
The Pure Programming Language

Albert Gräf
Department of Computer Music

Johannes Gutenberg University Mainz

February 16, 2010



Copyright © 2009 Albert Gräf. Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation. See http://www.gnu.org/copyleft/fdl.
html.

The latest version of this document and the corresponding LATEX source can be found at
http://pure-lang.googlecode.com/svn/docs/pure-intro.

http://www.gnu.org/copyleft/fdl.html
http://www.gnu.org/copyleft/fdl.html
http://pure-lang.googlecode.com/svn/docs/pure-intro


Contents

Contents i

1 Introduction 1
1.1 Getting Pure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 References and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Etymological Note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Document Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Typographical Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Using the Interpreter 5
2.1 Interactive Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Running Scripts from the Shell . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Command Line Editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Pure and Emacs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Other Text Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 Pure on MS Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Lexical Matters 15
3.1 Character Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Lexical Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Expressions 19
4.1 Function Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.1 Predefined Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.2 Unary Minus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.3 Operator Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3.1 The “Head = Function” Rule . . . . . . . . . . . . . . . . . . . . . . 27



ii Contents

4.3.2 Nonfix Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.3 The Anonymous Variable . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.4 Non-Linear Patterns and Syntactic Equality . . . . . . . . . . . . . . 28
4.3.5 Type Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.6 “As” Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4 Lambdas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.5 Conditional and Case Expressions . . . . . . . . . . . . . . . . . . . . . . . 31
4.6 Local Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.7 Lexical Scoping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.8 Primary Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.8.1 Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.8.2 Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.8.3 Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.8.4 Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.8.5 Tuples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.8.6 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.8.7 Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.8.8 Comprehensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.9 Evaluation Order and Special Forms . . . . . . . . . . . . . . . . . . . . . . 44

5 Definitions 47
5.1 The Global Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2 Rule Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.2.1 Guards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.2 Repeated Left-Hand and Right-Hand Sides . . . . . . . . . . . . . . 49
5.2.3 Local Definitions in Rules . . . . . . . . . . . . . . . . . . . . . . . . 51
5.2.4 Optional Left-Hand Sides . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3 Function Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.4 Constant and Variable Definitions . . . . . . . . . . . . . . . . . . . . . . . . 54
5.5 Programs and Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.5.1 The Standard Prelude . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.5.2 Namespaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.5.3 Private Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.5.4 Hierarchical Namespaces . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Rewriting 63
6.1 Term Rewriting in a Nutshell . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.2 The Evaluation Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.3 Rewriting Rule Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.4 Dynamic Typing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



Contents iii

7 Advanced Topics 71
7.1 Tail Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
7.2 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.3 Lazy Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.4 Macros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.5 C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.6 Compiling Scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

8 Examples 87
8.1 Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.2 Lists and Streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.3 Matrix Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.4 String Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.5 Sorting and Searching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.6 Symbolic Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.7 System Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.8 Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.9 Web Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.10 Computer Graphics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.11 Multimedia and Computer Music . . . . . . . . . . . . . . . . . . . . . . . . 90

A Pure Grammar 91

Bibliography 97





Preface v

Preface
This book is about the functional programming language Pure. Pure’s distinguishing
features are that it is based on term rewriting (a computational model for algebraic ex-
pression manipulation), that it provides built-in support for MATLAB-like matrices in
addition to the usual list and algebraic data structures, that it uses LLVM (the “Low
Level Virtual Machine”, see http://llvm.org) to compile source programs to fast na-
tive code on the fly, and that it makes interfacing to C very easy.

On the surface, Pure looks similar to functional languages of the Miranda and Haskell
variety, but under the hood it is a much more dynamic language, offering an interactive
interpreter environment and metaprogramming capabilities more akin to Lisp. Pure’s
algebraic programming style probably appeals most to mathematically inclined pro-
grammers who need an advanced tool for solving problems in domains which can be
described conveniently in terms of algebraic models. While languages like Haskell and
ML already occupy that niche, we think that Pure’s feature set is sufficiently different
to turn it into a worthwhile alternative. In particular, Pure’s interpreter environment
and easy extensibility also make it usable as a kind of (compiled) scripting language
in a variety of application areas, including system, database, graphics and multimedia
programming.

Acknowledgements
Pure has a small but vivid user community, and I’m very grateful for all the support,
discussions, bug reports, patches and other contributions that have helped Pure’s de-
velopment from day one. In particular, I’d like to thank Scott E. Dillard, Rooslan S.
Khayrov, Eddie Rucker, Libor Spacek and Jiri Spitz for their substantial code contri-
butions, as well as Toni Graffy and Ryan Schmidt for taking on the arduous tasks of
maintaining the SUSE Linux and OSX packages. Thanks are also due to Vili Aapro,
Alvaro Castro Castilla, John Cowan, Chris Double, Tim Haynes, John Lunney and Max
Wolf for suggesting improvements and pointing out bugs and misfeatures. Last, but not
least, a big thank you also goes to the LLVM team for giving us such a powerful sword
to fight the complexities of compiler design and implementation.

http://llvm.org




Chapter 1
Introduction

Pure is a fairly simple and small language, designed to be easy to learn and use – at
least as functional programming languages (FPLs) go. Programs are essentially just col-
lections of term rewriting rules, which are used to reduce expressions to normal form in
a symbolic fashion. For convenience, Pure also offers some extensions to the basic term
rewriting calculus, like nested scopes of local function and variable definitions, anony-
mous functions (lambdas), exception handling and a built-in macro facility. Macros are
defined using rewriting rules, just like ordinary functions. Last but not least, Pure uses
the LLVM compiler framework to translate term rewriting systems to native code on
the fly, hence programs run reasonably fast and interfacing to C is very easy.

Compared to other modern (as opposed to Lisp-like) functional programming lan-
guages, Pure is a bit unusual in that it is essentially a typeless language. Keeping with
the spirit of term rewriting, all data belongs to the same universe of terms, which are
formed by applying functions to other terms, with some special notations thrown in for
denoting primitive data elements such as numbers and strings. Some terms may eval-
uate to something else, while others are just normal forms. Pure does not distinguish
between “constructors” and “defined functions”, so that any function symbol can also
act as a data constructor. Pure also makes heavy use of ad-hoc polymorphism, and in fact
it is possible to extend any operation at any time with new defining equations. This
makes for a flexible programming model which is much different in style from other,
more rigid modern FPLs like Haskell, even though the syntax is superficially similar.

Another fairly unique feature is that Pure, in addition to the usual list and alge-
braic data structures, also offers built-in matrices (numeric arrays), which is like having
Haskell and Octave under one hood, and makes it very easy to express common mathe-
matical operations which go beyond simple arithmetic and operations on scalars. Pure
also supports symbolic matrices which may contain any kind of Pure value, and matrix
comprehensions make it easy to program typical algebraic operations. Moreover, Pure’s
matrix data structure is compatible with the GNU Scientific Library (GSL), so that you
can easily interface to GSL’s extensive set of numerical algorithms.

Pure normally does eager evaluation, but it also supports lazy data structures through



2 1.1 Getting Pure

the notion of lazy futures (a.k.a. thunks), which was adopted from Alice ML. This makes
it possible to work with infinite lists and enables some powerful programming tech-
niques not available in most mainstream languages.

Pure’s basic numeric types are (machine) integers, bigints and double precision float-
ing point numbers; the math.pure module from the standard library also provides sup-
port for complex and rational numbers (including complex integers and complex ratio-
nals). In addition, Pure has the same kind of null-terminated strings as C, which are
always encoded in UTF-8 internally, so no separate type of Unicode strings is needed.
To facilitate interfacing to C, Pure also provides a generic pointer type; there’s no lexical
representation for these in the language, however, so they have to be created using the
appropriate C functions.

Most basic operations are defined in the standard prelude. This includes the usual
arithmetic and logical operations, as well as the basic string, list and matrix functions.
The prelude is always loaded by the interpreter, so that you can start using it as a so-
phisticated kind of desktop calculator right away. Other useful operations are provided
through separate library modules. Some of these, like the system interface and the
container data structures, are distributed with the interpreter, others are available as
separate add-on packages from the Pure website.

While Pure is already perfectly usable for practical applications and the core lan-
guage and library are quite stable, there are also some areas which are still under active
development. In particular, Pure lacks concurrency and parallelization features right
now. An interesting problem there is to design a concurrent programming model that
is easy to use, works well in the context of a term rewriting language, and scales well
with the number of processors. To these ends, we are currently investigating concur-
rent futures and automatic parallelization of matrix comprehensions. Another direction
for future research is to use available type information to speed up generated code, in
particular for numeric operations. Concerning the library, at the time of this writing the
GSL interface and scientific programming support are still under development, and we
also plan to add object-oriented and dataflow programming extensions in the future.

1.1 Getting Pure
The Pure interpreter is free software distributed (mostly) under the GNU Lesser Gen-
eral Public License (LGPL) version 3. Sources and binary packages for various systems
are available on the Pure website at http://pure-lang.googlecode.com. There you can
also find pointers to the Pure mailing list, the wiki and various other bits of documen-
tation which should help you get up and running quickly.

http://pure-lang.googlecode.com


1 Introduction 3

1.2 References and Related Work
This document is not a general introduction to functional programming. It will be help-
ful if you already have at least a passing familiarity with this style of programming, see,
e.g., [9], or [19] if you’re short on time.

A theoretical introduction to the term rewriting calculus, which Pure is based on,
can be found in [1] and [3]. Term rewriting as a programming language was pioneered
by Michael O’Donnell [15], and languages based on term rewriting and equational se-
mantics were a fashionable research topic during most of the 1980s and the beginning
of the 1990s, two notable examples being the OBJ family of languages [6] and OPAL [4].

As a term rewriting programming language, Pure is most closely related to its prede-
cessor Q [8] and Wouter van Oortmerssen’s Aardappel [17], although quite obviously it
also heavily borrows ideas from other modern FPLs, in particular Miranda [16], Haskell
[10] and Alice ML [14]. Pure’s outfix operators were adopted from William Leler’s
Bertrand language [12], while its matrix support was inspired by MATLAB [13] and
GNU Octave [5]. The pattern matching algorithm, which is the main workhorse behind
Pure’s term rewriting machinery, was invented by the author for his master thesis [7].

Pure also relies on other open source software, most notably the compiler framework
LLVM [11] which Pure uses as its backend for doing JIT compilation, as well as the GNU
Multiprecision Library (http://gmplib.org) for its bigint support.

1.3 Etymological Note
People keep asking me what’s so pure about “Pure”, so let me mention here that the
language isn’t named that way because it’s purely functional (it’s not), but because it
tries to stay as close to the spirit of the term rewriting calculus as possible without
sacrificing some features which I deemed essential for turning Pure into a practical tool
for the programmer.

If you prefer, you can also write the name as “PURE” and take this as a recursive
acronym for the “Pure Universal Rewriting Engine”. This is also slightly misleading,
however, because it’s not “universal” in the sense that I’d consider Pure the be all and
end all of it (I don’t, although I tried hard to make it a decent programming language
that at least the mathematically inclined might like to use). Rather this is a reference to
“universal algebra” [18], the field of mathematics initiated by Alfred North Whitehead
and others which gave birth to the notions of equational logic and term rewriting.

1.4 Document Roadmap
In the following chapter we start out with an introduction to the Pure interpreter, so
that you can follow the examples and try them yourself. Chapter 3 contains a very brief
summary of the lexical syntax. Chapters 4 and 5 explain the main elements of Pure

http://gmplib.org


4 1.5 Typographical Conventions

programming, expressions and definitions. Chapter 6 describes in greater detail how
term rewriting is implemented in Pure. Chapter 7 discusses advanced topics such as
exception handling, lazy evaluation, macro definitions and the C interface. In Chapter
8 you can find more examples illustrating various important programming techniques.
The EBNF grammar of Pure can be found in Appendix A.

If you already have an extensive background in functional programming then it’s
probably enough if you briefly skim through Chapters 4, 5 and 7 before you have a look
at the examples in Chapter 8, but we still recommend to carefully read Chapter 6 which
describes Pure’s basic model of computation by rewriting expressions, which is its most
unusual aspect compared to other modern functional programming languages based
on the lambda calculus.

1.5 Typographical Conventions
Program examples are always set in typewriter font. Here’s how a typical code sample
may look like:

fact n = if n>0 then n*fact(n-1) else 1;

These can either be saved to a file and then loaded into the interpreter, or you can
also just type them directly in the interpreter.

If some lines start with the interpreter prompt ‘> ’, this indicates an example interac-
tion with the interpreter. Everything following the prompt (excluding the ‘> ’ itself) is
meant to be typed exactly as written. Lines lacking the ‘> ’ prefix show results printed
by the interpreter. Example:

> fact n = if n>0 then n*fact(n-1) else 1;
> map fact (1..10);
[1,2,6,24,120,720,5040,40320,362880,3628800]

Similarly, lines starting with the ‘$ ’ prompt indicate shell interactions. For instance,

$ pure

indicates that you should type the command pure on your system’s command line.



Chapter 2
Using the Interpreter

This chapter assumes that you have already installed the Pure interpreter on your sys-
tem.1 Using the interpreter is quite easy. You can invoke it from the command line as
follows:

$ pure

The interpreter then prints its sign-on message and leaves you at its ‘>’ prompt,
indicating that it’s ready to go. (There are a number of other ways to run Pure if you’re
not a fan of the command line, see below.)

Pure 1.0 (x86_64-unknown-linux-gnu) Copyright (c) 2008, 2009 by Albert Graef
This program is free software, and you are welcome to redistribute it under
certain conditions. There is ABSOLUTELY NO WARRANTY. (Type ’help copying’
for more information.)
Loaded prelude from /usr/local/lib/pure/prelude.pure.

>

2.1 Interactive Usage
If you invoke the interpreter without arguments (as shown above) or with the -i option,
it starts up in interactive mode in which you can just begin typing away and evaluate
some expressions. Built-in support is available for double precision floating point num-
bers, integers (both 32 bit machine ints and bigints; the latter are denoted with a trailing
L symbol), strings, lists and matrices, so you can use the interpreter as a sophisticated
kind of desktop calculator right away:

1The INSTALL file in the distribution explains in great detail how to install Pure from the sources.



6 2.1 Interactive Usage

> 17/12+23;
24.4166666666667
> pow 2 100;
1267650600228229401496703205376L
> "Hello, "+"world!";
"Hello, world!"
> [1,2,3]+[4,5,6];
[1,2,3,4,5,6]
> 1..10;
[1,2,3,4,5,6,7,8,9,10]
> 0:2..10;
[0,2,4,6,8,10]

Note that each expression to be evaluated must be terminated with a semicolon.
A convenience for interactive usage is the ans function which gives access to the

most recent result printed by the interpreter:

> 17/12; ans+23;
1.41666666666667
24.4166666666667

Alternatively, you can also store intermediate results in variables:

> let x = 17/12; x+23;
24.4166666666667
> let x = 1..10; x!5; x!!(3..6);
6
[4,5,6,7]

New functions can be defined just as easily. For instance, here’s a (rather naive)
implementation of the Fibonacci function:2

> fib n = if n<=1 then n else fib (n-2) + fib (n-1);
> map fib (0..10);
[0,1,1,2,3,5,8,13,21,34,55]

At the command prompt, the interpreter also understands a number of special in-
teractive commands. For instance, the show command provides a quick means to check
what we have accomplished so far:

> show
fib n = if n<=1 then n else fib (n-2)+fib (n-1);
let x = [1,2,3,4,5,6,7,8,9,10];

It’s also possible to just dump our definitions to a file, so that we can edit them in a
text editor and reload them with the interpreter later:

2Note that there may be a slight delay when your function is executed for the first time. That’s nothing
to worry about, it’s just the JIT compiler kicking in, which compiles the function “just in time” to native
code when it is first called.



2 Using the Interpreter 7

> dump -n fib.pure
> !cat fib.pure
// dump written Sat Apr 4 05:59:05 2009
fib n = if n<=1 then n else fib (n-2)+fib (n-1);
let x = [1,2,3,4,5,6,7,8,9,10];

Here we used a shell escape to invoke the system’s cat command to print the con-
tents of the script file we just saved. This is handy if we want to check what’s been
written, because the dump command itself doesn’t provide any feedback.

You can also erase existing definitions:

> clear x
> x;
x

Just clear by itself deletes all your interactive definitions (after confirmation) so that
you can start over:

> clear
This will clear all temporary definitions at level #1.
Continue (y/n)? y
> show
>

To restore the previous environment, you can reload the fib.pure file we saved
before:

> run fib.pure
> show
fib n = if n<=1 then n else fib (n-2)+fib (n-1);
let x = [1,2,3,4,5,6,7,8,9,10];

Remember that show, dump, clear, run and the shell escape are special interactive
commands with their own syntax; they are not part of the Pure language. In order to
facilitate incremental development, the Pure interpreter provides some fairly elaborate
means to manipulate definitions interactively. Please refer to the Pure Manual for a closer
description of these. The manual has a section which explains in much greater detail
how the interpreter is used interactively. You can invoke the manual directly from the
interpreter as follows:3

> help

Moreover, there’s a companion to the Pure Manual, the Pure Library Manual, which
describes the operations provided in the standard library. The library manual is linked

3This requires an external html browser, w3m by default; you can set your preferred browser with the
PURE_HELP or the BROWSER environment variable. You can also read the current version of the Pure manual
online at http://pure-lang.googlecode.com/svn/docs/pure.html, and the Windows package includes
the manual as a Windows help file, see Section 2.7.

http://pure-lang.googlecode.com/svn/docs/pure.html


8 2.1 Interactive Usage

to in the Pure manual, but you can also quickly look up the description of a function by
invoking the help command with an argument:

> help pow

The help command has a number of other options which enable you to read different
bits of online documentation; try help pure#online-help for details.

At this point you might want to explore some of the other modules in the standard
library. These can be imported with a using declaration. E.g., if you want to do some
I/O, you’ll need the system.pure module:

> using system;
> puts "Hello, world!";
Hello, world!
14

To do more serious math stuff, Pure provides the math.pure module:

> using math;
> map sin (-pi/2:-pi/4..pi/2);
[-1.0,-0.707106781186547,0.0,0.707106781186547,1.0]

Note that this is indeed the C sin function being called here. Pure makes it very
easy to invoke C functions, you just have to tell the interpreter about the prototype
of the function with an extern declaration.4 Just for fun, let’s compute some random
values using the rand function from the C library:

> extern int rand();
> [rand|i=1..5];
[1025202362,1350490027,783368690,1102520059,2044897763]

This also shows a simple example of a list comprehension, Pure’s workhorse for cre-
ating list values through “generator” and “filter” clauses, which mimics traditional set
notation in mathematics. Pure also provides matrix comprehensions which work analo-
gously but create Octave-style matrices instead. Make sure to check Section 4.8 for a
closer description of these. For instance:

> eye n = {i==j|i=1..n;j=1..n};
> eye 3;
{1,0,0;0,1,0;0,0,1}

Well, we barely scratched the surface here, but I guess that this should be enough to
get you started, so that you can begin exploring Pure on your own. To exit the inter-
preter, just type the quit command at the beginning of a line (on Unix systems, typing
the end-of-file character Ctrl-D will do the same).

> quit

4This always works for functions which are in the C library or the Pure runtime. Functions from
other libraries can be called, too, but you must first tell the interpreter about the library with a using
declaration, see Section 7.5 for details.



2 Using the Interpreter 9

2.2 Debugging
When running interactively, the interpreter also offers a symbolic debugging facility. To
make this work, you have to invoke the interpreter with the -g option:

$ pure -g

(This will make your program run much slower, so this option should only be used if
you actually need the debugger.)

One use of the debugger is “post mortem” debugging. If the most recent evaluation
ended with an unhandled exception, you can use the bt command to obtain a backtrace
of the call chain which caused the exception. For instance:

> [1,2]!3;
<stdin>, line 2: unhandled exception ’out_of_bounds’ while evaluating
’[1,2]!3’
> bt

[1] (!): (x:xs)!n::int = xs!(n-1) if n>0;
n = 3; x = 1; xs = [2]

[2] (!): (x:xs)!n::int = xs!(n-1) if n>0;
n = 2; x = 2; xs = []

[3] (!): []!n::int = throw out_of_bounds;
n = 1

>> [4] throw: extern void pure_throw(expr*) = throw;
x1 = out_of_bounds

The debugger can also be used interactively. To these ends you just set breakpoints
on the functions you want to debug, using the break command. For instance, here is a
sample session where we employ the debugger to single-step through an evaluation of
the factorial:

> fact n::int = if n>0 then n*fact (n-1) else 1;
> break fact
> fact 1;

** [1] fact: fact n::int = if n>0 then n*fact (n-1) else 1;
n = 1

(Type ’h’ for help.)
:

** [2] fact: fact n::int = if n>0 then n*fact (n-1) else 1;
n = 0

:
++ [2] fact: fact n::int = if n>0 then n*fact (n-1) else 1;

n = 0
--> 1

** [2] (*): x::int*y::int = x*y;



10 2.2 Debugging

x = 1; y = 1
:
++ [2] (*): x::int*y::int = x*y;

x = 1; y = 1
--> 1

++ [1] fact: fact n::int = if n>0 then n*fact (n-1) else 1;
n = 1
--> 1

1

Lines beginning with ** indicate that the evaluation was interrupted to show the
rule which is currently being considered, along with the current depth of the call stack,
the invoked function and the values of parameters and other local variables in the cur-
rent lexical environment. The prefix ++ denotes reductions which were actually per-
formed during the evaluation and the results that were returned by the function call
(printed as “--> x” where x is the return value).

In the above example we just kept hitting the carriage return key to walk through
the evaluation step by step. But at the debugger prompt ‘:’ you can also enter various
special debugger commands, e.g., to print and navigate the call stack, step over the
current call, or continue the evaluation unattended until you hit another breakpoint. If
you know other source level debuggers like gdb then you should feel right at home.
Type the h command at the debugger prompt to get a list of the supported commands:

: h
Debugger commands:
a auto: step through the entire program, run unattended
c [f] continue until next breakpoint, or given function f
h help: print this list
n next step: step over reduction
p [n] print rule stack (n = number of frames)
r run: finish evaluation without debugger
s single step: step into reduction
t, b move to the top or bottom of the rule stack
u, d move up or down one level in the rule stack
x exit the interpreter (after confirmation)
. reprint current rule
! cmd shell escape
? expr evaluate expression
<cr> single step (same as ’s’)
<eof> step through program, run unattended (same as ’a’)

More information about the debugger can be found in the corresponding section of
the Pure manual.



2 Using the Interpreter 11

2.3 Running Scripts from the Shell
Pure scripts are just ordinary text files containing Pure code, which can be created with
any text editor (special Pure language support is available for some popular text editors,
see below). Of course you can run your scripts directly from the command line, as
follows:

$ pure myscript.pure

This executes the script in batch mode, without the interpreter’s interactive com-
mand loop. (Any number of script files can be specified, which will all be loaded in the
indicated order.) Add the -i option if you prefer to run the script in interactive mode:

$ pure -i myscript.pure

This loads and executes the script as above, but then leaves you at the interactive
command prompt. You can also add the -q option for quiet startup (no sign-on mes-
sage):

$ pure -i -q myscript.pure

With the -x option it is possible to pass command line parameters to the script (these
are available in Pure by means of the predefined argv variable, see the manual for de-
tails):

$ pure -x myscript.pure foo bar baz

On Unix systems, the -x option also provides a means to run Pure scripts as stan-
dalone programs. To these ends, simply make the script executable and add a “she-
bang” like the following at the beginning of the script:

#!/usr/local/bin/pure -x

If you have the necessary LLVM tools installed, the interpreter can also create “real”
executables which can be run from the shell without a hosting interpreter. Please refer
to Section 7.6 for details.

A number of other command line options are available; try pure -h for a list of those.



12 2.4 Command Line Editing

2.4 Command Line Editing
When running interactively, the Pure interpreter uses the GNU readline library or some
compatible replacement to provide the usual command line editing facilities. Thus the
cursor up and down keys can be used to walk through the command history, exist-
ing commands can be edited and resubmitted with the carriage return key, etc. The
command history is saved in the .pure_history file in your home directory between
different invocations of the interpreter.

Please note that this feature will only be available if the interpreter was built with
readline support. Also, readline support can be disabled at runtime by invoking the
interpreter with the --noediting option.

2.5 Pure and Emacs
If you’re friends with GNU Emacs or XEmacs, then this is probably the most convenient
way to run Pure for you. To make this work, copy etc/pure-mode.el in the sources to
your Emacs site-lisp directory and add the following lines to your .emacs startup file:

(require ’pure-mode)
(setq auto-mode-alist (cons ’("\\.pure$" . pure-mode) auto-mode-alist))
(add-hook ’pure-mode-hook ’turn-on-font-lock)
(add-hook ’pure-eval-mode-hook ’turn-on-font-lock)

More customization options are described at the beginning of the pure-mode.el file.
Once you have set things up to your liking, you can invoke Emacs with your Pure script
as follows:

$ emacs myscript.pure

Now just type Ctrl-C Ctrl-C to run the script. (Use Ctrl-C Ctrl-D instead if you
want to invoke the interpreter with the -g option so that the debugger is available.) This
will open a *pure-eval* window in Emacs in which you can execute Pure interpreter
commands as usual. This has the added benefit that you can get a transcript of your
interpreter session simply by saving the contents of the *pure-eval* buffer in a file.

The Pure interpreter has an option --etags to build an Emacs TAGS file, which can be
used to quickly locate global declarations and definitions in a Pure script. This option
can also be accessed in Emacs Pure mode with the “Make Tags” (Ctrl-C Alt-T) com-
mand. The Emacs manual has a section which explains how to use tags in the editor.

2.6 Other Text Editors
Syntax highlighting support is available for a number of other popular text editors, such
as Vim, Gedit and Kate. The Kate support is particularly nice because it also provides



2 Using the Interpreter 13

code folding for comments and block structure. See the etc directory in the sources.
Installation instructions are contained in the language files.

Note that editors like Vim and Kate also provide support for tags, albeit in a different
“ctags” format. Tags files in this format can be created using the --ctags option of the
interpreter, please see the Pure manual for details.

2.7 Pure on MS Windows
For MS Windows users we recommend the MSI package provided on the Pure website,
which also includes a little Notepad-like frontend to the Pure interpreter. PurePad, as
it’s called, only has a fairly simple text editor which does not support Unicode or syntax
highlighting right now, but it does provide all the necessary operations to edit and run
your Pure scripts and find the source lines for error messages. It also comes with online
help which includes the entire Pure manual. Of course it is also possible to run the
Pure interpreter directly from the Windows command line or inside Emacs as described
above, but Windows users seem to like PurePad because it’s easy to use.





Chapter 3
Lexical Matters

Before we discuss Pure’s expression and definition syntax, it is necessary to say a few
words about the lexical syntax. This part of the language is pretty conventional, so we
won’t go into all the boring minutiae here; please see the Pure manual for details.

First and foremost, note that Pure is a free-format language, i.e., whitespace is insignif-
icant (unless it is used to delimit other symbols). Thus, in difference to “layout-based”
languages like Haskell, you must use the proper delimiters (‘;’) and keywords (end) to
terminate definitions and block structures.

3.1 Character Set
Pure fully supports the Unicode character set (or, more precisely, ISO 10646). To these
ends, scripts can be encoded either as 7 bit ASCII or UTF-8. The latter is an ASCII exten-
sion capable of representing all Unicode characters, which provides you with thousands
of characters from most of the languages of the world, as well as an abundance of special
symbols for almost any purpose. If your text editor supports the UTF-8 encoding (most
editors do nowadays), you can use all Unicode characters in your Pure programs, not
only inside strings, but also for denoting identifiers and special operator and constant
symbols. The precise rules by which Pure distinguishes “punctuation” (which may only
occur in declared operator and constant symbols) and “letters” (identifier constituents)
are explained in Appendix A.

3.2 Lexical Elements
Comments use the same syntax as in C++: // for line-oriented, and /* ... */ for multi-
line comments. The latter must not be nested.

Numbers are the usual sequences of decimal digits, optionally followed by a decimal
point and more digits, and/or a scaling factor. In the latter case the sequence denotes
a floating point number, such as 1.23e-45. Simple digit sequences like 1234 denote



16 3.2 Lexical Elements

integers (32 bit machine integers by default). Using the 0b, 0x and 0 prefixes, these may
also be written in binary (0b1011), hexadecimal (0x12ab) or octal (0177). The L suffix
denotes a bigint (1234L); other integer constants are promoted to bigints automatically
if they fall outside the 32 bit range.

Strings are arbitrary character sequences enclosed in double quotes, such as "abc"
or "Hello, world!\n". Special escape sequences may be used to denote double quotes
and backslashes (\", \\), control characters (\b, \f, \n, \r, \t, these have the same
meaning as in C), and arbitrary Unicode characters given by their number or XML entity
name (e.g., \169, \0xa9 and \&copy; all denote the Unicode copyright character, code
point U+00A9). For disambiguating purposes, numeric escapes can also be enclosed in
parentheses. E.g., "\(123)4" is a string consisting of the character \123 followed by the
digit 4. Also note that Pure doesn’t have a special notation for single characters, these
are just strings of length 1 (counting multibyte characters as a single character), such as
"a" or "\&copy;".

Identifiers consist of letters and digits and start with a letter; as usual, the underscore
‘_’ counts as a letter here. Case is significant, so foo, Foo and FOO are all distinct identi-
fiers. The identifier _ (just an underscore by itself) plays a special role as the anonymous
variable on the left-hand side of definitions.

Operators and constant symbols are special symbols which must be declared before
they can be used, as explained in Section 4.2. Lexically, these can be either ordinary
identifiers (like the and operator in the standard prelude), or arbitrary sequences of
punctuation characters (such as + or ~==). The two kinds of symbols don’t mix, so a
symbol may either contain just letters and digits, or punctuation, but not both at the
same time. In other words, identifiers and punctuation symbols delimit each other, so
that you can write something like x+y without intervening whitespace, which will be
parsed as the three lexemes x + y.

Symbols consisting of punctuation are generally parsed using the “longest possible
lexeme” a.k.a. “maximal munch” rule. Here, the “longest possible lexeme” refers to
the longest prefix of the input such that the sequence of punctuation characters forms
a valid (i.e., declared) operator or constant symbol. Thus x+-y will be parsed as four
tokens x + - y, unless you also declare +- as an operator, in which cased the same
input parses as three tokens x +- y instead.

A few ASCII symbols are reserved for special uses, namely the semicolon, the “at”
symbol @, the equals sign =, the backslash \, the Unix pipe symbol |, parentheses (),
brackets [] and curly braces {}. (Among these, only the semicolon is a “hard delim-
iter” which is always a lexeme by itself; the other symbols can be used inside operator
and constant symbols.) Moreover, there are some keywords which cannot be used as
identifiers:

case const def else end extern if
infix infixl infixr let namespace nonfix of
otherwise outfix postfix prefix private public then
using when with



3 Lexical Matters 17

In addition, the interactive commands of the Pure interpreter, like break, clear,
dump, show, etc., are special when typed at the beginning of the command line, but they
can still be used as ordinary identifiers in all other contexts.





Chapter 4
Expressions

Pure’s expression syntax mostly revolves around the notion of curried function applica-
tions which is ubiquitous in modern functional programming languages. For conve-
nience, Pure also allows you to declare pre-, post-, out- and infix operator symbols, but
these are in fact just syntactic sugar for function applications. Function and operator ap-
plications are used to combine primary expressions to compound terms, also referred
to as simple expressions; these are the data elements which are manipulated by Pure pro-
grams. Besides these, Pure provides some special notations for conditional expressions
as well as anonymous functions (lambdas) and local scopes of function and variable
definitions. The different kinds of expressions understood by the Pure interpreter are
summarized in Figure 4.1. We’ll describe each of these in the rest of this chapter.

Expressions are parsed according to the following precedence rules: Lambda binds
most weakly, followed by the special case, when and with constructs, followed by con-
ditional expressions (if-then-else), followed by the simple expressions. Operators are
a part of the simple expression syntax, and are parsed according to the declared prece-
dence and associativity. Parentheses can be used to group expressions and override
default precedences as usual.

4.1 Function Applications
The basic means to form compound expressions in Pure is the function application which,
like in most modern functional languages, is denoted as an invisible infix operation.
Thus, f x denotes the application of a function f to the argument x. Application asso-
ciates to the left, so f x y = ( f x) y, which is the curried notation of a function f being
applied to two arguments x and y. More generally, f x1 · · · xn denotes the application
of f to n arguments x1, . . . , xn. This way of writing function applications is named after
the American logician Haskell B. Curry who popularized its use through his work on
the combinatorial calculus.

Currying makes it possible to derive new functions from existing ones quickly and



20 4.1 Function Applications

Type Example Description
Lambda \x->x+1 anonymous function
Scope case x of rule; . . . end case expression

x when rule; . . . end local variable definition
x with rule; . . . end local function definition

Conditional if x then y else z conditional expression
Simple x+y, -x, x mod y, not x operator application

sin x, max a b function application
Primary 4711, 1.2e-3 number

"Hello, world!\n" string
foo, x, (+) function or variable symbol
[1,2,3], {1,2;3,4}, (1,2,3) list, matrix, tuple
[x,-y | x=1..n; y=1..m; x<y] list comprehension
{i==j | i=1..n; j=1..m} matrix comprehension

Figure 4.1: Expression types, in order of increasing precedence.

easily by just omitting arguments, which yields an unsaturated or partial application. Con-
versely, an application of a function which supplies all needed parameters and is thus
“ready to go” is called saturated. E.g., taking the prelude function max as an example,
the partial application max 0 can be used to denote the function which just returns its
argument if it’s nonnegative, and zero otherwise. This works because, for any given y,
(max 0) y = max 0 y is just the maximum of 0 and y. For instance:

> f = max 0;
> map f (-3..3);
[0,0,0,0,1,2,3]

Another important point worth mentioning here is that, as a language based on term
rewriting, Pure does not distinguish between “defined” and “constructor” symbols at
all. Every function symbol can act as a constructor if it happens to occur in a normal
form; we’ll discuss this in greater detail in Chapter 6.1 “Pure” constructors are just a
special case of these, namely functions without any defining equations, in which case an
application of the function symbol will always be a normal form. For instance, assuming
that foo and bar are function symbols not defined anywhere, you’ll get:

> foo 77 (bar 99);
foo 77 (bar 99)

This makes it possible to represent hierarchical data structures in an algebraic way.
No data type declarations are needed for this; you only have to pick a suitable selection

1Note that constructors in functional programming are not the same thing as constructors in object-
oriented programming. The latter is a special kind of function used to construct an object, whereas the
constructors we talk about here are never executed; they are just literal symbols which can be applied to
some arguments.



4 Expressions 21

of constructor symbols to distinguish between the different kinds of aggregate struc-
tures. For instance, a binary tree data structure might be denoted using terms like
bin 0 (bin 1 nil nil) nil, employing a ternary function symbol bin to represent
the interior nodes, and a nonfix (constant) symbol nil to denote the leaves of the tree.
Section 5.3 shows how to define functions operating on such structures.

4.2 Operators
Pure also provides prefix, postfix, outfix and infix notation for special operator symbols,
so that customary mathematical operations can be written in a more convenient and
familiar way. Operators are just syntactic sugar; by enclosing an operator in parentheses
you can always turn it into an ordinary function symbol, such as (+) and (not). Thus
2*x is exactly the same as the curried application (*) 2 x, and partial applications work
as usual, too; e.g., (+) 1 is the successor function and (/) 1 the reciprocal.

An operator symbol may either be an ordinary identifier or consist entirely of punc-
tuation. Multiple symbols in the same operator declaration must be separated with
whitespace. All operator symbols must be declared before they are first used, by means
of a fixity declaration which takes one of the following forms:

• infix n symbol . . .; infixl n symbol . . .; infixr n symbol . . .;
Declares binary (non-, left- or right-associative) infix operators.

• prefix n symbol . . .; postfix n symbol . . .;
Declares unary (prefix or postfix) operators.

• outfix left-symbol right-symbol . . .;
Declares outfix (bracket) symbols.

• nonfix symbol . . .;
Declares nonfix (constant) symbols.

The precedence level n of infix, prefix and postfix symbols must be a nonnegative in-
teger (larger numbers indicate higher precedences, 0 is the lowest level).2 Alternatively,
the precedence level can also be given by an existing operator symbol in parentheses.
In either case, the precedence is followed by the list of operator symbols to be declared.
At each level, non-associative operators have the lowest precedence, followed by left-
associative, right-associative, prefix and postfix symbols. Function application binds
stronger than any of these, thus compound arguments in function applications have to
be parenthesized, as in sin (x-1).

2In theory, the number of precedence levels is unlimited, but for technical reasons the current imple-
mentation actually requires that precedences can be encoded as unsigned 24 bit values. This amounts to
16777216 different levels which should be enough for almost any purpose.



22 4.2 Operators

Pure also provides Bertrand-style outfix operators which are unary operators taking
the form of bracket structures. These symbols always come in pairs of matching left
and right brackets and have highest precedence. For instance, the following declaration
introduces BEGIN and END as a pair of matching brackets. Syntactically, these are used
like ordinary parentheses, but actually they are unary operators which can be defined
in your program just like any other operation.

outfix BEGIN END;
BEGIN a,b,c END;

Like the other kinds of operators, you can turn outfix symbols into ordinary func-
tions by enclosing them in parentheses, but you have to specify the symbols in matching
pairs, such as (BEGIN END).

Last but not least, symbols can also be declared as nonfix, which turns the given sym-
bols into “operators without operands”, i.e., constant symbols. These work pretty much
like ordinary identifiers, but are always treated as literal constants, even in contexts
where an identifier would otherwise denote a variable (cf. Section 4.3). For instance:

nonfix nil;
null nil = 1;

An important point worth mentioning here is that the arities of symbols in operator
or constant symbol declarations are really just syntax. Those declarations are needed
because these symbols are special and are parsed differently (even at the lexical level).
You can think of them as an extension of the underlying Pure grammar. Also, on the
syntactic level all ordinary function symbols are in fact nullary, and function application
is an invisible infix operator.

On the other hand, on the semantic level we’re only talking about curried function
applications. Here, we may attach an arity to the function represented by a symbol
(no matter whether it’s an ordinary function symbol or a special operator or constant
symbol). This semantic arity is the number of arguments we have to supply so that an
application of the function becomes saturated (i.e., is ready to be executed), which only
depends on the definition of the function (cf. Section 5.3). Note that a symbol might
not have a semantic arity at all, namely if it’s a pure constructor which doesn’t have any
defining equations.

Thus, when we talk about the arity of a symbol, we may be talking about either its
syntactic or its semantic arity; this will usually be clear from the context. In the case of
operators, syntactic and semantic arity typically match up, but that’s not required. E.g.,
here is a somewhat contrived example of an infix operator foo which actually takes three
arguments to be saturated:

infix 0 foo;
(foo) x y z = x*z+y;

Thus foo is binary syntactically, but ternary semantically, so if you type 5 foo 8 you
get an unsaturated application (i.e., a function) which multiplies its “missing” argument
by 5 and then adds 8:



4 Expressions 23

> map (5 foo 8) (1..5);
[13,18,23,28,33]

The prelude provides the arity and nargs functions to determine the syntactic and
semantic arity of a symbol or application, respectively.

4.2.1 Predefined Operators
The signature of predefined operators declared in the prelude is shown in Figure 4.2.
(Note the generous “spacing” of the precedence levels, which makes it easy to sneak in
additional operator symbols between existing levels if you have to.)

infixl 1000 $$ ; // sequence operator
infixr 1000 $ ; // right-associative application
infixr 1100 , ; // pair (tuple)
infix 1200 => ; // mapsto constructor
infix 1300 .. ; // arithmetic sequences
infixr 1400 || ; // logical or (short-circuit)
infixr 1500 && ; // logical and (short-circuit)
prefix 1600 ~ ; // logical negation
infix 1700 < > <= >= == ~= ; // relations
infix 1700 === ~== ; // syntactic equality
infixr 1800 : ; // list cons
infix 1900 +: <: ; // complex numbers (cf. math.pure)
infixl 2000 << >> ; // bit shifts
infixl 2100 + - or ; // addition, bitwise or
infixl 2200 * / div mod and ; // multiplication, bitwise and
infixl 2200 % ; // exact division (cf. math.pure)
prefix 2300 not ; // bitwise not
infixr 2400 ^ ; // exponentiation
prefix 2500 # ; // size operator
infixl 2600 ! !! ; // indexing, slicing
infixr 2700 . ; // function composition
prefix 2800 ’ ; // quote
postfix 2900 & ; // thunk

Figure 4.2: Operators declared in the prelude, in order of increasing precedence.

At first sight, this signature looks a bit unwieldy, but in fact there are just a few
groups of important operations which are described below. The basic arithmetic and
logical operators are summarized in the following table:

Arithmetic + - * / % ^ div mod
Comparisons < > <= >= == ~= === ~==
Logic operations ~ && ||
Bit operations not and or << >>



24 4.2 Operators

These operations are mostly primitives which are compiled directly to native code
if they are applied to the appropriate operands. Here is a brief description of these
operators:

• -x, x+y, x-y, x*y, x/y: These are the usual arithmetic operations which work on all
kinds of numbers. Unary minus always has the same precedence as binary minus
in Pure. ‘/’ is Pure’s inexact division operation which always yields double results.
The ‘+’ operator also denotes concatenation of strings and lists.

• x div y, x mod y: Integer division and modulus. These work with both machine
ints and bigints in Pure.

• x%y: Pure’s exact division operator. This produces rational numbers and requires
the math module to work.

• x^y: Exponentiation. Like ‘/’, this always yields double results. (The prelude also
provides the pow function to compute exact powers of ints and bigints.)

• x<y, x>y, x<=y, x>=y, x==y, x~=y: Comparison operators. x~=y denotes inequality.
These work as usual on numbers and strings, equality is also defined on lists and
tuples. The result is 1 (true) if the comparison holds and 0 (false) if it doesn’t
(false and true are defined as integer constants in the prelude).

• x===y, x~==y: Syntactic equality. These work on all Pure expressions. x===y yields
true iff x and y are syntactically equal, i.e., print out the same in the interpreter.

• ~x, x&&y, x||y: Logical operations. These take arbitrary machine integers as argu-
ments (zero denotes false, nonzero true) and are implemented using short-circuit
evaluation (e.g., 0&&y always yields 0, without ever evaluating y). Note that logi-
cal negation is denoted as ‘~’ rather than with C’s ‘!’ (which denotes indexing in
Pure, see below).

• not x, x and y, x or y: Bitwise logical operations. These are like ‘~’, ‘&’ and ‘|’ in
C, but they also work with bigints in Pure.

• x<<y, x>>y: Bit shift operations. Like the corresponding C operators, but they also
work with bigints in Pure.

Most of the remaining operators are either function combinators, specialized data
constructors or operations to deal with lists and other aggregate structures (see Section
4.8):

• x:y: This is the list-consing operation. x becomes the head of the list, y its tail. This
is a constructor symbol, and hence can be used on the left-hand side of a definition
for pattern-matching.



4 Expressions 25

• x..y: Constructs arithmetic sequences (lists of numbers). x:y..z can be used to de-
note sequences with arbitrary stepsize y-x.3 Infinite sequences can be constructed
using an infinite bound (i.e., inf or -inf). E.g., 1:3..inf denotes the (lazy) list of
all positive odd integers.

• x,y: This is the pair constructor, used to create tuples of arbitrary sizes. Tuples
provide an alternative way to represent aggregate values in Pure. The pair con-
structor is associative in Pure, so that, in difference to lists, tuples are always “flat”.
More precisely, (x,y),z always reduces to x,(y,z) which is the canonical repre-
sentation of the triple x,y,z.

• #x: The size (number of elements) of the string, list, tuple or matrix x. (In addition,
dim x yields the dimensions, i.e., the number of rows and columns of a matrix.)

• x!y: The indexing operation. The origins of this peculiar notation have been lost
in the mist of time, but I believe that it comes from the original edition of the
Bird/Wadler book [2]. The prelude defines indexing of strings, lists, tuples and
matrices. Note that all indices in Pure are zero-based, thus x!0 and x!(#x-1)
denote the first and the last element, respectively. In the case of matrices, the
subscript may also be a pair of row and column indices, such as x!(1,2).

• x!!ys: Pure also provides slicing of all indexed data structures. This operation re-
turns the subsequence (string, list, tuple or matrix) of all x!y while y runs through
the elements of the index collection ys (this can be either a list or matrix). In the
case of matrices the index range may also contain two-dimensional subscripts, or
the index range itself may be specified as a pair of row/column index lists such as
x!!(i..j,k..l).

• x.y: This is the function composition operator, as defined by (f.g) x = f(g x),
which is useful if you have to apply a chain of functions to some value. For in-
stance, max x.min y is a quick way to denote a function which “clamps” its argu-
ment between the bounds x and y.

• x$y: The explicit function application operator. You can use this, e.g., if you need
to apply a list of functions to corresponding values in a second list as follows:
zipwith ($) [f,g,h] [x,y,z]. Also note that, since the $ operator has low pri-
ority and is right-associative, it provides a convenient means to write “cascading”
function calls like foo x $ bar $ y+1 which is the same as foo x (bar (y+1)).

• x+:y, x<:y, x=>y: These are all specialized data constructors. +: and <: are used to
represent complex numbers in rectangular and polar notation, respectively. Like

3Note that in order to prevent unwanted artifacts due to rounding errors, the upper bound in a floating
point sequence is always rounded to the nearest grid point. Thus, e.g., 0.0:0.1..0.29 actually yields
[0.0,0.1,0.2,0.3], as does 0.0:0.1..0.31.



26 4.3 Patterns

%, these require the math module to work. The “hash rocket” => is used, e.g., in the
dict module to denote key-value associations.

• x$$y, x&, ’x: These operators are special forms used to execute expressions in
sequence, to create “thunks” a.k.a. “futures” which are evaluated lazily, and to
defer the evaluation of an expression. See Section 4.9 for details.

4.2.2 Unary Minus
The minus symbol plays a somewhat awkward role in the expression syntax because,
following mathematical tradition, it is used both as a prefix and an infix operator. Pure
adopts the convention that unary minus is at the same precedence level as binary mi-
nus. Thus, assuming the precedences declared in the standard prelude, -x*y parses as
-(x*y), whereas -x+y parses as (-x)+y. Also note that (-) always denotes the binary
minus operator. As a remedy, the special predefined function symbol neg is provided
as an alias for the unary minus operation, thus neg x is the same as -x.

Moreover, the parser treats unary minus in front of a numeric constant like -4711 as
a negative number rather than an explicit application of the unary minus operation. But
syntactically it is still an operator application and thus has to be parenthesized accord-
ingly; e.g., sin(-1) denotes an application of the sin function to -1, whereas sin-1 is
something entirely different, namely an application of binary minus just like x-y.

4.2.3 Operator Sections
For convenience, Pure also offers a notation for operator sections of the form (x+) (left
section) or (+x) (right section), which provide a shorthand for partial applications of an
infix operator. The meaning of these constructs is given by (x+) y = x+y and (+x) y
= y+x. Thus, for instance, (+1) denotes the successor and (1/) the reciprocal function.
Note, however, that the construct (-x) is always interpreted as an instance of unary
minus; a function which subtracts x from its argument can be written as (+-x).

4.3 Patterns
Pattern matching will be covered in much greater depth in subsequent sections. But
since this notion pervades all Pure programming, you’ll have to learn about it early on,
and so we briefly sketch out the relevant concepts below.

Syntactically, a pattern is a simple or primary expression (cf. Figure 4.1, p. 20) on the
left-hand side of a rule. Note that there are a few kinds of primary expressions which
have to be excluded here, since they are in fact special primitives which cannot occur in
a normal form expression. Specifically, neither matrices nor list or matrix comprehen-
sions are permitted inside patterns. Also, patterns must not contain any of the special



4 Expressions 27

lambda, case, when, with and conditional expression constructs described in subsequent
sections.

Semantically, patterns are template expressions to be matched against a subject ex-
pression in order to bind the variables in the pattern accordingly. The variable binding
constitutes a local scope in which some other computation can be performed, such as
evaluating the right-hand side of a rule in a function definition or case expression.

4.3.1 The “Head = Function” Rule
This immediately raises an important question: What exactly are the variables in a pat-
tern, and what are the function (or constructor) symbols? In mathematical logic, one
usually assumes two disjoint sets of function and variable symbols, which may either
be declared explicitly or indicated by special typography, but in a programming lan-
guage this is rather inconvenient.

Instead, Pure uses the following convention: A variable is just an ordinary identifier
in a pattern which occurs at a leaf of the expression tree and is not the head symbol
of a function application. In other words, the head symbol of a function application
is always taken as a literal function symbol, while all other identifiers at leaves in the
expression tree are considered as variables. This is also called the head = function rule,
which is quite convenient because it allows us to get away without explicitly declaring
the variables. For instance, taking the pattern foo (bar x) (y:ys) as an example, you
can see at a glance that foo and bar as well as the list constructor (:) are the function
symbols, whereas x, y and ys are the variables.

4.3.2 Nonfix Symbols
The above approach is quite intuitive and works reasonably well for most kinds of def-
initions, except that it doesn’t take into account symbolic constants (i.e., constructor
symbols with zero arguments). As a remedy, Pure allows you to declare such symbols
explicitly with a nonfix declaration, see Section 4.2 for details. For instance, the dec-
laration ‘nonfix nil;’ allows you to have a pattern like ‘bin x nil nil’, which might
denote, e.g., a binary tree with two empty subtrees. Note that without the nonfix dec-
laration, the interpreter would mistake the constant nil in that pattern for a variable
(which would actually result in an error, because of the linearity requirement discussed
below).

Nonfix symbols are “precious” in the sense that, once declared, you cannot use them
as variables in patterns any more. Therefore you should use nonfix declarations spar-
ingly, and only for reasonably expressive and unique identifiers; never use them for
generic symbols like f or x. This isn’t a problem with non-identifier symbols, as these
can never be variables anyway. (Note that nonfix symbols can also be special symbols
consisting of punctuation, which aren’t permitted in ordinary identifiers.)



28 4.3 Patterns

4.3.3 The Anonymous Variable
There is one variable symbol which gets special treatment in patterns, the anonymous
variable ‘_’ which matches any value (independently for all occurrences) and does not
bind a variable. Thus, e.g., [_,_] matches any 2-element list, no matter what the ele-
ments are. The anonymous variable is also exempt from the “head = function” rule, i.e.,
it can be used to match (and ignore) any head symbol in a function application, using a
pattern like _ x y z.

4.3.4 Non-Linear Patterns and Syntactic Equality
Pure allows patterns to be non-linear, i.e., they may contain multiple occurrences of a
variable. Each occurrence of the same variable other than the anonymous variable must
be matched to the same value. For instance, here is how you can define a function uniq
which removes adjacent duplicates from a list:

uniq (x:x:xs) = uniq (x:xs);
uniq (x:xs) = x:uniq xs;
uniq [] = [];

Note the non-linearity in the first rule above which indicates that the first two ele-
ments of the actual list argument must be the same for this rule to match. The notion
of “sameness” employed here is that of syntactic equality, i.e., it is checked that the cor-
responding subterms have the same structure and content. Syntactic equality is also
available as an explicit operation same in the prelude, so that the first rule is roughly
equivalent to:

uniq (x:y:xs) = uniq (x:xs) if same x y;

Moreover, the prelude also defines the relational operators === and ~== to check for
syntactic equality and inequality, so we could have also written this as:

uniq (x:y:xs) = uniq (x:xs) if x === y;

Note that all these variations of the definition work no matter whether the list ele-
ments have ordinary equality defined on them, e.g.:

> a==a; a===a;
a==a
1
> uniq [a,b,b,a];
[a,b,a]

It is important to note the differences between syntactic equality and the semantic
equality predicate implemented by the == and ~= operators. For instance, it makes sense
to assert that 0==0.0, even though the integer 0 and the floating point number 0.0 are
not the same syntactically:



4 Expressions 29

> 0==0.0; 0===0.0;
1
0

In general, it is impossible to predict how semantic equality should be defined for
some data structure, and therefore it is only available for data on which it is defined
explicitly. The prelude does this for numbers, strings, lists, tuples, matrices and point-
ers, but leaves it up to the programmer to supply suitable definitions of equality for
his own data structures. (This is actually an advantage, since it gives the programmer
the freedom to define semantic equality in any way that he sees fit, and it allows the
== and ~= operations to be treated in a manner consistent with the other comparison
operators such as <= and >.) In contrast, two expressions can always be compared for
syntactic equality using either a non-linear pattern, the same predicate or the === and
~== operators.

4.3.5 Type Tags
Another issue which needs special consideration is matching the built-in types of objects
(numbers, strings, matrices and pointers). The problem is that you can’t write out all
“constructors” for the built-in types, as there are infinitely many (or none, as in the case
of matrices and pointers which are both constructed using special primitives). Therefore
Pure allows you to follow a variable in a pattern (including the anonymous variable) by
the symbol ‘::’ and one of the special type tags int, bigint, double, string, matrix and
pointer, to indicate that it can only match a value of the corresponding built-in type.

For instance, here is a “monomorphic” version of the Fibonacci function from Chap-
ter 2 which is restricted to (machine) integer arguments:

> fib n::int = if n<=1 then n else fib (n-2) + fib (n-1);
> fib 10; fib 10.0;
55
fib 10.0

Type tags can also be applied to user-defined data structures. If the type tag is not
any of the built-in type symbols listed above, it is assumed to denote a unary construc-
tor symbol h for a given data type, which is then expanded to a special “as” pattern
matching values of the form h y, see below.

4.3.6 “As” Patterns
Pure supports Haskell-style “as” patterns of the form variable@pattern which binds the
given variable to the expression matched by the subpattern pattern (in addition to the
variables bound by pattern itself). This is convenient if the value matched by the sub-
pattern is to be used on the right-hand side of a definition. Syntactically, “as” patterns
are primary expressions; if the subpattern is not a primary expression, it must be paren-
thesized. For instance, the following function duplicates the head element of a list:



30 4.3 Patterns

> dup xs@(x:_) = x:xs;
> dup [a,b,c];
[a,a,b,c]

Here is a little trick which comes in handy if you need to formulate a generic pattern
for a function application which binds a variable symbol to the function part of the
application (which cannot be done directly because of the “head = function” rule). Since
the anonymous variable can match any subterm anywhere, we can use an anonymous
“as” pattern like f@_ in order to “escape” the variable symbol f. E.g., the following little
example demonstrates how you can convert a function application to a list containing
the function and all its arguments:

> foo x = ac [] x;
> ac xs (x@_ y) = ac (y:xs) x; ac xs x = x:xs;
> foo (a b c d);
[a,b,c,d]

Another convenient shorthand is the type tag notation already introduced in the
preceding subsection. If h is any existing function symbol (more precisely, an identifier)
other than the built-in type symbols listed in the preceding subsection, then the notation
x::h can be used as an abbreviation for the “as” pattern x@(h _). This enables you to
represent a custom data type by designating a special constructor symbol which takes
the actual data as its single argument.

Note that this is merely a convention, but it works reasonably well and makes up
for the fact that Pure doesn’t support data types at the language level. For instance,
we might represent points in the plane using a constructor symbol Point which gets
applied to pairs of coordinates. We equip this data type with an operation point to
construct a point from its coordinates, and two operations xcoord and ycoord to retrieve
the coordinates:

point x y = Point (x,y);
xcoord (Point (x,y)) = x;
ycoord (Point (x,y)) = y;

Now we might define a function translate which shifts the coordinates of a point
by a given amount in the x and y directions as follows:

translate (x,y) p::Point = point (xcoord p+x) (ycoord p+y);

Note the use of Point as a type tag on the p variable. By these means, we can en-
sure that the argument is actually an instance of the point data type, without knowing
anything about the internal representation. We can use these definitions as follows:

> let p::Point = point 3 3;
> p; translate (1,2) p;
Point (3,3)
Point (4,5)



4 Expressions 31

Some data types in Pure’s standard library (specifically, the container data types) are
actually represented in this fashion, see the Pure Library Manual for details.

4.4 Lambdas
Sometimes you have to deal with more general cases of partial applications which can-
not be handled by just omitting parameters like in the max 0 example in Section 4.1.
In such situations lambda abstractions a.k.a. anonymous functions come in handy. The
customary mathematical notation for these is λx.y, where x is the lambda variable and
y the body of the lambda function. This denotes a function taking a single parameter x
and returning the value of y after substituting all occurrences of x in y. Since λ is not
an ASCII symbol and ‘.’ is used for other purposes (cf. Figure 4.2), Pure adopts the
Haskell notation, which employs the backslash as an ASCII facsimile of λ and an arrow
to separate the lambda parameters from the body. E.g., \x->1/x is another way to write
the reciprocal, while \x->x/2 halves its argument.

Also like in Haskell, the notation is extended to allow for multiple arguments and
argument patterns (cf. Section 4.3). Thus, e.g., \x y->x*y+1 denotes a lambda taking
two arguments x and y, and \(x,y)->x*y yields an anonymous function accepting a
pair x,y as its (single) argument. (Like the other variable-binding constructs discussed
below, a pattern-matching lambda throws an exception if the actual arguments do not
match the argument patterns.)

Lambdas bind very weakly in the expression syntax, so they always have to be
parenthesized when used in the context of a larger expression. E.g., (\x->1/x) (2*2)
applies our reciprocal from above to the result of evaluating the argument expression
2*2, which gives the result 0.25.

4.5 Conditional and Case Expressions
Conditional expressions take the form if x then y else z. Depending on the value of x,
either y or z is evaluated and gives the value of the entire expression. For instance, the
max function is defined in the prelude as follows:

max x y = if x>=y then x else y;

Multiway conditionals can be realized with the usual if-then-else-if chains, e.g.:

sgn x = if x>0 then 1 else if x<0 then -1 else 0;

The condition must yield a truth value, which is just a machine integer in Pure,
with zero denoting “false” and any nonzero value denoting “true”. Truth values are
returned, in particular, by the relational and logic operations (see Figure 4.2, p. 23), but
any kind of operation which returns a machine integer does just as well, e.g.:

> odd x = x mod 2;



32 4.5 Conditional and Case Expressions

> if odd 5 then "odd" else "even";
"odd"

Reasonably enough, an exception is thrown if the condition fails to evaluate to a
truth value (Section 7.2 describes how to deal with such exceptions in a Pure program):

> if bogus then 1 else 2;
<stdin>, line 23: unhandled exception ’failed_cond’ while evaluating
’if bogus then 1 else 2’

The case expression provides a dedicated multiway conditional which can also do
pattern matching to deconstruct the target value. For instance, here is another definition
of the function uniq from Section 4.3.4 which removes adjacent duplicates from a list:

uniq xs = case xs of
x:x:xs = uniq (x:xs);
x:xs = x:uniq xs;
_ = xs;

end;

The individual rules in a case expression are considered in the order in which they
are written, and each rule constitutes a local scope which binds the variables in the left-
hand side pattern of the rule to the corresponding subterms of the subject term, in this
case uniq’s argument xs. Thus, the first rule handles the case of a list x:x:xs where the
first two elements are the same. (Note that the left-hand-side pattern x:x:xs here also
rebinds xs locally to the remainder of the list.) In this case, one of the identical elements
is removed and uniq is applied recursively to the resulting smaller list x:xs. Otherwise,
the next rule is considered which recurses into the list of remaining elements xs in case
of a nonempty list x:xs. If that fails as well, the final rule is invoked which has just the
anonymous variable _ on the left-hand side and no guard either. Thus this rule always
matches and returns the xs argument of uniq unchanged.

In this example, we provided a “catch all” rule, so that the case expression never
fails. However, we also might have written the definition as follows, in order to ensure
that the argument really is a proper list value:

uniq xs = case xs of
x:x:xs = uniq (x:xs);
x:xs = x:uniq xs;
[] = [];

end;

If we now invoke uniq with a non-list value then the modified case expression
throws a failed_match exception:

> uniq 99;
<stdin>, line 38: unhandled exception ’failed_match’ while evaluating
’uniq 99’



4 Expressions 33

This might be preferable if you want to catch “type errors” as soon as possible. With
our previous definition, uniq 99 returns just 99.

4.6 Local Definitions
Another way to bind local variables in a Pure expression is the when expression:

x when u1 = v1; u2 = v2; . . . end

This matches each pattern ui against the value of each right-hand side vi, binding
the variables in the patterns accordingly, and finally evaluates x in the context of these
bindings. The bindings are executed in the given order; each ui = vi introduces a new
nested scope, and each vi may use all variables introduced in all earlier clauses. A
failed_match exception is thrown if (and as soon as) a match fails. Note that the sim-
plest case with just a single binding clause, x when u = v end, is in fact equivalent to
the case expression case v of u = x end, but the former is usually more convenient.
For instance, here is a little definition which lets us compute Fibonacci numbers in pairs
(which is much more efficient than the naive definition given in Chapter 2):

> fibs n = 0,1 if n<=0;
> = b,a+b when a,b = fibs (n-1) end;
> fibs 10;
55,89

Note the when expression on the right-hand side of the second equation which is
used to extract the results from a recursive invocation of fibs.

A similar construct is used to define local functions:

x with f x1 · · · xn = y; . . . end

In difference to when expressions, this introduces only one local scope which defines
all given functions simultaneously. (The syntax of the function definitions is actually
more elaborate than what is shown here, you can have any number of local function
definitions following the syntactic rules described in Chapter 5.) For instance, the with
expression lets us wrap up our previous definition of fibs as a local function in the
following alternative definition of the Fibonacci function:

> fib n = a when a,b = fibs n end with
> fibs n = 0,1 if n<=0;
> = b,a+b when a,b = fibs (n-1) end;
> end;
> map fib (0..10);
[0,1,1,2,3,5,8,13,21,34,55]



34 4.7 Lexical Scoping

This kind of “wrapper-worker” design is pretty common in functional programs. A
step-by-step explanation of this example and some other variations of the fib function
can be found in Section 8.1.

The constructs discussed above are similar to Haskell’s where clauses, but note that
in Pure they are part of the expression rather than the definition syntax and hence they
usually apply to the corresponding subexpression rather than the definition as a whole.
(However, like in Haskell it is also possible to have local definitions spanning both the
right-hand side and the guard of a rule, see Section 5.2 for details.) Also, there are two
different constructs for defining variables and functions. This distinction is necessary
because Pure does not segregate defined functions and constructors, and thus there is no
magic to figure out whether an equation like foo x = y by itself is meant as a definition
of a function foo with formal parameter x and return value y, or a definition binding
the local variable x by matching the constructor pattern foo x against the value y. The
with construct does the former, when the latter.

It is also worth noting here that the variable-binding forms, i.e., lambdas as well
as case and when expressions, are in fact all reducible to the with construct, using the
following equivalences:

\x1 · · · xn -> y ≡ f with f x1 · · · xn = y; f _ · · · _ = ⊥ end
case x of y1 = z1; . . .; yn = zn end ≡ f x with f y1 = z1; . . .; f yn = zn; f _ = ⊥ end
x when y1 = z1; . . .; yn = zn end ≡ x when yn = zn end · · · when y1 = z1 end
x when y = z end ≡ (\y -> x) z

In the above rules, f always denotes a new, nameless function symbol not occurring
free in any of the involved subexpressions, and ⊥ stands for an exception raised in case
of a failed match, cf. Section 7.2.

4.7 Lexical Scoping
A few remarks about Pure’s scoping rules are in order here. The when and with ex-
pressions, as well as lambda and case introduce a hierarchy of local scopes of identifiers,
pretty much like local function and variable definitions in Algol-like block-structured
languages. The only unusual thing here is that Pure permits local scopes right in the
middle of an expression, instead of only at the definition or statement level.

It is always the innermost binding of an identifier which is in effect at each point
in the program source. This is determined statically, by just looking at the program
text, which is why this scheme is known as static or lexical binding in the programming
literature. For instance:

> (x when x = x+1; x = 2*x end) + x;
2*(x+1)+x

To understand this result, note that the x on the right-hand side of the first local
binding, x = x+1, refers to a global symbol x here (as does the instance of x outside of



4 Expressions 35

the when expression), which we assume to be unbound in this example.4 Also note that
the above when expression is actually equivalent to two nested scopes:

> (x when x = 2*x end when x = x+1 end) + x;
2*(x+1)+x

Since when and with are tacked on to the end of the expression they apply to, it is
often easier to read these constructs from right to left, i.e., in this example first x is bound
to x+1 (employing the global x), then it is rebound to 2*x using the previous value of x
(which is x+1 at this point, giving 2*(x+1)), and finally the same global x is added to
that.

It goes without saying that this kind of nested expressions can be a little confusing
at times, so it’s often better to not reuse identifiers too much. E.g., the above expression
becomes much clearer if we rewrite it as:

> (z when y = x+1; z = 2*y end)+x;
2*(x+1)+x

On the other hand, the inflation of symbols which goes with this coding style can
also make your code less readable in some cases, so as usual it is up to you to find an
approach which matches your own programming style and maintains readability.

Local functions are handled in an analogous fashion to what we have seen above,
but there is another subtle issue here, namely that a local function may also refer to
other local functions and variables in its own context. This isn’t much of a problem as
long as the function is only invoked in its original context, but since functions are first-
class citizens in Pure, they may easily escape their “home” environment, e.g., if another
function returns a local function as its result. In this case, lexical scoping dictates that
the local function carries with it the bindings of all local entities it refers to. Such a com-
bination of a local function and its lexical environment is also called a lexical closure. For
instance, consider the following example of a function adder which takes some value x
as its argument and returns another function add which adds x to its own argument:

> adder x = add with add y = x+y end;
> let a = adder 5; a;
add
> a 5, a 7;
10,12

Because of lexical scoping, this works the same no matter what other global or local
bindings of x are in effect when our instance of adder is invoked:

> let x = 77; a 5, a 7 when x = 99 end;
10,12

4As a term rewriting language, Pure has no trouble dealing with unbound symbols, they just stand for
themselves.



36 4.8 Primary Expressions

4.8 Primary Expressions
Let us finally consider the primary expressions, which are the basic building blocks of
Pure expressions. Some of these coincide with the lexical entities of identifiers and spe-
cial symbols, strings, integer and floating point numbers already discussed in Chapter
3. In addition, there are some kinds of compound primary expressions, namely lists, tu-
ples, matrices and records, as well as list and matrix comprehensions. We describe each
of these in turn.

4.8.1 Symbols
As already mentioned, symbols come in three different kinds: Identifiers like foo and
foo_bar77, depending on the context, may be head symbols in function and constructor
applications, or they may denote variables and constant values. Nonfix symbols are
symbols which denote literal constants; these must be declared and cannot be used
as variable symbols (cf. Section 4.3.2). Operators (+, -, *, /, div, mod, etc.) are written
using infix, prefix, postfix or outfix notation, as the declaration of the operator demands,
but are just syntactic sugar for function applications (cf. Section 4.2). By enclosing
an operator symbol in parentheses, such as (+) or (mod), you turn it into an ordinary
function symbol, which is a legal expression just like an identifier or a nonfix symbol.
Nonfix and operator symbols can either be identifiers or consist of special punctuation.
These are the only symbols that have to be declared explicitly; cf. Section 4.2. Ordinary
identifiers are declared implicitly when they are first used.

4.8.2 Numbers
Pure has built-in support for three kinds of numeric values, machine integers (32 bit),
bigints (arbitrary precision integers, implemented using the GMP a.k.a. GNU Multi-
precision Library) and floating point numbers (64 bit). These are all signed quantities.
Machine integers use two’s complement for representing negative values, while big-
ints use a sign-magnitude representation (nevertheless, the bitwise arithmetic works on
bigints as if they also used two’s complement). Pure uses whatever flavour of double
precision floating point values are provided by your machine, which usually are IEEE
754 floating point numbers nowadays. Machine int and floating point operations like
arithmetic and bit fiddling are all translated to native machine code operations, while
bigint operations are implemented using the GMP library.

To distinguish machine integers and bigints, Pure uses the L suffix to indicate the
latter (1234L). Both kinds of integers can be denoted in decimal (1000), hexadecimal
(0x3e8), octal (01750) and binary (0b1111101000), see Chapter 3 for details. Negative
numbers are denoted by prefixing the number with a ‘-’ sign (-1234, -1.234e-5). Syn-
tactically, however, these are actually applications of the unary minus operator and
must be parenthesized accordingly, see Section 4.2.



4 Expressions 37

4.8.3 Strings
For performance reasons, strings are really a separate data type in Pure, not just lists of
characters, although you can easily convert between the two using the list and string
operations defined in the prelude. Also note that single characters are just strings of
length 1 in Pure. (Internally, a character may actually consist of multiple bytes, encoding
extended Unicode symbols in UTF-8. This provides backward compatibility with ASCII
while giving you access to the full Unicode character set.)

The basic list operations (determining the size, indexing, slicing, see Section 4.8.4
below) all work completely analogously on strings:

> #"abcd"; "abcd"!1; "abcd"!!(1..2);
4
"b"
"bc"
> "abc"+"xyz";
"abcxyz"

Most other list operations are readily supported on strings as well, so that strings can
mostly be used as if they were lists of characters (including their use in generator clauses
of list comprehensions, see Section 4.8.8). Moreover, the usual arithmetic operations on
individual characters are provided, too, which enables you to enumerate sequences of
characters. For instance:

> upper c = if "a"<=c && c<="z" then c-32 else c;
> string (map upper "The brown fox jumps quickly over the lazy dog.");
"THE BROWN FOX JUMPS QUICKLY OVER THE LAZY DOG."
> string [c+1 | c = "hal"];
"ibm"
> "a".."k";
["a","b","c","d","e","f","g","h","i","j","k"]

In addition, strings also support lexicographic comparisons, and it’s possible to lo-
cate a substring in a string:

> "aba"<"abba";
1
> index "abba" "bb";
1

There are a number of other operations which you can find in the strings module.
Together with the indexing and slicing operations these provide a fairly complete set of
basic string manipulation functions. (The system module also has the usual filename
globbing and regular expression routines; we’ll have a look at those in Chapter 8.)



38 4.8 Primary Expressions

4.8.4 Lists
Lists use the customary bracket notation, as in [a,b,c] which is in fact just syntactic
sugar for a:b:c:[], where ‘:’ is the list constructor (“cons”), which associates to the
right, and [] is the empty list. Since ‘:’ is a constructor symbol, it can be used in pat-
terns to deconstruct list values. E.g., the prelude defines the functions head and tail
to extract the head element and the rest of a list (“car” and “cdr” in Lisp parlance) as
follows:

head (x:xs) = x;
tail (x:xs) = xs;

The prelude also defines operations for determining the size of a list, indexing, slic-
ing and list concatenation (recall that list indices are always zero-based):

> #[a,b,c,d]; [a,b,c,d]!1; [a,b,c,d]!!(1..2);
4
b
[b,c]
> [a,b,c]+[x,y,z];
[a,b,c,x,y,z]

Lists can be compared for equality, by recursively comparing their elements:

> [1,2]==[1,2,0];
0
> [1,2,1]~=[1,2,0];
1

The prelude also provides the ‘..’ operation to create arithmetic sequences:

> 1..10;
[1,2,3,4,5,6,7,8,9,10]
> 1:3..10;
[1,3,5,7,9]
> 10:9..0;
[10,9,8,7,6,5,4,3,2,1,0]

In addition, the prelude defines a fairly complete set of customary list functions like
head, tail, init, last, drop, take, filter, map, foldl, foldr, scanl, scanr, zip, unzip,
etc., which are similar to the list processing facilities provided in ML and Haskell. (In
Pure, these also work on strings and matrices accordingly, although these data struc-
tures are internally represented as different kinds of C arrays for efficiency and easy
interfacing to C.) For instance:

> sum = foldl (+) 0; prod = foldl (*) 1;
> sum (1..10); prod (1..10);
55
3628800



4 Expressions 39

> zipwith (*) [1,2,3] [2,3,2];
[2,6,6]

A special feature of lists is that most of the prelude operations can also be used
with lazy lists a.k.a. streams, so that it’s possible, e.g., to work with infinite series (this is
discussed in detail in Section 7.3):

> let s = scanl (+) 0 [1/3^n|n=1..inf];
> s!![1,10,20,30]; // this converges to 0.5 fairly quickly
[0.333333333333333,0.499991532456096,0.499999999856601,0.499999999999997]
> s!100;
0.5

4.8.5 Tuples
Tuples are a kind of “flat” list data structure which is commonly used to pass simple
aggregate values to functions or return them as results. They are constructed using
the right-associative pair constructor ‘,’ and the empty tuple (), which work pretty
much like ‘:’ and [] (minus the lazy evaluation features that lists provide), but have the
following additional properties:5

• The empty tuple () acts as a neutral element, i.e., (),x is just x, as is x,().

• Pairs always associate to the right, meaning that x,y,z == x,(y,z) == (x,y),z,
where x,(y,z) is the normalized representation.

Note that these properties imply that tuples can’t be nested (if you need this then you
should use lists instead). On the other hand, this means that with just the ‘,’ operator
you can do all basic tuple manipulations (prepend and append elements, concatenate
tuples, and do pattern matching):

> a,(b,c,d); (a,b,c),d;
a,b,c,d
a,b,c,d
> (a,b,c),(x,y,z);
a,b,c,x,y,z
> foo (2,3) with foo (x,y) = 2*x+y end;
7

Tuples thus provide a convenient way to represent plain sequences which don’t need
an elaborate, hierarchical structure.

5Mathematicians should note here that this is not the “official” set-theoretic definition of a tuple, which
excludes associativity in order to allow nested tuples. However, many mathematicians effectively use
tuples in a way which identifies Xn × Xm with Xn+m because it’s just more convenient that way, and this
is exactly what Pure provides.



40 4.8 Primary Expressions

Also note that the parentheses are not really part of the tuple syntax in Pure. Hence
(1,2,3) prints as just 1,2,3. However, the parentheses may be needed to override
default precedences, e.g., if a tuple value is used as a parameter. There’s another case
where the parentheses are mandatory, namely if you want to include a tuple in a list
or matrix. E.g., [(1,2),3,(4,5)] is a three element list consisting of the tuple 1,2, the
integer 3, and another tuple 4,5. Likewise, {(1,2,3)} is a matrix with a single element,
the tuple 1,2,3.

The prelude defines a few basic list-like operations on tuples, such as determining
the size of a tuple with the # prefix operator, indexing (x!i), slicing (x!!is) and com-
paring for equality (x==y, x~=y). Moreover, you can easily convert between tuples and
lists using the list and tuple operations.

4.8.6 Matrices
Pure also offers matrices, a kind of arrays, as a built-in data structure which provides
efficient storage and element access and is tailored for numeric and algebraic applica-
tions. These work more or less like their MATLAB and Octave equivalents, but using
curly braces instead of brackets. Commas are used to separate the columns of a matrix,
semicolons for its rows. For instance:

• {1,2,3} is a row vector consisting of machine integers;

• {1.0;2.0;3.0} is a column vector of double values;

• {1,2;3,4} is a 2× 2 matrix of machine integers;

• {1L,y+1;foo,bar} is a “symbolic” matrix (see below).

In fact, the {...} construct is rather general, allowing you to construct new matrices
from individual elements and/or submatrices, provided that all dimensions match up.
E.g., {{1;3},{2;4}} is another way to write the 2 × 2 matrix {1,2;3,4} in “column-
major” form. (Internally, however, matrices are always stored in row-major format.)

Pure supports both numeric and symbolic matrices. The former use an internal rep-
resentation which is compatible with the GNU Scientific Library (GSL); they must be
homogeneous and contain either integer, floating point or complex values only. The
latter can contain any mixture of Pure expressions (including other numeric or sym-
bolic matrices). Pure will pick the appropriate type for the data at hand. If a matrix
contains values of different types, or Pure values which cannot be stored in a numeric
matrix, then a symbolic matrix is created (this also includes the case of bigints, which
are considered as symbolic values as far as matrix construction is concerned).

Note that {...} isn’t an ordinary constructor operation and so cannot be used for
pattern-matching purposes. However, the usual size, indexing and slicing operations
are all available, and the latter work both with 1- and 2-dimensional subscripts. 1-
dimensional indices treat the matrix as a flat vector stored in row-major format, while



4 Expressions 41

2-dimensional indices let you access the individual rows and columns of a matrix. Ar-
bitrary ranges of these can be used with the slicing operation. Again, this works pretty
much like in MATLAB and Octave, except that indices are zero- rather than one-based.
Examples:

> let x = {1,2,3;4,5,6};
> #x; x!3; x!!(1..4);
6
4
{2,3,4,5}
> dim x; x!(1,2); x!!(0..1,1..2);
2,3
6
{2,3;5,6}

Note that dim x determines the dimensions (number of rows and columns) of a ma-
trix, while #x just returns its number of elements. You can also retrieve the rows and
columns of a matrix, as well as its main, sub- and super-diagonals:

> rows x; cols x;
[{1,2,3},{4,5,6}]
[{1;4},{2;5},{3;6}]
> row x 1; col x 1;
{4,5,6}
{2;5}
> diag x; subdiag x 1; supdiag x 1;
{1,5}
{4}
{2}

It is worth noting here that the operations to extract rows, columns and contiguous
slices of matrices are optimized so that they won’t copy any matrix elements, but reuse
the underlying storage of the original matrix. This makes retrieving the rectangular
parts of a matrix a very cheap operation, which is important for many numeric algo-
rithms. Because of this, there may be a difference between the number of columns of a
matrix and its stride, i.e., the actual row size of the matrix in memory:

> let y = x!!(0..1,1..2); dim y; stride y;
2,2
3

Usually you don’t have to worry about the stride of a matrix, but this value may be
important when passing matrices to C routines. You can also pack a matrix which copies
its contents to fresh memory and makes sure that elements are stored consecutively:

> let z = pack y; dim z; stride z;
2,2



42 4.8 Primary Expressions

2

Another useful operation is transposition, which turns the rows of a matrix into its
columns and vice versa. Note that transposing a matrix twice gives the original matrix.

> transpose x; transpose (transpose x)==x;
{1,4;2,5;3,6}
1

Pure does not provide any built-in support for linear algebra algorithms and other
advanced matrix operations, but the facilities for matrix and list processing make it easy
to roll your own, if desired. In particular, the prelude provides matrix versions of the
common list operations like map, fold, zip etc. which can be employed for that purpose.
E.g., multiplying a matrix x with a scalar a amounts to mapping the function \x->a*x
on x, which can be done as follows:

> a * x::matrix = map (a*) x;
> 2*{1,2,3;4,5,6};
{2,4,6;8,10,12}

Moreover, it’s possible to pass numeric matrices directly to GSL routines for doing
numeric computations. You can also get at the underlying storage pointer of a matrix in
order to shovel around matrix and vector data between Pure and third-party libraries
written in C, where they may represent, e.g., raw pixel or audio data. This turns Pure
into a useful tool for signal processing and other multimedia applications. We’ll explore
some of these possibilities in Chapter 8.

4.8.7 Records
Records are just symbolic vectors whose members are “hash pairs” of the form key=>value.
Keys may be symbols or strings. For instance, {x=>5,y=>12} denotes a record value
with two fields x and y bound to the values 5 and 12, respectively. The field values
can be any kind of Pure data. In particular, they may themselves be records, so records
can be nested, as in {x=>5,y=>{a=>"foo",b=>12}}. The prelude provides various op-
erations on records which let you retrieve field values by indexing and perform non-
destructive updates. For instance:

> let r = {x=>5, y=>12};
> r!y; r!![y,x]; // indexing and slicing
12
{12,5}
> keys r; vals r; // keys and values of a record
{x,y}
{5,12}
> insert r (x=>99); // update an existing entry
{x=>99,y=>12}



4 Expressions 43

> insert ans (z=>77); // add a new entry
{x=>99,y=>12,z=>77}
> delete ans z; // delete an existing entry
{x=>99,y=>12}
> let r = {x=>5,y=>{a=>"foo",b=>12}}; // nested record
> r!x,r!y,r!y!a;
5,{a=>"foo",b=>12},"foo"

The standard library provides a number other useful operations, please see the Pure
Library Manual for details. Also, since Pure’s records are just symbolic vectors, the
full range of generic matrix operations (including matrix comprehensions, see below) is
applicable to these objects. This turns them into a very versatile data structure, much
more powerful than records in conventional programming languages which are usually
limited to constructing records and accessing or modifying their components.

4.8.8 Comprehensions
Pure provides the usual comprehension syntax as a convenient means to construct both
list and matrix values from a template expression and one or more generator and filter
clauses. The clauses are considered from left to right. Generator clauses take the form
p = x and bind the variables in the pattern p to values drawn from a list or matrix x.
Each generator introduces a new nested scope, similar to a when expression, but note
that here the pattern p gets matched to all members of the list or matrix value x in
turn. Filter clauses are just normal expressions. They must return a truth value which
determines which generated elements should actually be included in the result list or
matrix. For instance:

> [x,y | x=1..3; y=1..4; x<y];
[(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)]

Comprehensions are really just syntactic sugar for combinations of lambdas, con-
ditional expressions and various list and matrix operations. The interpreter expands
these expressions at compile time. Specifically, list comprehensions are essentially im-
plemented according to the following equivalences:6

[ x | y = z ] ≡ map (\ y -> x ) z
[ x | y = z; clauses ] ≡ catmap (\ y -> [ x | clauses ]) z
[ x | p; clauses ] ≡ if p then [ x | clauses ] else []

Here, catmap combines cat (which concatenates a list of lists) and map (which maps
a function over a list). These operations are all defined in the prelude. Example:

6The actual implementation is slightly more complicated, in order to properly deal with different cases
of generators.



44 4.9 Evaluation Order and Special Forms

> foo n m = [x,y | x=1..n; y=1..m; x<y];
> show foo
foo n m = catmap (\x -> catmap (\y -> if x<y then [(x,y)] else []) (1..m))
(1..n);

Matrix comprehensions work in a similar fashion, but with a special twist. If a matrix
comprehension draws values from several lists, it alternates between row and column
generation. (More precisely, the last generator, which varies most quickly, always yields
a row, the next-to-last one a column of these row vectors, and so on.) For instance,
here is how we can define an operation to create a square identity matrix of a given
dimension (note that the i==j term is just a Pure idiom for the Kronecker symbol here):

> eye n = {i==j | i = 1..n; j = 1..n};
> eye 3;
{1,0,0;0,1,0;0,0,1}

Furthermore, if a matrix comprehension draws values from another matrix, it pre-
serves the block structure of the input matrix:

> a*X::matrix = {a*x|x=X};
> 2*eye 2;
{2,0;0,2}
> {a*x|a={1,2;3,4};x=eye 2};
{1,0,2,0;0,1,0,2;3,0,4,0;0,3,0,4}

In any case, the result of a matrix comprehension must be something rectangular
(which is always guaranteed if there are no filter clauses), otherwise evaluating the com-
prehension will throw a bad_matrix_value exception.

Comprehensions allow you to formulate many kinds of simple iterative algorithms
which would typically be done using for loops in traditional programming languages,
without having to resort to an imperative coding style. More elaborate examples for
this very useful construct are discussed in Chapter 8.

4.9 Evaluation Order and Special Forms
Pure normally evaluates expressions using call-by-value, i.e., all subexpressions of an
expression are evaluated before the expression itself. This is described in more detail in
Chapter 6. However, some operations are actually implemented as special forms which
defer the evaluation of some or all of their arguments until they are needed (i.e., doing
call-by-name evaluation). In particular, the conditional expression if x then y else z is a
special form with call-by-name arguments y and z; only one of the branches is actually
evaluated, depending on the value of x. Similarly, the logical connectives && and ||
evaluate their operands in short-circuit mode. Thus, e.g., x && y immediately becomes
false if x evaluates to false, without ever evaluating y. Otherwise, y is evaluated and
returned as the result of the expression.



4 Expressions 45

The “sequencing” operator $$ evaluates its left operand, immediately throws the
result away and then goes on to evaluate the right operand which gives the result of
the entire expression. This operator is useful to write imperative-style code such as the
following prompt/input interaction:

> using system;
> puts "Enter a number:" $$ scanf "%g";
Enter a number:
21
21.0

We mention in passing here that the same effect can be achieved with a when clause
(cf. Section 4.6), which also allows you to execute a function solely for its side-effects
and just ignore the return value (this is explained in Section 5.2):

> scanf "%g" when puts "Enter a number:" end;
Enter a number:
21
21.0

Other special forms are the function catch which handles exceptions, and the postfix
operator & which does lazy evaluation in Pure. These will be described in Sections 7.2
and 7.3, respectively.

Last but not least, the special form quote quotes an expression, i.e., quote x returns
just x itself without evaluating it. For convenience, this can also be written as ’x. The
prelude provides a function eval which can be used to evaluate a quoted expression at
a later time. For instance:

> let x = ’(2*42+2^12); x;
2*42+2^12
> eval x;
4180.0

This facility should be well familiar to Lisp programmers, but there are some notable
differences. First, only simple expressions can be quoted in Pure, special constructs such
as conditionals, lambdas and scope expressions (case, when and with) will always be
evaluated as usual. Second, local variables can’t be quoted either, they will always be
substituted, even in a quoted expression. For instance:

> ’(2*42+2^n) when n = 2*6 end;
2*42+2^12
> ’(2*42+(2^n when n = 2*6 end));
2*42+4096.0

On the other hand, the quote does inhibit evaluation inside matrix values, including
the “splicing” of embedded submatrices:

> ’{1,2+3,2*3};



46 4.9 Evaluation Order and Special Forms

{1,2+3,2*3}
> ’{1,{2,3},4};
{1,{2,3},4}

Finally, note that special forms are recognized at compile time only. Thus the catch
function, as well as quote and the operators &&, ||, $$ and &, are only treated as special
forms in direct (saturated) calls. They can still be used if you pass them around as
function values or in partial applications, but in this case they lose all their special call-
by-name argument processing.



Chapter 5
Definitions

A Pure program may contain any number of equations a.k.a. rewriting rules which are
used to define functions and macros. For convenience, Pure also supports constant and
variable definitions. These elements take the following forms (cf. Appendix A):

lhs = rhs; Rewriting rules always consist of a left-hand side pattern lhs (which must
be a simple expression, cf. Section 4.3) and a right-hand side rhs (which can be
any kind of Pure expression as described in the previous chapter). There are some
variations of the form of rewriting rules (guards, multiple left- and right-hand
sides) which will be discussed in Section 5.2 below.

def lhs = rhs; This is a special form of rewriting rule used to expand macro definitions
at compile time.

let lhs = rhs; This kind of definition binds every variable in the left-hand side pattern
to the corresponding subterm of the right-hand side (after evaluating the latter).
This works like a when clause, but serves to bind global variables occurring free on
the right-hand side of other function and variable definitions.

const lhs = rhs; This is an alternative form of let which defines constants rather than
variables. (These are not to be confused with nonfix symbols which simply stand
for themselves, cf. Section 4.3.) Unlike variables, const symbols can only be de-
fined once, and thus their values do not change during program execution.

Macro definitions will be discussed in Section 7.4. The other kinds of definitions are
described in the following, after some general remarks about the global scope and the
rule syntax. Finally, we also explain how Pure allows you to organize your definitions
into separate modules.



48 5.1 The Global Scope

5.1 The Global Scope
In difference to local functions and variables introduced with with and when (cf. Sec-
tion 4.6), the constructs discussed above define symbols with global scope. To facilitate
interactive usage, the global environment is handled a bit differently from local scopes,
in that the scope of each global definition extends from the point where the function,
macro, variable or constant is first defined, to the next point where the symbol is re-
defined in some way. This makes it possible, e.g., to redefine global variables at any
time:

> foo x = c*x;
> foo 99;
c*99
> let c = 2; foo 99;
198
> let c = 3; foo 99;
297

Similarly, you can also refine your function definitions as you go along. The in-
terpreter automatically recompiles your definitions as needed when you do this. For
instance:

> bar x = x if x>=0;
> bar 1; bar (-1);
1
bar (-1)
> bar x = -x if x<0;
> bar 1; bar (-1);
1
1

This is mainly a convenience for interactive usage, but works the same no matter
whether the source code is entered interactively or being read from a script, in order to
ensure consistent behaviour between interactive and batch mode operation. So, while
the meaning of a local symbol never changes once its definition has been processed,
toplevel definitions may well evolve while the program is being processed, and the
interpreter will always use the latest definitions at a given point in the source when an
expression is evaluated. This means that, even in a script file, you have to define all
symbols needed in an evaluation before entering the expression to be evaluated.

5.2 Rule Syntax
All global and local definitions in Pure share the same kind of basic rule syntax, which
consists of a left-hand side expression lhs and a right-hand side expression rhs, separated
by the reserved = symbol. That is: lhs = rhs.



5 Definitions 49

The left-hand side of a rule is a special kind of “template” expression called a pat-
tern. Please refer to Section 4.3 for a closer description of these. To briefly recall the
most important features, patterns must be simple expressions with no repeated vari-
ables (other than the anonymous variable ‘_’), which may also contain the following
special elements:

• A left-hand side variable (including the anonymous variable) may be followed by
one of the special type tags ::int, ::bigint, ::double, ::string, ::matrix and
::pointer, to indicate that it can only match a constant value of the corresponding
built-in type.

• An “as” pattern of the form variable@pattern binds the given variable to the ex-
pression matched by the subpattern pattern (in addition to the variables bound by
pattern itself).

In some cases (specifically, global and local function definitions as well as case),
rules can also be augmented with a guard, and repeated left-hand or right-hand sides
can be “factored out”, as described below. Also note that in the case of function and
macro definitions, as well as in case expressions, the rules are always considered in the
order in which they are written, and the first matching rule (whose guard evaluates to a
nonzero value, if applicable) is picked. (The let, const and when constructs are treated
differently, as each rule is a separate definition.)

5.2.1 Guards
A guard is simply a condition of the from ‘if expr’ tacked on to the end of a rule. The
condition must evaluate to a machine integer; otherwise a failed_cond exception is
raised. The rule is only applicable if the condition yields a nonzero value (which, as
usual, means “true”). For notational convenience, the keyword otherwise can be used
to indicate an empty guard which is always “true”. This is just syntactic sugar for the
human reader and is treated as a comment by the compiler; you can always omit it. For
instance, consider the following definition of the factorial:

fact n = n*fact (n-1) if n>0;
fact n = 1 otherwise;

Here the first rule handles the case that the argument of fact is positive; in all other
cases this rule will be ignored and the second rule will be invoked instead.

5.2.2 Repeated Left-Hand and Right-Hand Sides
In function definitions and case expressions, the left-hand side of a rule can be omitted
if it is the same as for the previous rule. This provides a convenient means to write out
a collection of equations for the same left-hand side which discriminates over different
conditions:



50 5.2 Rule Syntax

lhs = rhs if guard;
= rhs if guard;
. . .
= rhs otherwise;

For instance, the above definition of the factorial can also be written as follows:

fact n = n*fact (n-1) if n>0;
= 1 otherwise;

Pure also allows a collection of rules with different left-hand sides but the same
right-hand side(s) to be abbreviated as follows:

lhs |
. . .

lhs = rhs;

This is useful if you need different specializations of the same rule which use differ-
ent type tags on the left-hand side variables. For instance:

fact n::int |
fact n = n*fact(n-1) if n>0;

The above definition expands to two equations which share the right-hand side of
the second equation, as if you had written:

fact n::int = n*fact(n-1) if n>0;
fact n = n*fact(n-1) if n>0;

This is essentially equivalent to just the last equation, but the “special case rule” for
the n::int argument allows the compiler to generate more efficient code for that case by
inlining machine code for the arithmetic and relational operations, because it is already
known that the argument is a machine integer.

In fact, the left-hand sides don’t have to be related at all, so that you can also write
something like:

foo x | bar y = x*y;

However, this is most useful when using an “as” pattern to bind a common variable
to a parameter value after checking that it matches one of several possible argument
patterns (which is slightly more efficient than using an equivalent type-checking guard).
E.g., the following definition binds the xs variable to the parameter of sums, if it is either
the empty list or a list starting with an integer:

sums xs@[] | sums xs@(_::int:_) = scanl (+) 0 xs;

The same construct also works in case expressions, which is convenient if different
cases should be mapped to the same value, e.g.:

case ans of "y" | "Y" = 1; _ = 0; end;



5 Definitions 51

5.2.3 Local Definitions in Rules
Sometimes it is useful if local definitions (when and with) can be shared by the right-
hand side and the guard of a rule in a function definition or a case expression. This can
be done by placing the local definitions behind the guard, as follows (we only show the
case of a single when clause here, but of course there may be any number of when and
with clauses behind the guard):

lhs = rhs if guard when defns end;

Note that this is different from the following, which indicates that the definitions
only apply to the guard but not the right-hand side of the rule:

lhs = rhs if (guard when defns end);

Conversely, definitions placed before the guard only apply to the right-hand side
but not the guard (no parentheses are required in this case):

lhs = rhs when defns end if guard;

An example showing the use of a local variable binding spanning both the right-
hand side and the guard of a rule is the following quadratic equation solver, which
returns the (real) solutions of the equation x2 + px + q = 0 if the discriminant d =
p2/4− q is nonnegative:

> using math;
> solve p q = -p/2+sqrt d,-p/2-sqrt d if d>=0 when d = p^2/4-q end;
> solve 4 2; solve 2 4;
-0.585786437626905,-3.41421356237309
solve 2 4

Note that the above definition leaves the case of a negative discriminant undefined.

5.2.4 Optional Left-Hand Sides
The when, let and const constructs only use the basic rule syntax which just consists of
a left-hand and a right-hand side separated by ‘=’. Guards or multiple left-hand or right-
hand sides are not permitted in these. However, it is possible to omit the left-hand side
if it is just the anonymous variable ‘_’ by itself, indicating that you don’t care about the
result. The right-hand side is still evaluated, if only for its side-effects, which is handy,
e.g., for debugging purposes. For instance, here is a variation of the quadratic equation
solver from above which also prints the discriminant after it has been computed:



52 5.3 Function Definitions

> using math, system;
> solve p q = -p/2+sqrt d,-p/2-sqrt d if d>=0
> when d = p^2/4-q; printf "The discriminant is: %g\n" d; end;
> solve 4 2;
The discriminant is: 2
-0.585786437626905,-3.41421356237309
> solve 2 4;
The discriminant is: -3
solve 2 4

5.3 Function Definitions
In Pure, functions are defined by a collection of equations, using the rule syntax de-
scribed above. The left-hand side pattern can be either a function by itself, or a function
applied to some parameters. For instance, the following equation defines a function
square which squares its argument by multiplying it with itself:

square x = x*x;

For now you’ll have to take these at face value; in Chapter 6 we’ll describe how
exactly these equations are used to rewrite expressions. Of course, definitions may also
be recursive, like the following definition of the Ackerman function:

ack x y = if x == 0 then y+1 else if y == 0 then ack (x-1) 1
else ack (x-1) (ack x (y-1));

Definitions may consist of any number of rules, which are considered in the order
in which they are written. Here is another definition of the Ackerman function, which
splits the conditionals in the definition above into three separate equations, two guarded
rules for the x==0 and y==0 cases, and a “default” rule which applies to all other cases:

ack x y = y+1 if x == 0;
= ack (x-1) 1 if y == 0;
= ack (x-1) (ack x (y-1)) otherwise;

Structured arguments may be deconstructed using pattern matching. E.g., a function
summing up all values in a list can be defined recursively as follows:

sum [] = 0;
sum (x:xs) = x+sum xs;

This also works with user-defined constructors. For instance, here’s how to imple-
ment an insertion operation, which can be used to construct a binary tree data structure
useful for sorting and searching:

nonfix nil;
insert nil y = bin y nil nil;



5 Definitions 53

insert (bin x L R) y = bin x (insert L y) R if y<x;
= bin x L (insert R y) otherwise;

Note that the nil symbol needs to be declared as a nonfix symbol here, so that the
compiler doesn’t mistake it for a variable. The following example illustrates how the
above definition may be used to obtain a binary tree data structure from a list:

> foldl insert nil [7,12,9,5];
bin 7 (bin 5 nil nil) (bin 12 (bin 9 nil nil) nil)

Functions can be higher order, i.e., they may take functions as arguments or return
them as results. For instance, the foldl function, which generalizes the above sum func-
tion to accumulate all members of a list using any binary function f and any start value
a, is defined in the prelude as follows:

foldl f a [] = a;
foldl f a (x:xs) = foldl f (f a x) xs;

Using this function, sum can be rewritten as follows:

sum = foldl (+) 0;

This is also called “pointless” style (pun intended), since it doesn’t explicitly men-
tion the function argument. Also note that this definition is not quite equivalent to the
previous one; the previous definition accumulated results from right to left rather than
from left to right, as foldl does. The prelude also provides another accumulation func-
tion foldr if you prefer the former.

Note that since operators are just function symbols in disguise, they can be used on
the left-hand side of equations just as well. For instance, here is how you can define a
lexicographic order on lists (of course, you’ll have to add more equations for the other
relational operators, but these are completely analogous):

[] <= [] = 1;
[] <= y:ys = 1;
x:xs <= [] = 0;
x:xs <= y:ys = x<=y && xs<=ys;

In Pure there is no need to specify all equations for a given function in one go; they
may actually be scattered out through your program, and even over different source
files (cf. Section 5.5). Thus the definition of a function can be refined at any time, and
it can be as polymorphic (apply to as many types of arguments) as you like. The only
requirement that is checked by the compiler is that all equations for a given function
must agree on the number of function arguments. It will also warn you if there are any
“useless” equations which are “shadowed” by previous definitions (which is usually a
programming error). For instance:

> foo (x:xs) = x,xs;
> foo [x] = x;
> foo [1];



54 5.4 Constant and Variable Definitions

warning: rule never reduced: foo [x] = x;
1,[]

Here the programmer didn’t realize that the first equation for foo already subsumes
the singleton list case of the second equation. This kind of slip occurs more often than
you might think, especially with complicated definitions involving a lot of equations.
The compiler helps you identifying those errors. (This only works in simple cases where
no guards are involved. The problem to identify “shadowed” guarded equations is in
general undecidable.)

Also note that the compiler warning was only produced when we evaluated an ex-
pression after entering the equations. This is because the Pure interpreter compiles your
definitions incrementally and “just in time”, when they are needed. If you want to force
immediate recompilation after some equations, it’s sufficient to enter any expression
like, say, ‘1’. This doesn’t actually generate any executable code (this happens when a
function is first used), but the compiler at least processes the definitions, generates the
corresponding LLVM pseudocode and updates the internal symbol tables accordingly.
At the interactive command line you can also use Tab completion for that purpose; just
hitting the Tab key on a blank command line will run the compiler as well.

5.4 Constant and Variable Definitions
Term rewriting doesn’t actually provide any means to define global “variables” which
let you store computed values, but these are convenient for a number of different pur-
poses. Therefore Pure has two closely related constructs which allow you to assign
values to symbols occuring “free” in expressions: let which binds global variables,
and const which binds constants. In difference to parameterless functions or macros,
the bound value is only computed once, at the time the definition is processed. This is
useful, in particular, to memoize values whose computation may be costly or involve
functions with side-effects (such as opening a file).

The let construct is also commonly used interactively to bind variable symbols to
intermediate results so that they can be reused later, e.g.:

> let x = 23/14; let y = 5*x; x; y;
1.64285714285714
8.21428571428571

Similar to local variable bindings in when clauses, the left-hand side of the definition
may actually be a pattern to be matched against the computed value of the right-hand
side. For instance, having defined the two global variables x and y, we might want to
swap their values now, which can be simply done as follows:

> let y,x = x,y; x; y;
8.21428571428571
1.64285714285714



5 Definitions 55

Constant definitions work in the same fashion, but the corresponding symbols can
only be defined once. This is typically used for mathematical or physical constants. E.g.:

> const c = 299792.458; // the speed of light, in km/s
> const ly = 365.25*24*60*60*c; // the length of a lightyear, in km
> ly;
9460730472580.8

Note that the right-hand side of a constant definition may be an arbitrary expression
whose value is computed when the definition is processed, just as with let. But, since
the value of a constant never changes once it is defined, it is possible to substitute the
value directly into subsequent definitions, so that it doesn’t have to be looked up at
runtime:

> lys x = x*ly; // the length of x lightyears
> show lys
lys x = x*9460730472580.8;

We mention in passing here that the standard library already defines a bunch of
const symbols for different purposes. E.g., the prelude contains the following defini-
tions for the truth values:

> show true false
const false = 0;
const true = 1;

Finally, it is important to note the difference between const and nonfix symbols.
The former are just names, placeholders for the actual values that are associated with
them, while the latter are real symbolic constants (i.e., normal forms) which stand for
themselves. In particular, const symbols will not work inside patterns (they will be
treated as ordinary variables), unless you also declare them as nonfix. If you do this,
the compiler substitutes their values also on the left-hand side of rules, which allows
them to be matched, e.g., in case expressions as usual:

> nonfix true false;
> foo x = case x of true = "true"; false = "false"; _ = "???" end;
> show foo
foo x = case x of 1 = "true"; 0 = "false"; _ = "???" end;
> foo true, foo false, foo 99;
"true","false","???"

Note that declaring a const symbol nonfix makes it “precious”; see the caveats in
Section 4.3. Therefore constant symbols are never declared nonfix in the library; if you
want this, you’ll have to do it yourself.



56 5.5 Programs and Modules

5.5 Programs and Modules
At the toplevel, a Pure program is basically just a collection of definitions, symbol dec-
larations and expressions to be evaluated. However, as programs get bigger, you will
want to partition them into separate modules. At this time, Pure doesn’t support sepa-
rate compilation, but it is possible to break down a program into a collection of source
modules. Moreover, Pure provides a simple but effective namespace facility which lets
you avoid name clashes between symbols of different modules and keep the global
namespace tidy and clean.

Each module is just an ordinary Pure script. A special kind of using declaration is
used to glue everything together. In particular, this declaration allows you to import
definitions from standard library modules other than the prelude. For instance, the
sqrt function resides in the math module, so if you want to use that function, you need
to add the following declaration to your program (or type it at the interactive command
line):

using math;

This actually includes the source of the math.pure script at this point in your pro-
gram. Each module is included only once, at the point where the first using declaration
for the module is encountered. The entire Pure program is then just the concatenation
of the prelude and the scripts specified on the command line, with the modules listed
in using clauses included in the appropriate locations.

You can also import multiple scripts in one go:

using array, dict, set;

Moreover, Pure provides a notation for qualified module names which can be used to
denote scripts located in specific package directories, e.g.:

using examples::libor::bits;

In fact this is equivalent to the following using clause which spells out the real file-
name of the script:

using "examples/libor/bits.pure";

Both notations can be used interchangeably; the former is usually more convenient,
but the latter allows you to denote scripts whose names aren’t valid Pure identifiers.

Modules are first searched for in the directories of the scripts that use them; failing
that, the interpreter also looks in the Pure library directory and some other “include
directories” which may be configured with environment variables and/or command
line options of the interpreter; please see the Pure manual for details.

5.5.1 The Standard Prelude
The prelude is actually an entire collection of modules which together form the core of
Pure’s standard library. You can find all the library modules in the Pure library directory



5 Definitions 57

(usually /usr/lib/pure or /usr/local/lib/pure on Unix systems). The main script
of the prelude is prelude.pure which imports the other prelude modules. Together,
these modules implement the basic integer, list, tuple, string and matrix operations. The
prelude.pure module is always loaded by the interpreter, so that the basic operations
are available at the interactive command line and in all your programs.

Without the prelude, the interpreter provides little more than the basic term rewrit-
ing machinery and a few tie-ins for primitives which directly translate into native code.
It is actually possible to start the interpreter without loading the prelude, by specifying
the -n option when invoking the interpreter. This is useful if you absolutely need to
start from the “bare metal” and define everything yourself, but is not recommended for
normal usage.

5.5.2 Namespaces
All modules in your program share one global namespace, the default namespace, which
is where new symbols are created by default, and which also holds most of the standard
library operations. As your programs become larger, this bears the danger that the same
symbol is used for different purposes in different modules, which may produce name
clashes when the modules are linked together. To avoid this mischief, Pure allows you
to put symbols into different user-defined namespaces. Like in C++, namespaces are
completely decoupled from modules. It is possible to equip each module with its own
namespace, but you can also have several namespaces in one module, or namespaces
spanning several modules. The latter is useful, in particular, to handle collections of
modules forming a library.

New namespaces are created with the namespace declaration, which also switches
to the given namespace (makes it the current namespace), so that subsequent symbol
declarations create symbols in that namespace rather than the default one. The current
namespace applies to all kinds of symbol declarations, including fixity and extern dec-
larations (the latter are described in Section 7.5). For instance, in order to create two
symbols with the same print name foo in two different namespaces foo and bar, you
can write:

namespace foo;
public foo;
foo x = x+1;
namespace bar;
public foo;
foo x = x-1;
namespace;

The public keyword makes sure that the declared symbols are visible out of their
“home” namespace. (You can also declare symbols as private, see Section 5.5.3 below.)
Also note that just the namespace keyword by itself in the last line switches back to the



58 5.5 Programs and Modules

default namespace. We can now refer to the symbols we just defined using qualified
symbols of the form namespace::symbol:1

> foo::foo 99;
100
> bar::foo 99;
98

The namespace prefix can also be empty, to explicitly denote a symbol in the default
namespace. (This is actually a special instance of an “absolute” namespace qualifier, to
be explained below.)

> ::foo 99;
foo 99

This avoids any potential name clashes, since the qualified identifier notation always
makes it clear which namespace the given identifier belongs to. However, as it is rather
inconvenient if you always have to write identifiers in their fully qualified form, Pure
allows you to specify a list of search namespaces which are used to look up symbols
not in the default or the current namespace. This is done with the using namespace
declaration, as follows:

> using namespace foo;
> foo 99;
100
> using namespace bar;
> foo 99;
98

The using namespace declaration also lets you search multiple namespaces simulta-
neously:

using namespace foo, bar;

However, this requires that a symbol exists in at most one of the listed namespaces,
otherwise you get an error message:

> using namespace foo, bar;
> foo 99;
<stdin>, line 15: symbol ’foo’ is ambiguous here

In such a case you have to use the appropriate namespace qualifier to resolve the
name clash:

> foo::foo 99;
100

1Note that a construct like foo::int may denote either a qualified identifier or a tagged variable (see
Section 4.3.5) in Pure. The compiler assumes the former if foo is a valid namespace identifier. You can
place spaces around the :: symbol if this is not what you want. Since spaces are not allowed in qualified
identifiers, this makes it clear that you mean a tagged variable instead.



5 Definitions 59

A using namespace declaration without any namespace arguments gets you back to
the default empty list of search namespaces:

using namespace;

In general, the scope of a namespace or using namespace declaration extends from
the point of the declaration up to the next declaration of the same kind. Moreover,
the scope is always confined to a single source file, i.e., namespace declarations never
extend beyond the current script, and thus each source module starts in the default
namespace with an empty list of search namespaces.

The precise rules for looking up symbols are as follows. The compiler searches for
symbols first in the current namespace (if any), then in the currently active search name-
spaces (if any), and finally in the default global namespace, in that order. (This au-
tomatic lookup can also be bypassed by using an absolute namespace qualifier of the
form ::namespace::symbol, see Section 5.5.4 below.)

If no existing symbol is found, a new symbol is created, implicitly declaring the
identifier as a public symbol with default attributes. New unqualified symbols are always
created in the default namespace, unless you explicitly declare them (in which case they
become members of the current namespace, as explained above). New qualified symbols
are created in the given namespace, which must be the current namespace. This makes
it possible to avoid explicit symbol declarations in the common case of ordinary, public
identifiers. E.g., we could have written the above example simply as follows:

namespace foo;
foo::foo x = x+1;
namespace bar;
bar::foo x = x-1;
namespace;

As a little safety measure against silly typos, the compiler insists that new qualified
symbols must be introduced in their “home” namespace, otherwise it complains about
an undeclared symbol:

> namespace;
> foo::bar x = 1/x;
<stdin>, line 7: undeclared symbol ’foo::bar’

To avoid such errors, you have to make sure that the right namespace is current
when introducing the symbol.

Explicit declarations are always needed if you want to introduce special operator
and constant symbols. Declaring these in a specific namespace works just like declara-
tions in the default namespace, except that you add the appropriate namespace decla-
ration before declaring the symbols. For instance, here is how you can create a new +
operation which multiplies its operands rather than adding them:

> namespace my;
> public infixl 6 +;



60 5.5 Programs and Modules

> x+y = x*y;
> 5+7;
35

(The keyword public in front of infixl can also be omitted, since symbols are al-
ways public unless you explicitly declare them as private symbols, see Section 5.5.3.)

Note that the new + operation really belongs to the namespace we created. The +
operation in the default namespace works as before, and in fact you can use qualified
symbols to pick the version that you need:

> namespace;
> 5+7;
12
> 5 ::+ 7;
12
> 5 my::+ 7;
35

5.5.3 Private Symbols
Pure also allows you to have private symbols, as a means to hide away internal opera-
tions which shouldn’t be accessed directly by client programs. The scope of a private
symbol is confined to its namespace, i.e., the symbol is visible only if its “home” name-
space is the current namespace. Symbols are declared private by using the private
keyword (instead of public) in the symbol declaration:

> namespace secret;
> private baz;
> // ’baz’ is a private symbol in namespace ’secret’ here
> baz x = 2*x;
> // you can use ’baz’ just like any other symbol here
> baz 99;
198
> namespace;

Note that, at this point, secret::baz has become invisible, because we switched
back to the default namespace. This holds even if you have secret in the search name-
space list:

> using namespace secret;
> // this actually creates a new symbol ’baz’ in the default namespace
> baz 99;
baz 99
> secret::baz 99;
<stdin>, line 27: symbol ’secret::baz’ is private here



5 Definitions 61

The only way to bring secret::baz back into scope is to make the secret namespace
current again:

> namespace secret;
> baz 99;
198
> secret::baz 99;
198

Note that you should only do this if you are actually the “owner” or “creator” of the
namespace accessed with the namespace declaration. To enforce information hiding,
client modules should always use the using namespace declaration to access a name-
space. This hides away the private symbols so that you do not inadvertently use those
symbols in an inappropriate manner. This restriction does not apply to the public sym-
bols of a namespace, which are always visible so that you can extend the corresponding
operations by adding to their definitions in the usual way.

5.5.4 Hierarchical Namespaces
Namespace identifiers can themselves be qualified identifiers in Pure, which enables
you to introduce a hierarchy of namespaces. This is useful, e.g., to group related name-
spaces together. For instance:

namespace my;
namespace my::old;
my::old::foo x = x+1;
namespace my::new;
my::new::foo x = x-1;

Note that the namespace my, which serves as the parent namespace, must be created
before creating the my::old and my::new namespaces, even if it does not contain any
symbols of its own. After these declarations, the my::old and my::new namespaces are
part of the my namespace and will be considered in name lookup accordingly, so that
you can write:

> using namespace my;
> old::foo 99;
100
> new::foo 99;
98

Sometimes it is necessary to tell the compiler to use a symbol in a specific name-
space, bypassing the usual symbol lookup mechanism. For instance, suppose that we
introduce another global old namespace and define yet another version of foo in that
namespace:

namespace old;



62 5.5 Programs and Modules

public foo;
foo x = 2*x;
namespace;

Now, if we want to access that function, with my still active as the search namespace,
we cannot simply refer to the new function as old::foo, since this name will resolve to
my::old::foo instead. As a remedy, the compiler accepts an absolute qualified identifier
of the form ::old::foo. This bypasses name lookup and thus always yields exactly the
symbol in the given namespace (if it exists; as mentioned previously, the compiler will
complain about an undeclared symbol otherwise):

> old::foo 99;
100
> ::old::foo 99;
198

(Note that the notation ::foo mentioned earlier, which denotes a symbol foo in the
default namespace, is just a special instance of this notation for the case of an empty
namespace qualifier.)



Chapter 6
Rewriting

We still have to discuss how all those pretty function definitions are actually used to
evaluate expressions. In Pure this is done using an abstract model of computation, term
rewriting, which is also the workhorse behind computer algebra systems and theorem
provers. Term rewriting is considerably more general in some ways than the lambda
calculus (which is the backbone of most other functional languages). Its use as a pro-
gramming language was first explored by Michael O’Donnell [15]. Pure implements
term rewriting in a very efficient way, essentially compiling it down to ordinary function
definitions in native code which can be executed directly by the cpu of your computer.

6.1 Term Rewriting in a Nutshell
Up to now, we have used the notions of expressions and rewriting rules in a fairly
informal manner, so for a change let’s take a brief look at the formal background of
term rewriting theory. For the sake of simplicity, we discuss the theoretical framework
using simple, unconditional rewriting rules; the treatment of guarded equations is left
to the following section.

Here are some convenient definitions. A signature is a set Σ =
⊎

n≥0 Σn of function
and variable symbols. If f ∈ Σn then we also say that f has arity n, and we assume that
XΣ ⊆ Σ0, where XΣ is the set of all variable symbols in Σ. The (free) term algebra over
the signature Σ is the set of terms defined recursively as TΣ = { f t1 · · · tn | f ∈ Σn, ti ∈
TΣ}.1

A term rewriting rule is a pair of terms p, q ∈ TΣ, commonly denoted p→ q. In order
to describe the meaning of these, we also need the notion of a substitution σ which is
simply a mapping from variables to terms, σ : XΣ 7→ TΣ. For convenience, we also
write these as [x1 → σ(x1), x2 → σ(x2), . . .], and we assume that σ(x) = x unless ex-

1Note that term rewriting theory usually employs uncurried function applications, but the curried
notation can actually be seen as a special case of these, where all function symbols are nullary, except for
one binary symbol which is used to denote function application.



64 6.1 Term Rewriting in a Nutshell

plicitly mentioned otherwise. Given a term p and a substitution σ = [x1 → σ(x1), x2 →
σ(x2), . . .], by σ(p) = p[x1 → σ(x1), x2 → σ(x2), . . .] we denote the term obtained by
replacing each variable x in p with the corresponding σ(x). For instance, if p = f x y
then p[x → g x, y → c] = f (g x) c. We also say that a term u matches a term p, or is
an instance of p, if there is a substitution σ (the so-called matching substitution) such that
σ(p) = u.

A context in a term t is a term s containing a single instance of the distinguished
variable ω such that t = s[ω → u]. That is, t is just s with the subterm u at the position
indicated by ω.

Now the stage is set to describe an application of a term rewriting rule p → q to
a subject term t, given a context s in t. Suppose that t = s[ω → u], where u = σ(p).
Then we can rewrite t to t′ = s[ω → v] where v = σ(q). Such a single rewriting step
is also called a reduction, and u and v are called the redex and the reduct involved in the
reduction, respectively. For instance, by applying the rule f x y → h x to the subject
term t = f (g x) c, where the context is just s = ω and the matching substitution is
[x → g x, y→ c], we obtain t′ = h (g x).

Term rewriting rules are rarely applied in isolation, they usually come in droves,
called term rewriting systems. Formally, a term rewriting system is a finite set R of term
rewriting rules. We write t →R t′ if t reduces to t′ by applying any of the rules p →
q ∈ R, and t →∗R t′ if t reduces to t′ using R in any number of single reduction steps
(including zero). That is, →∗R is the reflexive and transitive closure of the single step
reduction relation→R. Similarly, ↔∗R is the reflexive, transitive and symmetric closure
of→R.

Finally, a term t is said to be irreducible or in normal form (with respect to R) if no rule
in R applies to it, i.e., there is no term t′ such that t →R t′. If t →∗R t′ such that t′ is in
normal form, then we also call t′ a normal form of t.

So what is the use of this in mathematical logic? Given a term rewriting system R, we
can also look at the corresponding set of equations E = {p = q | p→ q ∈ R}. As it turns
out, any “model” which satisfies the equations in E (taken variables to be universally
quantified) will also satisfy all equations given by ↔∗R. Under certain circumstances,
the rewriting system can then be used as a procedure for deciding whether two given
terms are “equal” by just comparing their normal forms.

Note that normal forms need not always exist (rewriting a given term t might not
terminate, because there’s always yet another rule which can be applied) and even if
they do, they might not be unique (different reduction sequences might yield different
normal forms of the same subject term). In fact these questions are not even decidable,
because term rewriting is Turing-complete. That’s why practical applications of term
rewriting usually impose a suitable “reduction strategy”, which is also the approach
taken in Pure.



6 Rewriting 65

6.2 The Evaluation Process
So for our purposes term rewriting provides a way to evaluate an expression by re-
ducing it to a normal form using the equations making up a Pure program, where we
consider equations as rewriting rules, by orienting them from left to right. The nor-
mal form is then taken to be the “value” of the original expression. Note that we don’t
talk about “functions” here at all. All the Pure interpreter ever worries about are the
expressions to be evaluated and the equations which can be applied to them.

Because normal forms are not necessarily unique, we need to impose a certain reduc-
tion strategy which determines which redices are reduced in each step, and the rewriting
rule to be applied in order to produce the reduct. In Pure, expressions are normally eval-
uated using the leftmost-innermost reduction strategy. That is, expressions are evaluated
from left to right, innermost expressions first. This implies that in a function applica-
tion, first the function object is evaluated, then its argument, and finally the function is
applied to the argument. This is also known as call-by-value. (Pure also provides means
to do call-by-need evaluation, but we won’t go into that here; see Section 7.3.)

For instance, let’s consider the following simple definition: square x = x*x; This is
to be read as the term rewriting rule square x→ x*x. In order to evaluate square (5+8),
the interpreter then does the following reductions (this also invokes some rules for
handling addition and multiplication which are provided in the prelude). The redex
in each step is underlined:

square (5+8)→ square 13→ 13*13→ 169.

Note that, because of call-by-value semantics, rules need to be written in a way so
that they match normal form arguments. For instance, if a program contains two rules
foo (bar x) = x and bar x = x+1, then the first rule will never be applicable, since any
bar x subterm will already have been reduced by the second rule before the first rule
can be applied.

Conceptually, for each reduction step the interpreter has to perform the following
operations:

1. Match the subject expression against the left-hand sides of equations. If more than
one equation matches, they are tried in the order in which they are listed in the
program. If no equation matches, the expression is already in normal form and
we’re done.

2. Bind the variables in the matching equation to their corresponding values. (This
amounts to constructing the matching substitution.)

3. For conditional equations, evaluate the guard using the variable binding deter-
mined in step 2. If the guard fails, try the next matching equation. Otherwise
proceed with step 4.



66 6.2 The Evaluation Process

4. Evaluate the right-hand side of the equation using the variable binding deter-
mined in step 2.

This might seem inefficient, but luckily the Pure interpreter compiles your program
to fast native code before executing it. The pattern-matching code uses a kind of opti-
mal decision tree which only needs a single, non-backtracking left-to-right scan of the
subject term to determine all matching equations in one go. In most cases the matching
overhead is barely noticable, unless you discriminate over large sets of heavily “over-
lapping” patterns, see [7] for details. Using these techniques and native compilation, the
Pure interpreter is able to achieve very good performance, offering execution speeds in
the same ballpark as good Lisp interpreters.

Note the choice of matching equations in step 1 of the evaluation procedure. If more
than one equation matches, the reduction strategy must specify unambiguously the or-
der in which they are to be tried. In Pure the equations are always considered in the
lexical order, i.e., in the order in which they are written by the programmer. (There are
other ways to do this, e.g., [17] proposes a “specifity” order, but the lexical order seems
to be the most straightforward and intuitive to use.) Thus, if a function is defined by
multiple, possibly ambiguous equations then the most specific equations should come
first, as in the following definition of the factorial:

fact n = n*fact(n-1) if n>0;
= 1 otherwise;

The first equation handles the n>0 case, while the second equation is to be applied
as a “default” rule when the guard of the first rule yields “false”. So the evaluation of
fact 1 proceeds as follows:

fact 1
(1)→ 1*fact (1-1)→ 1*fact 0

(2)→ 1*1→ 1.

First fact 1 is reduced to 1*fact (1-1) by the first rule which is applicable here
because 1>0 → 1. But in the third reduction the guard n>0 “fails” (0>0 → 0) and hence
the second equation is applied to fact 0, which reduces it to 1.

Together with leftmost-innermost evaluation, the lexical rule order removes all am-
biguity in the evaluation process so that it becomes completely deterministic. The lexical
order is convenient, but it also has some drawbacks. Specifically, you have to be careful
if functions are defined by equations scattered out over different scripts (which is often
the case for heavily polymorphic operations such as + and ==). The compiler can warn
you about cases where one equation is “shadowed” by another, but this only works for
unguarded equations (cf. Section 5.3). Hence you should make sure that the scripts are
always linked in the right order by judicious use of the using declaration (cf. Section
5.5).



6 Rewriting 67

6.3 Rewriting Rule Examples
The proof of the pudding is in the eating, so let’s look at some examples illustrating how
this all works out in practice. As we have seen, Pure programs are simply collections of
equations which are used to rewrite expressions in a symbolic fashion. In the simplest
case, such an equation looks just like an ordinary function definition:

> square x = x*x;
> square 99;
9801

Not very exciting so far. But Pure also allows you to apply this definition to symbolic
inputs:

> square (a+b);
(a+b)*(a+b)

Moreover, the left-hand side of an equation can in fact be an arbitrary (simple) ex-
pression. For instance, here are some symbolic rewriting rules for associativity and
distributivity of the + and * operators:

> (x+y)*z = x*z+y*z; x*(y+z) = x*y+x*z;
> x+(y+z) = (x+y)+z; x*(y*z) = (x*y)*z;
> square (a+b);
a*a+a*b+b*a+b*b

Note that rules like the above aren’t possible in most functional languages, because
they violate the “constructor discipline”, which demands that only “free” constructors
(i.e., function symbols without defining equations) should be used in the argument pat-
terns. Of course, no one forbids you to do these simple kinds of “pattern-matching” def-
initions in Pure, so the customary programming techniques from languages like Haskell
or ML carry over quite easily. In fact, we’ve already seen many examples of these; for
instance, recall the definition of the uniq operation:

> uniq (x:x:xs) = uniq (x:xs);
> uniq (x:xs) = x:uniq xs;
> uniq [] = [];
> uniq [1,2,2,3,3,3,1];
[1,2,3,1]

Definitions like the one above are just a special kind of the general rewriting rules
that Pure offers. This makes the language conceptually much simpler, and at the same
time gives you considerably more freedom in that you can also have algebraic simpli-
fication rules of the kind we’ve seen above. This might appear to be an arcane feature,
but it’s actually really useful in some situations. In particular, “constructor equations”
always violate the constructor discipline, so they can’t be used in Haskell or ML. For in-
stance, suppose that we want lists to automatically stay sorted and eliminate duplicates.
In Pure we can do this by simply adding the following equations:



68 6.4 Dynamic Typing

> x:y:xs = y:x:xs if x>y; = x:xs if x==y;
> [13,7,9,7,1]+[1,9,7,5];
[1,5,7,9,13]

You wouldn’t really want to add such a definition to most programs since it would
affect all list values. But similar definitions actually prove useful when defining custom
data structures such as sets. Another real-world example is Pure’s exact division oper-
ator % which also acts as a constructor for rational numbers in the math module. In this
case the constructor equation

x::bigint%y::bigint = (x div d) % (y div d) if d>1 when d = gcd x y end;

takes care that rational numbers are always represented in lowest terms:

> using math;
> 48L%30L;
8L%5L

6.4 Dynamic Typing
Let us finally take a look at the issue of representing data structures in Pure. Like Lisp,
Pure is a dynamically typed language, and there are no data type declarations, nor do
we need them. In Pure, “data” means just normal form expressions, which all belong to
the same universe of terms. In order to deal with different kinds of data, you therefore
have to distinguish them with an appropriate choice of constructor symbols.

Custom data structures can be defined in Pure just as easily as the predefined list and
tuple aggregates. You only have to pick some suitable constructor symbols. Normally,
these are introduced on the fly; only constant symbols must be declared, if they are to be
used on the left-hand side of equations. For instance, we’ve already mentioned binary
trees which are useful for sorting and searching. These can be represented using the
constructor symbols nil (a nonfix symbol denoting the empty tree) and bin (a ternary
constructor denoting an interior node of the tree, which takes a data element and the left
and right subtrees as arguments). The following definition then implements a binary
tree insertion routine:

nonfix nil;
insert nil y = bin y nil nil;
insert (bin x L R) y = bin x (insert L y) R if y<x;

= bin x L (insert R y) otherwise;

Creating a tree from a list of elements can now be done as follows:

bintree = foldl insert nil;

Finally, to convert a tree back to an (ordered) list we just do an inorder traversal of
the tree:



6 Rewriting 69

members nil = [];
members (bin x L R) = members L + (x:members R);

We can use this, e.g., to sort a list as follows:

> members (bintree [7,3,9,18,3]);
[3,3,7,9,18]

So we just implemented a binary tree data structure in six simple equations and
seven lines of code, not too bad. Of course, term rewriting is pretty much tailored to
do these kinds of tree manipulations. Where it falls short is in dealing with variable-
sized structures requiring efficient random element access. The best you get with plain
term rewriting are balanced tree structures which require logarithmic running time for
accessing individual elements. But Pure works around this limitation with its matrix
data structure which provides for constant time access to its members.

By generalizing the above binary tree example, you can deal with pretty much any
kind of “algebraic” or “variant record” data type, where the constructors are employed
as variant selectors and pattern matching can be used to simultaneously discriminate
over the variants and extract the component values. In addition, abstract data types can
be realized by hiding the constructors (putting them into a special namespace and mak-
ing them private), so that client modules must go through the provided public opera-
tions to access the data structure. E.g., in the example above all you have to do is add
the following declaration at the beginning of the script:

namespace bintree;
private nil bin;

Dynamic typing has become a bit unusual in modern functional languages, which
often employ a static type system with parametric polymorphism such as the Hind-
ley/Milner system. The advantages of static typing are well-known. Static typing is
safer because some kinds of programming errors can be caught at compile time rather
than runtime. It also enables the generation of more efficient code because the types
of arguments don’t have to be checked at runtime. Some programmers also feel that
the typing framework set by the language makes them think more about the data mod-
elling aspects of their program designs, instead of inventing ad hoc data structures on
the spot.

Nevertheless, using static typing in Pure would be a big mistake, because it would
kill off most of the ad hoc polymorphism and symbolic manipulation capabilities of-
fered by general term rewriting. Moreover, static typing is often perceived as rigid and
inconvenient; in contrast, as we have seen above, Pure allows you to create new data
structures almost without any effort. Also, as Oortmerssen argues [17, p. 11], there’s
no way that an input term can ever be “invalid” for a term rewriting system; either
there’s a rule which applies to it, which means that the term is reducible, or there isn’t
in which case the term is in normal form. Thus, since there are no dynamic “argument
mismatch” errors, there can’t be any static typing errors either. This provides some
theoretical justification why dynamic typing is such a nice fit for term rewriting. The



70 6.4 Dynamic Typing

situation is actually a bit more complicated in Pure because, e.g., failing guards and
pattern matches may indeed raise exceptions, but in a dynamic language it still makes
sense to treat these conditions as runtime errors which can be repaired by an application
program, rather than forbidding such programs in the first place. The price you pay for
the added flexibility is that Pure is inherently less safe than statically typed languages.
But if you want Haskell or ML, you know where to find them.



Chapter 7
Advanced Topics

While term rewriting is a universal model of computation in itself, as a practical pro-
gramming language Pure also provides various enhancements which go beyond the ba-
sic rewriting machinery described in the previous chapter. In the following we explain
how to implement iterative algorithms efficiently using tail recursion, how to handle
various kinds of runtime errors, and how to deal with infinite data structures using
lazy evaluation. We also discuss how you can extend the built-in capabilities of the in-
terpreter with macros and by interfacing to the C programming language. Finally, we
show you how you can turn your Pure scripts into standalone native executables using
Pure’s batch compiler.

7.1 Tail Recursion
Alan Perlis once said that “a program without a loop and a structured variable isn’t
worth writing.” In fact, computers excel at carrying out repetitive tasks which would be
impossible or at least very inconvenient if we had to do them manually. Thus carrying
out the same or similar calculations with a large amount of data is an essential capability
for any programming language.

In contrast to imperative programming languages, functional programming essen-
tially relies on a single construct for repeating calculations: recursion. By this we mean
that a function invokes itself, either directly or indirectly. As we will see, other repetitive
control constructs can always be expressed in terms of recursion.

A well-known example of a repetitive calculation already discovered by the ancient
Greeks is Euclid’s algorithm for calculating the greatest common divisor of two integers.
That is, given two (nonnegative) integers x and y, we are looking for the largest z such
that x and y are both integral multiples of z. Euclid’s solution to this problem rests on
the observation that if z divides both x and y, then the same holds for y and x mod y
(given that y > 0), where x mod y denotes the remainder of the division of x by y.
Moreover, if y is zero, then z = x is the solution. This readily translates to the following



72 7.1 Tail Recursion

recursive procedure. (Note that we declare gcd in a special namespace here, because the
prelude already defines a gcd function. Also, for the sake of simplicity, we assume that
the parameters x and y are always nonnegative integers.)

namespace my;
public gcd;
gcd x y = gcd y (x mod y) if y>0;

= x otherwise;

The algorithm terminates because the value of the second parameter is reduced in
each recursive application. This can be seen if we evaluate an expression like gcd 25 35.
(Here and in the following, for the sake of clarity we omit reductions for the arithmetic
primitives.)

gcd 25 35→ gcd 35 25→ gcd 25 10→ gcd 10 5→ gcd 5 0→ 5

Note that the recursive invocation of gcd is always the last call (the so-called tail call)
on the right-hand side of the first equation in the definition above. Such definitions are
called tail-recursive. This is a desirable property, because the Pure interpreter does tail
call elimination.1 We won’t go into all the gory details, but here is a brief explanation:
Computers execute function calls using a stack which records the return address, pa-
rameters and other local data of a function, called the activation record of a function call.
With tail call elimination, the last call on the right-hand side of a function definition
simply reuses the existing activation record. Thus with a tail-recursive definition, the
recursive calls don’t use up any additional stack space at all, and the entire algorithm
executes in constant stack space.

In contrast, consider our previous definition of the factorial:

fact n = n*fact(n-1) if n>0;
= 1 otherwise;

This definition is not tail-recursive, since the tail call of the first equation invokes
the (*) function rather than fact itself. This also becomes apparent when looking at a
typical reduction sequence:

fact 3 → 3*fact 2→ 3*(2*fact 1)→ 3*(2*(1*fact 0))

→ 3*(2*(1*1))→ 3*(2*1)→ 3*2→ 6

Note how the intermediate subterms first grow while the redices wander inwards
as the computation progresses. This means that for large values of n this definition is
in danger of running out of stack space. For instance, try the following. (Section 7.2
shows how you can set up the interpreter so that it deals with stack overflows in a more
civilized manner.)

1This requires that the JIT backend of your LLVM version supports this kind of optimization, which,
as of LLVM 2.3 and later, should be the case for most popular computer architectures. Also note that
tail call optimization is always disabled if the interpreter is run with the -g option, in order to facilitate
debugging. Please see the Pure manual for details.



7 Advanced Topics 73

> fact 1000000;
Segmentation fault

Fortunately, it is easy to rewrite most simple kinds of recursive definitions so that
they become tail-recursive, by employing the so-called accumulating parameter technique.
The idea is, quite simply, to carry around intermediate results in an extra parameter. For
instance:

fact n = loop 1 n with
loop p n = loop (p*n) (n-1) if n>0;

= p otherwise;
end;

Now the calculation of fact 3 proceeds as follows:

fact 3→ loop 1 3→ loop 3 2→ loop 6 1→ loop 6 0→ 6

This works pretty much like a for or while loop in conventional programming lan-
guages, but doesn’t require any special looping construct or mutable variables, which
Pure doesn’t have. There are other, more general forms of recursion which defy this
easy kind of transformation, and more elaborate techniques such as continuation pass-
ing to deal with them. But the accumulating parameter technique is easy to implement
and works well for any kind of algorithm where you’d use some kind of loop control
structure in conventional programming languages.

To summarize, while Pure doesn’t provide any built-in looping constructs, you can
easily roll your own, using the techniques sketched out above. In fact, the prelude al-
ready provides a number of generic functions of this kind, such as do, map and fold, as
well as list and matrix comprehensions. These are all implemented in a tail-recursive
fashion. Moreover, conditional expressions (if x then y else z) are subject to tail call
elimination in both branches, while the logical operators && and || as well as the se-
quence operator $$ are tail-recursive in their second operands.

7.2 Exceptions
“To err is human, to forgive divine.” Computational processes can run into problematic
situations just like humans. This may be due to bugs in the program, unanticipated
input errors, or resource constraints such as limited stack space. The notion of exceptions
has been invented to deal with such unfortunate situations and provide a way to escape
from them. More generally, they can be used to bail out in the middle of a computation
and implement non-local value returns.

Every Pure exception has a value which can be any (normal form) expression. For in-
stance, the predefined nonfix symbols stack_fault, failed_cond and failed_match
stand for the built-in error conditions of stack overflow, failing guards and pattern
matches, respectively. Some prelude operations may generate exceptions of their own,



74 7.2 Exceptions

such as the out_of_bounds exception raised by the ‘!’ operator when an index is outside
of the permitted range. You can generate any kind of exception yourself by just passing
the desired value to the throw primitive. For instance:

> throw hello_world;
<stdin>, line 1: unhandled exception ’hello_world’ while evaluating
’throw hello_world’

Handling an exception is just as easy:

> catch error (throw hello_world);
error hello_world

The catch primitive is a special form which takes two arguments: an exception han-
dler h and the expression x to be evaluated. The latter is a “call-by-name” argument
which gets evaluated by catch. If everything goes as expected, the value of x is re-
turned as the value of the catch call. But if an exception happens while evaluating x,
then the value y of the exception is passed to the handler h and the result of the appli-
cation h y is returned instead. Note that the exception handler can in fact be any Pure
value, like a simple constructor as in the example above, but usually it is a function
designed to deal with the error in some way (e.g., print an error message) and return a
suitable replacement for the value of x. For instance:

> using system;
> catch error (throw hello_world)
> with error x = printf "Hey, I got a ’%s’ exception!\n" (str x) $$ 0 end;
Hey, I got a ’hello_world’ exception!
0

As already mentioned, exceptions are also generated by the runtime system if the
program runs out of stack space, when a guard does not evaluate to a truth value, and
when the subject term fails to match the patterns in a pattern-matching lambda ab-
straction, or a let, case or when construct. You can use catch to handle these kinds of
exceptions just like any other. For instance:

> fact n = if n>0 then n*fact(n-1) else 1;
> catch error (fact foo);
error failed_cond
> catch error (fact 1000000);
error stack_fault

Note that Pure doesn’t do stack checks by default, so you’ll have to set the PURE_STACK
environment variable to get the latter kind of exception; otherwise programs will just
crash the interpreter with a “segfault” or some similarly unpleasant error message. E.g.,
the following shell command should do the trick on Linux:

$ export PURE_STACK=4096



7 Advanced Topics 75

You might have to adjust that value, depending on how much stack space (in kilo-
bytes) is actually available to application programs on your system. Also, it’s probably
a good idea to add this line to your shell startup file once you have found a suitable
setting. This is explained in more detail under “Stack Size and Tail Recursion” in the
Pure manual.

Exceptions also provide a way to handle asynchronous signals. When running in-
teractively, most standard termination signals (SIGINT, SIGTERM, etc.) are set up during
startup of the interpreter to produce corresponding Pure exceptions of the form signal
n where n is the signal number. Pure’s system module provides symbolic constants for
common POSIX signals and also defines the operation trap which lets you rebind any
signal to a signal exception. For instance, the following lets you handle the SIGQUIT
signal:

> using system;
> trap SIG_TRAP SIGQUIT;

Last but not least, exceptions can also be used in non-error situations, to implement
non-local value returns. For instance, here is a quick and dirty way to implement a
function findwhich returns the first member of a list xswhich satisfies a given predicate
p, or () if no such element is found.

> find p xs = catch id (do check xs) with check x = throw x if p x end;
> find (<0) [1,17,-5,9];
-5

Here, the “exception handler” is just the identity function id defined in the prelude.
The definition above assumes that p itself never throws an exception and always yields
a proper truth value. This can be made more robust with an explicit comparison and by
wrapping the call to p in its own catch clause; we leave this as an exercise to the reader.

7.3 Lazy Evaluation
As already mentioned, Pure provides the special form ‘&’ to handle lazy evaluation.
This is a postfix operator, written as x&, where x is an arbitrary Pure expression. The ‘&’
operator binds stronger than any other operation except function application. It turns
its operand into a kind of parameterless anonymous closure, deferring its evaluation.
These kinds of objects are also commonly known as thunks or futures. When the value
of a future is actually needed (during pattern-matching, or when the value becomes an
argument of a C call), it is evaluated automatically and gets memoized, i.e., the computed
result replaces the thunk so that it only has to be computed once. This is also known as
call-by-need.

Futures can be employed to implement all kinds of lazy data structures in Pure.
Special support is provided in the Pure prelude for lazy lists, which are also called
streams in the functional programming literature (these are not to be confused with the



76 7.3 Lazy Evaluation

kind of streams provided by the C library, which are just disk files). A stream is a list
with a thunked tail, which allows it to be infinite, or so huge that you’d never want to
keep it in main memory in its entirety. Most list operations have been designed so that
they work with these kinds of objects just as well as with ordinary “eager” lists.

A simple way to obtain an infinite stream is to create an arithmetic sequence with an
infinite upper bound, for instance:

> let x = 1:3..inf; x;
1:#<thunk 0xb5d6ca88>

Note the special thunk object in the tail of the stream which hasn’t been evaluated
yet. We can force a finite part of the stream to be evaluated, e.g., by cutting a “slice”
from it:

> x!!(0..10);
[1,3,5,7,9,11,13,15,17,19,21]

Because of memoization the generated elements are now readily available if we need
to look at them again, which avoids unnecessary reevaluations:

> x;
1:3:5:7:9:11:13:15:17:19:21:#<thunk 0xb5d6ce18>

The prelude provides a number of other stream generation functions. For instance,
infinite arithmetic sequences are actually created with the iterate function, which can
also be used in more general ways, such as generating a sequence of powers of two:

> show iterate
iterate f x = x:iterate f (f x)&;
> let x = iterate (2*) 1; x!!(0..10);
[1,2,4,8,16,32,64,128,256,512,1024]

The repeat and cycle functions repeat the same element or subsequence ad nau-
seam:

> repeat 1!!(0..10);
[1,1,1,1,1,1,1,1,1,1,1]
> cycle [0,1]!!(0..10);
[0,1,0,1,0,1,0,1,0,1,0]

These can all be combined with the usual generic list functions such as map, foldl,
scanl, zip etc. For instance:

> let x = zipwith (*) (cycle [1,-1]) (1..inf); x!!(0..10);
[1,-2,3,-4,5,-6,7,-8,9,-10,11]

Moreover, list comprehensions can draw values from streams and return the appro-
priate stream result:

> let rats = [m,n-m | n=2..inf; m=1..n-1; gcd m (n-m) == 1]; rats;
(1,1):#<thunk 0xb5d6d610>



7 Advanced Topics 77

> rats!!(0..10);
[(1,1),(1,2),(2,1),(1,3),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(5,1)]

Of course, streams can also be defined explicitly. For instance, the following is an
implementation of Erathostenes’ sieve which generates the infinite stream of all prime
numbers:

primes = sieve (2..inf) with
sieve (p:qs) = p : sieve [q | q = qs; q mod p] &;

end;

Note the ‘&’ on the tail of the sieve; this is what turns the sieve into a stream and
keeps the sieve function from looping. For instance, let’s count how many primes
there are below 10000:

> #takewhile (<=10000) primes;
1229

And here is how you can print a stream of integers like the above (this will keep on
printing forever; hit Ctrl-C when you get bored):

> using system;
> do (printf "%d\n") primes;
2
3
5
7
11
...

7.4 Macros
Macros are a special type of functions to be executed as a kind of “preprocessing stage”
at compile time. In Pure these are typically used to define custom special forms and to
perform inlining of function calls and other simple kinds of source-level optimizations.
Whereas the macro facilities of most programming languages simply provide a kind of
textual substitution mechanism, Pure macros operate on symbolic expressions and are
implemented by the same kind of rewriting rules that are also used to define ordinary
functions in Pure. In difference to these, macro rules start out with the keyword def,
and only simple kinds of rules without any guards or multiple left-hand and right-hand
sides are permitted.

Syntactically, a macro definition looks just like a variable or constant definition, us-
ing def in lieu of let or const, but they are processed in a different way. Macros are
substituted into the right-hand sides of function, constant and variable definitions. All
macro substitution happens before constant substitutions and the actual compilation



78 7.4 Macros

step. Macros can be defined in terms of other macros (also recursively), and are evalu-
ated using call by value (i.e., macro calls in macro arguments are expanded before the
macro gets applied to its parameters).

Here are some simple examples (please see the Pure manual for more). Our first
example is the following macro definition from the prelude, which eliminates saturated
instances of the right-associative function application operator ‘$’:

def f $ x = f x;

This is a simple example of an optimization rule which helps the compiler generate
better code. In this case, saturated calls of the $ operator (which is defined as an ordinary
function in the prelude) are “inlined” at compile time. Example:

> foo x = bar $ bar $ 2*x;
> show foo
foo x = bar (bar (2*x));

Note that a macro may have the same name as an ordinary Pure function, which
is essential if you want to optimize calls to an existing function, as in the previous ex-
ample. As with ordinary functions, the number of parameters in each rule for a given
macro must be the same. In this example the number of arguments is in fact the same as
that of the corresponding function, but in general the macro may well have a different
arity.

You can also use macros to define your own special forms. This works because the
actual evaluation of macro arguments is put off until runtime, and thus we can safely
pass them to built-in special forms and other constructs which defer their evaluation at
runtime. Note that the right-hand side of a macro rule may be an arbitrary Pure expres-
sion involving conditional expressions, lambdas, binding clauses, etc. These are never
evaluated during macro substitution, they just become part of the macro expansion (af-
ter substituting the macro parameters).

For instance, the following rule defines a macro timex which employs the function
clock from the system module to report the cpu time in seconds needed to evaluate a
given expression, along with the computed result:

> using system;
> def timex x = (clock-t0)/CLOCKS_PER_SEC,y when t0 = clock; y = x end;
> timex (count 1000000) with count n = if n>0 then count(n-1) else n end;
0.71,0

Note that the above definition of timex wouldn’t work as an ordinary function def-
inition, since by virtue of Pure’s basic eager evaluation strategy the x parameter would
have been evaluated already before it is passed to timex, making timex always return a
zero time value. Try it!

Macros can also be recursive, in which case they usually consist of multiple rules
and make use of pattern-matching just like ordinary function definitions. For instance,
here is a (simplified) Pure version of Lisp’s quasiquote:



7 Advanced Topics 79

def quasiquote (unquote x) = x;
def quasiquote (f@_ (splice x)) = foldl ($) (quasiquote f) x;
def quasiquote (f@_ x) = quasiquote f (quasiquote x);
def quasiquote x = quote x;

The first rule above takes care of “unquoting” embedded subterms. The second
rule “splices” an argument list into an enclosing function application. The third rule
recurses into subterms of a function application, and the fourth and last rule takes care
of quoting the “atomic” subterms. Note the f@_ in the second and third rule, which is
an anonymous “as” pattern forcing the compiler to recognize f as a function variable,
rather than a literal function symbol. This trick is explained in Section 4.3.6. Also note
that unquote and splice themselves are just passive constructor symbols, the real work
is done by quasiquote, using foldl at runtime to actually perform the splicing. (Putting
off the splicing until runtime makes it possible to splice argument lists computed at
runtime.)

If we want, we can also add some syntactic sugar for Lisp weenies. (Note that we
cannot have ‘,’ for unquoting in Pure, so we use ‘,$’ instead.)

prefix 9 ‘ ,$ ,@ ;
def ‘x = quasiquote x; def ,$x = unquote x; def ,@x = splice x;

Examples:

> ‘(2*42+2^12);
2*42+2^12
> ‘(2*42+,$(2^12));
2*42+4096.0
> ‘foo 1 2 (,@’[2/3,3/4]) (5/6);
foo 1 2 (2/3) (3/4) (5/6)
> ‘foo 1 2 (,@’args) (5/6) when args = ’[2/3,3/4] end;
foo 1 2 (2/3) (3/4) (5/6)

Since Pure macros can be recursive, they are just as powerful as (unconditional) term
rewriting systems and thus they are Turing-complete. This implies that a badly written
macro may well send the Pure compiler into an infinite recursion, which results in a
stack overflow at compile time. See Section 7.2 above for information on how to deal
with these by setting the PURE_STACK environment variable accordingly.

Also note that Pure macros are lexically scoped, i.e., the binding of symbols in the
right-hand-side of a macro definition is determined statically by the text of the defini-
tion, and macro parameter substitution also takes into account binding constructs, such
as with and when clauses, in the right-hand side of the definition. Macro facilities with
these pleasant properties are also known as hygienic macros. They are not susceptible
to so-called “name capture”, which makes macros in less sophisticated languages bug-
ridden and hard to use.

Pure macros also have their limitations. Specifically, the left-hand side of a macro
rule must be a simple expression, just like in ordinary function definitions. This re-



80 7.5 C Interface

stricts the kinds of expressions which can be rewritten by a macro. But Pure macros are
certainly powerful enough for most common preprocessing purposes, while still being
robust and easy to use.

7.5 C Interface
Accessing C functions from Pure programs is dead simple. You just need an extern
declaration of the function, which is a simplified kind of C prototype. The function can
then be called in Pure just like any other. For instance, the following commands, entered
interactively in the interpreter, let you use the sin function from the C library (of course
you could just as well put the extern declaration into a script):

> extern double sin(double);
> sin 0.3;
0.29552020666134

Multiple prototypes can be given in one extern declaration, separating them with
commas, and the parameter types can also be annotated with parameter names (these
are effectively treated as comments by the compiler, so they serve informational pur-
poses only):

extern double sin(double), double cos(double);
extern double tan(double x);

The interpreter makes sure that the parameters in a call match; if not, the call is
treated as a normal form expression by default, which gives you the opportunity to
extend the external function with your own Pure equations. For instance:

> sin 1;
sin 1
> sin x::int = sin (double x);
> sin 1;
0.841470984807897

Sometimes it is also necessary to access a C function under a different name. To
these ends, Pure allows you to specify an alias under which the original C function is
known to the Pure program. An alias is introduced by terminating the extern decla-
ration with a clause of the form ‘= alias’. For instance, here is how the system module
provides a portable interface to the nanosleep function. This function is actually imple-
mented under the name pure_nanosleep in the Pure runtime, which abstracts away the
platform-specific details of accessing a high-resolution function for timed waits:

extern double pure_nanosleep(double) = nanosleep;
nanosleep t::int | nanosleep t::bigint = nanosleep (double t);

In any case, the Pure name of the function is a symbol in the current namespace (at
the point of the extern declaration), cf. Section 5.5.2.



7 Advanced Topics 81

The range of supported C types in the interface is somewhat limited right now (void,
bool, char, short, int, long, float, double, as well as arbitrary pointer types, i.e.:
void*, char*, etc.), but in practice these cover most kinds of calls that need to be done
when interfacing to C libraries.2 The precise rules for marshalling Pure objects to cor-
responding C types are explained in the Pure manual. Briefly, the C interface translates
between Pure integers and bigints and C integer types in the obvious way, using sign
extension or truncation as needed. Likewise, float and double are converted from/to
Pure’s double precision floating numbers, promoting single to double precision and
vice versa as needed.

Concerning the pointer types, char* is for string arguments and return values which
need translation between Pure’s internal UTF-8 representation and the system encod-
ing, while void* is for any generic kind of pointer (including strings, which are not
translated when passed/returned as void*). The expr* pointer type can be used to
pass through Pure expressions just as they are, without any kind of (un)boxing. The
dmatrix*, cmatrix* and imatrix* types denote GSL-compatible double, complex double
and int matrices; this allows you to pass numeric matrices and return them as results of
GSL routines. For convenience, it is also possible to pass a numeric matrix for a short*,
int*, float* or double* parameter. The required conversions are done automatically,
on the fly, and the matrix data is copied to temporary storage in order to preserve value
semantics. In addition, any kind of matrix (including symbolic matrices) can also be
passed for a generic void* pointer. In this case no conversions are done and a pointer
to the raw matrix data is passed, which allows the matrix to be modified in-place.

All other pointer types are effectively treated as void* right now, although in a future
version the interpreter may keep track of the type names for the purpose of checking
parameter types.

Pure leaves it to the LLVM runtime to actually resolve linkage to external C func-
tions. The runtime first looks for symbols in the C library and Pure’s runtime library.
Thus all C library and Pure runtime functions are readily available in Pure programs.
Functions in other (shared) libraries can be accessed with a special form of the using
clause. For instance, if you have some C functions in a shared library named, say,
myutils.so, the following declaration loads the library so that you can get access to
these functions in Pure through subsequent extern declarations:

using "lib:myutils";

The interpreter locates dynamic libraries in a way similar to source scripts, using
a separate search path which takes into account the directory of the script with the
using clause, custom search paths as well as system-specific library paths. Moreover,
the proper library suffix (like .so on Linux, .dll on Windows) is supplied automati-
cally. Please refer to the Pure manual for details, and also have a look at the C interface
examples included in the distribution.

2Note that long may be either a 32 or a 64 bit integer type, depending on the architecture. Pure also
provides the synonyms int8, int16, int32 for char, short, int, as well as int64 to denote 64 bit integers.



82 7.6 Compiling Scripts

If you need to interface to large C libraries, there’s a separate pure-gen program
available at the Pure website which makes this easier. This Pure script takes a C header
(.h) file and creates a corresponding Pure module with definitions and extern declara-
tions for the constants and functions declared in the header. More information about
this can be found on the Addons wiki page of the Pure website.3

Finally, a word of caution: The interpreter always takes your extern declarations
at face value. It will not go and read any C header files to determine whether you
actually declared the function correctly! So you have to be careful to give the proper
declarations, otherwise your program will probably segfault calling the function. You
also have to be careful when passing generic pointer values to external C routines, since
currently there is no type checking for these; any pointer type other than char*, expr*
and the matrix pointer types is effectively treated as void*. This considerably simplifies
lowlevel programming and interfacing to C libraries, but also makes it very easy to
call C functions in inappropriate ways. Therefore it is highly recommended that you
wrap your lowlevel code in Pure routines and data structures which do all the checks
necessary to ensure that only the right kind of data is passed to C routines.

Another limitation of the C interface is that it does not offer any special support for
C structs and C function parameters right now. However, an optional addon module is
available which uses libffi, a portable foreign function interface library, to provide that
kind of functionality. This also makes it possible to turn Pure closures into C callback
functions, which is needed for interfacing to some C libraries, without writing a single
line of C code. Please see the description of the pure-ffi module on the Addons wiki
page for details.

7.6 Compiling Scripts
While Pure is typically used in an interactive way, it is also possible to compile your
scripts to native executables which can be run without the interpreter. Basically, all you
have to do is to add the -c option when running your script with the interpreter, and to
specify the desired output filename with the -o option:4

$ pure -c hello.pure -o hello

The given script is then executed as usual, but after execution the interpreter takes
a snapshot of the program and compiles it to an executable. Alternatively, it is also
possible to create either an LLVM assembler (.ll) or bitcode (.bc) file, or a native as-
sembler (.s) or object (.o) file, depending on the output filename specified with -o. The
.ll and .bc formats are supported natively by the Pure interpreter, no external tools

3See http://code.google.com/p/pure-lang/wiki/Addons.
4This requires the basic LLVM toolchain to be installed. See the Pure manual and the installation

instructions for details.

http://code.google.com/p/pure-lang/wiki/Addons


7 Advanced Topics 83

are required to generate these. If the target is a .s, .o or executable file, the Pure inter-
preter creates a temporary bitcode file on which it invokes the LLVM tools opt and llc
to create a native assembler file, and then uses gcc to assemble and link the resulting
program (if requested). Below we concentrate on compiling executables, because it is
the simplest and most common case. Please refer to the Pure manual for information on
how to build object modules and link them into programs and libraries.

One advantage of compiling your script is that this eliminates the JIT compilation
phase and thus considerably reduces the startup time of the program. Another rea-
son to prefer a standalone executable is that it lets you deploy the program on systems
without a full Pure installation (usually only the runtime library is required on the tar-
get system). On the other hand, compiled scripts also have some limitations, mostly
concerning the use of the built-in eval function, please see the Pure manual for details.

An unusual feature of Pure’s batch compiler is that the compiled program is actually
executed as usual, i.e., the script is run at compile time, too. This might first seem to
be a big annoyance, but it actually opens the door for some powerful programming
techniques like partial evaluation; we’ll illustrate this below with a simple example. It is
also a necessity because of Pure’s highly dynamic nature. For instance, Pure allows you
to define constants by evaluating an arbitrary expression, and using the built-in eval
function a program can easily modify itself in even more unforeseeable ways. Therefore
pretty much anything in your program can actually depend on previous computations
performed while the program is being executed.

For the sake of a concrete example, consider the following little script:

using system;

fact n = if n>0 then n*fact (n-1) else 1;

main n = do puts ["Hello, world!", str (map fact (1..n))];

if argc<=1 then () else main (sscanf (argv!1) "%d");

When invoked from the command line, with the number n as the first parameter,
this program will print the string "Hello, world!" and the list of the first n factorials:

$ pure -x hello.pure 10
Hello, world!
[1,2,6,24,120,720,5040,40320,362880,3628800]

Note the condition on argc in the last line of the script. This prevents the program
from producing an exception if no command line parameters are specified, so that the
program can also be run interactively:

$ pure -i -q hello.pure
> main 10;



84 7.6 Compiling Scripts

Hello, world!
[1,2,6,24,120,720,5040,40320,362880,3628800]
()
> quit

Turning the script into an executable works as follows:

$ pure -c hello.pure -o hello
$ ./hello 10
Hello, world!
[1,2,6,24,120,720,5040,40320,362880,3628800]

That was easy. Now let’s see how we can supply the value n at compile rather than
run time. To these ends we want to turn the value passed to the main function into a
compile time constant, which can be done as follows:

const n = if argc>1 then sscanf (argv!1) "%d" else 10;

(Note that we provide 10 as a default if n is not specified on the command line.)
Moreover, we want to skip the execution of main at compile time. The Pure run-

time provides a special system variable compiling which holds a truth value indicating
whether the program is actually running under the auspices of the batch compiler, so
that it can adjust accordingly. In our example, the evaluation of main becomes:

if compiling then () else main n;

Our program now looks as follows:

using system;

fact n = if n>0 then n*fact (n-1) else 1;

main n = do puts ["Hello, world!", str (map fact (1..n))];

const n = if argc>1 then sscanf (argv!1) "%d" else 10;
if compiling then () else main n;

This script “specializes” n to the first (compile time) parameter when being batch-
compiled, and it still works as before when we run it through the interpreter in both
batch and interactive mode, too:

$ pure -i -q hello.pure
Hello, world!
[1,2,6,24,120,720,5040,40320,362880,3628800]
> main 5;
Hello, world!
[1,2,6,24,120]



7 Advanced Topics 85

()
> quit

$ pure -x hello.pure 7
Hello, world!
[1,2,6,24,120,720,5040]

$ pure -o hello -c -x hello.pure 7
$ ./hello
Hello, world!
[1,2,6,24,120,720,5040]

This technique is also known as partial evaluation. You’ll rarely need an elaborate
setup like this, most of the time something like our simple first example will do the
trick. But, as you’ve seen, Pure can easily do it. Also note that the compile time pa-
rameters, like n in this example, can actually be anything that a Pure script can compute
and represent as a compile time constant. This is possible because the script really gets
executed at compile time, which is something that most other programming language
compilers can’t do.





Chapter 8
Examples

This chapter shows how to tackle different kinds of typical programming tasks using
Pure and illustrates a variety of important programming techniques. While we try to
cover a few important areas, the selection is not exhaustive (which would be rather
impossible, given the breadth of computer applications nowadays), and the scale of the
problems discussed here is somewhat trimmed down to fit the scope of an introduction.
But they are not just academic exercises either, and so we hope that you at least get a
glance of how Pure can be employed as a practical problem solving tool.

8.1 Recursion
This section discusses recursion, one of the most important concepts in functional pro-
gramming. As a concrete example, we take another look at our good old friend, the
Fibonacci function. This is a fairly basic example, but still interesting enough to discuss
various important techniques such as tabulation and tail recursion.

First, here’s the naive definition of the Fibonacci function we already saw in Chapter
2:

> fib n = if n<=1 then n else fib (n-2) + fib (n-1);
> map fib (0..10);
[0,1,1,2,3,5,8,13,21,34,55]

This is a really bad implementation because it takes exponential running time, which
becomes quite apparent if you try to compute fib n for larger values of n. In fact,
you will find that the ratio between the running times of successive invocations quickly
starts approaching the golden ratio ϕ = 1.618 . . ., which is no accident because the times
are proportional to the Fibonacci function itself! So, even assuming a fast computer
which can do each single call to fib in just a nanosecond, a conservative estimate of
the time needed to compute just the 128th Fibonacci number would already exceed the
current age of the universe by some 29.6%. But we can avoid this defect if we generate
the Fibonacci numbers in pairs instead:



88 8.1 Recursion

> fibs n = 0,1 if n<=0;
> = b,a+b when a,b = fibs (n-1) end otherwise;
> fibs 10; fibs 30;
55,89
832040,1346269

Note the when clause (cf. Chapter 4), which extracts the individual results from the
pair returned by the recursive invocation of fibs in the second equation. The underly-
ing technique here is tabulation, i.e., keeping track of intermediate results in a table.

It’s now an easy exercise to wrap the above definition in a fib function which just
grabs the first result from a corresponding call to fibs. But we first have to get rid of
the old definition of the fib function; we can do that in the interpreter as follows:

> clear fib

Now enter the following definition. Note that fibs becomes a local function inside
fib now. This kind of “wrapper-worker” design is pretty common in functional pro-
grams.

> fib n = a when a,b = fibs n end with
> fibs n = 0,1 if n<=0;
> = b,a+b when a,b = fibs (n-1) end otherwise;
> end;
> map fib (21..31);
[10946,17711,28657,46368,75025,121393,196418,317811,514229,832040,1346269]

Our new definition is much better than the naive one, but it still has some deficien-
cies:

• The Fibonacci numbers outgrow the 32 bit range of machine integers pretty quickly
and then start wrapping around. E.g., fib 47 yields -1323752223.

• Our definition is in danger of running out of stack space because of the recursive
invocations of the fibs function.

The first defect is easy to fix. In order to get arithmetically correct results, we just
have to switch to bigints. In fact, it is enough to replace the starting values of the se-
quence to force the entire computation to be done using bigints (note that the L suffix
tells the interpreter that these are now bigint values rather than ordinary machine inte-
gers):

> clear fib
> fib n = a when a,b = fibs n end with
> fibs n = 0L,1L if n<=0;
> = b,a+b when a,b = fibs (n-1) end otherwise;
> end;
> map fib (47..51);



8 Examples 89

[2971215073L,4807526976L,7778742049L,12586269025L,20365011074L]
> fib 200;
280571172992510140037611932413038677189525L

The second issue only becomes apparent when we want to compute some really huge
Fibonacci numbers, much larger than the ones we tried so far. But first make sure that
we save our work at this point so that we don’t have to retype the definition of fib later:

> dump

This command writes our current definitions to a script file named .pure in the
current directory, which will be reloaded automatically the next time we start the inter-
preter. After this safety measure let’s give it a shot:

> fib 1000000;
Segmentation fault

Oops. (You did save your work with dump, didn’t you?) By default, the Pure inter-
preter doesn’t do any stack checks so it crashed with a stack overflow. At this point you
should probably read up on “stack size and tail recursion” in the Pure manual and set
the PURE_STACK environment variable to a sane value (cf. Section 7.2). For instance:

$ export PURE_STACK=4096

Let’s restart the interpreter now and try again:

> fib 1000000;
<stdin>, line 1: unhandled exception ’stack_fault’ while evaluating
’fib 1000000’

Ok, at least we get an orderly exception now, but of course that doesn’t fix the
problem. The solution here is to rewrite the definition of fibs so that it becomes tail-
recursive, cf. Section 7.1. This is a very important concept in functional programming,
because it enables us to implement iteration in limited stack space. Recall that a func-
tion definition is tail-recursive if the recursive invocation of the function is the last call
(the so-called tail call) on the right-hand side of the definition. Tail calls are usually
optimized away by the Pure compiler so that a tail-recursive function can execute in a
loop-like fashion.

The easiest trick to turn a recursive function into a tail-recursive one is the accumulat-
ing parameter technique. The idea is to have our “worker” function carry around an extra
argument representing the latest intermediate result of the iteration. For the Fibonacci
function this is quite easy; we just take the current pair a,b of Fibonacci numbers as the
accumulating parameter:

> clear fib
> fib n = fibs n (0L,1L) with
> fibs n (a,b) = a if n<=0;
> = fibs (n-1) (b,a+b) otherwise;
> end;



90 8.2 Lists and Streams

Let’s take our final definition for a first test drive:

> map fib (0..10);
[0L,1L,1L,2L,3L,5L,8L,13L,21L,34L,55L]

Looks good so far. Now to “boldly go . . . ” (Sit back and relax, this takes a little
while; the result has 208988 digits.)

> fib 1000000;
1953282128.......

8.2 Lists and Streams

8.3 Matrix Operations

8.4 String Processing

8.5 Sorting and Searching

8.6 Symbolic Computing

8.7 System Programming

8.8 Databases

8.9 Web Programming

8.10 Computer Graphics

8.11 Multimedia and Computer Music



Appendix A
Pure Grammar

This is the complete extended BNF grammar of Pure. As usual, repetitions and optional
elements are denoted using curly braces and brackets, respectively. For the sake of sim-
plicity, the grammar leaves the precedence and associativity of expressions unspecified;
you can find these in Chapter 4.

script : {item}

item : namespace [name] ;
| using namespace [name {, name}] ;
| using name {, name};
| [scope] extern prototype {, prototype};
| declarator symbol {symbol};
| let simple-rule;
| const simple-rule;
| def simple-rule;
| rule;
| expr;
| ;

declarator : scope | [scope] fixity

scope : public | private

fixity : nonfix | outfix
| infix precedence | infixl precedence | infixr precedence



92 A Pure Grammar

| prefix precedence | postfix precedence

precedence : integer | ( qualified-symbol )

prototype : c-type identifier ( [parameters] ) [= identifier]

parameters : parameter {, parameter}

parameter : c-type [identifier]

c-type : identifier {*}

symbol : identifier | special

name : qualified-identifier | string

rule : pattern {| pattern} = expr [guard] {; = expr [guard] }

simple-rule : pattern = expr | expr

pattern : simple-expr

guard : if simple-expr
| otherwise

| guard when simple-rules end
| guard with rules end

expr : \ prim-expr {prim-expr} -> expr
| case expr of rules end
| expr when simple-rules end
| expr with rules end
| if expr then expr else expr
| simple-expr

simple-expr : simple-expr qualified-symbol simple-expr



A Pure Grammar 93

| qualified-symbol simple-expr
| simple-expr qualified-symbol
| application

application : application prim-expr
| prim-expr

prim-expr : qualified-identifier [:: qualified-identifier | @ prim-expr]
| qualified-symbol
| number
| string
| ( qualified-symbol )
| ( qualified-symbol qualified-symbol )
| ( simple-expr qualified-symbol )
| ( qualified-symbol simple-expr )
| ( expr )
| qualified-symbol expr qualified-symbol
| [ exprs ]
| { exprs {; exprs} [;] }
| [ expr | simple-rules ]
| { expr | simple-rules }

exprs : expr {, expr}

rules : rule {; rule} [;]

simple-rules : simple-rule {; simple-rule} [;]

qualified-symbol : [qualifier] symbol

qualified-identifier : [qualifier] identifier

qualifier : [identifier] :: {identifier ::}

number : integer | integer L | float



94 A Pure Grammar

integer : digit {digit}
| 0 (X | x) hex-digit {hex-digit}
| 0 (B | b) bin-digit {bin-digit}
| 0 oct-digit {oct-digit}

float : digit {digit} [. digit {digit}] exponent
| [digit {digit}] . digit {digit} [exponent]

exponent : (E | e) [+ | -] digit {digit}

string : " {char} "

identifier : letter {letter | digit}

special : punct {punct}

digit : 0 | · · · | 9

oct-digit : 0 | · · · | 7

hex-digit : 0 | · · · | 9 | A | · · · | F | a | · · · | f

bin-digit : 0 | 1

letter : A | · · · | Z | a | · · · | z | _ | · · ·

punct : ! | # | $ | % | & | · · ·

char : 〈any character or escape sequence〉

Note that the character repertoire available for the lexical entities letter, punct and
char depends on the basic character set that you use. Pure supports either just 7 bit
ASCII, or all of Unicode. In the latter case, your scripts must be encoded in UTF-8,
an ASCII extension which can represent all extended Unicode characters using special
multibyte sequences. Most text editors support UTF-8 nowadays, so that you can write



A Pure Grammar 95

your Pure programs in almost any language, and take full advantage of the special
symbols in the Unicode character set.

A string character can be any character in the host character set, except newline,
double quote, the backslash and the null character (ASCII code 0, which, like in C, is
used as a string terminator). As usual, the backslash is used to denote special escape
sequences. In particular, the newline, double quote and backslash characters can be
denoted \n, \" and \\, respectively. Pure provides escape sequences for all Unicode
characters, which lets you use the full Unicode set in strings even if your editor only
supports ASCII. Please see Chapter 3 for details.

Concerning identifiers and special symbols, Pure uses the following simplified rules
(suggested by John Cowan on the Pure mailing list) to determine which Unicode char-
acters are letters and punctuation:

• In addition to the ASCII punctuation symbols, Pure considers the following ex-
tended Unicode characters (code points) as punctuation which can be used in spe-
cial operator and constant symbols: U+00A1 through U+00BF, U+00D7, U+00F7, and
U+20D0 through U+2BFF. This comprises the special symbols in the Latin-1 reper-
toire, as well as the following additional blocks of Unicode symbols: Combin-
ing Diacritical Marks for Symbols, Letterlike Symbols, Number Forms, Arrows,
Mathematical Symbols, Miscellaneous Technical Symbols, Control Pictures, OCR,
Enclosed Alphanumerics, Box Drawing, Blocks, Geometric Shapes, Miscellaneous
Symbols, Dingbats, Miscellaneous Mathematical Symbols A, Supplemental Ar-
rows A, Supplemental Arrows B, Miscellaneous Mathematical Symbols B, Supple-
mental Mathematical Operators, and Miscellaneous Symbols and Arrows blocks.
This should cover almost everything you’d ever want to use in operator symbols.

• All other extended Unicode characters are considered as letters which can be used
in ordinary identifiers just as well as the alphabetic characters in the ASCII set
(and the underscore).





Bibliography

[1] F. Baader and T. Nipkow. Term Rewriting and all that. Cambridge University Press,
Cambridge, 1998.

[2] R. Bird and P. Wadler. Introduction to Functional Programming. Prentice Hall, New
York, 1988.

[3] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume B, chapter 6, pages 243–320. Else-
vier, 1990.

[4] K. Didrich, A. Fett, C. Gerke, W. Grieskamp, and P. Pepper. OPAL: Design and im-
plementation of an algebraic programming language. In J. Gutknecht, editor, Pro-
gramming Languages and System Architectures, LNCS 782, pages 228–244. Springer,
1994.

[5] J. W. Eaton. GNU Octave Manual. Network Theory Limited, 2002. See http://www.
octave.org.

[6] J. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud. Introducing
OBJ. In J. Goguen, editor, Applications of Algebraic Specification using OBJ. Cam-
bridge, 1993.

[7] A. Gräf. Left-to-right tree pattern matching. In R. V. Book, editor, Rewriting Tech-
niques and Applications, LNCS 488, pages 323–334. Springer, 1991.

[8] A. Gräf. The Q Programming Language. http://q-lang.sf.net, 2008.

[9] J. Hughes. Why functional programming matters. Computer Journal, 32(2):98–107,
1989.

[10] S. P. Jones, editor. Haskell 98 Language and Libraries: The Revised Report. http:
//haskell.org, September 2002.

[11] C. Lattner et al. The LLVM compiler infrastructure. http://llvm.org, 2008.

http://www.octave.org
http://www.octave.org
http://q-lang.sf.net
http://haskell.org
http://haskell.org
http://llvm.org


98 Bibliography

[12] W. Leler. Constraint Programming Languages: Their Specification and Generation.
Addison-Wesley, 1988.

[13] J. N. Little and C. B. Moler. MATLAB User’s Guide. MathWorks, Inc., Cochinate
Place, 24 Prime Park Way, Natick, MA 01760, Jan. 1990.

[14] J. Niehren, J. Schwinghammer, and G. Smolka. A concurrent lambda calculus with
futures. Theoretical Computer Science, 364(3):338–356, Nov. 2006. See http://www.
ps.uni-sb.de/alice.

[15] M. O’Donnell. Equational Logic as a Programming Language. Series in the Founda-
tions of Computing. MIT Press, Cambridge, Mass., 1985.

[16] D. A. Turner. An overview of Miranda. In D. A. Turner, editor, Research Topics in
Functional Programming, University of Texas at Austin Year of Programming Series,
pages 1–16. 1990. See http://miranda.org.uk.

[17] W. van Oortmerssen. Concurrent Tree Space Transformation in the Aardappel Program-
ming Language. PhD thesis, University of Southampton, UK, 2000.

[18] A. N. Whitehead. A Treatise on Universal Algebra, with Applications. Cambridge,
1898. Reprinted 1960.

[19] Wikipedia article “Functional programming”.
http://en.wikipedia.org/wiki/Functional_programming, October 2008.

http://www.ps.uni-sb.de/alice
http://www.ps.uni-sb.de/alice
http://miranda.org.uk
http://en.wikipedia.org/wiki/Functional_programming

	Contents
	1 Introduction
	1.1 Getting Pure
	1.2 References and Related Work
	1.3 Etymological Note
	1.4 Document Roadmap
	1.5 Typographical Conventions

	2 Using the Interpreter
	2.1 Interactive Usage
	2.2 Debugging
	2.3 Running Scripts from the Shell
	2.4 Command Line Editing
	2.5 Pure and Emacs
	2.6 Other Text Editors
	2.7 Pure on MS Windows

	3 Lexical Matters
	3.1 Character Set
	3.2 Lexical Elements

	4 Expressions
	4.1 Function Applications
	4.2 Operators
	4.2.1 Predefined Operators
	4.2.2 Unary Minus
	4.2.3 Operator Sections

	4.3 Patterns
	4.3.1 The ``Head = Function'' Rule
	4.3.2 Nonfix Symbols
	4.3.3 The Anonymous Variable
	4.3.4 Non-Linear Patterns and Syntactic Equality
	4.3.5 Type Tags
	4.3.6 ``As'' Patterns

	4.4 Lambdas
	4.5 Conditional and Case Expressions
	4.6 Local Definitions
	4.7 Lexical Scoping
	4.8 Primary Expressions
	4.8.1 Symbols
	4.8.2 Numbers
	4.8.3 Strings
	4.8.4 Lists
	4.8.5 Tuples
	4.8.6 Matrices
	4.8.7 Records
	4.8.8 Comprehensions

	4.9 Evaluation Order and Special Forms

	5 Definitions
	5.1 The Global Scope
	5.2 Rule Syntax
	5.2.1 Guards
	5.2.2 Repeated Left-Hand and Right-Hand Sides
	5.2.3 Local Definitions in Rules
	5.2.4 Optional Left-Hand Sides

	5.3 Function Definitions
	5.4 Constant and Variable Definitions
	5.5 Programs and Modules
	5.5.1 The Standard Prelude
	5.5.2 Namespaces
	5.5.3 Private Symbols
	5.5.4 Hierarchical Namespaces


	6 Rewriting
	6.1 Term Rewriting in a Nutshell
	6.2 The Evaluation Process
	6.3 Rewriting Rule Examples
	6.4 Dynamic Typing

	7 Advanced Topics
	7.1 Tail Recursion
	7.2 Exceptions
	7.3 Lazy Evaluation
	7.4 Macros
	7.5 C Interface
	7.6 Compiling Scripts

	8 Examples
	8.1 Recursion
	8.2 Lists and Streams
	8.3 Matrix Operations
	8.4 String Processing
	8.5 Sorting and Searching
	8.6 Symbolic Computing
	8.7 System Programming
	8.8 Databases
	8.9 Web Programming
	8.10 Computer Graphics
	8.11 Multimedia and Computer Music

	A Pure Grammar
	Bibliography

