’ pn(x)=cn(x),

Szdsz (1950) proved that n! [,t'_,n/[1 (n + 22) is a decreasing function of n.
For

flx) = 7%, p,(x)=L ()
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J« Todd (1950) proved that Heom is an increasing or decreasing function

of n as r is odd or even.
P. Turdn observed that

un=Pn(x) -1<x<1
satisfies the inequality
(20) urzl T Ut Yner 2 0.

Szegd (1948) gave several proofs of this inequality and showed that it is
also satisfied by

u, = CM)/CM1) = nl CM)/(2N), ~lgx<1
u,=Lrx)/L30)=n! L9(x)/(a+1) x>0
u, =H_ (x)

These results have been reproved, refined, and generalized; determinants
whose elements are orthogonal polynomials have been considered, and
other related investigations have been carried out by Madhava Rao and
Thiruvenkatachar (1949), Sansone (1949), Szdsz (1950a, 1951), Becken-
bach, Seidel, and Szdsz (1951), Forsythe (1951), See also J. L. Burchrall
(1951, 1952).

10.19. Expansion prdblems

The expansion of a given, ‘‘arbitrary’ or analytic function in a series
or orthogonal polynomials has been discussed often and in great detail.
The subject is somewhat outside the scope of the present survey, and a
brief indication of some of the more important results must suffice. For
further information see Szegd (1939, especially Chapter IX), Kaczmarz
and Steinhaus (1935).

Let ip (x)} be a system of orthogonal polynomials belonging to the
weight function w (x) on the interval (e, b). We assume that the assump-
tions of sections 10,1 and 10,2 are satisfied, and denote by L?, p > 1
the class of functions f(x) for which the (Lebesgue) integral

b
fa ()} ? wlx) dx
exists and is finite, We put

D) k= Llp, 0N w) dx
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and call
2 a =& fabf(x)p"(x)dx

the Fourier coefficients,
(3) Xa,p,(x)

the (generalized) Fourier series of f(x) with respect to the system ip_(x)}
of orthogonal polynomials. We shall say that the series (3) converges in
L: to f(x) if

(4) fab |f(x)—sn(x)|P wlx)dx >0 as n- o,

where s (x) is the n-th partial sum of (3).

Approximation in L2 has already been discussed in sec., 10,2, and
from the results described there it follows that in case of a finite interval
(a, b) for any function f(x) of L2 (3) converges in Li to f(x). Conver-
gence in L2 has been investigated by Pollard (1946, 1947, 1948, 1949)
and Wing (1950). For Jacobi polynomials, given by 10.8(1), Pollard

proved convergence in L? when
w
G) ex2~% B2-%

and
a+l B+1 ) a+l  B+1
6) 4max{ ——, —— ) <p<4min ,
2¢+3° 28+3 2a+1 " 28+1
For Gegenbauer polynomials we have 10,9(1)and convergence in L? when
2x+1 2a+1
<p<
A+l A

Lastly, for Legendre polynomials w(x) = 1 and we have convergence in
L? when

(M A>0,

(8)4E 4
- <p<4
3 P

It has been pointed out in sec. 10,2 that infinite intervals present
additional difficulties. Nevertheless, convergence in L? for Laguerre
polynomials with @ > -1, and for Hermite polynomials, has been proved
when p = 2

The series (3) is said to converge to f(x) for a fixed x, or in an inter-
val, if for that x, or for all x in that interval
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sn(x)—> flx) as n- e

where s n(x) is again the n-th partial sum of (3). This type of convergence
(sometimes called “point-wise convergence’’) requires much more restric-
tive assumptions on f(x) than convergence in L"; .

Rau (1950) has investigated the convergence of the expansion of a
function f(x) in a series of Jacobi polynomials with « > -1, 8 > -1,
Assuming that f(x) is continuous and has a piece-wise continuous deriv-
ative, he proved that the expansion converges to f(x) uniformly in every
interval m-1 +e < x < 1-¢,¢>0.

The Abel summability of series of Laguerre polynomials was investi-
gated by Caton and Hille (1945) by means of Laplace integrals.

Asymptotic formulas such as 10.14(1), (7), (10), and 10,15(1), (18)
suggest a connection between the convergence of orthogonal expansions
and that of certain related Fourier series. This is the source of the so-
called equiconvergence theorems. As a sample, we shall give an equi-
convergence theorem for Legendre polynomials (Haar, 1918).

Let [f(x)]? be integrable in (-1, 1); let s _(x) be the n-th partial sum
of the expansion of f(x) in Legendre polynomials, and let ¢, (6) be the
the n-th partial sum of the Fourier cosine expansion of f(cos@). Then

sn(cose)—on(e)—»o as n - oo, 0<0<n.

Such equiconvergence theorems, in combination with conditions. for
the convergence of Fourier series, enable one to discuss the convergence
of orthogonal expansions. Equiconvergence theorems for Jacobi, Laguerre,
and Hermite polynomials were given by Szegé (1939, Chapter IX). Szegd
also gives some results regarding the behavior of such series at the end-
points of the basic interval.

The expansion of analytic functions presentsrather different problems.
A series of Jacobi polynomials converges in an ellipse whose foci are
at £ 1, and every function which is analytic in such an ellipse may be
expanded in a series of Jacobi polynomials (a, 8 > —1) there. A function
which is analytic outside such an ellipse, and vanishes at infinity, may
be expanded in a series of Jacobi functions of the second kind, Q’(:”'B),
there (a, 8> -1, see Szegd sec. 9.2).

In the case of Laguerre polynomials the region of convergence is a
parabola around the positive real axis, with its focus at the origin: in
the case of Hermite polynomials the region of convergence is a strip
whose central line is the real axis. In both cases the region of conver-
gence is unbounded and an analytic function which is to be expanded in
a series of Laguerre or Hermite polynomials must satisfy certain growth
conditions in addition to being analytic in an appropriate region. Expan-
sions in series of Laguerre polynomials were investigated by Pollard
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(1947a), series of Hermite polynomials by Giuliotto (1939), and Hille
(1939, 1939a, 1940).

10.20. Examples of expansions

In this section we list some series of orthogonal polynomials whose
sum canbe givenin closed form, Except in the case of Legendre, Hermite,
and Laguerre polynomials, not many such series are known, and some of
the following examples have been developed by Tricomi to fill this gap.
The computation of the coefficients of such an expansion is based on
10.19(2), where one may often take advantage of Rodrigues’ formula
(or its generalizations) to simplify the integral by integration by parts
in the manner explained in the second paragraph of sec. 10,7,

‘In the following formulas we shall freely use the notations for con-
fluent hypergeometric and related functions which have been introduced

in Chapters VI, VIII, IX..

SERIES OF JACOBI POLYNOMIALS

Notations as in sec. 10,8, We always assume a, 8> -1, and use
as defined in 10,8(4).

oo

P)E“_*,"‘S“)(O) psa./i)(x) -l1<x <l

(1) sgnx=c_+

1 when x>0,
(2) sgnx =

-1 when x<0,

I'a+ B+2) ‘
‘o T@ DI (B+D

Note that only the terms corresponding to odd values of n actually occur
in the summation in (1).

3) (1-2)P=2T(a+p+1)
y o F(2n+a+B+1)F(n+a+B+1)(’P)n P@B)(y)
Fh+a+Dln+a+B+p+2) "

~p<min{a+1, ba+¥%), -l<x<l

9=a=B-1 Iol [(1-%)® (1 +2)8 = (1+x)*(1-x)Aldx.

n=20
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. © T 1
@ o™= @iy Hesrt Y r((znn++aa++i++ 1)> M, (2i) PeA)

-l<x<1
where
k=%(a-8), m=n+%@+pB+1)
For a generating function see 10,8(29); for a bilinear generating function
see Watson (1934), Erdélyi (1937 a) and Bailey; for another expansion in
products of Jacobi polynomials see Bateman (1904, 1905).
SERIES OF GEGENBAUER POLYNOMIALS
‘Notation as in sec. 10,9, The constant & is defined by 10,9(7).
=D* )
a+1 C)\ R (x)
sz Cm+)Cm+2X+D)mlh, - *7!

(5) sgnx=4

A>=-Y%, -1<x<l1.

6 (1-2)P=2MP 7 A T(VT (W +p+%)
v @+d) o) A
* L ThszrepsD o™

-l<x<l, -p<HBO+1)if A>0, -p<¥%+) if -<A<O.

M) e==TWHN™ £ "G+ J ) C )
n=20

-1<x<1, A>0

(8) (y sin¢ sin G)X'KJK_%(), sin¢ sin §) e ¥ e cos0
o 1+ ))

ok yAp() B on—e M

¢ ,,Zo ’ (2)), T(2r+)
xdJ ) Ci\(cos @) Ci‘(cos@) 0<¢, 6<m A>O0,

© o MCye=2"TQW £ (+nzrz™

n=0
xdJ_ () CM)\(Z) Ci‘\ (cos ¢)
where

e <|Z], oF=2%+Z%-2:Z cos &,
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and

C>\(w) =c, Jk(w) +e, J_}\(w)

is any cylinder function in the sense of Sonine and Watson (Watson, 1922,
sec. 3,9). In the case ¢, = O the restrictions on z, Z may be omitted.

Some expansions in series of Gegenbauer polynomials have been
noted in sec. 10,9: for a bilinear generating function see Watson (1933 b).

SERIES OF LEGENDRE POLYNOMIALS
Notations as in sec. 10,10. The constant g is defined in 10,10(4).
All expansions valid for -1 <x < 1, or 0 < @ < 7, respectively, unless
stated differently. :
= (2m + %) (=%p)
(10) xl?= ¥ D ANl
Gip+ Doy

R=0

u sz(x) p>-1

ing y_Ly
(11) |x|p sgnx = z -1" (2m+%)((1/il/+ﬁ;)"— 2n+|(x') p>-1
=0 Plati  cee errodal

2n+1 (—P),.
(12) @ -#x)*=2° nZO n+p+l (1+p)

, 2 Am+1
(13) (1 -x2)% = Y%n [l/z— 2 (zm_nll)mgi Pz.(x):l

P (x) p>-%

a=1

(14) %e %% i[cos? (% ¢) - cos2(%0)]7% = T eind P (cosf)

n=20

0<gp<b<nm

(15) logll + csc(% 0)] = § (n+1)! P (cos0).
n=0

Series involving Bessel functions may be derived from (7), (8), and (9)
by putting A = %. Generating functions are listed in 10,10(v) and (viii),

SERIES OF LAGUERRE POLYNOMIALS

Notations as in sec. 10.12. We always assume a> -1, x > O.

p),

(16) xp=1_‘(a+p+],)z m

n=0

L%x) -p<1+minla %a-%)
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(17) yla+1)~logx =T'(a+ 1) '—(—L L% (x)
. am1 Tla+n+1)

(18) —e** Eil-max(x, y)l= 3 G+D™'L_ )L () %y >0

(19) e*2™°T(g )= 3 (+1)"' L2 (&)
n=20

(20) e**(xy)™* I'la, max (x, ¥)] yla, min (x, y)]

n!
- ) L@ Lo

L D@,

(21) (xy) *e**{I'[a, max(x, y)] - (a,x) '(a,y)/T (a)}

n!
- a a . 0
(n+1)F(n+a+1) (x)L ") A

(29) emn(ny)_ 1 4 g' (L, &) -L,_;&IL O)-L _ N

(23) (xy) ™% e H(x*y) e i y[a, e " min (x, y)]

S n!
=ngo m+adT(n+a+1) LL&LL) Re a>0
F(a+1, x) wt o (n—l)! s .
@) I'(a+1) H(x=y)=y ~ lmL"_,(y)L"(x)

0<x, ¥
In (24), H(z)=0, %, 1 according as z <0, =0, > 0.

Yamg) -1 ' CDn
(25) P c ,B)y A(a+,3)ey<]a+,6[2(xy_)%]_ z

- B=n
4 Tlatn+t 1)L G L")

(26) '(@)¥(a, a+1; x) = g (n+a)™! L%(x) a<¥%

n=20

—a)e XY . 3 (a) c=1
@7) (1-y) @(a, C’y_1> ,,Zo(ﬂ "L )

x>0, |y|<1l, e>0.
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Other series of Laguerre polynomials in 10,12(v) and (vii), The
expansion 10,14(11) is an expansion in Laguerre polynomials when B
is an integer > ~n.

SERIES OF HERMITE POLYNOMIALS

Notations as in sec. 10.13.

(28) |x,p_r(l/" %");o(— ) —((—2/;—11;:— B, () p>-1
o) i ogs TS § Oy
(30) 7% Erfi [min (x,y)] = S 2;1:'((2”;’j21;£2(m)+ = %720
(31) exp(422) D, (x) = F(z_:) :o(("ml)_" 52"2 (22-:")

o0 st i0-Er § L B

(33) (1+)"° @ ( s = y) }:o TR lyl <1

- 3 xzy) w (0
1 s . )= —m .
64) 2x(1+5)" @ (a, 27 1+y .Zo Qm+1) Y Hop 1 @)

Other series of Hermite polynomials are in 10,13 (v).

The following key indicates the derivation of these examples; it also
gives references to further material on infinite series of classical poly-
nomials.

Series of Jacobi polynomials., The coefficients were computed by inte-
grations by parts. For other examples see Brafman (1951).

(5) From (1) by 10,9(4).

(6) From (3) by 10.9(4).

(7) From (4) by 10.9 (4); Watson (1922, p+ 368).

8) Watson (1922, ps 370).

(9) Watson (1922, p. 365).
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Series of Legendre polynomials. Many examples may be obtained from
series of Jacobi polynomials or series of Gegenbauer polynomials by
means of 10,10(3). Numerous other examples are found in books on
Legendre functions. For some examples, see Tricomi (1936, 1939-40).

(16) Tricomi (1948, p. 332).

17) Toscano (1949).

(18) Neumann (1912).

(19) 9.4(5).

(20) 9.4 (4).

(21) Watson, (1938).

(22) Tricomi (1935), Doetsch (1935).

(23) Erdélyi (1936).

(24) Tricomi (1948).

(25) Toscano (1949).

(26) 6.12(3).

27 6.12(5).
For some examples of series of Laguerre polynomials see Erdélyi (1937,
1938).

(28), (29) From (16) by 10,13 (2) and (3).

(30) From (3) by 10,13 (2) and (3).

(31), (32) Tricomi (19504a).

(33), (34) From (27) by 10.13(2) and (3).

10.21. Some classes of orthogonal polynomials

Beside the classical orthogonal polynomials there are other classes
of special orthogonal polynomials which have been investigated indetail,
In this section we shall describe some of these, mentioning very briefly
those discussed in Szegé’s book, and giving fuller details about those
not otherwise conveniently accessible,

POLYNOMIALS OF S. BERNSTEIN AND G. SZE66

These polynomials belong to the interval (-1, 1) and their weight
function w (x) is of one pf the forms

AQ=-x)% [, 1 -2)%[pGENT,
[(1 - x)/(1+ x)]% [pG)]!

where p(x) is a polynomial of exact degree [, and positive for -1 <z < 1.
Christoffel’s formula 10,3(12) suggests a connection between these
polynomials on the one side, and certain Jacobi polynomials on the other
side.

The polynomials were encountered by Szegs (1921) and investigated
by Bernstein (1930, 1932). See Szegs (1939) sec. 2.6,



218 SPECIAL FUNCTIONS 10.21

POLYNOMIALS OF E. HEINE AND N. ACHYESER

Heine’s polynomials belong to the interval (0, @) and to the weight
function

(1) wlx)=[x(a-2)b-x)]""% 0<ac<b.
They are related to Jacobian elliptic functions.
Heine (1878-1881, vol. 1, p. 294-296) showed that the polynomial of
degree n satisfies a differential equation of the form
d* d
@ 20 - Yo+ [ = y) y @) - 24 ()]
dx dx

+[a+ Bx~-n(2n -1 x?]1y =0
where
U(x)=x(a -x)(b -x)

and @, B, y are certain constants. This differential equation has four
singularities of the regular type and hence is an instance of Heun’s
equation.

Achyeser (1934) investigated the orthogonal polynomials associated
with the interval (-1, 1) and the weight function

le—x|[(1~x*)(a~x)(b~x)]"* -l1<x<a or b<x<l
w(x)=
0 a<x<b,

Here -1 <a <b < 1, and ¢ depends on @ and b, These polynomials are
also related to elliptic functions.

POLYNOMIALS OF F. POLLACZEK

Recently, F'. Pollaczek defined certain families of orthogonal poly-
nomials which are generalizations of classical orthogonal polynomials.
The weight functions associated with Pollaczek’s polynomials fail to
satisfy certain conditions which it is customary to impose in the general
theory (roughly speaking, they vanish too strongly at the end-points of
the interval), and thus these polynomials are important, and readily
accessible, examples of certain ‘‘irregular’’ phenomena in the general
theory of orthogonal polynomials.

Finite interval, Let a, b, A be real parameters,a > |b|, A > ~1. We put

8) -l<x=cosf<]1 0<6<m,

and use the abbreviation

(4) t=(a cos 0+b)sin0=(ax +b)(1-x)7%,
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The polynomials Pi\(x; a, b) are defined recurrently.

(5) P2 =0, PA-=1

+(42X-2) PN =0

n=1,2, «.

(6) nPM-2[(r-1+r+a)x + 5] P

These polynomials were defined by Pollaczek (1949a, for A = %,
1949¢, for Re A > 0) and studied by Szegs (1950a). Some ‘related poly-
nomials were also studied by Pollaczek (1949b, 1950a).

Multiplying (6) by z" and adding, one obtains a simple differential
equation of the first order for the generating function, and hence

) ) P{:(x;a,b)z"z(l—ze"e)_xﬁ' (1 - ze~i0)~A-it |z| < 1.
n=20

Comparison with 10,9 (29)and 10,10(39) shows the relation to Gegenbauer
and Legendre polynomials

(8 PMx;0,00=CMx), P%@;0,0)=P ()

The polynomials are orthogonal on the interval (4}, the weight function
being .

9) w 0\)(x; a,b)=n" 92A=1 o (26-m)¢ (sin gyt T (A +it) 2,

The asymptotic behavior of P’:A(x; a, b) when x is fixed, between —1
and 1, and n » « was investiaged by Szegd.

Either from the generating function (7), or from the recurrence relation
(6) it may be proved that

(10) n!PNixs a, ) = (20) €€ F (—n, A+it; 21 1 —e~216),

This expression in terms of hypergeometric polynomials is the source
of many further formulas for Pollaczek’s polynomials. It should be noted
that ¢ depends on x so that P'> does not satisfy any differential equation.
Formulas connecting P/ for different values of X follow from (10) as
instances of relations between contiguous hypergeometric series.

In a later paper (1950 c¢), Pollaczek introduced a more general system
of polynomials which depends on the real parameters a, b, ¢, A where

(11).either a> |b], 2A+¢>0, >0
or a>|bl, 2A+e¢2>1, c>-1
With the notations (3) and (4), Pi\(x; a, b, c) satisfies

(12) PA -0, PM-1
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(13) (n+c)P3\— 2[(n—1+)\+a+c)x+b]P£\_1+(n+2)\+c—2)Pi‘_2 =0
n = ]_, 2, see o

The generating function of these polynomials has been obtained by
Pollaczek, who also proved that these polynomials are orthogonal on the
interval (4), the weight function being

(25il’l 0)2}\.‘1 e (26-m7)t

4 0\-) ; ’b’ )=
(14) w8, b, 0) = o T s D)

x [T (A +c+it)]? [ B (A=A+ityc5c+ Atit; eZie)l_z .

The recurrence relation (13) is a difference equation for P as a func-
tion of n. This equation serves to express P/x; a, b, ¢) in terms of
hypergeometric functions. The expression is fairly complicated and the
hypergeometric series appearing in it are no longer polynomials. Putting

I'2A+c+n)

= etletnb p( o s A+it; 2A; l—e-zm),
P T (etns D EN 2 eTn

_ TQ-x+i) T{(1=-x-it)
n T'(2-2))

x (1-2Xx—c—n, 1=A+it; 2-2); 1—e~2%0)

B (2 sin e)l -2)\e i(2A+c+n-1)8

the resulting expressionis

A_ B -4 B
(15) P)\(x, a, b, c)= =1 n n -1 .
" A—1Bo—AoB-|

In this form, it is valid when 2 is not an integer, An alternative form,
valid for integer values of 2A is available, 4 _, = 0 when ¢ = 0, and in

this case (15) reduces to (10).
Infinite interval. For the infinite interval —= < x < o, Pollaczek

(1950b) has the system of polynomials Pi\(x; ®) where

(16) A>0, O<g@<nm

are parameters,

(7) PY =0, PM=1,

(18) nPi‘—2[(n-1+/\-) cos ¢+ x sin @] P:\_' +(r=-2+2)) P:\_z =0

n=l,2’coco
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Clearly, these polynomials may be obtained from those defined by (6)
by replacing 8 by @ and ¢ by x, The generating function is

(19) S PMx; @) 2= (1—ze @)~ Mix (1 - zemi0) Ao lz| <1,
0

and the weight function is

(20) w™ (x5 @)= 7" (2 sin Q)2 e T2 P )

"(A+ix)| 2,
These polynomials may also be expressed in terms of hypergeometric
series in the form

(21 "!Pi\ (x; @)= (2)\)ne in@ zF; (~ny A+ ix; 20 1 — 729,

These polynomials were mentioned by Meixner (1934) and by W. Hahn
(1949). They have a representation in terms of finite differences, an
analogue of Rodrigues’ formula (Toscano, 1949). Setting

8F(x)=F(xfl/z»i)—F(x—5éi)
8FF(x)=8[6*"" F(x)] E=2,3, e,
we have
D" 8"GA+Y%n, x)
ﬂ! G(/\’ x)

(22) PMx; @) =
where

F(A+ix)

eZCDz
F(Q-A+ix)

G(/\’ x’)z

10.22. Orthogonal polynomials of a discrete variable

Intheremaining sections of this chapter we shall briefly list afew sys-
tems of orthogonal polynomials for which the distribution function alx) of
sec, 10,1 is a jump function, and the appropriate definition of the scalar
product is 10.1(3). The points at which the jumps of a{x) occur are
x ;, and we shall use the jump function j(x), the jump of alx) at x =x,
being j(x,)s Thus, the appropriate definition of the scalar product is

) (@, 0)=3jk) o &) qx),

andthe jump function corresponds in some measure tothe weight function
of the earlier sections, We always assume that the jump function is
positive and that X jlx ;) is finite. Many results of the introductory

sections of this chz;pter hold for scalar products of the form 10,1(2) and
hence remain valid for the definition (1) of a scalar product.
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The x ; will be taken as integers, a < x ;< b. The intervals and jump
functions listed in the table below are those of most frequent occurrence,
The orthogonal polynomials associated with them correspond to the
classical orthogonal polynomials of a discrete variable, and most of them
have been studied in some detail,

POLYNOMIALS OF A DISCRETE VARIABLE

a b i x) N AME
N-1 1 Tchebichef
N
0 N p* qN"‘ < ) Krawtchouk
x
e %a*
0 o0 _— Charli
resD arlier
x (B)z
0 o c Meixner
x!
B, »
0 % B ), W. Hahn

x1(8),

All these polynomials have a number of properties in common, among
which we mention onlythe finite difference analogue of Rodrigues’ formula

@) p,&)=[K_ j&N' Aj(x~n) X(®) X(x=1) - X(x-n+1)]

where K is a constant, X (x) is a polynomial in x whose coefficients are
independent of n, and A is the operator of forward differences,

() Af(x)=flx+1)-flx), A™'fx)=A[A" ()] n=1,2 e

Conversely, this property characterizes the above orthogonal polynomials
in the sense that any system of orthogonal polynomials possessing a
Rodrigues’ formula can be reduced to one of the systems listed above
" (Hahn 1949, Weber and Erdélyi 1952). The proof is analogous to that
given in sec. 10,6 and will be omitted.

The proof ofthe orthogonal property of these polynomials may be based
on (2) and “‘summation by parts’’. Alternatively, the method of generating
functions may be used.
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10.23. Tchebichef's polynomials of a discrete variable and their
generalizations

Tchebichef’s polynomials ¢ (x) arise in the graduation (fitting) of
data by least squares. For an account of their properties see Szegd (1939,
secs 2,8), Jordan (1921 and 1947, Chapter VIII), and the references given
in these places.

Definition and orthogonal property.

(].) tn(x)=n!A" [(x) (x_N)] n=09 ]-9 ""N_l
n n

@ T ¢ @i &)= Cn+ DT NNE = 12)(N2=22) e (V2=n?) 5 _

x=0

m,n=0, ]., '.',N—lo
Symmetry and “‘central values®’,

®) £, (V-1-2)=CD"e, @)
2 12 _1

(4) ¢, BN -%)=(-1D" 2m)! ( ’"> (/N /é+m‘)
m m

ton sy 2N =) =04
Difference equation
(5) (x+2)(x-N+2)A%t (x)+[2x -N+3-n(n+1)] Az (x)
-nn+ 1t (x)=0,
Recurrence formula
6) (+De, , x)-2r+DQ2x-N+1)t &)+n(N*=n?) ¢t _ (x)=0
n=1,2 eee s

Connection with Legendre polynomials.

(0 lim N7 (Nx)=P (2x-1),

Nox

A gerneralization of Tchebichef’s polynomials may be obtained by the
definition

1 =18 B, (y)
: — I A" Y .
(8) Pn(x7 B’ Ys 8) n! (B)x (y)x [(x—n) ! (5)x_n ]
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In particular,

9 p,;la+l, a+1)——A"[< > <x+a):|

and in this form it is immediately seen that

(10) p, (e L, 1-N, 1= N)=~t, (x).

Certain polynomials introduced by Bateman (1933) are also particular
cases of (8). The polynomials (8) were introduced by Hahn (1949), They

belong to the jump function

, B), ),
(11) ](x, Br Ys ) _TB): N

The explicit formula

(
(12) p,(x; By ¥ 8)=—§%(-Z)—" Joln, —x, B+y-8+n;8,y; 1)

and a recurrence relation were given by Weber and Erd€lyi (1952).
There is a connection with Jacobi polynomials,

(13) lim y™p (yx; a+l,y, y~B) = (n * a) P’(la'ﬁ)(2x + 1),
y—’m a

10.24. Krawichouk’s and related polynomials

The orthogonal polynomials associated with the binomial distribution
in probability theory were introduced by Krawtchouk (1929). They were
studied by Aitken and Gonin (1935), and an account of their properties
is found in Szegd’s book (1939, sec. 2.8.2).

We assume
(1) p>0, ¢>0, p+g=1, N apositive integer.

Definition, jump function, orthogonal property.

(—1)"x'(N—x)| pqu x+n
E (x)=
@) k,(&) Pp= g7 = A" [(x ST

/V
@) j&)= ( )p’ g
x .

N
4) go j@E () E_ (x)= (n> p"q" 8, myn=0,1, ey Ne

TZ=O, 1,"',N'
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Explicit representation, generating function,

(5) kn(x)=q"(:) F(-n,x-N;x-n;-p/q)

(6) g k (x)z"=(1+qz)* (1-pz)¥=,
n=0

The explicit representation shows the connection with the Jacobi
polynomials; the (limiting) relations with Hermite polynomials and with
the Charlier polynomials are given in Szegd (1939, p. 35, 36).

The special case p = ¢ = % has been studied by Gram (1882) and
Greenleaf (1932).

The polynomials

. —_ x! “x=n n Cx(B)z]
@ G5 B, )=y A [,(T-“)T

x

were investigated by Meixner (1934), Gottlieb (1938, 8 = 1), and other
authors. (See references in Hahn 1949, p. 32), They are generalizations
of Krawtchouk’s polynomials,

@8 p"m_(x;~N,~p/q9)=nlk_ ()
Explicit representation, jump function, orthogonal property.
©) m, (B, c)=(B+x) Flon,~x;1-B-n-x;¢"")
= (B)n Fl-n,-x;B8;1-¢7"
(10) j(x)=c* (B)/x,!

(1D ?jo j@)m (x5 B, ¢)m (x5 B, c)=nl(B) ™" (1~ e) A 5,

B>0, 0<c< L,

Symmetry, generating function

(12) (B)z m_(x; B, ¢)= (B)n m_(n; B, c)

n=0

(13) S m L5 By c)—— (——) (1-2z)™*8 |z| < min(1, |c|)-



226 SPECIAL FUNCTIONS 10.24

The explicit representation (9) leads to the following connections with
Jacobi, Laguerre and Charlier polynomials.

2
(14) m, (x; B, c) = nzpnw-'.-ﬁ-n-n(__ 1)
c

(15) lim mn( r 3 B, c)=n!L€"(x)

¢ 1 c—-1

B Y a
(16) lim [ <— -—) m_ (x; B, —)] =nlL* ") = (-a)" ¢ (x;a).
B oo a B n n

A recurrence relation and a difference equation have been given by
Meixner (1934).

10.25. Charlier’s polynomials

The polynomials introduced by Charlier are the orthogonal polynomials
associated with Poisson’s distribution of rare eventsin probability theory.
They have been investigated by several authors among whom we mention
Meixner (1934, 1938) and Doetsch (1933), For an account of their prop-
erties see Szegd (1939, sec. 2.8,1) and Jordan (1947, sec. 148).

Jump function, definition, orthogonal property.

(1) jx)=e %a%/x! a>0, x=0,1,2, e

) x! AP a*™"
@ cn(x,a et (x —n)!

3) s jl@e (;a)c, (x;a)=a""n!5_.

x=0

Explicit representations, .generating function.
n

rl
4) cn(x;a)=z (-1)" (j) (f) La'—,-
r=0

(e —n
(5) ¢ (x;a)=f.(—a) ®(-n,x~n+1;a)
" (x = n)!
(6) z ¢, (x;a) I (1 -i) See EQ’H'LR\, |z] <a.
n=o n! a

A bilinear generating function was given by Meixner (1938).



10.25 ORTHOGONAL POLYNOMIALS 997

Symmetry, recurrence relation,difference equation,

() ¢, (x;8)=c (n;0a)
(8) acnﬂ(x;a)+(x—n—a)cn(x;a)+ncn_‘(x;a)=0

(9) acn'(x+1; a)+(n-x-a)c (x;a)+ xcn(x—l; a)=0,

From the explicit representation (5) follows the connection with

Laguerre polynomials
(10) ¢ (x;a)=(-a)""n! LZ""(a),

The connection with Meixner’s polynomials has already been given in

10.24(16).
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CHAPTER XI

SPHERICAL AND HYPERSPHERICAL HARMONIC POLYNOMIALsS(D

11.1. Preliminaries
11.1.1. Vectors

We shall define a point in (p + 2)-dimensional Euclidean space
P=123,...) by a vector

(D) ©= Gy 20 e s %, 00

and shall write () for a function u of %, «,, ...

of ¢ will be denoted by ||z|| or r. Explicitly, we have
2 )%
p+2/ °

s X The length

llell=r=G2 +xi et

In sec. 11.7 we have both vectors with three and vectors with four
components. We then shall write ||2||,, ||9]|, to indicate the number of
components of &, §, respectively.

A point on the unit-hypersphere Q, i.e., on the hypersurface r = 1, in
(p + 2)-dimensional space can be defined by a unit vector

(2) é_:r-' = (519 62, seey §P+2)’

we shall reserve the letters &, 7, { for unit vectors of p + 2 components,
Ho=(rp v oees yp+2) is a second vector, the inner product of T and
b is denoted by

@) (&Y R ARUESS PR S I Y

For unit-vectors & n making an angle 6 we have (& 1) = cos 6.

We shall encounter matrices (i.e., linear operators which are applied
to vectors). For full definitions and an outline of the theory, see Birkhoff
and MacLane (1947).Only square matrices will oceur. If ¥ is a matrix
with the general element [ (G, k=1,2, ves, p + 2) the determinant of ¥
will be denoted by

det M = det B e

(1) In preparing this chapter, the unpublished notes of a course given by
G. Herglotz have been used. The idea and the arrangement of many of the

proofs are due to him.
232
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The identity or unit-matrix will be denoted by I;a matrix O will be called
orthogonal, if

@4 o0'0=]

where O' denotes the transposed matrix of 0. From this it follows that
0 0’ is also the identity. The vector resulting from the application of a
matrix O or M to a vector ¢ will be denoted by O 5 M . A matrix O is
orthogonal if and only if for all &

(5) (0, 09 =(¢, 0).

Ican be defined by the property that Ix = xfor all .

A function of x,, x,, ..., x _,, will be called a function of T and will
be denoted by f(x). (A function of two or more vectors is defined in an
analogous manner.)

A function f(z) will be called an orthogonal invariant if for all r and
for all orthogonal matrices O

(6) f(02 =f(D.
Similarly, a function of two variable vectors is an orthogonal invariant if
f Oz, 09) =f(x, v) for all z, § and for all orthogonal matrices O.
Sometimes we shall use hyperspherical polar coordinates
T O yeees GP, b,
defined by
%, =rcos 0,
xz, =rsin 0, cos 0,,
%,=r sin 6, sin 0, cos §,,
() o . .

%, =r sin 6, sin6,, ..., sin 6p_1 cos Op,

% 4y =7 sin 0, sin0,, ++., sin Gp cos ¢,
X4, =T sin 0,sinf,, ..., sin GP sin ¢,
wherer >0

(8) 0-__.<6j577(f=1,2,---,P), 0< < 2m,
In these coordinates, the (p + 2)-dimensional volume element is given by
(9) dV =rP* (sin 6,) (sin 62)”_" «« (sin Gp)drd 000 d@p do,

and the surface element dQ2 becomes

(10) dQ =(sin 6,) (sin 6P .o (sin@p) df, +-- d@p do.
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The total area o of & can be computed either from this or from the remark
that

f:‘;,.. Jf:oexp(—x,Z_... —x;+2) dx, ...dxp+2= (j‘:;e-xzdx) p+2
=f‘[fexp(-r2)dV=wfomrp+' e"2 dr

which gives
ol thp
1) @=—m— .
r(+%p)
Here and in the whole of this chapter we shall use three, two or one
integral signs to denote integrals taken over a (p + 2), (p + 1) or p~dimen-

sional manifold respectively.
A function which is defined on @ can be considered as a function
F (£) of the components of the unit-vector £. The expression

(12) [ JF(&da®
Qe
denotes the (p + 1)-tuple integral which will be obtained if we substitute
for the components of £ the expressions in terms of 6,,... , Gp, b,
from (2), (7) and for dQ({) the corresponding expression from (10).
I F, (&), F, (£) are two functions which are defined on @, and if

IQI F, (&) F,(£)dQ(&)

exists and is zero, we shall say that F (£), F,(£) are orthogonal on
Q(¢). We shall write Q instead of Q(¢&) if the context indicates which is
the variable vector.

If not stated otherwise, Laplace’s operator A will refer to the com-

ponents of Z, i.e.,

9% 9 82
(13) Az b rreb—r.
axl axZ axp+2

We have

(14) Alr¥z, 9] =[

mm -1y, 9 I(l+p+2m
2 + 2 r l (8;9 b). .

(, 9 r
The operator A is invariant under orthogonal transformations, i.e.,

p+2 p+2

92 92
- = - h=0¢
k=1 a"i k=1 ayi

where C denotes an orthogonal matrix.
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In polar coordinates (3) we have

d d d d
(15) Au=r"P"" P (r”+| Er u) +r 2(sin 01)—”56—' (Sin9|)"a'—01 u]
-2¢_.: -2 (a3 0 1-p d . 0 )P“ d
+r %(sin6,)""(sin 0,) 552 (sin 6, ﬁz u
“2(gin 0. si )—2 in® )2~P d . p-2 d
+r %(sin 0, sin 6,)" " (sin 6) 56—3 (sin 6,) —893 u| + oo

] ]
+r7%(sin@, r'sin@ )" (sin6 )™ Tl [(sin 0,) = u,:,
p p
82
d¢?
11.1.2. Gegenbauer polynomials

+r~2(sin 6, ++ sin OP)_Z U

The polynomial C¥ (x) of degree n which is defined by the generating
function
(16) (1=2xt+¢H)™= 3 C¥(&)t" v#£0
n=0

is called the Gegenbauer polynomial or the ultraspherical polynomial of

degree n and order v. Szego (1939) denotes it by Pn(”)(x). Gegenbauer

(1877, 1884, 1890, 1891, 1893) has investigated these polynomials for

arbitrary values of v. An account of his theory is given in sec. 3,15.

We shall need here only the case where 2v is an integer, 2v =p =1,
2, 3, «us + In this case we have

271 4t 27" I gnt?l

4D € e =gt Fat® (m+DU2D)! dx"*2
2'1 dH‘l

Hn+l+1) dx'tt T"HH &)

(xz—l)"H

(18) C:“ (x)=

where [ =0, 1, 2, «es,
27" 4"

nl dx®

(19) Pn(x)= (=2 —=1)"=-2F‘ (~n, n+1; 1; %-%x)

is the Legendre polynomial of degree n, and
20) T (x) = %ilx+i(1-22%1" + [x~i (1-x2)¥]"}

1) = F, (n,n; %, %-Yix)

(22) = cos (n cos-' x)
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is the Tchebichef polynomial of degree n. Tchebichef polynomials take
the place of the ultraspherical polynomials for v = 0; their generating
function is

(23) —l/zlog(1—2tx+t2)= ozo R+D'T (x)tn'H.

n=0

From (20) we have forn=0,1, 2, «4. ,

n+t

d
@) [x+ Q-2 = T @) +iG+ DT (12D = Tty @

n

We also have for an arbitrary v £ 0:
(24, a"

1~ 2 n+v-%.
(v+‘/2)nn! dx® (1~2%

(25) C¥(x) = (=2)™ (1 - x?) ¥

Here
(a)0=1’ (a)n=a(a+l)un(a+n-l) n=l,2,----

Equation (25) is a consequence of 3,15 (3) and 2.8(23).

Between the numbers o in (6), £ (r, p) in 11.2(2), the square of the
normalization factor for the Gegenbauer polynomial

22°Pr T (n + p)

n!(p+2n) [T %p)2°
the total area of the swface of the umit-sphere in (p + 1)-dimensional
space

@6) N= [T CHo ()] (1= 2172 d =

2p%hthp
' +%p)’
and the value
R+p-1! (p) ~p
28 C'%p].=----—-'—-——=—’-I=—]_’I 9
@8) ¢,* n!l@~-1)! n! e n.
there exist the relations
o'N mC}flp(l) _ L VAP
C* (1) h@,p) (2n+p)I'ip)

@7 o' =

(29)

Proofs for the formulas in this section are given in Appell-Kampé
de Fériet (1926).

For an investigation of the C)’fp which starts from particular solutions
of Au + k%u =0 [waves in (p + 2)-dimensional space] see A. Sommerfeld,
(1943)and also W. Magnus (1949),
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11.2. Harmonic polynomials

A polynomial H, (©) of degree n in x,, ys ves s Xpyy which is homo-
geneous of degree n, so that H (\®) = A" H, (2), and satisfies Laplace’s
equation A H (z) =0, is known as a harmonic polynomial of degree n.
Clearly, r™" H (9 = H,(£) is a one-valued continuous function on the
hypersphere , or r = 1, and can also be expressed as a trigonometric
polynomial in 6., ... , 6_, ¢. For the notations see soc, 11.1,

A partial differential equation of the form Au + f(r) u = 0, where
f&)is a given analytic function of r only, and u = u (), has solutions of
the form u =R, () H, (&), where H  (¢) is an arbitrary harmonic polynomial
of degree n, and R . ) is a solution of the ordinary differential equation

4R dR
- %1;+ [f() =nn +p) r21R =0,

We shall now show that there are

1

-D!
@ by =@arp 2D
pin!
linearly independent harmonic polynomials of degree n of the p + 2
variables %,, %,, ..., X L,
To prove this, we compute first the number g (n, p) of linearly inde-
pendent homogeneous polynomials of degree n of p + 2 variables. Clearly,

@) g, pP=gl,p=-D+gla-Lp=-1++ee+g0,p-1,
4) g, 0 =n+1,
and g (n, p) is uniquely determined by (3) and (4).
(n+p+ 1! p+n+1l
(5) g(n,p)——m=( n .
Now, Laplace’s equation imposes conditions upon the coefficients in H ,

since A H, is a homogeneous polynomial of degree n ~ 2, there are at
most g (n = 2, p) independent conditions and

6 h,p 2 gh,p)-gh-2,p)
On the other hand, the g(n — 2, p) linearly independent polynomials
xf Plyyose ,xp+2),

where P denotes any homogeneous polynomial of degree n — 2, do not
satisfy Laplace’s equation, so that

(?) A, p)< gln, p)~gn -2, p)y
and this proves (2
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Except for n = 0, there is no harmonic polynomial which is invariant
under all orthogonal transformations.{!) But there exists an H o (X) which
is invariant under all those orthogonal transformations which leave one
point of the unit-sphere fixed. Since (0% #) = (&, ) for all orthogonal
transformations which leave 7 invariant, it is sufficient to prove

LEMMA 1. For each unit vec.tor, n,there exists one and only one
harmonic polynomial H _(x)such that
(i) H,(x)depends.only onr and (z, 1);
(i) H, () =1.
This polynomial is given by
%
C7PI(&, 7))

C*%r(1)
where &= g/r and where Cfp is given by 11,1(16).

Since Cff" (x) can be expressed in terms of even or odd powers of x
according as n is even or odd, the right-land side of (8) is a polynomial
ofx,,..., x ,,, although r" is not necessarily one. Since C:’f”(l) £0,
(8) satisfies (ii). Therefore we have to show now that (i) determines

H”(g)) apart from a constant factor. Since H (%) is homogeneous and of
degree n it must be of the form

Co(g;’ 77)”+C1r.(@9 77)”_‘ t oo +cnr”’

8 H,(9=r"

where C, «4, ¢, are constants.
Since A H" =0, we find from 11,1(14) the relations

9 G-m@-m-Dec +m+2)Q2n-m=-2+p)e,,,=0
form=10,1,2, 4os,and

(].0) C"—‘Oo

Therefore H  is uniquely determined by ¢ and ¢, =¢c, =+ =0. To

construct / , we observe that we have from 11,1(14) A r"7 = 0 and there-
fore

AD) A flrn =&l P = ATTE” (=2 2140 = 0

for all values of 7. With r=¢t"", we find that the coefficient of ¢ in the
expansion of

(12) [1-2(&, pre +r2e?]7%p

satisfies Laplace’s equation. This completes the proof of Lemma 1 for

(1) G. Po'lya and B. Meyer (1950) have investigated the harmonic polynomials
of three variables which are invariant under any given finite subgroup of the
orthogonal group,
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P=1,2, eee s In the case p =0 we can start with 11,1(23) instead of
11.1(16) and we find instead of (8) that forp =0

(13) r*TI(& )]

is the polynomial whose existence is stated in Lemma 1.
We can now construct a complete set of linearly independent harmonic
polynomials of degree n. Let

(14) Hm,k(xk’ xk.f." c ey xp+2)

denote any homogeneous harmonic polynomial of degree m which is inde-
pendentof x, ..., x,_, . It can be verified that

(15) AlQ-2z,2+r%e?) ™ %P H 1=0

for all values of the parameter ¢, and this enables us to find all homo-
geneous harmonic polynomials of p + 2 variables if those of p + 1 vari-
ables are known already. From the % (m, p + 1) linearly independent poly-

nomials H_ , we obtain k(m, p — 1) linearly independent polynomials
i, (x) which are of degree n — m with respect to x, , namely,

(16) r*7n® C:::fp(xi/r) Hm,z’
where m =0, 1, +.. , n. Since it follows from (3) and
k@, p)=gk, p)-gh - 2,p)
that
(D Ae,p) =k, p-D+kr-1,p-1 +++++L(0,p -1),
we obtain all the Hn(q:) from (16).

Since

(18) Gy Tix, )

form a complete set of linearly independent H, o2 e obtain by induction
THEOREM 1. Let Mos eensm, be integers such that

(A9 n=m >my2--22m >0,

and let r, be defined by

(20) 7= (fyy + gy, +o0e p+2)y

where k = 0, 1, ,eesp and r =r. Then
_1,i'm HE PP ,xp+2)

(21) H(mk, =3 @)_H(TL, 3 s P p?

m m -m m, . t¥p-%k
+ i e+2 k k+1 C”:ztim (xk.H/rk)
k== O kR
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form a complete set of h(n, p) linearly independent harmonic polynomials

of degree n. Of cowrse, Hm,, +; ) =H(m,, —; ) if m,=0.
Corollary.  In hyperspherical polar coordinates 11,1 (7) we have
(22) H(mk’ i; @)=Tny(mk; k’—¢)

where

' Him, b p=1 +3%p-Yk
(23) Y(m,; 6,, £¢) =e H (sm 0, 41) s k+:"k+1 (cos O,
11.3. Surface harmonics

If Hn(é) is a homogeneousharmonic polynomial of degree n, we call
(D r"H (&)=H (&)=Y (6, ¢)

a surface harmonic of degree n. Here @ stands for Oyseess 6 and &
denotes again &/r. The surface harmonics are one-valued contmuous
functions on Q (the unit-hypersphere r = 1), In particular, we have from

11.2(22) and 11.2 (23) the surface harmonics of degree n = m,

@ r"H@, m, e tm s, . X)) =7 "H(my, %5 0)
=H@,m,... ,imp;f,, cens §p+2)=H(mk, 1; §)

3) =Y(n,m,,...,m;61,..., tp)=Y(m,; 6, £ P

P p’

We shall now state the orthogonal property(compare sec.11.l for the
definition) of the functions (2), (3). With the notations

4) Ek(l, m)
Zk—zm'pf(l+m +p+1-4k)
U +Y%p+%-%E) U=-m) [Clm+Y%p +% - %E)]12

for any integers /, m where [ >m >0, and

p
(5) N(m,, m',...,mp)=217 kE‘Ek(mk_',mk)

where my, m s m, satisfy 11,2(19), we have:

l 2

THEOREM 2. Any two distinct functions in (2) or (3) are orthogonal on
Q unless they are conjugate complex. In the case of conjugate complex
functions [or in the case of the square of a real function (2) or (3)] we

have:

(6) IQI |H(m,, t; £)|?dQ = &le(mk: 6, £ $)|2 dQ
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=Nmg,mg,..., mp)zN(mk).

In particular, any two surface harmonics of different degrees are
orthogonal on the unit-hypersphere.

The functions in (2) or (3) form a complete set of orthogonal func-
tions on Q. We shall prove:

THEOREM 3. A function f(&) which is continuous everywhere or
Q and is orthogonal, on Q, to all the functions H(mk, t; &) vanishes
identically on .

To prove this we assume that () = 2a > 0, where 7 is a fixed
unit-vector (i.e., a point on £). Since f(£) is continuous, we may
assume that f(£) > a for all £ satisfying ||£ — || < & where Sis a
sufficiently small positive number, or f(&) > a if 1 - (&, < %8
According to Weierstrass’ theorem on polynomial approximation (cf.

Widder, 1947, p. 355) applied to the function
dx) =1-(1-x)/%8% 1-x< %62,
=0 l-x> Y52,
we have that given any ¢ > 0, there exists a positive integef n and a
polynomial F_ (x) of degree n such that
IFn(x)—¢>(x)|_,<e -1<x<1.

Then
J & o1& N1dQ > a*>0,
Q

where a* is a positive number depending on @ and § but not on n and
¢, and hence

(0 lim [ [f(&)F [(& ]1dQ=a*
€> 0 Q

Since f(£) is orthogonal to all functions in (2) or (3) and, according
to theorem 1, C' P[(£ 7)] is a linear combination of these functions,
f(£) must be orthogonal to C/ZP[({", 7)] for each k. Moreover, since
C%P(z) is precisely of degree k inz, F (z) is a linear combination of
the C#P(2), k=0, 1, vuu ,n0 lence f(f) is orthogonal to F [(¢, 9)]
and th1s contradicts (7) and proves theorem 3.

From the proof of theorem 3, we can obtain a statement about the
approximation of a special class of coniinious functions by surface

harmonics. We have:
LEMMA 2. Let F (x) be a function of the real variable x which
is continuous for ~1<x < 1. We define forn=10,1,2,...,
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®) ¢, &= §oamc'ﬁ”[(§» )

where

9 CH M)Ak, pla,=[ [C¥ ] FIE 9]dQ(&),
0

and
(10) A(n, p) C#P (1) = [ [ICHP[(&, B2 dQ(E).
Q

Then FI[(£, n)l, which is a continuous function of & on Q will be
approximated by the ¢ in such a way that

D) lim [ [FUE ] - ¢, (& lf2da=0.
n—-> oo Q

Incidentally, the 4 (z, p) do not depend on the fixed unit-vector 7 ;
their values are given in 11.4 (13).

To prove this lemma we choose in (10) the coefficients @ so as to
minimize the integral in (11), Since C%p[(f, 7] and CAP [(é’, 7] are
orthogonal on Qwhen k& £ m (cf. the rema.rk after theorem 2), we find
precisely the values (9) for the a . On the other hand we know from
Weierstrass’ theorem on polynomial approximation that for a suitable
choice of the @ and a sufficiently large n the integrand in (11) can be
made arbitrarily small. Therefore the minimum of the integral in (11)
must tend to zero as n - o,

The problem of the expansion of a function which is given on Q in
a series of surface harmonics has been investigated byseveral authors.
For p = 1see Hobson (1931),where many references are given. The case
p = 2 has been investigated by Kogbetliantz (1924), Koschmieder (1929),
and the case of an arbitrary p has been treated by Koschmieder(1931).
The expansion of a function in a series of surface harmonics is some-
times called its Laplace-series. In general, one does not know much
about the convergence of the Laplace series of a continuous function
but its Césaro-summability (of a sufficiently high order) can be proved.

11.4. The addition theorem

For a fixed 7, the surface harmonic C*[(£, n)] can be expressed in
terms of the S(n, , +; £) where m | =n. More generally we have:

THEOREM 4. Let SH&), 1=1,2, eau ,h be h=h(n, p) linearly
independentreal surface harmonics of degree n, and let the S be ortho-
normal on Q so that, for [, m=1,2, .4, h,
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0ifném
W JfSH& s (o da=
{1 lifn=m
then for any fixed unit-vector 5
C*P((&, 7))
C#r(1)
For notations compare 11.1 (11), 11.1(12), 11.2(2), 11.1(16).
As a special case of (2) we have from theorem 2:

@) C*PL(E, o]

L _po pem) oo, _
" Gnep) & N h a3 O lmg =)

@ - /B 3 sHOSim)

+H(my, -3 &) Hm, +;5 )]
where the sum is to be taken over all integer values of m, such that
n=mgy>m, 2u-_>_mp20 and where
(4) €©)=1, em)=2 m>0.
From 11.2(21) we find that S(mk, *; &) vanishes if the last p + 2 -1

components of € vanish, i.e., if
S1m=&pe=21=§,,,=0
except when

ml=ml+1=... =:mp=0.

Therefore, if we put
&= (cosp, sinp, 0y ves, 0)
n =(cos o, sing, 0y v+« , 0)
(3) becomes forp >1 »
) Cffp (cosp coso + sinp sin o) = C?[cos (p -0l

Te-1CcH %
~ TCp) T Cp)

X (sino)® C z_‘:ép(cos o)

E B, (sinp)" C ﬁ:;fp (cos p)
=0

where

6) B, .= 28 (—m)l p+2m =1 [Cm +%p)12 [T (p+n+m)l™".
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If we put in (3)
¢=(cosa, sina cosp, sina sinp, 0, «. , 0),
n =-(cos B, sin B cos 0, sin B sino, 0, ., 0),
we obtain from (5) with p—o=¢ forp > 1
(7 Cffp (cosa cos B + sina sin 8 cos @)

Fe-1 .
=——[F(1/2p)]2 Z Bn‘m(sma)n

x C"’:_"':fp (cosa) (sinB)" C :_"':‘P (sina) C:f"_% (cos ¢)
where Bn' . is given by (6). For p = 1 we find
(8) P (cosacosf + sina sinfB cos¢) =P _(cosa) P_(cos f)

n

(n ~m)!
" ;, (:+_:3' P:(cés a) P (cos B) cosme,

where

(9 P (x)=C%kx)

is Legendre’s polynomial and
(10) Po(x) =(-1)" 27 T'(m + %) 2® (1 - x2)%" C2*% (x)
is an associated Legendre function,

Usually, (7) or, in the case p = 1, (8) are called the addition theorem
of ultraspherical polynomials. We can obtain (3) (but not the whole
theorem 4) by a repeated application of (7) and (8). In a modified form,
(7) and (8) are also valid for a general C” where 2v is not necessarily
an integer; for this see 3,15(19) and 3,11 (2)

The proof of theorem 4 will be based upon the fact that Cff” [, gl
is an orthogonal invariant of £, 7 (see sec. 11,1.1 for the definition),
We shall show first that apart from a constant factor lep [(&, p)] is the
only orthogonal invariant which is a surface harmonic of degree n. To do
this we need

LEMMA 3. Let F (%, %) be a polynomial in the components of ¢ and %
and let
(11) F(Og, 09) =F(g,b)

for all orthogonal transformations O (compare sec. 11,1,1)s Then there
exists a polynomial ® (u, v, w) in three variables u, v, w, such that
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(12) F (@s 9) =0 [(@, @)s (@s 9), (9! i9)]

identically in the components of ¢ and 9.
Proof: H x, 9 are fixed, we can find an orthogonal coordinate

system such that
t=(a,0,0,.0¢¢,0, 95=08,% 0,.¢.,0),
(Q?, 37)=¢12, (z, §)=a,3, (9’ 9)=.82+}’2’
and therefore
a=u”, B=uv/u”, y =(uw - v?)%/u.
Since F is an orthogonal invariant this shows that it can be written as a
polynomial
F=F*a, B, Y =F*u*,v/u*%, ww-v)%/u]
in @, B, y» Since there exist orthogonal transformations which have the
effect that
a»-a, B--B y-y
or
a»a, BB Y=

we find that F *is a polynomial in y?, a?, B%, a8 and that we can write
F*in the form

(13) F*= u " (I)*(u, v, w)!

where m is an integer and ®* is a polynomial of u, v, w.
Interchanging the role of ¢ and 9

14) w ¥, v, w) =u"" B*, v, w),

where k£ is an integer and ¥ is a polynomial. Since u, v, w are algebra-
ically independent, we can conclude from (14) that u™" ®*is a polynom-
ial and this completes the proof of lemma 3.

LEMMA 4. Letf, 7, { be arbitrary unitwectors inthe (p +2)-di-
mensional space. Then

as5) [ [ CEUEMI CHPIGy, O] dQG) = A, p) CHPIE, O,
Q (n)

where

2 27 i

k(n, p) =(n +%p) T (%p)

ILemma 4 is of the nature of a convolution theorem for the basic surface
harmonic Clﬁp (&, pl

(16) 4(n, p) = C#P (D)
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To prove this lemma, let © and 3 be any two vectors, & = ¥/||«l|,
¢= 3/l Since

lell"C¥ 1g, ), llall" C¥0 L, 21

are harmonic polynomials in the components of £ and 3 respectively, we
see that ||z||” || 3||” times the left-hand side of (15) is a harmonic
polynomial both in ¥ and 3, of degree n in each set of variables. More-
over, this harmonic polynomial is an orthogonal invariant in ¢ and 3, for
it remains unchanged if any orthogonal transformation is applied simul-
taneously to &, 3 and 5 (and therefore to ¢, ¢ and 5) and the integral
remains unchanged if any orthogonal transformation is applied to 7.
Thus by lemma 3, our harmonic polynomial is a polynomial in ||z}|3,
[131%, and (&, 3) = ||e]] 1|3]| (£, {). Therefore we find from lemma 1
that it is a multiple of

el 13l €2 U, O,
and this proves lemma 4, We can determine the factor 4 (n, p) by putting
&= €=(1’ 0, ..., 0)

which gives

(17) A@, p) CHFP (D=0’ [T [CE (@)]2 (1-x2)%P7% dx,
-1

where o denotes the area of the hypersphere in the (p + 1)-dimensional
space. From 3,15 (17), 11,1(26), 11,1(29) and 11,2(2) we obtain (16).
Now we can describe the effect on the surface harmonics of an
orthogonal transformation of &.
LEMMA 5. Let Snl(f), I=1,2, we,h be a complete set of ortho-
normal surface harmonics of degree n, so that (1) holds, and let O be an
orthogonal transformation of the (p + 2)-dimensional space. Then

h
(18) SL0 &) = 2 &u Sk(g),

where the matrix G of the h? elements g 1 is an orthogonal matrix of
h =k(n, p) rows and columns, i.e.,

(19) G'G=G6G"= 1.
Here G ’is the transposed matrix of G, and Iis the unit-matrix of & (n, p)

rows and columns.

Proof: Since Laplace’s operator is invariant under orthogonal
transformations (compare sec. 11,1), SL(0 &) is a surface harmonic of
degree n, and so can be expressed, in the form (15), in terms of the
complete system S:(f).
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Since the integrals in (1) remain unchanged if £ is replaced by O ¢, it
follows that also the Sl (0 &) form an orthonormal system, and this gives
GG' = I But it is wellknown that from this we also have G' G = I
(see, e.g., Birkhoff and Macl.ane 1947, Chapter IX).

Now we can prove theorem 4 by showing that

h h
@0 = SHE St = 2 sio & sion)

is an orthogonal invariant of £ and 7 . This follows from lemma 5 and in
particular GG’ = I, From the proof of Lemma 4 we see that (20) must be
a multiple of C%-p [(£, p)]. The constant factor can be determined by
integrating the square of (20) with respect to 5 over the whole area Q. On
account of (1) this gives

CHNS MO

On the other hand we can see that it must be a certain multiple of Cfp(l)
by making & = 7 in (12). By integrating (21) over Q(£) we obtain & be-
cause of (1), and this leads to (2) in theorem 4.

From theorem 4 we have that for every surface harmonic §_(&) of

degree m

@2) [ ] C¥PIE 9IS, (&) d0(e) =
e (o/B) CEP(D) S, () n=m.

n#m,

From Lemma 2, in particular from 11.3(8), 11.3 (11), we find by an appli-
cation of Schwarz’s inequality:

lim [ [YFI(E, p] - ¢, [(& pB S, (£) dQ(&) =0,
n- I:OQ(é: )
where F, ¢, are defined in 11.3, 11.3(8). If we combine this with (22) we
obtain (cf. Funk Hecke, 1916, 1918):
FUNK-HECKE THEOREM: Let F (x) be a function of the real variable
x which is continuous for ~1 <x <1 and let S (&) be any surface har-
monic of degree n. Then foranyunit-vector g

(23) [ [FU&E IS (O A =2, S, (),

GE)
where the integral in (23) is taken over the whole area of the unit-
hypersphere (1, and where
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1

N T0)

f_"F(x) C'fp (x) (1 = x2)%P~% gy,

Here ' denotes the total area of the unit-hypersphere in the (p + 1)-
dimensional space,

~ 2 hPt% o' (477)%Pn!l"'(1/2p)
TG%p+%" C*#Q1) G+p-D!

1

Erdélyi (1938) has shown that it is sufficient to assume that |F (x)| and
|F (x)|? are Lebesgue-integrable for =1 < x < 1, and he also has shown
that

A,=in@m) R [T TR T () () de,

where

fo=@n7 [

e” ¥t F (x) dx.
Here / denotes a Bessel function, Note that

(~t2/4)"
m!T@m+m+1+¥%p)

o0

¢ =%P Jssip (¢) =™ 27nm%p z

mn =90

is a one-valued function of .
11.5. Thecasep= 1, h(n, p)=2n+1

11.5.1. A generating function for surface harmonics in the three-dimen-
sional case

(1) 8:='(x|’x29x3)
denotes a vector with three components. We define the polynomials

H:(2) by

@) [x, +ix, ~2x,¢ ~lx, —ix,) t?]"=2" 2 H? (2)e",

If we substitute — 7" for ¢t we find

(3) Hi=(-D"H]*,

where a bar denotes the conjugate complex polynomial, The left-hand
side of (2) can be written in the form (u, Z)® where

@) u=(-2¢ 1-¢t2 i+.it?.

From (1, u) =-0 and from 11,1(14) we find that both sides in (2) satisfy
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Laplace’s equation for all ¢, i.e., H () is a homogeneous harmonic
polynomial of degree n. The linear mdependence of H” follows from the
algebraic independence of

x,+ix,, =—2x,, —=x,-ix.).
Withr = ||z||, €= &/r, the functions
(5) r-nH.n(@):s.n(f) m=0’ i]., acv,in

form a complete set of linearly independent surface harmonics of degree
n . From (3) we have

(6) S7%(&) =(-1* 5 =(&)

The orthogonality relations

D J[s2@5%da- , DTG+ 1) )
Q " Tw+3/2) 'k +3/2) m+n

mm'=0,11,.4s, tn,
in which the integral istobe taken over the whole area of the unit-sphere
Q, can be proved by introducing
(8) v=(-2s,1-s%i+is?
and considering

© [ [ @, &0, E)"d)
Q

which is an orthogonal invariant of u and o (cf. the proof of Lemma 4 in
secs 11,4), According to Lemma 2 it must be a polynomial in (u, u),
(o, b), (u, ), and since (u, ) = (b, ©) = 0, (9) must be a multiple of
(4, ©)" K we introduce (2) [and the corresponding expansmn of (v, &)™
into (9)] we find

10) @) 3 :’smfﬂfs:(g)@;,(f)m

=py B) = p2" (L+ st)?
and here we can compute y by putting s =¢ =0 and
(11) £=(cos 6, sin@ cos ¢, sinf singp), dQ=sinfd0dg,
which gives

(12) 2",L=f:"d¢ J[7d 660" <227 () n1/T @+ 3/2).
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By comparing the coefficients of t *s® on both sides of (L0) we obtain (7).
To obtain an explicit expression for S* (£) we apply Cauchy’s formula
to (2) and obtain

1
18) B3 (2) =o— [ M (w, @y e e
27
=(2m)"" (—1)"(x2_,ix3)nf(0+) e +x,/(x,-ix )]?
=12 min ) AT

If we put

t+x,/lx,-ix)=r, xz/(x, -ix ) =0,

this gives
(14) 2% (2) = 27" (ix  ~x )" IS -rix, ~ix )" (r=0) " T Ndr
== ] . dn+m [ . ro 2 ]n
1s) (0 +m)! (e —ixg) arte LT —(T, :
r" %, —ix, \" dnte .
= 1 - = .
(16) (G +m) ! ( - ) df;‘+"( f,) 61 x1/".
If we define the associated Legendre’s functionsP':l(x) by
ntm
(17) P2 @) =(-1D"* 27" &)™ (1 ~ x2)%m porTe 1-x3"
x

m=0,%1,..., Ln,
we find that
(18) S%(&)=r""H" (D)
2" n!
(n+m)!

and for the corresponding functions in spherical polar coordinates (see
secs 11,3),

- (_1)n+m

(&, -i&,)" (1- €174 P (&),

n

9n 1
(19) ¥2(6, ¢) = S%(&) = (-)n*= —

gimd P” (cos 0).

(n +m)!
According to (3) and (18) we have
~m)!
P=a () = (c1)* 2= pe oy,

(n + m)!

The addition-theorem has been stated as equation 11.4 (8)
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The orthogonality relations (7) give

2 (n+m)!
2n+l1 (m-m)! )
From (2) we obtain the generating function
(21) [1-stcos@—-%(1-¢? sing]™"

20) [ [P2(x)]2dx =

= % @) PF(cosg) sn ik,

n=0 k=0

For other properties of the P” see sec, 3.6.1.
11.5.2. Maxwell’s theory of poles

Letx, x,, x, be independent variables, let r = (xf + xi + x:)% and
define the differential operator D, by

d
(22) D, =g k=1,2,3.

k
Since

(23) Ar ' = (Df +D§ +D§) ro1=0,

clearly D¢ Dzb D; r~! satisfies Laplace’s equation. Moreover this is
clearly of the form of a homogeneous polynomial of degree n =a + b + ¢
multiplied by r~#*7', Lastly, it can be verified that for every homo-
geneous polynomial H of degree n, the statements

AH =0 and AH r727'=0
are equivalent. Thus we find
(24) D,“D:D§ r_’=Hn(x',x2, xs)f-z"-' n=a+b+ec.

It is a consequence of this observation that to every homogeneous poly-
nomial of degree n of three quantities D,, D,, D, for which

(25) D?+D2+D2=0

there corresponds a harmonic polynomial of x,, x,, x, of degree n.
Comparing this with the remarks after 11,7(12), it seems plausible that
we - can obtain all hammonic polynomials from (24). Actually, it can be
-shown that (see Hobson, 1931, Chap. 4, Nos. 85-92)

1 D" "@-m)! .
(26) D10, £D )t~ = T ] ting paeos )

r rn'H

m=0,1,---,n,
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and

(27) x, =r cosf, =x,=r sinf cosd, %y =r sinf sing.

According to(19) this shows that all spherical harmonics can be obtained
from (24),

For geometrical reasons, the surface harmonics in (26) are called
zonal if m = 0, sectorial if m = n and tesseral if 1 <m <n — 1. For this
and for the following remarks on Maxwell’s results see Hobson (1931)
and Maxwell (1873, 1892).

Let

(28) 7, = (ay, B> vy k=1,2,.00,n

be unit-vectors which therefore define points on the unit-sphere. These
points will be called poles. Then the surface harmonic of degree n with
the poles 7, is defined by

29) §_(5,) = (<D™ (f (@,D,+8,D,+y,D)0r".

Introducing n parameters, ¢, «0 , ¢,, we find that this is the coefficient
oft, t, ¢, in the expansion of

30) L 77 p [M’]
n! n T

where

X,

(3]-) TZ= i thtl(nk’ 771)1 6=(?’ ?,_>

3
k=1 "
and where the sum in (30) is to be taken over k=1, 2, ..., n. This is a
function of the cosines of the angles between the vectors & 77,5000 5 7,4
The standard surface harmonics (26) are obtained when the vectors 7,
coincide with some of the axes of the coordinate system.
Van der Pol (1936) and Erdélyi (1937) have extended (26) to solutions
of the wave equation Au + k% u = 0 by showing that

%
(32) i"* (%) J, 4, (kr) P*(cos 6) ¢ %

_ g _8_+i d )- P(“)<—i d )sinkr,
oz, dx, " k ox,/ kr

where P,(,.) denotes the m-th derivative of the Legendre polynomial P,
where P? is defined by (17), J,H,% denotes the Bessel function of the
first kind and of order n + % andr, 6, ¢ x,, x,, x, are connected by

(27)0
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11.6. The case p =2, h{(n, p) = (n + 1)?
From now on let § be a vector with four components
(1) 9=0ys 925 ¥ar Va)s
and let
@ n=9/p» p=|8ll.
We introduce the vectors
8) u=(G~-its,~it-is,~t+s, 1+1ts)
4) v=@G=irg~ir=io,—r+0; 1+ 1)
for which we have
(5) (u, w=_(v, 0)=0, (u,0)=2(1+:0)(1+s0)

From (5) we find again as in sec, 11,5,1 that the (n + 1)? polynomials
H* l(9) defined by

© (9= ) (Z) AR OPLRY

k l=0

are harmonic polynomials of degree n.
By the same argument as in sec. 11,5,2 we find that
1=n 2
@ [ [ @) o,n"dQ)= (u, v)?,
Qln)

and therefore the surface harmonics
(8) Shp)=p~"H~ Yy)

form an orthogonal set of A(n, 2) = (n + 1)? linearly independent surface
harmonics where

n+

0 EAE' or 1#£1)
© [ SSkUpTH Vgraa-
27? n n
n+l (l)/(k)
k=Fk/ 1=1',

From (6) we also have

(10) §5 Up) = 1)RHIS "R n= 1),
In order to find explicit expressions for the S :. ! we introduce

(1) a=y, +iy,, b=y ,~iy,, c=-y,~iy,, d=y, ~iy,.
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Then
(12) p=||9]] = @d —be)%, (u,9) =a+bs+(c+ds)t,
and we obtain from (6) that

(13) Zi HY Y(5) s 1= (@ + bs)""* (¢ + ds)*,
=0

(14) an' o) ='2—17 I(OH(G +bs)" k(e +ds)k s ds,

i
Putting

{15) o=~ s(bc — ad)/bd,

(16) oy=ad/(ad - bc) = (y3 +yD/yZ + ¥ + 52 +42),

and expressing q, b, ¢, d in terms of the y,

. o d
( ) "(d/p)k'n-"(b/p)l kf(OH n-k(l_g)k(_a)'rw
o=g,

1)k .\ k+l=n -k 41
(18) -() ( m) ( ) d oK1 - g )t

where o is given by (16). Here the /~th derivative can be expressed by a
hypergeometric function (which is a Jacobi polynomial) and our final
result is [cf. 2,8(27), 2,1(2), (1) and (2))as follows,

Un>k+1

a7 HA ) =——

19) S& ) =p™m HE Yy)

-k . -
= (-1)* (nl ) (@, +in )" * g, +ig )
><2F‘(—l,n—l+1;n—k—l+1;1]4+1)')

(200 =(-1)* (n4+in1)"_"'l(n3 +i1]2)k~l
XP(Zn-‘-k-Z,k-Z)(n:+n:_n:_n$).
In<k+!
@1) Sk =p"Hb )
. k- -
=(-1)""< l>(1,4—i1,,)“""(1,3—i1,z)’ ‘
n—

X F(l~n, L+ 150l +k~n+1;592+7})
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(22) Sk =p™HE YY)

= (—1)"_1(174 - ir]')“l-" (n,~in,) 1=k

x P{Lthon. 17k (g2 4 g2 g2 = D),
where P',(:’"'B)denotes a Jacobi-polynomial (see Chap. 10).

If we introduce polar coordinates, the expressions (20), (22) for the
Sk ! became rather complicated and it is better to. use the functions
11.2(23) (in the special case p = 2) for this purpose. But for the trans-
formation of spherical harmonics the S: ! (with an even value of n) are
very useful; they also satisfy some relations which do not have an
analogue in the cases where p £ 2. These relations (which will be proved
in sec, 11,7) are the following ones (written in terms of the H” !
instead of the Sk b,

Let b, 3 be “Iwo vectors with four components each, and let i be a
vector with the components

(23) wy=y,2,+y,2,~y,2,+¥y,2
Wo=Ya 24+t Yy2,7 Y32, ¥y, 2
Wy=Y32,4 Y4237 Y1 %,%Y, %
We=Ya%a"Y1 %317 Y287 Y3 %50

If we introduce quaternions(see Birkhoff and MacLane, 1947, Chap. VIII,
5) this can be written in the form

(24) w, +iw, +jw, + kw,
=(z4 +iz, +jzs+kz') (y4 + i}’z+f)’3+k)’,),

where 1, i, j, k are the fundamental units. Then we have the addition
theorem:

2n
@5) Byl = 3 Hu®(3) H3 o)
The matrix
(26) [H7,19)] By D=0, 1, 000,2n

where £ denotes the rows and [ denotes the columns has the determinant
2 2 2yn(2nt1)

Q7 Gi+yi+yi+ynte™)

the characteristic roots

(28) Ar AY" ‘ m=0,1,.00,2n
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where A, , A, are the roots of the equation [cf. (4)]
a—A, b
e, d—A

and the trace

(29)

‘=0,

Zn

(30) 50 B ’(z;)— — Taner 6/p)

where TanH denotes the derivative of the Tchebichef-polynomial 11.1(20).

11.7. The transformation formula for spherical harmonics

Let = be a vector with three components and § be a vector with four
components. We use the notations

O lelly=n lI51l,=p &=8/r, n=19/p.

We shall now show that every orthogonal transformation O of  with the
determinant+1 can be uniquely described by a unit-vector 5. If detO=+1,
there exists a vector T, # O (the axis of rotation) such that

(2) @o =0§0'

The transformation Ois completely defined if £ and the angle of rotation
¢ are given, Since ~T, is also an axis of rotation we can choose &/ in
such a way that 0 < ¢ < 7. If ¢ is zero, every vector ¥ is an axis of
rotation, and in this case we put T = 0, We may assume therefore that

3) |lz,ll;=sink¢ 0<y<n
which means that the components x, |, x, ,, %, ; of T, are given by
x, ,=-cosa, sinky [=1,2,3,

where a; is the angle between the axis of rotation and the x, axis.
Now we define the four-dimensional unit-vector

(4) 7n=(cosa, sin %y, cosa, sin%y, cosa, sin’ ¢, cos’ y)
and put § = pn, Then the orthogonal matrix O can be written in the form
(5) 0=, I-A)y, I+ A) "= (1/p*)p* I- 2y, A + 24%)

1 yaryi-yi-vi,  2y,%,-2%,70  29,%5+2%,7,
(6) =7 | 277+ 2n,s yi+ryl-yi-y3, 2yzy3-2y,y4
29, Ys=2%, Y 2%,¥5+2%,Yar  YitYo-¥i-Y5
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where

10
" I={010
001

This is Cayley’s representation of the orthogonal group (see H. Weyl
(1939), p. 169ff). In the form (6) itisvalid without exceptions, i.e., even
if the determinant of ¥, I+ 4 vanishes,

With the notations (1), (2), @), (5), 11.5(18), 11.5(19), 11.6(8) we
have the

TRANSFORMATION FORMULA OF SPHERICAL HARMONICS

® skop- Y ot (PP A s sl

{==-n
This formula shows the effect of an orthogonal transformation O of the
three-dimensional space upon the surface harmonics on the sphere, and
it gives the coefficients of the linear transformation of S: in terms of
surface harmonics in four-dimensional space with Cayley’s parametersof
O as variables.

A formula equivalent to (8) has been proved by Adam Schmidt (1899)
(see also Hoenl, 1934), In an unpubhshed note left by Bateman, it is
shown that the coefficients of the S in (8) can be expressed by a hyper-
geometnc series. In its present form, (8) is due to Herglotz, whose proof
will be given here.

In order to prove (8), we show:

(i) We can map the harmonic polynomials H* (£) upon the product of
the powers of two variables w , w, by putting

-%, +1%

_ 2 2
(9) X =w ow wy, 2 =W,

1 27 xz+zx3=

because then 11,5(2) becomes

(10) (w:'—Zw' wzz+w:t2)" 2 H" ({C)t"'h“

mR==n

and therefore
( 2n - +
1D #5@ = D" Wi Wit
n+m

Although this implies a relation betweenx , x,, x_, namely,

(12) x2+x2+22=0,
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[cf. 11.5(25)], we see from (11) that the complete set H (z) of linearly
independent harmonic polynomials is mapped upon the set of linearly
independent products of powers of w, and w, .

(ii) If we define a, b, ¢, d by 11.6(11), then the linear substitution

(13) w,':aw1 +bw,, w2'=cw1 +dw,

leads to the substitution forw, w,, wf , wi given by
(14) w{ w,=(ad + be) w, w, + ac w? + bd w}

w:2=v2ab w, w, +a2wf+b2w§

2

w;2=v2cdw w, +czwf+d2w2

12

- [ I_‘ ! 12 —. ! » ! - 1 . !
and1fweputw1w2—x yw P =x, Hix W =—x) +ix] and assume

1%,
that
ad-be=y2+yi+yi+y2=1,
(14) is precisely the linear substitution
15) &' =0%, o =&, x;,%})

where O is given by (6). This is the representation of the ternary ortho-
gonal group by unitary binary substitutions (cf. Van der Waerden, 1932,
Chap. I1I, 16).

(iii) With the expressions in 11,6(11) for a, b, ¢, d and with s = w,/w
we obtain from 11,6(13)

2n
(16) l§° HEYg)w? tw] = (aw |+ bw )" (cw, + dw,)"

If ||5]| = 1 we obtain the transformation formula (8) from (11), (13), (14),
(15), (16) and (6).

The formulas 11.6(25) to 11.6(30) are consequences of the fact that
{(8) can be considered as a representation of the orthogonal group (cf.
H. Weyl, 1939, for the concepts used here). In particular, 11.6(30)
follows from the fact that the characteristic roots of an orthogonal matrix
O for which det O = 1 are completely determined by the angle of rotation,
sy by ¥,/p. Since the characteristic roots of a matrix U corresponding
to O in a representation of the orthogonal group depend only on the
characteristic roots of O, the trace of U (which is the negative sum of
the characteristic roots of U) must depend on y ,/p only. According to
lemma 1, the expression on the right-hand side of 11.6(30) and its
multiples are the only surface harmonics satisfying this condition.

Y. Sato (1950) expressed the transformation O as a product of three
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simple transformations, proved equation (8) for these transformations and
gave a table of the coefficients in (8) for n < 7.

11.8. The polynomials of Hermite - Kampé de Fériet

A different approach to the investigation of surface harmonics has been
made by Hermite, Didon and Kampé de Fériet. The far reaching and
important theory as developed by these authors has been fully presented
in the second part of the book by Appell and Kampé de Fériet(1926).
Rather than giving all the results obtained there in detail we shall con-
fine ourselves to a short indication of what can be found there and refer
the reader to the book itself for a full account of the theory.

Generalizing Maxwell’s construction of surface harmonics in the
three-dimensional space we define the following functions of the p + 2
components of a vector &,

1" " -
(1) W o vvuym (9= n ) - — (7P),
veeop Mttt Mt g tees gx, P
where r = ||2]| and where the non-negative integers m, ... , m  satisfy

(2) mi+m,+e0etm =n

The function on the left-hand side of (1) satisfies Laplace’s equation;
it is the coefficient of '
R m‘ mz mp
@) e 'a,? ... a
in the expansion of
2 2 . ...2 2 =%
@) lx,—a)?+eeevla —a) 4 +a 177

into a series of products of powersofa,, ..., a .

Then ?
n+
(5) Vm|’°“’mp (f,,;.;,fp)=r pwm" .“’mp(?)

is a surface harmonic of degree n which depends on the first p compon-
ents of &/r. As a generating function, we have

(6) (1- 2a, f,—-.-.-2ap §p+a‘2+-.-+a:)'xp

=2am' amPV (f s f)

1 4 m,,...,mp 1? * Sp
where the sum is to be taken over all non-negative integers m, ..., m .
Explicit expressions and expressions in terms of hypergeometric func-
tions of p variables for the functions V have been given by Appell-
Kampé de Fériet (1926).- The .connection with the ultraspherical poly-
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nomials is given by

m1 ‘m
() Za, e PV

oo Eirens £)

a +oenta &
=(af+...+a:)%anP [ 1 £ P L]

24 1 ad)?
(a|+. »+ap)

where the sum is taken over all non-negative integers m, ., m , satis-
fying (2)« From this, recurrence formulas can be obtained.

With the definition
® VS (£, £))
. IR R q9
= Vm‘ N ...,mq, 0, ...,0(61 ? et Eq’ see fq'l's"i)
where s, ¢ =1, 2, 3, v, it is found that the functions
2 Kl til (2l+1)
9) (1_61_..._52) e ”751;2 (rf,,...,fp)
1700008,
form a complete set of linearly independent surface harmonics of degree
n, if the non-negative integers , [, ..., [, satisfy
(10) Z+0, + o +.lp =n

and

(1) e?=(£,,, +if, ) (1= & = wor = £)7H
='(£p+| +i p+z) (£;+| + §;+z)-% .

The functions in (11) do not form an orthogonal set on the unit-sphere;
the integral
fo(l—ff—..._‘f;)l%:z’lii) y @11 40

.,lp Mgy eeesi,

vanishes only if either

Lo+ w lp;é-m1 e tm,
or all the differences !, ~ m, «sa , I ~m_ are odd numbers. For this
reason, a second set of functions U is introduced by means of the gener-

ating function

12 Tay'ena P GO (e, )
P

=[(a1 61 +...+an é‘n_1)2+(a‘2+;.u+a:)(]__612—..‘_62)]%1.
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These functions are swface harmonics in p + [ + 1 dimensional space,
and the U and V together form a biorthogonel system so that

(13) f f(]-'ff““ _62)%1-% Vl(l) ; U’(nl) o dQ =0
Q P 12 2% p ERARN P
unlessm, =1,, m, = l,..., mp=l + Thus the functions U can be used

to determine the coefficients in the expansion of a function on the
hypersphere, and in particular of a hypersurface-harmonic of given
degree, in terms of the functions (11),

For many other results about the functions U and V, in particular
for partial differential equations, expressions in terms of Lauricella’s
generalized hypergeometric series and expansion of arbitrary functions
in terms of the U and V compare Appell-Kampé de Fériet (1926). A gen-

eralization of the V,(n” , m_for values of ! which are not a positive
g3 s

integer, see A. Angelescu.
Generalizations of surface harmonics connected with operators other

than Laplace’s operator have been investigated by M. H. Protter.



262 SPECIAL FUNCTIONS

REFERENCES

Angelescu, Aurel, 1916: Sur les polynomes ge’ne’ra_lisant les polynomes de
Legendre et d’Hermite et sur le calcul approché des integrales multiples.
These no. 1579, Paris.

Appell, Paul and J. Kampé de Feriet, 1926: Fonctions hypergéoméiriques et
hyperspheriques, Polynomes d’Hermite, Gauthier-Villars.

Birkhoff, Garrett and Saunders MacLane, 1947: A survey of modern algebra, New
York.

Erdé€lyi, Arthur, 1937: Physica 4, 107-120.

Erdélyi, Arthur, 1938: Math, Ann. 115, 456-465.

Funk, Paul, 1916: Math. Ann. 77, 136-152.

Gegenbauer, Leopold, 1877: Akad, Wiss. Wien., S.-B. Ila, 75, 891-905.

Gegenbauer, Leopold, 1884: Denkschriften Akad, Wiss., Wien. Math. Naturw. Kl,
48, 293-316. :

Gegenbauer, Leopold, 1888: Akad, Wiss. Wien., Se¢B. Ila, 97, 259-270.

Gegenbauer, Leopold, 1890: Denkschriften Akad. Wiss. Wien. Math. Naturw, Kl.
57, 425-480.

Gegenbauer, Leopold, 1891: Akad, Wiss. Wien., S.-B. I1a, 100, 225-244.
Gegenbauer, Leopold, 1893: Akad. Wiss., Wien., S.-B. Ila, 102, 942-950.
Hecke, Erich, 1918: Math. Ann. 78, 398-404.

Hobson, E. W., 1931: The theory of spherical and ellipsoidal harmonics, Cam-
bridge.

Hoenl, H., 1934: Z. Physik 89, 244-253.
Kogbetliantz, Ervand, 1924: J. Math. Pures Appli., IX Ser., 3, 107-187.
Koschmieder, Lothar, 1929: Math, Ann. 101, 120-125.

Koschmieder, Lothar, 1931: Math, Ann. 104, 387-402.

Magnus, Wilhelm, 1949: Abh. Math, Sem. Univ. Hamburg 16, 77-94.

Maxwell, J. C., 1873, 1892: A treatise on electricity and magnetism, Vol. 1,
Chapter 9, Oxford, Third edition 1892.

Nielsen, Niels, 1911: Théorie des Fonctions Métasphériques, Gauthier-Villars.

Pt;lya, George and Burnett Meyer, 1950: C. R. Acad. Sci. Paris, 228, 28-30,
1083-1084.

Protter, M, H., 1949: Trans. Amer. Math. Soc. 63, 314-341.

Sato, Yasuo, 1950: Bull, Earthquake Res, Inst. Tokyo 28, 1-22, 175-217.
Schmidt, Adam, 1899: Z. Math. Phys. 44, 327-338.

Sommerfeld, Arnold, 1943: Math. Ann. 119, 1-20.

Van der Pol, Balthasar, 1936: Physica 3, 385-392.



SPHERICAL HARMONICS 263

REFERENCES

Van der Waerden, B. L., 1932: Die gruppentheoretische Methode in der Quanten-
mechanik, Berlin,

Weyl, Hermann, 1939: The classical groups, Princeton University Press, Princeton,
New Jersey.

Widder, D. V., 1947: Advanced calculus, New York.



CHAPTER XII
ORTHOGONAL POLYNOMIALS IN SEVERAL VARIABLES

12.1. Infroduction

Let R be a region inn-dimensional Euclidean space in which XyyeeesX,
are Cartesian coordinates, and let w(x) = w(x, , ..., x_) bea non-negative
weight function defined in R. For any two functions f(x,, ., x_) and
g, , s, x ) we put

0 GHa= fR I flx ., x)gx,s ey x,) Wiz, yeeeyx )dx send

and call this the scalar product of f and g: it is defined whenever f and g
are defined in R and the integral exists. Two functions are called orthog-
onal (with respect to the weight function w) if their scalar product van-
ishes,

Given a weight function and any sequence of linearly independent
functions 4, 1, «e for which all scalar products Wy, ) are defined,
the process of orthogonalization described in sec. 10,1 may be carried
out with respect to the scalar product (1), and leads to an orthogonal
system which is determined uniquely up to a constant factor in each
function, This is no longer true of a multiple sequence of functions.
Before proceeding to orthogonalize a multiple sequence, it is necessary
to rearrange it as a simple sequence. To every possible rearrangement
there corresponds an orthogonal system, and in general different rear-
rangements will lead to different orthogonal systems. Thus, amultiple
sequence does not, in general, determine an orthogonal system (essen-
tially) uniquely; moreover, in most cases, the rearrangement destroys
the symmetry of the multiple sequence, For these reasons it is often
preferable, in the case of a given multiple sequence

{'1[’,"'9 sy mn(x|9 ves 9 xn)}

of linearly independent functions, to construct two multiple sequences

264



12.2 ORTHOGONAL POLYNOMIALS IN SEVERAL VARIABLES 265

o,

mn(x|,...,xn)} and {xmp...,mu(x!""’xn)}

PERXLE]

which form a biorthogonal system, i.es, for which the integral

(¢m|, ees s mn’ Xm,', coe g m;)

vanishes except in case m, =m/, m,=m}, ... , m = m’. Biorthogonal
systems give a greater freedom of choice which may be utilized to pre-
serve symmetry.

These remarks are pertinent when dealing with orthogonal polynomials.
In order to orthogonalize the multiple sequence of monomials

m! m2 mn
(2) « X, X, MysMyy e ym =0,1, s,

1
it is necessary to order monomials in a simple sequence. Except in the
case of very special regions and weight functions, there is no (essen-
tially) unique system of orthogonal polynomials, and any system of
orthogonal polynomials obtained by an ordering of the monomials (2) is
necessarily unsymmetric in the ¥, v, x . The equal standing of the
variables may be preserved by adopting a biorthogonal system of poly-
nomials.

There does not seem to be an extensive general theory of orthogonal
polynomials in several variables. Special biorthogonal systems, corre-
sponding to the classical orthogonal polynomials in one variable, are
known, and have been investigated in some detail, The book by Appell
and Kampé de Fériet gives a comprehensive account, and an extensive
bibliography, of these investigations up to about 1925.

In the present chapter we shall give a brief account of the general
properties of orthogonal polynomials in two variables, and then discuss
in somewhat greater detail those systems of biorthogonal polynomials
in two and more variables which correspond to, and are generalizations
of, the classical systems of orthogonal polynomials in one variable.
There are many points of contact with Chapters 10 and 11,

12.2 General properties of orthogonal polynomials in two variablés

The general properties of orthogonal polynomials in two variables
have been investigated by Jackson (1937) who also considered orthogonal
polynomials in three, and in two complex, variables (Jackson, 1938,
1938a). In this section, and in sec. 12.3, we restrict ourselves to the
case of two (real) variables. The corresponding properties for orthogonal
polynomials of n variables will suggest themselves to the reader.
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Given a region R in the %, y-plane and a non-negative weight function
w(x, y), both fixed, we shall assume in the case of a bounded region
that w is integrable over R, and in the case of an unbounded region R
that all integrals

QO [ Jwlx, y)x™ ydx dy myn=0,1, w
R

converge. Orthogonal property, normalization, etc. will be understood to
refer to the scalar product

@2 =111y g, y)wlx, y)dx dy.
R
Since f and g will be polynomials, the integral in (2) certainly exists.
The monomials x* y™ will be ordered as follows:

(8) x™y™ is higher than x*y! if
eitherm+n>k+1
or m+n=%k+1 and m>k,

The ordered sequence of monomials is

4 L =z 9 xz’ XY, )’2, %3, xz)’v e e

The ordering (3) induces a partial ordering of the polynomials in x, ¥,
A polynomial ¢ (x, ¥) will be said to be higher than p (x, ¥) if the highest
monomial (with non-zero coefficient) in ¢ is higher than any monomial
(with non-zero coefficient) in p.

It is to be noted that the ordering (3) is arbitrary, and is not symmetric
in x and y. The orthogonal polynomials to be. described below will be
based on (3): in general, a different ordering will result in a different
system of orthogonal polynomials.

Applying the process of orthogonalization described in sec. 10.1 to
the sequence (4), the scalar product being determined by (2), we obtain
a sequence of orthonormal pelynomials which will be written as

(5) Q0 9102 911> D202 D210 To20 Tz T3q o

so that ¢ __ (x, ¥) is of degree n in x and y, and of degree m iny alone,
n=0,1,2, veusm=0, 1, eus , ns The orthonormal property is

©6) (@ ,sq4)= O 01

where 6 =0 ifr £s,and =1ifr = s;‘and q,. is higher than g, if
eithern >k orn=Fk and m > [.
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There are n + 1 polynomials of degree n in x and ¥, viz.,

qn09 ‘Z,” 9 s qm'

Any polynomial of degree n which is orthogonal to all polynomials of
lower degree is a linear combination of 9,00 *** 5 9, Note that such a
polynomial is not necessarily orthogonal to all lower polynomials [lower,
that is to say, in the sense defined in (3)].

With any real orthogonal constant matrix [c ij]’ where

D 2 =0, i k=0,1, wu,n,

j=o ¥

the polynomials
(8) p, % y)= J_Eocijq,,j(x, ¥) i=0,1,e,n

are orthogonal to each other, normalized, and orthogonal to all poly-
nomials of lower degree (but not to all lower pelynomials), Conversely,
any n + 1 mutually orthogonal, normalized polynomials which are orthog-
onal to all polynomials of lower degree, may be represented in the form
(8) where the ¢ ;; satisfy (7). Note that in p .(x, y), the subscript n
indicates the degree in x and y, but the subscript i does not indicate the
degree in y.
Suppose there is an affine tranformation

9 x’=ax+ By, y’'=yx+ 8y, ad-By=1
which maps R onto itself, and leaves the weight function invariant, For
each n,

Poo@5y P &Y e p, 5 y)

form a system of n + 1 mutually orthogonal and normalized polynomials
which are orthogonal to all polynomials of lower degree. Thus, the
p,{ax + By, yx + 8y) may be obtained by a real orthogonal trans-
formation of the qm.(x, y) and hence of the | JER v)e An affine trans-
formation (9) under which R and w are invariant induces, for each n,
an orthogonal transformation of p _, s s P, Different systems of p
(for the same R, w, n and a, B, y, ) undergo similar transformations; to
a group of affine transformations (9) which leave R and w invariant there
corresponds, foreach n, a group of orthogonal transformations. For further
details and for a reference to work by A. Sobezyk, see Jackson (1937).
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If R is a rectangle,
(10) a<x<b, c<y<d,
and w (x, ¥) = u (x) v (y), then we may take
(1) p,;(x, y)=p,_,(x) q,(y) i=0,1,u.n; n=0,1,

where ip | is the system of orthogonal polynomials associated with the
weight function u on the interval (a, b) and ig,_} the system of orthogonal
polynomials associated with the weight function v on the interval (c, d).

12.3. Further properties of orthogonal polynomials in two variables

Let {pm.(x, y)i be a system, of the form 12.2(8), of orthonormal poly-
nomials for the weight function w on the region R. For each i, p , (x, ¥)
is a polynomial of degree » in x and y, and any polynomial of degree n
may be expressed as a linear combination of the p (%, ), 0 <i <m,
0 < m < n. Several of the general properties of orthogonal polynomials
in one variable (see sec. 10,3) have their analogues in two variables,
although the corresponding formulas are less simple.

First, we shall prove the existence ofa recurrence relation, expressing
(@x + by) p_,(x, y) as a linear combination of polynomials of degree
n + 1, n, and n — 1. The proof is analogous to the proof of 10,3 (7). For
fixed n, i, the product

(ax + by) P (=, ¥)
is a polynomial of degree n + 1, and hence of the form

nti m

1) lax+by)p &, y)= X X , Vaj Paj (x, ¥),

m=0 j=

@) v, =[ [ (ax +by)p ;(x, Y) Py, (@ y) wlx, y) dx dy.
R

Since (ax + by) p, ; (x, ¥) is a polynomial of degree m + 1, and p ;is
orthogonal to all poiynomials of degree less than n, we see that

(3) }’,,,J-=0 m=0,1,...,n—2.

Thus, in (1), only terms corresponding to m = n — 1, n, n + 1 actually
occur.

It does not seem to be known whether the p ., that is to say the c
in 12.2(8), may be chosen so as to result in simple recurrence relations;
nor does it seem to be known under what conditions a system of poly-
nomials satisfying a recurrence relation of the kind described here, is a
system of orthogonal polynomials corresponding to a non-negative weight
function [compare the remark following 10,3 (9)].
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As 1n the case of one variable, the recurrence relation may be used to
derive a relation which corresponds to the Christoffel-Darboux formula.
With the p ;as in 12.2(8), we form

@ K (x,y,8v)= 3 fo Py (% ¥) poilu, v)

k=0 i=

(5) Ln(x9 Yy U, v) = Kn(x, Y Uy v) —Kn-i (x9 Y, Uy v)
= .%opni(x’ y)pni(u’ v)

(6) Mn(x, Ys Us Uy Ty s)=Ln+1 @, v, 1, S)Ln(x’ ¥s s )
=L (uv,1,5) L .. (,y,r,s)

Note that although the p ; are arbitrary to the extent of an orthogonal
transformation- for each i, the polynomials defined by (4) to (6) are
uniquely determined by the weight function w (¥, y) and the region R.
The ‘‘Christoffel-Darboux formula*’ is

() lau + bv) - (ax + by)1 K (x, ¥, u, v)

= [ [ (ar + bs) Mn(x, ¥, Uy Uy Ty SYw(r, s)drds.
R

For the proof see Jackson (1937).
For the minimum properties of orthogonal polynomials in two variables
see Grdbner (1948).

ORTHOGONAL POLYNOMIALS IN THE TRIANGLE

124, Appell’s polynomials
Let T be the triangle

) >0, y>0, x+y<l,

and

2 tlx)=x7"" y7"'(1-—-x—y)°‘_7 -’

the corresponding weight function. The weight function is integrable if
(3 Rey>0, Rey’>0, Rea>Rely+y")-1,

but many of the formal results are valid without this restriction,
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Appell (1881) introduced the polynomials
, s and
@ 3, (ayyizy)=01-x-9)7" " —e—e—
0, o,
an+n
R —
axﬂ @’l
which are analogous to Jacobi polynomials [cf. 10,8(10)]s Here, and
throughout this chapter,

) (@,=1 (a)r;=a(a+ Deela+n-1) n=1,2, ...
(@), =T (a+ v)/T (a)

For a detailed study of these polynomials, and for references to the
literature, see Appell and Kampé de Fériet (1926, Chapter VI and the
bibliography).

From equation (4) it is seen that 3 is a polynomial of degree m + n
in x and y. The expression of 5 in terms of Appell’s hypergeometric

‘series F, is given in 5,13 ().
Adopting the region (1) and the weight function (2) in the definition

of the scalar product 12,1(1), we see that

W, 67, @, 3,)

[x'y+.-1 y'y +n~1 (1-x _y)a.+m+n-’)'-‘)"]

an+n , .
ffp(x’ y) " ay,.[x“"‘" ¥ Qg —y)tRARTY T 1dxdy

and repeated integration by parts shows that 5m is orthogonal to all
polynomials of degree < m + n. In particular,

(6) (Bm’3k1)=0 m+ntk+l.
On the other hand, by repeated integrations by parts

Lt gen 3,

M, &I, ox"oy"

x [ [ &7+t yy’+n—1 (1—x—y)otatn=y -’ dx dy

(7) (Sms 5k1)=

T
PTG a+m+n+1l-y-y )( Jystn 9" 3,
T(a+2m+2n+1) dx” oy"

m+n=k+],
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and since this does not vanish, the polynomials J_ do not form an
orthogonal system. No orthogonal or biorthogonal system of polynomials
seems to be known for the weight function (2).

The system of partial differential equations satisfied by

(1-x-y)*7 '7'5m(a, Y Y5 % y)
may be derived by means of 5.13 (1), 5.11(8), 5.9(10). With the notations

® 0z dz 9%z 9%z d%z
=—, g=—, r=——m, s= , t
P= ! dy ox? dx dy dy?

it reads
9 x(1-2)r-xys +ly-Q2y+y'=a~n+1xlp
~(y+m)yg=(y+m)y+y’—a-m-n)z=0
y(l=y)t-xys +[y’-(y+ 2y =a~m+ 1) ylgq
-y+nlxp—(y'+n)y+y'—a-m=-n)z=0.
When a= y + y ', the weight function (2) simplifies to
(10) ¢t (x) =71 y7 ! Re 3, Re y "> 0.

For this weight function Appell (1882) considers- two systems of poly-
nomials

(D) F G, yixy)=3_G+yinyixy)
xl-‘yyl-'y' gotn
_(y). ), ox" "

[x'y +m—1 y'y'+n—l (1 —x __,y)n+n]

=F,Cm-n,y+m,y’+n,5 y%%,7)
(12) Em(y, y',x,y)=Fz(y+y'+m+n, ~m , =N, Y, }";x, ¥)

where F, is the series defined in 5.7(7). The partial differential equa-

tions satisfied by F . and E _ may be derived by means of 5,9(10). They

are

(13) x(L-x)r—-xys +[y-(y-n+Dxlp-(y+m) yq
+m+n)ly+m)z=0

y(l-yp)t-xys +[y'=(y"~m+ Dylqg-(y '+ n)xp
+m+n)y’+n)z=0
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(14) sl =x)r—xys +[y-(y+y’+n+ Dxlp
+myqg+m(y+y +m+n)z=0

yQ-y)t—xys +[y'~(y+y '+ m+ 1ylqg
+nxp+nly+y“+m+n)z=0
Adding each of these two pairs, it is seen that both F_ and E , satisfy
the partial differential equation
(15) x(L—x)r=2xys +yQ -yt +[y-Gy+y '+ Lxlp
+ly’'-(y+y’+Dylg+(m+n)ly +y’+m+n)z =0,
and this partial differential equation may be used to prove that
(16) f I x77! y” ! Fm(}” Y5 % 9) Ekl(y’ v %, y)dx dy
T

vanishes except when m = & and n = [, This shows that the two systems
of polynomials (11) and (12) form a biorthogonal system for the region
(1) and the weight function (10).

The formula
D [ L7 Y™ F_ G, v% %, Y E, lys v% 2 y) dx dy
T
8,0, minl(m+n)! T'(y) T'G)

y+y'+2m+2n (), &), Tly+y +m+n)

is proved in Appell and Kampé de Fériet (1926, p. 110, 111). It may be
used to compute coefficients in the expansion of an arbitrary function in
a series of the F_ , or in a series of the E . Two examples of such
expansions are

18 Foboysmy= ),

k+l=nmtn

E+D(y+m), (y +n),
E. .G,y )
k!l!(}’+y'+k+l)k+l ki Y Y 1 %Y

(19) (1-x -1 _ T 3 =1)**"(y+ y’+ 2m + 2n)

R=0 pn=0

A-N, ., &I, TW T(y+y’+m+n)

E (,y45%,9)
mintm+a)! Ty +y '+ A+m+n) mYr V%Y
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(Appell and Kampé de Fériet, 1926, p. 112, 113). Tn (18) summation is
extended over all non-negative integers £ and [ for which &k + [ = m + n.
For the case y = y'= 1, a = 2, when the weight function is constant,

see Grébner (1948, secs 5).

ORTHOGONAL POLYNOMIALS IN CIRCLE AND SPHERE

12.5. The polynomials V

In this section and in the following section we shall use notations
similar to those of Chapter XI.

(1) @=(x1a""xn‘)

will be a vector, with (real) components %,y ewe, % _in n-dimensional
(real) Euclidean space, and

@ Nloll=r= G2+ o 429"

will be the length of this vector. With two vectors
(3) a= (aI y voe s an), T= (x1 s voe s xn)

we associate the scalar product

4 (@, d=ax +wta x_

and the angle 6, where

(a, ©)

all llell

[The scalar product (4) of two vectors is to be distingnished from the
scalar product of two functions occuwrring in (17), 12.6(4), and similar
relations.] The unit sphere, |||| < 1, in our space will be denoted by S,
the element of volume by dx, so that

f f(@) dx
S

cos 0=

will be written for

[ J Foysweyx)de, o dx s

2+t axic
1 n—=
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We shall consider orthogonal polynomials in the region S with the
weight function

5) (L—r?)%e™% o (1~ x2 - oo - x2)%s 7%,

For n = 2, the region is a circle in the plane, for n = 3, a sphere in three-
dimensional space, and for » > 3, a hypersphere.
Polynomials

6 Vi)=VS

12 My ...,mn(xi’ xz’ e xn)

will be defined by the generating function

(@ [1-2(a, o) + ||af |FT ke %

m m
1
=3 a tiwa " VS @y, 2)

My e m
In this sum, and in all similar sums, summation will be understood to
take place over all non-negative integers m , «us , m o Clearly, V? (2) is
a polynomial of degree m, in %,, being an even or odd polynomial in x,
according as m, is even or odd; and

(8 m=m,+ee+m,

is the degree of this polynomial.
For n = 1, a comparison of (7) and 10.9(29) shows that

© V:i)=C¥ @) n=1.

For n = 2 and s =0, 2, the polynomials (6) were introduced by Hermite
(1865, 1865 a), for any n by Didon (1868). There is a detailed presentation
of these polynomials and of related matters in Part Two of the book by
Appell and Kampé de Fériet (1926) where there is also an extensive
bibliography. Additional references are listed at the end of this chapter
under Angelescu, Appell, Brinkman and Zernike, Caccioppoli, Chen,
Dinghas, Erdélyi, Koschmieder, Orloff, and Schmeidler,

The expansion in powers of @, «w. , &, of the generating function
(7), by the multinomial theorem, leads atonce tothe explicit representatioh

n+s-1 2™ x x
(10) V¢ (x,, ey X)) = -
1?7 , .o
x F

il _my 1-m, 1-m,
B 2 g *°v 2 > 3 o0y 2 E]

2
n+s—~3 1 1
— M —— —x—f’."’_z-

2
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where
(I1) Fp (‘,‘1’ ey @ Byr v s Bo V3 Zpp0ees2,)

n 1 n 1 mn
z see Z
1 n

2 @) = (@) B = B

Tees
m,: mn!(y)m1+---+mn

is one of Lauricella’s hypergeometric series of n variables (Appell and
Kampé de Fériet, 1926, Chapter VII). There are also representations of
V? in hypergeometric series of ascending (rather than descending) powers
of the x,, these representations being different according to the parities

of the m, [see also 10.9(21) and 10.9(22)].
If one puts a, = tb, in (7), and compares coefficients of " on both

sides, the relation

. 1, Yo (b’ @)
(12) [|B]|" CHn*he* [—]
{1%]]

= S, bl b m S (x x_)
m_+eet+tm =m ! n Mgy eesym, 171 T
1 n

is obtained.

It may be verified from the explicit formula that the polynomial de-
fined by (10) satisfies the following (hypergeometric) system of partial
differential equations

(13) 0 -4 ' n av
-X . JES—
oz, c?x]. j (m+n+s—1)V+kZ1 x, o,

+(mj+1) '[(m+n+s—1)V+Z x, v :, =0

k=1 axk

i=1 .., n,

where m is the degree given by (8)s Adding these n equations, we see
that all polynomials of degree m satisfy the partial differential equation

(14) m+n)Ym+s -1V

& d av av
+ — < ——x_ | (s=-DV + 2 x, =0.
9% ; axj J _ 9x,

j=1
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There is a remarkable symbolic representation of our polynomials,
2% (B4 + %s - %)

m leeem |
1° n’

(15) Vi(z)=

x F(-n/2-5/2+3/2+m; A2/4)(x7 T x:")
where F, is a generalized hypergeometric series [see 4,1(1)] and

9? 92
(16) A=——F + e +—
ax1 axn

is Laplace’s operators This representation is derived by means of the
connection between the polynomials V ° and hyperspherical harmonics
(see sec. 11,8)s The same connection may be used to show that the
integral

(17) fs(l—»ﬂ)%"% VE(z) VEA(x)dx

vanishes if m # m’, and also if m = m * and some of the differences m i—m;
are odd numbers, Since the integral does not vanish when m = m “and all
differences m, —m } are even numbers, the ¥* ‘do not form an orthogonal
system of polynomials,

The formula corresponding to Rodrigues’ formula [equation 10,9(11)]
is'

(18) m, e m, 1 (1 —-rz)%(")'"”")an (CHNED

1? ...,mn
am
= m 2y K(n+s=~1)
_(—1) ‘m‘—mn(l—l‘) nts=1 .
ay' ree ay"
where, on the right-hand side,
(19) y, =, (1 -r*)7% i=1 e n

are the independent variables, and
(20) 1~r%=(1+[l5]|H™"

The formula may be derived from the generating function (7) by the sub-
stitution (19) and upon replacing a ;by a ,(1 - r2)%,
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The generating function is alsothe source ofthe integral representation

(21) n%"nz‘!--- m,! IN'ys) V;(%) =i"(n+s - l)n F'(%n +Y%s)

< I R R e TR {CORY) oty 23

For other integrals see Dinghas (1950).
Recurrence relations, differentiation formulas, and similar relations
also follow from the generating function and are recorded in Appell and

Kampé de Fériet (1926, secs LXXVI)
12.6. Tne polynomials U
A second system of polynomials,

(1) U(e)= Uf,," I C PN

will be defined by the generating function
@ ila, ® 112+ [|a]|? Q- [e[)?h %

=2 a Veegn Us (x x_)
= 1 n m"...’mn "o-o’ no

For n = 1, we have
3) U:(x)=C§‘(x) n=1

For n = 2, s = 1, 2, these polynomials were introduced by Hermite; for
any n see the literature quoted in sec, 12,5,

The most important property of these polynomials is the biorthogonal
property which connects them with the V' ?, The integral

4) js(l—rZ)%"% V() Usle) dx

vanishes, except when m, =1, ..., m, = ln; and
(5) [ A-rH% V(@) U (=) du =}
27%n I'Ms+1) (s)

- 2
2m+n+s-1 DTH%n+%s ~-4%) m leam !

This biorthogonal property may be proved from the generating functions
(see the corresponding proof for Hermite polynomials in sec. 12,9).
Conversely, Kampé de Fériet (1915) postulated the biorthogonal property
and deduced the generating function from it.
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The theory of the polynomials U resembles that of the polynomials ¥
and we shall simply list some of the relevant formulas.
Explicit representation

m m
(S)m xl ! u-p,xn

s =
(6) Um,,...,mn(xl""’xn) P _
< F m, m, 1_’"1 1 m, s+1-
B 2,..., 2 'y 2 9 ese 9 2 ’ 2 ’

with corresponding series in ascending powers of x,, «we, % .

, ) (%, ©) )
b 2 B2 (1 =r2)1%e ¥4
@ 18, @+ [[BII* A =rT™ ([(b, D%+ [[8]]2 @ - ¥

- 3 bV b m S ( )
= R A e TR A

m‘+---+mn=m 12 % n n

tions
ol
+mj(1—-rz) (mU— S %, —)
i %,

a alu
8 1-r?3 [a—+x ml - E
aU 3 aU
=1

The polynomial U® satisfies the system of partial differential equa-
axj x; it
j= 1, ees 9 Ie

All polynomials of degree m satisfy the partial differential equation

aU
8x

9 m+n)m+s-1U+ 2

J=1




12.6 ORTHOGONAL POLYNOMIALS IN SEVERAL VARIABLES 279

which is obtained by adding the n equations (8), and is identical with
the corresponding equation 12,5(14) for the V.
The symbolic representation may be written in the form

(s),

‘!.um

(10) Us (2) = = oF as + 5 -4 (1 -r?) I (LY
m n*

where the k-th power of (1 ~r2) A2 is to be taken as (1 —2)* A%, There
is also a relation corresponding to 12,5(17) but it is of little importance,

The analogue of Rodrigues’ formula is simpler in this case than in
the case of V.2 .

) 1

s+1 .
F2Yhs—%
(11) 2m (—-—2—> milu. mn!(].'-rz) s U;gn s e ,.mn(xl,... ,xn)
m

=(=1)" (s)m __EL (1 —r2)ym s 4%

m m
dx Vi dx, "

Koschmieder (1925) obtained expressions for the U? in terms of partial
derivatives with respect to 3.
The integral representation corresponding to 12,5(21) is

(12) 4% m Lo m, 1T s ~ % + %) U, (3)
=(s), T s + %) _& (1 = p2)¥s Hn =%

xlz, i, (L= (|3l 95T o La, i, (= (]| 241" d

The two systems of polynomials, U? and V¢ are connected: the
connection may be expressed in two equivalent forms.

: Yn 178 z
(13) 2-2m —'n—s)n (r2-1)% V. [W]

_onmn n+s—1 2=-2m ~n=~s
-2 ( 2 )ﬂl U. (@)
n e s—1 2_1)¥4= pjs T

=(s), V27270 (2),
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The biorthogonal property has already been stated in (4) and (5)« Another
connection, closely related to the biorthogonal property, is given by the
circumstance that the system of partial differential equations satisfied by

R:(x)=Q1 2k Ut (2),

which can be derived from (8) and is

] JR < JdR
(1)67 a—xj+x[(m+s—1)R 2 x'k-a_x—k.]}

k=1

' g dR
mj[(m+s—'1)R— z xka—} =0 7i=1,2, we,n,
x

k=1 k

is easily seen to be adjoint to the system 12.5(18) of partial differential
equation satisfied by V' ().

12.7. Expansion problems and further investigations

The biorthogonal property of the U and ¥ suggests the expansion of
an “‘arbitrary’’ function f(Z) in either of the two series

(1) Sa? V()

2 Zb:V:(e)h
From 12,6(4) and (5) one obtains the expressions
@3) htas =fs A =r2) % f(2) VE (2) dx

@) h:b® =_fs(1—r2)%8'% @) U (%) dx.

A general discussion of such expansions is contained in the book by
Appell and Kamp€' de Fériet (1926, Part I, Chapter V), More precise
results were obtained by later writers,

In studying the expansion problem it is usually assumed that s is a
positive integer in (1) and (2). Koschmieder calls (1) and (2) Appell
series if s > 2, Didon series if s = 1, and shows that an Appell series
in n variables may be reduced to a Didon series in n + s ~ 1 variables,
Moreover, it is usual to rearrange the multiple series (1) and (2) as a
simple series, by grouping together all the terms of equal degree. Thus,
(1) is interpreted as
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S S
) MEO [m,+--.z+mn=m by s, U”‘i’ “"”‘n(x' p eeen s %))

and there is a similar interpretation of (2)s The rearranged series may
then be related to the Laplace expansion of a function on the surface
of the unit hypersphere in n + s + 1 dimensions, and this connection has
often been used.

Convergence of the series (1) and (2), rearranged as described above,
has been investigated for » = 2, s = 1 by Caccioppoli (1932), and by
Koschmieder (1933). Caccioppoli summed the series and discussed its
convergence by means of a singular integral, proving convergence for
continuously differentiable functions. Koschmieder used the theory of
integral equations and proved absolute convergence for twice continu-
ously differentiable functions.

The case of general n and (positive integer) s was investigatedby
Koschmieder (1934). Adopting the interpretation (5) for (1), and a corre-
sponding interpretation of (2), Koschmieder showed that these series
are equiconvergent with certain expansions in Gegenbauer polynomials.
Koschmieder (1934a) also obtained an equiconvergence theorem for
Laplace’s expansion, with a Fourier series as a comparison series.

The Cesaro summability of Laplace’ series has been discussed by
Chen (1928) and Koschmieder (1929). The results have been applied to
Appell’s series by Koschmieder (1931).

The Appell series of a function f(z) which is integrable in S, is
(C, 8) summable to f(x) almost everyhwere in S, and certainly on the
Lebesgue set of f in S, when

6) d>2n+s-1.

Moreover, the Appell series is (C, 8) summable also for
(7) %@+s-1)<d<n+s-1

at all those points Y for which

[lo— | %0+ | ()

is an integrable function of £ in S.
The following examples of expansions are taken from Appell and

Kamp€ de Fériet (1926, sections LXXXVIII and XCI).
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1™ A, CAygyim

8) (a" )k =
@t Can+ Yoo + By

xam' voe am" “a”k-m VS (x)
1 n m &

where k is a positive integer, and summation is over all those values of
My sesy m_ for which &£ —m is a positive even integer;

(9) explila, D= 2% AT (hn + Y5 - %)
X 2 ™ (m+£> a':" amn “a”-m-‘/zn—‘/zs#/z
2 n

x Jm+1/zn+’/zs—‘/z(HaH) V;z (P) ‘

(10) T'(s + %) exp(a, ) Jl/zs—l/z[llaH (1-r2)]

Ye_l 1 m m
Y~ AT LAY

(),

In the last two expansions, summation is over all non-negative LRI

The case n = 2 has been investigated in greater detail [see Appell
and Kampe' de Fériet (1926, Part T, Chapter VII), and the papers quoted
in sections 12,5-12.7 of the present chapter]. An alternative approach
to orthogonal polynomials in spherical regions was suggested by Brink-
man and Zernike (1935)and by Grobner (1948). Polynomials connected with
the partial differential equation A% = 0 in spherical regions were
studied by Giulotto (1939) who obtained a biorthogonal system for this
case, Devisme (1932) introduced polynomials defined bythe generating
functions

(1) (1 ~-3ax+3a%y-a®)7% [1-3ax+3(a?-b)y—-a3"
which arise in the study of the partial differential equation

d3% 9% u 3%u
(12) A3u= + + -3 =0
dx3  9y3 dz3 dx dy dz

A generalization of the polynomials U7, V* may be defined by means
of a fixed quadratic form, ¢ (%), its reciprocal form ¢(x), and the bilinear
form ¢ (i, 9) [see 12,8(6) to (8)]. The generating functions are
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(19) Hg(a, D=1+ @D [1 - @B H=3a" ' v, "US (2)

(14) [1 - 2(0., @) + l/1((:,_)]'%71,—1/28 +4 =3 ar:l 1... a:n U:-,, (@)'

These polynomials have been introduced by Hermite and were studied
by Angelescu (1916). If ¢(¥) = (g, ©) = ¥(2), the polynomials defined
by (13) and (14) are U, and V] respectively.

HERMITE POLYNOMIALS OF SEVERAL VARIABLES

12.8. Definition of the Hermite polynomials

As in the preceding sections,
(D) ¢ =(,.,x)
will be a (real) vector, -
@ o]l =2+ +xD%
the length of z, and
B) (6, D=a,x, +ee+a x,

the scalar product of two such vectors. C will be afixed positive definite
symmetric square matrix of real elements, i.e.,

(4) C=[cij] ihi=1 e ,n
€= "Ci real, i,jél , Cy%i%; >0 T£0,

The reciprocal matrix will be denoted by C™': its elements are yi/A,
where

(5) A=detcij ' isj=L1 euyn

is the determinant of C, and y . is the cofactor of ¢,;in A. With C we
associate the positive definite quadratic form

© ¢@)=(CzD=(sC= ¥ c x,x

i,j=1

and the symmetric bilinear form
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@ ¢aP=CaN=(wCN= 3 ¢ x,y.

i, J= 1
We also have the reciprocal form
(8) ¢(?)=¢(C-' @)=(C-'@’ @)=(@s C-'@)s

which is also a positive definite quadratic form, and the reciprocal
symmetric bilinear form

(9) l/’(@’ b) = (C-‘ & b) ='(@s c-! b)s

These forms are connected by a number of relations.,

(10) ¢+ 9)=¢(2)+2¢(z, 9+ H(Y)
YT+ 9)=v (@ +2¢(z )+ y(b)
d (@) =y(C0, ¢Y()=0¢(C ')

(11) ¢(2+C7"9) = ¢(D) +2(5 9 + ¥ (9
(12) ¢l(z+C9=¢ (D) +2(5 9) + 4(H).

Lastly we mention the integral formula
(18) [ exp[-%a(2)+ (a, D)l dx = (27)%" A™% exp[% ¢ (a)]

where integration is over the whole space, dx stands for dx, + dx ,
and @ is a constant vector. The formula may be proved by using (11)
and then transforming the quadratic form ¢(& + C~'a) into a sum of
squares.

The notations introduced above will be used throughout this section

and the following sections.,
Hermite polynomials of several variables are a biorthogonal system
of polynomials associated with the weight function

(14) w(z)= A% (27)7%" exp[-% ¢ (D)),

the region being the entire n-dimensional space. The relation

(15) J w(x) dx =1

is a consequence of (13), These polynomials are clearly n-dimensional
generalizations of the orthogonal polynomials defined by 10,13 (1) They
were introduced by Hermite (1864) and since then studied by many authors.
Appell and Kampé de Fériet (1926, Part III) give a detailed presentation
of the theory, as of 1926, and a bibliography. Additional references are
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listed at the end of this chapter under Caccioppoli, Erdélyi, Feldheim,
Grad, Koschmieder, Mazza, Picone, Thijssen, and Tortrat., Extensions
to infinite-dimensional spaces are due to Cameron and Martin (1947),
and Friedrichs (1951, see in particular ps 212 ff)«

Two systems of polynomials,

16) 6o @) =6y . p Gtpseee s 2y)

Hm(@)=Hm1, veey (xl > % xn)

will be defined by means of the generating functions

(17) exp(C a, 2) - % ()] = exp B¢ (2) - Yo p (x ~ a)]

m

ml n
a a

- E‘ L2 (o).
m,‘. m, !

(18) expl(a, © =%y (a)] = exp[% p(D) - Y% p(x-C™' a)]

m’ mn
a a

B z 7 o Cn
m,. mn.

which are extensions to several dimensions of the generating function
10,13 (19)s In all sums m |, «s, m  run through all non-negative integers,
unless other regions of summation are explicitly stated. The polynomials
defined by (17) and (18) are of degree m ,in x ,, and their (total) degree

1s

(19) m=m +eet+m .

In these definitions we followed Appell and Kampe' de Fériet (1926,
secs CXVIIN). For n = 1 we have the Hermite polynomials defined in
sec, 10,13 if we take ¢,, = 2,

m m
If the coefficients of @' ++» a ™ in the generating functions (17) and

(18) are computed by means of Taylor’s theorem, one obtains

am
(20) H,, (£)=(1)" exp[¥ ¢ (0)] ————— exp[-Y ¢ ()]

ax1 LI axn n

D) 65(C7' 9 = 1 expBhy (9] ———im e =53 (@)

RS P
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corresponding to 10,13 (7). Koschmieder (1925) has given an alternative
expression in terms of partial derivatives for certain Hermite polynomials
of two variables. Either (17) and (18) or (20) and (21) may be regarded as
definitions of Hermite polynomials in several variables,

An-alternative notation, in case of a special quadratic form ¢ (z),
has been proposed by H. Grad (1949).

12.9. Basic properties of Hermite polynomials
The most important feature of Hermite polynomials is the biorthogonal
property
V) Jw@6 B (Ddx=8 , 8, mlem])
11 n'n

where w(Z) is the weight function defined by 12.8(14), 8, is defined

in sec, 12,2, and
=1+ et l .

To prove the biorthogonal property, we remark that by 12.8(14), (17)
(18), the integral on the left-hand side of (1) is the coefficient of

I ! m
1 1
@) e, ann bl bnn
I 1 1) m, ! m_!
n 1° n

in
(3) 2m7Er AT [ exp[-% () + (g ©) =% y(a) + (C D, r)- %p(D)]dx.
By 12.8(13), the expression (3) is equal to

4) explhyla+ CH) -%y(a)-Y%ea (D))
and by 12.8(12) this is

@) (ab )"
) explla 5)]=2 "”1 ;’ AR
x

m !
n

The coefficient of (2) in the series (5) gives the right-hand side of (1).
A bilinear generating function, corresponding to Mehler’s formula
10.13(22), may be obtained in a similar manner, computing the integral
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©) ", ..,tn)—' ff exp}[— ‘ii(u:‘;+v?/tj+ 4% ()
j=

-Yple-u—io)+ %p(h) ~ % ph~—u+ iv)l du dv

for sufficiently small positive ¢,, 0 , ¢ in two different ways, once
by using 12,8(13), and another time by first using 12,8(17) and (18),
and then integrating directly, Putting

@ ¢, - RRORRIC

b (0= 2 x3/t,m 6,

noting that for sufficiently small positive ¢, «. , ¢, the quadratic
forms ¢ ,(x), k = 1, 2, are positive definite, denoting the determinant
of ¢, by A,, and the reciprocal quadratic form by ¢, (%), the result is

(8) AT

m !

(e 2 (A, A exp [ (Cot CH)-% (Co-CO)L

In this form the result was obtained by Erd€lyi (1938a) together with
the corresponding result for the generating function of H, (¥) G, (9),
thus extending results by Koschmieder (1938, 1938 a) who gave explicit
formulas for n = 2, The bilinear generating function was also discussed
by Tortrat (1948, 1948a).

The system of partial differential equations satisfied by H (%)
may also be derived from the generating function. The function on the
left-hand side of 12,8(17) satisfies the system of partial differential
equations

n

) oF oF
2 Vi 9x ox ;9% 2‘ i %k E Vi 5x 9% —Aa, 3a. =0

j=1 k= j=1

i=].,2,".,n
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where A is the determinant of the ¢ . and y . is the cofactor of ¢ ., in A,
Expanding in powers of a;, we obtain the following system of partial
differential equations for #, (%)

% 9%H 3 oH
9 y - . -m.AH=0
() E yl] [axi(;xj kZ|Clkxk axj J ml

j=1

i=]., nnu,nu

The partial differential equation

- oH
10 2 2 Vi 9% 9% dx, 8x -4 2 i dx

i= 1 j=1 k=1 k

~mAH =0

is obtained by adding the n equations (9) and is common to all poly-
nomials of the same degree m.
The proof of the system of partial differential equations

1) -A 9¢ AG=0 ;
( E‘Y‘J . ax xiaxi +m AG= i=1, w,n
j=

(12) 2 Z . -A i, %, jfk +mAG =0

'1—-1 j=1 k=

satisfied by Gm (®) is similar. -

Recurrence and differentiation formulas may also be obtained from
the generating functions. For n = 2 they are recorded in Appell and
Kampé de Fériet (1926, sec. CXXID).

There are many connections between Hermite polynomials in one and
those in several variables. Replacing a by ta in 12,8(17) and (18), and
expanding in powers of ¢ by 10,13 (19) we obtain

ml mn
a1 an
(13) 2 mfl - mn! Hmp-u,mn(x”.“’xn)

m +teerdm =m
! n

_Big@rim - (g(a,0)
™\ [2g(a]F

m!
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(14) Z 0 = - i

M +evtm =m | n'
n

_Baupr (a0
Y m\ [2y(a)]% / °

For other connections between Hermite polynomials of one and those of
several variables see the book by Appell and Kampe de Fériet, and the
papers by Feldheim, listed atthe end of this chapter, Note that Feldheim’s
notation differs from our notation.

An addition theorem for Hermite polynomials in two variables was
obtained by Koschmieder (1930a).

S CHPR

12.10. Further investigations

By a comparison of the generating functions it is easy to see that
Hermite polynomials of several variables are limiting cases of the poly-
nomials defined by 12,7(13) and (14).

W tm s (S

m\ g% 1es
s> 00 \S m,. «m

H, @)

n

; 1
@  lim s7#" U;(f% ) -— 7 6,0,

S>> 00 m Leeam !
1 n

For the further investigation of Hermite polynomials one may use the
multi-dimensional Gauss transform

) 1
(3) Q; [F(9)l =A% 2ru)™%* [ F(b) exp [-—E ¢ (r - i;):ldy

[see equations 10.13(30), (31)]. The first of the formulas

@GR, Q9l=1-2*a)* H [(TA——@W]

6 Gyl o= fl (£ e x)

= j=1

(6) Qé[kgl ( ,-E, ey i=i"" H ()
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may be proved from the generating function 12.8(17), and is an integral
equation satisfied by Hermite polynomials; the second is a limiting
case of the first; and the third, which is also a limiting case (A » =) of

the first, is an integral representation of Hermite polynomials. The
corresponding formulas for G are

, AT
u _ 22, \%n
@ GLI6, (o] =(1-2A%) Gm[u_-xzw)z]
® Gylo, o= fi

© Gyl 0 yi=i"¢ Go.
L

Feldheim (1942) used a more general definition

: A% (2 7)7%n
10) Gy [F(9]=
(10) Gy [F(9)] G )P
1 9 X~y X-Y,
x /F(b)exp —Eidz:‘cij u? Ju?l>dy

and investigated the behavior of Hermite polynomials under the functional
transformation defired by (10).

The biorthogonal property 12,9 (1) shows that an “‘arbitrary®’ function
f(z) may be expanded in series of Hlermite polynomials in either of the
two forms

(1) Ta_ G, @

(12) $b_H_ (D)

where

(13) mlewm ta = [w(@ fX)E_(2)dx.

(14) mleem ! b, = fw(@) f© G (Y dx.

The convergence of such expansions was discussed by Thijssen (1926,
1927) for the case n = 2 and functions f{(Z) which vanish identically
outside a bounded region, and satisfy certain continuity requirements in
that region. The problem of approximations in mean square (see sec,
10.2) was discussed by Caccioppoli (1932a) for functions of the class
L2 | that is to say for functions for which the integral
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S If(D|? exp[-% ¢ ()] dx

is convergents The approximation to arbitrary functions in unbounded

regions has also been discussed by Picone (1935),

Mazza (1940) has also discussed Hermite polynomials and constructed
an orthogonal system. Devisme (1932) defined systems of polynomials
which are, in some measure, analogous to Hermite polynomials. The

generating functions are
(15) exp(ax ~a’y +a%/3), explax —-(a®-5)y+a?/3L

The polynomials generated by (15) are related to certain partial differential
equations involving the differential operator 12,7(12).
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CHAPTER XIII
ELLIPTIC FUNCTIONS AND INTEGRALS

13.1. Introduction

Elliptic integrals were encountered by John Wallis in 1655-59. They
were known to KEuler who, in 1753, obtained their addition theorems,
Legendre, whose work on elliptic integrals stretches over several dec-
ades, introduced the normal forms which are still in use. Jacobi, in 1828,
introduced elliptic functions obtained as inversions of (indefinite) elliptic
integrals; he also studied systematically theta functions. Abel obtained
some of Jacobi’s results independently, and he also studied what is now
called hyperelliptic and abelian integrals. Weierstrass showed how the
theory of elliptic functions fits in with the theory of functions of a com-
plex variable, and developed the general theory of doubly periodic func-
tions,

The history of elliptic functions is given in the article by R, Fricke in
the Encyklopadie (1913). This article also contains a list of references
up to 1913. The more important books on elliptic functions which appeared
since 1913 are listed at the end of this chapter; for the older literature
the reader may be referred to Fricke’s article,

The present chapter consists of two parts, one on elliptic integrals,
and the other on elliptic functions. In the second part, both Jacobian and
Weierstrassian functions are treated, the former on account of their
usefulness in connection with numerical work, the latter on account of
the symmetry and simplicity of the basic relations, It may be mentioned
here that Neville (1944) developed a systematic notation for Jacobian
elliptic functions which simplifies the formulas to a considerable extent:
in the present chapter we shall adhere to the traditional notation for the
sole reason that it is still generally used. Theta functions are also
included in the second part, and there is also a brief section on elliptic
modular functions. For further information on modular functions see

Chapter XIV..
294
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PARTONE: ELLIPTIC INTEGRALS

13.2. Elliptic integrals

The simplest (indefinite) integrals are integrals of a rational function.
The néxt simplest type consists of integrals of the form

(1) I= IR(x: Y)_dx,

in which R is a rational function of its two variables, and ¥ is an alge-
braic function of x, that is to say, is given by an equation of the form

where P is a polynomial of degree n, say, in its two variables, Such
integrals are called abelian integrals.

One of the striking features of the theory of abelian integrals is the
fact that the behavior of the integral (1) depends not so much on the
nature of R as on the nature of P, or rather on the nature of the algebraic
curve C_ in the x,y-plane represented by equation (2). For the theory
of abelian integrals, algebraic curves of degree n are classified according
to their genus (or deficiency),

n-1
(3) P=(2 >-ds

-1
that is the difference between the largest possible number (n ’ ) of

double points of a non-degenerate curve of degree n, and the actual
number of double points, d, of the curve in question, The genus is a
birational invariant, that is, it remains unchanged if the curve is sub-
jected to a birational transformation

(4) x=R|(§! 7]')’ y=R2(§’ 77)’

where the rational functions R , and R , are such that two further rational
functions R , R, exist so that

(5) §=R3(x’ y)a 7’=R4(xsy)-

Curves of genus zero are unicursal (or rational) curves. It is known
that for such curves x and ¥ can be expressed as rational functions of a
parameter. Since rational functions are single-valued, this parameter is
a uniformizing variable for the curve, On introduction of this parameter as
a new variable of integration in (1), the integrand is a rational function
of the parameter, and the integral may be evaluated in terms of elementary
functions (of the parameter), The parameter itself is an algebraic function
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of x, and hence abelian integrals of genus zero may be expressed in terms
of elementary and algebraic functions.

For algebraic curves of genus unity, Clebsch (1865) proved that x and
y can be expressed as rational functions of two parameters £ and 7 where
n? is a polynomial in ¢ of degree three or four. Introducing & as a new
variable of integration in (1), it is seen that every integral of genus unity
can be reduced to a form in which the equation (2) becomes

2 _ 4 3 2
6) y =a,x"+4a,x°+6a,x"+4a,x+a,

where either a | #0 or @, = 0 and a, # 0. Integrals defined by (1), (6) are
called elliptic integrals, and we have proved that abelian integrals of
genus unity may be reduced to elliptic integrals by a rational change of
the variable of integration. We shall see later, in sec. 13.14, that in
equation (6), and hence for any algebraic curve of genus umnity, x and y
may be expressed rationally in terms of single-valued elliptic functions
of a variable z which is a uniformizing variable for the curve in question.

For p > 2 the situation is much more involved. We have here hyper-
elliptic integrals for which equation (2) takes the form

2 _ n n=1 een
(7) y*=a,x"+nax +eta,

but it is no longertrue that every curve canbe transformed, by a birational
transformation, to the form (7). Accordingly, hyperelliptic functions do
not suffice for the uniformization of algebraic curves of genus p > 2, and
automorphic functions must be used: see also sec, 14.9,

In this chapter we restrict ourselves to elliptic integrals defined by
(1), (6), and to the elliptic functions associated with such integrals, The
polynomial on the right-hand side of (6) will be denoted by G, (x) when
a,#0, and by G, (x) when a =0, a, # O, If the polynomial on the right-
hand side of (6) has a double zero, the integral I may be evaluated in
terms of elementary functions. Thus we may assume that G, (or Ga’ as
the case may be) has no double zero.

13.3. Reduction of elliptic integrals

It has been stated in the preceding section that for the behavior of the
elliptic integral
(1 I= JR(x,y)dx, y?= aox‘+ 4a|x3+ 6a2x2+4a3x +a,

the polynomial aox“ + -+ +a, is more important than the rational function
R. This statement is justified, and is given a precise meaning, by



13.3 ELLIPTIC FUNCTIONS AND INTEGRALS 297

the following theorem due to Legendre. The elliptic integral (1) may be
expressed as a linear combination (with constant coefficients) of an
integral of a rational function of x and of integrals of the following types:

d 1 2
@ If g Heertrex, o 3
y y (x—c)y

where ¢ is a constant parameter, and

@) Ia*=/ x;ix

is interpreted as the integral I corresponding to the case ¢ = oo The
reduction will be effected in several steps.

Since even powers of y may be expressed as polynomials in x, we may
write R in the form

M &)+M, &)y _ M, (x)+M, (x)y1[N, (x)~N,(x)yly
N @) +N,x)y N @ -V, @) yP}y

4) Rx,y)=

where M,, M,, N,, N, are polynomials in %, and this may be written as

R, (x
(5) Rz, ¥)=R, (x)+: )

with two rational functions, R, and R,, of x, thus completing the first
step in the reduction process.

As a second step we remark that R , (x), being a rational function of
x, may be decomposed into a polynomial in x and a sum of partial frac-
tions. Thus,

6) I= fR(x,y)dx=fR1(x)dx+2a"f

d
vz [ =
mr ™7 x-c )y

and it is sufficient to consider further the integrals

xn.
(7) Jn=/ dx n=0,1,2 «w
¥

H & 1,2
= —r—— F=ly 2y eee s
r (x - c.)ry

n

dx
y
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The third step is based on certain recurrence relations for Jn and Hr.
Let us define b, «., b, by means of the identity

(8) ax*+4a x’+6a,x*+da x+a,
= bo(x—c)4+4~bl(x—c)3+6bz(x—c)2+4~b3(x—c)+b4

in x, We then have the following identities

d 1 1 d(y2)
©) —wy>=mxm-‘y+x»»y'=—E”xm-'yz+_xm y
dx y

1
=—l:mx"‘-' (aox4+4a'x3+6a2x2+4a3x+a4~)
Yy

1
+?x“ (4a x°+12a, %% + 12a,x + 4a3):|

m+3 xng+2 xm+|
=(m+2)a, +2@2m+3)a, +6(m+1)a,
Yy Y Yy
xm xm—l
+2(2m+1)¢13—+ma4
: Yy Yy
d (x~— )m+3 (x— )m+2
(10) — [w=c)"y] = (m+2) b ——— 4 2(2m+3) b, ————
(x-c)* 1! (x—c)™ (x-c)* !
+6(m+1-)b2—-+2(2m+1-)b3 : +mb,
Yy Yy Yy

Putting m = 0, 1, 2, e in (9), m = -1, =2, =3, .. in (10) and integrating,

we obtain successively

() 2¢,J,+2+3a J,+6+1a,d, +2+1a,J =¥y
3a,J,+2:5a, J,+6+2a,J, +2+3a_ J +a,J,=xy
2
4a,J . +2+7a,J,+6:3a,J,+2-5a,J,+2a,J =x
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5 (x~c)? x—c y
() b, [ Zodn v 20 1b, f S de 21 bl 1eb =

A
3 (x-—c)z

~2.1.b,J~6-1-b,H,-2:3:b.H,~2b,H

A
(x—¢)3

~bJ,~2.3.b H ~6-2.b,H,~2-5.bH,~3bH,=

Now,

- (x—c)?
(13) /" Sdx=d,~cd,, f ) e o d, =200, 4 4,
y y

and hence equations (11) and (12) serve to express all Jn and H in terms
of J , Jl » 4,5 H,, and certain rational functions of x and y. Moreover, a
comparison of (7) with (2) and (3) shows that

4) J,=1, J,=I% a,d,=2L,-2a, L% H, =1,

and thus proves Legendre’s theorem.
Ifa, =0, and hence also b = 0, there is a slight simplification. In

this case
(15) I,=a,I¥ a,=0

and hence all integrals reduce to a linear combination of I, , I,, I* Also
from (11) and (12) it is seen that in this case all J and H , may be ex-
pressed in terms of only J, J,, H,, and rational functions of % and Yo

The integrals I, I, I may be called elliptic integrals of the first,
second, and third kinds, respectively.

A linear fractional transformation of the variable of integration in (1)
changes the polynomial y?, and an appropriate transformation of this
kind may be used to reduce the polynomial to a standard form (see sec.
13.5). There are two such standard forms in use, and we shall give the
more important results of the present section for each of these two
standard forms, adding a brief note on a third form,

Weierstrass® form. Here

(16) y2=4x*-g,x~g..

The integrals of the first, second and third kinds are, respectively,
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x —gzx—ga)
I=I*=J=/ x dx
2 3 1 (4x3—g2x—g3)%

I_g dx
3 (x—c)(/-an-—gzx—ga)% )

The first few recurrence relations are

x? dx 1 1
(18) J, = — = — (4x3%- e ). J,
) 2 f(4x3_gzx_g3_)A 5 x 8,% ga) 12gz

7 x3 dx 1 (4%° i
= 7 =~—x{4dx " -g x—~g )"
3 (4x3—g2x—g3)/’ 10 82X~ 83

8,9, +Ega‘]

3
20
g dx
2= (x - ¢)? (4x3—g2x—g3)lr

_ 2(J, —cd))-6c*-Yg,)H, —(4x3 ~8,% —ga)% (x~e)!
4¢3 -8,6—8,

Legendre’s form. Here
(19) y2=(01-x2)(1Q - k%x2),

It is customary to define the corresponding elliptic integrals of the first,
second and third kinds respectively, as

(20) F = dx _ de ,
[(1-22)(1 - k2x2)]" (1-k2sin®¢)*

f(l il 2) dx=f(1—kzsin2¢)%d¢

x =sing



13.3 ELLIPTIC FUNCTIONS AND INTEGRALS 301

dx
(20) H=/(1_x2/c2)[(1—x2) (1 - k2x2)]%

_ dep .

- (1-c™2sin?¢) (1~ k2% sin2¢)* x=smg.
The basic integrals of the general theory are
) I,=J =F

(92) I, = %(F - E)

{x + ¢)dx
I =f =1|-
(23) I, H, f(xz—cz)[(l—xz)(l-—kzxz)]%

_ Ld(x?) L»H
] k2= [ -x2)A-k2xD]% o

, x dx
(24) I3=J'= [(1_x2)(1_k2x2)]% .

The first integral on the second line of (23), and the integral in (24), may
be evaluated in terms of elementary functions so that everything may be
expressed in terms of E, F, Il. The recurrence relation for the J_ are

(25) 2k2J, -~ (1 +k2)J, = [0 -x?)(1-k2x?)]*
3k2J, - 20+ kD I, + J = x[(1 - x*)(1 - k2x?)]*
4k*J - 3(1+ k) J, +2J, = x2[(1 ~ x*)(1 ~ k2= ))]%

and the recurrence relations for the #_may be obtained from equation (12).
A third canonical form,

(26) yi=x(x~m)x ~1)

has been suggested by A.R. Low (1950). In a sense it is between Weier-
strass’ and Legendre’s form and has some of the advantages of both.
It may be obtained from Weierstrass’ form by a translation and normal-
ization, or from Legendre’s form by the substitution

x?=1/¢, y2=712/§3-
The latter derivation shows that the parameter m corresponds to k? in
Legendre’s form.
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13.4. Periods and singularities of elliptic integrals

We shall now c;)nsider
(1) Ik)= f: R(&, p)dé,

where
2 n*=G(¢)=a ¢*+4a £2+6a,(%+4a 4 a,,

and regard Xz} as a function of x, the lower limit, @, being fixed (and
the integrand regular at &= a).

The integrand is a two-valued function of & whose branch-points
.coincide with those of 5; and we shall study the behavior of I(x) on the
Riemann surface of [G(x)]* rather than in the x-plane. If a | # 0, let a,,
a,, a,, a, be the four (distinct) zeros of G, (x); if a =0 (and @, # 0),
let a,, a,s a, be the three (distinct) zeros of G, (), and let a, =~ .In
either of these cases, join a, and @, by an arc ¢, and a, and a, by an
arc ¢ “which has no point in common with ¢. Cut two copies of the com-
plex x-plane along the arcs ¢ and ¢, and join them crosswise along the
cuts, thus obtaining a model of the Riemann surface, R, of [G (x)]%. The
integrand, R (x, y), is a meromorphic function on R, that is to say R (x, y)
is a single-valued function of x on R, and is analytic, except poss-
ibly at a finite number of points where it has poles. On the other hand,
I(x) is a many-valued function on R,
since there are closed curves, I', on B Almx
which cannot be deformed into a point,
and for which fr. R d¢ # 0. The closed
curves y, and y_ of the figure are such
curves. (The curve y, crosses the branch-
cuts and its dotted portion lies in the
““second sheet’’ of the Riemann surface.)
In addition there is a closed curve en-
circling each pole at which the residue
is £ 0, Let‘bibe one of the poles of R,
and let ri;be the residue at b, of R.
Given any closed curve, C, on R, it
follows by deformation of contours that >
there are integers m, n, p, (positive, 3 > Rex
negative, or zero) such that

J R p)dé=m | Rdé+n | Rdé+ S p,2mir; .
¢ », ¥ i

1 3

I£
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This means that Io (x) being one of the possible values of I(x), any
other of the possible values of this function is of the form

(3) -Rx)=I°(x)+mlﬂ‘ +m2Q2+...+kak

where m,, «. , m, are arbitrary integers and Q5 «ev sy Q, are certain
complex numbers independent of x. They are known as the periods or
moduli of periodicity of I{x).

Every elliptic integral has at least two periods (for instance, the
periods corresponding to y, and y,). The integrands of I and I, in
13.3(2) have no non-zero residues in the cut plane, and hence elliptic
integrals of the first and second kinds have exactly two (independent)
periods, On the other hand, x = ¢ is a simple pole with residue [G ()%
of the integrand of Z ,and accordingly elliptic integrals of the third kind
have three (independent) periods,

We are now in a position to describe the singularities of elliptic
integrals of the first, second, and third kinds. They all have branch-
points atx =a,,a,,a,,a,, and their values at these branch-points are
finite, with the single exception of the point @, = e for I, in the case
a, = 0. In addition we have the following behavior of these integrals.

Elliptic integrals of the first kind are analytic on R, except at x = a "
a,s a,,a, They are finite at every point of R. This is clear from the
behavior of their integrand.

Elliptic integrals of the second kind are analytic on R except at
X=@ ,8,,a,, a,,and w. At « they have poles if a, #0. (Ifa, =0, then
a, = e, and I, has a branch-point, and becomes infinite there.) There
are two poles at infinity if @ # 0, one in each of the sheets of R, and
the residues at these poles are zero.

Elliptic integrals of the third kind are analytic on R except at x = a,
a,, a,, a, ond c. They have logarithmic singularities at x = c. There
are two points x = ¢, one in each sheet of R, and the behavior of L in
the neighborhood of these points is like that of

+[G ()] 7% log (x — ¢).

The different behavior of these elliptic integrals shows clearly that
in general (i.e., apart from special values of ¢ orx), an elliptic integral
of the third kind cannot be reduced to integrals of the first and second

kinds,
Another interesting feature of elliptic integrals of the third kind is

expressed by the interchange theorem, Let

x d§
L& )wa
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Then
L(x )= Lle,x)= I (c) ,(x) - I (x) L,(c) + 2m + 1) o

For the proofs of the statements presented in this section and for
further details, see Tricomi (1937).

13.5. Reduction of G(x) to normal form

In considering elliptic integrals it is convenient to reduce the poly-
nomial
(1) G)=a x*+4a,x*+6a,x+4a x+a,=y2
to one of the two standard forms given in sec. 13,3, The reduction is
achieved by means of a linear fractional transformation of x. For Weier-
strass’ form, one of the zeros of G (x) is mapped on =, and then the
centroid of the remaining three zeros is taken as the origin., For the
Legendre form, a pair of points is chosen which is apolar with respect to
(forms cross-ratio ~1 with) each of two pairs of roots of G (x), and
these points are mapped on 0 and ~, The four roots of G(x) can be
grouped in two pairs in three distinct ways, and accordingly there are
three distinct ways of the reduction to Legendre’s form of any given G (x),
Weierstrass’ form is more symmetric, and hence more suitable for theoret-
ical investigations; Legendre’s form is more highly standardized and
hence more suitable for numerical computations. Most of the existing
numerical tables have been computed for Legendre’s forms We shall
describe briefly the reduction to each of the two standard forms,

Reduction to Weierstrass® normal form. If aoié 0, we reduce G (x) to a
cubic by the transformation

1 Y

(2) x=a,-=

x' 7T xr

where a, is one of the zeros of G(x). This transformation changes (1) into
(3) 44, X*+64 X2+44 X+ 4, =72

where

(4 A,=%6%a,)=aqa, ai+3a1ai+3a2a4+a3,

1
A =—G" (a4)=a
12

2
) a4+2a1a4+a2,

0

1
4. =

3 —ZZGI”(a4)=aoa4+al’ 4 =§G"’,(a4)=ao'

4
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If a, = 0, then (1) is already of the form (3) and no preliminary trans-

formation is needed.
Next, we eliminate the quadratic term by the transformation

E-%4, yo "

A A

(5 X=

which changes (3) into Weierstrass’ form

(6) 4¢°-g,é-g,=1n"

where

(1) g,=342-44 4, g§,=24,4,4,-43-4% 4,
From (4) and (7) it is seen that

2
(8) g,=a,a,+3a,~-4%a,a,

Gy 2y G,
£3= a, @, 4,
e, a; @,

are invariants of the quartic G (x); see, for instance, Burnside and
Panton (1892, sec. 160) where the expression of these invariants as
symmetric functions of the roots is given. It should be noted that the
final form (6) is independent of the zero, a,, of G (x) which was selected
for the transformation and that the coefficients in (6) are rational func-
tions (actually polynomials) of the coefficients of (1), In particular, if

@gs ses 5 @, are real, then also g, and g are real,
Reduction to Legendre’s normal form. We first show that G (x) may be

factorized in the form )
© G =[B,(x-p)2+C, &~ 2B x - )+ C, (& - 7.

In fact, G (x) may certainly be factorized as

(10) G(x)=Q,(x)Q,(x)
Q,&)=p,x*+2q,x+r, Q,(x)=p,x?+2q,x+r,.

With a constant multiplier A, @, — AQ, will be a perfect square if

(1) (p, = Ap)tr, = Ar,)=(g, — Agq,)* =0.
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Let A, A, be thetwo roots of this equation. Then
12) @, -1,0Q,=(, - A,p,)x-pB)?

Ql - ’\202= (p, - ’\zpz)(x -y
and hence

(13) @,=B,(x~B)?*+ C,(x - y)?

Q,=B,lx-B)?+C k=)

with certain constants B,, «we, y; and this proves (9). Moreover, if
Qo5 ees 5 @, are real and G (x) has at least one pair of complex roots,
let @, (x) have complex roots. Then the left-hand side of (11) is > O when
A =0, and <0 when A =p,/p,, so that A, and A, are real, 8 and y in
(12) are real and so are B, v0s, C, in (13). Ifa , 0, a, are real and all
zeros of G(x) are real, the factorization (10) may be arranged so that
the zeros of Q, (x) do not interlace those of Q,(x), and in this case it
is easy to see that B, «. , y are real. Thus for a real G (x) there is
always a real factorization of the form (9). Furthermore, this factorization
isvalid both for G, and G; in the latter case either B, + C, =0 or

B,+C,=0.

In (9) we put

x—y B, # y ¥
1 =l-=) & ——-
(4)’6_,8 < C'> 4 e (B,B,)*q

and obtain Legendre’s normal form

(15) (1 - &)1 -k2£%) =92
where

. B C
16k2=|2.
(16) B C

271

The quantity 4 is the modulus. Clearly we may take |k?| < 1, and if
|k2| = 1, a different grouping of the zeros may be used to make |£?| < 1,
except in the so-called equianharmonic case when —k? is a complex
cube root of unity. This exceptional case arises when the zeros of
(1 = &2)(1 - k2% £?) lie at the end-points: of two diameters of the unit
circle and the angle between the two diameters is /6.

We shall now give more specific reduction formulas for the case that
the coefficients in (1) are real and that G (x) > O in the interval of inte-
gration. It will be seen that in this case the reduction may be effected
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by a real transformation in such a manner that 0 < k2 < 1, We shall give
the reduction to trigonometric form [the variable ¢ in equations 13,3 (20)],

(17) y2=cos®p(1-k? sin?h).
By division by a positive number we may make the leading coefficient -
(@,in G, ora, in G,) 1, and we shall assume that this has been done
so that

(18) Gx) = il](x—ai)

where i = 1, 2, 3, 4 or i = 1, 2, 3, according as G is G, or G, . We shall
use the abbreviations

(19) a,

s=as—ar

a-y B-6
a-8 B-y
1) ue l—lczsin2¢;>% dx
e T o

where y is a constant and

dx i do
CWIF “U-k2sin’e)

(20) (a’ 3’ Vs ) =

(22)

so that p occurs in the conversion of the elliptic integrals of the first
kind.

Table 1 gives the transformation formulas for the case that all roots
of G (x) are real, it being assumed that

(23) a,>a,>a,>a,

(in the case of G, omit a,). For each of the two possible leading
coefficients, 1 and —1, of G (x), the table lists the intervals in which
G (x) > 0, the transformation formulas, some corresponding values of x
and ¢, the values of k2 and p.

Table 2gives the corresponding transformations in the case that there
are complex roots. In the case of G, the real root is a,, and the com-
plex roots are

(24) b fic c>0.
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TABLE 1. TRANSFORMATION TO

All zeros
=
=
a0 .3
S 9
g = .
G ) 8% Transformation
o
Z€eros - O Interval x =
a, <x .2
1= -
a,a,-a,a, sin“¢
or
a,—a sin2¢
x<a 42 41
+1 -4
a,a,, —a,a sin2¢
4732
a,<x<a, = :
G, &) @y =g Sin" ¢
four
real
.2
zeros a,a, +a,a, sin o)
a, <x<a
4 3 a.,. +a sinng
31 3
-1
.2
a,a, ~a,a, sin“¢
2 %3 3%
a,<x<a, —3
gy — @y SI" P
.2
sin
a,<x<a, a,+ag, ¢
+1
) . 2
a, <x __a‘—azsm¢
1= .2
Gs(x) 1-sin“¢
three
real
ZEeros aq
x<a, 1 . 2
sin
-1
- sin2¢
Ayl — G332y
a,<x<a, — 2
ay —a, sin"¢
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LEGENDRE’S NORMAL FORM

of G (x) real

Corresponding
values
. 2
sin? ¢= x ¢ k 7
a 0
1
a, x—a,
a, x—a
a 2 a Yem
4 - (@, a,a,a,)
- 3
Gy %= 0y
a,. x—a
2 4 a, Yam 9
%
(@y ay)
a 0
a, x—a, 4
a, a,—x 1
a3 1 a B
a3 5 @,a,a, a,)
- 2
a, x—a,
Ay X~ 04 a, Y
a 0
- 3
x a3
) a Y
2 a
©
a
x—a oy 0 3
x—a, o v
2
Y e
(ay)
—00 0
Q3
a, —x L
1 a “m
3 I
, ay
— az U
a, x-a,
a, x—a, a, Virr
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TABLE 2. TRANSFORMATION TO
G (x) has
]
wd
£.8
TE
G (x) 39
ZEros - © Interval Transformation
G4 ) . az’fx x_a|+a2_a'—az v—cos¢
two real -
. 2 2 1-vcosd
and two xZa,
complex cosb. a. —x
Zeros ~-1 a,<xsa, (tan%¢)z= . !
cosf, x—a
2 2
1 < c 1-cos¢
a <x x=a, -
Gqx) 1= ! cos@, 1+ cos¢
two com-
, cos 91
plex zeros| —1 x<a, (tan % ) = (a, = =)
G, &) x=bl+c1tan(¢+‘/293+‘/294)
four com-
plex zeros tan (¢ + %0, + %6,)= (x—b,)/e,
b, >b
1 2 1 —o0 < x < oo
G, x=bl—c|ctn¢
four com-
plex zeros e,
— tangp =
b,=b, o b
e, > ¢,
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LEGENDRE’S NORMAL FORM

complex zeros

Corresponding
Auxiliary values
Quantities x ¢ k2 i
@ acute (~cos0, cosf )%
1 a 0 1 2
02 obtuse ! ¢
[sin ‘/2(0‘ - 02)]2 —
6,,0,acute |a, 7 _ feos 6, cos 6,)*%
c
A - cosf, Y
0, obtuse a, 0 —_—
c
[sin(% 0, + %4m]* 0 \*
cos
0, acute o0 7 —( ‘)
c
035 6,5 %05 |~ - — %0, cosO \
acute -% 04 sin? 05 ( 5)
¢y 6
b, -%0,-%0,
c 2 1
0,=0,=%m ‘ 1—(2>
c 1 c 1
00 Yom—%0,
-4 04
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In the case of G, with two real and a pair of complex roots, a, > a,are
the real roots and equation (24) represents the complex roots. In the case
of G, with two pairs of complex roots, the roots are

(25) b, tic,, b, tic, _b,zbz, c1>0, c,>0,

In this table, the transformation formulas, %% and y are expressed in
terms of certain auxiliary quantities defined as follows

a,—b a,~b
», tan@,=
c 5 c

(26) tan 6, =

v=tan(}40,-%0,)tan(%0,+ 1 6,)

c,+c -
(@7) tan 0, =2, tang, = =
17 %2 17 %2

(tan 1/205)2 =cos0_ /cos b, .

The transformation formulas given in these tables remain valid when
the zeros of G (x) do not satisfy the conditions given in the first column
of the tables and equations (23) to (25); however, in this case the trans-
formations, and &2, will in general be complex.

There are several integral tables, textbooks, and works of reference
which give tables of reduction formulas for elliptic integrals to normal
form. We mention Grébner and Hofreiter (1949 sections 241 to 246, 1950
sections 221 to 223); Jahnke-Emde (1938, p. 58, 59); Magnus and Ober-
hettinger (1949, Chapter VII); Meyer zur Capellen (1950, sec. 2.3)
Oberhettinger and Magnus (1949, sec. 2), and Tricomi (1937, p. 76, 77).
The tables given here are adapted from Tricomi’s book. See also a forth-
coming book by B"d and Friedman, gee cvradm)

For the evaluation of elliptic integrals by means of elliptic functions
see sec. 13.14; for the evaluation in terms of theta functions see sec.

13.20.
13.6. Evaluation of Legendre’s elliptic integrals

In sections 13.3 and 13,5 the reduction of any elliptic integral to
elliptic integrals of the first, second, and third kinds in normal form has
been described. The evaluation' of integrals in Weierstrass’ normal form
by means of Weierstrassian elliptic functions will be given in sec.
13.14; in the present section we discuss the evaluation of Legendre’s
elliptic integrals.
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First we make the definitions 13.3 (20) more specific by setting

(1) Flg 8= [*Q~k2sin20)* ds
@) E(p k)= [P ~k2sin20)% de
[+]

@ T w k)= [P +vsinz )™ (1= k2 sin®) 7 dr,

We also recall that, with the exception of the equianharmonic case, the
reduction may be performed in such a manner that
4) |kl <L ‘

The integrals of the first and second kinds may be evaluated by
binomial expansion of the integrand.

(5) F(g, k)= Z % )" k> S )] |k| <1, |singp| <1
n=0 ’
2w .

6 Elgp k)= ) —2 k™S, (¢) k| <1, |sing|<1

n!

n=20

where

I'a
) (a)°=l, (a)"==a(a+1)---(a+n—l)=—(—ﬂ

I'(a)

@ $,,(¢)= J:b (sint)® dt =272 [ ( >¢ + 2 (-1)" ( 2n \sxm(zmcﬁ)'l

Thus in the real case there is always a convenient convergent series
for computing F and £, When the modulusk is near unity, the convergence
of the series is slow, and alternative, less simple, expansions must be
used. Some such expansions were given by Radon (1950), who also gave
the expansions of F and £ as trigonometric series, There are extensive
numerical tables of elliptic integrals of the first and second kinds; see
Jahnke-Emde (1938, p. 52-89); Fletcher, Miller, and Rosenhead (1946,
sec. 21).

Elliptic integrals of the third kind present a far more formidable
computational problem on account of their dependence on three para-
meters. The analogue of equations (5) and (6) is

© Mg v, k)= £ )" BERG1S,, ()
|k} <1, |v|<1, |[sin¢|xg1
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where

10) B ()= ), <a>z"‘
m

=0
is the truncated binomial expansion. The condition |v| < 1 in (9) limits
the usefulness of this expansion. For alternative expansions see Radon
(1950).
For the computation of II(¢, v, &) by means of theta functions and
Jacobian elliptic functions see sec. 13.20.
We note here that

1) (e, 0, k) = F (¢, k)
(12) (1 -%2)TI(y — k2% k)= E(p, k) = (1 - k2sin2) % k%sin ¢ cos

(13) A-k*)TI(, -1, k)= A~ k?) F (e, k) - E(, k)
+tan (1 - k? sin2¢>)%

13.7. Some further properties of Legendre’s elliptic normal integrals
The integrals
(1) K=KE&)=F%mk), E=E(k)=E(%nk)

are the complete elliptic integrals of the first and the second kinds,
respectively, With the complementary modulus

@ k'=Q1-k*)*

we also have

@3) K'=K&)=F®nk"), E=Ek)=E%a k")

- The incomplete elliptic integrals F(¢, k) and E (¢, k) are many-
valued functions on the Riemann surface R of the function y defined by

equation 13.3(19). The branch-points are x = sin¢g = + 1, + k™', The
periods may be evaluated in terms of complete elliptic integrals.

Integrals Periods
F(¢, k) 4K, 2iK’
E(g, k) 4E, 2i(K-E’).

In each case the first of these periods is called the real, the second the
imaginary, period (because they are respectively real and imaginary when
0<k<l),

Although F (¢, k) and E (¢, k) are many-valued functions of x = sin¢

on K, E considered as a function of F is single-valued on R provided
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that corresponding values of £ and F are obtained by integration over
the same path. This gives rise to Jacobi’s function £ (), see sec, 13,16.

Elliptic integrals, like elliptic functions, possess addition theorems,
Given ¢ and ¢/, determine y from the equations

@) (1-k2sin?¢ sin?y) siny = sin¢ cos ¢ (1 — k2 sin2¢ )%
+ siny cosp(l ~ k2 sin2 )%
(1-%2sin?¢ sin?y) cosy = cos ¢ cos
—sing siny(1 ~ k2 sin2¢)% (1 - k2 sin? y)*%
and denote by = the relation (congruence) between two functions which
differ by a (constant) linear combination of their periods, Then

(5) Fl)=F($)+F )

(6) E()=E($)+E(y)—-k?sing siny siny
are the addition theorems of E (s k) 4 F(py k).

The interchange theorem mentioned in sec. 13 4 is most conveniently
expressed in terms of the elliptic integral of the third kind

@ %, v k):/‘“‘z°°S¢Sin¢(1—k2sin2¢>% ine
0

(1- k% sin?y sin?)1~ k2 sin?t)*

= ctniy (1 - k2 sin?y)% [[1(¢p, —k2sin2 4, k) =~ F (¢, £)]

when it reads
8 (¢, v)~1T*(y, ¢)=F(P) EW) -~ F(Y) E(¢p) + nai.
Here k has been omitted from all symbols of elliptic integrals and » is an
integer,

Both the addition theorems and the interchange theorem depend on the
connection between elliptic integrals and elliptic functions,

In sec. 13,5 it has been mentioned that a regrouping of the zeros of
G (x) results in changing the modulus. If £ was the original modulus, such
a regrouping will lead to one of the following values
ik 1 1 k’
= k5 —, T
k’ k k ik
Elliptic integrals belonging to any two of these moduli are connected by
rational relations (linear transformations), To the expressions enumerated
in (9) we add
1-k°
1+k7

9) &,

(10)
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Elliptic integrals of moduli & and (10) are also connected by rational
relations (Landen’s transformation).

. Table 3 (p. 316) gives for any of the moduli (9) or, (10), denoted by
k, the transformed values ¢ in terms of ¢ and £, F(¢, k) and E(¢, k) in
terms of F (¢, k), E (¢, k), ¢, and k. We continue to use the notation (2)

and introduce the abbreviation
(11) Al k) = (1~ k2 sin? )%, AGmk)=k"

The quantity qS in the table is determined up to multiples of 27 by giving
both sin ¢ and cos .

We also note the differentiation formulas

(12) JgF 1 I:E—k'zF singbcosgb]
o k2 k A, k)
OE E-F
ok k

13.8. Complete elliptic integrals

We use the following notations for the complete elliptic integrals of
the first, second, and third kind.

Y i
: dob / dx
K=K()= =
W k() /0 Alg, k) J, [Q-x3)(1-E222)]%
Y 1 k2 2
(2) E=E#)= Ao, k) do f dx

H
3 H @, k)= [ (1 + v sin ¢) A, k)

_f' dx
Jo 4w -2 A -k22D)% "

From 13.6(8),
),

nl 2

@ S, Cm =" sin™g de-
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and using this in 13.6(5), (6), and (9),

(5) K&)=Ya F (4, %; 1; k%) _ k| <1
6) EW)=Y%n F (=%, % 1; k?) k| <1
ad (1 , k2
() I,G, k)= _/"'L(-u)"B,‘;A)(-—) k| <1, |v] <L
n.: v
n=0

In (5) and (6)
b (a), (®),
1@, b5 ¢52)= Z 'T(c-)—n—z

n=20

is Gauss’ hypergeometric series, see chapter 2.
Tricomi (1935, 1936) also gave the expansion

(8) K(sina)=zzz l:(/l')"] sin[@n + 1) o] O<a<¥n

n=20 n:

and the inequality

(9) log4< K+ logk’'<Y%n.

From (5) it is seen that K(k) is a monotonic increasing function of % for
0 <k <L K()= Y%7, and from (9) it is seen that K becomes logarith-
mically infinite as k& - 1. More precisely,

(10) K=1log(4/k") +Ok’? logk*) k’-0.
On the other hand, (6) shows that E is decreasing for 0 <% < 1, and from
(2)

(1) 1<E<¥Y%n 0<k<.

Expansions valid near k = 1 have been given by several authors; see, for
instance Radon (1950). We also mention a formula for the integrals of the
third kind developed by Hamel (1932).

For the computation of complete elliptic integrals of the first and
second kinds by means of theta functions see sec. 13,20,

Corresponding to the transformations of Table 3, there are trans-
formations of complete elliptic integrals. These are listed in Table 4
(p. 319).

The transformation

. 1+k'
(12)’”‘ k" <1+k') ®)
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is especially important since it may be used to compute K numerically.
The first equation in (12) may also be written

24k %

1+%7

Here £ < <130 <k’< 1, and if the transformation is repeated, & *
tends rapidly to unity. The corresponding K(0) is % 7. Now define
2k 7%

a8 ky=k5 ki, =Tt n=0,1,2 -

’

Then by repeated application of (12),

7 B 2
14) K(&)=— —_—
(14) 2 H 1+k;

n=20

For the four complete elliptic integrals belonging to complementary
moduli we have Legendre’s relation

(15) KE'+K’E -KK’= }in.
For particular values of k& we list the following relations,

[ (12
An*

(17) K'(sin l) =3%K (sini
18 18

(18) K" (2% ~ 1) = 2% K(2% -

i) nle)

4 1'(1/6)
2.3%(2/3)

(16) K27%)=K127%) =

—i7/6

(20) K’ (eim/3) = ¢ i7/6 K (¢ i7/3) =

The first of these relations corresponds to the lemniscate functions which
arise from the inversion of the integral
A =x*7% dx,

and the last relation corresponds to the equianharmonic case of elliptic
integrals,
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The complete elliptic integrals of the third kind I (v, £) may be
expressed interms of incomplete elliptic integrals of the first and second
kinds For v ->~1 this was observed by Legendre, for v < —1 (when the
Cauchy principal value of the integral must be taken) it was proved by
Tricomis The parameter v is expressed in terms of an auxiliary quantity
0, different expressions being valid in the intervals (—eo, —1), (=1, —=k?)
(=k2, 0) and (0, =), The results are

(21) ctn 6 A(6, k)H (-csc?6, k)=EFk) F(6, k) - K(k) E (6, k)

in 0
D) kST A6 kD, B - K

=Wr—-[EE)-KE]F6, k) - KE)E, k)
(23) ctn 8 A(6, k) [H' (~k%sin? 6, k) - K(&)]
=-EF(0,k)+KE(6, k)

sin 6 cos 6
it E2 tan? _ 2
(24) NS [H1 (k*tan?6, k) - K(k) cos® )]

=[E®R)~KEIF(6, k") + KE)E(, k7).

Beside K, E, I, it is sometinies convenient to introduce

K Sinzqs Y cosz¢»
k)= d ¢, k) = d
(25) D(k) '/; Mg ) ¢ Bk /0. IXER @

K .
(sin ¢ cos ¢)?
Cc(k) = — "7 4d.
® f B E

With « = k2 we have the differentiation and integration formulas, and con-
nections between various integrals

K-E —k'ZK
(26) D=—kz—-, B=K_D=__k_2__

1
=77 (2-%%)K-2E]
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27) 2dK 2dE D 2dD D-C
dx 1~k dx ’ z—l—x
dB dcC B
22 e, wl -4C
K de 1-«

(28) [Kdk =2«B, fEdK=:— x(E + B)

JDdk=~2E, [Bdx=2(E+«B), [Cdk=2B.

For series expansions and other formulas for these integrals and for

short numerical tables see Jahnke-Emde (1938, p. 73-84).

PART TWO: ELLIPTIC FUNCTIONS

13.9. Inversion of elliptic integrals
Historically, elliptic functions were introduced by inverting elliptic
integrals, To obtain Jacobian elliptic functions consider the relation

1) uw=SPU-k?sin?e) % dt=F(g, k)
Q

between the complex variables u and ¢. We already know that u is a
many-valued function of x = sin ¢ ; conversely, equation (1) also defines
¢, or sin ¢, as a (possibly many-valued) function of u, Jacobi puts
(2) ¢=amu=amiu,k)
and adopts as basic functions
(3) snu=sn(u, k)= sin(amu)

enu =cnfu, k)= cos{amu)

dn u = dn (u, &) = Alamu, k) = [1- &2 sin? amu)]*.

Beside these, the following nine functions are often used

(4) nsu=1/snu, ncu=1/cnu, nd z = 1/dnu,
csu=cnu/snu, scu=snu/cnuy, sdu=snu/dnu,
dsu =dnu/snu, dcu=dnu/cnu, cdu=-cnu/dnu,

the notation being due to Glaisher,

Atz =0, we may put

(55 sn0=0, cn0=dn0=1,
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and this clearly defines the three basic functions, and hence also the
nine functions (4), as single-valued analytic functions in some neigh-
borhood of the origin (except for ns u, cs u, ds u which have simple poles
at u = 0 and are analytic in a punctured neighborhood of this point). The
crucial fact of the theory of elliptic functions is the circumstance that
the functions obtained by analytic continuation of the twelve functions
thus defined in a neighborhood of u = 0 are all single-valued functions of
u, analytic except for an infinity of (simple) poles. This result may be
established by a discussion of the inversion problem for the integral
(1), see Hancock (1917), Neville (1944).

Weierstrass’ elliptic functions present a similar problem. The relation
(6) z= _f;: (4¢3 - g,t - gs)_% dt

between the two complex variables z and w may be inverted to yield

Weierstrass’ g - function

(N w=p)=plzg,,8,),

and (z) turns out to be single-valued, and analytic except for an infinity
of poles (of the second order).

In either case the inversion problem is a formidable one (except in
the case of the integral (1) in the real field and for 0 <% <1), and it is
of interest to note that an alternative approach exists and has many
advantages. Weierstrass has shown that a study of doubly periodic an-
alytic functions leads quite naturally to elliptic functions. Since then it
has become customary to approach elliptic functions from the general
theory of analytic functions. We shall do so in this chapter and establish
the connection with elliptic integrals later, see sec. 13,14,

13.160. Doubly-periodic functions

Let f(z) be a single-valued function which is analytic save for iso-
lated singularities, A period of this functionis a complex number, p, such
that
(1) f@)=f(z+p)
for all z for which f is analytic. A function which has one (non-zero)
period has an infinity of periods (for instance np for all integers n). Let
Q be the set of all points in the complex plane which correspond to
periods of a fixed function f(2). If f(z) happens to be a constant, then
is the whole plane. This case excepted it may be proved[see for instance
Tricomi (1937 Chap. I, sec. 2)] that Q is either a system of equidistant
points on a straight line through the origin, or else a point-lattice formed
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by the intersections of two families of equidistant parallel lines (line-
lattice). Tn the former case f(z) is simply-periodic, in the latter case
doubly-periodic.

We now consider a doubly-periodic function f(z) and the corresponding
point-lattice Q. The point-lattice may be generated (in many ways) as the
points of intersection of two families of equidistant parallel lines, that
is to say by the repetition of congruent parallelograms. Take one such
parallelogram with one of its vertices at 0, and let the other three vertices
be 2w, 20 20 + 20" Then 20 and 2w’ are called a pair of primitive
periods of f(z), and all periods are of the form

(2) Qa)m' .= 2mo+ 2ne’ _ m, n integers.

Clearly, ® 7w is not real, and we may choose the primitive periods in
such a manner that

3) Imlw7w)>0.

This convention will be adhered to throughout this chapter.

A point-lattice may be generated in infinitely many ways from a line-
lattice, that is to say it possesses infinitely many pairs of primitive
periods. Let w, w”be primitive half-periods of €, and let a, 8, y, & be
any integers. Then

4) o =av+Po’ a.)'=yw+5w'
is certainly a pair of half-periods, If
(5) ad-By=1

then we have, from (4)

6) w=0w~-Bw o'=—-yo+aw’

so that w, @ § and hence any half-period of f(z), is a linear combination,
with integer coefficients, of &, &“and (4) gives another pair of primitive
half-periods. Equivalent pairs of primitive half-periods are connected by
unimodular transformations

) a fB ® a fB
(7 . = , =L

’

o’ y 8] Le y 8

It can be shown [see, for instance, Tricomi (1937, Chap. I, sec. 2)]
that a pair of primitive periods may be chosen in such a manner that

® lol<|o] and m(w%w)>Y%.3%

but such a choice will not be assumed in this chapter.
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Two points of the z-plane are said to be congruent if they differ by a
period. A connected set of points is called a fundamental region if every
point of the plane is congruent to exactly one point of the set. We shall
always choose the fundamental region as a parallelogram, with two sides
and the vertex at which they intersect being counted as part of the paral-
lelogram, the other two sides and three vertices not forming part of it.
Fixing a z , the points -

9 z=z +2l0+ 270" 0<é<], 0<yx<l

form the fundamental period-parallelogram. Any parallelogram obtained
from this by a translation by a period, that is every set of points

(10)z=zo+2(m+f)m+2(n+n)m' 0<é<]l, O0gy<l

with a fixed pair of integers (m, n) is a period-parallelogram, or, shortly,
a mesh.

Since a doubly-periodic function assumes the same value at con-
gruent points, it is sufficient to describe the behavior of such a function
in any one mesh, Since f(z) has only isolated singularities and isolated
zeros, it is possible to choose the fundamental period parallelogram
(i.es, z ) so that no singularities or zero of f(z) lies on the boundary of
a mesh. This will be assumed in the general theorems of sec.13,11, and
such a mesh will be called a cell.

13.11. General properties of elliptic functions

A doubly-periodic meromorphic function is called an elliptic function,
that is to say, an elliptic function is defined to be a single-valued
doubly-periodic analytic function whose only possible singularitiesin
the finite part of the plane are poles. In this section f{(z) will be such a
function, w, @ a pair of primitive half-periods of f(z), and Q the point-
lattice associated with f(z).

It may be mentioned here that often Weierstrass’ sigma- and zeta-
functions, theta functions, and other functions associated withk elliptic
functions are also referred to as elliptic functions (in the wider sense),
but in the present chapter the term ‘‘elliptic function” will be used in
the sense of the definition given above,

Every non-constant elliptic function has poles. For if f(z) has no
poles in a mesh then it is bounded there, and hence in the entire plane.
By Liouville’s theorem it is then a constant.
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An elliptic function has only a finite number of poles in any mesh,
and, if it does not vanish identically, only a finite number of zeros
there. For an infinity of poles in a meshimplies the existence of a limit-
ing point of these poles, and hence an essential singularity, Similarly,
an infinity of zeros of an elliptic function which does not vanish iden-
tically implies the existence of an essential singularity.

The number of poles in a cell, each pole counted according to its
multiplicity, is called the order of the elliptic function. The set of poles
or zeros in a given cell is called an irreducible set.

The sum of the residues of an elliptic function at its poles in any
cell is zero. Let C be the boundary of the cell. The sum of the residues
is

1
Tt 90 1O

and this is zero, since the integrals along opposite sides cancel,

There is no elliptic function of order one. For such a function has
exactly one simple pole in each cell, and the residue is zero by the
preceding theorem,

An elliptic function of order r assumes, in any mesh, every value
exactly r times (counting multiplicity), To show that f(z) — ¢ has exactly
r zeros, take the mesh sothat { (z)/[f(z) - c] is regular on its boundary C.
The difference between the number of poles and the number of zeros of

f(z)=cis

1 / f(z) J
oni Jo f)-c

and in this integral the contributions of opposite sides cancel.

The sum of an irreducible set of zeros is congruent to the sum of an
irreducible set of poles (each zero and pole being repeated according to
its multiplicity), Let C be the boundary of a cell, and let @, ... , @ be
the zeros and B,, ... , 8, the poles of f(z) within C. The function
f(z)/f(z) has asimple pole with residue 4 at a zero of order &, and a
simple pole with residue — % at a pole of order £.

1 zf (2)
— dz =
27i J, fz) h

(1)

I rAs

' (ar— ,B’).
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If the vertices of the cell are Z 2o+ 20, 2+ 20 + 205 2, + 20, the
integral in (1) is

1 “e l:(zo +)flag+8) (z°+2w’+t)f’(zo+2w’+t):| i

2mi f,+0) fz +20 "+ 1)

2771 (o)

1 2"Jl[(zoﬂ)f'(zon) (zo+2w+t)f’(zo+2w+t)] J
- t

2410 flz,+2) flzy+ 20 +1)

1 1
=2_rri 20 [logz;]"(zoﬂf)];(‘LJ - 2w '[Iogf(zo + t)]éw fo

Since f(z) has periods 20, 2w we see that logf(z ), logf(z, + 20 ),
and logf(z, + 2w) differ from each other by integer multiples of 27,
and hence the integral in (1) has the value 2mw + 27 @ %

From these fundamental theorems some corollaries follow immediately,
We mention only two of these,

Two elliptic functions which have the same periods, the same poles,
and the same principal parts at each pole differ by a constant.

The quotient of two elliptic functions whose periods, poles, and zeros
(and multiplicities of poles and zeros) are the same, is a constant.

All elliptic functions with the same periods (2w, 20 ) form a field, &,
that is the sum, difference, product, or quotient of two such functions
has the same periods., Clearly, any rational function (with constant
coefficients) of such functions belongs to &. Moreover, the derivative
of any function of & belongs also to &, so that & is a differential field.
An integral of a function of & does not necessarily belong to &, Although
(2w, 20”) is a pair of primitive periods for some functions in &, and a
pair of periods for all functions of &, it is not necessarily a pair of
primitive periods for all functions of &,

From the representation of elliptic functions in terms of certain
standard functions (see secs 13.14) some additional results easily
follow,

Any two functions, f and g, of ! are connected by an algebraicequa-
tion P(f, g) = 0, where P(x, y) is a polynomial with constant coef-
ficients, and the algebraic curve P (x, y)=0 is unicursal.

Any elliptic function satisfies an algebraic differential equationof
the first order, P(f, f’) = O, Here again P {(x, y) is a polynomial with
constant coefficients and of genus zero.
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Any elliptic function, f(z), satisfies an algebraic addition theorem

(2) Alf@), flo) flu+2)I=0

where 4 (x, ¥, z) is a polynomial whose coefficients are independent of
u, v, and (2) is satisfied identically in u, v.

Conversely, it may be shown that ¢ single-valued enalytic function
of z which satisfies an algebraic addition theorem of the form (2)is either
a rational function of z, or a rational function of e”™* for some A, or else
an elliptic function.

The simplest (non-trivial) elliptic functions are functions of order
two. Among these one may select as standard functions either a function
which has one double pole (with residue zero) in each cell, or else a
function which has two simple poles (with residues equal in magnitude
but opposite in sign) in each cell. The former possibility is chosen in
Weierstrass’ theory, the latter in Jacobi’s.

13.12. Weierstrass’ functions
" Let 2w, 20’be a fixed pair of primitive periods,

1) r=w70y, Imr>0
2) w=wm=2mw+2nm'.

% and Il will indicate infinite sums and products taken over all integers
m, n, and £ “and II* sums and products taken over all integers m, n with
the exception of m =n =0,

Weierstrass® function @(z) = p(do, »’) in an elliptic function of
periods 2w, 20’ which is of order two, has a double pole at z = 0, the
principal part of the function at this pole being z72, and for which
@(z) — z7% is analytic in a neighborhood of, and vanishes at, z = 0,These
conditions define g(z) uniquely. To obtain an analytic expression we
first construct a meromorphic function which has double poles, with
principal parts, (z — w)7?, at all points w = w _. The partial fraction
expansion of such a function is

B) f@)=z"2+E[(z-w)2~w™2]

Moreover, f(z) — z ™2 vanishes at z = 0. We prove that f(z + 2w) = f(z)
= f(z + 20 ’) by rearranging the series and then conclude that f(z) = p(z)
or

) o N 2 1 1 -l
W ple)=pllo, o =;+ (z—2mm—2nm')2—(2mm+2nm')2_l
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The function @(z) is an even function of z. Also

5) A2)==-22"3-23"(z-w)*=-23(z —w)"3,

Integrating term by term we obtain Weierstrass® zeta function which is
a meromorphic function with simple poles.

©6) ¢@)=(Glw, 0)=2""+2(z-w) " + w7 + 20077
(D plz)=-¢"2).

The function {(z) is an odd function of z. It is not doubly- periodic and
hence not an elliptic function. Tt is usual to put

(8) ((z+20)=¢G@)+ 2, (z+207)=/{E)+ 29"
Since £(z) is an odd function of z,

9 n=°4o) 7=’

By integrating {(z) around a cell one obtains Legendre’s relation
(10) no’-po="Y%ni.

Weierstrass® sigma function is an entire function whose logarithmic
derivative is the zeta function

: 2
(11) 0(z)=0(z|w, @) =2 H’{(l—-z-> exp [—z-;-i (i) J}
w w 2 \w

o’(2) ) < o’%(2) = 0(2) ¢" (2)
oz) * €T o2(2) '

With the abbreviations

(12) ¢(2)=

(13) g,=60 Iw™e, g, =140 Swe,

the power series expansion of 0(z), and the Laurent series expansions of
¢(2), @(2), ¢ (z), in a neighborhood of the origin are

g8, %" 8572’ g3 2°

24.3.5 23.8.5.7 2°.32.5.7

(14) o(z)=z -

_ g2g3z11
27.32.5%2.7.11

3
g, %2 g3%

22.3.5 922.5.7 24.3.52.7

5 2,7
8,%

+ eoe

1
(15) £(z)=—
z
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1 g ZZ g gZZG
1 (z)=— 4+ B82°% | 3% 2
16) plo) =5+ 5+ 3777 35.5. 57

+ eee

2 8,2 & z3 ,gzz5
17) p(2)=—— +22_ 423 _ 422 ..
1D e 23 2.5 7 '2%.52

The radius of convergence of these series is equal to the smallest dis-
tance of two points of the point-lattice Q, i.e., the smallest of the four
numbers 20|, 20|, |20 £ 20|,

Formulas with Weierstrass’ functions may be expressed more symmet-
rically when the notation

,

(18) w,=w, w,=-~0-0’, w,=o

19 7 - Hw) a=1,2,3
is used. We then have

(20) é(Z+2(oa)=§(Z)+27]a a=1,2,3
21) oz + 20 ) =~ 0(2) exp[2 (z + )] a=1,2,3,

It is convenient to introduce the three functions

(22) o (z)= oletog) exp(-zn,) a= 1,2, 3,
* olw,)
For these we have
(23) oz + 2w,) = ~ 0 (z) exp[27 (z + » )] a=1,2,3
0,z + 20p) = 0,(z) exp (2 5(z + )] a, B=1,2,3, a#p.

The function p’(z) is an odd elliptic function of order three with
periods 2w ,, a= 1, 2, 3: it has three zeros in every cell. Now, p (- w )
= ¢ (0 ,) since p “has period 20, and p (~w ) = —p (0 ) since p "(2)
is an odd function of z, Thus we see that z = w, a= 1, 2, 3 is an irre-
ducible set of zeros for g (z), It is customary to put

(24) e,= p(wy) a=1,2,3.

The function g(z) — p(w ) is an elliptic function of order two, It has
double poles at points congruent to 0, and double zeros at points con-
gruent to  ,. Since it is of order two, these are the only poles and zeros,
and hence the function [ () - e, 1% may be defined as a single-valued
function (but it need not have perlods 2w, 2w’, see sec. 13,13, 13,16).
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13.13. Further properties of Weierstrass’ functions

The dependence of g(z) on the half-periods w, w?’, is indicated
by writing (2|0, @), the dependence on the invariants g,, g, by
#(z; g ,, g,); and similarly for the other functions of Weierstrass.

From the definitions we have the homogeneity relations for arbitrary

t#£0,

1) o Gzl|tw tw) =1t~
pzltw, to)=t"? p(zlw, )
{(tz|tw, to ) =t7" {(z]|w, @)

o(tzltw, tw”) =t o (z|w, ©”)

3 © '(Z|a), (1)’)

3

@) @'zt g,, ™ g )=t p (258, 8,)

plz;t™ g 7% g )=t"2 p(z;8,,g,)
Llez;e™4 g, 1708 )=t"" Lz; 8, 8,)
oltz; ¢4 8 5 t'6g3)= t U(Z; 82 g3)'

Thus it is seen that Weierstrass’ functions depend essentially on two
parameters which may be chosen, for instance, as the ratios of z, », ©"
The expressions of the invariants in terms of the periods are given in
13.12(13), Conversely, from 13,9(6) and 13,12(24),

e
Wg= fx (4t - g,t—g,) % dr.
The functions

p’2(z) and [p(z)-e Jlp(z)-e,llp(z)-e,]

are both elliptic functions of order six with periods 20 , a = 1, 2, 3.
They both have an irreducible set of double zeros at @, a =1, 2, 3, and
a pole of order six at 0. By the general theorems of sec. 13,11, their
quotient is constant. The value of this constant may be computed from
the expansions 13,12(4)and (5), Thus we obtain the algebraic differential
equation of Weierstrass’ g -function,

@) g @) =4dlpl)-e llpl)-e, Hplz)~e 1

An alternative form of this differential equation may be obtained from the
remark that

p 2 (z)-4p° (@) +g,p0(2)
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is an elliptic function of order six at most, and that all possible poles
of this function are congruent to 0, From the expansions 13,12(16) and
(17) it follows that this function is regular at z = 0, and hence a constant
by sec.13.11, The value of this constant, obtained by means of 13,12(16)
and (17), is - g ,, and hence the alternative differential equation

(4) 50'2(2)=4p3(2)—g250(z‘)—g3.
A comparison of the right-hand sides of (3) and (4) shows that €y
a =1, 2, 3 are the roots of the algebraic equation 4:° ~ g,¢t ~g =0,

and the formulas for symmetric functions of the roots of algebraic equa-
tions lead to the following formulas

(5) e, +te,+e =0,
—4(eze3+e3‘e'+e'ez)=g2, 4e e, e, =g,
1 3 1
(6) ef+e:+e§=§-g2, e?+e2+eg=zg3, e‘:+e:+fz‘;=§g:
(7) 16_(ez—e3)2(e3—e,)2(e'—ez)z=g:—27g§=A.

The last of these expressions is the discriminant of the cubic equation,

The differential equation (4), together with the remark that p(z) has
a pole, and hence becomes infinite, at z = 0, establishes the relations
13.9(6) and (7), and the connection between Weierstrass’ canonical form
of elliptic integrals of the first kind, and Weierstrass’ p- function. From
(4) we also have

@) " (@)=6p(2)-%g,, " @)=12p()p)
and, by induction,

p(Zn-Z)(Z) and W(Z"H)(Z)/&O'(Z)

are polynomials of degree n in p(z).
The addition theorem of the g-function may be written in several
forms.

o W)= ) |2

9 pl+v)= I:m - ) - )
(10) |1 o () o W)
1 W) w () =0

1 plu+v) -pu+v)
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1 (Y — o ”

2 | pl)-pb
~ (U)_i_a_ w () — ()
¥ 2 v © () - p W)
2
(12) gz(u+v)+gz(u—v)=2@(u)—? Hog [p (u) - p ()11

These addition theorems may be obtained in several ways, They may be
proved by observing that the functions on the two sides of the equation
are elliptic functions with the same periods, poles, and principal parts,
and have the same value at some specified point,

From the addition theorems many formulas for Weierstrass’ function
follow, We note

(e ~e e ~e.)
o 8 ‘a 'y a=1,2,3

(13) plz+ow )=e +

(14) 80(22)=—280(z)+|: g () ]

20 (2)

(15) p2)=p()+ [p2)~e,l* [p(e) - e 1*
+lp@) —e Vlp()~e, 1% + [p) —e, 1% [p(2) - e, 1%,

In the first of these, a, B, y is any permutation of 1, 2, 3. Equation
(14) is the duplication formula. The square roots in {15) are to be taken
in accordance with (22),

There are also corresponding formulas for Weierstrass® zeta and sigma
functions.

1 ') - p W)

(16) Clu+v) =L+ L)+ E2€ 2
2 p@-pk)
(17) o@w+v)olw—-v)=-02@)o?@)p k) - @)

These formulas are sometimes called the addition theorems of the zeta
and the sigma function, although they are not addition theorems as defined
in 13.11(2). Since () and o(u) are not elliptic functions, they cannot
possess addition theorems. The following formulas may be deduced from

(16) and (17).
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1 2

1) ¢ to)=¢@ ty oo LD a=1,2,3
2 pa)-e,

(19) ¢z+2mow+2nw0’) =) +2my+2ny”° m, n integers

(20) 0z +2mw+2ne’)=(=Nrtrtmg(2)
xexplz+mw+no)2my+ 2ny)] m, n integers.

Equations (16) to (18) may be proved by expressing the elliptic functions,
[p (@) - p @)/ [p @) - p )] in terms of zeta functions, p () - (v) in
terms of sigma functions, and p “(2)/[p(z) - e ] interms of zeta functions
(see the following sections),

It has been mentioned in sec. 13,12, in the lines following 13.12(24),
that [ (z) — ea]% may be defined as a single-valued function of z. This
may be done by taking that square root which will make z = 0 a simple
pole with residue unity for this function. Since the principal part near
the origin of @ “(z) is ~2z 73, this definition implies that

(21) 50'(Z)=—2[go(z)—e,]% [p(2) ~e 1% [p(z-)—ea]%.

To obtain an explicit formula for [g(z) - ea]%, putu =2z, v = &, in (17)
and use (20) and 13,12(21).

olz + “’a) o(z - (ua)

@) 0% ()

plz)~e =~

2
oz +w))

A APPSR T PG
_az(z) oz(wa) expl-27 (z + w )| = e .

Extracting the square root according to the definition made above,

22) [p(z)- ea]% =0 (z)/a(z).

In particular, putting z = @ g

(23) (e5e)¥ = 0,(wg)/olwy)n

In relations involving square roots, such as (15), we shall always assume
that the square roots are determined as in (22) and (23). From (23) and
13,12(22) we have

(24) (eB—ea)yz= o(gt wp) expl~n_ wg)

olo,) a(a)B)
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and this equation in combination with Legendre’s relation 13,12 (10) shows
that

(25) (e1—e3)%=i(es—el)%, (e|—ez)%=i(e2—e1)%

(ez—ea)% =i(ea-—ez)%'.

13.14. The expression of elliptic functions and elliptic integrals in
terms of Weierstrass’ functions

We shall now consider the problem of expressing any elliptic function
in terms of standard functions, either as a rational combination of g and
@ (linear in @ *), or as a linear combination of zeta functions and their
derivatives, or else as a quotient of two products of sigma functions.Let
f(z) be an elliptic function with periods 20, 20w’ and let p(z), £(2),
0(z) be Weierstrass’ functions constructed with primitive periods 2w, 2w *,

Expression in terms of p(z) and g “(z). First, let f(z) be an even
function of z. If f(z) has a zero or pole at z = 0, this zero or pole must
be of even order, and hence f(z) [ (2)]° willbe analytic and # 0 at z = 0,
for some integer s, The zeros and poles of the even function f(z)[p(2)]*
are situated symmetrically to the origin, Let Gyy v s Qps —Gyy vee sy =0y
be an irreducible set of zeros, and B8, v0o , 8,5 =B 5 s , =B, an irre-
ducible set of poles, each zero and pole repeated according to its mul-
tiplicity, Then

h
@ e | £2lzetb)
) -pla)
r=1 r
is an elliptic function without zeros or poles and hence a constant, An
even elliptic function may be expressed as a rational function of gp(z).
Let f(z) be any elliptic function
1 L, f2)=f(-2)
f(z) 2 [f(2) + f(~2)]+ p’(2) o)
Here f(z) + f(~2) and [f(2) = f(~2)V/ p *(2) are even elliptic functions and
Lence rational functions of @ (z). Thus, any elliptic function may be
expressed in the form

(1) f@)= R,'[so(z)] + R, [p(2)] p (2)

where R , W) and R, (w) are rational functions of w.
From this, in conjunction with the differential equation and addition
theorem of the g -function it follows easily that any elliptic function has
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an algebraic differential equation and an algebraic addition theorem, and
that any two elliptic functions with the same periods are algebraically

connected (see secs 13,11).
Expression in terms of zeta functions. The function {(z) is not an
elliptic function, but it is easy to see by means of 13,13(19) that

f
2 e, ¢la-y)

loreover, {(z) = ~@(z) so that all derivatives of {(z) are elliptic func-

tions,
Let B,, ... , B, bean irreducible set of distinctpoles of f(z), and let

(BT

br.s(z - BT)-S

s=1

be the principal part (the sum of the negative powers in the Laurent
expansion) of f(z) for the neighborhood of z = 8_which is a pole of order
m , « Consider

g @ s
Pe- f(Z)— ,-21 32 (S -1 r,s 4 (z - B,-)'

Now,
h
gibr.l Z-"(Z—Br)

is an elliptic function since = b » being the sum of residues at an
irreducible set of poles, is zero (see sec. 13,11). Also ¢ V(z - 8 J) is
an elliptic function for s = 2, 3, .., , and hence ®(z) is an elliptic fanc-
tion. Since the principal part of {(z — B )at z = B_is (z ~B )7, it
follows that ®(z) has no polesatz = 8, ..., 8,5 hence no poles at all,
and thus is constant. Any elliptic function may be expressed as

m, ( 1)s°- _
(2) f(z)—b +2 2 (3_1)1 r,sé—(s 1)(Z_Br)_

r=1 s=1
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Such an expression is especially useful when integrating elliptic func-

tions. From (2), 13.12(7), and 13,12(12),

3) j-f(u)du=bou+c+ f {br,rIOg["(u'Br)]"b,,ZC(u-B,)

r=1

m" (_1)8 (8-3)
+2 (s-—l)!b"sp (u—Br)}.

s§= 3

The expansion (2) may be used to establish 13.13(16) and (18).
Expression in terms of sigma functions. Although ¢ (z) itself is not an
elliptic function, it is easy to see by means of 13,13 (20) that
h

olz-a)
4y ¥()= ;[;[‘ m;—

h
is an elliptic function if and onlyif r§1 (a,=B,}=0,Now let a,, e, a;;

B s «+ s B, be anirreducible setof zeros and poles of f(z), each repeated

h
according to its multiplicitys We know (secs 13.11) that % (a,-B,) is

r=1

a period, and replacing some of the zeros and poles by congruent ones,
h
we may assume that 2 (gq,- 8,) = 0. We then form ¥ (z) according to
r=1

(4), and see that f(z)/¥(z) is an elliptic function without zeros and poles
and hence a constant. Any elliptic function may be expressed as

h
(z-a)
5 (z):c a——r——.

where a,, ... , @, is anirreducible setof zeros, and 8,, ... , B, an irre-
ducible set of poles, of f(z), each zero and pole repeated according to its
multiplicity, and the sets are so chosen that

© S a-3g.
=1 r=1

The representation (5) may be used to prove 13,13 (17).
Elliptic integrals. Given an elliptic integral in Weierstrass’ canonical
form

(0 I= [R(x,y)dx, y*=4x’-g,x-g,,
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we may put
@8 x=p(g,,8) y=9128,,8,)

to reduce (7) to

(9) I=JRlp(2), p(2)] p"(2)dz.

The integrand is a rational function of g(z) and g z) and hence an
elliptic function, say f(z): it has an expansion (2), and the integral itself

may be evaluated in the form (3).
The substitution (8) represents points on the algebraic curve

(10) y2 =4x®~g x — gy

The coordinates, x and y, appear as single-valued functions of a parameter
z, which is a uniformizing variable for (10) (see also sec. 13.2).
Any elliptic integral

(11) I= JR(x,y)dx
(12) y2=G(x)=a°x‘+4alx3+6a2x2+4a3x+a4

may be reduced to Weierstrass’ functions. We first reduce (12) to Weier-
strass’ canonical form as in sec. 13,5, and then proceed as above. To
some extent the computations indicated in sec. 13,5 may be avoided by
using the expressions 13,5(8) for the invariants with which to form
Weierstrass’ functions. See, for instance, Bianchi (1916, 371-374) where
the computation of an elliptic integral of the first kind involving (12) is
carried out.

13.15. Descriptive properties and ‘degenerate cases of Weierstrass’
functions

In many applications the coefficients of G (x) are real. In this case
13.5(8) shows that also the invariants g,, g, are real. We shall describe
briefly the behavior of g (z) for real g, and g, distinguishing two cases
according as the discriminant A = g3 — 27g2 is positive or negative.

First let A > 0. In this case there exists a pair of primitive periods
2w, 20’ so that o is real and w ” is imaginary. The point-lattice of all
periods may be generated by a rectangular line lattice. The function
@(2) is real on the lines of the lattice,

Rez=2mo m integer
ilmz=2ne’ n integer

and also on the half-way lines
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Rez=02m+ 1w m integer
ilmz=2rn+ 1o’ n integer,

We have the following symmetry relations in which z, and z, are real.

plz, +iz ) =pz, —iz,))=gpl-z ~iz )= pl-z +iz),

the bars denoting conjugate complex quantities. In this case e ,e,, e,

are real, el >e,>e e, > 0 e,<0. As z describes the boundary of the

rectangle , cu, 0+ oy e,0, the function g (z) decreases from o to
=plo)toe,=plo+ o), toe,=p(u), to -,

Now let A< 0 This case is very different from the first one. There is
again apair of periods, the first of which is real and the second imaginary,
but they are not primitive periods. There exists, however, a pair of con-
jugate complex primitive periods giving a rhombic fundamental parallelo-
gram. If 20, 20’ are a pair of conjugate complex primitive periods, the
diagonals of the period parallelograms are the lines

Rez=m(w+ow’) m integer
ilmz=n(w-o” n integer

and these are the only lines on which @(z) is real, Only e, is real in
this case: e, and e, are conjugate complex. As z varies along diagonals
of period parallelograms from 0 to © + ©”to 2w (or 20 ”) go(z) decreases
from +eo to e, to —oa.

Degenerate cases of Weierstrass’ functions occur when one or both of
the periods become infinite, or, what is the same, two or all three of e,
5 coincide, We list the following three cases.

(i) Real period infinite,

€,s¢€

(1) e ,~e,=a, e,=-2a

(2) gz=12a2, g,=—8a% w=o, o’=(12a) % 7i

(8) g(z; 12a%,-8a% =a+3a isinh[(.?»a)%.z]}m2

@) ¢(z;120% -8a%) = —au + (3a)* ctnh[(3a)* 2]

(5) o(z; 12a% ~8a® = (3a)7% sinh[(3a)%z] exp (-fl/zaz 2,
(ii) Imaginary period infinite.

(6) e,=2a, e,=e,=-a

(7 g,=120% g,~80% w=012e)"%s o’'=ic.
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(8) gf(z; 12a2, 823 = —a + 3aisin [(3a)% z]}~2
(9) <(z; 1202, 8a®) = az + (3a)” ctnl(8a)* 2]
(10) o(z; 12a2, 8a®) =(3a)7% sin[(3a)% z] exp (H%az?).

(iii) Both periods infinite.

(11) e, =e

. ’,
2=83=0’ g2=g3=0’ W=—1l@® = ™

(12) plz;0,00=272 (£(2;0,00=2"", o(z;0,0)=z.
In all three cases A=0.
13.16. Jacobian elliptic functions
Jacobi’s function
(1) w=snu=snu, k)
may be defined as in sec, 13.9 by the integral
@ w= [T [A-2)1- k227 dx

in which the square root has the value 1 at x = 0, Also sn (0, &) = 1, The
integral may be evaluated in terms of Weierstrass’ functions (see sec,
13.14). It turns out that

3) e":ez:es=(2—k2):(Zkz—l):—(1+k2), 2=(e,—83)-%u

and
(e, - ea)%
[p(z)—e 3]%
For the other two basic functions of Jacobi’s we have
[p(2) - e 1%
[p(z) e ]%

(4) sn(u, k) =

(5) cnfu, k)=

[p(z)~e 1%

d T — e
(6) dn(u, k) PIBEr

In (4), (5), (6),

(7) u=(e, —83)%2, E2=—2 3
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and all square roots occurring here are uniquely defined by 13.13(22)
and (23). Using these latter relations we may rewrite (4) to (6) as

y ofz) o, (z)

@ sn@ k)=(e, ~e)* 0,(2)’ Cn(u,k)=a;(z)
dn (u, k) = 0,(2) .
o (2).

3

The nine subsidiary functions 13,9(4) may similarly be expressed in
terms of sigma functions. In what follows these nine functions will be
omitted in general, since the formulas relating to them may easily be
obtained from the formulas for the three basic functions (8).

In sec. 13,9, the Jacobian functions have been established in aneigh-
borhood of the origin by the inversion of an elliptic integral, Equation
(8) shows thatan analytic continuation of these functions leads to single-
valued analytic functions with poles at the zeros of o (z). Moreover, it
is easy to see from (8) and 13,12(23) that the Jacobiar functions are
doubly-periodic. We put

(9) u=(e1-e3)%z, K=(e1—e3)%(o, iK'=(e,—e3)%w',

call K the real quarter-period and K’ the imaginary quarter-period, and
verify that (9) is in accordance with the definition of K and K’ as com-
plete elliptic integrals in 13,7(1) and (2)s The primitive periods of sn,
cn, dn may now be found by means of 13.12(23). The zeros of o (z) are
all simple and may be read off 13.12(11), those of o (z) follow from
13.12(22), This gives the (simple) zeros and poles of Jacobi’s functions.
Lastly, 13.12(14) in conjunction with 13.13(23) enables us to determine
the residues of the three functions (8). The results are shown in Table 5.

TABLE 5. PERIODS, ZEROS, POLES, AND RESIDUES OF JACOBI'S
ELLIPTIC FUNCTIONS

m and n are integers

Primitive
Function| Periods Zeros Poles Residues
4K , =n-
sn (u, k) , 2mK+ 2niK
2iK k
, & i 2mK nmn
cn (u, k) | @m+ DK+ 2riK ,
2K + 2iK + (2n + 1)iK ik
2K , +1
dn (u, k) WK’ (2m+ DK+ (2n + 1DiK =Dt
i
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0 <k%< 1, then K and K’ are real, and taking also e  real, we see
from (3) that we may take e, > e, > e_, when © becomes real and w”
imaginary. This is the case A> 0 of sec. 13, 15. '

For any k% (£ 0, 1) we take
the parallelogram which is one
eighth of the fundamental paral- v=iK v=K+iK”’
lelogram for sn or dn and denote N D
its vertices by the letters S, C,
D, N as in the figure. With this
notation, the first letter in the
symbol of the twelve Jacobian
functions shows the position of S c
a zero, and the second, the v=20 v=K
position of a pole., Zeros and
polesarerepeated athalf-periods.

From Table 5 it is easy to verify that any cell contains twosimple
poles (with zero residue-sum) and two simple zeros of any Jacobian
elliptic function. Thus Jacobi’s functions sn u, cn u, dn u are elliptic
functions of order 2, Given the modulus, k, the quarter-periods K, K ”are .
determined by 13.7(1) and (2), uniquely if the k-plane is cut from — to
~1 and from 1 to cos Thereupon the data given in Table 5 determine
Jacobi’s functions uniquely. We have expressed these in terms of sigma
functions, but an independent construction in the manner of the construc-
tion of sec, 13,12 is possible, See Neville (1944) where the construction
of all twelve Jacobian functions is carried out in a symmetric manner.
(The reader should note, however, that Neville’s notation differs some-
what from the customary notation adopted in this book.)

Legendre’s complete elliptic integrals of the second kind are also
expressible in terms of values of Weierstrass’ functions

e, o+ e.w’+n’
(10) E=._‘__T’lZ s EE,'L_T’%_,
(e, -e,) (e,~ey)

The modulus, k, and the complementary modulus, k£ are determined
uniquely as

(ez—es)% ’ (ei—ez)%
(11) k—?e‘_—es)k—’ k —m.

Given any modulus, %, equation (3) determines the e  (up to an irrel-
evant factor), and hence the invariants according to 13.13(5). The
Weierstrass functions constructed with these invariants then fully define
the Jacobian functions, their periods, the complete elliptic integrals.



13.17 ELLIPTIC FUNCTIONS AND INTEGRALS 343

Conversely, the Weierstrass functions formed with any invariants deter-
mine Jacobian functions whose modulus is given by (11).

In sec, 13,7 it has been pointed out that the (incomplete) elliptic
integral of the second kind is a single-valued function of u. This defines
Jacobi’s function E (u). Putting ¢ = am(u, k), sin¢p = sn(u, k), and
sint = sn (x, k) in 13.6(2) we find

(12) E) = j(‘)" dn? (x, k) dx.

Jacobi’s function £ () is not periodic since

(13) E(u +2K)=E (u) + 2E,
E@w+2iK)=E@W)+2/(K'-E").

Sometimes it is convenient to use the function
E
(14) Z@)=F @) =

which is singly-periodic, since
(15) Zw+2K)=Z(u), Z(u+2iK")=Z(u)~in/K.

Although the functions £ (u), Z (u) are not elliptic functions, they have
many properties similar to those of elliptic functions. See, for instance,

Whittaker and Watson (1927, p. 517-520).

13.17. Further properties of Jacobian elliptic functions
We shall often use the abbreviations
(1) s=sn(u, k), c=cnlu, k), d=dn(u, k).

The following basic formulas are consequences of the definitions of
Jacobian functions and of the properties of Weierstrass®’ g -function. Differ-
entiation with respect to u will be indicated by a prime. Thus,

(s)'=ds/du (s)" =d?%s/du?, etc.
(2) s2+e2=1, k®s%?+d?=1, d2-k%c?=k"?
(8) (s)’'=cd, (c)'=-sd, (d)’'=-k?sc

@) (s)"=—s(dé+kzcz), (e)' =~c(d?-k2s?),
(d)" =-k?d(c?~s?)

(5) (s)2=(1-53)1Q-k%s?)
6) ()%= ~-c?)(k2c2+k"?)
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) @)2=0-d?) @ -k"?)
(8) sn(-u)=-snu, cn(~z)=cnu, dn(-z)=dnz
(9) sn(2K-u)=snu, cn(2K-u)=—~cnu, dn(2K—-u)=dnu
(10) sn(2iK’~u)=-snu, cn(2iK’—u)=—-cnu,
dn (2iK’~u) = ~dnu.

The power series expansions
3 5

11) sn(u,k)=u—(1+k2)%+(1+14k2+k4)% .

2 4 €

u
en(u, B) =1 + (1 4+ 4532~ (14 4452+ 165%) —— + v
21 4! 61

2 4 €

dn(u, B)=1— k2 — + k24 + £?) — — k2(16 + 4452 + k¥ e + oun
ol Al A 61

have a radius of convergence
(12) min(JK’|, 2K+ iK’[|, |2K-iK’|).

The addition theorems may be obtained from the addition theorems of
the g -function in combination with the transformation (see Table 11, sec.
13.22)

(13) sn(iu, k) =isc(u, k”), cnlu, k)=ncu,k”)
dn (iu, k) = dc (u, k).

In the addition theorems we shall use the abbreviations

(14)s,=sn(u,,k), sz=sn(u2,k), s;=sn(u2,k')

with similar abbreviations for cn, dn. We then have
(15) sn(ul+uz,k)=(s|c2d2+c‘dlsz)/(1—kzs‘zs:)
cnlu, U, k) =(c, c,—-s,d, szdz)/(l—kzs‘zs:)

dn(u1 +u,, k)=(d‘dz—kzslclszcz)/(l—kzsfsg)

(16) sn(u, +iu,, k)=(s,d£+ icidjsz'cz’)/(c2'2+kzs‘zs;2)

. _ _ [ R 2 2.2 ,2
enlu, +du,, k) =(c ej~is d s d))(c;® +k2s?s]?)

dn(u, +iu,, k) = (dlcgd;—ikzs1cis£)/(c;2+ k2s? S;z)
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(17) snQu, k)= 2scd/(1 - k%s%)
en(Qu, k) = (cz—szd.z)/(l—kzs“)
dn(2u, k) =(d? - k2s2c2)/(1 - k%59

(18) snHu, )= -c)* (1 +d)7%
en(Bu, B)=(d +c)% (1 +d)7*
dnGu, k)= (d + k2c + E°2)% (1 + d)%,
In (17) and (18) we reverted to the notation (1) Equations (16) show
that the values of Jacobi’s elliptic functions for any complex u may be
computed if the values of these functions, and also of the functions with

the complementary modulus, are known on the real axis.
We also note the following Fourier expansions

2 o q"'% Tu
(19) snu=——o z —_—— sin(2n ~ 1) —
) kK &, 1-g>! e 2K
2 o n=% Tu
cnu=— z 'q—z'fr cos(2n-1) —
EK Z,1+4¢% 2K

27 | 1 3 q" Tu

dny=— —+z cosn
K |4 2, 1+g% K

in which
(20) g=¢ i exp(~7K’/K).

The expansions (19) are valid in the strip of the complex plane bounded
by the lines *iK '+ AK, —00 <A < oo,

The values of sn, cn, dn at the points mK + ni K" (m, n integers) may
be found by means of 13,12(24): from these the values at the points

(2l) %mK+Y%niK’ m, n integers

may be found by means of (18). The results for 0 <m, n < 3 are shown in
Table 6. The points chosen in Table 6 range in each case over one-half
of a cell, The values at the points (21) in the other half of the cell may
be found by means of Table 7, at other points (21) by the periodic prop-
erties of sn, cn, dn. All square roots in this table are to be taken as
positive when 0 < £ < 1, and are defined by analytic continuation other-
wise.
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From the addition theorems and Table 6, we may obtain the values of
Jacobi’s functions at the point %¥mK + %ni K’+ uin terms of their values
at u. Table 7 shows the results for the points mK + niK £ u. The table
covers more than a cell in order to exhibit the symmetry around the points
S, C, D, N of Jacobi’s functions. In the table the abbreviations (1) have
been used and when double signs appear, the upper signs refer to mK +
niK’+ u, the lower to mK + ni K'—u .

Jacobian elliptic functions may be used for the computation of Weier-
strass’ functions when e, e,, e are given. The modulus of the Jacobian
functions, and the variable of the Jacobian functions are given by 13,16
(7)s The periods of Weierstrass’ functions follow from 13.16(9), the
quantities 7 and 7 “from 13.16 (10). Weierstrass’ basic function is

€y~ %3

(22) S’J(Z) = 63 +m-

The three e  may always be numbered in such a fashion that |k| < 1.

13.18. Descriptive properties and degenerate cases of Jacobi’s elliptic
functions

In many applications we have 0 < % < 1, In this case also 0 <k°<1,
and 13.8(1) shows that K and K’ are real. The point-lattice mK + niK”*
may then be generated by a rectangular line-lattice (although the latter
need not correspond to primitive periods). We shall indicate the behavior
of sn u, cn u, dn u in this case by diagrams (see below), The notations
outside the figure indicate the position of the lattice-points mK + niK’,
the notations inside the figure give the value of the function in question
at the lattice points. Along fully drawn lines the function is real and
between any two consecutive lattice-points it is monotonic. Along the
broken lines the function is imaginary and between any two consecutive
lattice-points it is monotonic. Along lines joining a zero and a pole of a
function the sign of the imaginary part is not at once obvious from the
figure and will be indicated by a — or + symbol.

From these diagrams we see that all three functions are real and
periodic on the lines Im u = 2n K’ The functions sn and cn have periods
4K and oscillate between 1 and -1, the function dn has period 2K and
oscillates between 1 and £’ on lines corresponding to even n, and be-
tween — 1 and —% “on lines corresponding to an odd value of n.
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TABLE 7. CHANGE OF THE VARIABLE BY QUARTER- AND HALF-PERIODS.

SYMMETRY.

sn(mK+niK tu)

mK
niK”’ -K 0 K 2K 3K
-iK’ ~d/c) * 1/lks) d/lke) F 1/tks) —d/ke)
0 —c/d ts c/d Fs —c/d
iK' ~d/(kc) T 1/(ks) d/(ke) F 1/(ks) —d /(kc)
2iK’ —c/d ts c/d s —c/d
ecnmK+niK tu)
mK
niK’ -K 0 K 2K 3K
-iK’ —ik’/(kc) *tid/(ks) ik’/(kc) Fid/(ks) —ik’/(ke)
0 tk’s/d c Fk’s/d -~c +k’s/d
iK' ik ke Fid/ks) —ik/ke) | Tid/(ks) ik /kc)
2iK’ Fk’s/d —c +k’s/d c Fi's/d |
dnmK+niK Tu)
mK
niK’ ~K 0 K 2K
-iK’ Fik’s/c tic/s Fik’s/c *ic/s
0 k7d d k7d d
iK’ +ik’s/c Fic/s tik’s/c ¥ ic/s
2iK’ ~k7d —d ~k7d ~d
3K’ Fik’s/c tic/s Fik's/c tic/s
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2iK’;o 1 io -1 o:
I |+ 1
| ' :
o 1k :w —1/k oo
| | Il
| |
N - *
I [
olLo 1 10 -1 0]
0 K 2K 3K 4K
snufor 0Reu< 4K, O0<Imu<2K’
I I |
| | I
| | |
'K': | —ik 7% +oo | ik 7% =
PP N S, { S o Lo 4 . |
| | B
[ |
| ' I
| l |
NE |0 [-1 Lo 1
0 K 2K 3K 4K

cnu for 0 < Re u < 4K,

0<Imu < 2K’
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4iK” .
1 k 1
’ i O g
3iK ————— - — — — — —
+ -
-1 -k’ -1
2iK”’
’, o0 0 o0
) A e
- +
1 k’ 1
0

0 K 2K

dnufor 0OSReu< 2K, 0<Imu<4K”’

These diagrams may also be used to determine the signs of the real
and imaginary parts of Jacobi’s functions in any of the rectangles. Take,
for instance, the rectangle whose vertices are K, 2K, 2K + i K’, K + i K",
From the diagrams we have on the boundary of this rectangle

Resnz>0, Imsnu<0;
Becnu <0, Imcnuc<O;
Rednu>0, Imdnu>O0;

and by the theory of conformal mappings these inequalities hLold also in
the interior.
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O ————— ——

[ [
u u,
RV
7aS
fw)=0or o fw)# 0, 00
[ [ [ ]
u, u, u,

SYMMETRIES OF JACOBIAN ELLIPTIC FUNCTIONS

The symmetries of Jacobi’s functions may also be read off the dia-
grams, Let u, and u, lie symmetrically with respect to a zero or pole of
one of Jacobi’s functions, f(u), say, let u, and u, be symmetric with
respect to a lattice point which is neither a zero nor a pole, u and u,
symmetric with respect to a line on which f(u) is real, and u, and u,
symmetric with respect to a line on which f (x) is imaginary. Then

flu)==fu)=fl)=fu)=-1@,

We also note that

(1) |snu|=k"*% Imu=@+%K’
(2) |dnu|=k’* Reu=(n + %)K,

A rotation by a right angle carries the diagram of sn u essentially
into the diagram of dn u; a rotation by a right angle does not change the
diagram of cn u essentially.

A more complete description of the Jacobian elliptic functions for
0 <k <1is contained in the relief diagrams given in Jahnke-Emde (1938,
P 92, 93)0
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The Jacobianelliptic functions degenerate if one or both of the periods
become infinite, that is, if £2 is 0, 1, or indefinite (the last case being
trivial), As in the case of Weierstrass’ functions (see. 13,15), we list
three cases.,

(i) Real period infinite.
3 k=1, E'=0, K=w, K=Yz

(4) sn(u, 1)=tanhu, cnfu, 1)=dn(u, 1)= sechu.
(ii) Imaginary period infinite.
(5) k=0, Ek’=1, K=%77’ K’'=e

(6) sn(u, 0)=sinu, cn{u,0)=cosu, dn(z, 0)=1.
(iii) Both periods infinite,

(7) K=K’=x, snu=0, cnu=dnu=1

13.19. Theta functions

Although functions closely related to theta functions were encountered
by Euler, Jakob Bernoulli, and Fourier, their systematic study and their
exploitation for the theory of elliptic functions is due to Jacobi. Jacobi’s
theta functions correspond to the sigma functions of Weierstrass’ theory.
Like the sigma functions, theta functions are entire functions and hence
certainly not doubly-periodic, yet such that they show a simple behavior
under a translation by a period. Theta functions are more highly standard-
ized than sigma functions, They are simply periodic, can be represented
by series whose convergence is extraordinarily rapid, and they are the
best means for the numerical computation of elliptic functions.

For Weierstrass’ functions we had the variable z, the half-periods
w, ©% we put 7= © 7o, and assumed Im 7 > 0. Jacobi’s functions were
represented in terms of u, and the quarter-periods K, K, where

) u=(e'—e3)%z, K=(e1—e3)%w, iK'=(e,—-e3)%co'.

Theta functions will be expressed in terms of the variable

@ z u
20 2K
the parameter being either
a) » K rd
@) r=—=i— Im7>0
© K
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4) q=e"7""=e"7"”l/“’= exp (- 7K 7K) lg| <1.
The half-periods are 1,7, Making use of 13,10(8), we may always achieve

(5) |q| <exp(=Y%x . 3%),
but such a choice of the primitive periods will not be assumed in what

follows,
The definition of the four theta functions is

n=0

6) 6,0)=06,(v,q) =6, (vn)=2q* S nn g" " sin[(2n+1)7v]

(7 Gz(v)=62(v,q)=62(vlr)=2q% s g""*Veos[(2n + 1) wv]
n=20

@8 6,w)=0,(,q)=0,(v|)=1+2 s q”zcos(2nﬂv)

n=0

) 2
9 6,0)=0,,q)=0,w[)=1+2 X (-1)"¢" cos(2rnmv)
n=0
The last of these functions is sometimes denoted by 6, (v) or 8(v) simply.
These series converge for all (complex) v and all g satisfying (4), On
account of the factor g»° we have excellent convergence. The four series
may be rewritten in the form

(10) 6,@) =1 s (—1)"q("'l/2)ze""(2"")"

n=-—o00

D) 6,(0)= 3 g0 gimtn=ns

n= =00

(12) 6,(v)= ) q"zei"Z""

n==—oc

19 0,0)= 3 (D gt eimem,
n=~—o00
when they appear as Laurent expansions in the variable exp (i 7v), and
are convergent for all finite non-zero values of this variable.

All four theta functions are entire functions of v, All four are periodic,
the period of 0, and 6, being 2, and that of 6, and 6, being 1. Their
behavior under the addition of half- and quarter-periods may be seen from
Table 8 in which the abbreviations
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B(v)= e im(vtyT)
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have been used. Table 8 also shows the parity of the four theta functions.
Table 8 shows that all four theta functions may be generated by any
one of them by the addition of quarter-periods. From the table, 6, has a
zero at v = 0, and hence zeros at m + nr, where m,n are integers. It can
be proved (by integrating 6:/0I over the boundary of a parallelogram with
vertices % *};7) that these are the only zeros of 6;
may be used to determine the zeros of the other three theta functions. In
Table 9, m and n are integers.

and Table 8 then

TABLE 9. ZEROS OF THETA FUNCTIONS
0(v) 0,(») 6,(v) 0, () 0,(v)
zeros m+nr m+Y%+nr m+Y%+(n+ Y%)r m+ (r+ Y%7
% ;

From the knowledge of the zeros it is possible to obtain infinite pro-
ducts representing the theta functions, and from these products the partial
fraction expansions of log 6 (v) and 0’(v)/0(v) follow. From (17) we also
have (19). In the products we use the notation

15) g,= I (1-g™

and have

_ % - o n n
(16) 0,(w)=2g, 9% singv I (1-2¢? cos2mv +q*")

02(1;)=2q0q% cosmv 11 (1+2¢% cos 27v + ¢™)

n=1

n=1

0,0)=gq, o 1+ 2¢g% ' cos 2mv + ¢*7?)

n=1

0, w)=gq, it (1-2¢27 " cos 2mv + ¢*"72),
n=1
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13.
’_ 0'(0) \ sin? mnv
(17) log| = = log(sin7v) + 4 2
L a1 1- q m
q" sin’mnmv
log ] = log(cos 7v) + 4 Z (—1)"‘ =
m=1 _q m
0 (v) o q" sin’mnv
1 =4 -~
* e (o):] MZ, 1-¢* =
log F@(v)] 4 i q"'zm sin? mav
L 04(0) e 1 1—q m
8:(v)
(18) thid =gctnmv + 4nm 2 9" =— sin2mmv
6, ) 2, 1-q
o.0) 3 .
0:(1;) =—gtanwv +4nw MZ, -n- 1q_ s— sin 2mav
0 (’U) m
=4 (—1)"‘— sin 2
03( ﬂmzl —qm msLmmwv
9’ ) @ n
4(1: = 2 7 sin 2mmv
8, @) 1-g2»

n=1
1 0. (v +w) 1 sinz{v +w)

19) —1 = log | —m— — m —

(19) 2 o8 01(v—w)] 2 8 l:sin 7lv —w) :I

1 q2m

+2,,,; gl—qz"‘

1 | 6, +w) 1 | cos (v + w)
2 o8 Gz(v—w) T2 & cosm(v — w)
i m 2m
L9 1) q

7 sin2mav sin2maw,
n=1 m l—q

o0

sin2mmv sin2mnw,
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1. [oeiw] % cDr g
(19) —2—]0g _'GZTJ_ =2 ,-,Zg — 1q_q2m sin2mn7v sin2maw,

1 ( 0,w+w) | S 1 g¢"
-1 I At ) 1 o o
2 og | 6, - w) | u§=:l m 1-q2 sin 2m v sin 2m nw

Equations (16) are valid in the entire v-plane. Of equations (17) and
(18) those relating to 6, and 6, are valid in the strip [Im v| < Im 7, those
relating to 6, and 6, in the strip |Im v| < %2Im r. Of equations (19), the
first two are valid when |Im v| + [Im w| < Im 5 the last two are valid when
|Im v| + |Im w| < %4Im 7. From (18) we have

'w+m+nr) 6%v)
< == )-2n1n' a=1,2,38,4; m,n integers,

(20)

0 v +m+nr) N 6,)

Between the squares of theta functions of the same variable there are
the following relations

(21) 6%(@) 62(0) = 6% (v) 62(0) - 6%(v) 63(0)
62 (v) 62(0) = 62(») 62(0) - 62(v) 62(0)
62(v) 62(0) = 62 () 62(0) - 62(») 62(0)
62(v) 62(0) = 62(v) 62(0) - 62 () 62(0).

Each of these relations may be proved by remarking that the ratio of its
two sides is a doubly periodic function (with periods 1 and 7) without
zeros or poles and hence a constant, and evaluating this constant by
using special values of v (half-periods).

Equations (21) are special cases of the so-called addition formulas of
the theta functions which express

00_(0 +w) Ga(v - w) 62(0)

in terms of squares of theta functions of v and w (see Whittaker and

Watson, 1927, ps 487).
The ““theta functions of zero argument”

6,0, 6,0), 6,40, 6,0

are of especial importance (see secs 13,20)s They satisfy several iden-
tities among which the most important are

(22) 6/(0)==6,(0)6,(0) 6,(0)
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23) 63(0) + 6%(0) = 6%(0)

For graphs illustrating the behavior of the theta functions of argument
zero, and for a description and graph of the behavior of 6 (v|0.l) for real
v see Tricomi’s book (1937, p. 137-140).

Theta functions arise, independently of the theory of elliptic functions,
in the theory of heat conduction and similar boundary value problems,
As is seen from (10)-(13), the functions @ (Y%ix|int), a = 1, 2, 3, 4,
satisfies the partial differential equation

o%y Iy
24) —m =,
24) dx? Ot

In this connection it is worth noting that theta functions have remarkably
simple Laplace transforms.

There are also non-linear differential equations of the first order (the
variable is v) satisfied by quotients of theta functions. These can be
derived very easily from the connection between elliptic functions and
theta quotients (see sec. 13,20).

Hermite has studied the function

(25) ©, (|0 = ,,f_jw explime(n+ %2+ 2imvn+ % +imny]
' (see Hurwitz and Courant, 1925, p. 198-201),Jacobi’s four theta functions
are particular cases of Hermite’s function.

13.208. The expression of elliptic functions and elliptic integrals in
terms of theta functions. The problem of inversion

Theta functions are very closely related to Weierstrass’ sigma func-
tions: hence the expression of Weierstrass’ functions in terms of theta
functions. Jacobi’s functions have already been expressed in terms of
Weierstrass’ functions and may now be expressed in terms of theta func-
tions. Lastly, theta functions may also be used to write down expressions
for complete and incomplete elliptic integrals of the third kind. We shall
use the variable z for Weierstrass’ functions, u for Jacobian elliptic
functions and v for theta functions. These are connected by 13.19(2).
The connection between the various notations of periods and other quan-
tities is given by equations 13.19(1) to (4)s

Weierstrass’ functions

z? 6, ()
() o(z)=20 exp<n2—w> 0:'(0)
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12(L)2e2 = 772[0;(0) - 0:(0)]
12(0283 = —772[9;(0) + 9;(0)]

) . w
) (ez—es)é=z(es—ez)% =?w— 0;(0)
1 R 7
(e,—ea)‘=z(ea—e,)% 5 63 (0)
7
(e,—ez)%=i(ez-—e,)%=z 6%(0)

2 4
©® g,-= (2_:.) [62(0) + 6%(0) + 65(0)]

36l

a=1,2,3

a=1,2,3

3
2 Y 104 0) 4 04001 164 0) + 0% O)if0" 4
8= \ 5o 2\0)+ 0 5 0) + 03(0)1[65(0) - 65(0)]

3

©) A¥ =T prx0) =2

43 4¢3

[6,(0) 6,(0) 6, (O)]2

1) 5= O i 1 600

Bo 670) " 2 120 610)
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Equation (1) may be proved by remarking that the quotient of the func-
tions on its two sides is a doubly-periodic function without poles or
zeros, and approaches 1 as v and z tend to 0. Equation (2) follows by
13,12 (22) and Table 8 of sec. 13,19. Equation (3) follows by logarithmic
differentiation of (1), (4) from (2) and 13,13 (22), (5) by (4) and 13,13 (21),
(6) and (7) from 13.13(23), (8) from 12,13 (5) and (6), (9) from 13.13(7),
(10) from (1) and (3). All of Weierstrass’ functions are formed with periods
2w, 20" and variable z, Thevariables v and ¢ in the theta functions are
given by 13.19(2) and (4).

Jacobian elliptic functions. The following relations are obtained from
the formulas of secs 13.16 by means of equations (1) to (10).

(11) £* =9,(0/6,00), &% =6,(0/6,(0)

(12) K% =(%n)% 0,0), K" %=(-%ri)* 6_(0)

0.(0)0 (v) 6 (0) 6, ()
(]_3) snu=3———l_—_, cnu:—i__.z—__
02(0) 64(0) 0, ©)e, ()
_04(0) 6,() _ E 1 6;()
heg 06w CWEY TR T e

Given 7, equation (1]) determines the modulus of the Jacobian elliptic
functions, (12) the quarter-periods, and (13) the functions themselves, In
applications of elliptic functions, usually k? is given and the question
arises whether there always exists a ¢ such that |¢| < 1 and

65, q) 6400, q)
14 E2=2 -4
(e 650, 9) 0300, q)

This is known as the problem of inversion. In many practical applications
0 <k? <1, In this case consider

0:(0, 7) 1 - g2t
0;(0, q) . 1+q2"+'

=1

by 13.19(16). As q increases from 0 through real values to 1, the infinite
product decreases monotonically from 1 to 0 and hence (14) has exactly
one solution ¢ for which 0 < ¢ <1, For other values of k2 the discussion
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is much more difficult (see for instance Whittaker and Watson, 1927, p.
480-483) and involves complex values of q. The proof of a unique system
of Jacobian elliptic functions for any given k2 £ 0, 1 may be based on the
theory of elliptic modular functions.,

Elliptic integrals. The basic elliptic integrals in Legendre’s normal
form, 13.6(1)-(3), may be computed by nmeans of theta functions. We form
Jacobian elliptic functions with modulus %, determine the quarter-periods
K and K/, and put
(15) v= Fz(i, il » g=expl-7K’/K)

for the parameter and variable of the theta functions. We then have from
(13)

1 6]v)
(16) E(¢, k)=ﬁ 94(‘0)

+ 2E'U'

The computation of elliptic integrals of the third kind is more difficult,
We shall give the results for real ¢, v, and 0 <% < 1, shall express v in
terms of an auxiliary real parameter y, different expressionsbeing valid
in the intervals (~eo,~1), (=1, =%2), (~%2, 0), (0, =), use (15), and put

Y
(17) B “ox °

We then have (see Tricomi, 1937, p. 153-158)

en(y, k) dnfly, k) 1
[ y ————  k
(18) snly, &) t [¢ sn?(y, k) ]

1 6,(v+B) 6;(B)

"3 1°g[m] N Ocy<k kI>8
1 6,8+0) |  6(8)
5 log[ei(ﬁ_v)] 94(3)1) <y<K, |v]<B

,, S0y, &) enly, £7)
dn(y, &)

1 6, +if) 668
=——] —2 | L= 0 ’
Py Ogl:ez(v—iﬁ)] l€3(iB)v <y <K

(19) % I [, —dn?(y, £ ), k]
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en(y, k) dn(y, k)

T [, ~k%sn2(y, k), k
(20) G ) [o sn?(y, k), k]
1 6, +B) 0 (B)
”'21°g|:94(v-/3):l+ 5.8 " O<y<K
dn(y, k) sn’(y, k)
2 I1 y b2 ———
1) snly, k%) enly, £°) [q& cn?(y, k°) k:|
1 8, (w+ip) 6’ (LB)
=— lo <K’
5 [e (U-L/a)] 8.Gp) " O<y<K

In all these formulas logarithmis have their principal values, In (18) and
(20) these are real, in (19) and (21), ~# < Im log[--+] < 7, The right-hand
sides of (19) and (21) are real. From 13.19(18) and (19) we have

’ i x 2n .
22 ¢ Z'ELZ;— 7 ctnh 73 —47 ngi 13(]2" sinh 2n 783
6:GB) < .
(23) ¢ 92(iB)=4” ngl -1) T 4% sinh 2n 73

(24) 2% log [Z::—:izg—;] = —tan" ' (tanh #8 + tanmwv)

(_1)n 2n
+2 2 q 5~ sin2n7v « sinh2n 73

n=1
1 6,v+ip) < 1
(@) -2—1 [9 (v—zB):| ; w1

The convergence of the infinite series in (23) and (25) is not always
as rapid as one would wish., When ¢ is not small, the expansions

sin2nn7v » sinh2na8.

(26) ,(v+ip)=1+2 s (—1)"{7" cos (2n wv) cosh(2n #B)
n=1

+i S =1n" q"z sin (27 7v) sinh (2n 7B3)

n=1
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27) 6,GBR)=1+2 s q"z cosh 2n#zB)

n=1
(28) 10, B) = 4n by nq"z sinh (2n7B)
n=1

may be used for the computation of the right-hand sides of (19) and (21).
These expansions, and some others which are useful in these computa-
tions, follow from 13,19(6) to (9).

Complete elliptic integrals of the firstkind have already been expressed
in terms of theta functions, see (12). For complete elliptic integrals of the
second kind, we have from (6), (7), (10), and 13.16(10),

63(0) + 65 (0) 1 67(0)
36%(0) 12K 670

(29) E =

Complete elliptic integrals of the third kind have already been reduced,
in 13.8(21)-(24), to elliptic integrals of the first and second kinds and
hence may be computed by means of theta functions,

Finally we mention that in applying theta functions to the computation
of Jacobian elliptic functions orof elliptic integrals with a given modulus
k, 0 <k <1, the parameter ¢ of the theta functions may be computed from

(30) g=€+2e5+15¢%+ 150" + oee 2e=(1=k"%)Y/Q + k%),

13.21. The transformation theory of elliptic functions

The transformation theory of elliptic functions deals with the relations
between elliptic functions belongingto different pairs of primitive periods.
Since any elliptic functions of periods 2w, 2w “ may be expressed alge-
braically in terms of p(z|w, w?), it is sufficient to discuss relations
between g -functions. We shall always assume

1) Im(e7@)>0, Im(&78)>0,

and will summarize briefly theresults of the general transformation theory,
referring for proofs and fuller details to the books listed at the end of
this chapter.

We shall say that two functions f(z) and g(z) are algebraically con-
nected if there is a polynomial in two variables, P (x, y), such that
P[f(z), g(z)]1=0 identically in z.

A necessary and sufficient condition for g (u|w, ©°) and @ |d, &*)
to be algebraically connected is the existence of integers a, B, y, 8, p
such that
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(2) pb=aw+Bw’y pd'=yo+do; D=ad-By>0,

Given (2), clearly both @ (z|w, ©”) and p(u|d, &) are even elliptic
functions of periods pw, pw’ and hence they are rational functions of
©(ulpw, po ). Thus, it is sufficient to envisage substitutions (2) with
p =1, and these we shall write in matrix notation as

[ a B @ a B
® [ ][ ][ ] " S
o’ y 8 o’ y &

Then the relation between
4) 2x=pGlo, o), y=pi|d o)

is of the form
(5) Plx,y)=0
where P is a polynomial in x and ¥, linear in %, and of degree D in y.

(The degree in y is elucidated by counting poles.) We call D the degree
or order of the transformation

;]
6) T-= , sl

and shall multiply transformations as matrices,

a B]‘[a b [aa+Bc ab+Bd]
|:y o c d] ya+ 8c yb+ 5d
The transformations (3) may also be envisaged as Moebius trans-
formations of the upper half of the complex plane onto itself,

. y+or
T = Y
a+ fBr
All transformations of the first order form a group (the modular group).
A necessary and sufficient condition for g (u|w, ©’) = p (u|d, &7) is that
w, w’ and &, &’ be connected by a transformation of the first order

(7)

(unimodular transformation},
The modular group is generated by the transformations

1 0 0 1
(8) A= ]’ B= |: ]7
1 1 -1 0
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that is, any unimodular transformation is a product of powers of 4 and B.
Thus, the study of transformations of the first order may be limited to the
study of 4 and B.

Similarly, the study of transformations of the second order may be
limited to Landen’s transformation )

(9L—[2°]
A

since any transformation of the second order, S, may be decomposed as
S = HLK, where H and K are unimodular transformations.

13.22. Transformations of the first order

A transformation of the first order leaves the point-lattice Q, of all
periods (sec. 13,10) unchanged. Since Weierstrass’ functions o(z), {(2),
g (2), and the invariants g,, g, A = g,- 27g32 deperd only on £, they do
‘not change, The e may undergo a permutation. From 13,12(19) and 13.
13(19)

7 =d|ld, d )= |w 0)=Llaw+Bolw, @)=an+ By’

7'=yn+dn’
so that 5, 7’ undergo the same transformation as w, w’s The functions
o ,(z) may undergo a permutation. A straightforward computation shows
that 4 of equation 13,21 (8) interchanges the indices 2 and 3, and B the
indices 1 and 3, ine,, ¢,, ¢, and g, (2), 0,(2) o, (2).

The behavior of Jacobian elliptic functions under unimodular trans-
formations is more involved. If a and & are odd integers,and 8 and y even
integers, in 13,21(6), we call T a A -transformation, It is easy to verify
that all A - transformations form a subgroup of the modular group, and this
subgroup is called the A - group. For a A-transformation,

é=pd|d, d)=plaw+Bo’|lo, 0)=pl)=e¢,,
since B w”is a period for even B3, and a w differs from @ by a period for
odd a. Similarly ¢, = e, and &, = e ;. From 13,16 (4)-(6) it is seen that
Jacobi’s functions sn, cn, dn are invariant under Mtransformations. Any

other unimodular transformation affects Jacobi’s elliptic functions.
We shall consider the five transformations

a A_|:1 o] B_Lo 1] C_[l 1]
) 4= 1 1] -1 of Lo 1
-1 T 0 1
o3 e 0]
-1 0 -1 -1
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The last three may be expressed in terms of 4 and B.

(2) C=ABA, D=ABAB, E =BABA.

In Table 10 the six transformations U (identity), 4, «. , £ are listed
together with the permutations of e  effected by them. Every permutation
of e , e,, e, occurs. Since the permutation of the e  completely deter-
mines the transformations of Jacobian elliptic functions, it is sufficient
to consider the transformations (1) in order to obtain all possible trans-
formations of the first order of Jacobi’s elliptic functions.

TABLE 10. PERMUTATIONS OF THE e

Transformation 1) &’ é| é 2 é3
U @ CL)’ e, e2 e3
A 13 o+’ e, e, e,
B ’ @ €3 €2 €,
C o+’ ©’ e, e, e,
D -0+’ -w e, e, e,
E o’ —w-o’ e, e, e,

This table in combination with 13,16 (4), (5), (6), (9), and (11) at once
leads to the transformation formulas recorded in Table 11.

For the transformation of elliptic integrals see Table 3, sec, 13.7, and
Table 4, sec. 13.8.

The transformations of the four theta functions may be derived from the

expression

w2 AR nz? z %
(3) 0,(‘v|r)=—”,/2— exp\ ~ 5~ o(z) v=§;, r=w

which follows from 13.20(1), (9), and 13,19(2), (3). We know already
how the right-hand side behaves under a transformation 13,21 (6) of the
first order and note in particular that

an+Bn’ Blho'-n'w) Pri

]
aw+ Bo’ wd 20d

I}

n.an.n_
) )
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(4 ‘mup | (3 ‘mup (3 “n) up . - y | (@ +o)-
(% ‘n) uo 1 (3 “mus & (M7 +Myy Y . H 3&..».! ) q
(F ‘muw | (g muo | (y muo e _ e ol o
1 (4 ‘mup | (y‘mus * " ‘ oA 3 1 A D+ a
¢/
(4 ‘n)ud (% ‘m)up T_\ ‘mus y MY A\v:+v—vu~. H H ny ‘ o)
A ! L0+
(g ‘mue | (g muo | (y‘muo : @=
(4 “m up 1 (4 mus A A A e g
¢/
(9 *‘myup | (3 ‘m)yup (% “n) up y ¥ , P+
T qmw | G ? | AT BT e ™ o 4
Aw\ .@:v @. .w& uo Aw\ .Q.& us . | b. | LY Y n % uoljeuIojsuel],
. * . 3 )
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by 13.12(10), and also that

z z v . y+0or
_26_2(aw+Bw')—a+Br ’ T_a+[31'

Then we have, from (3),thegeneral transformation formula of 6 (v|r) for
transformations of the first order,

v ’y+5r _ Y inBv*
4y ¢, (a+Br|a+ﬁr>_ ela+ Bn)* exp (m) 0, (),

where €® = 1, The factor ¢ accounts for the ambiguity in the fractional
powers in (3) and may be determined by dividing (4) by v, making » » 0,
and then comparing both sides, The transformations of the other three
theta functions then follow from Table 8, sec. 13,19.

The explicit formulas for the transformations 4 and B of (1), which
generate the modular group, are as follows.

Transformation A.

6 d=v, #=145 g=-9¢
6) 0,w|r+ D=e¥T 9 (v[r), 6,0[r+1)=e*7g, (|0
6, wir+ D =6,0|n, 6,|r+1)=20,(

Transformation B.

(7) d=v/r, #==1r7 log¢ =u*/logq

1
(8) 9, <i’——> =—il-in)% expGav?/) 6, (|7

T T

9, (i -l—) =(~in* explinv¥/n) 6, (v]7)

T T

1 L
6, (i _——) =(~in)” expnv?/7) 6, (7

T T

1 ,
6, (-E- ——) =(-i % explinv?/7) 6, |7
T

In these formulas (—i A% has its principal value (lies in the right half-
plane). Transformation B is known as Jacobi’s imaginary transformation.
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Transformation B may be used for the numerical computation of theta
functions when g is near 1, or 7 is very small, when the series for 6,(v|7)
converge somewhat slowly, but those for 6 (v/7|- 1/7) converge very
rapidly. In particular, the asymptotic behavior as ¢ + 1 may be investi-
gated in this way, and one obtains

(9) 6,00, 9)~ 6,00, @)~ (~n/log g)* g-1

13.23. Transformations of the second order

There is essentially only one transformation of the second order, in
the sense that any transformation of the second order is a combination
of Landen’s transformation

a L-[2 0]
) Lo 1

and two unimodular transformations. In writing down the transformation

formulas we shall observe the following convention. All Weierstrassian

functions whose periods are not indicated are formed with primitive per-

iods w, ®% and all e , 7, (without dots) are derived from such functions.
Landen’s transformation. Weierstrass’ functions.

2 & =Y%w, &’'=0’

(3) é|=e'+2(e'—-e2)%(el-—es)%
e‘2=e'—-2(e,—e2)%(e,—e3)%

€ ,=-2e,

@ d,=n,+%e, 0, d,=1,-1,+%e (0,-w,)
Ba=2n,+e,0,.

5) oGHaw, 0)=explie, 29 0(2) 0, (2)
o, Mw, 0)=explie 29 [02() ~ (e, ~e,)% (e, ~e )% o2(2)]
o,z 0= explie, 22 [02(2) + (e, — )% (e, —e )b 02(2)]
o,z w, 0 = explie, 22) 0, () 0, (2)

6) (Mo, 0D=L0E)+{z+w)+e, z-n
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pGho, 0)=p@E)+plz-0)-¢,
(e‘—ez)(e1—€§)

(7)

= p(z) + T

Since Landen’s transformation of Weierstrass’ functions involves

e, 7, Which are not invariant under unimodular transformations, we
a

record the basic formulas for two other transformations- of the second

order,
Gauss’ transformation. Weierstrass® g -function,

(8 G—[l O]
“lo o =-BLB

9 pilo,ho)=p)+pz-0,)-¢,
(61_63) (ez_ea)

=50(z)+ p(z-)—-es

The irrational transformation., Weierstrass®’ g -function

1 0
(10) I=[ 1 2] =-ABLABAB

(11) pzlo, bo+%e)=p(2)+plz-0,)-¢,
(e, —e,)e,-¢,)

= plz) - Y

Landen’s transformation. Jacobian elliptic and theta functions.When
the parameter in a theta function is not indicated, it is understood tobe 7.
b= Q-EYQ+kD, F=28%/Q+k")

‘ sn(u, k) cn (u, k)

1-%
1+ 47 = ’
(13) Sn[( +k)u,1+k,] 1+ 47) dn (u, k)

1-%* - 2
cn[(1+k')u, k ]=1 (1+%°) sn?(u, k)
1+%7 dn (u, k)
- ’, _ — ’ 2
i [(1+k')u, 1-k ]_ 1-1-%k")sn?@, k)
1+k7

12) e =1 +%)u,

- dn (u, k)

2

(14) 9 =2v, 7=2r, ¢=g¢
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1 6,0)0;0)
' , _ Y% [9%(0) 97 (0N¥e — 2 O
(15) 670120 = %r* [6:0) 67O =5 B 5 5 o

6,(0127) = 27% [6%(0) — 63 (0)}*
6,(0121) = 27% [62(0) + 62(0)}%
6, 0|27 =16,(0) 6, (0))*

(16) 0, 2v|27 =6—'(i)6—2(v~)-

9,0]27)

2 _ 2 2 \_ 2
0, (20]2n 2P 0W) 60~ 650)

20,0120 26,0127
6,(2v]27) = ;) + 61 (w) 67) + 65()

26,0[27) 26, (027)
6, 2oj2n =22 0a®)

6,027
Gauss’ transformation. Jacobian elliptic functions
(U7 &= +Bu, k=26%/0+k), kF'=1L-B/1+K

. 2]5% sn(u, k)
18 1+k)u, = k '
( )sn[L + u1+k] 1+ )1+k ot B

k% , k) dn(u, k
TP BT LT
1+k Y+ksn?@,k)

Zk%:l 1—F sn?(u, k)

dn [(1 +k)u,
1+% 1+ksn?(u,k)

Transformations of higher orders are more involved. We mention here
only the transformation (LB)? which is of the fourth order and leads to
the following duplication formulas for the theta functions. All theta func-
tions have the same parameter .
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6,) 6,(v) 0,(») 0, (v)

0.(2v)=2
(19 8, (20) 6,(0)6(0) 6,00)

9: (v) 9: (v) -0? (v) Oi(v)

6,2v)=
,2v) s
5. 20y @) 050 + 61 0) 65)

3 62(0) 6,(0)

6,(20) = 650) - 0360) _ 05() - 67()

63(0) 63(0)

13.24. Elliptic modular functions

An elliptic modular function, f(7), is a function which is regular save
for poles, when Im > 0, and has the property that f(7) and f(7) are alge-
braically connected whenever r and 7 are connected by a transformation
of the modular group

W 7 =ar+B

a B, y, & integers, ad-By=1
yr+ 8

[Note that @, ... , y have been renamed as against 13,21 (7). If f(r) =
f(7) for any transformation of the modular group, then f(7) is called an
automorphic function of the modular group.

A first example of such a modular function is the square of the mod-

ulus of the Jacobian elliptic functions. From 13,16(7) and 13,20(14)

- 0:(0|n
p2-27% _ % - (0,
(2) U 5401 A7)

1 3

is an analytic function of r for Im 7 > 0, with the real r-axis as a natural
boundary. From the invariance of e , e,, e, under A-transformations .
(a, & odd, B, y even, see sec. 13.22) it follows that A(7) is an auto-
morphic function of the A-group. In general, a transformation of the mod-
ular group will permute the e and hence change A(7) into one of the six
values

3) A, 1-A()

1 1 A0 _ 1
AT 1= A(-1" Ao
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Since all these are algebraically connected with A(r), this function is
an elliptic modular function.

From 13,12(13), g,, 84, and A = g: - 27g: are homogeneous functions
of degree —4, -6, — 12 respectively in w and  “and the absolute invariant

3 3 . .
@ fz__B2 @
A g, -2g]

is a function of 7 alone: it is analytic in the upper half-plane, A trans-
formation of the modular group leaves g, and A unchanged (see sec.
13,22), showing that J(r) is an automorphic function of the modular
group. From 13,13 (6), (7) and 13,16(3), J may be expressed in terms of
A, and from 13.20(8) , (9) in terms of theta functions

4 (1-x+23% 1 [6:(0|r)+0§(0]r)+02(0]7)]3

I = —
® T ATy TH T aep e 6%

We call two points 7, 7 in the upper half of the complex r-plane equi-
valent if they are connected by a transformation (1) of the modular group,
The fundamental region of the modular group is defined by

121 e+ 1>, |r=12]r

The upper r half-plane may be subdivided into an infinity of regions,
each bounded by three circular arcs (one or two of which may degenerate
into segments of straight lines), and each equivalent to the fundamental
region. In fact every point in the upper half-plane is equivalent to exactly
one point of the fundamental region.

Given an automorphic function of the modular group, it is sufficient
to investigate the behavior of this function in the fundamental region.
For instance, it may be proved that J(r) assumes every finite value
exactly once in the fundamental region, and this shows that to every
(finite) value of J there is exactly one system of Weierstrassian func-
tions. _

The fundamental region of the A-group is bounded by the straight
lines Re 7= 1 1 and the circles [27 + 1| = 1; the boundary points in
Re 7> 0 belong to the region, the boundary points for which Re 7 <0 do
not. It may be proved that A(r) assumes every finite value different from
zero and unity exactly once in the fundamental region of the A-group, and
this is the key to the problem of inversion (sec. 13,20): it may be used
to prove that the Jacobian elliptic functions are uniquely determined when
the square of the modulus is assigned as any number # 0, 1.
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13.25. Conformal mappings

Elliptic integrals, elliptic functions and related functions occur in
many important conformal mappings. Many examples of such conformal
mappings, and some further references, are to be found in H. Kober’s
‘“Dictionary of conformal representations® (1952, p. 170-200). In this
section we shall describe some of the most important mappings briefly,
Throughout the section we assume the ‘‘real’’ case,

0<k<l, 0<g<l, woreal, o imaginary, K, K’real,

and pute, >e,>e . We put Re z=2, Im z =z, and similarly for other
complex variables. In diagrams illustrating conformal mappings from the
plane of one complex variable to the plane of another such variable,
corresponding points will be indicated by the same letter.

z,=0
w’ o+’
0 o] R
I I
) -0
zz __O a B O..; CL e‘z e" wz a
0 @ Iy C B
1I I
Iy C The mapping w = g(z)
= @’ w—-w’ '

The function w = @(z)s As z describes the boundary of the rectangle
with vertices 0, @, @ + w 5 @ the variable w is real and decreases from
e« toe,, €,, e, —o (see sec, 13,15)s The function maps the interior of
the rectangle on the lower w half-plane, By Schwarz’sreflection principle,
the rectangle with vertices -0 w — 0% © + ©% »” in the z-plane is
mapped on the whole w plane cut from —e to €,

In the lemniscatic case, g,=0,g,>0, we havee, =0, e ;=—e€,. The
rectangle in the z-plane becomes a square, the diagonal (C joining 0 and
® + o’ is mapped on the negative imaginary axis in the w-plane, and the
diagonal BY joining » and »’is mapped on the lower half of the circle
with center at ¢, = 0 and radius e, in the w-plane. The interior of the
rectangular isosceles triangle with vertices %o + 0% w, ©°+ @ in the
z-plane is mapped on the fourth quadrant of the circle with radius e in

the w-plane.
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The function w = sn (u, k). From sec, 13,18 it is seen that the interior
of therectangle with vertices 0, K, K + ;K /K “in the u-plane is mapped
on the first quadrant of the w-plane, the rectangle —-K, K, K + K}

u, =0
-K+iK’ iK’ K+iK’
d g
I I
G 3
v I
u,=0 |4 G B
-K 0 K
&
w, =0

%o -t

— . LA B

3G A a B C 0
The mapping w = sn (u, k)

~K + iK’is mapped on the upper half of the w-plane, and the rectangle
with vertices £ K +{K’is mapped on the whole w-plane cut from — to
~1 and from 1 to e, It can be proved (see for instance Dixon, 1894,
Appendix A) that the lines u, = const., u, = const., are mapped on the
doubly orthogonal system of confocal bicircular quartics in the w-plane
whose foci are t1, +£~'. These quartics are symmetric with respect to
both thew, and w, axes. The quartics corresponding to u = const. have
two branches, one, encircling 130, corresponding to u, > 0, the other,
encircling J¥, to u, <0, The quartics corresponding to u, = 0 are ovals
encircling ¥B, In particular, for u, = (n + %) K, we have a circle, see
13.18(1), See the figure for further details.
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The function w = cn (u, k)« The interior of the rectangle with vertices
0, K, K+ iK’, i K’in the u-plane is mapped on the fourth quadrant of the
w-plane, the rectangle K, K, K +iK} ~K + (K’ is mapped on the right
w half-plane cut from 0 to 1, the rectangle -iK?, K - iK, K + K, iK”
is mapped on the right half-plane cut from 1 to =, and the rectangle with
vertices * iK% 2K +iK’is mapped on the whole w-plane cut from —oo
to -1, from 1 to «, from —ie to —ik 7k, and from ik /k to i . The lines
u, = const, u, = const are mapped on the doubly orthogonal system of
confocal bicircular quartics in the w-plane whose foci are * 1, * ik /k.
Both families are ovals, those corresponding to u, = const around CE,
those corresponding to z, = const around (i3. Both families are symmetric
with respect to the axes w, =0, w, =0.

Jy
w1=0
ul=0
iK’ K+iK°  2K+iK’
0 C 0 11 ETik’/k II
I IV 0
-1 1 %=
ofd___#B S| u2=0 “ : 0
2K 3 B a
I m
D g D v Ct —-ir7: 1
-iK’ K-iK’ 2K-iK’

The mapping w = cn (u, k)

The function w = dn (u, k). Since it follows from tables 7 (sec. 13,17)
and 11 (sec. 13,22) that
do(u, k)=k’sn(K’—iK +iu, k"),

the mapping w = dn u may be derived from w = sn u.
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u,=0
2£K‘8 g K+ 2K’
I v
.K/ K+iK'
i 0 ‘I C
1|
G 7 I
0 K
b B & C B Qw0
R RS S B k%
v I
m 11
w, =0
Y

The mapping w = dn (u, k).

In particular, the rectangle with vertices 0, K, K + 2i K% 2iK’is mapped
on the lower w half-plane in the manner indicated in the figure, and the
rectangle with vertices 0, 2K, 2K + 2{K ", 2i K’ is mapped on the whole
w-plane cut from ~co to —1 and from 1 to o, The lines u, = const., 1 ,=
const, are mapped on the doubly orthogonal system of confocal bicircular
quartics with foci £ 1, * %% and the lines u, = (m + %4)K in particular
are mapped on the circle with center at w = 0 and radius % * %,
The functions w= {z)+e z.Clearly {(z,) is real, {(iz,) is imaginary,
and since we have from 18,13 (18) that
o +iz,) - L) = {iz,) +l —ﬁ-(zﬁ)—
2 pGz,)-e,

’ | N 1 @'(Zi)
C((L) +Z‘)"C((L) )—C(Z')-*'? W s
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the first of these two expres-
sions is imaginary, the second IR G
real, Investigating the mapping
of the rectangle with vertices
0, w, ® + @ ©’in the z-plane, q B
we find that (B and CH are
mapped on horizontal lines, and 0 @
BC and (0 on vertical lines in z-plane

the w-plane (a = 1, 2, 3). More-

over,

w((d) = =, w(B)=7]+eaw,

wl@)=n+p’+efo+w), wd)=9'+e, 0’

We have to discuss the signs of 7 + ¢ ;@ and of (n’+ e  ’)/i. From
13.16(9), (10), (11) and 13,8(25), (26), we have

(el—es)—% (T]+€1 w)=E>0
(ei—ea)—% (17+e2w)=E—(e1—e3)’% (e, -e)w
=E-k"?K=k*’B>0
(61 —e3)-% (17+e3a))=E— (e, —e3)%(u
=E-K=-%k%D<0
~ile,—e )  (p’+e,0)=-E’<0
. -y , N _ ’_ _ -4 _ .,
~ile,~e )" ('+e,0V=-E’'-(e, —e ) " (e,~e)iw
=-E’+k*K’=-k’*B’<0
~ile, ~ea)—% (n’+e, w)=-E’-(e, —-eav)% iw’
=K’'-E’=k’?D’>0,
In the figures illustrating the mapping w = {(z) + e  z of the rectangle
(GBCD, the abbreviations
n+e,wo=H, n'+e, 0’=H]i
were used. From our discussion,

H>H,>0>H,, H/>0>H]>H.
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In each case that portion of the plane which is to the left of GBCLQ (in
this order) is the map of the rectangle, By reflection on the sides of the
rectangle we find the following results. The function w = {(z) + ¢, z maps

w|=0 wl—_-()
w2=H'
I Cw1=Hl
w, =0 w, =0
2 a 2 (j_
B B
w2=H2' w,=Hz
w={(z)+ ¢z o ¢
w=§(z)+ezz
a a
w,=0
: a
w,=1‘1:_1
C Iy
w2=H; w=§(z)+e32
w, =0
a

the interior of the rectangle with vertices ¥ @, * @ + 2w “in the z-plane
on the region exterior to two semi-infinite horizontal strips with corners
tH , £H, + 2illin the w-plane. The function w = {(z) + e,z maps the
interior of the rectangle with vertices * w + w” in the z-plane on the
exterior of the rectangle with vertices * H, + il ] in the w-plane. The
function w = {{(z) + €,z maps the interior of the rectangle with corners
t % 20w * @’ in the z-plane on the region exterior to two semi-infinite
vertical strips with corners :‘:iHS', 2H, il in the w-plane.

The mapping w = {(2) + e,z maybe combined with one of the preceding
mappings to map the exterior of a rectangle on a half-plane.
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SUBJECT INDEX

All numbers refer to pages. Numbers in italics refer to the definitions.

A

Abelian integrals, 295 fl.

Absolute invariant, 375

Airy’s integrals, 22

Anger’s function Jv (z), 35 ff., 84, 99, 103

Appell series, 280ff.
Approximation of quadratically
integrable functions, 156
Associated polynomials, 162ff.
Automorphic functions, 296, 374

B

Barnes’ integral representations of
Bessel functions, 21 ff.
Basset’s function,
(see modified Bessel function of
the third kind)
Bessel coefficients, 6
generating function for, 7
integral representations for, 13ff., 81
Bessel function of the first kind, 4
derivative with respect to the order, 7
duplication formula for, 45
inequalities for, 14, 66
series involving, 63 ff.
zeros of, 591,
Bessel function of the second kind, 4
of integer order, 7 \
of order zero, 8
zeros of, 61 ff.
Bessel function of the third kind, 4
zeros of, 62
Bessel functions,
addition theorems for, 43 7., 101 ff.
analytic continuation of, 12, 80
and wave motion, 2 ff.
as limits of Jacobi polynomials, 173

384

as limits of Laguerre polynomials,
191
asymptotic expansions for, 22ff.,
85ff.
differential equations for, 13
differentiation formulas for, 11
integrals involving, 45ff., 57,
90 ff.
integral representations for,
14 £, 571., 811,
notations for, 3
of imaginary order, 87 ff.
of order +%, 10, 79
of order n + % (see spherical
Bessel functions)
power series for products of, 10f.
recurrence relations for, 12
relations with Legendre functions,
55ff.
series involving, 58, 63 ff., 98 ff,
Wronskians of, 12, 791f.
zeros of, 58 ff.
Bessel polynomials, 10
Bessel’s differential equation, 3ff.
Bessel’s inequality, 157
Bilinear forms, 284
Biorthogonal system, 265
Birational invariant, 295
Birational transformation, 295

C

Cell, 325

Christoffel-Darboux formula, 159,
269

Christoffel numbers, 161

Classical orthogonal polynomials,
163 fl.
(see also lL.egendre, Gegenbauer
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Jacobi, Hermite, Laguerre
polynomials).
characterization of, 164
differential equation for, 166 fl.
differentiation formula for, 167
properties of, 164, 166 ff,
Complete elliptic integrals,

(see elliptic integrals)
Confluent hypergeometric functions,
expansion in terms of parabolic
cylinder functions, 124

Conformal mappings,
involving elliptic functions and

integrals, 3761

Convergence in mean of generalized
Fourier expansions, 157

Convolution, 45

Cornu’s spiral, 151

Cosine integral, 145 fl.

Cut Bessel functions, 22

D

Didon series, 280ff.

Dini series of Bessel functions, 70 ff.

Doubly-periodic functions, 323 ff.
(see also elliptic functions)

E

Elliptic functions, 294 ff., 322ff., 325
addition theorems satisfied by, 328
differential equations satisfied by,
327

expression of, in terms of g (z),
w (@), 335

expression of, in terms of sigma
functions, 337

expression of, in terms of zeta
functions, 336ff.

general properties of, 325 ff.

integrals of, expressed in terms of
Weierstrass®’ functions, 337

Jacobian, 322fF., 340ff.

Jacobian, addition theorems for,
344

Jacobian, degenerate cases of, 354

Jacobian, expressed in terms of
theta functions, 362

Jacobian, expressed in terms of
Weierstrass’ functions, 340f.

Jacobian, Landen’s transform-
ation of, 372

Jacobian, linear transformation
of, 367#.

Jacobian, periods, zeros, poles
and residues of, 341

Jacobian, quadratic transforma-
tions of, 372f.

Jacobian, special values of,
346ff.

Jacobian, with 0 <k < 1, 3491.

Neville’s notation for, 294, 342

order of, 326

residues of, 326

transformations of, 365 f.

Weierstrass’, 323, 328 4.

Weierstrass’, addition theorem
for, 3321

Weierstrass’, differential equa-
tion for, 331f.

Weierstrass’, degenerate cases
of 339 1.

Weierstrass? duplication
formula for, 333

Weierstrass’, expressed in terms
of theta functions, 360f.

Weierstrass’, Landen’s trans-
formation of, 3714.

Weierstrass®, linear trans-
formations of, 3671.

Weierstrass’, quadratic trans.
formations of, 3718.

Weierstrass’, with real
invariants, 338f.

Elliptic integrals, 294 .

addition theorems for, 315

complete, expressed in terms
of hypergeometric series,
318

complete, integration
formulas for, 322

complete, Legendre’s relation
for, 320

complete, of the first, second,

and third kind, 314, 3171,
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complete, particular cases
of, 320
complete, transformations
of, 318f.
differentiation formulas for,
317, 321
expressed in terms of theta
functions, 363 ff.
expressed in terms of
Weierstrass’ functions,
3371,
interchange theorem for,
303 1., 315
inversion of, 322f.
Landen’s transformation of,
317
Legendre’s, evaluation of,
308 ff.
Legendre’s form of, 300f.,
3141
linear transformations of,
315 fi.
fLow’s form of, 301
moduli of periodicity of, 303
of the first, second, and third
kinds, 299, 313 ff.
periods of, 303, 314
reduction of, 296 ff., 304 ff.
reduction to Legendre’s normal
form, 305 ff.
reduction to Weierstrass’
normal form, 304 ff,
singularities of, 303, 314
Weierstrass’ form of, 299 ff.
Elliptic modular functions, 374 ff.
Equianharmonic elliptic functions
and integrals, 306, 320
Error functions, 147 ff.
connection with parabolic
cylinder functions, 119
expansions in terms of Bessel
functions, 148
power series expansions of, 147
repeated integrals of, 149
Exponential integrals, 143 ff.
expressed in terms of confluent
hypergeometric functions, 143
expressed in terms of incomplete
gamma functions, 143
generalizations of, 145
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Field
differential 327
of elliptic functions, 327
Fourier-Bessel series, 70ff., 104
Fourier coefficients (generalized),
156
Fourier series (generalized) 156
Fresnel integrals, 149 f.
connection with error functions,
149
connection with incomplete
gamma functions, 149
Functions
of the paraboloid of revolution,
126 11,
of the parabolic cylinder
(see parabolic cylinder
functions)
Fundamental period-parallelogram,
325
Fundamental region,
of the modular group, 375
of the A-group, 375
Funk-Hecke theorem, 247

G

Gauss transforms, 194
multi-dimensional, 289 f.
Gegenbauer polynomials, 164,

174 8., 2351.
asymptotic behavior as
n - oo, 198
connection with Legendre
functions, 177
expressed as hypergeometric
functions, 175£.
generating functions of, 177
inequalities for, 206 &,
integral representations for,
177
monotonic properties of, 208
recurrence formula for, 175
Redrigues’ formula for, 175
series of, 177f., 213 4.
zeros of, 203 .
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Gegenbauer’s addition theorem
for Bessel functions, 43 ff.
Gegenbauer’s polynomials
A (2), B (2), 34
n,v R,V

Generalized Dirichlet series, 72 .

Genus of algebraic curves, 295

Glaisher’s notation,
of Jacobian elliptic functions,

322

Graf’s addition theorem for Bessel
functions, 44 ff.

Gram’s determinant, 155

Gubler’s integral representations,
of Bessel functions, 17 ff.

H

Hankel’s function,

(see Bessel function of the
third kind)

Hankel’s infinite integral
involving Bessel functions, 49

Hankel’s integral representations of
Bessel functions, 15f.

Hankel’s inversion theorem, 73
- Hardy’s generalization of, 73 ff.

Hankel’s symbol (v, m), 10

Harmonic polynomials, 237ff.
complete set of, 239 1.

Hermite polynomials, 164, 192 f.
addition theorems for, 196
asymptotic behavior as n - oo,

201 1.
connection with Laguerre poly-
nomials, 193, 195.
differential equations for, 193
differentiation formula for, 193
expansion of analytic functions
in terms of, 211
expansions in series of spherical
Bessel functions, 201 ff.
expressed as confluent hypergeo-
metric functions, 194
generating functions for, 194
inequalities for, 208
integral representation for, 194
integrals involving, 194ff.

mean convergence of series of, 210

monotonic properties of, 208

recurrence relation for, 193
relation to parabolic cylinder

functions, 117
Rodrigues’ formula for, 193
series of, 1931., 216
zeros of, 204 ff.

Hermite polynomials of several
variables, 283 ff.

Hurwitz’s theorem on zeros of
Bessel functions, 59
generalizations of, 59

Hyperelliptic integrals, 296

Hypergeomeiric polynomials,
(see Jacobi polynomials)

Hypergeomeiric series,
of Lauricella, 275

Hyperspherical harmonics, 232 f.

1

Incomplete gamma functions, 133 1.
asymptotic expansions for
large =, 135
asymptotic representations for
large a, 140
connection with confluent
hypergeometric functions, 133,
136
continued fraction expansion, 136
differentiation formulas, 135
expansions in inverse factorials,
139
expansions in series of Bessel
functions, 139
expansions in series of Laguerre
polynomials, 139
integral representations of, 137,
138
loop integral for, 137
Nielsen’s expansion for, 139
power series expansions of, 135
recurrence relations for, 134
zeros of, 141f.
Integral equations involving Bessel
functions, 76 ff.
Integral representations of arbitrary
functions in terms of Bessel
functions, 73f.

N
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Invariants
of a quartic, 305
of Weierstrass’ elliptic functions,
and integrals, 305, 329
Inversion,
problem of, 326 ff., 375
Irreducible set,
of zeros or poles of an elliptic
function, 326

J

Jacobi-Anger formula, 7
Jacobi function of the second
kind, 170ff.
Jacobi polynomials, 164, 168 ff.,
224, 226
asymptotic behavior as
n > oo of, 198
connection with Bessel
functions, 173
connection with Laguerre
polynomials, 191
convergence of series of, 210ff.
differential equation for, 169
expansion of analytic functions
in terms of, 211
expressed as hypergeometric
functions, 170
generating function of, 172
inequalities for, 205 ff.
integral representation for, 172
mean convergence of series of,
210
polynomials associated with, 171
recurrence formula for, 169
represented as finite differences,
173
Rodrigues’ formula for, 169
series of, 172, 212 .
zeros of, 202 1.
Jacobian elliptic functions,
(see elliptic functions, Jacobian)

K

Kapteyn series,
of Bessel functions, 66ff., 103
of the second kind, 67 ff.
Kelvin’s functious, 6, 101

L

Lagrangean interpolation, 161
Laguerre polynomials, 164, 188f.,
226
Abel summability of series
of, 211
asymptotic behavior as 7 > oo
of, 199 ff.
connected with Bessel functions,
191
connected with Jacobi poly-
nomials, 191
differential equations for, 188
differentiation formulas for,
189, 190
expansion of analytic functions,
in terms of, 211
expansions in series of Bessel
functions, 199 f.
expressed as confluent hyper-
geometric functions, 189
generating functions of 189
inequalities for, 205 ff,
integral representations of, 190
integrals involving, 191
mean convergence of series of,
210
momnotonic properties of, 207 ff.
recurrence relations for, 188, 190
represented as finite differences,
191
Rodrigues’ formula for, 188
series of, 1881., 214 1.
zeros of, 204 ff.
Lambda-group, 367
Laplace transform, 45 ff;, 191
Laplace’s expansion, 242, 2811.
Lattice,
line, 324
point, 323
Legendre function of the second
kind, 180f.
Legendre functions, 182f,
connection with Gegenbauer
polynomials, 177
relations with Bessel functions,
55ff.
Legendre polynomials, 164, 178 1.
addition theorem for, 1824.
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asymptotic behavior as
n - o of, 197
differential equation for, 179
differentiation formulas for,
179
equiconvergence theorem for
series of, 211
expressed as hypergeometric
functions, 180
generating functions of, 182
Hilb’s formula for, 197
inequalities for, 205 ff.
integral representations of, 182
monotonic properties of, 208
recurrence relation for, 179
series of, 182 ff,, 214
Legendre’s relation, 320, 329
Lemniscate functions 320, 376
Line-lattice, 324
Logarithmic integral, 143
(see also exponential integrals)
Lommel’s functions su v (2),

S (z) 40f., 73 1., 84 1.
M

Special cases of, Alf.
Lommel’s functions of two variables
UV(w’ Z), VV(w’ 2)7 42

Lommel’s polynomials R . (z), 3¢ 1.

M

Macdonald’s integral representations

of products of Bessel functions,
53f.

Maxwell’s theory of poles, 251

Meijer’s generalization of Laplace
transforms, 75

Mesh, 325

Modified Bessel function of the first
kind, 5

Modified Bessel function of the third
kind, 5
duplication formula for, 45
of integer order, .9
of order zero, 9
zeros of, 62ff.

Modified Bessel functions, 5ff.
addition theorems for, 43 ., 102
analytic continuation of, 80
asymptotic expansions for, 22ff,

86 ff.
differentiation formulas for, 79
integral representations of,
18f., 821,
integrals involving, 45ff.,

56 ff., 89
of order 14, 10, 79
of order n + 34 (see spherical
Bessel functions)
relations with Legendre functions,
56 ff.
recurrence relations for, 79
Wronskians of, 80
Modular functions
(see elliptic modular functions)
Modular group, 366, 374 f.
fundamental region of, 375
Modulus of elliptic functions and
integrals, 306
Moment problem, 163
Moments, 157

Neumann series
of Bessel functions 63 f., 98f.
of the second kind, 65
Neumann’s function
(see Bessel function of the second
kind)
Neumann’s polynomials On (), 32 8.

Neumann’s polynomials {} (z), 34
n

Nicholson’s formula for Bessel
functions of large order and
variable, 28, 88
Nicholson’s integral representations
of products of Bessel functions, 54

(8]

Orthogonal group, 257
Cayley’s representation of
the, 257
Orthogonal invariant, 233
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Orthogonal polynomials, 153 ff.
and continued fractions, 162f.
and mechanicul quadrature, 160
Christoffel-Darboux formula for,
159

expansion problems relating to,
209 ff.

extremum properties of, 160

in the circle, 273 ff.

in the sphere and hypersphere,
273 ff.

in the triangle, 269 ff.

of a discrete variable, 221 ff.

of several variables, 264ff.

recurrence relations for, 158 ff.

zeros of, 158

Orthogonal system, 154

of parabolic cylinder functions,
122

of polynomials (see orthogonal
polynomials)

Orthogonalization, 154 ff.

Orthonormal system, 154

P

Parabolic cylinder,
coordinates of, 115
Parabolic cylinder functions, 116,
117
addition theorem for, 123, 124
asymptotic expansions. of, 122f.
Cherry’s theorem for, 124 ff.
connection with error functions,
119
differential equation for, 116
generating function of, 119
integral representations of, 119,
120
integrals involving, 121, 122
real zeros of, 126
Wronskians of, 117
Paraboloid of revolution,
coordinates of, 115
functions of (see functions of the
paraboloid of revolution)
Parseval’s formula, 157
Period parallelogram, 325
fundamental, 325

Periods,

of elliptic functions, 328, 341

of elliptic integrals, 303, 314

of functions, 324

primitive, 324

Point-lattice, 323

Poisson’s integral for Bessel
functions, 14

Polar coordinates,
hyperspherical, 233

Polynomials,

(see also orthogonal poly-
nomials, classical ortho-
gonal polynomials, Jacobi,
Gegenbauer, Legendre,
Tchebichef, Laguerre, and
Hermite polynomials)

harmonic, 237,

of N. Achyeser, 218

of A.C. Aitken and H.T. Gonin,
224

of Appell, 269 ff.

of H. Bateman, 224

of S. Bernstein and G. Szegs,
217

of L.V. Charlier, 222, 226 f.

of J.P. Gram and H.E.H. Green-
leaf, 225

of W. Hahn, 165, 222, 224

of E. Heine, 218

of Hermite and Angelescu, 283

of Hermite and Didon 273 ff.

of Hermite-Didon-Appell-Kampé
de Fériet, 259 .

of M. Krawtchouk, 222, 224 1.

of J. Meixner, 222, 295, 227

of F, Pollaczek, 218f.

of Tchebichef, 222, 223 f.

Primitive periods, 324
Products of Bessel functions,
integral representations for, 47f.
53ff., 96 ff.,

power series for, 101,

Q

Quadratic forms, 283 f.
Quaternions, 255
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R

Raabe’s integrals, 144
Rational curves, 295
Rodrigues’ formula, 179
finite difference analogue of,
222 .
generalized, 164, 169, 175,
193, 276, 279, 285

S

Scalar product,
of functions, 153, 264
of vectors, 232, 273
Schlafli’s integral representations
of Bessel functions, 17
Schléfli’s polynomials S’1 (), 34

Schlémilch series of Bessel functions,
68ft., 103 1.
generalized, 68

Separation theorems, 162

Sine integrals, 745 ff.
generalizations of, 147

Sommerfeld’s integral representations,
of Bessel functions, 19ff.

Sommerfeld’s notation for spherical
Bessel functions, 10

Sommerfeld’s wave, 125

Sonine’s expansion, 43, 64

Sonine-Pdlya theorem, 205

Sonine’s integrals involving Bessel
functions, 46

Spherical Bessel functions, 9, 78, 79
expressed in terms of elementary

functions, 10, 78, 79
Sommerfeld’s notation for, 10, 78,
79

Spherical harmonics, 232f.

Spherical polynomials,
(see Legendre polynomials)

Spherical surface harmonics, 240 ff.
addition theorem of, 242f.
completeness of, 241
four-dimensional, 253 ff.
generating function of, 248ff.
Maxwell’s theory of, 25] ff.
orthogonal property of, 240 ff.
three-dimensional, 248 1.
transformation of, 256 ff.

Stationary phase,
method of, 274,
Steepest descents,
method of, 24
applied to modified Bessel
functions of the third
kind, 24 ff.
Struve’s functions, 18, 37f.,
47, 681., 74, 89, 99, 103
integrals involving, 98

T

Tchebichef polynomials, 183 .
differential equations for, 185
differentiation formulas for,

185, 186
expressed as hypergeometric
functions, 186
generating functions, of, 186
recurrence relations for, 185
Rodrigues’ formulas for, 185

Theta functions, 354 f,

(see also elliptic functions)
expression of elliptic functions
and integrals in terms of,

360 fI.
Hermite’s, 360
of zero argument, 359
transformations of, 368 7.

Transformation,

Landen’s, see elliptic functions,
elliptic integrals

of elliptic functions and integrals,
see elliptic functions,
elliptic integrals

unimodular, 324

Truncated exponential series, 1364.
connection with incomplete

gamma functions, 136

U

Ultraspherical polynomials,

(see Gegenbauer polynomials)
Unicursal algebraic curves, 295 327
Uniformizing variable, 295, 338
Unimodular transformation, 324, 366
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w

Watson’s formulas for Bessel functions
of large order and variable, 29, 89
Weber and Schafheitlin,
discontinuous integral of, 51 ff,
Weber - Hermite function,
(see also parabolic cylinder function)
differential equation for, 116
Weber’s function Ev(z), 351., 84, 103

Weiersirass® elliptic functions,
(see elliptic functions, Weierstrass’)
Weierstrass’ sigma function, 329 ff.
(see also elliptic functions)
Weierstrass’ zeta function, 329 ff.
(see also elliptic functions)
Weight function, 153
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A D complete elliptic integral, 321
am y Jacobi’s function, 322 E
A (¢) Airy function, 200
4,G), 4,6) Airy integrals, 29 e = p(ma), 330
An,y(z) Gegenbauer’s e {x) Truncated exponential

polynomial, 34 series, 136

E Incomplete elliptic integral of

B the second kind, 300, 313
. . ., . E (u) Jacobi’s function, 343
bei x, belyx Kelvin’s functions, 6 El (x), exponential integral, 143
ber x, beer Kelvin’s functions, 6 E (x) function used in astrophysics
n -
B (z) Gegenbauer’s polynomial, 34 and nuclear physics, 134
nilsV L E* (x) modified exponential integral, 143
B complete elliptic integral, 321 E __ Appell’s polynomials, 271
mn
C Ei(x) exponential integral, 143
Erf x error function, 147
cd u Glaisher’s function, 322 Erf? x com.p¥ementary error function, 147
cnu Jacobi’s elliptic function, 322 Erfi x modified error function, 147
cs u Glaisher’s function, 322 . E E complete.elliptic integrals of the
C (x) Fresnel integral, 149 second kind, 314, 317

C (x, @) generalized Fresnel EV(Z) Weber’s function, 35

integral, 149

F
C>\(x) Gegenbauer polynomials, 174
n
Chi x modified cosine integral, 146 F Ix'lcom}?lete elliptic integral of the
Ci x cosine integral, 145 first kind, 300, 313'
C complete elliptic integral, 321 F_ Appell’s polynomial, 271
b Smn Appell’s polynomial, 270
dc u Glaisher’s function, 322 G
dn u Jacobi’s elliptic function, 322 . .
ds u Claisher’s function, 322 &, 64 1nv.ar1.ants of Weierstrass;
D (z) Parabolic cylinder function, 117 elliptic functions, 299, 305
4

393
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G &, ..

My eerm , xn) Hermite poly-.
n
nomials of several variables, 285
C}: Gauss transform, 195
C;u multi-dimensional Gauss
transform, 289

1% s s .
(g multi-dimensional Gauss
transform, 290

3
1 1
A =1+= ftes+—=,8
m
2 m

hei x, her x Kelvin’s
v v

functions, 6
H (x) error function, 147
Hn(x) Hermite polynomials, 193

H:" (2), HLZ) (z) Bessel functions
of the third kind, 4
F O » %) Hermite

M, eseym 1
170,

polynomial of several variables, 285
HV (z) Struve’s function, 37

I

i" erfc x repeated integral of error
function, 149
I (z) modified Bessel function of the
Ve, .
first kind, 5

J

J(7) absolute invariant, 375

J {z) Bessel function of the first
Y first kind, 4

Jy m(z) cut Bessel function of the

first kind, 2]
J,, (z) Anger’s function, 35

K

%k modulus of Jacobi’s elliptic functions
and integrals, 300, 306

kei =x, ker x modified Kelvin
v v

functions, 6
K (x) function used in astrophysics
n

and nuclear physics, 134
KV(z) modified Bessel function of

the third kind, 5
K, K” complete elliptic integrals of
the first kind, 314, 317
L

ln(a) polynomial, 140

1i (xz logarithmic integral, 143
L, L Laplace transform, 46, 191

L:(x) Laguerre polynomial, 188

Ly(z) modified Struve function, 38
N

nc u Glaisher’s function, 392

nd u Glaisher’s function, 3929

ns u Glaisher’s function, 322

0]

On(z) Neumann’s polyncinial, 32

P
Pn {(x) Legendre polynomial, 178

P:G’B)(x) Jacobi polynomial, 168

g,)(z) Weiersirass’ elliptic function,

323, 328

Q

77, 345

(x) polynomials associated

g=e :

qf’“ A)
with Jacobi polynomials, 171

Qn(x) Legendre function of the
second kind, 180
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Qn(x) Legendre function of the
second kind on the cut, 181
Q:"’B)(x) Jacobi function of the

second kind, 170

R

R V(Z) Lommel’s polynomials, 34

m,

S

s (z) Lommel’s function, 40
MV

sc u Glaisher's function, 322

sd ¥ Glaisher’s function, 322

si x sine integral, 145

sn u Jacobi’s elliptic function, 322
S (x) Fresnel integral, 149

S (x, a) generalized Fresnel integral,

149
Sn(z) Schlifli’s polynomial, 34

S#V(z) Lommel’s function, 40
Shi x modified sine integral, 146
Si x sine integral, 145

T

Tn (x) Tchebichef polynomial, 183

U

Un (x) Tchebichef polynomial, 183
UV(w, z) Lommel’s function of two
variables, 42

Ue (x ,...,xn) polynomials

m eses 1
1’ *n

of Hermite and Didon, 277
v

Vv(w’ z) Lommel’s function of two
variables, 42

S .
Vm e (xI 5 voe ,xn) polynomials
n

of Hermite and Didon, 274 ff.

W Wronskian, 12
Y

YV(z) Bessel function of the second
kind, 4
Y: (0, qﬁ) spherical surface harmonic,

250
Z

Z (u) Jacobi’s function, 343
ZV(z) Bessel function, 2, 48

GREEK LETTERS

alx) error function, 147

y{@, z) incomplete gamma function,
133

Y, (@ x) modified incomplete gamma
function, 140

y*(a, x) modified incomplete gamma
function, 133

T{a, %) complementary incomplete
gamma function, 133

A Laplace’s operator, 2, 115, 234

A='gz - 27g§ discriminant, 332
Al &), 317

7={) 7 =), 329

7,= o), 330

é’(z) Weierstrass’ zeta function, 329
9'(11) y ove s 9‘ (v) Theta functions, 355

®lﬂ/(v) Hermite’s theta function, 360

A(7) modular function, 374

IT incomplete elliptic integral of the
third kind, 301, 313

Il complete elliptic integral of the
third kind, 317

o(z) Weierstrass’ sigma function, 329

aa(z) sigma functions, 330

r=w7/w, 328
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@ @’ periods of Weierstrass’
elliptic functions, 328
o, periods of Weierstrass’

elliptic functions, 330
Qn(z) Neumann’s polynomial,

34
MISCELLANEOUS NOTATIONS

arg z argument (or phase) of
complex number z

Im z imaginary part of complex
number z

Re z real part of complex
number z

y Euler-Mascheroni constant
(see vol. I, p. 1)

d
D= —
dx
d
D =
Yoo,
vv Bessel’s differential operator, 4
&),
g I e
" m!

(a)n= F(a + n)/F(a)
(v, m) Hankel’s symbol, 10

(z, ) scalar product of vectors,
232, 273

(¢ ¥) scalar product of functions,
153, 264

{[<]] length of vector T, 232
~ approximate or asymptotic equality,

JC Cauchy principal value of an
integral,

o+
_I; loop integral, 15

o0



